Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin
2014-06-01
Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.
Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density
USDA-ARS?s Scientific Manuscript database
Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...
Saturated hydraulic conductivity of US soils grouped according textural class and bulk density
USDA-ARS?s Scientific Manuscript database
Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...
NASA Astrophysics Data System (ADS)
Koestel, J. K.; Norgaard, T.; Luong, N. M.; Vendelboe, A. L.; Moldrup, P.; Jarvis, N. J.; Lamandé, M.; Iversen, B. V.; Wollesen de Jonge, L.
2013-02-01
It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field site in Silstrup (Denmark) at a sampling distance of approximately 15 m (with a few exceptions), covering an area of approximately 1 ha (60 m × 165 m). For 64 of the 65 investigated soil columns, we observed BTC shapes indicating a strong preferential transport. The strength of preferential transport was positively correlated with the bulk density and the degree of water saturation. The latter suggests that preferential macropore transport was the dominating transport process. Increased bulk densities were presumably related with a decrease in near-saturated hydraulic conductivities and as a consequence to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column scale have to be upscaled when applied to the field scale or larger.
USDA-ARS?s Scientific Manuscript database
Saturated hydraulic conductivity Ksat is a fundamental characteristic in modeling flow and contaminant transport in soils and sediments. Therefore, many models have been developed to estimate Ksat from easily measureable parameters, such as textural properties, bulk density, etc. However, Ksat is no...
NASA Astrophysics Data System (ADS)
Dathe, A.; Nemes, A.; Bloem, E.; Patterson, M.; Gimenez, D.; Angyal, A.; Koestel, J. K.; Jarvis, N.
2017-12-01
Soil spatial heterogeneity plays a critical role for describing water and solute transport processes in the unsaturated zone. Although we have a sound understanding of the physical properties underlying this heterogeneity (like macropores causing preferential water flow), their quantification in a spatial context is still a challenge. To improve existing knowledge and modelling approaches we established a field experiment on an agriculturally used silty clay loam (Stagnosol) in SE Norway. Centimeter to decimeter scale heterogeneities were investigated in the field using electrical resistivity tomography (ERT) in a quasi-3D and a real 3D approach. More than 100 undisturbed soil samples were taken in the 2x1x1 m3plot investigated with 3D ERT to determine soil water retention, saturated and unsaturated hydraulic conductivities and bulk density in the laboratory. A subset of these samples was scanned at the computer tomography (CT) facility at the Swedish University of Agricultural Sciences in Uppsala, Sweden, with special emphasis on characterizing macroporosity. Results show that the ERT measurements captured the spatial distribution of bulk densities and reflected soil water contents. However, ERT could not resolve the large variation observed in saturated hydraulic conductivities from the soil samples. Saturated hydraulic conductivity was clearly related to the macroporosity visible in the CT scans obtained from the respective soil cores. Hydraulic conductivities close to saturation mainly changed with depths in the soil profile and therefore with bulk density. In conclusion, to quantify the spatial heterogeneity of saturated hydraulic conductivities scanning methods with a resolution smaller than the size of macropores have to be used. This is feasible only when the information obtained from for example CT scans of soil cores would be upscaled in a meaningful way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chugunov, Nikita; Altundas, Bilgin
The submission contains a .xls files consisting of 10 excel sheets, which contain combined list of pressure, saturation, salinity, temperature profiles from the simulation of CO2 push-pull using Brady reservoir model and the corresponding effective compressional and shear velocity, bulk density, and fluid and time-lapse neutron capture cross section profiles of rock at times 0 day (baseline) through 14 days. First 9 sheets (each named after the corresponding CO2 push-pull simulation time) contains simulated pressure, saturation, temperature, salinity profiles and the corresponding effective elastic and neutron capture cross section profiles of rock matrix at the time of CO2 injection. Eachmore » sheet contains two sets of effective compressional velocity profiles of the rock, one based on Gassmann and the other based on Patchy saturation model. Effective neutron capture cross section calculations are done using a proprietary neutron cross-section simulator (SNUPAR) whereas for the thermodynamic properties of CO2 and bulk density of rock matrix filled with fluid, a standalone fluid substitution tool by Schlumberger is used. Last sheet in the file contains the bulk modulus of solid rock, which is inverted from the rock properties (porosity, sound speed etc) based on Gassmann model. Bulk modulus of solid rock in turn is used in the fluid substitution.« less
Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements, and Crazing
Ge, Ting; Grest, Gary S.; Robbins, Mark O.
2014-09-26
Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time t. Changes in the tensile stress, mode of failure and interfacial fracture energy G I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small t welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable crazemore » is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy G I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, G I increases as t 1/2 before saturating at the average bulk fracture energy G b. As in previous studies of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, G I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and G I << G b.« less
Laboratory Characterization of Talley Brick
2011-08-01
specimen’s wet, bulk, or “as-tested” density. Results from these determinations are provided in Table 1. Measurements of posttest water content1...ASTM 2005d). Based on the appropriate values of posttest water content, wet density, and an assumed grain density of 2.89 Mg/m3, values of dry... Posttest Axial P Radial P Axial S Radial S Wet Water Dry Degree of ’Wave ’Wave ’Wave \\Vave Test Density Conte-nt, Density, Porosity, Saturation
Effect of initial bulk density on high-solids anaerobic digestion of MSW: General mechanism.
Caicedo, Luis M; Wang, Hongtao; Lu, Wenjing; De Clercq, Djavan; Liu, Yanjun; Xu, Sai; Ni, Zhe
2017-06-01
Initial bulk density (IBD) is an important variable in anaerobic digestion since it defines and optimizes the treatment capacity of a system. This study reveals the mechanism on how IBD might affect anaerobic digestion of waste. Four different IBD values: D 1 (500-700kgm -3 ), D 2 (900-1000kgm -3 ), D 3 (1100-1200kgm -3 ) and D 4 (1200-1400kgm -3 ) were set and tested over a period of 90days in simulated landfill reactors. The main variables affected by the IBD are the methane generation, saturation degree, extraction of organic matter, and the total population of methanogens. The study identified that IBD >1000kgm -3 may have significant effect on methane generation, either prolonging the lag time or completely inhibiting the process. This study provides a new understanding of the anaerobic digestion process in saturated high-solids systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of thermal treatment on energy density and hardness of torrefied wood pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jianghong; Wang, Jingsong; Bi, Xiaotao T.
Here, three types of wood pellets samples, including two types of commercial pellets and one type of lab-made control pellets were torrefied in a fixed bed unit to study the effect of thermal pretreatment on the quality of wood pellets. The quality of wood pellets was mainly characterized by the pellet density, bulk density, higher heating value, Meyer hardness, saturated moisture uptake, volumetric energy density, and energy yield. Results showed that torrefaction significantly decreased the pellet density, hardness, volumetric energy density, and energy yield. The higher heating value increased and the saturated moisture content decreased after torrefaction. In view ofmore » the lower density, lower hardness, lower volumetric energy density, and energy yield of torrefied pellets, it is recommended that biomass should be torrefied and then compressed to make strong pellets of high hydrophobicity and volumetric energy density.« less
Effects of thermal treatment on energy density and hardness of torrefied wood pellets
Peng, Jianghong; Wang, Jingsong; Bi, Xiaotao T.; ...
2014-09-27
Here, three types of wood pellets samples, including two types of commercial pellets and one type of lab-made control pellets were torrefied in a fixed bed unit to study the effect of thermal pretreatment on the quality of wood pellets. The quality of wood pellets was mainly characterized by the pellet density, bulk density, higher heating value, Meyer hardness, saturated moisture uptake, volumetric energy density, and energy yield. Results showed that torrefaction significantly decreased the pellet density, hardness, volumetric energy density, and energy yield. The higher heating value increased and the saturated moisture content decreased after torrefaction. In view ofmore » the lower density, lower hardness, lower volumetric energy density, and energy yield of torrefied pellets, it is recommended that biomass should be torrefied and then compressed to make strong pellets of high hydrophobicity and volumetric energy density.« less
Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength
Ge, Ting; Robbins, Mark O.; Perahia, Dvora; ...
2014-07-25
Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface.more » The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.« less
The temporal changes in saturated hydraulic conductivity of forest soils
NASA Astrophysics Data System (ADS)
Kornél Szegedi, Balázs
2015-04-01
I investigated the temporal variability of forest soils infiltration capacity through compaction. I performed the measurements of mine in The Botanical Garden of Sopron between 15.09.2014 - 15.10.2014. I performed the measurements in 50-50 cm areas those have been cleaned of vegetation, where I measured the bulk density and volume of soil hydraulic conductivity with Tension Disk Infiltrometer (TDI) in 3-3 repetitions. I took undisturbed 160 cm3 from the upper 5 cm layer of the cleaned soil surface for the bulk density measurements. Then I loosened the top 10-15 cm layer of the soil surface with spade. After the cultivation of the soil I measured the bulk density and volume of water conductivity also 3-3 repetitions. Later I performed the hydraulic conductivity (Ksat) using the TDI and bulk density measurements on undisturbed samples on a weekly basis in the study area. I illustrated the measured hydraulic conductivity and bulk density values as a function of cumulative rainfall by using simple graphical and statistical methods. The rate of the soil compaction pace was fast and smooth based on the change of the measured bulk density values. There was a steady downward trend in hydraulic conductivity parallel the compaction. The cultivation increased the hydraulic conductivity nearly fourfold compared to original, than decreased to half by 1 week. In the following the redeposition rate declined, but based on the literature data, almost 3-4 months enough to return the original state before cultivation of the soil hydraulic conductivity and bulk density values. This publication has been supported by AGRARKLIMA.2 VKSZ_12-1-2013-0034 project.
Edward Pearson Wosika
1981-01-01
Abstract - The following properties of the Hugo, Mendocino, and Caspar soil series were analyzed at the 10 cm, 20 cm, 30 cm, 50 cm, 100 cm, and 150 cm depths: bulk density; porosity; particle density; saturated and unsaturated hydraulic conductivity; particle-size distribution; pore-size distribution; and water retention characteristics. The Hugo soil series exhibits...
Ground-State Properties of Unitary Bosons: From Clusters to Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, J.; Gandolfi, S.; van Kolck, U.
The properties of cold Bose gases at unitarity have been extensively investigated in the last few years both theoretically and experimentally. In this paper we use a family of interactions tuned to two-body unitarity and very weak three-body binding to demonstrate the universal properties of both clusters and matter. We determine the universal properties of finite clusters up to 60 particles and, for the first time, explicitly demonstrate the saturation of energy and density with particle number and compare with bulk properties. At saturation in the bulk we determine the energy, density, two- and three-body contacts, and the condensate fraction.more » We find that uniform matter is more bound than three-body clusters by nearly 2 orders of magnitude, the two-body contact is very large in absolute terms, and yet the condensate fraction is also very large, greater than 90%. Finally, equilibrium properties of these systems may be experimentally accessible through rapid quenching of weakly interacting boson superfluids.« less
Effect of Fresh Poultry Litter and Compost on Soil Physical and Chemical Properties
NASA Technical Reports Server (NTRS)
Carr, Stacy; Tsegaye, Teferi; Coleman, Tommy
1998-01-01
Application of poultry litter and compost as a substitute for fertilizer not only uses unwanted waste and decreases expenditures for commercial fertilizer, it adds nutrients to soil for plant uptake. The properties of soil affected by poultry litter were analyzed to determine the positive and negative aspects of using this substitute fertilizer. This study focused on changes associated with saturated hydraulic conductivity, bulk density, nitrate concentrations, and pH after application of varying concentrations of poultry litter and compost. Soil samples from Tennessee Valley Substation in Alabama were analyzed in a laboratory at Alabama A&M University. As a result of the application of fresh poultry litter and compost, we found that the saturated hydraulic conductivity increased and the bulk density decreased, while the pH was generally not affected. Using poultry litter and compost as an alternative commercial fertilizers could be adapted by the farming community to protect the sustainability of our environment. Unwanted waste is used productively and soil is enriched for farming.
Ground-State Properties of Unitary Bosons: From Clusters to Matter
Carlson, J.; Gandolfi, S.; van Kolck, U.; ...
2017-11-29
The properties of cold Bose gases at unitarity have been extensively investigated in the last few years both theoretically and experimentally. In this paper we use a family of interactions tuned to two-body unitarity and very weak three-body binding to demonstrate the universal properties of both clusters and matter. We determine the universal properties of finite clusters up to 60 particles and, for the first time, explicitly demonstrate the saturation of energy and density with particle number and compare with bulk properties. At saturation in the bulk we determine the energy, density, two- and three-body contacts, and the condensate fraction.more » We find that uniform matter is more bound than three-body clusters by nearly 2 orders of magnitude, the two-body contact is very large in absolute terms, and yet the condensate fraction is also very large, greater than 90%. Finally, equilibrium properties of these systems may be experimentally accessible through rapid quenching of weakly interacting boson superfluids.« less
NASA Astrophysics Data System (ADS)
Singh, Suraj Kumar; Husain, Sajid; Kumar, Ankit; Chaudhary, Sujeet
2018-02-01
Polycrystalline Fe3O4 thin films were grown on Si(100) substrate by reactive DC sputtering at different oxygen partial pressures PO2 for controlling the growth associated density of antiphase boundaries (APBs). The micro-Raman analyses were performed to study the structural and electronic properties in these films. The growth linked changes in the APBs density are probed by electron-phonon coupling strength (λ) and isothermal magnetization measurements. The estimated values of λ are found to vary from 0.39 to 0.56 with the increase in PO2 from 2.2 × 10-5 to 3.0 × 10-5 Torr, respectively. The saturation magnetization (saturation field) values are found to increase (decrease) from 394 (5.9) to 439 (3.0) emu/cm3 (kOe) with the increase in PO2 . The sharp Verwey transition (∼120 K), low saturation field, high saturation magnetization and low value of λ (comparable to the bulk value ∼0.51) clearly affirm the negligible amount of APBs in the high oxygen partial pressure deposited thin films.
High energy ball milling study of Fe{sub 2}MnSn Heusler alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Lakshmi, N.; Jain, Vishal
The structural and magnetic properties of as-melted and high energy ball milled alloy samples have been studied by X-ray diffraction, DC magnetization and electronic structure calculations by means of density functional theory. The observed properties are compared to that of the bulk sample. There is a very good enhancement of saturation magnetization and coercivity in the nano-sized samples as compared to bulk which is explained in terms of structural disordering and size effect.
Fabrication, Densification and Thermionic Emission Property of Lanthanum Hexaboride
NASA Astrophysics Data System (ADS)
Yu, Yiping; Wang, Song; Li, Wei; Chen, Hongmei; Chen, Zhaohui
2018-03-01
An effective way to improve sintering densification of LaB6 was proposed and confirmed experimentally. Firstly, LaB6 nanopowders with a cube-like shape of 94.7 nm were fabricated by molten salt synthesis route at 800 °C for 1 h. Then, LaB6 bulk material of 98% density was prepared by hot pressing sintering of as-synthesized LaB6 nanopowders under 1800 °C/50 MPa/30 min. The acquired LaB6 bulk material had a work function of 2.87 eV and exhibited an excellent thermionic emission property. The saturation emission current density at 1500 and 1600 °C reached 37.4 and 44.3 A/cm2, respectively.
Perkins, Kim S.
2008-01-01
Sediments are believed to comprise as much as 50 percent of the Snake River Plain aquifer thickness in some locations within the Idaho National Laboratory. However, the hydraulic properties of these deep sediments have not been well characterized and they are not represented explicitly in the current conceptual model of subregional scale ground-water flow. The purpose of this study is to evaluate the nature of the sedimentary material within the aquifer and to test the applicability of a site-specific property-transfer model developed for the sedimentary interbeds of the unsaturated zone. Saturated hydraulic conductivity (Ksat) was measured for 10 core samples from sedimentary interbeds within the Snake River Plain aquifer and also estimated using the property-transfer model. The property-transfer model for predicting Ksat was previously developed using a multiple linear-regression technique with bulk physical-property measurements (bulk density [pbulk], the median particle diameter, and the uniformity coefficient) as the explanatory variables. The model systematically underestimates Ksat,typically by about a factor of 10, which likely is due to higher bulk-density values for the aquifer samples compared to the samples from the unsaturated zone upon which the model was developed. Linear relations between the logarithm of Ksat and pbulk also were explored for comparison.
NASA Astrophysics Data System (ADS)
Ramlan; Muljadi; Sardjono, Priyo; Gulo, Fakhili; Setiabudidaya, Dedi
2017-07-01
Permanent magnet of Barium hexa Ferrite with formula BaFe12O19 has been made by metallurgy powder method from raw materials : Barium carbonate (BaCO3 E-merck) and Iron Oxide (Fe2O3 from mill scale). Both of raw materials have been mixed with stoichiometry composition by using a ball mill for 24 hours. The fine powder obtained from milling process was formed by using a hydraulic press at pressure 50 MPa and continued with sintering process. The sintering temperature was varied : 1150°C, 1200°C, 1250°C and 1300°C with holding time for 1 hour. The sintered samples were characterized such as : physical properties (bulk density, porosity and shrinkage), magnetic properties (flux density, remanence, coercivity and magnetic saturation) by using VSM and crystal structure by using XRD. According characterization results show that the crystal structure of BaFe12O19 does not change after sintering process, but the grain size tends to increase. The optimum condition is achieved at temperature 1250°C, and at this condition, the sample has characterization such as : bulk density = 4.35 g/cm3, porosity = 1.03% and firing shrinkage = 11.63%, flux density = 681.1 Gauss, remanence (σr) = 20.78 emu/g, coercivity (Hc) = 2058 Oe and magnetic saturation (σs) 45.16 emu/g.
A role for charcoal's physical properties in its carbon cycle fluxes
NASA Astrophysics Data System (ADS)
Masiello, C. A.; Dugan, B.; Gao, X.; Pyle, L.; Sorrenti, G.; LaMere, L.; Liu, Z.; Zygourakis, K.
2016-12-01
The production of charcoal by fire generates a pool of soil carbon that is more biologically resistant to decomposition than many other forms of soil organic matter, and in some cases charcoal accumulates on the landscape. In other situations, however, charcoal does not accumulate, and is rapidly lost to rivers and eventually delivered to the ocean, where it can form a significant component of sedimentary organic carbon. The physical properties of charcoal form one basic dimension controlling whether charcoal is stored on the landscape or whether it moves to rivers and eventually marine sediments. It is simple to understand how charcoal density and porosity can play a crucial role in its mobility on the landscape: when charcoal pores are filled with air, the bulk density of charcoal can be as low as 0.25 g/cm3, and it will float and thus is easily transported with water runoff. As pores fill with water or soil minerals, the bulk density increases and can exceed 1 g/cm3, which will promote sinking and decrease mobility. For example, a charcoal with an internal porosity of 30% must have 90% of the pores saturated with water to achieve a bulk density greater than 1 g/cm3. Alternately for that same charcoal 20% of charcoal pores would need to infill with soil minerals (mineral density = 3.8 g/cm3) to achieve a density greater than 1 g/cm3. This mineral-infilling process has not been widely observed. Instead, early laboratory and field data suggest that the soil minerals partially block pores in charcoal and this process slows the rate of water transport into charcoal pores. If widespread, this process of partial pore throat occlusion may limit the rate of biochar saturation and thus help control the long-term landscape fate of charcoal.
Determining water saturation in diatomite using wireline logs, Lost Hills field, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilodeau, B.J.
1995-12-31
There is a long-held paradigm in the California oil industry that wireline log evaluation does not work in Monterey Formation lithologies. This study demonstrates that it is possible to calculate accurate oil saturation from wireline log data in the diatomite reservoir at Lost Hills field, California. The ability to calculate simple but accurate oil saturation is important because it allows field management teams to map pay, plan development and waterflood programs, and make estimates of reserves more accurate than those based on core information alone. Core data from eight wells were correlated with modern resistivity and porosity logs, incorporating moremore » than 2000 ft of reservoir section. Porosity was determined from bulk density and water saturation was determined using the Archie equation. Crossplots of corrected core oil saturation versus Archie oil saturation (1-S{sub w}) confirm the accuracy of the algorithm. Improvements in the accuracy and precision of the calculated oil saturation will require more detailed reservoir characterization to take into account lithologic variation.« less
USDA-ARS?s Scientific Manuscript database
Long-term soil conservation management decreases soil bulk density, increases water infiltration and water holding capacity. In the Virginia Coastal Plain, growers have been practicing rotational no-tillage and continuous no-tillage with and without biosolid application over 20 years to improve soi...
Katie Price; C. Rhett Jackson; Albert J. Parker
2010-01-01
A full understanding of hydrologic response to human impact requires assessment of land-use impacts on key soil physical properties such as saturated hydraulic conductivity, bulk density, and moisture retention. Such properties have been shown to affect watershed hydrology by influencing pathways and transmission rates of precipitation to stream networks. Human land...
Emily A. Carter; Timothy P. McDonald
1997-01-01
The impact of forwarder traffic on soil physical properties was evaluated on a Gwinnett sandy loam, a commonly found soil of the Piedmont. Soil strength and saturated hydraulic conductivity were significantly altered by forwarder traffic, but reductions in air-filled porosity also occurred. Bulk density did not increase significantly in trafficked treatments. The...
Theoretical and numerical aspects of fluid-saturated elasto-plastic soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehlers, W.
1995-12-31
The theoretical and numerical treatment of fluid-saturated porous solid materials generally falls into the category of porous media models, which are described within the framework of the classical theory of mixtures extended by the concept of volume fractions (porous media theories). In particular, this concept allows for the description of saturated, unsaturated and empty porous matrix materials, thus offering a well-founded theoretical background for a lot of engineering problems occurring, for instance, in the fields of geomechanics (soil and rock mechanics as well as glacier and rock ice mechanics), oil producing industries, sintering technologies, biomechanics, etc. In the present contribution,more » theoretical and numerical studies are outlined to describe a two-phase material composed of an incompressible elasto-plastic soil matrix saturated by an incompressible viscous pore fluid. In this context, the phenomenon of phase incompressibility is well known as a microscopic effect not implying bulk incompressibility in the macro regime. This is seen from the fact that even if the material density functions of the individual constituents are constant during deformation, the corresponding bulk densities can still change through changes in the volume fractions. Within the framework of a pure mechanical theory, constitutive equations are given for both the solid and the fluid partial stress tensors and for the interaction force acting between the two materials. Concerning the porous soil matrix, the elastic properties are described by an elasticity law of Hookean type, while the plastic range is governed by a {open_quote}single surface{close_quote} yield function exhibiting a smooth and closed shape in the principal stress space together with a non-associated flow rule. The viscosity effects of the pore fluid are included in the fluid stress tensor and in the drag force.« less
Directional optical transmission through a sand layer: a preliminary laboratory experiment
NASA Astrophysics Data System (ADS)
Tian, Jia; Philpot, William D.
2017-10-01
Given the importance of penetration of light in the soil for seed germination, soil warming, and the photolytic degradation of pesticides, directional transmission of thin sand samples are studied in this paper under both dry and saturated conditions. The detector views upward through a glass-bottom sample holder, filled to 3 or 4 mm with a coarse, translucent, quartz sand sample. Transmission through the samples was measured as the illumination zenith angle moved from 0 to 70° in 5° intervals. In the most cases, transmission decreased monotonically, but slowly with increasing illumination angle at all wavelengths. A peak in transmission only appeared at 0° illumination for the low bulk density, dry sample at 3 mm depth. The 0° peak disappeared when the sample was wetted, when the bulk density increased, or when the depth of the sample increased, which indicates that the radiation transmitting through a sand layer can be diffused thoroughly with a millimeters-thin sand layer. For the saturated samples, water influences light transmission in contrasting ways in shorter and longer wavelength. Transmission increased in the VNIR when saturated relative to dry, while transmission decreased sharply after 1300 nm, with spectral absorption features characteristic of water absorption. In VNIR region, water absorption is low and the low relative index of refraction enhanced transmission through sand sample. In contrast, water absorption became dominant at longer wavelengths region leading to the strongly reduced transmission.
NASA Astrophysics Data System (ADS)
Revil, A.
2017-05-01
I developed a model of cross-coupled flow in partially saturated porous media based on electrokinetic coupling including the effect of ion filtration (normal and reverse osmosis) and the multi-component nature of the pore water (wetting) phase. The model also handles diffusion and membrane polarization but is valid only for saturations above the irreducible water saturation. I start with the local Nernst-Planck and Stokes equations and I use a volume-averaging procedure to obtain the generalized Ohm, Fick, and Darcy equations with cross-coupling terms at the scale of a representative elementary volume of the porous rock. These coupling terms obey Onsager's reciprocity, which is a required condition, at the macroscale, to keep the total dissipation function of the system positive. Rather than writing the electrokinetic terms in terms of zeta potential (the double layer electrical potential on the slipping plane located in the pore water), I developed the model in terms of an effective charge density dragged by the flow of the pore water. This effective charge density is found to be strongly controlled by the permeability and the water saturation. I also developed an electrical conductivity equation including the effect of saturation on both bulk and surface conductivities, the surface conductivity being associated with electromigration in the electrical diffuse layer coating the grains. This surface conductivity depends on the CEC of the porous material.
Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang
2014-05-23
An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.
Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang
2014-01-01
An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage. PMID:24853072
Matrix product density operators: Renormalization fixed points and boundary theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirac, J.I.; Pérez-García, D., E-mail: dperezga@ucm.es; ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well asmore » to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).« less
Regional geophysical expression of a carbonatite terrane in the eastern Mojave Desert, California
Ponce, David A.; Denton, Kevin M.; Miller, David M.
2013-01-01
A world-class, rare earth element carbonatite deposit is located near Mountain Pass, in the eastern Mojave Desert of California and is hosted by Proterozoic rocks that extend along the eastern margins of the Clark Mountain Range, Mescal Range, and Ivanpah Mountains in a north-northwest trending fault-bounded block. This Proterozoic block is generally composed of a complex of 1.7 - 1.6 Ga gneisses and schists that are intruded by ~1.4 Ga carbonatite and ultrapotassic mafic dikes. In the latter suite, common intrusive rock types include shonkinite, syenite, and alkali granites that are associated with carbonatite dikes. Regional geophysical data reveal that the carbonatite deposit itself occurs along the northeast edge of a prominent magnetic high with an amplitude of 200 nanoteslas, which appears to be related to the surrounding Proterozoic block. More than 340 gravity stations and 155 physical property samples were collected to augment existing geophysical data to determine the geophysical and geologic setting of the eastern Mojave Desert carbonatite terrane. Physical properties of representative rock types in the area show that 23 samples of carbonatite ore have an average saturated bulk density of 2,866 with a range of 2,440 to 3,192 kg/m3 and a magnetic susceptibility of 0.22 with a range of 0.03 to 0.61x 10-3 SI units, 17 samples of syenite have an average saturated bulk density of 2,670 with a range of 2,555 to 2,788 kg/m3 and a magnetic susceptibility of 3.50 with a range of 0.19 to 11.46 x 10-3 SI units, 19 samples of shonkinite dike have an average saturated bulk density of 2,800 with a range of 2,603 to 3,000 kg/m3 and a magnetic susceptibility of 0.71 with a range of 0.00 to 4.44 x 10-3 SI units, and 28 samples of Proterozoic gneiss have an average saturated bulk density of 2,734 with a range of 2,574 to 3,086 kg/m3 and a magnetic susceptibility of 1.23 with a range of 0.01 to 7.48 x 10-3 SI units. In general, carbonatites have distinctive gravity, magnetic, and radiometric signatures because these deposits are relatively dense, have primary magnetite, and are enriched in thorium or uranium. In this case, because the carbonatite rocks in this Proterozoic terrane are themselves essentially nonmagnetic, they are not the source of the magnetic high associated with the Clark Mountain and Mescal Ranges. Instead, we suggest that weakly to moderately magnetic syenite intrusions or other granitic or metamorphic rocks in the region are the source of the magnetic high. Gravity data indicate that basins within the eastern Mojave carbonatite terrane are complicated. For example, a gravity high in the northern part of Ivanapah Valley suggest that the basin is underlain by shallow basement rocks, whereas the southern part of Ivanpah Valley extends to a depth of about 2 km. Combined gravity, magnetic, and geologic studies improve the current geophysical framework and structural interpretation of the eastern Mojave Desert carbonatite terrane.
NASA Astrophysics Data System (ADS)
Chen, Huaizhen; Zhang, Guangzhi
2017-05-01
Fracture detection and fluid identification are important tasks for a fractured reservoir characterization. Our goal is to demonstrate a direct approach to utilize azimuthal seismic data to estimate fluid bulk modulus, porosity, and dry fracture weaknesses, which decreases the uncertainty of fluid identification. Combining Gassmann's (Vier. der Natur. Gesellschaft Zürich 96:1-23, 1951) equations and linear-slip model, we first establish new simplified expressions of stiffness parameters for a gas-bearing saturated fractured rock with low porosity and small fracture density, and then we derive a novel PP-wave reflection coefficient in terms of dry background rock properties (P-wave and S-wave moduli, and density), fracture (dry fracture weaknesses), porosity, and fluid (fluid bulk modulus). A Bayesian Markov chain Monte Carlo nonlinear inversion method is proposed to estimate fluid bulk modulus, porosity, and fracture weaknesses directly from azimuthal seismic data. The inversion method yields reasonable estimates in the case of synthetic data containing a moderate noise and stable results on real data.
Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruszkiewicz, Miroslaw S.; Rother, Gernot; Wesolowski, David J.
2012-02-27
The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 °C and 97 °C) and supercritical carbon dioxide (between 32 C and 50°C) saturating hydrophobic silica aerogel (0.2 g/cm 3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercriticalmore » CO 2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.« less
Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François
2017-10-19
Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.
On the theory of electric double layer with explicit account of a polarizable co-solvent.
Budkov, Yu A; Kolesnikov, A L; Kiselev, M G
2016-05-14
We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On the contrary, a sufficiently large additive of co-solvent shifts the saturation potential to lower surface potentials. We obtain that an increase in the co-solvent polarizability makes the electrostatic potential profile longer-ranged. However, increase in the co-solvent concentration in the bulk leads to non-monotonic behavior of the electrostatic potential profile. An increase in the co-solvent concentration in the bulk at its sufficiently small values makes the electrostatic potential profile longer-ranged. Oppositely, when the co-solvent concentration in the bulk exceeds some threshold value, its further increase leads to decrease in electrostatic potential at all distances from the electrode.
Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength
NASA Astrophysics Data System (ADS)
Ge, Ting; Robbins, Mark O.; Perahia, Dvora; Grest, Gary S.
2014-07-01
Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface. The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is significantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.
Bench and Riser Soil Water Content on Semiarid Hillslopes with Terracettes
NASA Astrophysics Data System (ADS)
Heinse, R.; Corrao, M.; Eitel, J.; Link, T. E.
2015-12-01
Microtopographic features known as terracettes are found throughout many semiarid rangelands. These path-like features roughly perpendicular to the slope are frequently traversed by grazing animals on steep hillslopes. The soil properties and hydrologic function, however, are virtually unknown. This research aimed to identify differences in soil properties between terracette bench and riser features, and their influence on soil water content for two terracetted sites and two non-terracetted control sites (grazed and ungrazed) in Eastern Washington State. Measurements of volumetric water content (θ_v), bulk density, soil texture, saturated hydraulic conductivity, pH, and ECa_a were collected along with compaction, vegetative cover and cattle density throughout the 2013 and 2014 field seasons. Results show small but significant volumetric water content differences between terracette benches and risers in the upper 10 cm with benches exhibiting higher mean θ_v than risers throughout the year. Soil bulk density on benches (1600 kg m-3^{-3}) was significantly higher than that of risers (1300 kg m-3^{-3}) with no differences in soil texture. The saturated hydraulic conductivity on benches was roughly half of that for risers. No significant soil differences were noted below 20 cm depth. Terracetted sites showed greater field-averaged θ_v compared to non-terracetted sites suggesting a positive trend with animal stocking rates. Higher water content on terracette benches is attributed to shifts in pore size distribution with compaction, and a reduction in root-water uptake due to plant-root impedance. This increased soil water does not however increase forage production as it is not accessible to plants.
Winfield, Kari A.
2005-01-01
Because characterizing the unsaturated hydraulic properties of sediments over large areas or depths is costly and time consuming, development of models that predict these properties from more easily measured bulk-physical properties is desirable. At the Idaho National Engineering and Environmental Laboratory, the unsaturated zone is composed of thick basalt flow sequences interbedded with thinner sedimentary layers. Determining the unsaturated hydraulic properties of sedimentary layers is one step in understanding water flow and solute transport processes through this complex unsaturated system. Multiple linear regression was used to construct simple property-transfer models for estimating the water-retention curve and saturated hydraulic conductivity of deep sediments at the Idaho National Engineering and Environmental Laboratory. The regression models were developed from 109 core sample subsets with laboratory measurements of hydraulic and bulk-physical properties. The core samples were collected at depths of 9 to 175 meters at two facilities within the southwestern portion of the Idaho National Engineering and Environmental Laboratory-the Radioactive Waste Management Complex, and the Vadose Zone Research Park southwest of the Idaho Nuclear Technology and Engineering Center. Four regression models were developed using bulk-physical property measurements (bulk density, particle density, and particle size) as the potential explanatory variables. Three representations of the particle-size distribution were compared: (1) textural-class percentages (gravel, sand, silt, and clay), (2) geometric statistics (mean and standard deviation), and (3) graphical statistics (median and uniformity coefficient). The four response variables, estimated from linear combinations of the bulk-physical properties, included saturated hydraulic conductivity and three parameters that define the water-retention curve. For each core sample,values of each water-retention parameter were estimated from the appropriate regression equation and used to calculate an estimated water-retention curve. The degree to which the estimated curve approximated the measured curve was quantified using a goodness-of-fit indicator, the root-mean-square error. Comparison of the root-mean-square-error distributions for each alternative particle-size model showed that the estimated water-retention curves were insensitive to the way the particle-size distribution was represented. Bulk density, the median particle diameter, and the uniformity coefficient were chosen as input parameters for the final models. The property-transfer models developed in this study allow easy determination of hydraulic properties without need for their direct measurement. Additionally, the models provide the basis for development of theoretical models that rely on physical relationships between the pore-size distribution and the bulk-physical properties of the media. With this adaptation, the property-transfer models should have greater application throughout the Idaho National Engineering and Environmental Laboratory and other geographic locations.
Time-lapse 3D imaging of calcite precipitation in a microporous column
NASA Astrophysics Data System (ADS)
Godinho, Jose R. A.; Withers, Philip J.
2018-02-01
Time-lapse X-ray computed tomography is used to image the evolution of calcite precipitation during flow through microporous quartz over the course of 400 h. The growth rate decreases by more than seven times, which is linked to the clogging of flow paths that restricts flow to some regions of the column. Fewer precipitates are observed as a function of column depth, which is found to be related to a differential nucleation density along the sample. A higher nucleation density closer to the inlet implies more crystal volume increase per unit of time without affecting the rate if normalized to the surface area of crystals. Our overall growth rates measured in porous media are orders of magnitude slower than growth rates derived from traditional precipitation experiments on free surfaces. Based on our time-lapse results we hypothesize a scenario where the evolving distribution of precipitates within a pore structure during precipitation progressively modifies the local transport through the pores. Within less permeable regions the saturation index may be lower than along the main flow paths. Therefore, the reactive crystal surfaces within those regions grow at a slower rate than that expected from the bulk fluid composition. Since the amount of reactive surface area within these less permeable regions increases over time, the overall growth rate decreases without a necessary significant change of the bulk fluid composition along more permeable flow paths. In conclusion, the overall growth rates in an evolving porous media expected from bulk fluid compositions alone can be overestimated due to the development of stagnant sub-regions where the reactive surface area is bath by a solution with lower saturation index. In this context we highlight the value of time-lapse 3D studies for understanding the dynamics of mineral precipitation in porous media.
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Schütz, Felina; Förster, Andrea; Förster, Hans-Jürgen
2013-04-01
The thermal conductivity (TC) of a rock is, in collaboration with the temperature gradient, the basic parameter to determine the heat flow from the Earth interior. Moreover, it forms the input into models targeted on temperature prognoses for geothermal reservoirs at those depths not yet reached by boreholes. Thus, rock TC is paramount in geothermal exploration and site selection. Most commonly, TC of a rock is determined in the laboratory on samples that are either dry or water-saturated. Because sample saturation is time-consuming, it is desirable, especially if large numbers of samples need to be assessed, to develop an approach that quickly and reliably converts dry-measured bulk TC into the respective saturated value without applying the saturation procedure. Different petrophysical models can be deployed to calculate the matrix TC of a rock from the bulk TC and vice versa, if the effective porosity is known (e.g., from well logging data) and the TC of the saturation fluid (e.g., gas, oil, water) is considered. We have studied for a large suite of different sedimentary rocks the performance of two-component (rock matrix, porosity) models that are widely used in geothermics (arithmetic mean, geometric mean, harmonic mean, Hashin and Shtrikman mean, and effective medium theory mean). The data set consisted of 1147 TC data from three different sedimentary basins (North German Basin, Molasse Basin, Mesozoic platform sediments of the northern Sinai Microplate in Israel). Four lithotypes (sandstone, mudstone, limestone, dolomite) were studied exhibiting bulk TC in the range between 1.0 and 6.5 W/(mK). The quality of fit between measured (laboratory) and calculated bulk TC values was studied separately for the influence of lithotype, saturation fluid (water and isooctane), and rock anisotropy (parallel and perpendicular to bedding). The geometric mean model displays the best correspondence between calculated and measured bulk TC, however, the relation is not satisfying. To improve the fit of the models, correction equations are calculated based on the statistical data. In addition, the application of correction equations allows a significant improvement of the accuracy of bulk TC data calculated. However, the "corrected" geometric mean constitutes the only model universally applicable to different types of sedimentary rocks and, thus, is recommended for the calculation of bulk TC. Finally, the statistical analysis also resulted in lithotype-specific conversion equations, which permit a calculation of the water-saturated bulk TC from dry-measured TC and porosity (e.g., well-log-derived porosity). This approach has the advantage that the saturated bulk TC could be calculated readily without application of any mixing model. The expected errors with this approach are in the range between 5 and 10 % (Fuchs et al., 2013).
Gamma-Ray Attenuation to Evaluate Soil Porosity: An Analysis of Methods
Pires, Luiz F.; Pereira, André B.
2014-01-01
Soil porosity (ϕ) is of a great deal for environmental studies due to the fact that water infiltrates and suffers redistribution in the soil pore space. Many physical and biochemical processes related to environmental quality occur in the soil porous system. Representative determinations of ϕ are necessary due to the importance of this physical property in several fields of natural sciences. In the current work, two methods to evaluate ϕ were analyzed by means of gamma-ray attenuation technique. The first method uses the soil attenuation approach through dry soil and saturated samples, whereas the second one utilizes the same approach but taking into account dry soil samples to assess soil bulk density and soil particle density to determine ϕ. The results obtained point out a good correlation between both methods. However, when ϕ is obtained through soil water content at saturation and a 4 mm collimator is used to collimate the gamma-ray beam the first method also shows good correlations with the traditional one. PMID:24616640
NASA Astrophysics Data System (ADS)
Bidzinski, Piotr; Miczek, Marcin; Adamowicz, Boguslawa; Mizue, Chihoko; Hashizume, Tamotsu
2011-04-01
The influence of interface state density and bulk carrier lifetime on the dependencies of photocapacitance versus wide range of gate bias (-0.1 to -3 V) and light intensity (109 to 1020 photon cm-2 s-1) was studied for metal/insulator/n-GaN UV light photodetector by means of numerical simulations. The light detection limit and photocapacitance saturation were analyzed in terms of the interface charge and interface Fermi level for electrons and holes and effective interface recombination velocity. It was proven that the excess carrier recombination through interface states is the main reason of photocapacitance signal quenching. It was found that the photodetector can work in various modes (on-off or quantitative light measurement) adjusted by the gate bias. A comparison between experimental data and theoretical capacitance-light intensity characteristics was made. A new method for the determination of the interface state density distribution from capacitance-voltage-light intensity measurements was also proposed.
Molecular Model for HNBR with Tunable Cross-Link Density.
Molinari, N; Khawaja, M; Sutton, A P; Mostofi, A A
2016-12-15
We introduce a chemically inspired, all-atom model of hydrogenated nitrile butadiene rubber (HNBR) and assess its performance by computing the mass density and glass-transition temperature as a function of cross-link density in the structure. Our HNBR structures are created by a procedure that mimics the real process used to produce HNBR, that is, saturation of the carbon-carbon double bonds in NBR, either by hydrogenation or by cross-linking. The atomic interactions are described by the all-atom "Optimized Potentials for Liquid Simulations" (OPLS-AA). In this paper, first, we assess the use of OPLS-AA in our models, especially using NBR bulk properties, and second, we evaluate the validity of the proposed model for HNBR by investigating mass density and glass transition as a function of the tunable cross-link density. Experimental densities are reproduced within 3% for both elastomers, and qualitatively correct trends in the glass-transition temperature as a function of monomer composition and cross-link density are obtained.
Wieting, Celeste; Ebel, Brian A.; Singha, Kamini
2017-01-01
Study regionThis study used intact soil cores collected at the Boulder Creek Critical Zone Observatory near Boulder, Colorado, USA to explore fire impacts on soil properties.Study focusThree soil scenarios were considered: unburned control soils, and low- and high-temperature burned soils. We explored simulated fire impacts on field-saturated hydraulic conductivity, dry bulk density, total organic carbon, and infiltration processes during rainfall simulations.New hydrological insights for the regionSoils burned to high temperatures became more homogeneous with depth with respect to total organic carbon and bulk density, suggesting reductions in near-surface porosity. Organic matter decreased significantly with increasing soil temperature. Tension infiltration experiments suggested a decrease in infiltration rates from unburned to low-temperature burned soils, and an increase in infiltration rates in high-temperature burned soils. Non-parametric statistical tests showed that field-saturated hydraulic conductivity similarly decreased from unburned to low-temperature burned soils, and then increased with high-temperature burned soils. We interpret these changes result from the combustion of surface and near-surface organic materials, enabling water to infiltrate directly into soil instead of being stored in the litter and duff layer at the surface. Together, these results indicate that fire-induced changes in soil properties from low temperatures were not as drastic as high temperatures, but that reductions in surface soil water repellency in high temperatures may increase infiltration relative to low temperatures.
NASA Astrophysics Data System (ADS)
Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Bellezza, Cinzia
2018-06-01
Seismic propagation in the upper part of the crust, where geothermal reservoirs are located, shows generally strong velocity dispersion and attenuation due to varying permeability and saturation conditions and is affected by the brittleness and/or ductility of the rocks, including zones of partial melting. From the elastic-plastic aspect, the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. We describe the related effects with a Burgers mechanical element for the shear modulus of the dry-rock frame. The Arrhenius equation combined to the octahedral stress criterion define the Burgers viscosity responsible of the brittle-ductile behaviour. The effects of permeability, partial saturation, varying porosity and mineral composition on the seismic properties is described by a generalization of the White mesoscopic-loss model to the case of a distribution of heterogeneities of those properties. White model involves the wave-induced fluid flow attenuation mechanism, by which seismic waves propagating through small-scale heterogeneities, induce pressure gradients between regions of dissimilar properties, where part of the energy of the fast P-wave is converted to slow P (Biot)-wave. We consider a range of variations of the radius and size of the patches and thin layers whose probability density function is defined by different distributions. The White models used here are that of spherical patches (for partial saturation) and thin layers (for permeability heterogeneities). The complex bulk modulus of the composite medium is obtained with the Voigt-Reuss-Hill average. Effective pressure effects are taken into account by using exponential functions. We then solve the 3D equation of motion in the space-time domain, by approximating the White complex bulk modulus with that of a set of Zener elements connected in series. The Burgers and generalized Zener models allows us to solve the equations with a direct grid method by the introduction of memory variables. The algorithm uses the Fourier pseudospectral method to compute the spatial derivatives. It is tested against an analytical solution obtained with the correspondence principle. We consider two main cases, namely the same rock frame (uniform porosity and permeability) saturated with water and a distribution of steam patches, and water-saturated background medium with thin layers of dissimilar permeability. Our model indicates how seismic properties change with the geothermal reservoir temperature and pressure, showing that both seismic velocity and attenuation can be used as a diagnostic tool to estimate the in situ conditions.
Performance of journal bearings with semi-compressible fluids
NASA Technical Reports Server (NTRS)
Carpino, M.; Peng, J.-P.
1991-01-01
Cryogenic fluids in isothermal rigid surface and foil type journal bearings can sometimes be treated as semicompressible fluids. In these applications, the fluid density is a function of the pressure. At low pressures, the fluids can change from a liquid to a saturated liquid-vapor phase. The performance of a rigid surface journal bearing with an idealized semicompressible fluid is discussed. Pressure solutions are based upon a Reynolds equation which includes the effects of a compressibility via the bulk modulus of the fluid. Results are contrasted with the performance of isothermal constant property incompressible fluids.
Analysis of Infiltration-Suction Response in Unsaturated Residual Soil Slope in Gelugor, Penang
NASA Astrophysics Data System (ADS)
Ashraf Mohamad Ismail, Mohd; Hasliza Hamzah, Nur; Min, Ng Soon; Hazreek Zainal Abidin, Mohd; Tajudin, Saiful Azhar Ahmad; Madun, Aziman
2018-04-01
Rainfall infiltration on residual soil slope may impair slope stability by altering the pore-water pressure in the soil. A study has been carried out on unsaturated residual soil slope in Gelugor, Penang to determine the changes in matric suction of residual soils at different depth due to rainwater infiltration. The sequence of this study includes the site investigation, field instrumentation, laboratory experiment and numerical modeling. Void ratio and porosity of soil were found to be decreasing with depth while the bulk density and dry density of soil increased due to lower porosity of soil at greater depth. Soil infiltration rate and matric suction of all depths decrease with the increase of volumetric water content as well as the degree of saturation. Numerical modeling was used to verify and predict the relationship between infiltration-suction response and degree of saturation. Numerical models can be used to integrate the rainfall scenarios into quantitative landslide hazard assessments. Thus, development plans and mitigation measures can be designed for estimated impacts from hazard assessments based on collected data.
Radon emanation from backfilled mill tailings in underground uranium mine.
Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar
2014-04-01
Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu
2010-01-01
Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31 × 0.31 × 2 mm3. The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ∼10 μm, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M0–T2 plot, where M0 is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores. PMID:21258437
QA/QC requirements for physical properties sampling and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innis, B.E.
1993-07-21
This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less
Modeling multidomain hydraulic properties of shrink-swell soils
NASA Astrophysics Data System (ADS)
Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Selker, John S.
2016-10-01
Shrink-swell soils crack and become compacted as they dry, changing properties such as bulk density and hydraulic conductivity. Multidomain models divide soil into independent realms that allow soil cracks to be incorporated into classical flow and transport models. Incongruously, most applications of multidomain models assume that the porosity distributions, bulk density, and effective saturated hydraulic conductivity of the soil are constant. This study builds on a recently derived soil shrinkage model to develop a new multidomain, dual-permeability model that can accurately predict variations in soil hydraulic properties due to dynamic changes in crack size and connectivity. The model only requires estimates of soil gravimetric water content and a minimal set of parameters, all of which can be determined using laboratory and/or field measurements. We apply the model to eight clayey soils, and demonstrate its ability to quantify variations in volumetric water content (as can be determined during measurement of a soil water characteristic curve) and transient saturated hydraulic conductivity, Ks (as can be measured using infiltration tests). The proposed model is able to capture observed variations in Ks of one to more than two orders of magnitude. In contrast, other dual-permeability models assume that Ks is constant, resulting in the potential for large error when predicting water movement through shrink-swell soils. Overall, the multidomain model presented here successfully quantifies fluctuations in the hydraulic properties of shrink-swell soil matrices, and are suitable for use in physical flow and transport models based on Darcy's Law, the Richards Equation, and the advection-dispersion equation.
NASA Astrophysics Data System (ADS)
Park, J.; Hyun, C.; Cho, H.; Park, H.
2010-12-01
Physical weathering caused by freeze-thaw action in cold regions was simulated with artificial weathering simulator in laboratory. Physical weathering of rock in cold regions usually depends on the temperature, rock type and moisture content. Then these three variables were considered in this study. The laboratory freeze-thaw tests were conducted on the three types of rocks, e.g. diorite, basalt and tuff, which are the major rock types around Sejong Station, King George Island, Antarctica. Nine core samples composed of three samples from each rock type were prepared in NX core, and 50 cycles of freeze-thaw test was carried out under dried and saturated water conditions. In this study, the physical weathering of rocks was investigated after each 10 cycles by measuring P-wave velocity, bulk density, effective porosity, Schmidt hardness and uniaxial compression strength(UCS). The experimental result of the diorite and the tuff specimens showed that P-wave velocity, bulk density, effective porosity, Schmidt hardness and UCS were gradually decreased as weathering progresses, but the result of the basalt specimens did not show typical trends due to the characteristics of irregular pore distribution and various pore sizes. Scanning electron microscopy(SEM) photographs of diorite, basalt and tuff specimens weathered in dried and saturated conditions were also acquired to investigate the role of water during physical weathering processes. The number and size of microcracks were increased as weathering progresses. This work was supported by the National Research Foundation of Korea(NRF) Grant(NRF-2010-0027753).
Determining rates of chemical weathering in soils - Solute transport versus profile evolution
Stonestrom, David A.; White, A.F.; Akstin, K.C.
1998-01-01
SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses that have occurred during regolith development. Climates at the three profiles range from Mediterranean to humid to tropical. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. This allows current SiO2 fluxes below the zone of seasonal variations to be estimated from pore-water concentrations and average hydraulic flux densities. Mean-annual SiO2 concentrations were 0.1-1.5 mM. Hydraulic conductivities for the investigated range of soil-moisture saturations ranged from 10-6 m s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6 x 10-9 to 14 x 10-9 m s-1 based on Darcy's law and field measurements of moisture saturations and pressure heads. Corresponding fluid-residence times in the profiles ranged from 10 to 44 years. Total SiO2 losses, based on chemical and volumetric changes in the respective profiles, ranged from 19 to 110 kmoles SiO2 m-2 of land surface as a result of 0.2-0.4 Ma of chemical weathering. Extrapolation of contemporary solute fluxes to comparable time periods reproduced these SiO2 losses to about an order of magnitude. Despite the large range and non-linearity of measured hydraulic conductivities, solute transport rates in weathering regoliths can be estimated from characterization of hydrologic conditions at sufficiently large depths. The agreement suggests that current weathering rates are representative of long-term average weathering rates in the regoliths.SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses during regolith development. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. Hydraulic conductivities for the investigated range of soil-moisture saturations of 10-6 m/s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6??10-9 to 14??10-9 m/s based on Darcy's law and field measurements of moisture saturations and pressure heads.
Fluid/gravity correspondence for massive gravity
NASA Astrophysics Data System (ADS)
Pan, Wen-Jian; Huang, Yong-Chang
2016-11-01
In this paper, we investigate the fluid/gravity correspondence in the framework of massive Einstein gravity. Treating the gravitational mass terms as an effective energy-momentum tensor and utilizing the Petrov-like boundary condition on a timelike hypersurface, we find that the perturbation effects of massive gravity in bulk can be completely governed by the incompressible Navier-Stokes equation living on the cutoff surface under the near horizon and nonrelativistic limits. Furthermore, we have concisely computed the ratio of dynamical viscosity to entropy density for two massive Einstein gravity theories, and found that they still saturate the Kovtun-Son-Starinets (KSS) bound.
NASA Astrophysics Data System (ADS)
Amalokwu, Kelvin; Chapman, Mark; Best, Angus I.; Sothcott, Jeremy; Minshull, Timothy A.; Li, Xiang-Yang
2015-01-01
Fractured rocks are known to exhibit seismic anisotropy and shear wave splitting (SWS). SWS is commonly used for fractured rock characterization and has been shown to be sensitive to fluid type. The presence of partial liquid/gas saturation is also known to affect the elastic properties of rocks. The combined effect of both fractures and partial liquid/gas saturation is still unknown. Using synthetic, silica-cemented sandstones with aligned penny-shaped voids, we conducted laboratory ultrasonic experiments to investigate the effect fractures aligned at an oblique angle to wave propagation would have on SWS under partial liquid/gas saturation conditions. The result for the fractured rock shows a saturation dependence which can be explained by combining a fractured rock model and a partial saturation model. At high to full water saturation values, SWS decreases as a result of the fluid bulk modulus effect on the quasi-shear wave. This bulk modulus effect is frequency dependent as a result of wave-induced fluid flow mechanisms, which would in turn lead to frequency dependent SWS. This result suggests the possible use of SWS for discriminating between full liquid saturation and partial liquid/gas saturation.
NASA Technical Reports Server (NTRS)
Lang, Stephen E.; Tao, Wei-Kuo; Chern, Jiun-Dar; Wu, Di; Li, Xiaowen
2015-01-01
Numerous cloud microphysical schemes designed for cloud and mesoscale models are currently in use, ranging from simple bulk to multi-moment, multi-class to explicit bin schemes. This study details the benefits of adding a 4th ice class (hail) to an already improved 3-class ice bulk microphysics scheme developed for the Goddard Cumulus Ensemble model based on Rutledge and Hobbs (1983,1984). Besides the addition and modification of several hail processes from Lin et al. (1983), further modifications were made to the 3-ice processes, including allowing greater ice super saturation and mitigating spurious evaporationsublimation in the saturation adjustment scheme, allowing graupelhail to become snow via vapor growth and hail to become graupel via riming, and the inclusion of a rain evaporation correction and vapor diffusivity factor. The improved 3-ice snowgraupel size-mapping schemes were adjusted to be more stable at higher mixing rations and to increase the aggregation effect for snow. A snow density mapping was also added. The new scheme was applied to an intense continental squall line and a weaker, loosely-organized continental case using three different hail intercepts. Peak simulated reflectivities agree well with radar for both the intense and weaker case and were better than earlier 3-ice versions when using a moderate and large intercept for hail, respectively. Simulated reflectivity distributions versus height were also improved versus radar in both cases compared to earlier 3-ice versions. The bin-based rain evaporation correction affected the squall line case more but did not change the overall agreement in reflectivity distributions.
NASA Astrophysics Data System (ADS)
Pöhlitz, Julia; Rücknagel, Jan; Schlüter, Steffen; Vogel, Hans-Jörg
2017-04-01
In recent years there has been an increasing application of conservation tillage techniques where the soil is no longer turned, but only loosened or left completely untilled. Dead plant material remains on the soil surface, which provides environmental and economic benefits such as the conservation of water, preventing soil erosion and saving time during seedbed preparation. There is a variety of conservation tillage systems, e.g. mulch till, no-till and strip tillage, which is a special feature. In strip tillage, the seed bed is divided into a seed zone (strip-till within the seed row: STWS) and a soil management zone (strip-till between the seed row: STBS). However, each tillage application affects physical soil properties and processes. Here, the combined application of classical soil mechanical and computed tomographic methods is used on a Chernozem (texture 0-30 cm: silt loam) to show small-scale structural differences under strip tillage (STWS, STBS) compared to no-till (NT) and mulch till (MT). In addition to the classical soil physical parameters dry bulk density and saturated conductivity (years: 2012, 2014, 2015) at soil depths 2-8 and 12-18 cm, stress-strain tests were carried out to map mechanical behavior. The stress-strain tests were performed for a load range from 5-550 kPa at 12-18 cm depth (year 2015). Mechanical precompression stress was determined on the stress-dry bulk density curves. Further, CT image cross sections and computed tomographic examinations (average pore size, porosity, connectivity, and anisotropy) were used from the same soil samples. For STBS and NT, a significant increase in dry bulk density was observed over the course of time compared to STWS and MT, which was more pronounced at 2-8 cm than at 12-18 cm depth. Despite higher dry bulk density, STBS displayed higher saturated conductivity in contrast to STWS, which can be attributed to higher earthworm abundance. In strip tillage, structural differences were identified. Mechanical precompression stress was significantly higher for STBS (141 kPa) than STWS (38 kPa). In addition, the CT image cross sections and the computed tomographic parameters confirmed the mechanically more stable soil structure observed under STBS with a higher initial average pore size but lower porosity and connectivity values compared to STWS. The reason for this is the lack of tillage. On the other hand, tillage at STWS created a loosened, porous and connective substrate. For all variants, the increasing load application led to progressive homogenization processes of the soil structure. At the same time, as stress application increased in all variants, the increase in dry bulk density led to a decrease in average pore size, porosity, and connectivity, while anisotropy increased. It was possible to confirm that strip tillage combines the advantages of no-till and a deeper conservation primary tillage, since on the one hand MT and STWS and on the other hand STBS and NT showed very similar soil structures. The computed tomographic parameters therefore provide valuable information about the impact of tillage on microscopic pore space attributes that improve our understanding about soil functional behavior at much larger scales.
NASA Astrophysics Data System (ADS)
Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan
2018-02-01
In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rother, Gernot; Ilton, Eugene S.; Wallacher, Dirk
2013-01-02
Geologic storage of CO 2 requires that the caprock sealing the storage rock is highly impermeable to CO 2. Swelling clays, which are important components of caprocks, may interact with CO 2 leading to volume change and potentially impacting the seal quality. The interactions of supercritical (sc) CO 2 with Na saturated montmorillonite clay containing a subsingle layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO2 densities of ≈0.15 g/cm 3, followed by an approximately linear decrease of excess sorption to zero and negativemore » values with increasing CO 2 bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO 2 are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 Å. The density of CO 2 in the clay pores is relatively stable over a wide range of CO 2 pressures at a given temperature, indicating the formation of a clay-CO 2 phase. Finally, at the excess sorption maximum, increasing CO 2 sorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak temperature dependence.« less
Characterization of faulted dislocation loops and cavities in ion irradiated alloy 800H
NASA Astrophysics Data System (ADS)
Ulmer, Christopher J.; Motta, Arthur T.
2018-01-01
Alloy 800H is a high nickel austenitic stainless steel with good high temperature mechanical properties which is considered for use in current and advanced nuclear reactor designs. The irradiation response of 800H was examined by characterizing samples that had been bulk ion irradiated at the Michigan Ion Beam Laboratory with 5 MeV Fe2+ ions to 1, 10, and 20 dpa at 440 °C. Transmission electron microscopy was used to measure the size and density of both {111} faulted dislocation loops and cavities as functions of depth from the irradiated surface. The faulted loop density increased with dose from 1 dpa up to 10 dpa where it saturated and remained approximately the same until 20 dpa. The faulted loop average diameter decreased between 1 dpa and 10 dpa and again remained approximately constant from 10 dpa to 20 dpa. Cavities were observed after irradiation doses of 10 and 20 dpa, but not after 1 dpa. The average diameter of cavities increased with dose from 10 to 20 dpa, with a corresponding small decrease in density. Cavity denuded zones were observed near the irradiated surface and near the ion implantation peak. To further understand the microstructural evolution of this alloy, FIB lift-out samples from material irradiated in bulk to 1 and 10 dpa were re-irradiated in-situ in their thin-foil geometry with 1 MeV Kr2+ ions at 440 °C at the Intermediate Voltage Electron Microscope. It was observed that the cavities formed during bulk irradiation shrank under thin-foil irradiation in-situ while dislocation loops were observed to grow and incorporate into the dislocation network. The thin-foil geometry used for in-situ irradiation is believed to cause the cavities to shrink.
Physical and hydraulic properties of volcanic rocks from Yucca Mountain, Nevada
Flint, Lorraine E.
2003-01-01
A database of physical and hydraulic properties was developed for rocks in the unsaturated zone at Yucca Mountain, Nevada, a site under consideration as a geologic repository for high-level radioactive waste. The 5320 core samples were collected from 23 shallow (<100 m) and 10 deep (500-1000 m) vertical boreholes. Hydrogeologic units have been characterized in the unsaturated zone [Flint, 1998] that represent rocks with ranges of welding, lithophysae, and high and low temperature alteration (as a result of the depositional, cooling, and alterational history of the lithostratigraphic layers). Lithostratigraphy, the hydrogeologic unit, and the corresponding properties are described. In addition, the physical properties of bulk density, porosity, and particle density; the hydraulic properties of saturated hydraulic conductivity and moisture retention characteristics; and the field water content were measured and compiled for each core sample.
Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary
NASA Astrophysics Data System (ADS)
El Sayed, Abdel Moktader A.; El Sayed, Nahla A.
2017-12-01
Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.
NASA Astrophysics Data System (ADS)
Rassi, Erik M.; Codd, Sarah L.; Seymour, Joseph D.
2011-01-01
Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h-1. The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h-1. After the maximum flow rate of 500 ml h-1, the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to similar statistics if the preceding flow history is similar.
Site preparation effects on soil bulk density and pine seedling growth
John J. Stransky
1981-01-01
Soil bulk density was sampled the first and third growing seasons after site preparation and pine planting on three clearcut pine-hardwood forest sites in eastern Texas. Bulk density was measured 10 cm below the surface of mineral soil using a surface moisture-density probe. Plots that had been KG-bladed and chopped had significanlty higher bulk density than those that...
NASA Astrophysics Data System (ADS)
Makovníková, Jarmila; Širáň, Miloš; Houšková, Beata; Pálka, Boris; Jones, Arwyn
2017-10-01
Soil bulk density is one of the main direct indicators of soil health, and is an important aspect of models for determining agroecosystem services potential. By way of applying multi-regression methods, we have created a distributed prediction of soil bulk density used subsequently for topsoil carbon stock estimation. The soil data used for this study were from the Slovakian partial monitoring system-soil database. In our work, two models of soil bulk density in an equilibrium state, with different combinations of input parameters (soil particle size distribution and soil organic carbon content in %), have been created, and subsequently validated using a data set from 15 principal sampling sites of Slovakian partial monitoring system-soil, that were different from those used to generate the bulk density equations. We have made a comparison of measured bulk density data and data calculated by the pedotransfer equations against soil bulk density calculated according to equations recommended by Joint Research Centre Sustainable Resources for Europe. The differences between measured soil bulk density and the model values vary from -0.144 to 0.135 g cm-3 in the verification data set. Furthermore, all models based on pedotransfer functions give moderately lower values. The soil bulk density model was then applied to generate a first approximation of soil bulk density map for Slovakia using texture information from 17 523 sampling sites, and was subsequently utilised for topsoil organic carbon estimation.
NASA Astrophysics Data System (ADS)
Wissing, Livia; Kölbl, Angelika; Cao, Zhi-Hong; Kögel-Knabner, Ingrid
2010-05-01
Paddy soils are described as important accumulator for OM (Zhang and He, 2004). In southeast China, paddy soils have the second highest OM stocks (Zhao et al, 1997) and thus a large proportion of the terrestrial carbon is conserved in wetland rice soils. The paddy soil management is believed to be favorable for accumulation of organic matter, as its content in paddy soils is statistically higher than that of non-paddy soils (Cai, 1996). However, the mechanism of OM storage and the development of OM distribution during paddy soil evolution is largely unknown. The aim of the project is to identify the role of organo-mineral complexes for the stabilization of organic carbon during management-induced paddy soil formation in a chronosequence ranging from 50 to 2000 years of paddy soil use. The soil samples were analysed for bulk density, total organic carbon (TOC) and total inorganic carbon (TIC) concentrations of bulk soils and the concentration of organic carbon as well as the organic carbon stocks of physical soil fractions. First results indicate distinctly different depth distributions between paddy and non-paddy (control) sites. The paddy soils are characterized by relatively low bulk densities in the puddled layer (between 0.9 and 1.3 g cm-3) and high values in the plough pan (1.4 to 1.6 g cm-3) and the non-paddy soils by relatively homogeneous values throughout the profiles (1.3 to 1.4 g cm-3). In contrast to the carbonate-rich non-paddy sites, we found a significant loss of carbonates during paddy soil formation, resulting in decalcification of the upper 20 cm after 100 yr of paddy soil use, and decalcification of the total soil profile in 700, 1000 and 2000 yr old paddy soils. The calculation of the organic carbon stocks of each horizon indicate that paddy sites always have higher values in topsoils compared to non-paddy sites, and show increasing values with increasing soil age. The capacity of fine mineral fractions to preserve OC was calculated according to Hassink (1997). The potential capacity of paddy soil fraction to preserve OC is independently from soil age between 30 and 35.4 g OC (kg soil)-1. However, the calculated saturation level increases from 11.7 to 19.9 g OC (kg soil)-1 from 50 to 2000 y old paddy sites respectively. With increasing duration of paddy soil use, the fine fractions indicate an increasing saturation level from 33.1% to 56.2% of the potential capacity to preserve OC. This underlines the importance of fine fractions for increasing OC storage during paddy soil evolution. Conclusively, paddy soil management leads to an accelerated soil development compared to non-irrigated cropland sites. In addition, increasing OC stocks, especially in the fine mineral associated OM fractions underline the relevance of paddy soil management for OC sequestration. References Cai Z. (1996). Effect of land use on organic carbon storage in soils in eastern China. Water Air Soil Pollut 91, 383-393. Hassink J. (1997). The capacity of soil to preserve organic C and N by their association with clay and silt particles. Plant and Soil 191, 77-87. Zhang M., He Z. (2004). Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China. Geoderma 118, 167-179. Zhao C. (1996). Effect of land use on organic carbon storage in soils in eastern China. Water Air Soil Pollut 91, 383-393.
Interface perpendicular magnetic anisotropy in ultrathin Ta/NiFe/Pt layered structures
NASA Astrophysics Data System (ADS)
Hirayama, Shigeyuki; Kasai, Shinya; Mitani, Seiji
2018-01-01
Interface perpendicular magnetic anisotropy (PMA) in ultrathin Ta/NiFe/Pt layered structures was investigated through magnetization measurements. Ta/NiFe/Pt films with NiFe layer thickness (t) values of 2 nm or more showed typical in-plane magnetization curves, which was presumably due to the dominant contribution of the shape magnetic anisotropy. The thickness dependence of the saturation magnetization of the entire NiFe layer (M s) was well analyzed using the so-called dead-layer model, showing that the magnetically active part of the NiFe layer has saturation magnetization (M\\text{s}\\text{act}) independent of t and comparable to the bulk value. In the perpendicular direction, the saturation field H k was found to clearly decrease with decreasing t, while the effective field of shape magnetic anisotropy due to the active NiFe saturation magnetization M\\text{s}\\text{act} should be independent of t. These observations show that there exists interface PMA in the layered structures. The interface PMA energy density was determined to be ∼0.17 erg/cm2 using the dead-layer model. Motivated by the correlation observed between M s and H k, we also attempted to interpret the experimental results using an alternative approach beyond the dead-layer model; however, it gives only implications on the incomplete validity of the dead-layer model and no better understanding.
Chou, I-Ming; Buizinga, B.; Clynne, M.A.; Potter, R.W.
1982-01-01
A series of density measurements has been performed at 30?, 50?, 70?, and 90?C for halite-undersaturated WIPP-A and NBT-6 brines with various NaCl contents approaching saturation. The densities of halite-saturated WIPP-A and NBT-6 brines were obtained by extrapolating these measured densities to halite saturation points. The maximum difference between the densities obtained in this Fashion and those calculated from the model of Potter and Haas is 0.015 g/cm3. The NaCl contents in halite-saturated WIPP-A and NBT-6 brines are reported in wt %, molal, and molar units from 20? to 100?C.
A new perspective on the generation of the 2016 M6.4 Meilung earthquake, southwestern Taiwan
NASA Astrophysics Data System (ADS)
Wang, Z.
2017-12-01
In order to investigate the likely generation mechanism of the 2016 M6.4 Meilung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and s models. In this way, multi-geophysical parameter imaging revealed that the 2016 Meilung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-Poisson ratio body that has high-crack density and somewhat high-saturate fracture anomalies above the hypocenter under the coastal plain represents fluids contained in the young fold-and-thrust belt relative to the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson ratio, crack density and saturate fracture anomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the coastal plain and western foothills as far as the southeastern lower crust under the central range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt associated with the passive Asian continental margin in the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake.
Romero, Orlando C.; Ebel, Brian A.; Martin, Deborah A.; Buchan, Katie W.; Jornigan, Alanna D.
2018-04-10
The generation of runoff and the resultant flash flooding can be substantially larger following wildfire than for similar rainstorms that precede wildfire disturbance. Flash flooding after the 2011 Las Conchas Fire in New Mexico provided the motivation for this investigation to assess postwildfire effects on soil-hydraulic properties (SHPs) and soil-physical properties (SPPs) as a function of remotely sensed burn severity 4 years following the wildfire. A secondary purpose of this report is to illustrate a methodology to determine SHPs that analyzes infiltrometer data by using three different analysis methods. The SPPs and SHPs are measured as a function of remotely sensed burn severity by using the difference in the Normalized Burn Ratio (dNBR) metric for seven sites. The dNBR metric was used to guide field sample collection across a full spectrum of burn severities that covered the range of Monitoring Trends in Burn Severity (MTBS) and Burned Area Reflectance Classification (BARC) thematic classes from low to high severity. The SPPs (initial and saturated soil-water content, bulk density, soil-organic matter, and soil-particle size) and SHPs (field-saturated hydraulic conductivity and sorptivity) were measured under controlled laboratory conditions for soil cores collected in the field. The SHPs were estimated by using tension infiltrometer measurements and three different data analysis methods. These measurements showed large effects of burn severity, focused in the top1 centimeter (cm) of soil, on some SPPs (bulk density, soil organic matter, and particle sizes). The threshold of these bulk density and soil organic matter effects was between 300 and 400 dNBR, which corresponds to a MTBS thematic class between moderate and high burn severity and a BARC4 thematic class of high severity. Gravel content and the content of fines in the top 1 cm of soil had a higher threshold value between 450 and 500 dNBR. Lesser effects on SPPs were observed at depths of 1–3 cm and 3–6 cm. In contrast, SHPs showed little effect from dNBR or from MTBS/BARC4 thematic class. Measurements suggested that 4 years of elapsed time after the wildfire may be sufficient for SHP recovery in this area. These measurements also indicated that SPP differences as a function of burn severity cannot be used as reliable indicators of SHP differences as a function of burn severity.
Soil bulk density changes caused by mechanized harvesting: A case study in central Appalachia
Jingxin Wang; Chris B. LeDoux; Pam Edwards; Mark Jones; Mark Jones
2005-01-01
A mechanized harvesting system consisting of a feller-buncher and a grapple skidder was examined to quantify soil bulk density changes in a central Appalachian hardwood forest site. Soil bulk density was measured using a nuclear gauge pre-harvest and post-harvest systematically across the harvest unit and on transects across skid trails. Bulk density also was measured...
Using the Opposition Effect in Remotely Sensed Data to Assist in the Retrieval of Bulk Density
NASA Astrophysics Data System (ADS)
Ambeau, Brittany L.
Bulk density is an important geophysical property that impacts the mobility of military vehicles and personnel. Accurate retrieval of bulk density from remotely sensed data is, therefore, needed to estimate the mobility on "off-road" terrain. For a particulate surface, the functional form of the opposition effect can provide valuable information about composition and structure. In this research, we examine the relationship between bulk density and angular width of the opposition effect for a controlled set of laboratory experiments. Given a sample with a known bulk density, we collect reflectance measurements on a spherical grid for various illumination and view geometries -- increasing the amount of reflectance measurements collected at small phase angles near the opposition direction. Bulk densities are varied using a custom-made pluviation device, samples are measured using the Goniometer of the Rochester Institute of Technology-Two (GRIT-T), and observations are fit to the Hapke model using a grid-search method. The method that is selected allows for the direct estimation of five parameters: the single-scattering albedo, the amplitude of the opposition effect, the angular width of the opposition effect, and the two parameters that describe the single-particle phase function. As a test of the Hapke model, the retrieved bulk densities are compared to the known bulk densities. Results show that with an increase in the availability of multi-angular reflectance measurements, the prospects for retrieving the spatial distribution of bulk density from satellite and airborne sensors are imminent.
Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an
2013-01-01
Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel contents are present.
Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an
2013-01-01
Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel contents are present. PMID:23555040
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Oostrom, Martinus; Truex, Michael J.
2013-05-21
Water saturation is an important indicator of contaminant distribution and plays a governing role in contaminant transport within the vadose zone. Understanding the water saturation distribution is critical for both remediation and contaminant flux monitoring in unsaturated environments. In this work we propose and demonstrate a method of remotely determining water saturation levels using gas phase partitioning tracers and time-lapse bulk electrical conductivity measurements. The theoretical development includes the partitioning chemistry for the tracers we demonstrate (ammonia and carbon dioxide), as well as a review of the petrophysical relationship governing how these tracers influence bulk conductivity. We also investigate methodsmore » of utilizing secondary information provided by electrical conductivity breakthrough magnitudes induced by the tracers. We test the method on clean, well characterized, intermediate-scale sand columns under controlled conditions. Results demonstrate the capability to predict partitioning coefficients and accurately monitor gas breakthrough curves along the length of the column according to the corresponding electrical conductivity response, leading to accurate water saturation estimates. This work is motivated by the need to develop effective characterization and monitoring techniques for contaminated deep vadose zone environments, and provides a proof-of-concept toward uniquely characterizing and monitoring water saturation levels at the field scale and in three-dimensions using electrical resistivity tomography.« less
NASA Astrophysics Data System (ADS)
Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2017-10-01
In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.
Diesel contaminated layer (i.e. 32-45 cm) was the most geoelectrically conductive and showed the peak microbial activity. Below the saturated zone microbial enhanced mineral weathering increases the ionic concentration of pore fluids, leading to increased bulk electrical conducit...
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.
2016-07-01
Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
The determination of asteroid bulk density is an important aspect of Near Earth Object (NEO) characterization. A fraction of meteoroids originate from asteroids (including some NEOs), thus in lieu of mutual perturbations, satellites, or expensive spacecraft missions, a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs (Potentially Hazardous Objects). Meteoroid bulk density is still inherently difficult to measure, and is most often determined by modeling the ablation of the meteoroid. One approach towards determining a meteoroid density distribution entails using a more easily measured proxy for the densities, then calibrating the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, KB (Ceplecha, 1958), which is thought to indicate the strength of a meteoroid and often correlated to different bulk densities in literature. KB is calculated using the air density at the beginning height of the meteor, the initial velocity, and the zenith angle of the radiant; quantities more readily determined than meteoroid bulk density itself. Numerical values of K(sub B) are sorted into groups (A, B, C, etc.), which have been matched to meteorite falls or meteor showers with known composition such as the porous Draconids. An extensive survey was conducted to establish the strength of the relationship between bulk density and K(sub B), specifically looking at those that additionally determined K(sub B) for the meteors. In examining the modeling of high-resolution meteor data from Kikwaya et al. (2011), the correlation between K(sub B) and bulk density was not as strong as hoped. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter (T(sub J)), with meteoroids from Halley Type comets (T(sub J) < 2) exhibiting much lower bulk densities than those originating from Jupiter Family comets and asteroids (T(sub J) > 2). Therefore, this work indicates that the dynamical classification of a meteoroid is a better indicator of the density than the strength proxy, a somewhat surprising result.
Effects of biochars on hydraulic properties of clayey soil
NASA Astrophysics Data System (ADS)
Zhen, Jingbo; Palladino, Mario; Lazarovitch, Naftali; Bonanomi, Giuliano; Battista Chirico, Giovanni
2017-04-01
Biochar has gained popularity as an amendment to improve soil hydraulic properties. Since biochar properties depend on feedstocks and pyrolysis temperatures used for its production, proper selection of biochar type as soil amendment is of great importance for soil hydraulic properties improvement. This study investigated the effects of eight types of biochar on physical and hydraulic properties of clayey soil. Biochars were derived from four different feedstocks (Alfalfa hay, municipal organic waste, corn residues and wood chip) pyrolyzed at two different temperatures (300 and 550 °C). Clayey soil samples were taken from Leone farm (40° 26' 15.31" N, 14° 59' 45.54" E), Italy, and were oven-dried at 105 °C to determine dry bulk density. Biochars were mixed with the clayey soil at 5% by mass. Bulk densities of the mixtures were also determined. Saturated hydraulic conductivities (Ks) of the original clayey soil and corresponding mixtures were measured by means of falling-head method. Soil water retention measurements were conducted for clayey soil and mixtures using suction table apparatus and Richards' plate with the pressure head (h) up to 12000 cm. van Genuchten retention function was selected to evaluate the retention characteristics of clayey soil and mixtures. Available water content (AWC) was calculated by field capacity (h = - 500 cm) minus wilting pointing (h = -12000 cm). The results showed that biochar addition decreased the bulk density of clayey soil. The Ks of clayey soil increased due to the incorporation of biochars except for waste and corn biochars pyrolyzed at 550 °C. AWC of soils mixed with corn biochar pyrolyzed at 300 °C and wood biochar pyrolyzed at 550 °C, increased by 31% and 7%, respectively. Further analysis will be conducted in combination of biochar properties such as specific surface area and total pore volume. Better understanding of biochar impact on clayey soil will be helpful in biochar selection for soil amendment and improving water use efficiency in agriculture.
Exactly solvable model of the two-dimensional electrical double layer.
Samaj, L; Bajnok, Z
2005-12-01
We consider equilibrium statistical mechanics of a simplified model for the ideal conductor electrode in an interface contact with a classical semi-infinite electrolyte, modeled by the two-dimensional Coulomb gas of pointlike unit charges in the stability-against-collapse regime of reduced inverse temperatures 0< or = beta < 2. If there is a potential difference between the bulk interior of the electrolyte and the grounded electrode, the electrolyte region close to the electrode (known as the electrical double layer) carries some nonzero surface charge density. The model is mappable onto an integrable semi-infinite sine-Gordon theory with Dirichlet boundary conditions. The exact form-factor and boundary state information gained from the mapping provide asymptotic forms of the charge and number density profiles of electrolyte particles at large distances from the interface. The result for the asymptotic behavior of the induced electric potential, related to the charge density via the Poisson equation, confirms the validity of the concept of renormalized charge and the corresponding saturation hypothesis. It is documented on the nonperturbative result for the asymptotic density profile at a strictly nonzero beta that the Debye-Hückel beta-->0 limit is a delicate issue.
Nuclear equation of state from ground and collective excited state properties of nuclei
NASA Astrophysics Data System (ADS)
Roca-Maza, X.; Paar, N.
2018-07-01
This contribution reviews the present status on the available constraints to the nuclear equation of state (EoS) around saturation density from nuclear structure calculations on ground and collective excited state properties of atomic nuclei. It concentrates on predictions based on self-consistent mean-field calculations, which can be considered as an approximate realization of an exact energy density functional (EDF). EDFs are derived from effective interactions commonly fitted to nuclear masses, charge radii and, in many cases, also to pseudo-data such as nuclear matter properties. Although in a model dependent way, EDFs constitute nowadays a unique tool to reliably and consistently access bulk ground state and collective excited state properties of atomic nuclei along the nuclear chart as well as the EoS. For comparison, some emphasis is also given to the results obtained with the so called ab initio approaches that aim at describing the nuclear EoS based on interactions fitted to few-body data only. Bridging the existent gap between these two frameworks will be essential since it may allow to improve our understanding on the diverse phenomenology observed in nuclei. Examples on observations from astrophysical objects and processes sensitive to the nuclear EoS are also briefly discussed. As the main conclusion, the isospin dependence of the nuclear EoS around saturation density and, to a lesser extent, the nuclear matter incompressibility remain to be accurately determined. Experimental and theoretical efforts in finding and measuring observables specially sensitive to the EoS properties are of paramount importance, not only for low-energy nuclear physics but also for nuclear astrophysics applications.
NASA Astrophysics Data System (ADS)
Jorda, Helena; Koestel, John; Jarvis, Nicholas
2014-05-01
Knowledge of the near-saturated and saturated hydraulic conductivity of soil is fundamental for understanding important processes like groundwater contamination risks or runoff and soil erosion. Hydraulic conductivities are however difficult and time-consuming to determine by direct measurements, especially at the field scale or larger. So far, pedotransfer functions do not offer an especially reliable alternative since published approaches exhibit poor prediction performances. In our study we aimed at building pedotransfer functions by growing random forests (a statistical learning approach) on 486 datasets from the meta-database on tension-disk infiltrometer measurements collected from peer-reviewed literature and recently presented by Jarvis et al. (2013, Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 17(12), 5185-5195). When some data from a specific source publication were allowed to enter the training set whereas others were used for validation, the results of a 10-fold cross-validation showed reasonable coefficients of determination of 0.53 for hydraulic conductivity at 10 cm tension, K10, and 0.41 for saturated conductivity, Ks. The estimated average annual temperature and precipitation at the site were the most important predictors for K10, while bulk density and estimated average annual temperature were most important for Ks prediction. The soil organic carbon content and the diameter of the disk infiltrometer were also important for the prediction of both K10 and Ks. However, coefficients of determination were around zero when all datasets of a specific source publication were excluded from the training set and exclusively used for validation. This may indicate experimenter bias, or that better predictors have to be found or that a larger dataset has to be used to infer meaningful pedotransfer functions for saturated and near-saturated hydraulic conductivities. More research is in progress to further elucidate this question.
Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers.
Li, Pengfei; Chen, Yao; Yang, Tieshan; Wang, Ziyu; Lin, Han; Xu, Yanhua; Li, Lei; Mu, Haoran; Shivananju, Bannur Nanjunda; Zhang, Yupeng; Zhang, Qinglin; Pan, Anlian; Li, Shaojuan; Tang, Dingyuan; Jia, Baohua; Zhang, Han; Bao, Qiaoliang
2017-04-12
Even though the nonlinear optical effects of solution processed organic-inorganic perovskite films have been studied, the nonlinear optical properties in two-dimensional (2D) perovskites, especially their applications for ultrafast photonics, are largely unexplored. In comparison to bulk perovskite films, 2D perovskite nanosheets with small thicknesses of a few unit cells are more suitable for investigating the intrinsic nonlinear optical properties because bulk recombination of photocarriers and the nonlinear scattering are relatively small. In this research, we systematically investigated the nonlinear optical properties of 2D perovskite nanosheets derived from a combined solution process and vapor phase conversion method. It was found that 2D perovskite nanosheets have stronger saturable absorption properties with large modulation depth and very low saturation intensity compared with those of bulk perovskite films. Using an all dry transfer method, we constructed a new type of saturable absorber device based on single piece 2D perovskite nanosheet. Stable soliton state mode-locking was achieved, and ultrafast picosecond pulses were generated at 1064 nm. This work is likely to pave the way for ultrafast photonic and optoelectronic applications based on 2D perovskites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lappin, A.R.; VanBuskirk, R.G.; Enniss, D.O.
1982-03-01
Thermal-conductivity and bulk-property measurements were made on welded and nonwelded silicic tuffs from the upper portion of Hole USW-G1, located near the southwestern margin of the Nevada Test Site. Bulk-property measurements were made by standard techniques. Thermal conductivities were measured at temperatures as high as 280{sup 0}C, confining pressures to 10 MPa, and pore pressures to 1.5 MPa. Extrapolation of measured saturated conductivities to zero porosity suggests that matrix conductivity of both zeolitized and devitrified tuffs is independent of stratigraphic position, depth, and probably location. This fact allows development of a thermal-conductivity stratigraphy for the upper portion of Hole G1.more » Estimates of saturated conductivities of zeolitized nonwelded tuffs and devitrified tuffs below the water table appear most reliable. Estimated conductivities of saturated densely welded devitrified tuffs above the water table are less reliable, due to both internal complexity and limited data presently available. Estimation of conductivity of dewatered tuffs requires use of different air thermal conductivities in devitrified and zeolitized samples. Estimated effects of in-situ fracturing generally appear negligible.« less
Soil Bulk Density by Soil Type, Land Use and Data Source: Putting the Error in SOC Estimates
NASA Astrophysics Data System (ADS)
Wills, S. A.; Rossi, A.; Loecke, T.; Ramcharan, A. M.; Roecker, S.; Mishra, U.; Waltman, S.; Nave, L. E.; Williams, C. O.; Beaudette, D.; Libohova, Z.; Vasilas, L.
2017-12-01
An important part of SOC stock and pool assessment is the assessment, estimation, and application of bulk density estimates. The concept of bulk density is relatively simple (the mass of soil in a given volume), the specifics Bulk density can be difficult to measure in soils due to logistical and methodological constraints. While many estimates of SOC pools use legacy data in their estimates, few concerted efforts have been made to assess the process used to convert laboratory carbon concentration measurements and bulk density collection into volumetrically based SOC estimates. The methodologies used are particularly sensitive in wetlands and organic soils with high amounts of carbon and very low bulk densities. We will present an analysis across four database measurements: NCSS - the National Cooperative Soil Survey Characterization dataset, RaCA - the Rapid Carbon Assessment sample dataset, NWCA - the National Wetland Condition Assessment, and ISCN - the International soil Carbon Network. The relationship between bulk density and soil organic carbon will be evaluated by dataset and land use/land cover information. Prediction methods (both regression and machine learning) will be compared and contrasted across datasets and available input information. The assessment and application of bulk density, including modeling, aggregation and error propagation will be evaluated. Finally, recommendations will be made about both the use of new data in soil survey products (such as SSURGO) and the use of that information as legacy data in SOC pool estimates.
Matula, Svatopluk; Báťková, Kamila; Legese, Wossenu Lemma
2016-11-15
Non-destructive soil water content determination is a fundamental component for many agricultural and environmental applications. The accuracy and costs of the sensors define the measurement scheme and the ability to fit the natural heterogeneous conditions. The aim of this study was to evaluate five commercially available and relatively cheap sensors usually grouped with impedance and FDR sensors. ThetaProbe ML2x (impedance) and ECH₂O EC-10, ECH₂O EC-20, ECH₂O EC-5, and ECH₂O TE (all FDR) were tested on silica sand and loess of defined characteristics under controlled laboratory conditions. The calibrations were carried out in nine consecutive soil water contents from dry to saturated conditions (pure water and saline water). The gravimetric method was used as a reference method for the statistical evaluation (ANOVA with significance level 0.05). Generally, the results showed that our own calibrations led to more accurate soil moisture estimates. Variance component analysis arranged the factors contributing to the total variation as follows: calibration (contributed 42%), sensor type (contributed 29%), material (contributed 18%), and dry bulk density (contributed 11%). All the tested sensors performed very well within the whole range of water content, especially the sensors ECH₂O EC-5 and ECH₂O TE, which also performed surprisingly well in saline conditions.
2013-01-01
Background A natural carbohydrate biopolymer was extracted from the agricultural biomass waste (durian seed). Subsequently, the crude biopolymer was purified by using the saturated barium hydroxide to minimize the impurities. Finally, the effect of different drying techniques on the flow characteristics and functional properties of the purified biopolymer was investigated. The present study elucidated the main functional characteristics such as flow characteristics, water- and oil-holding capacity, solubility, and foaming capacity. Results In most cases except for oven drying, the bulk density decreased, thus increasing the porosity. This might be attributed to the increase in the inter-particle voids of smaller sized particles with larger contact surface areas per unit volume. The current study revealed that oven-dried gum and freeze-dried gum had the highest and lowest compressibility index, thus indicating the weakest and strongest flowability among all samples. In the present work, the freeze-dried gum showed the lowest angle of repose, bulk, tapped and true density. This indicates the highest porosity degree of freeze dried gum among dried seed gums. It also exhibited the highest solubility, and foaming capacity thus providing the most desirable functional properties and flow characteristics among all drying techniques. Conclusion The present study revealed that freeze drying among all drying techniques provided the most desirable functional properties and flow characteristics for durian seed gum. PMID:23289739
Matula, Svatopluk; Báťková, Kamila; Legese, Wossenu Lemma
2016-01-01
Non-destructive soil water content determination is a fundamental component for many agricultural and environmental applications. The accuracy and costs of the sensors define the measurement scheme and the ability to fit the natural heterogeneous conditions. The aim of this study was to evaluate five commercially available and relatively cheap sensors usually grouped with impedance and FDR sensors. ThetaProbe ML2x (impedance) and ECH2O EC-10, ECH2O EC-20, ECH2O EC-5, and ECH2O TE (all FDR) were tested on silica sand and loess of defined characteristics under controlled laboratory conditions. The calibrations were carried out in nine consecutive soil water contents from dry to saturated conditions (pure water and saline water). The gravimetric method was used as a reference method for the statistical evaluation (ANOVA with significance level 0.05). Generally, the results showed that our own calibrations led to more accurate soil moisture estimates. Variance component analysis arranged the factors contributing to the total variation as follows: calibration (contributed 42%), sensor type (contributed 29%), material (contributed 18%), and dry bulk density (contributed 11%). All the tested sensors performed very well within the whole range of water content, especially the sensors ECH2O EC-5 and ECH2O TE, which also performed surprisingly well in saline conditions. PMID:27854263
NASA Astrophysics Data System (ADS)
Kadam, Guru Prakash; Mishra, Hiranmaya
2015-09-01
We estimate dissipative properties, viz., shear and bulk viscosities of hadronic matter using relativistic Boltzmann equation in relaxation time approximation within the framework of excluded-volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio (η /s ) decreases with temperature while at finite baryon chemical potential this ratio shows the same behavior as a function of temperature but reaches close to the Kovtun-Son-Starinets (KSS) bound. Further along the chemical freezeout curve, ratio η /s is almost constant apart from small initial monotonic rise. This observation may have some relevance to the experimental finding that the differential elliptic flow of charged hadrons does not change considerably at lower center-of-mass energy. We further find that bulk viscosity to entropy density (ζ /s ) decreases with temperature while this ratio has higher value at finite baryon chemical potential at higher temperature. Along the freezeout curve ζ /s decreases monotonically at lower center-of-mass energy and then saturates.
Omura, J; Yano, H; Tryk, D A; Watanabe, M; Uchida, H
2014-01-14
To gain deeper insight into the role of adsorbed oxygenated species in the O2 reduction reaction (ORR) kinetics on platinum and platinum-cobalt alloys for fuel cells, we carried out a series of measurements with the electrochemical quartz crystal microbalance (EQCM) and the rotating disk electrode (RDE) in acid solution. The effects of anion adsorption on the activities for the ORR were first assessed in HClO4 and HF electrolyte solutions at various concentrations. In our previous work (Part 1), we reported that the perchlorate anion adsorbs specifically on bulk-Pt, with a Frumkin-Temkin isotherm, that is, a linear relationship between Δm and log[HClO4]. Here, we find that the specific adsorption on the Pt-skin/Pt3Co alloy was significantly stronger than that on bulk-Pt, in line with its modified electronic properties. The kinetically controlled current density j(k) for the O2 reduction at the Pt-skin/Pt3Co-RDE was about 9 times larger than that of the bulk-Pt-RDE in 0.01 M HClO4 saturated with air, but the j(k) values on Pt-skin/Pt3Co decreased with increasing [HClO4] more steeply than in the case of Pt, due to the blocking of the active sites by the specifically adsorbed ClO4(-). We have detected reversible mass changes for one or more adsorbed oxygen-containing species (Ox = O2, O, OH, H2O) on the Pt-skin/Pt3Co-EQCM and Pt-EQCM in O2-saturated and He-purged 0.01 M HClO4 solutions, in which the specific adsorption of ClO4(-) anions was negligible. The coverages of oxygen species θ(Ox) on the Pt-skin/Pt3Co in the potential range from 0.86 to 0.96 V in the O2-saturated solution were found to be larger than those on pure Pt, providing strong evidence that the higher O2 reduction activity on the Pt3Co is correlated with higher θ(Ox), contrary to the conventional view.
Effective Biot theory and its generalization to poroviscoelastic models
NASA Astrophysics Data System (ADS)
Liu, Xu; Greenhalgh, Stewart; Zhou, Bing; Greenhalgh, Mark
2018-02-01
A method is suggested to express the effective bulk modulus of the solid frame of a poroelastic material as a function of the saturated bulk modulus. This method enables effective Biot theory to be described through the use of seismic dispersion measurements or other models developed for the effective saturated bulk modulus. The effective Biot theory is generalized to a poroviscoelastic model of which the moduli are represented by the relaxation functions of the generalized fractional Zener model. The latter covers the general Zener and the Cole-Cole models as special cases. A global search method is described to determine the parameters of the relaxation functions, and a simple deterministic method is also developed to find the defining parameters of the single Cole-Cole model. These methods enable poroviscoelastic models to be constructed, which are based on measured seismic attenuation functions, and ensure that the model dispersion characteristics match the observations.
Temporal soil bulk density following tillage
USDA-ARS?s Scientific Manuscript database
Soil is the medium for air, energy, water, and chemical transport between the atmosphere and the solid earth. Soil bulk density is a key variable impacting the rate at which this transport occurs. Typically, soil bulk density is measured by the gravimetric method, where a sample of known volume is t...
Minnealloy: a new magnetic material with high saturation flux density and low magnetic anisotropy
NASA Astrophysics Data System (ADS)
Mehedi, Md; Jiang, Yanfeng; Suri, Pranav Kumar; Flannigan, David J.; Wang, Jian-Ping
2017-09-01
We are reporting a new soft magnetic material with high saturation magnetic flux density, and low magnetic anisotropy. The new material is a compound of iron, nitrogen and carbon, α‧-Fe8(NC), which has saturation flux density of 2.8 ± 0.15 T and magnetic anisotropy of 46 kJ m-3. The saturation flux density is 27% higher than pure iron, a widely used soft magnetic material. Soft magnetic materials are very important building blocks of motors, generators, inductors, transformers, sensors and write heads of hard disk. The new material will help in the miniaturization and efficiency increment of the next generation of electronic devices.
Deng, Yusong; Cai, Chongfa; Xia, Dong; Ding, Shuwen; Chen, Jiazhou
2017-01-01
Collapsing gullies are among the most severe soil erosion problems in the tropical and subtropical areas of southern China. However, few studies have examined the relationship of soil particle size distribution (PSD) changes with land-use patterns in the alluvial fans of collapsing gullies. Recently, the fractal method has been applied to estimate soil structure and has proven to be an effective tool in analyzing soil properties and their relationships with other eco-environmental factors. In this study, the soil fractal dimension (D), physico-chemical properties and their relationship with different land-use patterns in alluvial fans were investigated in an experiment that involved seven collapsing gully areas in seven counties of southern China. Our results demonstrated that different land-use patterns of alluvial fans had a significant effect on soil physico-chemical properties. Compared to grasslands and woodlands, farmlands and orchards generally contained more fine soil particles (silt and clay) and fewer coarse particles, whereas significant differences were found in the fractal dimension of soil PSD in different land-use patterns. Specifically, the soil fractal dimension was lower in grasslands and higher in orchards relative to that of other land-use patterns. The average soil fractal dimension of grasslands had a value that was 0.08 lower than that of orchards. Bulk density was lower but porosity was higher in farmlands and orchards. Saturated moisture content was lower in woodlands and grasslands, but saturated hydraulic conductivity was higher in all four land-use patterns. Additionally, the fractal dimension had significant linear relationships with the silt, clay and sand contents and soil properties and exhibited a positive correlation with the clay (R2 = 0.976, P<0.001), silt (R2 = 0.578, P<0.01), organic carbon (R2 = 0.777, P<0.001) and saturated water (R2 = 0.639, P<0.01) contents but a negative correlation with gravel content (R2 = 0.494, P<0.01), coarse sand content (R2 = 0.623, P<0.01) and saturated hydraulic conductivity (R2 = 0.788, P<0.001). However, the fractal dimension exhibited no significant correlation with pH, bulk density or total porosity. Furthermore, the second-degree polynomial equation was found to be more adequate for describing the correlations between soil fractal dimension and particle size distribution. The results of this study demonstrate that a fractal dimension analysis of soil particle size distribution is a useful method for the quantitative description of different land-use patterns in the alluvial fans of collapsing gullies in southern China. PMID:28301524
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, H.; Okada, M.; Uematsu, M.
1987-01-01
Saturated liquid densities of 1,1-difluoroethane (CH/sub 3/CHF/sub 2/) are measured at temperatures from 223 K to 363 K with the estimated uncertainty of +-0.2% by a magnetic densimetry. The experimental results are compared with the available experimental data and some correlations and equations of state. A simple correlation for the saturated liquid density is developed as a function of temperature. This correlation covers the temperature range up to the critical point which reproduces the present experimental results with the percent means deviation of 0.11%. Adding the available experimental data with respect to the vapor pressure, critical parameters, saturated vapor density,more » and the second virial coefficient to the present saturated liquid density data, the parameters of the Redlich-Kwong-Soave equation of state are determined and the thermodynamic properties along the vapor-liquid coexistence curve are derived.« less
Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients.
Siri-Tarino, Patty W; Sun, Qi; Hu, Frank B; Krauss, Ronald M
2010-11-01
Despite the well-established observation that substitution of saturated fats for carbohydrates or unsaturated fats increases low-density lipoprotein (LDL) cholesterol in humans and animal models, the relationship of saturated fat intake to risk for atherosclerotic cardiovascular disease in humans remains controversial. A critical question is what macronutrient should be used to replace saturated fat. Substituting polyunsaturated fat for saturated fat reduces LDL cholesterol and the total cholesterol to high-density lipoprotein cholesterol ratio. However, replacement of saturated fat by carbohydrates, particularly refined carbohydrates and added sugars, increases levels of triglyceride and small LDL particles and reduces high-density lipoprotein cholesterol, effects that are of particular concern in the context of the increased prevalence of obesity and insulin resistance. Epidemiologic studies and randomized clinical trials have provided consistent evidence that replacing saturated fat with polyunsaturated fat, but not carbohydrates, is beneficial for coronary heart disease. Therefore, dietary recommendations should emphasize substitution of polyunsaturated fat and minimally processed grains for saturated fat.
Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography.
Goossens, Sander; Sabaka, Terence J; Genova, Antonio; Mazarico, Erwan; Nicholas, Joseph B; Neumann, Gregory A
2017-08-16
Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moon's crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 ± 209 kg m -3 . This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth.
Gassmann Theory Applies to Nanoporous Media
NASA Astrophysics Data System (ADS)
Gor, Gennady Y.; Gurevich, Boris
2018-01-01
Recent progress in extraction of unconventional hydrocarbon resources has ignited the interest in the studies of nanoporous media. Since many thermodynamic and mechanical properties of nanoscale solids and fluids differ from the analogous bulk materials, it is not obvious whether wave propagation in nanoporous media can be described using the same framework as in macroporous media. Here we test the validity of Gassmann equation using two published sets of ultrasonic measurements for a model nanoporous medium, Vycor glass, saturated with two different fluids, argon, and n-hexane. Predictions of the Gassmann theory depend on the bulk and shear moduli of the dry samples, which are known from ultrasonic measurements and the bulk moduli of the solid and fluid constituents. The solid bulk modulus can be estimated from adsorption-induced deformation or from elastic effective medium theory. The fluid modulus can be calculated according to the Tait-Murnaghan equation at the solvation pressure in the pore. Substitution of these parameters into the Gassmann equation provides predictions consistent with measured data. Our findings set up a theoretical framework for investigation of fluid-saturated nanoporous media using ultrasonic elastic wave propagation.
Compressed liquid densities, saturated liquid densities, and vapor pressures of 1,1-difluoroethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Defibaugh, D.R.; Morrison, G.
1996-05-01
The compressed liquid densities and vapor pressures of 1,1-difluoroethane (HFC-152a) have been measured, correlated, and compared with other data. The liquid densities were measured with a combined standard uncertainty of {+-}0.05% using a vibrating tube densimeter over a temperature range of 243 K to 371 K and at pressures from near the saturated vapor pressure to 6,500 kPa; thus the data extend nearly to the critical point ({Tc} = 386.41 K and P{sub c} = 4514.7 kPa). The vapor pressures were measured with a combined standard uncertainty of {+-}0.02% using a stainless steel ebulliometer in the temperature range from 280more » K to 335 K. Saturated liquid densities were calculated by extrapolating the compressed liquid isotherms to the saturation pressure.« less
NASA Astrophysics Data System (ADS)
Shibataki, Takuya; Takahashi, Yasuhito; Fujiwara, Koji
2018-04-01
This paper discusses a measurement method for saturation magnetizations of iron core materials using an electromagnet, which can apply an extremely large magnetic field strength to a specimen. It is said that electrical steel sheets are completely saturated at such a large magnetic field strength over about 100 kA/m. The saturation magnetization can be obtained by assuming that the completely saturated specimen shows a linear change of the flux density with the magnetic field strength because the saturation magnetization is constant. In order to accurately evaluate the flux density in the specimen, an air flux between the specimen and a winding of B-coil for detecting the flux density is compensated by utilizing an ideal condition that the incremental permeability of saturated specimen is equal to the permeability of vacuum. An error of magnetic field strength caused by setting a sensor does not affect the measurement accuracy of saturation magnetization. The error is conveniently cancelled because the saturation magnetization is a function of a ratio of the magnetic field strength to its increment. It may be concluded that the saturation magnetization can be easily measured with high accuracy by using the proposed method.
Gold nanorods saturable absorber for Q-switched Nd:GAGG lasers at 1 μm
NASA Astrophysics Data System (ADS)
Feng, Chao; Liu, Mingyi; Li, Yanbin; Gao, Xuejian; Kang, Zhe; Qin, Guanshi; Jia, Zhitai; Tao, Xutang; Song, Teng; Dun, Yangyang; Bai, Fen; Li, Ping; Wang, Qingpu; Fang, Jiaxiong
2017-03-01
A gold nanorod saturable absorber has been synthesized by the seed-mediated growth method characterized in detail. The absorption peak wavelength was 1080 nm, and the modulation depth was measured to be 9%. The performance of its Q-switched Nd:GAGG lasers at 1061 and 1106 nm has been systematically investigated, respectively. The corresponding shortest pulsewidths were 250 and 480 ns. Our experiment results proved that the GNR-SA is a promising saturable absorber for nanosecond bulk lasers.
Archie's Saturation Exponent for Natural Gas Hydrate in Coarse-Grained Reservoirs
NASA Astrophysics Data System (ADS)
Cook, Ann E.; Waite, William F.
2018-03-01
Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice-bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate-bearing sands. In this work, we calibrate n for hydrate-bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L-38, by establishing an independent downhole Sh profile based on compressional-wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L-38 well, we also apply this method to two marine, coarse-grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313-H and Green Canyon 955-H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse-grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.
Measured acoustic properties of variable and low density bulk absorbers
NASA Technical Reports Server (NTRS)
Dahl, M. D.; Rice, E. J.
1985-01-01
Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
Determination of asteroid bulk density is an important aspect of NEO characterization, yet difficult to measure. As a fraction of meteoroids originate from asteroids (including some NEOs), a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs in lieu of mutual perturbations, satellite, or expensive spacecraft missions. NASA's Meteoroid Environment Office characterizes the meteoroid environment for the purpose of spacecraft risk and operations. To accurately determine the risk, a distribution of meteoroid bulk densities are needed. This is not trivial to determine. If the particle survives to the ground the bulk density can be directly measured, however only the most dense particles land on the Earth. The next best approach is to model the meteor's ablation, which is not straightforward. Clear deceleration is necessary to do this and there are discrepancies in results between models. One approach to a distribution of bulk density is to use a measured proxy for the densities, then calibrate the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, K(sub B), thought to indicate the strength of a meteoroid. KB is frequented cited as a good proxy for meteoroid densities, but we find it is poorly correlated with density. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter, T(sub J), with meteoroids from Halley Type comets (T(sub J less than 2 ) exhibiting much lower densities than those originating from Jupiter and asteroids (T(sub J greater than 2).
Experimental verification of gain drop due to general ion recombination for a carbon-ion pencil beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tansho, Ryohei, E-mail: r-tansho@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke
Purpose: Accurate dose measurement in radiotherapy is critically dependent on correction for gain drop, which is the difference of the measured current from the ideal saturation current due to general ion recombination. Although a correction method based on the Boag theory has been employed, the theory assumes that ionized charge density in an ionization chamber (IC) is spatially uniform throughout the irradiation volume. For particle pencil beam scanning, however, the charge density is not uniform, because the fluence distribution of a pencil beam is not uniform. The aim of this study was to verify the effect of the nonuniformity ofmore » ionized charge density on the gain drop due to general ion recombination. Methods: The authors measured the saturation curve, namely, the applied voltage versus measured current, using a large plane-parallel IC and 24-channel parallel-plate IC with concentric electrodes. To verify the effect of the nonuniform ionized charge density on the measured saturation curve, the authors calculated the saturation curve using a method which takes into account the nonuniform ionized charge density and compared it with the measured saturation curves. Results: Measurement values of the different saturation curves in the different channels of the concentric electrodes differed and were consistent with the calculated values. The saturation curves measured by the large plane-parallel IC were also consistent with the calculation results, including the estimation error of beam size and of setup misalignment. Although the impact of the nonuniform ionized charge density on the gain drop was clinically negligible with the conventional beam intensity, it was expected that the impact would increase with higher ionized charge density. Conclusions: For pencil beam scanning, the assumption of the conventional Boag theory is not valid. Furthermore, the nonuniform ionized charge density affects the prediction accuracy of gain drop when the ionized charge density is increased by a higher dose rate and/or lower beam size.« less
NASA Astrophysics Data System (ADS)
Ngabonziza, P.; Wang, Y.; Brinkman, A.
2018-04-01
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.
Relating saturation capacity to charge density in strong cation exchangers.
Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo
2017-07-21
In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Is the bulk mode conversion important in high density helicon plasma?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro
2016-06-15
In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included inmore » the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.« less
Crust-core properties of neutron stars in the Nambu–Jona-Lasinio model
NASA Astrophysics Data System (ADS)
Wei, Si-Na; Yang, Rong-Yao; Jiang, Wei-Zhou
2018-05-01
We adopt the Nambu–Jona-Lasinio (NJL) model to study the crust-core transition properties in neutron stars (NSs). For a given momentum cutoff and symmetry energy of saturation density in the NJL model, decreasing the slope of the symmetry energy gives rise to an increase in the crust-core transition density and transition pressure. Given the slope of the symmetry energy at saturation density, the transition density and corresponding transition pressure increase with increasing symmetry energy. The increasing trend between the fraction of the crustal moment of inertia and the slope of symmetry energy at saturation density indicates that a relatively large momentum cutoff of the NJL model is preferred. For a momentum cutoff of 500 MeV, the fraction of the crustal moment of inertia clearly increases with the slope of symmetry energy at saturation density. Thus, at the required fraction (7%) of the crustal moment of inertia, the NJL model with momentum cutoff of 500 MeV and a large slope of the symmetry energy of saturation density can give the upper limit of the mass of the Vela pulsar to be above 1.40 {M}ȯ . Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)
Rautman, C.A.; Flint, L.E.; Flint, A.L.; Istok, J.D.
1995-01-01
Quantitative material-property data are needed to describe lateral and vertical spatial variability of physical and hydrologic properties and to model ground-water flow and radionuclide transport at the potential Yucca Mountain nuclear-waste repository site in Nevada. As part of ongoing site characterization studies of Yucca Mountain directed toward this understanding of spatial variability, laboratory measurements of porosity, bull* and particle density, saturated hydraulic conductivity, and sorptivity have been obtained for a set of outcrop samples that form a systematic,two dimensional grid that covers a large exposure of the basal Tiva Canyon Tuff of the Paintbrush Group of Miocene age at Yucca Mountain. The samples form a detailed vertical grid roughly parallel to the transport direction of the parent ash flows, and they exhibit material-property varia- tions in an interval of major lithologic change overlying a potential nuclear-waste repository at Yucca Mountain. The observed changes in hydrologic properties were systematic and consistent with the changes expected for the nonwelded to welded transition at the base of a major ash-flow sequence. Porosity, saturated hydraulic conductivity, and sorptivity decreased upward from the base of the Tiva Canyon Tuff, indicating the progressive compaction of ash- rich volcanic debris and the onset of welding with increased overburden pressure from the accumulating ash-flow sheet. The rate of decrease in the values of these material properties varied with vertical position within the transition interval. In contrast, bulk-density values increased upward, a change that also is consistent with progressive compaction and the onset of welding. Particle-density values remained almost constant throughout the transition interval, probably indicating compositional (chemical) homogeneity.
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2018-01-01
Boron rich layer (BRL) formed beneath the borosilicate glass layer during p-type emitter formation is an undesirable phenomenon. It influences different cell parameters and can degrade the device performance. In this work, the device degradation study is done for different BRL thicknesses produced with different concentrations of the boric acid dopant source. The bulk carrier lifetime reduces to more than 75% and emitter saturation current density becomes more than 10-12 mA cm-2 for 60 nm of BRL thickness. The observed J sc and V oc values become zero for BRL thicknesses higher than 40 nm as seen in this work and the device properties could not be enhanced. So, higher thicknesses of BRL should be avoided.
Hydrogen and deuterium in the local interstellar medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, J.N.
1987-01-01
This work reports on the results of a series of IUE observations of interstellar HI and DI Ly..cap alpha.. absorption against the chromospheric Ly..cap alpha.. emission of the nearby late-type stars ..cap alpha.. Cen B(1.3 pc), epsilon Eri (3.3 pc), Procyon (3.5 pc), Altair (5.1 pc), Capella (13.2 pc), and HR 1099 (33 pc). The density, velocity dispersion, and bulk velocity of the neutral hydrogen along the line of sight to each of these stars was derived. Lower limits were placed on the deuterium-to-hydrogen (D/H) ratio towards the same stars. These IUE results are generally consistent with previous observations ofmore » the same stars with the Copernicus satellite showing that this modeling procedure is independent of stellar variations over a period of several years. The HI absorption profile towards Altair shows a broad saturated core and steep line wings, consistent with a multicomponent interstellar medium in that direction. The bulk velocities towards the other stars are consistent with a bulk flow from the approximate direction of the galactic center but do show local variations from a uniform flow, possibly indicating a complicated velocity structure even in the solar neighborhood. Interstellar deuterium is detected towards every star except Altair and the derived values for the D/H ratio are consistent with those previously found with Copernicus.« less
Sample sizes to control error estimates in determining soil bulk density in California forest soils
Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber
2016-01-01
Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...
40 CFR 721.9675 - Titanate [Ti6O13 (2-)], di-po-tas-sium.
Code of Federal Regulations, 2012 CFR
2012-07-01
... bulk density measurements of the PMN substance in the pure form are less than 0.4 g/cm3 or greater than 0.6 g/cm3. The bulk density of each shipment must be verified, by lot, prior to clearing U.S... method of manufacture and bulk density measurements. (2) Limitations or revocation of certain...
40 CFR 721.9675 - Titanate [Ti6O13 (2-)], di-po-tas-sium.
Code of Federal Regulations, 2014 CFR
2014-07-01
... bulk density measurements of the PMN substance in the pure form are less than 0.4 g/cm3 or greater than 0.6 g/cm3. The bulk density of each shipment must be verified, by lot, prior to clearing U.S... method of manufacture and bulk density measurements. (2) Limitations or revocation of certain...
40 CFR 721.9675 - Titanate [Ti6O13 (2-)], di-po-tas-sium.
Code of Federal Regulations, 2011 CFR
2011-07-01
... bulk density measurements of the PMN substance in the pure form are less than 0.4 g/cm3 or greater than 0.6 g/cm3. The bulk density of each shipment must be verified, by lot, prior to clearing U.S... method of manufacture and bulk density measurements. (2) Limitations or revocation of certain...
NASA Astrophysics Data System (ADS)
Torii, S.; Yuasa, K.
2004-10-01
Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.
Precise algorithm to generate random sequential adsorption of hard polygons at saturation
NASA Astrophysics Data System (ADS)
Zhang, G.
2018-04-01
Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles and could thus determine the saturation density of spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and obtain results that are consistent with previous, extrapolation-based studies.
Precise algorithm to generate random sequential adsorption of hard polygons at saturation.
Zhang, G
2018-04-01
Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles and could thus determine the saturation density of spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and obtain results that are consistent with previous, extrapolation-based studies.
Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation
NASA Astrophysics Data System (ADS)
O. Silva, Hector; Berti, Emanuele; Sotani, Hajime
2016-03-01
Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.
Formation and magnetic properties of the L10 phase in bulk, powder and hot compacted Mn-Ga alloys
NASA Astrophysics Data System (ADS)
Mix, T.; Müller, K.-H.; Schultz, L.; Woodcock, T. G.
2015-10-01
The formation and stability of the L10 phase in Mn-Ga binary alloys with compositions in the range 50-75 at% Mn (in steps of 5 at%) has been studied. Of these, single-phase L10 structure was successfully produced in the 55, 60 and 65 at% Mn alloys by annealing the high temperature phases, which had been retained to room temperature following arc melting. Further annealing and thermal analysis were used to determine the phase transformation temperatures in the alloys and the results were used to guide further processing. The saturation magnetisation, Ms, and the anisotropy field, Ha, were determined in applied fields up to 14 T. For Mn55Ga45, μ0Ms=0.807 T and μ0Ha=4.4 T were observed. Mechanically milled Mn55Ga45 powder had coercivity of μ0Hc=0.393 T, which was a twentyfold increase compared to the bulk material but the magnetisation was reduced (cf. powder: μ0M5 T=0.576 T, bulk: μ0M5 T=0.780 T). Annealing the powder at 400 °C led to recovery of the magnetisation but reduced the coercivity, which was still 10 times as high as the bulk value. A degree of texture of 0.45 was achieved by magnetic alignment of the powder particles, leading to a remanence of 0.526 T. Furthermore, isotropic hot compacts of powders were produced with packing density from 83% to 99%, in which the improved coercivity of the powders was partially retained.
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.
2018-01-01
In previous work [Kawamura et al., Plasma Sources Sci. Technol. 25, 054009 (2016)] and [Kawamura et al., J. Phys. D: Appl. Phys. 50, 145204 (2017)], 1D kinetic particle-in-cell (PIC) simulations of narrow gap (1 to 4 mm), high frequency (27 MHz) or dc-driven, He/2%H2O atmospheric pressure plasmas (APPs) showed an ionization instability resulting in standing striations (spatial oscillations) in the bulk plasma. We developed a steady-state striation theory which showed that the striations are due to non-local electron kinetics. In both the high frequency and dc-driven cases, the equilibrium electron density n0 in the plasma bulk was stationary. In this work, we first conduct 1D PIC simulations of a 1 mm gap He/2%H2O APP, driven by a sinusoidal current at a low frequency of f = 50 kHz such that ω = 2πf is well below the ionization frequency νiz. In this case, n0 varies with time, and we observe a time-varying instability which quasistatically depends on n0(t). At each phase of the rf cycle, the discharge resembles a dc discharge at the same n0. At higher frequencies (200 kHz-1 MHz), ω approaches νiz, and quasistatic equilibrium at each phase breaks down. The discharge is also driven with a 200 kHz, 50% duty cycle square wave pulse with a short rise and fall time of 0.1 μs in an attempt to directly measure the striation growth rate s during the on-cycle before it saturated. However, the spike in current during the rise time leads to a spike in electron temperature Te and hence νiz and s at the beginning of the rise which saturated during the beginning of the on-cycle. To predict the instability growth rate and saturation during and after the current spike, we extend our striation theory to include time-varying n0, Te, νiz, as well as terms for the nonlinear saturation and noise floor of the striation amplitude. The time-varying global model predictions are compared to the PIC simulations, showing reasonable agreement.
NASA Astrophysics Data System (ADS)
Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai
2017-10-01
A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.
Jingxin Wang; Chris B. LeDoux; Pam Edwards
2007-01-01
A harvesting system consisting of chainsaw felling and cable skidder extraction was studied to determine soil bulk density changes in a central Appalachian hardwood forest site. Soil bulk density was measured using a nuclear gauge preharvest and postharvest systematically across the harvest site, on transects across skid trails, and for a subset of skid trail transects...
Martins, Mónia A R; Neves, Catarina M S S; Kurnia, Kiki A; Carvalho, Pedro J; Rocha, Marisa A A; Santos, Luís M N B F; Pinho, Simão P; Freire, Mara G
2016-01-15
In order to evaluate the impact of the alkyl side chain length and symmetry of the cation on the thermophysical properties of water-saturated ionic liquids (ILs), densities and viscosities as a function of temperature were measured at atmospheric pressure and in the (298.15 to 363.15) K temperature range, for systems containing two series of bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [C n C n im][NTf 2 ] (with n = 1-8 and 10) and asymmetric [C n C 1 im][NTf 2 ] (with n = 2-5, 7, 9 and 11) ILs. For water-saturated ILs, the density decreases with the increase of the alkyl side chain length while the viscosity increases with the size of the aliphatic tails. The saturation water solubility in each IL was further estimated with a reasonable agreement based on the densities of water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing properties of ILs and water follow a near ideal behaviour. The water-saturated symmetric ILs generally present lower densities and viscosities than their asymmetric counterparts. From the experimental data, the isobaric thermal expansion coefficient and energy barrier were also estimated. A close correlation between the difference in the energy barrier values between the water-saturated and pure ILs and the water content in each IL was found, supporting that the decrease in the viscosity of ILs in presence of water is directly related with the decrease of the energy barrier.
39 CFR Appendix A to Subpart A of... - Mail Classification Schedule
Code of Federal Regulations, 2012 CFR
2012-07-01
... Density and Saturation Letters High Density and Saturation Flats/Parcels Carrier Route Letters Flats Not... Package Services Single-Piece Parcel Post Inbound Surface Parcel Post (at UPU rates) Bound Printed Matter... Single-Piece First-Class Mail International Standard Mail (Regular and Nonprofit) High Density and...
Plasma Jet Interactions with Liquids in Partial Fulfillment of an NRL Karles Fellowship
2015-11-30
water (DI H2O) as the reference solution, two concentrations of NaCl mixtures (0.6 Molar, and 1.0 Molar saturated NaCl), and three electroless solutions...by diffusion) to the bulk surface in net excess; that oxygen ions/radicals are being consumed from the bulk by an electrolysis path way; or that the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.
The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less
Density dependence of the saturated velocity in graphene
NASA Astrophysics Data System (ADS)
Ferry, D. K.
2016-11-01
The saturated velocity of a semiconductor is an important measure in bench-marking performance for either logic or microwave applications. Graphene has been of interest for such applications due to its apparently high value of the saturated velocity. Recent experiments have suggested that this value is very density dependent and can even exceed the band limiting Fermi velocity. Some of these measurements have also suggested that the scattering is dominated by the low energy surface polar mode of the SiO2 substrate. Here, we show that the saturated velocity of graphene on SiO2 is relatively independent of the density and that the scattering is dominated by the high energy surface polar mode of the substrate.
Precise algorithm to generate random sequential adsorption of hard polygons at saturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, G.
Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation'' limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles, and could thus determine the saturation density of spheres with high accuracy. Here in this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensionalmore » polygons. We also calculate the saturation density for regular polygons of three to ten sides, and obtain results that are consistent with previous, extrapolation-based studies.« less
Precise algorithm to generate random sequential adsorption of hard polygons at saturation
Zhang, G.
2018-04-30
Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation'' limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles, and could thus determine the saturation density of spheres with high accuracy. Here in this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensionalmore » polygons. We also calculate the saturation density for regular polygons of three to ten sides, and obtain results that are consistent with previous, extrapolation-based studies.« less
A multislice gradient echo pulse sequence for CEST imaging.
Dixon, W Thomas; Hancu, Ileana; Ratnakar, S James; Sherry, A Dean; Lenkinski, Robert E; Alsop, David C
2010-01-01
Chemical exchange-dependent saturation transfer and paramagnetic chemical exchange-dependent saturation transfer are agent-mediated contrast mechanisms that depend on saturating spins at the resonant frequency of the exchangeable protons on the agent, thereby indirectly saturating the bulk water. In general, longer saturating pulses produce stronger chemical and paramagnetic exchange-dependent saturation transfer effects, with returns diminishing for pulses longer than T1. This could make imaging slow, so one approach to chemical exchange-dependent saturation transfer imaging has been to follow a long, frequency-selective saturation period by a fast imaging method. A new approach is to insert a short frequency-selective saturation pulse before each spatially selective observation pulse in a standard, two-dimensional, gradient-echo pulse sequence. Being much less than T1 apart, the saturation pulses have a cumulative effect. Interleaved, multislice imaging is straightforward. Observation pulses directed at one slice did not produce observable, unintended chemical exchange-dependent saturation transfer effects in another slice. Pulse repetition time and signal-to noise ratio increase in the normal way as more slices are imaged simultaneously. Copyright (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Borja Ramon, Pablo; Alvarado Moncayo, Dario; Vanacker, Veerle; Cisneros, Pedro; Molina, Armando; Govers, Gerard
2015-04-01
Revegetation projects in degraded lands have the potential to recover essential soil functions. If vegetation restoration is combined with bioengineering techniques, such as the construction of retention dams in active gully systems, soil restoration could be enhanced. One important aspect of this process is the role of vegetation on restoration of soil chemical and physical properties. There is currently a lack of knowledge on the potential of soil restoration in active badland systems, as most studies have concentrated on the direct and visible effect of revegetation on erosion control. The aim of this study is to evaluate the role of revegetation and bioengineering works on the restoration of soil physical and chemical properties. The analyses are realized in a highly degraded area of 3 km2, located in the lower part of the Loreto catchment (Southern Ecuadorian Andes). First, the soil physical and/or chemical parameters that are most sensitive to track environmental change were evaluated. Second, the role of vegetation on soil restoration was quantified. . Soil samples were taken in sites with different vegetation cover, land use and physiographic position. The following physical and chemical parameters were measured: volumetric water content (θsat, θact), bulk density, pH, texture, organic matter, C and N content. Our first results do not show a clear relationship between volumetric water content at saturation (θsat), bulk density, or C content. The saturation water content does not vary significantly between different sites, or land use types. However, significant differences are found between sites at different stages of restoration; and this for most chemical and physical soil properties. Vegetation cover (%) appears to exert a strong control on the C content in the mineral soils. The highest C values are found in soils of forest plantations with Eucalyptus and Pinus species. These plantations are located in areas that were previously affected by active gullying. Our results show that the establishment of a protective vegetation cover is an important factor in soil restoration.
Clementson, C L; Ileleji, K E
2010-07-01
Loading railcars with consistent tonnage has immense cost implications for the shipping of distillers' dried grains with soluble (DDGS) product. Therefore, this study was designed to investigate the bulk density variability of DDGS during filling of railcar hoppers. An apparatus was developed similar to a spinning riffler sampler in order to simulate the filling of railcars at an ethanol plant. There was significant difference (P<0.05) between the initial and final measures of bulk density and particle size as the hoppers were emptied in both mass and funnel flow patterns. Particle segregation that takes place during filling of hoppers contributed to the bulk density variation and was explained by particle size variation. This phenomenon is most likely the same throughout the industry and an appropriate sampling procedure should be adopted for measuring the bulk density of DDGS stored silos or transported in railcar hoppers. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Non-grazing and gophers lower bulk density and acidity in annual-plant soil
Raymond D. Ratliff; Stanley E. Westfall
1971-01-01
The effects of non-grazing on Ahwahnee coarse sandy loam were studied at the San Joaquin Experimental Range in central California. An exclosure, on which there had been no livestock grazing for 34 years, had a lower surface bulk density and lower acidity than an adjacent range that had been grazed. Bulk density averaged 1.08 gm./cc. on the ungrazed range, and 1.43 gm./...
Martin F. Jurgensen; Deborah S. Page-Dumroese; Robert E. Brown; Joanne M. Tirocke; Chris A. Miller; James B. Pickens; Min Wang
2017-01-01
Soils with high rock content are common in many US forests, and contain large amounts of stored C. Accurate measurements of soil bulk density and rock content are critical for calculating and assessing changes in both C and nutrient pool size, but bulk density sampling methods have limitations and sources of variability. Therefore, we evaluated the use of small-...
Critical soil bulk density for soybean growth in Oxisols
NASA Astrophysics Data System (ADS)
Keisuke Sato, Michel; Veras de Lima, Herdjania; Oliveira, Pedro Daniel de; Rodrigues, Sueli
2015-10-01
The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallow, Anne M; Abdelaziz, Omar; Graham, Samuel
The thermal charging performance of phase change materials, specifically paraffin wax, combined with compressed expanded natural graphite foam is studied under constant heat flux and constant temperature conditions. By varying the heat flux between 0.39 W/cm2 and 1.55 W/cm2 or maintaining a boundary temperature of 60 C for four graphite foam bulk densities, the impact on the rate of thermal energy storage is discussed. Thermal charging experiments indicate that thermal conductivity of the composite is an insufficient metric to compare the influence of graphite foam on the rate of thermal energy storage of the PCM composite. By dividing the latentmore » heat of the composite by the time to melt for various boundary conditions and graphite foam bulk densities, it is determined that bulk density selection is dependent on the applied boundary condition. A greater bulk density is advantageous for samples exposed to a constant temperature near the melting temperature as compared to constant heat flux conditions where a lower bulk density is adequate. Furthermore, the anisotropic nature of graphite foam bulk densities greater than 50 kg/m3 is shown to have an insignificant impact on the rate of thermal charging. These experimental results are used to validate a computational model for future use in the design of thermal batteries for waste heat recovery.« less
Improved understanding of the relationship between hydraulic properties and streaming potentials
NASA Astrophysics Data System (ADS)
Cassiani, G.; Brovelli, A.
2009-12-01
Streaming potential (SP) measurements have been satisfactorily used in a number of recent studies as a non-invasive tool to monitor fluid movement in both the vadose and the saturated zone. SPs are generated from the coupling between two independent physical processes oc-curring at the pore-level, namely water flow and excess of ions at the negatively charged solid matrix-water interface. The intensity of the measured potentials depends on physical proper-ties of the medium, including the internal micro-geometry of the system, the charge density of the interface and the composition of the pore fluid, which affects its ionic strength, pH and redox potential. The goal of this work is to investigate whether a relationship between the intensity of the SPs and the saturated hydraulic conductivity can be identified. Both properties are - at least to some extent - dependent on the pore-size distribution and connectivity of the pores, and there-fore some degree of correlation is expected. We used a pore-scale numerical model previously developed to simulate both the bulk hydraulic conductivity and the intensity of the SPs gener-ated in a three-dimensional pore-network. The chemical-physical properties of both the inter-face (Zeta-potential) and of the aqueous phase are computed using an analytical, physically based model that has shown good agreement with experimental data. Modelling results were satisfactorily compared with experimental data, showing that the model, although simplified retains the key properties and mechanisms that control SP generation. A sensitivity analysis with respect to the key geometrical and chemical parameters was conducted to evaluate how the correlation between the two studied variables changes and to ascertain whether the bulk hydraulic conductivity can be estimated from SP measurements alone.
Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran
2016-01-08
One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ∼3 nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.
Williams, G Jackson; Lee, Sooheyong; Walko, Donald A; Watson, Michael A; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C
2016-12-22
Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.
Effects of spin excitons on the surface states of SmB 6 : A photoemission study
Arab, Arian; Gray, A. X.; Nemšák, S.; ...
2016-12-12
We present the results of a high-resolution valence-band photoemission spectroscopic study of SmB 6 which shows evidence for a V-shaped density of states of surface origin within the bulk gap. The spectroscopy data are interpreted in terms of the existence of heavy 4 f surface states, which may be useful in resolving the controversy concerning the disparate surface Fermi-surface velocities observed in experiments. Most importantly, we find that the temperature dependence of the valence-band spectrum indicates that a small feature appears at a binding energy of about - 9 meV at low temperatures. We also attribute this feature tomore » a resonance caused by the spin-exciton scattering in SmB 6 which destroys the protection of surface states due to time-reversal invariance and spin-momentum locking. Thus, the existence of a low-energy spin exciton may be responsible for the scattering, which suppresses the formation of coherent surface quasiparticles and the appearance of the saturation of the resistivity to temperatures much lower than the coherence temperature associated with the opening of the bulk gap.« less
Williams, G. Jackson; Lee, Sooheyong; Walko, Donald A.; ...
2016-12-22
Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of themore » crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.« less
NASA Astrophysics Data System (ADS)
Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran
2016-01-01
One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ˜3 nm . Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, G. Jackson; Lee, Sooheyong; Walko, Donald A.
Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of themore » crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.« less
Compaction of AWBA fuel pellets without binders (AWBA Development Program)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.G.R.
1982-08-01
Highly active oxide fuel powders, composed of UO/sub 2/, UO/sub 2/-ThO/sub 2/, or ThO/sub 2/, were compacted into ultra-high density pellets without the use of binders. The objective of the study was to select the optimum die lubricant for compacting these powders into pellets in preparation for sintering to densities in excess of 97% Theoretical Density. The results showed that sintered density was a function of both the lubricant bulk density and concentration with the lowest bulk density lubricant giving the highest sintered densities with a lubricant concentration of 0.1 weight percent. Five calcium and zinc stearates were evaluated withmore » a calcium stearate with a 15 lb/ft/sup 3/ bulk density being the best lubricant.« less
Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs
Cook, Ann E.; Waite, William F.
2018-01-01
Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice‐bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate‐bearing sands. In this work, we calibrate n for hydrate‐bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L‐38, by establishing an independent downhole Sh profile based on compressional‐wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L‐38 well, we also apply this method to two marine, coarse‐grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313‐H and Green Canyon 955‐H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse‐grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.
NASA Astrophysics Data System (ADS)
Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas
2018-03-01
Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical conductivity, especially for partially saturated conditions. We highlight how these phenomena contribute to the typically large apparent mass loss observed when conducting field-scale time-lapse ERT.
USDA-ARS?s Scientific Manuscript database
Effects of varying bulk densities of steam-flaked corn (SFC) and level of inclusion of roughage in feedlot diets were evaluated in three experiments. In Experiment 1, 128 beef steers were used in a 2 x 2 factorial arrangement to evaluate effects of bulk density of SFC (335 or 386 g/L) and roughage...
Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada
Flint, L.E.
1998-01-01
Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the relation of flow properties to porosity that are described can be used to produce detailed and accurate representations of the core-scale hydrologic processes ongoing at Yucca Mountain.
Ion implantation disorder in strained-layer superlattices
NASA Astrophysics Data System (ADS)
Arnold, G. W.; Picraux, S. T.; Peercy, P. S.; Myers, D. R.; Biefeld, R. M.; Dawson, L. R.
Cantilever beam bending and RBS channeling measurements have been used to examine implantation induced disorder and stress buildup in InO 2GaO 8As/GaAs SLS structures. The critical fluence for saturation of compressive stress occurs prior to amorphous layer formation and is followed by stress relief. For all the ions the maximum ion induced stress scales with energy density into atomic processes and stress relief occurs above approximately 1x10 to the 20th keV/1 cubic cm. Stress relief is more pronounced for the SLSs than for bulk GaAs. Stress relief may lead to slip or other forms of inelastic material flow in SLSs, which would be undesirable for active regions in device applications. Such material flow may be avoided by limiting maximum fluences or by multiple step or simultaneous implantation and annealing for high fluences.
NASA Astrophysics Data System (ADS)
Citek, D.; Rehacek, S.; Pavlik, Z.; Kolisko, J.; Dobias, D.; Pavlikova, M.
2018-03-01
Actual paper focus on thermal properties of a sustainable lightweight concrete incorporating high volume of waste polypropylene aggregate as partial substitution of natural aggregate. In presented experiments a glass fiber reinforced polypropylene (GFPP) which is a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40 and 50 mass %. Results were compared with a reference concrete mix without plastic waste in order to quantify the effect of GFPP use on concrete properties. Main material physical parameters were studied (bulk density, matrix density without air content, and particle size distribution). Especially a thermal transport and storage properties of GFPP were examined in dependence on compaction time. For the developed lightweight concrete, thermal properties were accessed using transient impulse technique, where the measurement was done in dependence on moisture content (from the fully water saturated state to dry state). It was found that the tested lightweight concrete should be prospective construction material possessing improved thermal insulation function and the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view.
Bulk density of small meteoroids
NASA Astrophysics Data System (ADS)
Kikwaya, J.-B.; Campbell-Brown, M.; Brown, P. G.
2011-06-01
Aims: Here we report on precise metric and photometric observations of 107 optical meteors, which were simultaneously recorded at multiple stations using three different intensified video camera systems. The purpose is to estimate bulk meteoroid density, link small meteoroids to their parent bodies based on dynamical and physical density values expected for different small body populations, to better understand and explain the dynamical evolution of meteoroids after release from their parent bodies. Methods: The video systems used had image sizes ranging from 640 × 480 to 1360 × 1036 pixels, with pixel scales from 0.01° per pixel to 0.05° per pixel, and limiting meteor magnitudes ranging from Mv = +2.5 to +6.0. We find that 78% of our sample show noticeable deceleration, allowing more robust constraints to be placed on density estimates. The density of each meteoroid is estimated by simultaneously fitting the observed deceleration and lightcurve using a model based on thermal fragmentation, conservation of energy and momentum. The entire phase space of the model free parameters is explored for each event to find ranges of parameters which fit the observations within the measurement uncertainty. Results: (a) We have analysed our data by first associating each of our events with one of the five meteoroid classes. The average density of meteoroids whose orbits are asteroidal and chondritic (AC) is 4200 kg m-3 suggesting an asteroidal parentage, possibly related to the high-iron content population. Meteoroids with orbits belonging to Jupiter family comets (JFCs) have an average density of 3100 ± 300 kg m-3. This high density is found for all meteoroids with JFC-like orbits and supports the notion that the refractory material reported from the Stardust measurements of 81P/Wild 2 dust is common among the broader JFC population. This high density is also the average bulk density for the 4 meteoroids with orbits belonging to the Ecliptic shower-type class (ES) also related to JFCs. Both categories we suggest are chondritic based on their high bulk density. Meteoroids of HT (Halley type) orbits have a minimum bulk density value of 360+400-100 kg m-3 and a maximum value of 1510+400-900 kg m-3. This is consistent with many previous works which suggest bulk cometary meteoroid density is low. SA (Sun-approaching)-type meteoroids show a density spread from 1000 kg m-3 to 4000 kg m-3, reflecting multiple origins. (b) We found two different meteor showers in our sample: Perseids (10 meteoroids, ~11% of our sample) with an average bulk density of 620 kg m-3 and Northern Iota Aquariids (4 meteoroids) with an average bulk density of 3200 kg m-3, consistent with the notion that the NIA derive from 2P/Encke.
NASA Astrophysics Data System (ADS)
Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An
2018-05-01
The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.
Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina.
Imhoff, Silvia; da Silva, Alvaro Pires; Ghiberto, Pablo J; Tormena, Cássio A; Pilatti, Miguel A; Libardi, Paulo L
2016-01-01
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied.
Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina
Pires da Silva, Alvaro; Ghiberto, Pablo J.; Tormena, Cássio A.; Pilatti, Miguel A.; Libardi, Paulo L.
2016-01-01
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied. PMID:27099925
NASA Astrophysics Data System (ADS)
Oryan, B.; Malinverno, A.; Goldberg, D.; Fortin, W.
2017-12-01
Well GC955-H was drilled in the Green Canyon region under the Gulf of Mexico Gas Hydrates Joint Industry Project in 2009. Logging-while-drilling resistivity logs obtained at the well indicate that the saturation of gas hydrate varies between high and low values in an alternating fashion. This trend is observed from 180 to 360mbsf, depths that correspond to the Late Pleistocene. Similar gas hydrate saturation patterns have been observed in other Gulf of Mexico locations (Walker Ridge sites WR313-G and 313-H) in Late Pleistocene sediments. Our hypothesis is that these variations in saturation can be explained by sea level changes through time during glacial-interglacial cycles. A higher amount of organic matter is deposited and buried in the sediment column during glacial intervals when sea level is low. Microbes in the sediment column degrade organic matter and produce methane gas as a byproduct. Higher availability of organic matter in the sediment column can increase the concentration of methane in the sediment pore water and in turn lead to the formation of gas hydrate. We use a time-dependent numerical model of the formation of gas hydrate to test this hypothesis. The model predicts the volume and distribution of gas hydrates using mass balance equations. Model inputs include in situ porosity determined from bulk density logs; local thermal gradient estimated from the depth of the bottom of the gas hydrate stability zone in proximity to the well; and sedimentation rate determined using the biostratigraphy of an industry well in the vicinity of GC955-H. Initial results show a good match between gas hydrate saturation predicted by the model and resistivity logs obtained in the well. We anticipate that this correlation will establish whether a causal link exists between the saturation of gas hydrate in this reservoir and glacioeustatic sea level changes in the Late Pleistocene.
Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles
NASA Astrophysics Data System (ADS)
Revel, G. M.; Cavuto, A.; Pandarese, G.
2016-10-01
In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.
Fe-based bulk amorphous alloys with iron contents as high as 82 at%
NASA Astrophysics Data System (ADS)
Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu; Yao, Ke-Fu
2015-07-01
Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe81P8.5C5.5B2Si3 BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe82Mo1P6.5C5.5B2Si3 BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications.
Bradley, Joseph A; Yang, Ping; Batista, Enrique R; Boland, Kevin S; Burns, Carol J; Clark, David L; Conradson, Steven D; Kozimor, Stosh A; Martin, Richard L; Seidler, Gerald T; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Wolfsberg, Laura E
2010-10-06
Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO(4)(1-) and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO(4)(1-), TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T(d) symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO(4) may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw
2014-01-01
Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, F.B.; Setter, T.L.; McDavid, C.R.
Greenhouse-grown pigeonpea (Cajunus cajan, (L.)) and cowpea (Vigna unguiculata, (L.)) were well-watered or subjected to low water potential by withholding water to compare their modes of adaptation to water-limited conditions. Leaf CO/sub 2/ exchange rate (CER), leaf diffusive conductance to CO/sub 2/ (g/sub L/), and CO/sub 2/ concentration in the leaf intercellular air space (C/sub i/) were determined at various CO/sub 2/ concentrations and photon flux densities (PFD) of photosynthetically active radiation. In cowpea, g/sub L/ declined to less than 15% of controls and total water potential (Psi/sub w/) at midafternoon declined to -0.8 megapascal after 5 days of withholdingmore » water, whereas g/sub L/ in pigeonpea was about 40% of controls even though midafternoon Psi/sub w/ was -1.9 megapascal. After 8 days of withholding water, Psi/sub w/ at midafternoon decline to -0.9 and -2.4 megapascals in cowpea and pigeonpea, respectively. The solute component of water potential (Psi/sub s/) decreased substantially less in cowpea than pigeonpea. Photosynthetic CER at saturation photon flux density (PFD) and ambient external CO/sub 2/ concentration on day 5 of withholding decreased by 83 and 55% in cowpea and pigeonpea, respectively. When measured at external, CO/sub 2/ concentration in bulk air of 360 microliters per liter, the CER of cowpea had fully recovered to control levels 3 days after rewatering; however, at 970 microliters per liter the PFD-saturated CERS of both species were substantially lower than in controls, indicating residual impairment.« less
Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain
2017-01-01
The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...
The dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure
Plummer, Niel; Wigley, T.M.L.
1976-01-01
The dissolution of Iceland spar in CO2-saturated solutions at 25°C and 1 atm total pressure has been followed by measurement of pH as a function of time. Surface concentrations of reactant and product species have been calculated from bulk fluid data using mass transport theory and a model that accounts for homogeneous reactions in the bulk fluid. The surface concentrations are found to be close to bulk solution values. This indicates that calcite dissolution under the experimental conditions is controlled by the kinetics of surface reaction. The rate of calcite dissolution follows an empirical second order relation with respect to calcium and hydrogen ion from near the initial condition (pH 3.91) to approximately pH 5.9. Beyond pH 5.9 the rate of surface reaction is greatly reduced and higher reaction orders are observed. Calculations show that the rate of calcite dissolution in natural environments may be influenced by both transport and surface-reaction processes. In the absence of inhibition, relatively short times should be sufficient to establish equilibrium.
Density measurement in air with saturable absorbing seed gas
NASA Technical Reports Server (NTRS)
Baganoff, D.
1982-01-01
Approaches which have the potential to make density measurements in a compressible flow, where one or more laser beams are used as probes, were investigated. Saturation in sulfur hexafluoride iodine and a crossed beam technique where one beam acts as a saturating beam and the other is at low intensity and acts as a probe beam are considered. It is shown that a balance between an increase in fluorescence intensity with increasing pressure from line broadening and the normal decrease in intensity with increasing pressure from quenching can be used to develop a linear relation between fluorescence intensity and number density and lead to a new density measurement scheme. The method is used to obtain a density image of the cross section of an iodine seeded underexpanded supersonic jet of nitrogen, by illuminating the cross section by a sheet of laser light.
Volumes and bulk densities of forty asteroids from ADAM shape modeling
NASA Astrophysics Data System (ADS)
Hanuš, J.; Viikinkoski, M.; Marchis, F.; Ďurech, J.; Kaasalainen, M.; Delbo', M.; Herald, D.; Frappa, E.; Hayamizu, T.; Kerr, S.; Preston, S.; Timerson, B.; Dunham, D.; Talbot, J.
2017-05-01
Context. Disk-integrated photometric data of asteroids do not contain accurate information on shape details or size scale. Additional data such as disk-resolved images or stellar occultation measurements further constrain asteroid shapes and allow size estimates. Aims: We aim to use all the available disk-resolved images of approximately forty asteroids obtained by the Near-InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope together with the disk-integrated photometry and stellar occultation measurements to determine their volumes. We can then use the volume, in combination with the known mass, to derive the bulk density. Methods: We downloaded and processed all the asteroid disk-resolved images obtained by the Nirc2 that are available in the Keck Observatory Archive (KOA). We combined optical disk-integrated data and stellar occultation profiles with the disk-resolved images and use the All-Data Asteroid Modeling (ADAM) algorithm for the shape and size modeling. Our approach provides constraints on the expected uncertainty in the volume and size as well. Results: We present shape models and volume for 41 asteroids. For 35 of these asteroids, the knowledge of their mass estimates from the literature allowed us to derive their bulk densities. We see a clear trend of lower bulk densities for primitive objects (C-complex) and higher bulk densities for S-complex asteroids. The range of densities in the X-complex is large, suggesting various compositions. We also identified a few objects with rather peculiar bulk densities, which is likely a hint of their poor mass estimates. Asteroid masses determined from the Gaia astrometric observations should further refine most of the density estimates.
NASA Astrophysics Data System (ADS)
Hickson, D. C.; Boivin, A.; Daly, M. G.; Ghent, R. R.; Nolan, M. C.; Tait, K.; Cunje, A.; Tsai, C. A.
2017-12-01
Planetary radar is widely used to survey the Near-Earth Asteroid (NEA) population and can provide insight into target shapes, sizes, and spin states. The dual-polarization reflectivity is sensitive to surface roughness as well as material properties, specifically the real part of the complex permittivity, or dielectric constant. Knowledge of the behavior of the dielectric constant of asteroid regolith analogue material with environmental parameters can be used to inversely solve for such parameters, such as bulk density, from radar observations. In this study laboratory measurements of the complex permittivity of powdered aluminum oxide and dunite samples are performed in a low-pressure environment chamber using a coaxial transmission line from roughly 1 GHz to 8.5 GHz. The bulk densities of the samples are varied across the measurements by incrementally adding silica aerogel, a low-density material with a very low dielectric constant. This allows the alteration of the proportions of void space to solid particle grains to achieve microgravity-relevant porosities without significantly altering the dielectric properties of the powder sample. The data are then modeled using various electromagnetic mixing equations to characterize the change in dielectric constant with increasing volume fractions of void space (decreasing bulk density). Using spectral analogues as constraints on the composition of NEAs allows us to calculate the range in bulk densities in the near surface of NEAs that have been observed by planetary radar. Utilizing existing radar data from Arecibo Observatory we calculate the bulk density in the near-surface on (101955) Bennu, the target of NASA's OSIRIS-Rex mission, to be ρ = 1.27 ± 0.33 g cm-3 based on an average of the likely range in particle density and dielectric constant of the regolith material.
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
Thermal properties of degraded lowland peat-moorsh soils
NASA Astrophysics Data System (ADS)
Gnatowski, Tomasz
2016-04-01
Soil thermal properties, i.e.: specific heat capacity (c), thermal conductivity (K), volumetric heat capacity (C) govern the thermal environment and heat transport through the soil. Hence the precise knowledge and accurate predictions of these properties for peaty soils with high amount of organic matter are especially important for the proper forecasting of soil temperature and thus it may lead to a better assessment of the greenhouse gas emissions created by microbiological activity of the peatlands. The objective of the study was to develop the predictive models of the selected thermal parameters of peat-moorsh soils in terms of their potential applicability for forecasting changes of soil temperature in degraded ecosystems of the Middle Biebrza River Valley area. Evaluation of the soil thermal properties was conducted for the parameters: specific heat capacity (c), volumetric heat capacities of the dry and saturated soil (Cdry, Csat) and thermal conductivities of the dry and saturated soil (Kdry, Ksat). The thermal parameters were measured using the dual-needle probe (KD2-Pro) on soil samples collected from seven peaty soils, representing total 24 horizons. The surface layers were characterized by different degrees of advancement of soil degradation dependent on intensiveness of the cultivation practises (peaty and humic moorsh). The underlying soil layers contain peat deposits of different botanical composition (peat-moss, sedge-reed, reed and alder) and varying degrees of decomposition of the organic matter, from H1 to H7 (von Post scale). Based on the research results it has been shown that the specific heat capacity of the soils differs depending on the type of soil (type of moorsh and type of peat). The range of changes varied from 1276 J.kg-1.K-1 in the humic moorsh soil to 1944 J.kg-1.K-1 in the low decomposed sedge-moss peat. It has also been stated that in degraded peat soils with the increasing of the ash content in the soil the value of specific heat has decreased in a non-linear manner. Thermal parameters of the dry mass of the studied soils (Kdry, Cdry) were characterised by the mean value of approximately 0.11±0.028 W.m-1.K-1 and 0.781±0.220 MJ.m-3.K-1. The application of the correlation analysis showed that the most significant predictor of these properties of soils is the soil bulk density which, respectively explains: 54.6% and 67.1% of their variation. The increase of the accuracy in determining Kdry and Cdry was obtained by developing regression models, which apart from the bulk density also include the chemical properties of the peat soils. In the fully saturated soil the Ksat value ranged from 0.47 to 0.63 W.m-1.K-1, and the Csat varied from 3.200 to 3.995 MJ.m-3.K-1. The variation coefficients of these soil thermal features are at the level of approx. 5%. The obtained results allowed to conclude that the significant diversity of studied soils doesn't cause the significant differences in thermal soil parameters in fully saturated soils. The developed statistical relationships indicate that parameters Ksat and Csat were poorly correlated with saturated moisture content.
Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments
NASA Astrophysics Data System (ADS)
Hammond, J. C.; Harpold, A. A.; Kampf, S. K.
2017-12-01
Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers. These results suggest that processes affecting the duration of saturation below the root zone could compromise deep recharge, including changes in snowmelt rate and duration as well as the depth and rate of ET losses from the soil profile.
NASA Astrophysics Data System (ADS)
Lorenz, Marco; Brunotte, Joachim; Ortmeier, Berthold
2017-04-01
Regarding increasing pressures by global societal and climate change, for example, the assessment of the impact of land use and land management practices on land productivity, land degradation and the related decrease in sustainable food production and the provision of ecosystem services gains increasing interest. Regarding international research on land use and soil threats, main problems in agricultural land use on global scale are erosion by water and wind, soil organic matter loss, salinization, depletion of nutrients, chemical and physical deterioration, including e.g. soil compaction. When coming to soil sciences, basically soil functions are affected negatively by intensive food production and field traffic. Management based negative changes in soil functions and a suboptimal soil structure have multiple negative effects on physical, biological and chemical soil functions, like a poor water balance, air and water permeability, disturbed soil fauna, impeded root penetration etc. and in consequence on the achievable yields. The presentation deals with the multiple effects of different agricultural machinery and technologies and different agricultural soil tillage (e.g. no-till, conservation tillage, ploughing), on various soil properties of a stagnic Luvisol in Lower Saxony, Germany. These are e.g. bulk density, air capacity, saturated water permeability, changes in pore size distribution and water retention curve as well as crop yields. Furthermore results of a long term study of bulk density and total pore size on more then 20 farms in Lower Saxony since the year 1952 will be presented. Finally, key factors and first recommendations for sustainable agricultural soil protection will be derived from the results.
A HARDCORE model for constraining an exoplanet's core size
NASA Astrophysics Data System (ADS)
Suissa, Gabrielle; Chen, Jingjing; Kipping, David
2018-05-01
The interior structure of an exoplanet is hidden from direct view yet likely plays a crucial role in influencing the habitability of the Earth analogues. Inferences of the interior structure are impeded by a fundamental degeneracy that exists between any model comprising more than two layers and observations constraining just two bulk parameters: mass and radius. In this work, we show that although the inverse problem is indeed degenerate, there exists two boundary conditions that enables one to infer the minimum and maximum core radius fraction, CRFmin and CRFmax. These hold true even for planets with light volatile envelopes, but require the planet to be fully differentiated and that layers denser than iron are forbidden. With both bounds in hand, a marginal CRF can also be inferred by sampling in-between. After validating on the Earth, we apply our method to Kepler-36b and measure CRFmin = (0.50 ± 0.07), CRFmax = (0.78 ± 0.02), and CRFmarg = (0.64 ± 0.11), broadly consistent with the Earth's true CRF value of 0.55. We apply our method to a suite of hypothetical measurements of synthetic planets to serve as a sensitivity analysis. We find that CRFmin and CRFmax have recovered uncertainties proportional to the relative error on the planetary density, but CRFmarg saturates to between 0.03 and 0.16 once (Δρ/ρ) drops below 1-2 per cent. This implies that mass and radius alone cannot provide any better constraints on internal composition once bulk density constraints hit around a per cent, providing a clear target for observers.
Physical and Social Impacts on Hydrologic Properties of Residential Lawn Soils
NASA Astrophysics Data System (ADS)
Smith, M. L.; Band, L. E.
2009-12-01
Land development practices result in compacted soils that filter less water, increase surface runoff and decrease groundwater infiltration. Literature review of soil infiltration rates reveals that developed sites’ rates, 0.1 to 24 cm/hr, are reduced when compared to rates of undeveloped sites, 14.7 to 48.7 cm/hr. Yet, most hydrologic models neglect the impacts of residential soil compaction on infiltration and runoff. The objectives of this study included: determination of differences between soil properties of forested and residential lawn sites in Baltimore Ecosystem Study; parcel-scale location impacts on soil properties; and the impact of social and physical factors on the distribution of soil properties of residential lawns. Infiltration measures were collected in situ using a Cornell Sprinkle Infiltrometer and soil cores were collected for water retention and texture analysis. These soil properties were paired with GIS data relating to age of house construction, property value, parcel area, percent canopy cover per parcel and parcel distance from stream. The study finds that saturated infiltration rates in residential lawn soils are significantly lower than forest soils due to reduced macroporosity of residential lawn soils. Intra-parcel differences in bulk density and soil depth indicate that runoff from residential lawns is more likely from near-house and near-curb locations than the mid-front or backyards. The range of infiltration rate, bulk density and percent organic matter can be explained by readily attainable social and physical factors—age of house construction and parcel distance to stream. The impacts of land management on soil properties appear to be more prominent than percent canopy.
DENSITY-DEPENDENT FLOW IN ONE-DIMENSIONAL VARIABLY-SATURATED MEDIA
A one-dimensional finite element is developed to simulate density-dependent flow of saltwater in variably saturated media. The flow and solute equations were solved in a coupled mode (iterative), in a partially coupled mode (non-iterative), and in a completely decoupled mode. P...
Langmuir Probe Analysis of Maser-Driven Alfven Waves Using New LaB6 Cathode in LaPD
NASA Astrophysics Data System (ADS)
Clark, Mary; Dorfman, Seth; Zhu, Ziyan; Rossi, Giovanni; Carter, Troy
2015-11-01
Previous research in the Large Plasma Device shows that specific conditions on the magnetic field and cathode discharge voltage allow an Alfven wave to develop in the cathode-anode region. When the speed of bulk electrons (dependent on discharge voltage) entering the region exceeds the Alfven speed, the electrons can excite a wave. This phenomenon mimics one proposed to exist in the Earth's ionosphere. Previous experiments used a cathode coated with Barium Oxide, and this project uses a new cathode coated with Lanthanum Hexaboride (LaB6). The experiment seeks to characterize the behavior of plasmas generated with the LaB6 source, as well as understand properties of the driven wave when using the new cathode. Langmuir probes are used to find electron temperature, ion saturation current, and plasma density. These parameters determine characteristics of the wave. Preliminary analysis implies that density increases with LaB6 discharge voltage until 170 V, where it levels off. A linear increase in density is expected; the plateau implies cathode power does not ionize the plasma after 170 V. It is possible the power is carried out by the generated Alfven wave, or heats the plasma or cathode. This ``missing'' power is currently under investigation. Work funded by DOE and NSF.
Minority-carrier lifetime in InP as a function of light bias
NASA Technical Reports Server (NTRS)
Yater, Jane A.; Weinberg, I.; Jenkins, Phillip P.; Landis, Geoffrey A.
1995-01-01
Minority-carrier lifetime in InP is studied as a function of doping level and laser intensity using time-resolved photoluminescence. A continuous wave diode laser illuminates bulk InP and acts as a light bias, injecting a steady-state concentration of carriers. A 200 ps laser pulse produces a small transient signal on top of the steady-state luminescence, allowing lifetime to be measured directly as a function of incident intensity. For p-InP, lifetime increases with light bias up to a maximum value. Bulk recombination centers are presumably filled to saturation, allowing minority carriers to live longer. The saturation bias scales with dopant concentration for a particular dopant species. As light bias is increased for n-InP, minority-carrier lifetime increases slightly but then decreases, suggesting radiative recombination as a dominant decay mechanism.
A Permeable Active Amendment Concrete (PAAC) for Contaminant Remediation and Erosion Control
2012-06-01
124: 131 -143. SRNL-STI-2012-00356 70 Tessier, A., Campbell, P.G.C., and Bisson, M. 1979. Sequential extraction procedure for the speciation of...Bulk Density, Dry, (AI( C-D)]* p, pcf 134.85 Bulk Dens ity after Immersion, [BI(C-D)]* p, pcf 146.65 Bulk Density after Immersion & Boiling1 jCI (C
Holley, Robert W.; Armour, Rosemary; Baldwin, Julia H.
1978-01-01
BSC-1 cells, epithelial cells of African green monkey kidney origin, show pronounced density-dependent regulation of growth in cell culture. Growth of the cells is rapid to a density of approximately 1.5 × 105 cells/per cm2 in Dulbecco-modified Eagle's medium supplemented with 10% calf serum. Above this “saturation density,” growth is much slower. It has been found that the glucose concentration in the culture medium is important in determining the “saturation density.” If the glucose concentration is increased 4-fold, the “saturation density” increases approximately 50%. Reduction of the “saturation density” of BSC-1 cells is also possible by decreasing the concentrations of low molecular weight nutrients in the culture medium. In medium supplemented with 0.1% calf serum, decreasing the concentrations of all of the organic constituents of the medium, from the high levels present in Dulbecco-modified Eagle's medium to concentrations near physiological levels, decreases the “saturation density” by approximately half. The decreased “saturation density” is not the result of lowering the concentration of any single nutrient but rather results from reduction of the concentrations of several nutrients. When the growth of BSC-1 cells is limited by low concentrations of all of the nutrients, some stimulation of growth results from increasing, separately, the concentrations of individual groups of nutrients, but the best growth stimulation is obtained by increasing the concentrations of all of the nutrients. The “wound healing” phenomenon, one manifestation of density-dependent regulation of growth in cell culture, is abolished by lowering the concentration of glutamine in the medium. Density-dependent regulation of growth of BSC-1 cells in cell culture thus appears to be a complex phenomenon that involves an interaction of nutrient concentrations with other regulatory factors. PMID:272650
Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G
2012-06-01
This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.
Properties of medium-density fiberboard related to hardwood specific gravity
George E. Woodson
1976-01-01
Boards of acceptable quality were made from barky material, pressure-refined from 14 species of southern hardwoods. Static bending and tensile properties (parallel to surface) of specimens were negatively correlated to stem specific gravity (wood plus bark), chip bulk density, and fiber bulk density. Bending and tensile properties increased with increasing...
Bulk densities of materials from selected pine-site hardwoods
Clyde Vidrine; George E. Woodson
1982-01-01
Bulk densities of hardwood materials from low and high density species were determined for green and air-dry conditions. Materials consisted of whole-tree chips, bark-free chips, bark as collected from three types of debarkers (ring, rosser head, and drum debarkers) sawdust, planer shavings, flakes, logging residues, baled branchwood, steel-strapped firewood, and...
Soil water retention of a bare soil with changing bulk densities
USDA-ARS?s Scientific Manuscript database
Tillage changes the bulk density of the soil, lowering the density initially after which it increases as the soil settles. Implications of this for soil water content and soil water potential are obvious, but limited efforts have been made to monitor these changes continuously. We present in-situ me...
NASA Astrophysics Data System (ADS)
Ebel, B. A.; Koch, J. C.; Walvoord, M. A.
2017-12-01
Boreal forest regions in interior Alaska, USA are subject to recurring wildfire disturbance and climate shifts. These "press" and "pulse" disturbances impact water, solute, carbon, and energy fluxes, with feedbacks and consequences that are not adequately characterized. The NASA Arctic Boreal Vulnerability Experiment (ABoVE) seeks to understand susceptibility to disturbance in boreal regions. Subsurface physical and hydraulic properties are among the largest uncertainties in cryohydrogeologic modeling aiming to predict impacts of disturbance in Arctic and boreal regions. We address this research gap by characterizing physical and hydraulic properties of soil across a gradient of sites covering disparate soil textures and wildfire disturbance in interior Alaska. Samples were collected in the field within the domain of the NASA ABoVE project and analyzed in the laboratory. Physical properties measured include soil organic matter fraction, soil-particle size distribution, dry bulk density, and saturated soil-water content. Hydraulic properties measured include soil-water retention and field-saturated hydraulic conductivity using tension infiltrometers (-1 cm applied pressure head). The physical and hydraulic properties provide the foundation for site conceptual model development, cryohydrogeologic model parameterization, and integration with geophysical data. This foundation contributes to the NASA ABoVE objectives of understanding the underlying physical processes that control vulnerability in Arctic and Boreal landscapes.
NASA Astrophysics Data System (ADS)
Kim, Jae Gon; Lee, Gyoo Ho; Lee, Jin-Soo; Chon, Chul-Min; Kim, Tack Hyun; Ha, Kyoochul
2006-02-01
We examined the infiltration pattern of water in a regolith-bedrock profile consisting of two overburdens (OB1 and OB2), a buried rice paddy soil (PS), two texturally distinctive weathered materials (WM1 and WM2) and a fractured sedimentary rock (BR), using a Brilliant Blue FCF dye tracer. A black-coloured coating in conducting fractures in WM1, WM2 and BR was analysed by X-ray diffraction and scanning electron microscopy. The dye tracer penetrated to greater than 2 m depth in the profile. The macropore flow and saturated interflow were the major infiltration patterns in the profile. Macropore flow and saturated interflow were observed along fractures in WM1, WM2 and BR and at the dipping interfaces of PS-WM1, PS-WM2 and PS-BR respectively. Heterogeneous matrix flow occurred in upper overburden (OB1) and PS. Compared with OB1, the coarser textured OB2 acted as a physical barrier for vertical flow of water. The PS with low bulk density and many fine roots was another major conducting route of water in the profile. Manganese oxide and iron oxide were positively identified in the black coating material and had low crystallinity and high surface area, indicating their high reactivity with conducting contaminants.
NASA Astrophysics Data System (ADS)
Dergunov, Alexander D.; Shabrova, Elena V.; Dobretsov, Gennady E.
2010-03-01
To investigate the influence of lipid unsaturation and neutral lipid on the maturation of high density lipoproteins, the discoidal complexes of apoA-I, phosphatidylcholine and cholesteryl ester (CE) were prepared. Saturated dipalmitoylphosphatidylcholine (DPPC) and unsaturated palmitoyllinoleoylphosphatidylcholine (PLPC), palmitoyloleoylphosphatidylcholine (POPC), and fluorescent probe cholesteryl 1-pyrenedecanoate (CPD) that forms in a diffusion- and concentration-dependent manner short-lived dimer of unexcited and excited molecules (excimer) were used. The apoA-I/DPPC/CPD complexes were heterogeneous by size, composition and probe location. CPD molecules incorporated more efficiently into larger complexes and accumulated in a central part of the discs. The apoA-I/POPC(PLPC)/CPD were also heterogeneous, however, probe molecules distributed preferentially into smaller complexes and accumulated at disc periphery. The kinetics of CPD transfer by recombinant cholesteryl ester transfer protein (CETP) to human plasma LDL is well described by two-exponential decay, the fast component with a shorter transfer time being more populated in PLPC compared to DPPC complexes. The presence of CE molecules in discoidal HDL results in particle heterogeneity. ApoA-I influences the CETP activity modulating the properties of apolipoprotein-phospholipid interface. This may include CE molecules accumulation in the boundary lipid in unsaturated phosphatidylcholine and cluster formation in the bulk bilayer in saturated phosphatidylcholine.
Photovoltaic and thermophotovoltaic devices with quantum barriers
Wernsman, Bernard R [Jefferson Hills, PA
2007-04-10
A photovoltaic or thermophotovoltaic device includes a diode formed by p-type material and n-type material joined at a p-n junction and including a depletion region adjacent to said p-n junction, and a quantum barrier disposed near or in the depletion region of the p-n junction so as to decrease device reverse saturation current density while maintaining device short circuit current density. In one embodiment, the quantum barrier is disposed on the n-type material side of the p-n junction and decreases the reverse saturation current density due to electrons while in another, the barrier is disposed on the p-type material side of the p-n junction and decreases the reverse saturation current density due to holes. In another embodiment, both types of quantum barriers are used.
Comparison of Boron diffused emitters from BN, BSoD and H3BO3 dopants
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2016-12-01
In this work, we are comparing different limited boron dopant sources for the emitter formation in n-type c-Si solar cells. High purity boric acid solution, commercially available boron spin on dopant and boron nitride solid source are used for comparison of emitter doping profiles for the same time and temperature conditions of diffusion. The characterizations done for the similar sheet resistance values for all the dopant sources show different surface morphologies and different device parameters. The measured emitter saturation current densities (Joe) are more than 20 fA cm-2 for all the dopant sources. The bulk carrier lifetimes measured for different diffusion conditions and different solar cell parameters for the similar sheet resistance values show the best result for boric acid diffusion and the least for BN solid source. So, different dopant sources result in different emitter and cell performances.
Saturated ferromagnetism from statistical transmutation in two dimensions.
Saiga, Yasuhiro; Oshikawa, Masaki
2006-01-27
The total spin of the ground state is calculated in the U-->infinity Hubbard model with uniform magnetic flux perpendicular to a square lattice, in the absence of Zeeman coupling. It is found that the saturated ferromagnetism emerges in a rather wide region in the space of the flux density phi and the electron density ne. In particular, the saturated ferromagnetism at phi=ne is induced by the formation of a spin-1/2 boson, which is a composite of an electron and the unit flux quantum.
Bulk hydrodynamic stability and turbulent saturation in compressing hot spots
NASA Astrophysics Data System (ADS)
Davidovits, Seth; Fisch, Nathaniel J.
2018-04-01
For hot spots compressed at constant velocity, we give a hydrodynamic stability criterion that describes the expected energy behavior of non-radial hydrodynamic motion for different classes of trajectories (in ρR — T space). For a given compression velocity, this criterion depends on ρR, T, and d T /d (ρR ) (the trajectory slope) and applies point-wise so that the expected behavior can be determined instantaneously along the trajectory. Among the classes of trajectories are those where the hydromotion is guaranteed to decrease and those where the hydromotion is bounded by a saturated value. We calculate this saturated value and find the compression velocities for which hydromotion may be a substantial fraction of hot-spot energy at burn time. The Lindl (Phys. Plasmas 2, 3933 (1995)] "attractor" trajectory is shown to experience non-radial hydrodynamic energy that grows towards this saturated state. Comparing the saturation value with the available detailed 3D simulation results, we find that the fluctuating velocities in these simulations reach substantial fractions of the saturated value.
Fu, Tonggang; Chen, Hongsong; Zhang, Wei; Nie, Yunpeng; Wang, Kelin
2015-03-01
Saturated hydraulic conductivity (Ks) is one of the most important soil hydraulic parameters influencing hydrological processes. This paper aims to investigate the vertical distribution of Ks and to analyze its influencing factors in a small karst catchment in Southwest China. Ks was measured in 23 soil profiles for six soil horizons using a constant head method. These profiles were chosen in different topographical locations (upslope, downslope, and depression) and different land-use types (forestland, shrubland, shrub-grassland, and farmland). The influencing factors of Ks, including rock fragment content (RC), bulk density (BD), capillary porosity (CP), non-capillary porosity (NCP), and soil organic carbon (SOC), were analyzed by partial correlation analysis. The mean Ks value was higher in the entire profile in the upslope and downslope, but lower value, acting as a water-resisting layer, was found in the 10-20 cm soil depth in the depression. Higher mean Ks values were found in the soil profiles in the forestland, shrubland, and shrub-grassland, but lower in the farmland. These results indicated that saturation-excess runoff could occur primarily in the hillslopes but infiltration-excess runoff in the depression. Compared with other land-use types, surface runoff is more likely to occur in the farmlands. RC had higher correlation coefficients with Ks in all categories concerned except in the forestland and farmland with little or no rock fragments, indicating that RC was the dominant influencing factor of Ks. These results suggested that the vertical distributions of Ks and RC should be considered for hydrological modeling in karst areas.
NASA Astrophysics Data System (ADS)
Xiao, Liang; Mao, Zhi-qiang; Xie, Xiu-hong
2017-04-01
It is crucial to understand the behavior of the T2 distribution in the presence of hydrocarbon to properly interpret pore size distribution from NMR logging. The NMR T2 spectrum is associated with pore throat radius distribution under fully brine saturated. However, when the pore space occupied by hydrocarbon, the shape of NMR spectrum is changed due to the bulk relaxation of hydrocarbon. In this study, to understand the effect of hydrocarbon to NMR logging, the kerosene and transformer oil are used to simulate borehole crude oils with different viscosity. 20 core samples, which were separately drilled from conventional, medium porosity and permeability and tight sands are saturated with four conditions of irreducible water saturation, fully saturated with brine, hydrocarbon-bearing condition and residual oil saturation, and the corresponding NMR experiments are applied to acquire NMR measurements. The residual oil saturation is used to simulate field NMR logging due to the shallow investigation depth of NMR logging. The NMR spectra with these conditions are compared, the results illustrate that for core samples drilled from tight sandstone reservoirs, the shape of NMR spectra have much change once they pore space occupied by hydrocarbon. The T2 distributions are wide, and they are bimodal due to the effect of bulk relaxation of hydrocarbon, even though the NMR spectra are unimodal under fully brine saturated. The location of the first peaks are similar with those of the irreducible water, and the second peaks are close to the bulk relaxation of viscosity oils. While for core samples drilled from conventional formations, the shape of T2 spectra have little changes. The T2 distributions overlap with each other under these three conditions of fully brine saturated, hydrocarbon-bearing and residual oil. Hence, in tight sandstone reservoirs, the shape of NMR logging should be corrected. In this study, based on the lab experiments, seven T2 times of 1ms, 3ms, 10ms, 33ms, 100ms, 300ms and 1000ms are first used to separate the T2 distributions of the residual oil saturation as 8 parts, and 8 pore components percentage compositions are calculated, second, an optimal T2 cutoff is determined to cut the T2 spectra of fully brine saturated conditions into two parts, the left parts (with short T2 time) represent to the irreducible water, and they do not need to be corrected, only the shape for the right parts of the T2 spectra needed to be corrected. Third the relationships among the amplitudes corresponding to the T2 times large than the optimal T2 cut off and 8 pore components percentage compositions are established, and they are used to predict corrected T2 amplitudes from NMR logging under residual oil saturation. Finally, the amplitudes corresponding to the left parts and the estimated amplitudes are spliced as the corrected NMR amplitudes, and a corrected T2 spectrum can be obtained. The reliability of this method is verified by comparing the corrected results and the experimental measurements. This method is extended to field application, fully water saturated T2 distributions are extracted from field NMR logging, and they are used to precisely evaluate hydrocarbon-bearing formations pore structure.
Mathias, Kevin C; Ng, Shu Wen; Popkin, Barry
2015-03-01
Monitoring changes in the nutritional content of food/beverage products and shifts in consumer purchasing behaviors is needed to measure the effectiveness of efforts by both food manufacturers and policy makers to improve dietary quality in the United States. To examine changes in the nutritional content (eg, energy, saturated fat, and sugar density) of ready-to-eat (RTE) grain-based dessert (GBD) products manufactured and purchased between 2005 and 2012. Nutrition Facts panel information from commercial databases was linked to RTE GBD products purchased by households (N=134,128) in the Nielsen Homescan longitudinal dataset 2005-2012. Linear regression models were used to examine changes in the energy, saturated fat, and sugar density of RTE GBD products manufactured in each year between 2005 and 2012. Random effects models controlling for demographics, household composition/size, and geographic location were used to examine changes in household purchases of RTE GBD products (in grams) and the average energy, saturated fat, and sugar density of RTE GBD products purchased. The saturated fat density (grams/100 g) of RTE GBD products increased significantly from 6.5±0.2 in 2005 to 7.3±0.2 and 7.9±0.2 for pre-existing and newly introduced products in 2012, respectively. Between 2005 and 2012, the energy density (kilocalories/100 g) of RTE GBD products purchased decreased significantly from 433±0.2 to 422±0.2, the saturated fat density (grams/100 g) of products purchased increased significantly from 6.3±0.01 to 6.6±0.01, the sugar density (grams/100 g) of products purchased decreased significantly from 32.4±0.03 to 31.3±0.02, and household purchases of RTE GBD products (in grams) decreased by 24.1%±0.4%. These results highlight an opportunity for both food manufacturers and public health officials to develop new strategies to shift consumer purchases toward products with lower energy, saturated fat, and sugar densities in addition to decreasing overall purchases of RTE GBDs. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Mathias, Kevin C.; Wen, Shu; Popkin, Barry; Kenan, W.R.
2014-01-01
Background Monitoring changes in the nutritional content of food/beverage products and shifts in consumer purchasing behaviors is needed to measure the effectiveness of efforts by both food manufacturers and policy makers to improve dietary quality in the United States. Objective Examine changes in the nutritional content (e.g., energy, saturated fat, and sugar density) of Ready-To-Eat (RTE) Grain-Based Dessert (GBD) products manufactured and purchased between 2005 and 2012. Design Nutrition facts panel information from commercial databases was linked to RTE GBD products purchased by households (n=134,128) in the Nielsen Homescan longitudinal dataset 2005–2012. Statistical Analysis Linear regression models were utilized to examine changes in the energy, saturated fat, and sugar density of RTE GBD products manufactured in each year between 2005 and 2012. Random effects models controlling for demographics, household composition/size, and geographic location were utilized to examine changes in household purchases of RTE GBD products (grams) and the average energy, saturated fat, and sugar density of RTE GBD products purchased. Results The saturated fat density (g/100 g) of RTE GBD products increased significantly from 6.5 ± 0.2 in 2005 to 7.3 ± 0.2 and 7.9 ± 0.2 for pre-existing and newly introduced products in 2012, respectively. Between 2005 and 2012, the energy density (kcal/100 g) of RTE GBD products purchased decreased significantly from 433 ± 0.2 to 422 ± 0.2, the saturated fat density (g/100 g) of products purchased increased significantly from 6.3 ± 0.01 to 6.6 ± 0.01, the sugar density (g/100 g) of products purchased decreased significantly from 32.4 ± 0.03 to 31.3 ± 0.02, and household purchases of RTE GBD products (grams) decreased by 24.1 ± 0.4%. Conclusions These results highlight an opportunity for both food manufacturers and public health officials to develop new strategies to shift consumer purchases towards products with lower energy, saturated fat, and sugar densities in addition to decreasing overall purchases of RTE GBDs. PMID:25541065
Revised Thickness of the Lunar Crust from GRAIL Data: Implications for Lunar Bulk Composition
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey; Wieczorek, Mark A.; Neumann, Gregory A.; Nimmo, Francis; Kiefer, Walter S.; Melosh, H. Jay; Phillips, Roger J.; Solomon, Sean C.; Andrews-Hanna, Jeffrey C.; Asmar, Sami W.;
2013-01-01
High-resolution gravity data from GRAIL have yielded new estimates of the bulk density and thickness of the lunar crust. The bulk density of the highlands crust is 2550 kg m-3. From a comparison with crustal composition measured remotely, this density implies a mean porosity of 12%. With this bulk density and constraints from the Apollo seismic experiment, the average global crustal thickness is found to lie between 34 and 43 km, a value 10 to 20 km less than several previous estimates. Crustal thickness is a central parameter in estimating bulk lunar composition. Estimates of the concentrations of refractory elements in the Moon from heat flow, remote sensing and sample data, and geophysical data fall into two categories: those with refractory element abundances enriched by 50% or more relative to Earth, and those with abundances the same as Earth. Settling this issue has implications for processes operating during lunar formation. The crustal thickness resulting from analysis of GRAIL data is less than several previous estimates. We show here that a refractory-enriched Moon is not required
Bubble formation in water with addition of a hydrophobic solute.
Okamoto, Ryuichi; Onuki, Akira
2015-07-01
We show that phase separation can occur in a one-component liquid outside its coexistence curve (CX) with addition of a small amount of a solute. The solute concentration at the transition decreases with increasing the difference of the solvation chemical potential between liquid and gas. As a typical bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure p cx. This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and surface bubbles with a small volume fraction ϕ. It becomes a function of the bubble radius R under the Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of equilibrium.
Corrosion behavior of HPT-deformed TiNi alloys in cell culture medium
NASA Astrophysics Data System (ADS)
Shri, D. N. Awang; Tsuchiya, K.; Yamamoto, A.
2017-09-01
In recent years there are growing interest in fabrication of bulk nanostructured metals and alloys by using severe plastic deformation (SPD) techniques as new alternative in producing bulk nanocrystalline materials. These techniques allows for processing of bulk, fully dense workpiece with ultrafine grains. Metal undergoes SPD processing in certain techniques such as high pressure torsion (HPT), equal-channel angular pressing (ECAP) or multi-directional forging (MDF) are subjected to extensive hydrostatic pressure that may be used to impart a very high strain to the bulk solid without the introduction of any significant change in overall dimension of the sample. The change in the structure (small grain size and high-volume fraction of grain boundaries) of the material may result in the corrosion behavior different from that of the coarse-grained material. Electrochemical measurements were done to understand the corrosion behavior of TiNi alloys before and after HPT deformation. The experiment was carried out using standard three electrode setup (a sample as working electrode; a platinum wire as a counter electrode and a saturated calomel electrode in saturated KCl as a reference electrode) with the surface area of 26.42 mm2 exposed to the EMEM+10% FBS cell culture medium. The measurements were performed in an incubator with controlled environment at 37 °C and 5% CO2, simulating the cell culture condition. The potential of the specimen was monitored over 1 hour, and the stabilized potential was used as the open-circuit potential (EOCP). Potentiodynamic curves were scanned in the potential range from -0.5 V to 1.5 V relative to the EOCP, at a rate of 0.5 mV/s. The result of OCP-time measurement done in the cell culture medium shows that the OCP of HPT-deformed samples shifts towards to the more positive rather than that of BHPT samples. The OCP of deformed samples were ennobled to more than +70 mV for Ti-50mol%. The shift of OCP towards the nobler direction indicates the passive nature of native oxides formed on the surface of the samples. The polarization curve, on the other hand, indicates that the HPT deformation was found to shift the passive current to nobler region. The passive region current density is found to be lower than that of the BHPT, suggesting the passive film formed on the surface of HPT-deformed samples is more protective than that of the BHPT sample. This study has shown that nanocrystallization and amorphization induced by severe plastic deformation change the corrosion behavior of TiNi alloys.
Structural rejuvenation in bulk metallic glasses
Tong, Yang; Iwashita, T.; Dmowski, Wojciech; ...
2015-01-05
Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.
Structural rejuvenation in bulk metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Yang; Iwashita, T.; Dmowski, Wojciech
Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.
Healey, D.L.
1971-01-01
Gravity observations were made on the ground surface and at a depth of 5,854 feet in drill hole UA-1. Two attempts to measure the free-air gradient utilizing the headframe over the drill hole were unsuccessful owing to mechanical vibrations in the structure. Because of the uncertainty in the measured free-air gradients these values were discarded and the average value (0.09406 mgal/ft) was used in the calculations. The calculated in situ bulk density is 2.36 g/cc. The weighted average bulk density determined from 47 core samples taken in the adjacent UAE-1 drill hole is also 2.36 g/cc. An analysis of selected portions of density logs provides an in situ bulk density of 2.37 g/cc.
Ravazzoli, C L; Santos, J E; Carcione, J M
2003-04-01
We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.
NASA Astrophysics Data System (ADS)
Dai, S.; Seol, Y.
2015-12-01
In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.
75 FR 39477 - New Standards for Domestic Mailing Services
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-09
... 2009 and FY 2010 in order to be eligible for participation. 2011 Saturation and High Density Incentive... letters and flats mailed at saturation and high density prices. This program would encourage mailers to increase the volume within two of our highest margin products and would be open to all mailers meeting the...
Density measurement in air with a saturable absorbing seed gas
NASA Technical Reports Server (NTRS)
Baganoff, D.
1981-01-01
Resonantly enhanced scattering from the iodine molecule is studied experimentally for the purpose of developing a scheme for the measurement of density in a gas dynamic flow. A study of the spectrum of iodine, the collection of saturation data in iodine, and the development of a mathematical model for correlating saturation effects were pursued for a mixture of 0.3 torr iodine in nitrogen and for mixture pressures up to one atmosphere. For the desired pressure range, saturation effects in iodine were found to be too small to be useful in allowing density measurements to be made. The effects of quenching can be reduced by detuning the exciting laser wavelength from the absorption line center of the iodine line used (resonant Raman scattering). The signal was found to be nearly independent of pressure, for pressures up to one atmosphere, when the excitation beam was detuned 6 GHz from line center for an isolated line in iodine. The signal amplitude was found to be nearly equal to the amplitude for fluorescence at atmospheric pressure, which indicates a density measurement scheme is possible.
Akatov, V S; Lavrovskaia, V P
1991-01-01
Chinese hamster fibroblasts (CHF) and NIH 3T3 cells were cultured on a glass substrate at different distances from the porous membrane separating the cells from the perfusing medium. It is shown that with perfusion of medium above the membrane there is no movement of the medium near the cells. In both the types of culture, the cells grow in multilayers, however the multilayer character of growth in CHF is more pronounced than in NIH 3T3 cells. The saturation density of the cultures depends on the cell-membrane separation, and at separations of no more than 0.2 mm exceeds the saturation density in the monolayer by 8-10 fold. The dependences of the saturation density on separation are different for CHE and NIH 3T3 cells, indicating qualitative differences in the inhibition of cell growth in monolayers between these cultures. The results obtained indicate that the inhibition of cell growth in monolayer is due to mass exchange limitations, rather than to intercellular contact interactions.
The potential of biochar in improving drainage, aeration and maize yields in heavy clay soils
Mulder, Jan; Hale, Sarah Elizabeth; Nurida, Neneng Laela; Cornelissen, Gerard
2018-01-01
Heavy clay soils are globally widespread but their poor drainage and poor aeration limit their use for agriculture. This study was designed to test the effect of the amendment of biochar (BC) from woody shrubs on drainage/saturated hydraulic conductivity (Ksat), soil aeration/air capacity, available water capacity and biomass and grain yields of maize. In a field experiment, BC from Gliricidia sepium was applied in planting basins or rip lines at 2.5% and 5% w/w in addition to a control without BC. The maize biomass and grain yields were higher in BC treated plots compared to control (p<0.05) during the 2012 and 2013 seasons. There was no significant difference in the yields between 2.5% and 5% BC treatments (e.g. grain yield were 6.6 and 8.1 t ha-1 in 2012 and 9.3 and 10.3 t ha-1 in 2013 compared to control with 4.2 and 6.7 t ha-1 in 2012 and 2013, respectively). Soil from the same field site was also mixed with a similar woody shrub BC from Eupatorium adenophorum in the laboratory at rates of 2.5%, 5% and 10% BC w/w and a control without BC. The mixtures were then incubated and subjected to two wet-dry cycles for two weeks. Core samples were taken from the incubated soil and tested for bulk density, Ksat and pF measurements. Total porosity and moisture at field capacity and wilting point were 72.3%, 43.7% and 23.7%, respectively, and not affected by BC amendment (p>0.05). In contrast, bulk density decreased linearly by 0.011±0.002 g cm-3 per percent BC added (p<0.001). Ksat and air capacity of the soil were 288 cm day-1 and 30.9%, respectively falling within the generally accepted optimal range. Both Ksat and air capacity followed a significant quadratic relation (p<0.05) upon BC addition, decreasing at low BC doses, reaching a minimum at 3–5% BC and increasing at higher doses. Results allowed a partial attribution of the yield increases to changes in soil physical properties such as changes in bulk density and not clearly to Ksat and air capacity. PMID:29750796
The potential of biochar in improving drainage, aeration and maize yields in heavy clay soils.
Obia, Alfred; Mulder, Jan; Hale, Sarah Elizabeth; Nurida, Neneng Laela; Cornelissen, Gerard
2018-01-01
Heavy clay soils are globally widespread but their poor drainage and poor aeration limit their use for agriculture. This study was designed to test the effect of the amendment of biochar (BC) from woody shrubs on drainage/saturated hydraulic conductivity (Ksat), soil aeration/air capacity, available water capacity and biomass and grain yields of maize. In a field experiment, BC from Gliricidia sepium was applied in planting basins or rip lines at 2.5% and 5% w/w in addition to a control without BC. The maize biomass and grain yields were higher in BC treated plots compared to control (p<0.05) during the 2012 and 2013 seasons. There was no significant difference in the yields between 2.5% and 5% BC treatments (e.g. grain yield were 6.6 and 8.1 t ha-1 in 2012 and 9.3 and 10.3 t ha-1 in 2013 compared to control with 4.2 and 6.7 t ha-1 in 2012 and 2013, respectively). Soil from the same field site was also mixed with a similar woody shrub BC from Eupatorium adenophorum in the laboratory at rates of 2.5%, 5% and 10% BC w/w and a control without BC. The mixtures were then incubated and subjected to two wet-dry cycles for two weeks. Core samples were taken from the incubated soil and tested for bulk density, Ksat and pF measurements. Total porosity and moisture at field capacity and wilting point were 72.3%, 43.7% and 23.7%, respectively, and not affected by BC amendment (p>0.05). In contrast, bulk density decreased linearly by 0.011±0.002 g cm-3 per percent BC added (p<0.001). Ksat and air capacity of the soil were 288 cm day-1 and 30.9%, respectively falling within the generally accepted optimal range. Both Ksat and air capacity followed a significant quadratic relation (p<0.05) upon BC addition, decreasing at low BC doses, reaching a minimum at 3-5% BC and increasing at higher doses. Results allowed a partial attribution of the yield increases to changes in soil physical properties such as changes in bulk density and not clearly to Ksat and air capacity.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... Texts for Use in the International Conference on Harmonisation Regions; Annex 13 on Bulk Density and... guidance entitled ``Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the ICH Regions... evaluation of the Bulk Density and Tapped Density of Powders General Chapter harmonized text from each of the...
Wöstheinrich, K; Schmidt, P C
2000-06-01
The instrumentation and validation of a laboratory-scale fluidized bed apparatus is described. For continuous control of the process, the apparatus is instrumented with sensors for temperature, relative humidity (RH), and air velocity. Conditions of inlet air, fluidizing air, product, and exhaust air were determined. The temperature sensors were calibrated at temperatures of 0.0 degree C and 99.9 degrees C. The calibration of the humidity sensors covered the range from 12% RH to 98% RH using saturated electrolyte solutions. The calibration of the anemometer took place in a wind tunnel at defined air velocities. The calibrations led to satisfying results concerning sensitivity and precision. To evaluate the reproducibility of the process, 15 granules were prepared under identical conditions. The influence of the type of pump used for delivering the granulating liquid was investigated. Particle size distribution, bulk density, and tapped density were determined. Granules were tableted on a rotary press at four different compression force levels, followed by determination of tablet properties such as weight, crushing strength, and disintegration time. The apparatus was found to produce granules with good reproducibility concerning the granule and tablet properties.
Use of flyash and biogas slurry for improving wheat yield and physical properties of soil.
Garg, R N; Pathak, H; Das, D K; Tomar, R K
2005-08-01
This study explores the potential use of by-products of energy production, i.e., (i) flyash from coal-powered electricity generation and (ii) biogas slurry from agricultural waste treatment, as nutrient sources in agriculture. These residues are available in large amounts and their disposal is a major concern for the environment. As both residues contain considerable amounts of plant nutrients, their use as soil amendment may offer a promising win-win opportunity to improve crop production and, at the same time, preventing adverse environmental impacts of waste disposal. Effect of flyash and biogas slurry on soil physical properties and growth and yield of wheat (Triticum aestivum) was studied in a field experiment. Leaf area index, root length density and grain yield of wheat were higher in plots amended with flyash or biogas slurry compared to unamended plots. Both types of amendments reduced bulk density, and increased saturated hydraulic conductivity and moisture retention capacity of soil. The study showed that flyash and biogas slurry should be used as soil amendments for obtaining short-term and long-term benefits in terms of production increments and soil amelioration.
Thermal properties of light-weight concrete with waste polypropylene aggregate
NASA Astrophysics Data System (ADS)
Záleská, Martina; Pokorný, Jaroslav; Pavlíková, Milena; Pavlík, Zbyšek
2017-07-01
Thermal properties of a sustainable light-weight concrete incorporating high volume of waste polypropylene as partial substitution of natural aggregate were studied in the paper. Glass fiber reinforced polypropylene (GFPP), a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40, and 50 mass%. In order to quantify the effect of GFPP use on concrete properties, a reference concrete mix without plastic waste was studied as well. For the applied GFPP, bulk density, matrix density, and particle size distribution were measured. Specific attention was paid to thermal transport and storage properties of GFPP that were examined in dependence on compaction time. For the developed light-weight concrete, thermal properties were accessed using transient impulse technique, whereas the measurement was done in dependence on moisture content, from the dry state to fully water saturated state. Additionally, the investigated thermal properties were plotted as function of porosity. The tested light-weight concrete was found to be prospective construction material possessing improved thermal insulation function. Moreover, the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view considering plastics low biodegradability and safe disposal.
3-D Distribution of Retained Colloids in Unsaturated Porous Media
NASA Astrophysics Data System (ADS)
Morales, V. L.; Perez-Reche, F. J.; Holzner, M.; Kinzelbach, W. K.; Otten, W.
2013-12-01
It is well accepted that colloid transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to colloid immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Such factors depend on interfacial conditions provided by the water saturation of the porous medium. Yet, the current understanding of the importance of colloid retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which colloidal silver particles were transported for conditions of varying water content. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the four main locations where colloids can become retained (interfaces with the liquid-solid, gas-liquid and gas-solid, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, iii) morphological characteristics of the deposited colloidal aggregates, and iv) channel widths of 3-dimensional pore-water network representations. The results presented provide, for the first time, a direct statistical evaluation on the significance of colloid retention by attachment to the liquid-solid, gas-liquid, gas-solid interfaces, and by straining in the bulk liquid. Additionally, an effective-pore structure characteristic is proposed to improve predictions of mass removal by straining under various water saturations. A) Unsaturated conditions. B) Saturated conditions. Left: Tomograph slice illustrating with false coloring Regions Of Interest corresponding to retention locations at the gas-liquid (purple), gas-solid (white) and solid-liquid interface (blue), and the bulk liquid (teal). Right: Deposition profiles of silver colloids (Ag) per retention location (T: total, GLI: gas-liquid interface, GSI: gas-solid interface, SLI: solid-liquid interface, L: bulk liquid) (Top). Depth profiles of the volume occupied by each retention location (Middle). Normalized deposition profiles of silver volume retained by its corresponding retention-location volume (Bottom).
A new numerical benchmark for variably saturated variable-density flow and transport in porous media
NASA Astrophysics Data System (ADS)
Guevara, Carlos; Graf, Thomas
2016-04-01
In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.
NASA Astrophysics Data System (ADS)
Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas
2015-04-01
The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine and coarse textured soils and smaller in medium textured soils. Completely different predictors were important for appraising K10, where the soil macropore system is air-filled and therefore inactive. Here, the average annual temperature and precipitation where most important. The reasons for this are unclear and require further research. The clay content and the organic matter content were also important predictors of K10. We suggest that a larger and more complete database may help to improve the prediction of K10, whereas it may be more fruitful to estimate Ks statistics of sampling sites instead of individual values since the Ks is highly variable over very short distances.
Brewster, Robert; Safran, Samuel A
2010-03-17
A simple model of the line activity of a hybrid lipid (e.g., POPC) with one fully saturated chain and one partially unsaturated chain demonstrates that these lipids preferentially pack at curved interfaces between phase-separated saturated and unsaturated domains. We predict that the domain sizes typically range from tens to hundreds of nm, depending on molecular interactions and parameters such as molecular volume and area per headgroup in the bulk fluid phase. The role of cholesterol is taken into account by an effective change in the headgroup areas and the domain sizes are predicted to increase with cholesterol concentration. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Repeated compost application effects on phosphorus runoff in the Virginia Piedmont.
Spargo, John T; Evanylo, Gregory K; Alley, Marcus M
2006-01-01
Increasing amounts of animal and municipal wastes are being composted before land application to improve handling and spreading characteristics, and to reduce odor and disease incidence. Repeated applications of composted biosolids and manure to cropland may increase the risk for P enrichment of agricultural runoff. We conducted field research in 2003 and 2004 on a Fauquier silty clay loam (Ultic Hapludalfs) to compare the effects of annual (since 1999) applications of composted and uncomposted organic residuals on P runoff characteristics. Biosolids compost (BSC), poultry litter-yard waste compost (PLC), and uncomposted poultry litter (PL) were applied based on estimated plant-available N. A commercial fertilizer treatment (CF) and an unamended control treatment (CTL) were also included. Corn (Zea mays L.) and a cereal rye (Secale cereal L.) cover crop were planted each year. We applied simulated rainfall in fall 2004 and analyzed runoff for dissolved reactive P (DRP), total dissolved P (TDP), total P (TP), total organic C (TOC), and total suspended solids (TSS). End of season soil samples were analyzed for Mehlich-3 P (M3P), EPA 3050 P (3050P), water soluble P (WSP), degree of P saturation (DPS), soil C, and bulk density. Compost treatments significantly increased soil C, decreased bulk density, and increased M3P, 3050P, WSP, and DPS. The concentration of DRP, TDP, and TP in runoff was highest in compost treatments, but the mass of DRP and TDP was not different among treatments because infiltration was higher and runoff lower in compost-amended soil. Improved soil physical properties associated with poultry litter-yard waste compost application decreased loss of TP and TSS.
A new perspective on the generation of the 2016 M6.7 Kaohsiung earthquake, southwestern Taiwan
NASA Astrophysics Data System (ADS)
Wang, Zhi
2017-04-01
In order to investigate the likely generation mechanism of the 2016 M6.7 Kaohsiung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and σgodels. In this way, multi-geophysical parameter imaging revealed that the 2016 Kaohsiung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-σ body that has high ɛ and somewhat high ζ anomalies above the hypocenter under the Coastal Plain represents fluids contained in the young fold-and-thrust belt associated with the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson's ratio, crack density and saturate fracturegnomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the Coastal Plain and Western Foothills as far as the southeastern lower crust under the Central Range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson's ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake. PIC
Load Forecasting of Central Urban Area Power Grid Based on Saturated Load Density Index
NASA Astrophysics Data System (ADS)
Huping, Yang; Chengyi, Tang; Meng, Yu
2018-03-01
In the current society, coordination between urban power grid development and city development has become more and more prominent. Electricity saturated load forecasting plays an important role in the planning and development of power grids. Electricity saturated load forecasting is a new concept put forward by China in recent years in the field of grid planning. Urban saturation load forecast is different from the traditional load forecasting method for specific years, the time span of it often relatively large, and involves a wide range of aspects. This study takes a county in eastern Jiangxi as an example, this paper chooses a variety of load forecasting methods to carry on the recent load forecasting calculation to central urban area. At the same time, this paper uses load density index method to predict the Longterm load forecasting of electric saturation load of central urban area lasted until 2030. And further study shows the general distribution of the urban saturation load in space.
NASA Astrophysics Data System (ADS)
Furusawa, S.; Togashi, H.; Nagakura, H.; Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Takano, M.
2017-09-01
We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which may be an artifact, though, caused by the use of the same tabulated electron capture rates for heavy nuclei ignoring differences in the nuclear composition between the two EOSs in these computations.
NASA Astrophysics Data System (ADS)
Moorhead, Althea V.; Blaauw, Rhiannon C.; Moser, Danielle E.; Campbell-Brown, Margaret D.; Brown, Peter G.; Cooke, William J.
2017-12-01
The bulk density of a meteoroid affects its dynamics in space, its ablation in the atmosphere, and the damage it does to spacecraft and lunar or planetary surfaces. Meteoroid bulk densities are also notoriously difficult to measure, and we are typically forced to assume a density or attempt to measure it via a proxy. In this paper, we construct a density distribution for sporadic meteoroids based on existing density measurements. We considered two possible proxies for density: the KB parameter introduced by Ceplecha and Tisserand parameter, TJ. Although KB is frequently cited as a proxy for meteoroid material properties, we find that it is poorly correlated with ablation-model-derived densities. We therefore follow the example of Kikwaya et al. in associating density with the Tisserand parameter. We fit two density distributions to meteoroids originating from Halley-type comets (TJ < 2) and those originating from all other parent bodies (TJ > 2); the resulting two-population density distribution is the most detailed sporadic meteoroid density distribution justified by the available data. Finally, we discuss the implications for meteoroid environment models and spacecraft risk assessments. We find that correcting for density increases the fraction of meteoroid-induced spacecraft damage produced by the helion/antihelion source.
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
Abnormal temperature dependence of conductance of single Cd-doped ZnO nanowires
NASA Astrophysics Data System (ADS)
Li, Q. H.; Wan, Q.; Wang, Y. G.; Wang, T. H.
2005-06-01
Positive temperature coefficient of resistance is observed on single Cd-doped ZnO nanowires. The current along the nanowire increases linearly with the bias and saturates at large biases. The conductance is greatly enhanced either by ultraviolet illumination or infrared illumination. However, the conductance decreases with increasing temperature, in contrast to the reported temperature behavior either for ZnO nanostructures or for CdO nanoneedles. The increase of the conductance under illumination is related to surface effect and the decrease with increasing temperature to bulk effect. These results show that Cd doping does not change surface effect but affects bulk effect. Such a bulk effect could be used to realize on-chip temperature-independent varistors.
Effects of traffic-induced soil compaction on crop growth and soil properties
NASA Astrophysics Data System (ADS)
Baibay, Amélia; Ren, Lidong; D'Hose, Tommy; De Pue, Jan; Ruysschaert, Greet; Cornelis, Wim
2017-04-01
Traffic-induced soil compaction on arable soils constitutes a major threat for agricultural productivity and the environmental quality of the soil, water and atmosphere. The objective of this work is to evaluate a set of prevention strategies for agricultural traffic under real farming conditions. To that end, a one-pass traffic experiment was conducted near Ghent, Belgium in winter 2015 on a sandy loam (haplic Luvisol; 43% sand, 47% silt, 10% clay). Winter rye (Secale cereale L.), which promotes the removal of residual soil nitrogen and thus reduces the potential for nitrogen leaching, was sown as cover crop using different tractor and weather settings on different field lanes: dry (D, 0.16 m3 m-3) or wet (W, 0.20-0.23 m3 m-3) conditions, normal (N, 65 cm width, axle load 8520 kg) or wide (W, 90 cm width, axle load 8520 kg) tires and high (HP, 1.4 bars for N, 1.0 bar for W) or low (LP, 1.0 bar for N, 0.5 bar for W) inflation pressure. Subsequently, crop biomass, root density and a set of hydrophysical properties (penetration resistance, saturated hydraulic conductivity and water retention at 15, 35 and 55 cm depth) were measured. Bulk density, soil quality indicators (such as air capacity) and the pore size distribution were also calculated. Results showed significant biomass reduction (p < 0.01) for trafficked plots compared to their control (un-trafficked): 40% reduction under dry conditions and ˜80% under wet conditions. However, no differences were found between traffic treatments. A similar trend was observed for root density, though less significant. Under wet conditions, the rooting depth was also reduced (10 cm instead of 30 cm), and densities were very small. These results suggest a negative effect of compaction on crop growth, worse under wet conditions, but the choice of tires did not prove to have an effect. Observations on the hydrophysical properties were more mitigated, as expected: distinct differences are primarily found under controlled lab conditions or after several passes. Moreover, high moisture conditions could not be obtained for the wet experiment, which never exceeded field capacity, conceived as threshold. Nevertheless, penetration resistance profiles indicated a plough pan about 40 cm depth, witness of previous agricultural operations on the field, and high values (3.5 to 4 MPa) were found in the subsoil too. Moreover, bulk densities were higher for all treatments (up to 1.8 Mg m-3) compared to the controls (˜1.55 Mg m-3). Saturated hydraulic conductivities were very small (<< 10 cm/d), especially for the treatments. The dry treatment also showed better values than the wet ones at 15 cm. Water retention curves tended to show decreased water content at low suctions for the treatments (mainly at 15 cm), which could reflect on a reduction of macropores and their continuity. Soil quality parameters also showed better values in the control plots. These observations support an overall compacted state and loss of structural quality, though no significant impact of the traffic experiment or prevention strategies could be drawn.
Radical re-appraisal of water structure in hydrophilic confinement.
Soper, Alan K
2013-12-18
The structure of water confined in MCM41 silica cylindrical pores is studied to determine whether confined water is simply a version of the bulk liquid which can be substantially supercooled without crystallisation. A combination of total neutron scattering from the porous silica, both wet and dry, and computer simulation using a realistic model of the scattering substrate is used. The water in the pore is divided into three regions: core, interfacial and overlap. The average local densities of water in these simulations are found to be about 20% lower than bulk water density, while the density in the core region is below, but closer to, the bulk density. There is a decrease in both local and core densities when the temperature is lowered from 298 K to 210 K. The radical proposal is made here that water in hydrophilic confinement is under significant tension, around -100 MPa, inside the pore.
The crust of the Moon as seen by GRAIL.
Wieczorek, Mark A; Neumann, Gregory A; Nimmo, Francis; Kiefer, Walter S; Taylor, G Jeffrey; Melosh, H Jay; Phillips, Roger J; Solomon, Sean C; Andrews-Hanna, Jeffrey C; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Smith, David E; Watkins, Michael M; Williams, James G; Zuber, Maria T
2013-02-08
High-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moon's highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed. When combined with remote sensing and sample data, this density implies an average crustal porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal porosity correlate with the largest impact basins, whereas lateral variations in crustal density correlate with crustal composition. The low-bulk crustal density allows construction of a global crustal thickness model that satisfies the Apollo seismic constraints, and with an average crustal thickness between 34 and 43 kilometers, the bulk refractory element composition of the Moon is not required to be enriched with respect to that of Earth.
NASA Astrophysics Data System (ADS)
Kim, Sora; Bahk, Jang-Jun; Kim, Daechoul; Lee, Gwang Soo; Kim, Seong-Pil
2017-04-01
A total of 288 piston and box core samples were collected and analyzed to characterize the physical properties and geoacoustic provinces of surficial sediments in the southern part of the East Sea. Based on in-situ condition sound velocity (converted laboratory sound velocity to in-situ condition sound velocity) and sediment properties (sediment textures and physical properties), the study area was divided into eight provinces (Province IA, IB, IC, II, III, IV, VA, and VB) : (1) Province IA : hemi-pelagic mud partially mixed with intermittent sandy sediments originating from the outer shelf due to slide/slump or mass flows (in-situ condition sound velocity: 1439 m/s, mean grain size: 8.5Φ, bulk density: 1.24 g/cm3,and porosity: 84%); (2) Province IB : Holocene muddy sediments are dominant, but in some area that is influenced by the surrounding land and coast (in-situ condition sound velocity: 1448 m/s, mean grain size: 8.3Φ, bulk density: 1.32 g/cm3, and porosity: 79%); (3) Province IC : muddy sediments that were deposited during the Holocene (in-situ condition sound velocity: 1457 m/s, mean grain size: 7.8Φ, bulk density: 1.36 g/cm3, and porosity: 78%); (4) Province II : mixed recent and relict sediments (in-situ condition sound velocity: 1493 m/s, mean grain size: 5.9Φ, bulk density: 1.53 g/cm3, and porosity: 68%); (5) Province III (Pohang) : there is a mixture of muddy sediments and sandy sediments and sediments from Hyeongsan River are mostly deposited (in-situ condition sound velocity: 1586 m/s, mean grain size: 4.1Φ, bulk density: 1.74 g/cm3, and porosity: 57%); (6) Province IV : coarse-grained relict sediments formed during the Pleistocene (in-situ condition sound velocity: 1572 m/s, mean grain size: 4.1Φ, bulk density: 1.76 g/cm3, and porosity: 55%); (7) Province VA : relict sand with some gravel, show marked differences from the area in which muddy sediments are deposited (in-situ condition sound velocity: 1662 m/s, mean grain size: 3.3Φ, bulk density: 1.82 g/cm3, and porosity: 51%), and (8) Province VB : similar to but coarser sediments than Province IV (in-situ condition sound velocity: 1667 m/s, mean grain size: 3.2Φ, bulk density: 1.87 g/cm3, and porosity: 46%). The in-situ condition sound velocity, mean grain size, and bulk density increased from Province IA to Province VB, whereas the porosity and water content decrease. Variability of the physical and acoustic properties tended to follow the general of the mean grain size. The classification of each province using the in-situ condition sound velocity corrected with the temperature and sediment type provides a better reflection of the sediment properties and sedimentary environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashemzadeh, M., E-mail: hashemzade@gmail.com
2015-11-15
The effect of q-nonextensive parameter and saturation time on the electron density steepening in electron-positron-ion plasmas is studied by particle in cell method. Phase space diagrams show that the size of the holes, and consequently, the number of trapped particles strongly depends on the q-parameter and saturation time. Furthermore, the mechanism of the instability and exchange of energy between electron-positron and electric field is explained by the profiles of the energy density. Moreover, it is found that the q-parameter, saturation time, and electron and positron velocities affect the nonlinear evolution of the electron density which leads to the steepening ofmore » its structure. The q-nonextensive parameter or degree of nonextensivity is the relation between temperature gradient and potential energy of the system. Therefore, the deviation of q-parameter from unity indicates the degree of inhomogeneity of temperature or deviation from equilibrium. Finally, using the kinetic theory, a generalized q-dispersion relation is presented for electron-positron-ion plasma systems. It is found that the simulation results in the linear regime are in good agreement with the growth rate results obtained by the kinetic theory.« less
Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles.
Khemtong, Chalermchai; Kessinger, Chase W; Togao, Osamu; Ren, Jimin; Takahashi, Masaya; Sherry, A Dean; Gao, Jinming
2009-01-01
An off-resonance saturation (ORS) method was used for magnetic resonance imaging of superparamagnetic polymeric micelles (SPPM). SPPM was produced by encapsulating a cluster of magnetite nanoparticles (9.9+/-0.4 nm in diameter) in poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) copolymer micelles (micelle diameter: 60+/-9 nm). In ORS MRI, a selective radiofrequency (RF) pulse was applied at an off-resonance position (0-50 ppm) from the bulk water signal, and the SPPM particles were visualized by the contrast on a division image constructed from two images acquired with and without pre-saturation. Here, the effects of saturation offset frequencies, saturation durations, and RF powers on ORS contrasts were investigated as these parameters are critical for optimization of ORS MRI for in vivo imaging applications. The ability to turn "ON" and "OFF" ORS contrast of SPPM solutions permits for an accurate image subtraction and a contrast enhancement to visualize SPPM probes for in vivo imaging of cancer.
Microwave sensing of moisture content and bulk density in flowing grain
USDA-ARS?s Scientific Manuscript database
Moisture content and bulk density were determined from measurement of the dielectric properties of flowing wheat kernels at a single microwave frequency (5.8 GHz). The measuring system consisted of two high-gain microwave patch antennas mounted on opposite sides of rectangular chute and connected to...
Strong Selective Adsorption of Polymers.
Ge, Ting; Rubinstein, Michael
2015-06-09
A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d < 1 that are characterized by the fraction of occupied adsorption sites and whether the dominant conformation of adsorbed chains is a single-end-adsorbed "mushroom" or double-end-adsorbed loop. For l / d > 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the threshold determined by the adsorption energy, the brush of loops under the carpet reaches a saturated state, resulting in a l / d -independent brush-under-carpet structure, which can also be applied to describe adsorbed multisticker polymers in nonselective adsorption where a sticker can strongly bind to any place on the adsorption surface. We examine the adsorbed amount Γ of multisticker polymers in different regimes for selective adsorption. If the adsorbed multisticker polymers are nonoverlapping mushrooms, the adsorbed amount Γ increases linearly with the surface density of adsorption sites Σ ≈ 1/ d 2 . In the self-similar carpet regime, Γ increases sublinearly as Σ 0.15 in a good solvent, while only logarithmically in a theta solvent. Formation of a brush layer under the carpet contributes an additional adsorbed amount. This additional amount increases linearly with Σ and eventually dominates the overall adsorbed amount Γ before saturating at a plateau value controlled by the adsorption energy.
NASA Astrophysics Data System (ADS)
Daugaard Nielsen, Troels Frederik
2013-04-01
The Skaergaard intrusion is the type locality for stratiform "Skaergaard-type" PGE-Au mineralisations with layers rich in PGE, followed by Au and Cu. Models for stratiform PGE mineralisations divide into uppers and downers models. Downers models assume bulk liquid S-saturation followed by a variety of accumulation processes and the second model the scavenging of metals by fluids deep in intrusions and deposition in chemical traps above. This investigation is based on continuous profiling in roof, walls and floor. Cu anomalies in roof, walls and floor are contemporaneous and systematics in Pd/Pt and Pd/Au ratios document bulk liquid S-saturation, no loss of precious metal below the mineralisation and no obvious chemical traps. A classic downers process is documented. The timing of the mineralisation is controlled by composition of liquidus plagioclase and fraction of residual magma (F). PGE concentrations are an order of magnitude higher in the floor mineralisation due to accumulation. Systematics across the mineralisation shows in the centre of the intrusion 5 main levels of Pd-concentration followed by an Au and a Cu-level. All levels PGE and Au levels have c. 100 ppm Cu and show no correlation to PGE and Au. 90% of all PGE is contained in one phase, skaergaardite (PdCu).The lower and main PGE concentration has moderate Pd/Pt ratios. Overlying secondary reefs have high, basal Pd/Pt and show local S-saturation reflecting d-values of PGE between sulphide and silicate liquid. No basal high Pd/Pt anomaly occurs at Au and Cu levels and the floor shows four types of mineralisation. The main PGE reef (Pd5) has gradual increase and decrease in PGE and Pd/Pt, dissolution of sulphide, increasing PGE+Au/Cu due to reaction between interstial and documented reactive Fe-rich silicate melt and the bulk magma sulfides. Dissolution of Cu-sulfide increases PGE/Cu, reduces the size of droplets to 30µ (av.) and provides metals for secondary reefs above - formed by migration of interstitial melt - and show expected decrease in Pd/Pt and increase in Au/Pd due to fractionation and substitutions in Skaergaardite (PdCu) and tetra-auricupride (AuCu). The main Au level is elevated relative to the top Pd-level (Pd1). High resolution X-ray tomography and petrography shows the precious metal phases on grain boundaries. The paragenesis is complex with many tellurides, arsenite and sulfides, and primary hydrous phases including amphiboles, ferrosaponite and chlorite. The Au mineralisation level is the residual of the Fe-rich interstitial silicate melt trapped by the layering of the gabbros. The Cu levels above are like the secondary Pd-levels secondary mineralisation levels caused by reaction between primary sulphide and Fe-rich melt. The Skaergaard-type mineralisation owes its characteristics to the concentration of Fe-rich interstitial melt and loss of immiscible granophyric melt from the mush zone at the floor of the residual bulk magma and a continuum of dissolution and S-saturation in an ever changing interstitial melt environment.
NASA Astrophysics Data System (ADS)
Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.
2009-04-01
Porous rocks in hydrocarbon reservoirs are often saturated with a mixture of two or more fluids. Interpretation of exploration seismograms requires understanding of the relationship between distribution of the fluids patches and acoustic properties of rocks. The sizes of patches as well as their distribution affect significantly the seismic response. If the size of the fluid patch is smaller than the diffusion wavelength then pressure equilibration is achieved and the bulk modulus of the rock saturated with a mixture is defined by the Gassmann equations (Gassmann, 1951) with the saturation-weighted average of the fluid bulk modulus given by Wood's law (Wood, 1955, Mavko et al., 1998). If the fluid patch size is much larger than the diffusion wavelength then there is no pressure communication between different patches. In this case, fluid-flow effects can be neglected and the overall rock may be considered equivalent to an elastic composite material consisting of homogeneous parts whose properties are given by Gassmann theory with Hill's equation for the bulk modulus (Hill, 1963, Mavko et al., 1998). At intermediate values of fluid saturation the velocity-saturation relationship is significantly affected by the fluid patch distribution. In order to get an improved understanding of factors influencing the patch distribution and the resulting seismic wave response we performed simultaneous measurements of P-wave velocities and rock sample CT imaging. The CT imaging allows us to map the fluid distribution inside rock sample during saturation (water imbibition). We compare the experimental results with theoretical predictions. In this paper we will present results of simultaneous measurements of longitudinal wave velocities and imaging mapping of fluid distribution inside rock sample during sample saturation. We will report results of two kinds of experiments: "dynamic" and "quasi static" saturation. In both experiments Casino Cores Otway Basin sandstone, Australia core samples (38 mm in diameter, approximately 60 mm long) were dried in oven under reduced pressure. In dynamic saturation experiments, samples were jacketed in the experimental cell, made from transparent for X-radiation material (PMMA). Distillate water was injected into the sample from the one side. Fluid distribution in such "dynamic" experiment: both spatial and time dependant was measured using X-ray Computer Tomograph (CT) with resolution 0.2 x 0.2 x 1 mm3. Velocities (Vp, and Vs) at ultrasonic frequency of 1 MHz, were measured in the direction perpendicular to initial direction of the fluid flow injection. Sample saturation was estimated from the CT results. In "quasi static" experiments samples were saturated during long period of time (over 2 weeks) to achieve uniform distribution of liquid inside the sample. Saturation was determined by measurement of the weight of water fraction. All experiments were performed at laboratory environments at temperature 25 C. Ultrasonic velocities and fluid saturations were measured simultaneously during water injection into sandstone core samples. The experimental results obtained on low-permeability samples show that at low saturation values the velocity-saturation dependence can be described by the Gassmann-Wood relationship. However, with increasing saturation a sharp increase of P-wave velocity is observed, eventually approaching the Gassmann-Hill relationship. We connect the characteristics of the transition behavior of the velocity-saturation relationships to the increasing size of the patches inside the rock sample. In particular, we show that for relatively large fluid injection rate this transition occurs at smaller degrees of saturation as compared with high injection rate. We model the experimental data using the so-called White model (Toms 2007) that assumes fluid patch distribution as a periodic assemblage of concentric spheres. We can observe reasonable agreement between experimental results and theoretical predictions of White's model. The results illustrate the non-unique relationships between saturation and velocity in sandstones dependent on texture and fluid displacement history: fuller understanding of these phenomena is needed for accurate assessment of time lapse seismic measurements, be they for oil and gas recovery or for CO2 disposal purposes. Gassmann, F., 1951, Elastic waves through a packing of spheres. Geophysics 16, 673-685; Mavko, G., T. Mukerji, and J. Dvorkin, 1998, The Rock Physics Handbook: Tools for seismic analysis in porous media: Cambridge University Press. Wood, A. W., 1955, A Textbook of Sound, The MacMillan Co., New York, 360 pp. Hill, R., 1963, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids, 11, 357-372. Hill, R., 1952, The elastic behavior of crystalline aggregates. Proc. Physical Soc., London, A65, 349-354. J. Toms, T.M. Mueller, B. Gurevich, 2007 Seismic attenuation in porous rocks with random patchy saturation. Geophysical Prospecting, 55, 671-678.
Influence of addition of degassed water on bulk nanobubbles.
Tuziuti, Toru; Yasui, Kyuichi; Kanematsu, Wataru
2018-05-01
The effects of the addition of degassed water on bulk nanobubbles (ultrafine bubbles) of air in liquid water were investigated by measuring the volumetric concentration and size distribution at different dissolved air degree of saturation (DOS) values. The proportion of degassed water mixed with water containing bulk nanobubbles was increased to prepare samples having lower DOS values. It was found that the volumetric concentration of nanobubbles mostly decreased and the average nanobubble size became larger as the DOS was decreased. In our proposed mechanism, smaller nanobubbles are selectively dissolved into the surrounding liquid by Laplace pressure due to surface tension as the DOS is reduced. These results demonstrate that stable bulk nanobubbles are present even in water undersaturated with gas. The role of nanobubble under an ultrasound is also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
The Observed Properties of Liquid Helium at the Saturated Vapor Pressure
NASA Astrophysics Data System (ADS)
Donnelly, Russell J.; Barenghi, Carlo F.
1998-11-01
The equilibrium and transport properties of liquid 4He are deduced from experimental observations at the saturated vapor pressure. In each case, the bibliography lists all known measurements. Quantities reported here include density, thermal expansion coefficient, dielectric constant, superfluid and normal fluid densities, first, second, third, and fourth sound velocities, specific heat, enthalpy, entropy, surface tension, ion mobilities, mutual friction, viscosity and kinematic viscosity, dispersion curve, structure factor, thermal conductivity, latent heat, saturated vapor pressure, thermal diffusivity and Prandtl number of helium I, and displacement length and vortex core parameter in helium II.
Singh, Ravendra; Román-Ospino, Andrés D; Romañach, Rodolfo J; Ierapetritou, Marianthi; Ramachandran, Rohit
2015-11-10
The pharmaceutical industry is strictly regulated, where precise and accurate control of the end product quality is necessary to ensure the effectiveness of the drug products. For such control, the process and raw materials variability ideally need to be fed-forward in real time into an automatic control system so that a proactive action can be taken before it can affect the end product quality. Variations in raw material properties (e.g., particle size), feeder hopper level, amount of lubrication, milling and blending action, applied shear in different processing stages can affect the blend density significantly and thereby tablet weight, hardness and dissolution. Therefore, real time monitoring of powder bulk density variability and its incorporation into the automatic control system so that its effect can be mitigated proactively and efficiently is highly desired. However, real time monitoring of powder bulk density is still a challenging task because of different level of complexities. In this work, powder bulk density which has a significant effect on the critical quality attributes (CQA's) has been monitored in real time in a pilot-plant facility, using a NIR sensor. The sensitivity of the powder bulk density on critical process parameters (CPP's) and CQA's has been analyzed and thereby feed-forward controller has been designed. The measured signal can be used for feed-forward control so that the corrective actions on the density variations can be taken before they can influence the product quality. The coupled feed-forward/feed-back control system demonstrates improved control performance and improvements in the final product quality in the presence of process and raw material variations. Copyright © 2015 Elsevier B.V. All rights reserved.
The Fall and Recovery of the Tagish Lake Meteorite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hildebrand, Alan R.; McCausland, Phil J.; Brown, Peter G.
2006-03-01
The Tagish Lake C2 (ungrouped) carbonaceous chondrite fall of January 18, 2000 delivered >10 kg of one of the most primitive and physically weak meteorites yet studied. In this paper we report the detailed circumstances of the fall and the recovery of all documented Tagish Lake fragments. We also provide measurements of bulk physical properties (mass, grain and bulk density), bulk triple oxygen-isotope ratios, and short-lived cosmogenic radionuclides counts for several fragments. Ground eyewitnesses and recorded observations of the Tagish Lake fireball event provide a refined estimate of the fireball trajectory, and hence, its pre-atmospheric orbit. From its calculated orbitmore » and its similarity to the remotely-sensed properties of the D and P-class asteroids, the Tagish Lake carbonaceous chondrite represents these outer belt asteroids, and is not of cometary origin. The bulk oxygen-isotope compositions reported here are among the highest known for meteorites. These data plot just below the Terrestrial Fractionation Line, following a trend similar to the CM meteorite mixing line. The bulk density of the Tagish Lake material (1.66 ±0.02 g/cm3) is the same, within error, as the total bulk densities of many C-class and especially D- and P-class asteroids. The high microporosity of Tagish Lake samples (~40%) provides an obvious candidate material for the composition of low bulk density primitive asteroids such as Phobos, Deimos and the P-class binary 87 Sylvia, without requiring a substantial contribution from macroporosity in the form of ice, thick regolith or “rubble pile” assemblages with large interior voids.« less
Statistical and Multifractal Evaluation of Soil Compaction in a Vineyard
NASA Astrophysics Data System (ADS)
Marinho, M.; Raposo, J. R.; Mirás Avalos, J. M.; Paz González, A.
2012-04-01
One of the detrimental effects caused by agricultural machines is soil compaction, which can be defined by an increase in soil bulk density. Soil compaction often has a negative impact on plant growth, since it reduces the macroporosity and soil permeability and increases resistance to penetration. Our research explored the effect of the agricultural machinery on soil when trafficking through a vineyard at a small spatial scale, based on the evaluation of the soil compaction status. The objectives of this study were: i) to quantify soil bulk density along transects following wine row, wheel track and outside track, and, ii) to characterize the variability of the bulk density along these transects using multifractal analysis. The field work was conducted at the experimental farm of EVEGA (Viticulture and Enology Centre of Galicia) located in Ponte San Clodio, Leiro, Orense, Spain. Three parallel transects were marked on positions with contrasting machine traffic effects, i.e. vine row, wheel-track and outside-track. Undisturbed samples were collected in 16 points of each transect, spaced 0.50 m apart, for bulk density determination using the cylinder method. Samples were taken in autumn 2011, after grape harvest. Since soil between vine rows was tilled and homogenized beginning spring 2011, cumulative effects of traffic during the vine growth period could be evaluated. The distribution patterns of soil bulk density were characterized by multifractal analysis carried out by the method of moments. Multifractality was assessed by several indexes derived from the mass exponent, τq, the generalized dimension, Dq, and the singularity spectrum, f(α), curves. Mean soil bulk density values determined for vine row, outside-track and wheel-track transects were 1.212 kg dm-3, 1.259 kg dm-3and 1.582 kg dm-3, respectively. The respective coefficients of variation (CV) for these three transects were 7.76%, 4.82% and 2.03%. Therefore mean bulk density under wheel-track was 30.5% higher than along the vine row. Vine row and outside-track positions showed not significant differences between means. The bulk density of the wheel-track transect also showed the lowest CV. The multifractal spectra of the three transects were asymmetric curves, rather short toward the left and much longer toward the right. The width of the right deviating shaped multifractal spectra was ranked as: wine row > outside-track ≈ wheel-track. Entropy dimension, D1, was 0.998, 0.992 and 0.992 for vine row, outside-track and track transects, respectively. These results show different patterns of variability of bulk density for parallel transects. They also suggest that multifractal parameters may be useful in assessing the variability of other soil properties such as soil particle density, soil porosity or soil water content, at different spatial scales as well. Acknowledgments. This work was funded in part by Spanish Ministry of Science and Innovation (MICINN) in the frame of project CGL2009-13700-C02. Financial support from CAPES/GOV., Brazil, is also acknowledged by Prof. M. Marinho.
Risk assessment of gas oil and kerosene contamination on some properties of silty clay soil.
Fallah, M; Shabanpor, M; Zakerinia, M; Ebrahimi, S
2015-07-01
Soil and ground water resource pollution by petroleum compounds and chemical solvents has multiple negative environmental impacts. The aim of this research was to investigate the impacts of kerosene and gas oil pollutants on some physical and chemical properties, breakthrough curve (BTC), and water retention curve (SWRC) of silty clay soil during a 3-month period. Therefore, some water-saturated soils were artificially contaminated in the pulse condition inside some glassy cylinders by applying half and one pore volume of these pollutants, and then parametric investigations of the SWRC were performed using RETC software for Van Genukhten and Brooks-Corey equations in the various suctions and the soil properties were determined before and after pollution during 3 months. The results showed that gas oil and kerosene had a slight effect on soil pH and caused the cumulative enhancement in the soil respiration, increase in the bulk density and organic matter, and reduction in the soil porosity and electrical and saturated hydraulic conductivity. Furthermore, gas oil retention was significantly more than kerosene (almost 40%) in the soil. The survey of SWRC indicated that the contaminated soil samples had a little higher amount of moisture retention (just under 15% in most cases) compared to the unpolluted ones during this 3-month period. The parametric analysis of SWRC demonstrated an increase in the saturated water content, Θ s, from nearly 49% in the control sample to just under 53% in the polluted ones. Contaminants not only decreased the residual water content, Θ r, but also reduced the SWRC gradient, n, and amount of α parameter. The evaluation of both equations revealed more accurate prediction of SWRC's parameters by Van Genukhten compared to those of Brooks and Corey.
Pratson, Lincoln F.; Hutton, E.W.H.; Kettner, A.J.; Syvitski, J.P.M.; Hill, P.S.; George, D.A.; Milligan, T.G.
2007-01-01
Flood deposition and storm reworking of sediments on the inner shelf can change the mixture of grain sizes on the seabed and thus its porosity, bulk density, bulk compressional velocity and reflectivity. Whether these changes are significant enough to be detectable by repeat sub-bottom sonar surveys, however, is uncertain. Here the question is addressed through numerical modeling. Episodic flooding of a large versus small river over the course of a century are modeled with HYDROTREND using the drainage basin characteristics of the Po and Pescara Rivers (respectively). A similarly long stochastic record of storms offshore of both rivers is simulated from the statistics of a long-term mooring recording of waves in the western Adriatic Sea. These time series are then input to the stratigraphic model SEDFLUX2D, which simulates flood deposition and storm reworking on the inner shelf beyond the river mouths. Finally, annual changes in seabed reflectivity across these shelf regions are computed from bulk densities output by SEDFLUX2D and compressional sound speeds computed from mean seafloor grain size using the analytical model of Buckingham [1997. Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. Journal of the Acoustical Society of America 102, 2579-2596; 1998. Theory of compressional and shear waves in fluidlike marine sediments. Journal of the Acoustical Society of America 103, 288-299; 2000. Wave propagation, stress relaxation, and grain-tograin shearing in saturated, unconsolidated marine sediments. Journal of the Acoustical Society of America 108, 2796-2815]. The modeling predicts reflectivities that change from 9 dB for muds farther offshore, values that agree with reflectivity measurements for these sediment types. On local scales of ???100 m, however, maximum changes in reflectivity are <0.5 dB. So are most annual changes in reflectivity over all water depths modeled (i.e., 0-35 m). Given that signal differences need to be ???2-3 dB to be resolved, the results suggest that grain-size induced changes in reflectivity caused by floods and storms will rarely be detectable by most current sub-bottom sonars. ?? 2006 Elsevier Ltd. All rights reserved.
Ohara, Taku; Yuan, Tan Chia; Torii, Daichi; Kikugawa, Gota; Kosugi, Naohiro
2011-07-21
In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.
Wang, Qingkai; Chen, Yu; Miao, Lili; Jiang, Guobao; Chen, Shuqing; Liu, Jun; Fu, Xiquan; Zhao, Chujun; Zhang, Han
2015-03-23
Topological insulators have been theoretically predicted as promising candidates for broadband photonics devices due to its large bulk band gap states in association with the spin-momentum-locked mass-less Dirac edge/surface states. Unlike the bulk counterpart, few-layer topological insulators possess some intrinsic optical advantages, such as low optical loss, low saturation intensity and high concentration of surface state. Herein, we use a solvothermal method to prepare few-layer Bi₂Te₃ flakes. By sandwiching few-layer Bi₂Te₃ flakes with polymethyl methacrylate (PMMA) polymer, a novel light modulation device had been successfully fabricated with high chemical and thermal stabilities as well as excellent mechanical durability, originating from the contribution of PMMA acting as buffer layers that counteract excessive mechanical bending within the fragile Bi₂Te₃ flakes. The incorporation of the as-fabricated PMMA-TI-PMMA as saturable absorber, which could bear long-term mechanical loadings, into the fiber laser cavity generated the stable dissipative soliton mode-locking with a 3-dB spectral bandwidth up to 51.62 nm and tunable wavelength range of 22 nm. Our work provides a new way of fabricating PMMA-TI-PMMA sandwiched composite structure as saturable absorber with promising applications for laser operation.
Guo, Yingkun; Zheng, Hairong; Sun, Phillip Zhe
2015-01-01
Chemical exchange saturation transfer (CEST) MRI is a versatile imaging method that probes the chemical exchange between bulk water and exchangeable protons. CEST imaging indirectly detects dilute labile protons via bulk water signal changes following selective saturation of exchangeable protons, which offers substantial sensitivity enhancement and has sparked numerous biomedical applications. Over the past decade, CEST imaging techniques have rapidly evolved due to contributions from multiple domains, including the development of CEST mathematical models, innovative contrast agent designs, sensitive data acquisition schemes, efficient field inhomogeneity correction algorithms, and quantitative CEST (qCEST) analysis. The CEST system that underlies the apparent CEST-weighted effect, however, is complex. The experimentally measurable CEST effect depends not only on parameters such as CEST agent concentration, pH and temperature, but also on relaxation rate, magnetic field strength and more importantly, experimental parameters including repetition time, RF irradiation amplitude and scheme, and image readout. Thorough understanding of the underlying CEST system using qCEST analysis may augment the diagnostic capability of conventional imaging. In this review, we provide a concise explanation of CEST acquisition methods and processing algorithms, including their advantages and limitations, for optimization and quantification of CEST MRI experiments. PMID:25641791
Zhou, Iris Yuwen; Fuss, Taylor L; Igarashi, Takahiro; Jiang, Weiping; Zhou, Xin; Cheng, Leo L; Sun, Phillip Zhe
2016-11-01
Chemical exchange saturation transfer (CEST) provides sensitive magnetic resonance (MR) contrast for probing dilute compounds via exchangeable protons, serving as an emerging molecular imaging methodology. CEST Z-spectrum is often acquired by sweeping radiofrequency saturation around bulk water resonance, offset by offset, to detect CEST effects at characteristic chemical shift offsets, which requires prolonged acquisition time. Herein, combining high-resolution magic angle spinning (HRMAS) with concurrent application of gradient and rf saturation to achieve fast Z-spectral acquisition, we demonstrated the feasibility of fast quantitative HRMAS CEST Z-spectroscopy. The concept was validated with phantoms, which showed excellent agreement with results obtained from conventional HRMAS MR spectroscopy (MRS). We further utilized the HRMAS Z-spectroscopy for fast ex vivo quantification of ischemic injury with rodent brain tissues after ischemic stroke. This method allows rapid and quantitative CEST characterization of biological tissues and shows potential for a host of biomedical applications.
Useful optical density range in film dosimetry: limitations due to noise and saturation.
González-López, Antonio
2007-08-07
The optical density (OD) range for the scanners used in film dosimetry is limited due to saturation and noise. As the OD increases, saturation causes the rate of change of the output with respect to the input to become smaller, while at the same time noise remains fairly constant or increases. The combined effect leads to a degradation of the signal-to-noise ratio (SNR) at high optical densities. In this study, the uncertainty in the OD measurement, d(m), is expressed as a function of the optical density d. The functional relationship obtained gives the amplitude w of an interval around d in which d(m) will be found with a given probability p. The relationship w = w(d, p) is later used to determine which OD ranges fulfil a set of requirements on w and p. As an application of the procedure, the noise and saturation characteristics of a commercial film digitizer system are measured. Their contribution to the uncertainties of the dosimetric procedure is reported, and the data are used to provide an optical density range for a given uncertainty and confidence level associated with the digitizer. These data can be further combined with the data from other sources of noise such as film noise in order to estimate the final uncertainty of the dosimetric process.
Boyd, Glen R; Ocampo-Gómez, Ana M; Li, Minghua; Husserl, Johana
2006-11-20
Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites.
Effect of weightlessness on mineral saturation of bone tissue
NASA Technical Reports Server (NTRS)
Krasnykh, I. G.
1975-01-01
X-ray photometry of bone density established dynamic changes in mineral saturation of bone tissues for Soyuz spacecraft and Salyut orbital station crews. Calcaneus optical bone densities in all crew members fell below initial values; an increase in spacecrew exposure time to weightlessness conditions also increased the degree of decalcification. Demineralization under weightlessness conditions took place at a higher rate than under hypodynamia.
Probing the nuclear symmetry energy at high densities with nuclear reactions
NASA Astrophysics Data System (ADS)
Leifels, Y.
2017-11-01
The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.
Dielectric properties-based method for rapid and nondestructive moisture sensing in almonds
USDA-ARS?s Scientific Manuscript database
A dielectric-based method is presented for moisture determination in almonds independent of bulk density. The dielectric properties of almond were measured between 5 and 15 GHz, with a 1-GHz increments, for samples with moisture contents ranging from 4.8% to 16.5%, wet basis, bulk densities ranging ...
Soil compaction and initial height growth of planted ponderosa pine.
P. H. Cochran; Terry. Brock
1985-01-01
Early height growth of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings planted in clearcuts in central Oregon was negatively correlated with increasing soil bulk density. Change in bulk density accounted for less than half the total variation in height growth. Although many other factors affect the development of seedlings, compaction...
Internal magnetic structure of magnetite nanoparticles at low temperature
NASA Astrophysics Data System (ADS)
Krycka, K. L.; Borchers, J. A.; Booth, R. A.; Hogg, C. R.; Ijiri, Y.; Chen, W. C.; Watson, S. M.; Laver, M.; Gentile, T. R.; Harris, S.; Dedon, L. R.; Rhyne, J. J.; Majetich, S. A.
2010-05-01
Small-angle neutron scattering with polarization analysis reveals that Fe3O4 nanoparticles with 90 Å diameters have ferrimagnetic moments significantly reduced from that of bulk Fe3O4 at 10 K, nominal saturation. Combined with previous results for an equivalent applied field at 200 K, a core-disordered shell picture of a spatially reduced ferrimagnetic core emerges, even well below the bulk blocking temperature. Zero-field cooling suggests that this magnetic morphology may be intrinsic to the nanoparticle, rather than field induced, at 10 K.
2012-04-27
Oe to 70 kOe. For low-field measurements the remnant field profile in the superconducting magnet was measured and the field at the sample nulled to 1... magnetization similar to the bulk magnetization in the austenite. In particular, the saturation magnetization of such a nanoscopic F cluster would be...expected to be significantly smaller than the bulk magnetization of 5 μB/f.u., due to both finite-size effects and competition between F and AF exchange
NASA Astrophysics Data System (ADS)
Revil, André; Soueid Ahmed, Abdellahi
2017-11-01
Umezawa et al. investigated the dependence of the electrical conductivity of rocks with respect to the saturation of the water phase. Four issues can be underlined in their work: (1) The conductivity model they used mixes bulk and surface tortuosities in the same linear equation (i.e., between the conductivity and the conductivity of the pore water). This conflicts with the fact that the conductivity is a concave down increasing function of the pore water conductivity and bulk tortuosity is defined only at high salinity while surface tortuosity is defined only at very low salinity. (2) The specific surface conductance obtained by Umezawa et al. is too low and conflicts with independent evaluations obtained with double layer models for aluminosilicates and silicates. (3) The expression given for the resistivity index conflicts with the inclusion of a surface conductivity term in the conductivity equation.
The light response of mesophyll conductance is controlled by structure across leaf profiles.
Théroux-Rancourt, Guillaume; Gilbert, Matthew E
2017-05-01
Mesophyll conductance to CO 2 (g m ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf g m (g m,leaf ). Thus, the bulk g m,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring g m,leaf . A species with bifacial structure, Arbutus × 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of g m,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of g m,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that g m,leaf apparently responds to light has large implications for how g m,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring g m under full light saturation. Responses of g m,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon. © 2016 John Wiley & Sons Ltd.
Petrophysical Properties of Twenty Drill Cores from the Los Azufres, Mexico, Geothermal Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iglesias, E.R.; Contreras L., E.; Garcia G., A.
1987-01-20
For this study we selected 20 drill cores covering a wide range of depths (400-3000 m), from 15 wells, that provide a reasonable coverage of the field. Only andesite, the largely predominant rock type in the field, was included in this sample. We measured bulk density, grain (solids) density, effective porosity and (matrix) permeability on a considerable number of specimens taken from the cores; and inferred the corresponding total porosity and fraction of interconnected total porosity. We characterized the statistical distributions of the measured and inferred variables. The distributions of bulk density and grain density resulted approximately normal; the distributionsmore » of effective porosity, total porosity and fraction of total porosity turned out to be bimodal; the permeability distribution resulted highly skewed towards very small (1 mdarcy) values, though values as high as 400 mdarcies were measured. We also characterized the internal inhomogeneity of the cores by means of the ratio (standard deviation/mean) corresponding to the bulk density in each core (in average there are 9 specimens per core). The cores were found to present clearly discernible inhomogeneity; this quantitative characterization will help design new experimental work and interpret currently available and forthcoming results. We also found statistically significant linear correlations between total density and density of solids, effective porosity and total density, total porosity and total density, fraction of interconnected total porosity and the inverse of the effective porosity, total porosity and effective porosity; bulk density and total porosity also correlate with elevation. These results provide the first sizable and statistically detailed database available on petrophysical properties of the Los Azufres andesites. 1 tab., 16 figs., 4 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigam, Sandeep, E-mail: snigam@barc.gov.in; Sudarsan, V., E-mail: vsudar@barc.gov.in; Majumder, C.
Present manuscript deals with the structural changes associated with transformation of bulk Y{sub 2}Sn{sub 2}O{sub 7} into nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}. Nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7} both undoped and Eu{sup 3+} doped, were prepared at a relatively low temperature (700 °C) and investigated for their structural and luminescence properties and compared them with that of bulk Y{sub 2}Sn{sub 2}O{sub 7} sample prepared by the solid-state method at 1300 °C. Significant distortion in geometry and electron density distribution around Y{sup 3+}/Eu{sup 3+} ions in nanoparticles are confirmed from the Rietveld refinement of the powder X-ray diffraction patterns andmore » theoretical calculations based on the density functional theory (DFT). The SnO{sub 6} octahedron in Y{sub 2}Sn{sub 2}O{sub 7} is more expanded in nanoparticles compared to bulk. Iso-surface density distribution reveals that while bulk sample shows typical ionic feature in Y/Eu--O bonds, nanoparticle sample shows sharing of electron density along bond axis pertaining to covalent character. These inferences are further supported by the doped Eu{sup 3+} luminescence and calculated Ω{sub 2} and Ω{sub 4} parameters. - Graphical abstract: YO{sub 8} scalenohedron present in bulk and nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}.Variation of the electron density around Y{sup 3+} ions in YO{sub 8} polyhedron is also shown in bulk and nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}. The difference in the extent of ionic/covalent nature of the Y--O bond is clearly seen the contour plot of electron density. Highlights: ► YO{sub 8} scalenohedron is axially and equatorially distorted in Y{sub 2}Sn{sub 2}O{sub 7} nanoparticles. ► Enlargement of SnO{sub 6} octahedron in nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7} compared to bulk. ► Less symmetric charge distribution around Y{sup 3+} ions in Y{sub 2}Sn{sub 2}O{sub 7} nanoparticles.« less
Chen, Weifeng; Wu, Weijing; Zhou, Lei; Xu, Miao; Wang, Lei; Peng, Junbiao
2018-01-01
A semi-analytical extraction method of interface and bulk density of states (DOS) is proposed by using the low-frequency capacitance–voltage characteristics and current–voltage characteristics of indium zinc oxide thin-film transistors (IZO TFTs). In this work, an exponential potential distribution along the depth direction of the active layer is assumed and confirmed by numerical solution of Poisson’s equation followed by device simulation. The interface DOS is obtained as a superposition of constant deep states and exponential tail states. Moreover, it is shown that the bulk DOS may be represented by the superposition of exponential deep states and exponential tail states. The extracted values of bulk DOS and interface DOS are further verified by comparing the measured transfer and output characteristics of IZO TFTs with the simulation results by a 2D device simulator ATLAS (Silvaco). As a result, the proposed extraction method may be useful for diagnosing and characterising metal oxide TFTs since it is fast to extract interface and bulk density of states (DOS) simultaneously. PMID:29534492
Spatial variability of shelf sediments in the STRATAFORM natural laboratory, Northern California
Goff, J.A.; Wheatcroft, R.A.; Lee, H.; Drake, D.E.; Swift, D.J.P.; Fan, S.
2002-01-01
The "Correlation Length Experiment", an intensive box coring effort on the Eel River shelf (Northern California) in the summer of 1997, endeavored to characterize the lateral variability of near-surface shelf sediments over scales of meters to kilometers. Coring focused on two sites, K60 and S60, separated by ??? 15 km along the 60 m isobath. The sites are near the sand-to-mud transition, although K60 is sandier owing to its proximity to the Eel River mouth. Nearly 140 cores were collected on dip and strike lines with core intervals from < 10m to 1 km. Measurements on each core included bulk density computed from gamma-ray attenuation, porosity converted from resistivity measurements, and surficial grain size. Grain size was also measured over the full depth range within a select subset of cores. X-radiograph images were also examined. Semi-variograms were computed for strike, dip, and down-hole directions at each site. The sand-to-mud transition exerts a strong influence on all measurements: on average, bulk density increases and porosity decreases with regional increases in mean grain size. Analysis of bulk density measurements indicates very strong contrasts in the sediment variability at K60 and S60. No coherent bedding is seen at K60; in the strike direction, horizontal variability is "white" (fully uncorrelated) from the smallest scales examined (a few meters) to the largest (8 km), with a variance equal to that seen within the cores. In contrast, coherent bedding exists at S60 related to the preservation of the 1995 flood deposit. A correlatable structure is found in the strike direction with a decorrelation distance of ??? 800 m, and can be related to long-wavelength undulations in the topography and/or thickness of the flood layer or overburden. We hypothesize that the high degree of bulk density variability at K60 is a result of more intense physical reworking of the seabed in the sandier environment. Without significant averaging, the resistivity-based porosity measurements are only marginally correlated to gamma-ray-bulk density measurements, and are largely independent of mean grain size. Furthermore, porosity displays a high degree of incoherent variability at both sites. Porosity, with a much smaller sample volume than bulk density, may therefore resolve small-scale biogenic variability which is filtered out in the bulk density measurement. ?? 2002 Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)
1992-01-01
A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.
Method of altering the effective bulk density of solid material and the resulting product
Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.
1983-01-01
A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.
Results and analysis of saltstone cores taken from saltstone disposal unit cell 2A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reigel, M. M.; Hill, K. A.
2016-03-01
As part of an ongoing Performance Assessment (PA) Maintenance Plan, Savannah River Remediation (SRR) has developed a sampling and analyses strategy to facilitate the comparison of field-emplaced samples (i.e., saltstone placed and cured in a Saltstone Disposal Unit (SDU)) with samples prepared and cured in the laboratory. The primary objectives of the Sampling and Analyses Plan (SAP) are; (1) to demonstrate a correlation between the measured properties of laboratory-prepared, simulant samples (termed Sample Set 3), and the field-emplaced saltstone samples (termed Sample Set 9), and (2) to validate property values assumed for the Saltstone Disposal Facility (SDF) PA modeling. Themore » analysis and property data for Sample Set 9 (i.e. six core samples extracted from SDU Cell 2A (SDU2A)) are documented in this report, and where applicable, the results are compared to the results for Sample Set 3. Relevant properties to demonstrate the aforementioned objectives include bulk density, porosity, saturated hydraulic conductivity (SHC), and radionuclide leaching behavior.« less
Cathode buffer composed of fullerene-ethylenediamine adduct for an organic solar cell
NASA Astrophysics Data System (ADS)
Kimoto, Yoshinori; Akiyama, Tsuyoshi; Fujita, Katsuhiko
2017-02-01
We developed a fullerene-ethylenediamine adduct (C60P-DC) for a cathode buffer material in organic bulk heterojunction solar cells, which enhance the open-circuit voltage (V oc). The evaporative spray deposition using ultra dilute solution (ESDUS) technique was employed to deposit the buffer layer onto the organic active layer to avoid damage during the deposition. By the insertion of a C60P-DC buffer layer, V oc and power conversion efficiency (PCE) were increased from 0.41 to 0.57 V and from 1.65 to 2.10%, respectively. The electron-only device with the C60P-DC buffer showed a much lower current level than that without the buffer, indicating that the V oc increase is caused not by vacuum level shift but by hole blocking. The curve fitting of current density-voltage (J-V) characteristics to the equivalent circuit with a single diode indicated that the decrease in reversed saturation current by hole blocking increased caused the V oc.
Refractory Materials for Flame Deflector Protection
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark R.; Peruisich, Stephen A.
2010-01-01
Fondu Fyre (FF) is currently the only refractory material qualified for use in the flame trench at KSC's Shuttle Launch Pads 39A and 3913. However, the material is not used as it was qualified and has undergone increasingly frequent and severe degradation due to the launch blasts. This degradation is costly as well as dangerous for launch infrastructure, crew and vehicle. The launch environment at KSC is unique. The refractory material is subject to the normal seacoast environment, is completely saturated with water before launch, and is subjected to vibrations and aggressive heat/blast conditions during launch. This report presents results comparing two alternate materials, Ultra-Tek FS gun mix and Kruzite GR Plus, with Fondu Fyre. The materials were subjected to bulk density, porosity, compression strength, modulus of rupture and thermal shock tests. In addition, test specimens were exposed to conditions meant to simulate the launch environment at KSC to help better understand how the materials will perform once installed.
Solid state saturable absorbers for Q-switching at 1 and 1.3μm: investigation and modeling
NASA Astrophysics Data System (ADS)
Šulc, Jan; Arátor, Pavel; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav; Kokta, Milan R.
2008-02-01
Yttrium and Lutecium garnets (YAG and LuAG) doped by Chromium or Vanadium ions (Cr 4+ or V 3+) were investigated as saturable absorbers potentially useful for passive Q-switching at wavelengths 1 μm and/or 1.3 μm. For comparison also color center saturable absorber LiF:F - II and Cobalt doped spinel (Co:MALO) were studied. Firstly, low power absorption spectra were recorded for all samples. Next, absorbers transmission in dependence on incident energy/power density was measured using the z-scan method. Crystals Cr:YAG, Cr:LuAG, V:YAG, and LiF:F - II were tested at wavelength 1064 nm. Therefore Alexandrite laser pumped Q-switched Nd:YAG laser was used as a radiation source (pulse length 6.9 ns, energy up to 1.5 mJ). Crystals V:YAG, V:LuAG, and Co:MALO were tested at wavelength 1338 nm. So diode pumped Nd:YAG/V:YAG microchip laser was used as a radiation source (pulse length 6.2 ns, energy up to 0.1 mJ). Using measured data fitting, and by their comparison with numerical model of a "thick" saturable absorber transmission for Q-switched Gaussian laser beam, following parameters were estimated: saturable absorber initial transmission T 0, saturation energy density w s, ground state absorption cross-section σ GSA, saturated absorber transmission T s, excited state absorption cross-section σ ESA, ratio γ = σ GSA/σ ESA, and absorbing ions density. For V:YAG crystal, a polarization dependence of T s was also investigated. With the help of rate equation numerical solution, an impact of saturable absorber parameters on generated Q-switched pulse properties was studied in plane wave approximation. Selected saturable absorbers were also investigated as a Q-switch and results were compared with the model.
Estimating canopy bulk density and canopy base height for interior western US conifer stands
Seth A. Ex; Frederick W. Smith; Tara L. Keyser; Stephanie A. Rebain
2016-01-01
Crown fire hazard is often quantified using effective canopy bulk density (CBD) and canopy base height (CBH). When CBD and CBH are estimated using nonlocal crown fuel biomass allometries and uniform crown fuel distribution assumptions, as is common practice, values may differ from estimates made using local allometries and nonuniform...
Estimating forest canopy bulk density using six indirect methods
Robert E. Keane; Elizabeth D. Reinhardt; Joe Scott; Kathy Gray; James Reardon
2005-01-01
Canopy bulk density (CBD) is an important crown characteristic needed to predict crown fire spread, yet it is difficult to measure in the field. Presented here is a comprehensive research effort to evaluate six indirect sampling techniques for estimating CBD. As reference data, detailed crown fuel biomass measurements were taken on each tree within fixed-area plots...
BDEN: A timesaving computer program for calculating soil bulk density and water content.
Lynn G. Starr; Michael J. Geist
1983-01-01
This paper presents an interactive computer program written in BASIC language that will calculate soil bulk density and moisture percentage by weight and volume. Coarse fragment weights are required. The program will also summarize the resulting data giving mean, standard deviation, and 95-percent confidence interval on one or more groupings of data.
Susceptibility of volcanic ash-influenced soil in northern Idaho to mechanical compaction
Deborah S. Page-Dumroese
1993-01-01
Timber harvesting and mechanical site preparation can reduce site productivity if they excessively disturb or compact the soil. Volcanic ash-influenced soils with low undisturbed bulk densities and rock content are particularly susceptible. This study evaluates the effects of harvesting and site preparation on changes in the bulk density of ash-influenced forest soils...
Soil Compaction Absent in Plantation Thinning
Tony King; Sharon Haines
1979-01-01
We examine the effects on soil bulk density by using a TH-105 Thinner Harvester and two forwarders in a mechanically thinned slash pine (Pinus elliottii Engelm.) plantation. Points in the machine tracks were sampled before and after harvesting at depths of 5 and 10 cm (2 and 4 in) for moisture and bulk density. Both the standard gravimetric method...
Experimental investigation of fire propagation in single live shrubs
Jing Li; Shankar Mahalingam; David R. Weise
2017-01-01
This work focuses broadly on individual, live shrubs and, more specifically, it examines bulk density in chaparral and its combined effects with wind and ignition location on the resulting fire behaviour. Empirical functions to predict bulk density as a function of height for 4-year-old chaparral were developed for two typical species of shrub fuels in southern...
Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.
2009-01-01
The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf
NASA Astrophysics Data System (ADS)
Cheema, Mohammad Arif; Barbosa, Silvia; Taboada, Pablo; Castro, Emilio; Siddiq, Mohammad; Mosquera, Víctor
2006-09-01
The thermodynamic properties of aqueous solutions of the tricyclic antidepressant amphiphilic phenothiazine drug thioridazine hydrochloride in the temperature range 20-50 °C and in the presence of ethanol have been measured. The phenothiazine tranquillizing drugs have interesting association characteristics that derive from their rigid, tricyclic hydrophobic groups. Thioridazine hydrochloride is a drug used in treatment of mental illness that shows side effects. Therefore, it is interesting to study the change of its physico-chemical properties with temperature and with the surrounding environment to understand the action mechanism of the drug. Densities, conductivities, and surface tension were measured to obtain surface and bulk solution properties. Critical concentrations, cc, at different temperatures and in the presence of ethanol, and partition coefficients, K, have been calculated, the latter using an indirect method based in the pseudophase model with the help of apparent molar volume data. This method has the advantage that allows calculating the distribution coefficients at solubilizate concentrations below the saturation. Conductivity data show two critical concentrations. The second critical concentration is not clear by density data. The effect of the alcohol is to decrease the first critical concentration due to a decrease in headgroup repulsion. The molar apparent volumes at infinite dilution and in the aggregate in water and in presence of ethanol have been also obtained.
Global modelling of plasma-wall interaction in reversed field pinches
NASA Astrophysics Data System (ADS)
Bagatin, M.; Costa, S.; Ortolani, S.
1989-04-01
The impurity production and deuterium recycling mechanisms in ETA—BETA II and RFX are firstly discussed by means of a simple model applicable to a stationary plasma interacting with the wall. This gives the time constant and the saturation values of the impurity concentration as a function of the boundary temperature and density. If the latter is sufficiently high, the impurity buildup in the main plasma becomes to some extent stabilized by the shielding effect of the edge. A self-consistent global model of the time evolution of an RFP plasma interacting with the wall is then described. The bulk and edge parameters are derived by solving the energy and particle balance equations incorporating some of the basic plasma-surface processes, such as sputtering, backscattering and desorption. The application of the model to ETA-BETA II confirms the impurity concentrations of the light and metal impurities as well as the time evolution of the average electron density found experimentally under different conditions. The model is then applied to RFX, a larger RFP experiment under construction, whose wall will be protected by a full graphite armour. The time evolution of the discharge shows that carbon sputtering could increase Zeff to ~ 4, but without affecting significantly the plasma performance.
Terreno, Enzo; Delli Castelli, Daniela; Violante, Elisabetta; Sanders, Honorius M H F; Sommerdijk, Nico A J M; Aime, Silvio
2009-01-01
The peculiar properties of osmotically shrunken liposomes acting as magnetic resonance imaging-chemical exchange saturation transfer (MRI-CEST) contrast agents have been investigated. Attention has been primarily devoted to assessing the contribution arising from encapsulated and incorporated paramagnetic lanthanide(III)-based shift reagents in determining the chemical shift of the intraliposomal water protons, which is a relevant factor for generating the CEST contrast. It is demonstrated that a highly shifted resonance for the encapsulated water can be attained by increasing the percentage of the amphiphilic shift reagent incorporated in the liposome bilayer. It is also demonstrated that the shift contribution arising from the bulk magnetic susceptibility can be optimized through the modulation of the osmotic shrinkage. In terms of sensitivity, it is shown that the saturation transfer efficiency can be significantly improved by increasing the size of the vesicle, thus allowing a high number of exchangeable protons to be saturated. In addition, the role played by the intensity of the saturating radiofrequency field has also been highlighted.
Ferreiro-Rangel, Carlos A; Gelb, Lev D
2013-06-13
Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials.
Nonlinear absorption properties of silicene nanosheets.
Zhang, Fang; Wang, Mengxia; Wang, Zhengping; Han, Kezhen; Liu, Xiaojuan; Xu, Xinguang
2018-06-01
As the cousins of graphene, i.e. same group IVA element, the nonlinear absorption (NLA) properties of silicene nanosheets were rarely studied. In this paper, we successfully exfoliated the two-dimensional silicene nanosheets from bulk silicon crystal using liquid phase exfoliation method. The NLA properties of silicene nanosheets were systemically investigated for the first time, as we have known. Silicene performed exciting saturable absorption and two photon absorption (2PA) behavior. The lower saturable intensity and larger 2PA coefficient at 532 nm excitation indicates that silicene has potential application in ultrafast lasers and optical limiting devices, especially in visible waveband.
Nonlinear absorption properties of silicene nanosheets
NASA Astrophysics Data System (ADS)
Zhang, Fang; Wang, Mengxia; Wang, Zhengping; Han, Kezhen; Liu, Xiaojuan; Xu, Xinguang
2018-06-01
As the cousins of graphene, i.e. same group IVA element, the nonlinear absorption (NLA) properties of silicene nanosheets were rarely studied. In this paper, we successfully exfoliated the two-dimensional silicene nanosheets from bulk silicon crystal using liquid phase exfoliation method. The NLA properties of silicene nanosheets were systemically investigated for the first time, as we have known. Silicene performed exciting saturable absorption and two photon absorption (2PA) behavior. The lower saturable intensity and larger 2PA coefficient at 532 nm excitation indicates that silicene has potential application in ultrafast lasers and optical limiting devices, especially in visible waveband.
Dynamic properties of quantum dot distributed feedback lasers
NASA Astrophysics Data System (ADS)
Su, Hui
Semiconductor quantum dots (QDs) are nano-structures with three-dimensional spatial confinement of electrons and holes, representing the ultimate case of the application of the size quantization concept to semiconductor hetero-structures. The knowledge about the dynamic properties of QD semiconductor diode lasers is essential to improve the device performance and understand the physics of the QDs. In this dissertation, the dynamic properties of QD distributed feedback lasers (DFBs) are studied. The response function of QD DFBs under external modulation is characterized and the gain compression with photon density is identified to be the limiting factor of the modulation bandwidth. The enhancement of the gain compression by the gain saturation with the carrier density in QDs is analyzed for the first time with suggestions to improve the high speed performance of the devices by increasing the maximum gain of the QD medium. The linewidth of the QD DFBs are found to be more than one order of magnitude narrower than that of conventional quantum well (QW) DFBs at comparable output powers. The figure of merit for the narrow linewidth is identified by the comparison between different semiconductor materials, including bulk, QWs and QDs. Linewidth rebroadening and the effects of gain offset are also investigated. The effects of external feedback on the QD DFBs are compared to QW DFBs. Higher external feedback resistance is found in QD DFBs with an 8-dB improvement in terms of the coherence collapse of the devices and 20-dB improvement in terms of the degradation of the signal-to-noise ratio under 2.5 Gbps modulation. This result enables the isolator-free operation of the QD DFBs in real communication systems based on the IEEE 802.3ae Ethernet standard. Finally, the chirp of QD DFBs is studied by time-resolved-chirp measurements. The wavelength chirping of the QD DFBs under 2.5 Gbps modulation is characterized. The above-threshold behavior of the linewidth enhancement factor in QDs is studied, in contrast to the below-threshold ones in most of the published data to-date. The strong dependence of the linewidth enhancement factor on the photon density is explained by the enhancement of gain compression by the gain saturation with the carrier density, which is related to the inhomogeneous broadening and spectral hole burning in QDs.
Randy Kolka; Aaron Steber; Ken Brooks; Charles H. Perry; Matt Powers
2012-01-01
Although a number of harvesting studies have assessed compaction, no study has considered the interacting relationships of harvest season, soil texture, and landscape position on soil bulk density and surface soil strength for harvests in the western Lake States. In 2005, we measured bulk density and surface soil strength in recent clearcuts of predominantly aspen...
Dennis M. Dudley; Kenneth W. Tate; Neil K. McDougald; Melvin R. George
2002-01-01
The objectives of this study were to compare soil-surface bulk density between rangeland pastures not grazed since 1935, 1975, and 1995 to grazed areas with a 15-year record of light (>1,000 lbs ac-1 RDM), moderate (600-800 lbs ac-1 RDM), and heavy (-1 RDM) grazing by beef cattle; and...
Michael P. Amaranthus; David E. Steinfeld
1997-01-01
This study evaluated the effect on soil bulk density of yarding small-diameter Douglas-fir (Pseudosuga menziesii var. glauca (Beissn.) Franco) with a small tractor. Levels of compaction were measured before yarding and after one trip, three trips, and six trips by the tractor. Bulk densities in the surface (10 cm) and...
Soil bulk density and soil moisture calculated with a FORTRAN 77 program.
G.L. Starr; J.M. Geist
1988-01-01
This paper presents an improved version of BDEN, an interactive computer program written in FORTRAN 77 that will calculate soil bulk density and moisture percentage by weight and volume. Calculations allow for deducting coarse fragment weight and volume. The program will also summarize the resulting data by giving the mean, standard deviation, and 95-percent confidence...
Preparation and Characterization of Ato Nanoparticles by Coprecipitation with Modified Drying Method
NASA Astrophysics Data System (ADS)
Liu, Shimin; Liang, Dongdong; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan
Antimony-doped tin oxide (ATO) nanoparticles were prepared by coprecipitation by packing drying and traditional direct drying (for comparison) methods. The as-prepared ATO nanoparticles were characterized by TG, XRD, EDS, TEM, HRTEM, BET, bulk density and electrical resistivity measurements. Results indicated that the ATO nanoparticles obtained by coprecipitation with direct drying method featured hard-agglomerated morphology, high bulk density, low surface area and low electrical resistivity, probably due to the direct liquid evaporation during drying, the fast shrinkage of the precipitate, the poor removal efficiency of liquid molecules and the hard agglomerate formation after calcination. Very differently, the ATO product obtained by the packing and drying method featured free-agglomerated morphology, low bulk density, high surface area and high electrical resistivity ascribed probably to the formed vapor cyclone environment and liquid evaporation-resistance, avoiding fast liquid removal and improving the removal efficiency of liquid molecules. The intrinsic formation mechanism of ATO nanoparticles from different drying methods was illustrated based on the dehydration process of ATO precipitates. Additionally, the packing and drying time played key roles in determining the bulk density, morphology and electrical conductivity of ATO nanoparticles.
Influence of wood-derived biochar on the compactibility and strength of silt loam soil
NASA Astrophysics Data System (ADS)
Ahmed, Ahmed; Gariepy, Yvan; Raghavan, Vijaya
2017-04-01
Biochar is proven to enhance soil fertility and increase crop productivity. Given that the influence of biochar on soil compaction remains unclear, selected physico-mechanical properties of soil amended with wood-derived biochar were assessed. For unamended silt loam, the bulk density, maximum bulk density, optimum moisture content, plastic limit, liquid limit, and plasticity index were 1.05 Mg m-3, 1.69 Mg m-3, 16.55, 17.1, 29.3, and 12.2%, respectively. The penetration resistance and shear strength of the unamended silt loam compacted in the standard compaction Proctor mold and at its optimum moisture content were 1800 kPa and 850 kPa, respectively. Results from amending the silt loam with 10% particle size ranges (0.5-212 μm) led to relative decreases of 18.1, 17.75, 66.66, and 97.4% in bulk density, maximum bulk density, penetration resistance, and shear strength, respectively; a 26.8% relative increase in optimum moisture content; along with absolute increases in plastic limit, liquid limit, and plasticity index of 5.3, 13.7, and 8.4%, respectively. While the biochar-amended silt loam soil was more susceptible to compaction, however, soil mechanical impedance enhanced.
The thermal and physical characteristics of the Gao-Guenie (H5) meteorite
NASA Astrophysics Data System (ADS)
Beech, Martin; Coulson, Ian M.; Nie, Wenshuang; McCausland, Phil
2009-06-01
Measurements of the bulk density, grain density, porosity, and magnetic susceptibility of 19 Gao-Guenie H5 chondrite meteorite samples are presented. We find average values of bulk density < ρbulk>=3.46±0.07 g/cm 3, grain density < ρgrain>=3.53±0.08 g/cm 3, porosity < P(%)>=2.46±1.39, and bulk mass magnetic susceptibility
Measurement of carrier transport and recombination parameter in heavily doped silicon
NASA Technical Reports Server (NTRS)
Swanson, Richard M.
1986-01-01
The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.
First-principles studies of electronic, transport and bulk properties of pyrite FeS2
NASA Astrophysics Data System (ADS)
Banjara, Dipendra; Malozovsky, Yuriy; Franklin, LaShounda; Bagayoko, Diola
2018-02-01
We present results from first principle, local density approximation (LDA) calculations of electronic, transport, and bulk properties of iron pyrite (FeS2). Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, total and partial densities of states, electron effective masses, and the bulk modulus. Our calculated indirect band gap of 0.959 eV (0.96), using an experimental lattice constant of 5.4166 Å, at room temperature, is in agreement with the measured indirect values, for bulk samples, ranging from 0.84 eV to 1.03 ± 0.05 eV. Our calculated bulk modulus of 147 GPa is practically in agreement with the experimental value of 145 GPa. The calculated, partial densities of states reproduced the splitting of the Fe d bands to constitute the dominant upper most valence and lower most conduction bands, separated by the generally accepted, indirect, experimental band gap of 0.95 eV.
Migration And Entrapment Of Mercury In The Subsurface
NASA Astrophysics Data System (ADS)
M, D.; Nambi, I. M.
2009-12-01
Elemental mercury is an immiscible liquid with high density and high surface tension. The movement of mercury in the saturated subsurface region is therefore considered a case of two phase flow involving mercury and water and is expected to be governed by gravity, viscous and capillary forces. Fundamental investigation into the migration and capillary entrapment of mercury in the subsurface was done by controlled laboratory capillary pressure saturation experiments using mercury and water as non wetting and wetting fluid respectively. Residual mercury saturation and van Genuchten’s capillary entrapment parameters were determined independently for different sizes of porous media. Based on the experimental data, theoretical investigations were done on the role of the three predominant forces and their influence on mercury migration and entrapment. The effects of fluid density and interfacial tension and the influence of Capillary and Bond number on mercury entrapment were analyzed with the help of similar capillary pressure - saturation experiments using Tetrachloroethylene (PCE)-water fluid pair. Mercury-water systems exhibited a low residual saturation of 0.02 and 0.07 as compared to 0.16 and 0.27 for PCE-water systems. Less residual mercury saturation, lack of apparent hysteresis in capillary pressure saturation curves and large variation in van Genuchten’s parameters 'α'(inverse of displacement pressure) and ‘n’ (pore size distribution index) for mercury-water systems compared to PCE-water systems were observed. These anomalies between the two systems elucidate that the capillary trapping is equally dependent on the fluid characteristics especially for high density immiscible fluids. Gravity force nevertheless a predominant controlling factor in the migration of highly dense mercury, is counteracted by not less trivial capillary force which was 1.22x104 times higher than gravity force. The capillary forces thus surmount the gravity forces and cause entrapment of mercury in the soil pores even in homogeneous porous medium system. Bond number (Bond number relates gravity and capillary forces) for mercury-water system was found to 2.5 times higher than PCE-water systems. Large density differences between mercury and water lead to high Bond number and thus less residual saturation. Capillary number (Capillary number relates viscous and capillary forces) was found to be less for mercury-water systems. Literature review unveils that low Capillary number does not influence non wetting residual saturation. But for high density mercury with natural infiltration, even low Capillary number influences residual saturation. With the alarming increase in number of mercury spill sites, results of this study showed a better understanding of the capillary entrapment phenomena and the extent of influence of each predominant force during displacement of highly dense mercury. The fundamental inputs to NAPL entrapment models were generated in this study for mercury for the first time. This data will be used to assess the distribution of mercury in contaminated sites and design suitable remedial alternatives.
[Study on nano-CaCO3 applicated in Xin Yue Shu Capsules preliminarily].
Jiang, Yan-Rong; Zhang, Zhen-Hai; Cui, Li; He, Jun-Jie; Hu, Shao-Ying; Jia, Xiao-Bin
2012-11-01
To investigate the characteristics of nano-CaCO3 applicated in Xin Yue Shu Capsules. Studied the effect of different dosages of aerosil or nano-CaCO3 on fluidity, bulk density, moisture absorption of Xin Yue Shu capsules spray drying powder. In vitro dissolution and ferulic acid stability of Xin Yue Shu capsules was observed. It significantly improved powder fluidity and bulk density of Xin Yue Shu spray drying powder when aerosil or nano-CaCO3 was added. But there was no significant effect on powder moisture absorption, ferulic acid in vitro dissolution and ferulic acid stability. The effect of Nano-CaCO3 on improving powder fluidity and bulk density applicated in the spray drying powder of traditional Chinese medicine deserves studying further.
NASA Astrophysics Data System (ADS)
Raeesi, Behrooz; Piri, Mohammad
2009-10-01
SummaryWe use a three-dimensional mixed-wet random pore-scale network model to investigate the impact of wettability and trapping on the relationship between interfacial area, capillary pressure and saturation in two-phase drainage and imbibition processes. The model is a three-dimensional network of interconnected pores and throats of various geometrical shapes. It allows multiple phases to be present in each capillary element in wetting and spreading layers, as well as occupying the center of the pore space. Two different random networks that represent the pore space in Berea and a Saudi Arabia reservoir sandstone are used in this study. We allow the wettability of the rock surfaces contacted by oil to alter after primary drainage. The model takes into account both contact angle and trapping hystereses. We model primary oil drainage and water flooding for mixed-wet conditions, and secondary oil injection for a water-wet system. The total interfacial area for pores and throats are calculated when the system is at capillary equilibrium. They include contributions from the arc menisci (AMs) between the bulk and corner fluids, and from the main terminal menisci (MTMs) between different bulk fluids. We investigate hysteresis in these relationships by performing water injection into systems of varying wettability and initial water saturation. We show that trapping and contact angle hystereses significantly affect the interfacial area. In a strongly water-wet system, a sharp increase is observed at the beginning of water flood, which shifts the area to a higher level than primary drainage. As we change the wettability of the system from strongly water-wet to strongly oil-wet, the trapped oil saturation decreases significantly. Starting water flood from intermediate water saturations, greater than the irreducible water saturation, can also affect the non-wetting phase entrapment, resulting in different interfacial area behaviors. This can increase the interfacial area significantly in oil-wet systems. A qualitative comparison of our results with the experimental data available in literature for glass beads shows, with some expected differences, an encouraging agreement. Also, our results agree well with those generated by the previously developed models.
Lan, Si; Wei, Xiaoya; Zhou, Jie; ...
2014-11-18
In-situ transmission electron microcopy and time-resolved neutron diffraction were used to study crystallization kinetics of two ternary bulk metallic glasses during isothermal annealing in the supercooled liquid region. It is found that the crystallization of Zr 56Cu 36Al 8, an average glass former, follows continuous nucleation and growth, while that of Zr 46Cu 46Al 8, a better glass former, is characterized by site-saturated nucleation, followed by slow growth. Possible mechanisms for the observed differences and the relationship to the glass forming ability are discussed.
Fracture Toughness Properties of Gd123 Superconducting Bulks
NASA Astrophysics Data System (ADS)
Fujimoto, H.; Murakami, A.
Fracture toughness properties of melt growth GdBa2Cu3Ox (Gd123) large single domain superconducting bulks with Ag2O of 10 wt% and Pt of 0.5 wt%; 45 mm in diameter and 25 mm in thickness with low void density were evaluated at 77 K through flexural tests of specimens cut from the bulks, and compared to those of a conventional Gd123 with voids. The densified Gd123 bulks were prepared with a seeding and temperature gradient method; first melt processed in oxygen, then crystal growth in air; two-step regulated atmosphere heat treatment. The plane strain fracture toughness, KIC was obtained by the three point flexure test of the specimens with through precrack, referring to the single edge pre-cracked beam (SEPB) method, according to the JIS-R-1607, Testing Methods for Fracture Toughness of High Performance Ceramics. The results show that the fracture toughness of the densified Gd123 bulk with low void density was higher than that of the standard Gd123 bulk with voids, as well as the flexural strength previously reported. We also compared the fracture toughness of as-grown bulks with that of annealed bulks. The relation between the microstructure and the fracture toughness of the Gd123 bulk was clearly shown.
Impact of saturation on the polariton renormalization in III-nitride based planar microcavities
NASA Astrophysics Data System (ADS)
Rossbach, Georg; Levrat, Jacques; Feltin, Eric; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas
2013-10-01
It has been widely observed that an increasing carrier density in a strongly coupled semiconductor microcavity (MC) alters the dispersion of cavity polaritons, below and above the condensation threshold. The interacting nature of cavity polaritons stems from their excitonic fraction being intrinsically subject to Coulomb interactions and the Pauli-blocking principle at high carrier densities. By means of injection-dependent photoluminescence studies performed nonresonantly on a GaN-based MC at various temperatures, it is shown that already below the condensation threshold saturation effects generally dominate over any energy variation in the excitonic resonance. This observation is in sharp contrast to the usually assumed picture in strongly coupled semiconductor MCs, where the impact of saturation is widely neglected. These experimental findings are confirmed by tracking the exciton emission properties of the bare MC active medium and those of a high-quality single GaN quantum well up to the Mott density. The systematic investigation of renormalization up to the polariton condensation threshold as a function of lattice temperature and exciton-cavity photon detuning is strongly hampered by photonic disorder. However, when overcoming the latter by averaging over a larger spot size, a behavior in agreement with a saturation-dominated polariton renormalization is revealed. Finally, a comparison with other inorganic material systems suggests that for correctly reproducing polariton renormalization, exciton saturation effects should be taken into account systematically.
CEST: from basic principles to applications, challenges and opportunities
Vinogradov, Elena; Sherry, A Dean; Lenkinski, Robert E
2012-01-01
Chemical Exchange Saturation Transfer (CEST) offers a new type of contrast for MRI that is molecule specific. In this approach, a slowly exchanging NMR active nucleus, typically a proton, possessing a chemical shift distinct from water is selectively saturated and the saturated spin is transferred to the bulk water via chemical exchange. Many molecules can act as CEST agents, both naturally occurring endogenous molecules and new types of exogenous agents. A large variety of molecules have been demonstrated as potential agents, including small diamagnetic molecules, complexes of paramagnetic ions, endogenous macromolecules, dendrimers and liposomes. In this review we described the basic principles of the CEST experiment, with emphasis on the similarity to earlier saturation transfer experiments described in the literature. Interest in quantitative CEST has also resulted in the development of new exchange-sensitive detection schemes. Some emerging clinical applications of CEST are described and the challenges and opportunities associated with translation of these methods to the clinical environment are discussed. PMID:23273841
Explicit use of the Biot coefficient in predicting shear-wave velocity of water-saturated sediments
Lee, M.W.
2006-01-01
Predicting the shear-wave (S-wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low-frequency approximation, the classical Biot-Gassmann theory relates the Biot coefficient to the bulk modulus of water-saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S-wave velocity can be calculated. The Biot coefficient derived from the compressional-wave (P-wave) velocity of water-saturated sediments often differs from and is less than that estimated from the S-wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P-wave velocities of water-saturated sediments measured at various differential pressures, an accurate method of predicting S-wave velocities is proposed. Numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agreewell with measured velocities. ?? 2006 European Association of Geoscientists & Engineers.
Long-term behavior of water content and density in an earthen liner
Frank, T.E.; Krapac, I.G.; Stark, T.D.; Strack, G.D.
2005-01-01
An extensively instrumented compacted earthen liner was constructed at the Illinois State Geological Survey facility in Champaign, III. in 1987. A pond of water 0.31 m deep was maintained on top of the 7.3 m ?? 14.6 m ?? 0.9 m thick liner for 14 years. One of the goals of the project was to evaluate the long-term performance of a compacted earthen liner by monitoring the long-term changes in water content and density. The water content of the earthen liner showed no trend with depth or time. The liner density remained essentially constant from construction through excavation in 2002. The liner did not become fully saturated. Upon excavation of the liner, the degree of saturation was 80.0??6.3% after 14 years of ponding under a hydraulic head of 0.31 m. The results imply that properly designed and constructed earthen liners may reduce the possibility of pollutants leaching from municipal solid waste containment facilities by remaining partially saturated for years and maintaining the placement density. Journal of Geotechnical and Geoenvironmental Engineering ?? ASCE.
Gain measurement of a CuBr laser by means of modified amplified spontaneous emission
NASA Astrophysics Data System (ADS)
Chan, W. C.; Liu, H. P.; Yen, S. H.; Chen, W. Y.; Lin, Y. H.; Chen, W. C.
1990-05-01
A modified amplified spontaneous emission technique has been introduced to measure the radial distributions of the gain and the saturation energy density of the output of a double-discharge pulsed CuBr laser. An asymmetric distribution of the gain was obtained. With the laser tube temperature at 420 °C, the peak value of the gain and the saturation energy density are 70 db/m and 85 μJ/cm3, respectively.
Preparation and characterization of starch-based loose-fill packaging foams
NASA Astrophysics Data System (ADS)
Fang, Qi
Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant difference existed in water absorption characteristics between foams made of regular and waxy starches. Empirical models were developed to correlate foam water absorption characteristics with relative humidity and polymer content. The developed models fit the data well with relatively small standard errors and uniformly scattered residual plots. Foams with higher polymer content had better abrasion resistance than did foams with lower polymer content.
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike
2017-05-01
To investigate the influences of dangling bonds on GaN nanowires surface, the differences in optoelectronic properties between H-saturated and unsaturated GaN nanowires are researched through first-principles study. The GaN nanowires along the [0001] growth direction with diameters of 3.7, 7.5 and 9.5 Å are considered. According to the results, H-saturated GaN nanowires are more stable than the unsaturated ones. With increasing nanowire diameter, unsaturated GaN nanowires become more stable, while the stability of H-saturated GaN nanowires has little change. After geometry optimization, the atomic displacements of unsaturated and H-saturated models are almost reversed. In (0001) crystal plane, Ga atoms tend to move inwards and N atoms tend to move outwards slightly for the unsaturated nanowires, while Ga atoms tend to move outwards and N atoms tend to move inwards slightly for the H-saturated nanowires. Besides, with increasing nanowire diameter, the conduction band minimum of H-saturated nanowire moves to the lower energy side, while that of the unsaturated nanowire changes slightly. The bandgaps of H-saturated nanowires are approaching to bulk GaN as the diameter increases. Absorption curves and reflectivity curves of the unsaturated and H-saturated nanowires exhibit the same trend with the change of energy except the H-saturated models which show larger variations. Through all the calculated results above, we can better understand the effects of dangling bonds on the optoelectronic properties of GaN nanowires and select more proper calculation models and methods for other calculations.
2016-02-05
electronic-resonance-enhanced CARS (ERE- CARS ) configuration is calculated. We demonstrate that while underdamping condition is a suffi- cient condition for...saturation of ERE- CARS with the long-pulse excitations, a transient-gain must be achieved to saturate ERE- CARS signal for ultrafast probe regime. We...ultrafast ERE- CARS . From a simplified analytical solution and a detailed numerical calculation based on density-matrix equations, the saturation threshold
Bulk density and compaction behavior of knife mill chopped switchgrass,wheat straw, and corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.
2009-08-01
Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5 18.4 kg/m3 for switchgrass, 36.1 8.6 kg/m3 for wheat straw, and 52.1 10.8 kg/m3 for corn stover. Mean tapped bulk densities were 81.8 26.2 kg/m3 for switchgrass, 42.8 11.7 kg/m3 for wheat straw, and 58.9 13.4 kg/m3 for corn stover. Percentage changes in compressibility duemore » to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2 51.5 for chopped wheat straw and 42.1 117.7 for chopped corn stover within the tested consolidation pressure range of 5 120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone s model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone s model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.« less
Chevanan, Nehru; Womac, Alvin R; Bitra, Venkata S P; Igathinathane, C; Yang, Yuechuan T; Miu, Petre I; Sokhansanj, Shahab
2010-01-01
Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5+/-18.4 kg/m(3) for switchgrass, 36.1+/-8.6 kg/m(3) for wheat straw, and 52.1+/-10.8 kg/m(3) for corn stover. Mean tapped bulk densities were 81.8+/-26.2 kg/m(3) for switchgrass, 42.8+/-11.7 kg/m(3) for wheat straw, and 58.9+/-13.4 kg/m(3) for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2-51.5 for chopped wheat straw and 42.1-117.7 for chopped corn stover within the tested consolidation pressure range of 5-120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone's model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone's model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.
Volume change associated with formation and dissociation of hydrate in sediment
Ruppel, Carolyn D.; Lee, J.Y.; Santamarina, J. Carlos
2017-01-01
Gas hydrate formation and dissociation in sediments are accompanied by changes in the bulk volume of the sediment and can lead to changes in sediment properties, loss of integrity for boreholes, and possibly regional subsidence of the ground surface over areas where methane might be produced from gas hydrate in the future. Experiments on sand, silts, and clay subject to different effective stress and containing different saturations of hydrate formed from dissolved phase tetrahydrofuran are used to systematically investigate the impact of gas hydrate formation and dissociation on bulk sediment volume. Volume changes in low specific surface sediments (i.e., having a rigid sediment skeleton like sand) are much lower than those measured in high specific surface sediments (e.g., clay). Early hydrate formation is accompanied by contraction for all soils and most stress states in part because growing gas hydrate crystals buckle skeletal force chains. Dilation can occur at high hydrate saturations. Hydrate dissociation under drained, zero lateral strain conditions is always associated with some contraction, regardless of soil type, effective stress level, or hydrate saturation. Changes in void ratio during formation-dissociation decrease at high effective stress levels. The volumetric strain during dissociation under zero lateral strain scales with hydrate saturation and sediment compressibility. The volumetric strain during dissociation under high shear is a function of the initial volume average void ratio and the stress-dependent critical state void ratio of the sediment. Other contributions to volume reduction upon hydrate dissociation are related to segregated hydrate in lenses and nodules. For natural gas hydrates, some conditions (e.g., gas production driven by depressurization) might contribute to additional volume reduction by increasing the effective stress.
NASA Astrophysics Data System (ADS)
Shah, M.; Satalkar, M.; Kane, S. N.; Ghodke, N. L.; Sinha, A. K.; Varga, L. K.; Teixeira, J. M.; Araujo, J. P.
2018-05-01
Effect of thermal annealing induced modification of structural, surface and bulk magnetic properties of Fe61.5Co5Ni8Si13.5B9Nb3 alloy is presented. The changes in properties were observed using synchrotron x-ray diffraction technique (SXRD), atomic force microscopy (AFM), magneto-optical kerr effect (MOKE) and bulk magnetic measurements. Significant variations on the both side of surface occur for the annealing temperature upto 500 °C promotes the surface crystallization. Surface roughness appears due to presence of nanocrystallization plays an important role in determining magnetic properties. Observed lower value of bulk coercivity Hc of 6.2 A/m annealed temperature at 450 °C/1 h ascribed to reduction of disorder as compared to the surface (both shiny and wheel side observed by MOKE measurement) whereas improvement of bulk saturation magnetization with annealing temperature indicates first near neighbor shell of Fe atoms are surrounded by Fe atoms. Evolution of coercivity of surface and bulk with annealing temperature has been presented in conjunction with the structural observations.
Deborah Page-Dumroese
2005-01-01
Moving equipment and logs over the surface of forest soils causes gouges and ruts in the mineral soil, displaces organic matter, and can cause compaction. Compaction is the component of soil productivity most influenced by forest management, but the degree to which soils may be compacted depends on initial soil bulk density. For example, low bulk density soils (such as...
Establishment and early growth of conifers on compact soils in urban areas
Robert P. Zisa; Howard G. Halverson; Benjamin B. Stout
1979-01-01
A study of pitch pine, Austrian pine, and Norway spruce on two different urban soils compacted to bulk densities of 1.2, 1.3, 1.6, and 1.8 gcm-3 and maintained at high water potentials showed that all three species could become established from seed at high soil bulk densities. Pitch pine was the most suceessful species in establishment...
NASA Astrophysics Data System (ADS)
Iveson, Simon M.
2003-06-01
Pietruszczak and coworkers (Internat. J. Numer. Anal. Methods Geomech. 1994; 18(2):93-105; Comput. Geotech. 1991; 12( ):55-71) have presented a continuum-based model for predicting the dynamic mechanical response of partially saturated granular media with viscous interstitial liquids. In their model they assume that the gas phase is distributed uniformly throughout the medium as discrete spherical air bubbles occupying the voids between the particles. However, their derivation of the air pressure inside these gas bubbles is inconsistent with their stated assumptions. In addition the resultant dependence of gas pressure on liquid saturation lies outside of the plausible range of possible values for discrete air bubbles. This results in an over-prediction of the average bulk modulus of the void phase. Corrected equations are presented.
NASA Astrophysics Data System (ADS)
Bennett, B.
2016-02-01
Many fisheries are threatened due to overfishing, changing climate, and anthropogenic activities. Benthic marine organisms can be especially vulnerable to these pressures because of their inability to flee, and some of these organisms comprise the most threatened fisheries. Providing predictive tools to managers is key to reestablishing populations and sustainability in threatened or crashed fisheries. Here we examine the demographics of Cellana spp., culturally and culinarily important intertidal shellfishes in Hawai'i, in populations that are naturally recruitment limited and those that are recruitment saturated. We focus on variation in two demographic parameters: population density and size class frequency. From 2009 to 2015, yearly transect surveys were conducted on four isolated and uninhabited islands within the Papahānaumokuākea Marine National Monument (PMNM), a massive marine protected area. Two islands exhibit classic signs of recruitment limitation with several absent intertidal species and low population densities while two larger islands have a relative abundance of species and high population densities. The population density of C. exarata in the recruitment-saturated populations exhibit much higher variability, than in the recruitment-limited populations, that is driven by a massive recruitment peak in May-June. An inverted age pyramid characterized the recruitment-limited populations, which display a more stable adult-dominated population. The recruitment-saturated populations were characterized by a traditional age pyramid, which exhibit a less stable juvenile-dominated population. These results are being used to model and predict population dynamics in the intensely harvested populations of the main Hawaiian Islands for the purposes of management decision-making.
High-intensity sound in air saturated fibrous bulk porous materials
NASA Technical Reports Server (NTRS)
Kuntz, H. L., II
1982-01-01
The interaction high-intensity sound with bulk porous materials in porous materials including Kevlar 29 is reported. The nonlinear behavior of the materials was described by dc flow resistivity tests. Then acoustic propagation and reflection were measured and small signal broadband measurements of phase speed and attenuation were carried out. High-intensity tests were made with 1, 2, and 3 kHz tone bursts to measure harmonic generation and extra attenuation of the fundamental. Small signal standing wave tests measured impedence between 0.1 and 3.5 kHz. High level tests with single cycle tone bursts at 1 to 4 kHz show that impedance increases with intensity. A theoretical analysis is presented for high-porosity, rigid-frame, isothermal materials. One dimensional equations of motion are derived and solved by perturbation. The experiments show that there is excess attenuation of the fundamental component and in some cases a close approach to saturation. A separate theoretical model, developed to explain the excess attenuation, yields predictions that are in good agreement with the measurements. Impedance and attenuation at high intensities are modeled.
Sensitivity of simulated snow cloud properties to mass-diameter parameterizations.
NASA Astrophysics Data System (ADS)
Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.
2015-12-01
Mass to diameter (m-D) relationships are used in model parameterization schemes to represent ice cloud microphysics and in retrievals of bulk cloud properties from remote sensing instruments. One of the most common relationships, used in the current Global Precipitation Measurement retrieval algorithm for example, assigns the density of snow as a constant tenth of the density of ice (0.1g/m^3). This assumption stands in contrast to the results of derived m-D relationships of snow particles, which imply decreasing particle densities at larger sizes and result in particle masses orders of magnitude below the constant density relationship. In this study, forward simulations of bulk cloud properties (e.g., total water content, radar reflectivity and precipitation rate) derived from measured size distributions using several historical m-D relationships are presented. This expands upon previous studies that mainly focused on smaller ice particles because of the examination of precipitation-sized particles here. In situ and remote sensing data from the GPM Cold season Experiment (GCPEx) and Canadian CloudSAT/Calypso Validation Program (C3VP), both synoptic snowstorm field experiments in southern Ontario, Canada, are used to evaluate the forward simulations against total water content measured by the Nevzorov and Cloud Spectrometer and Impactor (CSI) probe, radar reflectivity measured by a C band ground based radar and a nadir pointing Ku/Ka dual frequency airborne radar, and precipitation rate measured by a 2D video disdrometer. There are differences between the bulk cloud properties derived using varying m-D relations, with constant density assumptions producing results differing substantially from the bulk measured quantities. The variability in bulk cloud properties derived using different m-D relations is compared against the natural variability in those parameters seen in the GCPEx and C3VP field experiments.
Yu, Bingsong; Dong, Hailiang; Jiang, Hongchen; Lv, Guo; Eberl, Dennis D.; Li, Shanying; Kim, Jinwook
2009-01-01
The role of saline lake sediments in preserving organic matter has long been recognized. In order to further understand the preservation mechanisms, the role of clay minerals was studied. Three sediment cores, 25, 57, and 500 cm long, were collected from Qinghai Lake, NW China, and dissected into multiple subsamples. Multiple techniques were employed, including density fractionation, X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), total organic carbon (TOC) and carbon compound analyses, and surface area determination. The sediments were oxic near the water-sediment interface, but became anoxic at depth. The clay mineral content was as much as 36.8%, consisting mostly of illite, chlorite, and halloysite. The TEM observations revealed that organic matter occurred primarily as organic matter-clay mineral aggregates. The TOC and clay mineral abundances are greatest in the mid-density fraction, with a positive correlation between the TOC and mineral surface area. The TOC of the bulk sediments ranges from 1 to 3% with the non-hydrocarbon fraction being predominant, followed by bitumen, saturated hydrocarbon, aromatic hydrocarbons, and chloroform-soluble bitumen. The bimodal distribution of carbon compounds of the saturated hydrocarbon fraction suggests that organic matter in the sediments was derived from two sources: terrestrial plants and microorganisms/algae. Depthrelated systematic changes in the distribution patterns of the carbon compounds suggest that the oxidizing conditions and microbial abundance near the water-sediment interface promote degradation of labile organic matter, probably in adsorbed form. The reducing conditions and small microbial biomass deeper in the sediments favor preservation of organic matter, because of the less labile nature of organic matter, probably occurring within clay mineral-organic matter aggregates that are inaccessible to microorganisms. These results have important implications for our understanding of mechanisms of organic matter preservation in saline lake sediments.
Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl
Belton, M.J.S.; Chapmant, C.R.; Thomas, P.C.; Davies, M.E.; Greenberg, R.; Klaasen, K.; Byrnes, D.; D'Amario, L.; Synnott, S.; Johnson, T.V.; McEwen, A.; Merline, W.J.; Davis, D.R.; Petit, J.-M.; Storrs, A.; Veverka, J.; Zellner, B.
1995-01-01
DURING its reconnaissance of the asteroid 243 Ida, the Galileo spacecraft returned images of a second object, 1993(243)1 Dactyl1 - the first confirmed satellite of an asteroid. Sufficient data were obtained on the motion of Dactyl to determine its orbit as a function of Ida's mass. Here we apply statistical and dynamical arguments to constrain the range of possible orbits, and hence the mass of Ida. Combined with the volume of Ida2, this yields a bulk density of 2.6??0.5 g cm-3. Allowing for the uncertainty in the porosity of Ida, this density range is consistent with a bulk chondritic composition, and argues against some (but not all) classes of meteoritic igneous rock types that have been suggested as compositionally representative of S-type asteroids like Ida.
Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl
Belton, M.J.S.; Chapman, C.R.; Thomas, P.C.; Davies, M.E.; Greenberg, R.; Klaasen, K.; Byrnes, D.; D'Amario, L.; Synnott, S.; Johnson, T.V.; McEwen, A.; Merline, W.J.; Davis, D.R.; Petit, J.-M.; Storrs, A.; Veverka, J.; Zellner, B.
1995-01-01
DURING its reconnaissance of the asteroid 243 Ida, the Galileo spacecraft returned images of a second object, 1993(243)1 Dactyl1 - the first confirmed satellite of an asteroid. Sufficient data were obtained on the motion of Dactyl to determine its orbit as a function of Ida's mass. Here we apply statistical and dynamical arguments to constrain the range of possible orbits, and hence the mass of Ida. Combined with the volume of Ida2, this yields a bulk density of 2.6 ?? 0.5 g cm-3. Allowing for the uncertainty in the porosity of Ida, this density range is consistent with a bulk chon-dritic composition, and argues against some (but not all) classes of meteoritic igneous rock types that have been suggested as compositionally representative of S-type asteroids like Ida. ?? 2002 Nature Publishing Group.
First-principles studies of electronic, transport and bulk properties of pyrite FeS2
NASA Astrophysics Data System (ADS)
Banjara, Dipendra; Mbolle, Augustine; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola
We present results of ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of pyrite FeS2. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) formalism, following the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method requires successive, self consistent calculations with increasing basis sets to reach the ground state of the system under study. We report the band structure, the band gap, total and partial densities of states, effective masses, and the bulk modulus. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.
Thermodynamic Properties of HCFC142b
NASA Astrophysics Data System (ADS)
Fukushima, Masato; Watanabe, Naohiro
Thermodynamic properties of HCFC142b,namely saturated densities,vapor pressures and PVT properties,were measured and the critical parameters were determined through those experimental results. The correlations for vpor pressure, saturated liquid density and PVT properties deduced from those experimental results were compared with the measured data and also with the estimates of the other correlations published in literatures. The thermodynamic functions,such as enthalpy,entropy,heat capacity and etc.,could be considered to be reasonab1y estimatedby the expression reported in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusakov, E. Z., E-mail: Evgeniy.Gusakov@mail.ioffe.ru; Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Irzak, M. A., E-mail: irzak@mail.ioffe.ru
The most probable scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an electron cyclotron extraordinary wave has been analyzed. Within this scenario two upperhybrid plasmons at frequencies close to half the pump wave frequency radially trapped in the vicinity of the local maximum of the plasma density profile are excited due to the excitation of primary instability. The primary instability saturation results from the decays of the daughter upper-hybrid waves into secondary upperhybrid waves that are also radially trapped in the vicinity of the local maximum of the plasma density profile and ion Bernstein waves.
Milchev, Andrey; Egorov, Sergei A; Binder, Kurt
2017-03-01
Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.
The viscosity of the refrigerant 1,1-difluoroethane along the saturation line
NASA Astrophysics Data System (ADS)
van der Gulik, P. S.
1993-07-01
The viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) has been measured along the saturation line both in the saturated liquid and in the saturated vapor. The data have been obtained every 10 K from 243 up to 393 K by means of a vibrating-wire viscometer using the free damped oscillation method. The density along the saturation line was calculated from the equation of state given by Tamatsu et al. with application of the saturated vapor-pressure correlation given by Higashi et al. An interesting result is that in the neighborhood of the critical point, the kinematic viscosity of the saturated liquid seems to coincide with that of the saturated vapor. The results for the saturated liquid are in satisfying agreement with those of Kumagai and Takahashi and of Phillips and Murphy. A comparison of the saturatedvaport data with the unsaturated-vapor data of Takahashi et al. shows some discrepancies.
Use of vertical temperature gradients for prediction of tidal flat sediment characteristics
Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei
2012-01-01
Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.
Johanna D. Landsberg; Richard E. Miller; Harry W. Anderson; Jeffrey S. Tepp
2003-01-01
Bulk density and soil resistance to penetration were measured in ten, 3- to 11-ha operational units in overstocked, mixed-conifer stands in northeast Washington. Resistance was measured with a recording penetrometer to the 33-cm depth (13 in) at 10 stations on each of 8 to 17, 30.5-m-long, randomly located transects in each unit. Subsequently, different combinations of...
Effect of Alkali Concentration on Fly Ash Geopolymers
NASA Astrophysics Data System (ADS)
Fatimah Azzahran Abdullah, Siti; Yun-Ming, Liew; Bakri, Mohd Mustafa Al; Cheng-Yong, Heah; Zulkifly, Khairunnisa; Hussin, Kamarudin
2018-03-01
This paper presents the effect of NaOH concentration on fly ash geopolymers with compressive up to 56 MPa at 12M. The physical and mechanical on fly ash geopolymer are investigated. Test results show that the compressive strength result complied with bulk density result whereby the higher the bulk density, the higher the strength. Thus, the lower water absorption and porosity due to the increasing of NaOH concentration.
Disruption rates for one vulnerable soil in Organ Pipe Cactus National Monument, Arizona, USA
Webb, Robert H.; Esque, Todd C.; Nussear, Kenneth E.; Sturm, Mark
2013-01-01
Rates of soil disruption from hikers and vehicle traffic are poorly known, particularly for arid landscapes. We conducted an experiment in Organ Pipe Cactus National Monument (ORPI) in western Arizona, USA, on an air-dry very fine sandy loam that is considered to be vulnerable to disruption. We created variable-pass tracks using hikers, an all-terrain vehicle (ATV), and a four-wheel drive vehicle (4WD) and measured changes in cross-track topography, penetration depth, and bulk density. Hikers (one pass = 5 hikers) increased bulk density and altered penetration depth but caused minimal surface disruption up to 100 passes; a minimum of 10 passes were required to overcome surface strength of this dry soil. Both ATV and 4WD traffic significantly disrupted the soil with one pass, creating deep ruts with increasing passes that rendered the 4WD trail impassable after 20 passes. Despite considerable soil loosening (dilation), bulk density increased in the vehicle trails, and lateral displacement created berms of loosened soil. This soil type, when dry, can sustain up to 10 passes of hikers but only one vehicle pass before significant soil disruption occurs; greater disruption is expected when soils are wet. Bulk density increased logarithmically with applied pressure from hikers, ATV, and 4WD.
Zhu, Han-hua; Huang, Dao-you; Liu, Shou-long; Zhu, Qi-hong
2007-11-01
Two typical land-use types, i.e., newly cultivated slope land and mellow upland, were selected to investigate the effects of ex situ rice straw incorporation on the organic matter content, field water-holding capacity, bulk density, and porosity of hilly red soil, and to approach the correlations between these parameters. The results showed that ex situ incorporation of rice straw increased soil organic matter content, ameliorated soil physical properties, and improved soil water storage. Comparing with non-fertilization and applying chemical fertilizers, ex situ incorporation of rice straw increased the contents of organic matter (5.8%-28.9%) and > 0.25 mm water-stable aggregates in 0-20 cm soil layer, and increased the field water-holding capacity (6.8%-16.2%) and porosity (4.8%-7.7%) significantly (P < 0.05) while decreased the bulk density (4.5%-7.5%) in 10-15 cm soil layer. The organic matter content in 0-20 cm soil layer was significantly correlated to the bulk density, porosity, and field water-holding capacity in 10-15 cm soil layer (P < 0.01), and the field water-holding capacity in 0-20 cm and 10-15 cm soil layers was significantly correlated to the bulk density and porosity in these two layers (P < 0.05).
Natural gas storage with activated carbon from a bituminous coal
Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.
1996-01-01
Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.
Darvas, Mária; Gilányi, Tibor; Jedlovszky, Pál
2011-02-10
Competitive adsorption of a neutral amphiphilic polymer, namely poly(ethylene oxide) (PEO) and an ionic surfactant, i.e., sodium dodecyl sulfate (SDS), is investigated at the free water surface by computer simulation methods at 298 K. The sampled equilibrium configurations are analyzed in terms of the novel identification of the truly interfacial molecules (ITIM) method, by which the intrinsic surface of the aqueous phase (i.e., its real surface corrugated by the capillary waves) instead of an ideally flat surface approximating its macroscopic surface plane, can be taken into account. In the simulations, the surface density of SDS is gradually increased from zero up to saturation, and the structural, dynamical, and energetic aspects of the gradual squeezing out of the PEO chains from the surface are analyzed in detail. The obtained results reveal that this squeezing out occurs in a rather intricate way. Thus, in the presence of a moderate amount of SDS the majority of the PEO monomer units, forming long bulk phase loops in the absence of SDS, are attracted to the surface of the solution. This synergistic effect of SDS of moderate surface density on the adsorption of PEO is explained by two factors, namely by the electrostatic attraction between the ionic groups of the surfactant and the moderately polar monomer units of the polymer, and by the increase of the conformational entropy of the polymer chain in the presence of the surfactant. This latter effect, thought to be the dominant one among the above two factors, also implies the formation of similar polymer/surfactant complexes at the interface than what are known to exist in the bulk phase of the solution. Finally, in the presence of a large amount of SDS the more surface active surfactant molecules gradually replace the PEO monomer units at the interfacial positions, and squeezing out the PEO molecules from the surface in a monomer unit by monomer unit manner.
Soil porosity correlation and its influence in percolation dynamics
NASA Astrophysics Data System (ADS)
Rodriguez, Alfredo; Capa-Morocho, Mirian; Ruis-Ramos, Margarita; Tarquis, Ana M.
2016-04-01
The prediction of percolation in natural soils is relevant for modeling root growth and optimizing infiltration of water and nutrients. Also, it would improve our understanding on how pollutants as pesticides, and virus and bacteria (Darnault et al., 2003) reach significant depths without being filtered out by the soil matrix (Beven and Germann, 2013). Random walk algorithms have been used successfully to date to characterize the dynamical characteristics of disordered media. This approach has been used here to describe how soil at different bulk densities and with different threshold values applied to the 3D gray images influences the structure of the pore network and their implications on particle flow and distribution (Ruiz-Ramos et al., 2009). In order to do so first we applied several threshold values to each image analyzed and characterized them through Hurst exponents, then we computed random walks algorithms to calculate distances reached by the particles and speed of those particles. At the same time, 3D structures with a Hurst exponent of ca 0.5 and with different porosities were constructed and the same random walks simulations were replicated over these generated structures. We have found a relationship between Hurst exponents and the speed distribution of the particles reaching percolation of the total soil depth. REFERENCES Darnault, C.J. G., P. Garnier, Y.J. Kim, K.L. Oveson, T.S. Steenhuis, J.Y. Parlange, M. Jenkins, W.C. Ghiorse, and P. Baveye (2003), Preferential transport of Cryptosporidium parvum oocysts in variably saturated subsurface environments, Water Environ. Res., 75, 113-120. Beven, Keith and Germann, Peter. 2013. Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071-3092. DOI: 10.1002/wrcr.20156. Ruiz-Ramos, M., D. del Valle, D. Grinev, and A.M. Tarquis. 2009. Soil hydraulic behaviour at different bulk densities. Geophysical Research Abstracts, 11, EGU2009-6234.
Equation of State for Isospin Asymmetric Nuclear Matter Using Lane Potential
NASA Astrophysics Data System (ADS)
Basu, D. N.; Chowdhury, P. Roy; Samanta, C.
2006-10-01
A mean field calculation for obtaining the equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe--Weizsäcker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi--Wapstra--Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the constants of density dependence are determined, EOS for asymmetric nuclear matter is calculated by adding to the isoscalar part, the isovector component of the M3Y interaction that do not contribute to the EOS of symmetric nuclear matter. These EOS are then used to calculate the pressure, the energy density and the velocity of sound in symmetric as well as isospin asymmetric nuclear matter.
Benchmarking variable-density flow in saturated and unsaturated porous media
NASA Astrophysics Data System (ADS)
Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas
2015-04-01
In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.
NASA Technical Reports Server (NTRS)
Mcdaniel, J. C., Jr.
1982-01-01
Laser induced fluorescence is an attractive nonintrusive approach for measuring molecular number density in compressible flows although this technique does not produce a signal that is directly related to the number density. Saturation and frequency detuned excitation are explored as means for minimizing the quenching effect using iodine as the molecular system because of its convenient absorption spectrum. Saturation experiments indicate that with available continuous wave laser sources of Gaussian transverse intensity distribution only partial saturation could be achieved in iodine at the pressures of interest in gas dynamics. Using a fluorescence lineshape theory, it is shown that for sufficiently large detuning of a narrow bandwidth laser from a molecular transition, the quenching can be cancelled by collisional broadening over a large range of pressures and temperatures. Experimental data obtained in a Mach 4.3 underexpanded jet of nitrogen seeded with iodine for various single mode argon laser detunings from a strong iodine transition at 5145 A are discussed.
Physical properties of the Nankai inner accretionary prism at Site C0002, IODP Expedition 348
NASA Astrophysics Data System (ADS)
Kitamura, Manami; Kitajima, Hiroko; Henry, Pierre; Valdez, Robert; Josh, Matthew
2014-05-01
Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of 2.68 g/cm3 and 2.72 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density (2.66-2.70 g/cm3), but higher bulk density (2.05-2.41 g/cm3) and lower porosity (37-18%), respectively. The grain density agreement suggests that the measurements on both bulk cuttings and intact cuttings are of good quality, and the differences in porosity and density are real, but the values from the bulk cuttings are affected strongly by artifacts of the drilling process. Thus, the bulk density and porosity data on handpicked cuttings are better representative of formation properties. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical conductivity and P-wave velocity on discrete samples, which were prepared from both cuttings and core samples in the depth interval of 1745.5-3058.5 mbsf, range 0.15-0.9 S/m and 1.7-4.5 km/s, respectively. The electrical resistivity (a reciprocal of conductivity) on discrete samples is generally higher than the LWD resistivity data but the overall depth trends are similar. On the other hand, the P-wave velocity on discrete samples is lower than the LWD P-wave velocity between 2200 mbsf and 2600 mbsf, while the P-wave velocity on discrete samples and LWD P-wave velocity are in a closer agreement below 2600 mbsf. The electrical conductivity and P-wave velocity on discrete samples corrected for in-situ pressure and temperature will be presented. The shipboard physical properties measurements on cuttings are very limited but can be useful with careful treatment and observation.
Gillespie, Dirk
2014-11-01
Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.
Inspection of wood density by spectrophotometry and a diffractive optical element based sensor
NASA Astrophysics Data System (ADS)
Palviainen, Jari; Silvennoinen, Raimo
2001-03-01
Correlation among gravimetric, spectrophotometric and radiographic data from dried wood samples of Scots pine (Pinus sylvestris L) was observed. A diffractive optical element (DOE) based sensor was applied to investigate density variations as well as optical anisotropy inside year rings of the wood samples. The correlation between bulk density of wood and spectrophotometric data (reflectance and transmittance) was investigated for the wavelength range 200-850 nm and the highest correlation was found at wavelengths from 800 to 850 nm. The correlation at this wavelength was smaller than the correlation between bulk density and radiography data. The DOE sensor was found to be capable of sensing anisotropy of the wood samples inside the year ring.
Calculation of density of states of transition metals: From bulk sample to nanocluster
NASA Astrophysics Data System (ADS)
Krasavin, Andrey V.; Borisyuk, Petr V.; Vasiliev, Oleg S.; Zhumagulov, Yaroslav V.; Kashurnikov, Vladimir A.; Kurelchuk, Uliana N.; Lebedinskii, Yuriy Yu.
2018-03-01
A technique is presented of restoring the electronic density of states of the valence band from data of X-ray photoelectron spectroscopy (XPS). The originality of the technique consists in using a stochastic procedure to solve an integral equation relating the density of states and the experimental X-ray photoelectron spectra via the broadening function. To obtain the broadening function, only the XPS spectra of the core levels are needed. The results are presented for bulk sample of gold and tungsten and nanoclusters of tantalum; the possibility of using the results to determine the density of states of low-dimensional structures, including ensembles of metal nanoclusters, is demonstrated.
Dynamic behavior of the interface of striplike structures in driven lattice gases
NASA Astrophysics Data System (ADS)
Saracco, Gustavo P.; Albano, Ezequiel V.
2008-09-01
In this work, the dynamic behavior of the interfaces in both the standard and random driven lattice gas models (DLG and RDLG, respectively) is investigated via numerical Monte Carlo simulations in two dimensions. These models consider a lattice gas of density ρ=1/2 with nearest-neighbor attractive interactions between particles under the influence of an external driven field applied along one fixed direction in the case of the DLG model, and a randomly varying direction in the case of the RDLG model. The systems are also in contact with a reservoir at temperature T . Those systems undergo a second-order nonequilibrium phase transition between an ordered state characterized by high-density strips crossing the sample along the driving field, and a quasilattice gas disordered state. For T≲Tc , the average interface width of the strips (W) was measured as a function of the lattice size and the anisotropic shape factor. It was found that the saturation value Wsat2 only depends on the lattice size parallel to the external field axis Ly and exhibits two distinct regimes: Wsat2∝lnLy for low temperatures, that crosses over to Wsat2∝Ly2αI near the critical zone, αI=1/2 being the roughness exponent of the interface. By using the relationship αI=1/(1+ΔI) , the anisotropic exponent for the interface of the DLG model was estimated, giving ΔI≃1 , in agreement with the computed value for anisotropic bulk exponent ΔB in a recently proposed theoretical approach. At the crossover region between both regimes, we observed indications of bulk criticality. The time evolution of W at Tc was also monitored and shows two growing stages: first one observes that W∝lnt for several decades, and in the following times one has W∝tβI , where βI is the dynamic exponent of the interface width. By using this value we estimated the dynamic critical exponent of the correlation length in the perpendicular direction to the external field, giving z⊥I≈4 , which is consistent with the dynamic exponent of the bulk critical transition z⊥B in both theoretical approaches developed for the standard model. A similar scenario was also observed in the RDLG model, suggesting that both models may belong to the same universality class.
NASA Astrophysics Data System (ADS)
Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee
2015-11-01
The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolghadr, S. H.; Jafari, S., E-mail: sjafari@guilan.ac.ir; Raghavi, A.
2016-05-15
Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FELmore » has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.« less
Theoretical research on bandgap of H-saturated Ga1-xAlxN nanowires
NASA Astrophysics Data System (ADS)
Xia, Sihao; Liu, Lei; Kong, Yike; Wang, Honggang; Wang, Meishan
2017-01-01
Based on first-principles plane-wave ultra-soft pseudopotential method, bandgaps of Ga1-xAlxN nanowires with different diameters and different Al constituents are calculated. After the optimization of the model, the bandgaps are achieved. According to the results, the bandgap of Ga1-xAlxN decreases with increasing diameter and finally, closed to that of the bulk. In addition, with increasing Al constituent, the bandgaps of Ga1-xAlxN nanowires increase. However, the amount of the increase is lower than that of the bulk Ga1-xAlxN with the increase of Al constituent.
Accurate bulk density determination of irregularly shaped translucent and opaque aerogels
NASA Astrophysics Data System (ADS)
Petkov, M. P.; Jones, S. M.
2016-05-01
We present a volumetric method for accurate determination of bulk density of aerogels, calculated from extrapolated weight of the dry pure solid and volume estimates based on the Archimedes' principle of volume displacement, using packed 100 μm-sized monodispersed glass spheres as a "quasi-fluid" media. Hard particle packing theory is invoked to demonstrate the reproducibility of the apparent density of the quasi-fluid. Accuracy rivaling that of the refractive index method is demonstrated for both translucent and opaque aerogels with different absorptive properties, as well as for aerogels with regular and irregular shapes.
Lee, Myung W.; Collett, Timothy S.
2005-01-01
Physical properties of gas-hydrate-bearing sediments depend on the pore-scale interaction between gas hydrate and porous media as well as the amount of gas hydrate present. Well log measurements such as proton nuclear magnetic resonance (NMR) relaxation and electromagnetic propagation tool (EPT) techniques depend primarily on the bulk volume of gas hydrate in the pore space irrespective of the pore-scale interaction. However, elastic velocities or permeability depend on how gas hydrate is distributed in the pore space as well as the amount of gas hydrate. Gas-hydrate saturations estimated from NMR and EPT measurements are free of adjustable parameters; thus, the estimations are unbiased estimates of gas hydrate if the measurement is accurate. However, the amount of gas hydrate estimated from elastic velocities or electrical resistivities depends on many adjustable parameters and models related to the interaction of gas hydrate and porous media, so these estimates are model dependent and biased. NMR, EPT, elastic-wave velocity, electrical resistivity, and permeability measurements acquired in the Mallik 5L-38 well in the Mackenzie Delta, Canada, show that all of the well log evaluation techniques considered provide comparable gas-hydrate saturations in clean (low shale content) sandstone intervals with high gas-hydrate saturations. However, in shaly intervals, estimates from log measurement depending on the pore-scale interaction between gas hydrate and host sediments are higher than those estimates from measurements depending on the bulk volume of gas hydrate.
Acoustoelectric current saturation in c-axis fiber-textured polycrystalline zinc oxide films
NASA Astrophysics Data System (ADS)
Pompe, T.; Srikant, V.; Clarke, D. R.
1996-12-01
Acoustoelectric current saturation, which until now has only been observed in piezoelectric single crystals, is observed in thin polycrystalline zinc oxide films. Epitaxial ZnO films on c-plane sapphire and textured ZnO polycrystalline films on fused silica both exhibit current saturation phenomenon. The values of the saturation current densities are in the range 105-106 A/cm2, depending on the carrier concentration in the film, with corresponding saturation electric fields of 3-5×103 V/cm. In addition to the current saturation, the electrical properties of the films degraded with the onset of the acoustoelectric effect but could be restored by annealing at 250 °C in a vacuum for 30 min.
Trapping effects in irradiated and avalanche-injected MOS capacitors
NASA Technical Reports Server (NTRS)
Bakowski, M.; Cockrum, R. H.; Zamani, N.; Maserjian, J.; Viswanathan, C. R.
1978-01-01
The trapping parameters for holes, and for electrons in the presence of trapped holes, have been measured from a set of wafers with different oxide thickness processed under controlled conditions. The trap cross-sections and densities indicate at least three trap species, including an interfacial species, a dominant bulk species which is determined to tail off from the silicon interface, and a third, lower density bulk species that is distributed throughout the oxide.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1983-09-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody selfconsistently into the theory a contact theorem, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. The interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1984-12-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
NASA Astrophysics Data System (ADS)
Zhang, Ziying; Zhang, Huizhen; Zhao, Hui; Yu, Zhishui; He, Liang; Li, Jin
2015-04-01
The crystal structures, electronic structures, thermodynamic and mechanical properties of Mg2Ni alloy and its saturated hydride with different Mn-doping contents are investigated using first-principles density functional theory. The lattice parameters for the Mn-doped Mg2Ni alloys and their saturated hydrides decreased with an increasing Mn-doping content because of the smaller atomic size of Mn compared with that of Mg. Analysis of the formation enthalpies and electronic structures reveal that the partial substitution of Mg with Mn reduces the stability of Mg2Ni alloy and its saturated hydride. The calculated elastic constants indicate that, although the partial substitution of Mg with Mn lowers the toughness of the hexagonal Mg2Ni alloy, the charge/discharge cycles are elevated when the Mn-doping content is high enough to form the predicted intermetallic compound Mg3MnNi2.
A flux-limited treatment for the conductive evaporation of spherical interstellar gas clouds
NASA Technical Reports Server (NTRS)
Dalton, William W.; Balbus, Steven A.
1993-01-01
In this work, we present and analyze a new analytic solution for the saturated (flux-limited) thermal evaporation of a spherical cloud. This work is distinguished from earlier analytic studies by allowing the thermal conductivity to change continuously from a diffusive to a saturated form, in a manner usually employed only in numerical calculations. This closed form solution will be of interest as a computational benchmark. Using our calculated temperature profiles and mass-loss rates, we model the thermal evaporation of such a cloud under typical interstellar medium (ISM) conditions, with some restrictions. We examine the ionization structure of the cloud-ISM interface and evaluate column densities of carbon, nitrogen, oxygen, neon, and silicon ions toward the cloud. In accord with other investigations, we find that ionization equilibrium is far from satisfied under the assumed conditions. Since the inclusion of saturation effects in the heat flux narrows the thermal interface relative to its classical structure, we also find that saturation effects tend to lower predicted column densities.
Methane hydrate formation in partially water-saturated Ottawa sand
Waite, W.F.; Winters, W.J.; Mason, D.H.
2004-01-01
Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.
Multipactor saturation in parallel-plate waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorolla, E.; Mattes, M.
2012-07-15
The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. Themore » impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.« less
Implications of the observed Pluto-Charon density contrast
NASA Astrophysics Data System (ADS)
Bierson, C. J.; Nimmo, F.; McKinnon, W. B.
2018-07-01
Observations by the New Horizons spacecraft have determined that Pluto has a larger bulk density than Charon by 153 ± 44 kg m-3 (2σ uncertainty). We use a thermal model of Pluto and Charon to determine if this density contrast could be due to porosity variations alone, with Pluto and Charon having the same bulk composition. We find that Charon can preserve a larger porous ice layer than Pluto due to its lower gravity and lower heat flux but that the density contrast can only be explained if the initial ice porosity is ≳ 30%, extends to ≳100 km depth and Pluto retains a subsurface ocean today. We also find that other processes such as a modern ocean on Pluto, self-compression, water-rock interactions, and volatile (e.g., CO) loss cannot, even in combination, explain this difference in density. Although an initially high porosity cannot be completely ruled out, we conclude that it is more probable that Pluto and Charon have different bulk compositions. This difference could arise either from forming Charon via a giant impact, or via preferential loss of H2O on Pluto due to heating during rapid accretion.
Riedel, Michael; Collett, Timothy S.; Kim, H.-S.; Bahk, J.-J.; Kim, J.-H.; Ryu, B.-J.; Kim, G.-Y.
2013-01-01
Gas hydrate saturation estimates were obtained from an Archie-analysis of the Logging-While-Drilling (LWD) electrical resistivity logs under consideration of the regional geological framework of sediment deposition in the Ulleung Basin, East Sea, of Korea. Porosity was determined from the LWD bulk density log and core-derived values of grain density. In situ measurements of pore-fluid salinity as well as formation temperature define a background trend for pore-fluid resistivity at each drill site. The LWD data were used to define sets of empirical Archie-constants for different depth-intervals of the logged borehole at all sites drilled during the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2). A clustering of data with distinctly different trend-lines is evident in the cross-plot of porosity and formation factor for all sites drilled during UBGH2. The reason for the clustering is related to the difference between hemipelagic sediments (mostly covering the top ∼100 mbsf) and mass-transport deposits (MTD) and/or the occurrence of biogenic opal. For sites located in the north-eastern portion of the Ulleung Basin a set of individual Archie-parameters for a shallow depth interval (hemipelagic) and a deeper MTD zone was achieved. The deeper zone shows typically higher resistivities for the same range of porosities seen in the upper zone, reflecting a shift in sediment properties. The presence of large amounts of biogenic opal (up to and often over 50% as defined by XRD data) was especially observed at Sites UBGH2-2_1 and UBGH2-2_2 (as well as UBGH1-9 from a previous drilling expedition in 2007). The boundary between these two zones can also easily be identified in gamma-ray logs, which also show unusually low readings in the opal-rich interval. Only by incorporating different Archie-parameters for the different zones a reasonable estimate of gas hydrate saturation was achieved that also matches results from other techniques such as pore-fluid freshening, velocity-based calculations, and pressure-core degassing experiments. Seismically, individual boundaries between zones were determined using a grid of regional 2D seismic data. Zoning from the Archie-analysis for sites in the south-western portion of the Ulleung Basin was also observed, but at these sites it is linked to individually stacked MTDs only and does not reflect a mineralogical occurrence of biogenic opal or hemipelagic sedimentation. The individual MTD events represent differently compacted material often associated with a strong decrease in porosity (and increase in density), warranting a separate set of empirical Archie-parameters.
NASA Astrophysics Data System (ADS)
Maji, Tuhin Kumar; Pal, Samir Kumar; Karmakar, Debjani
2018-04-01
We aim at comparing the electronic properties of topological insulator Sb2S3 in bulk and Nanorod using density-functional scheme and investigating the effects of Se-doping at chalcogen-site. While going from bulk to nano, there is a drastic change in the band gap due to surface-induced strain. However, the trend of band gap modulation with increased Se doping is more prominent in bulk. Interestingly, Se-doping introduces different type of carriers in bulk and nano.
Walls, anomalies, and deconfinement in quantum antiferromagnets
NASA Astrophysics Data System (ADS)
Komargodski, Zohar; Sulejmanpasic, Tin; Ünsal, Mithat
2018-02-01
We consider the Abelian-Higgs model in 2 +1 dimensions with instanton-monopole defects. This model is closely related to the phases of quantum antiferromagnets. In the presence of Z2 preserving monopole operators, there are two confining ground states in the monopole phase, corresponding to the valence bond solid (VBS) phase of quantum magnets. We show that the domain wall carries a 't Hooft anomaly in this case. The anomaly can be saturated by, e.g., charge-conjugation breaking on the wall or by the domain wall theory becoming gapless (a gapless model that saturates the anomaly is S U (2) 1 WZW). Either way the fundamental scalar particles (i.e., spinons) which are confined in the bulk are deconfined on the domain wall. This Z2 phase can be realized either with spin-1/2 on a rectangular lattice or spin-1 on a square lattice. In both cases the domain wall contains spin-1/2 particles (which are absent in the bulk). We discuss the possible relation to recent lattice simulations of domain walls in VBS. We further generalize the discussion to Abrikosov-Nielsen-Olsen (ANO) vortices in a dual superconductor of the Abelian-Higgs model in 3 +1 dimensions and to the easy-plane limit of antiferromagnets. In the latter case the wall can undergo a variant of the BKT transition (consistent with the anomalies) while the bulk is still gapped. The same is true for the easy-axis limit of antiferromagnets. We also touch upon some analogies to Yang-Mills theory.
NASA Astrophysics Data System (ADS)
Choi, C.; Baek, Y.; Lee, B. M.; Kim, K. H.; Rim, Y. S.
2017-12-01
We report solution-processed, amorphous indium-gallium-zinc-oxide-based (a-IGZO-based) thin-film transistors (TFTs). Our proposed solution-processed a-IGZO films, using a simple spin-coating method, were formed through nitrate ligand-based metal complexes, and they were annealed at low temperature (250 °C) to achieve high-quality oxide films and devices. We investigated solution-processed a-IGZO TFTs with various thicknesses, ranging from 4 to 16 nm. The 4 nm-thick TFT films had smooth morphology and high-density, and they exhibited excellent performance, i.e. a high saturation mobility of 7.73 ± 0.44 cm2 V-1 s-1, a sub-threshold swing of 0.27 V dec-1, an on/off ratio of ~108, and a low threshold voltage of 3.10 ± 0.30 V. However, the performance of the TFTs degraded as the film thickness was increased. We further performed positive and negative bias stress tests to examine their electrical stability, and it was noted that the operating behavior of the devices was highly stable. Despite a small number of free charges, the high performance of the ultrathin a-IGZO TFTs was attributed to the small effect of the thickness of the channel, low bulk resistance, the quality of the a-IGZO/SiO2 interface, and high film density.
NASA Astrophysics Data System (ADS)
Majchrowski, A.; Ebothe, J.; Ozga, K.; Kityk, I. V.; Reshak, A. H.; Lukasiewicz, T.; Brik, M. G.
2010-01-01
It is shown that BiB3O6 : Tm3+ glass nanoparticles incorporated into polymethylmethacrylate (PMMA) and polycarbonate (PC) polymer matrices show good second-order susceptibilities under bicolour coherent laser treatment. It is found that only during incorporation into highly polarized PC matrices could one observe an enhancement of the second-order susceptibilities with increasing laser treated power densities. The main increase is observed for all samples at power densities equal to about 0.4 GW cm-2. After passing this value there is a saturation of the output susceptibilities and even an abrupt decrease. The most striking feature is the achievement of second-order susceptibilities equal to about 5 pm V-1 for samples containing 4% nanoparticle (NP) content in the PC matrix. A further increase in the NP concentration to 6% leads to a decrease in susceptibility to 15%. In the case of PMMA matrices these changes do not exceed the background. The same situation is present for the pure BIBO and low-doped Tm materials. The effect is maximal for a low concentration of Tm—about 0.75%. In the case of bulk glasses the intensity dependences of the second-harmonic generation unambiguously show that the achieved maximal values of second-order susceptibilities do not exceed 3 pm V-1 for 0.5% Tm concentration.
Vertical nanowire heterojunction devices based on a clean Si/Ge interface.
Chen, Lin; Fung, Wayne Y; Lu, Wei
2013-01-01
Different vertical nanowire heterojunction devices were fabricated and tested based on vertical Ge nanowires grown epitaxially at low temperatures on (111) Si substrates with a sharp and clean Si/Ge interface. The nearly ideal Si/Ge heterojuctions with controlled and abrupt doping profiles were verified through material analysis and electrical characterizations. In the nSi/pGe heterojunction diode, an ideality factor of 1.16, subpicoampere reverse saturation current, and rectifying ratio of 10(6) were obtained, while the n+Si/p+Ge structure leads to Esaki tunnel diodes with a high peak tunneling current of 4.57 kA/cm(2) and negative differential resistance at room temperature. The large valence band discontinuity between the Ge and Si in the nanowire heterojunctions was further verified in the p+Si/pGe structure, which shows a rectifying behavior instead of an Ohmic contact and raises an important issue in making Ohmic contacts to heterogeneously integrated materials. A raised Si/Ge structure was further developed using a self-aligned etch process, allowing greater freedom in device design for applications such as the tunneling field-effect transistor (TFET). All measurement data can be well-explained and fitted with theoretical models with known bulk properties, suggesting that the Si/Ge nanowire system offers a very clean heterojunction interface with low defect density, and holds great potential as a platform for future high-density and high-performance electronics.
Large-Velocity Saturation in Thin-Film Black Phosphorus Transistors.
Chen, Xiaolong; Chen, Chen; Levi, Adi; Houben, Lothar; Deng, Bingchen; Yuan, Shaofan; Ma, Chao; Watanabe, Kenji; Taniguchi, Takashi; Naveh, Doron; Du, Xu; Xia, Fengnian
2018-05-22
A high saturation velocity semiconductor is appealing for applications in electronics and optoelectronics. Thin-film black phosphorus (BP), an emerging layered semiconductor, shows a high carrier mobility and strong mid-infrared photoresponse at room temperature. Here, we report the observation of high intrinsic saturation velocity in 7 to 11 nm thick BP for both electrons and holes as a function of charge-carrier density, temperature, and crystalline direction. We distinguish a drift velocity transition point due to the competition between the electron-impurity and electron-phonon scatterings. We further achieve a room-temperature saturation velocity of 1.2 (1.0) × 10 7 cm s -1 for hole (electron) carriers at a critical electric field of 14 (13) kV cm -1 , indicating an intrinsic current-gain cutoff frequency ∼20 GHz·μm for radio frequency applications. Moreover, the current density is as high as 580 μA μm -1 at a low electric field of 10 kV cm -1 . Our studies demonstrate that thin-film BP outperforms silicon in terms of saturation velocity and critical field, revealing its great potential in radio-frequency electronics, high-speed mid-infrared photodetectors, and optical modulators.
Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys.
Kadam, R H; Alone, Suresh T; Gaikwad, Anil S; Birajdar, A P; Shirsath, Sagar E
2014-06-01
Ferrite samples with a chemical formula Co0.5Ni0.5Al(x)Fe(2-x)O4 (where x = 0.0, 0.25, 0.5, 0.75 and 1.0) were synthesized by sol-gel auto-combustion method. The synthesized samples were annealed at 600 degrees C for 4 h. An analysis of X-ray diffraction (XRD) patterns reveals the formation of single phase cubic spinel structure. The lattice parameter decreased linearly with the increasing Al content x. Nano size of the powders were confirmed by the transmission electron micrographs (TEM). Particle size, bulk density decreased whereas specific surface area and porosity of the samples increased with the Al substitution. Cation distribution of constituent ions shows linear dependence of Al substitution. Based on the cation distribution obtained from XRD data, structural parameters such as lattice parameters, ionic radii of available sites and the oxygen parameter 'u' is calculated. Saturation magnetization (M(s)), magneton number (n(B)) and coercivity (H(c)) decreased with the Al substitution. Possible explanation for the observed structural and magnetic behavior with various Al content are discussed.
Gas Hydrate Estimation Using Rock Physics Modeling and Seismic Inversion
NASA Astrophysics Data System (ADS)
Dai, J.; Dutta, N.; Xu, H.
2006-05-01
ABSTRACT We conducted a theoretical study of the effects of gas hydrate saturation on the acoustic properties (P- and S- wave velocities, and bulk density) of host rocks, using wireline log data from the Mallik wells in the Mackenzie Delta in Northern Canada. We evaluated a number of gas hydrate rock physics models that correspond to different rock textures. Our study shows that, among the existing rock physics models, the one that treats gas hydrate as part of the solid matrix best fits the measured data. This model was also tested on gas hydrate hole 995B of ODP leg 164 drilling at Blake Ridge, which shows adequate match. Based on the understanding of rock models of gas hydrates and properties of shallow sediments, we define a procedure that quantifies gas hydrate using rock physics modeling and seismic inversion. The method allows us to estimate gas hydrate directly from seismic information only. This paper will show examples of gas hydrates quantification from both 1D profile and 3D volume in the deepwater of Gulf of Mexico.
Soil physics and chemistry at a medieval ridge and furrow site in northeastern Germany
NASA Astrophysics Data System (ADS)
Hirsch, Florian; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Schneider, Anna; Raab, Alexandra; Raab, Thomas
2017-04-01
The usage of non-reversible ploughs, mainly during the Middle Ages and until historic times, led to the formation of ridge and furrow systems. Due to improvements of agricultural techniques, these historic agricultural sites were often abandoned and are now marginal land. The parallel ridges and furrows are usually, if not destroyed by later conventional ploughing, preserved in present-day forests. In northeastern Germany ridge and furrow systems are normally several decameters long and up to ten meters wide. The height difference between ridge top and furrow bottom is up to 50 centimeters and is expected to cause significant contrasts of soil properties and vegetation. Furthermore, due to the abandonment of sites with ridges and furrows, soils on these sites are unique archives for studies on fertilization, soil carbon dynamics and soil development. Therefore, we are characterizing soil physics (bulk density, saturated soil hydraulic conductivity, texture) and soil chemistry (soil acidity, carbon and nitrogen content) on a type location of historic ridges and furrows about 100 km northwest of Berlin.
The solvent component of macromolecular crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine
2015-04-30
On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-04-01
Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-07-01
Seismic waves travelling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency-dependent Pwave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The Pwave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyse their effect on the mesoscopic loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Microwave dielectric spectrum of rocks
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.
1988-01-01
A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).
Titov, V N; Kotlovskii, M Yu; Pokrovskii, A A; Kotlovskaia, O S; Osedko, A V; Titova, N M; Kotlovskii, Yu V; Digaii, A M
2015-04-01
The hypolipidemic effect of statins is realized by inhibition of synthesis of local pool of cholesterol spirit in endoplasmic net of hepatocytes. The cholesterol spirit covers all hydrophobic medium of triglycerides with polar mono layer of phosphatidylcholines and cholesterol spirit prior to secretion of lipoproteins of very low density into hydrophilic medium. The lesser mono layer between lipase enzyme and triglycerides substrate contains of cholesterol spirit the higher are the parameters of hydrolysis of palmitic and oleic lipoproteins of very low density. The sequence of effect of statins is as follows: blocking of synthesis in hepatocytes and decreasing of content of unesterified cholesterol spirit in blood plasma; activation of hydrolysis of triglycerides in palmitic and oleic lipoproteins of very low density; formation of ligand lipoproteins of very low density and their absorption by cells by force of apoB-100 endocytosis; decreasing in blood of content of polyenoic fatty acids, equimolar esterified by cholesterol spirit, polyethers of cholesterol spirit and decreasing of level of cholesterol spirit-lipoproteins of very low density. There is no way to eliminate aphysiological effect of disordered biological function of trophology (nutrition) on metabolism of fatty acids in population by means of pharmaceuticals intake. It is necessary to eliminate aphysiological effect of environment. To decrease rate of diseases of cardiovascular system one has to decrease in food content of saturated fatty acids and in the first instance palmitic saturated fatty acid, trans-form fatty acid, palmitoleic fatty acids up to physiological values and increase to the same degree the content of polyenoic fatty acids. The saturated fatty acids block absorption of polyenoic fatty acids by cells. The atherosclerosis is a deficiency of polyenoic fatty acids under surplus of palmitic saturated fatty acid.
Liquid densities and vapor pressures of 1-chloro-1, 1-difluorethane (HCFC 142b)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maezawa, Yl; Sato, H.; Watanabe, K.
1991-04-01
In this paper, thirty-six saturated liquid densities of HCFC 142b (1-chloro-1,1-difluoroethane) are measured in a range of temperatures from 210 to 400 K. Twelve vapor pressures, from 320 to 400 K, and six compressed liquid PVT properties, from 320 to 360 K and of pressures up to 2 MPa, are also measured. All measurements were made by a magnetic densimeter coupled with a variable volume cell. The experimental uncertainties in temperature, pressure, and density were estimated to be not greater than [plus minus]15 mK, [plus minus]10 kPa, and [plus minus]0.2%, respectively. The purity of the sample used was 99.8 wtmore » % or better. The simple correlation for the saturated liquid density of HCFC 142b was developed.« less
Mason C. Carter; Thomas J. Dean; Ziyin Wang; Ray A. Newbold
2006-01-01
At four sites in the Gulf Coastal Plain, mechanical whole-tree harvesting (MWT) removed from biomass and nutrients than hand-fell bole-only harvesting (HFBO). Soil compaction and loblolly pine (Pinus taeda L.) regeneration growth varied among sites. At one location, MWT increased soil bulk density by 0.1 Mgm-3, from 1.14 to 1....
Spherical nitroguanidine process
Sanchez, John A.; Roemer, Edward L.; Stretz, Lawrence A.
1990-01-01
A process of preparing spherical high bulk density nitroguanidine by dissing low bulk density nitroguanidine in N-methyl pyrrolidone at elevated temperatures and then cooling the solution to lower temperatures as a liquid characterized as a nonsolvent for the nitroguanidine is provided. The process is enhanced by inclusion in the solution of from about 1 ppm up to about 250 ppm of a metal salt such as nickel nitrate, zinc nitrate or chromium nitrate, preferably from about 20 to about 50 ppm.
Idealized simulation of the Colorado hailstorm case: comparison of bulk and detailed microphysics
NASA Astrophysics Data System (ADS)
Geresdi, I.
One of the purposes of the Fourth Cloud Modeling Workshop was to compare different microphysical treatments. In this paper, the results of a widely used bulk treatment and five versions of a detailed microphysical model are presented. Sensitivity analysis was made to investigate the effect of bulk parametrization, ice initiation technique, CCN concentration and collision efficiency of rimed ice crystal-drop collision. The results show that: (i) The mixing ratios of different species of hydrometeors calculated by bulk and one of the detailed models show some similarity. However, the processes of hail/graupel formation are different in the bulk and the detailed models. (ii) Using different ice initiation in the detailed models' different processes became important in the hail and graupel formation. (iii) In the case of higher CCN concentration, the mixing ratio of liquid water, hail and graupel were more sensitive to the value of collision efficiency of rimed ice crystal-drop collision. (iv) The Bergeron-Findeisen process does not work in the updraft core of a convective cloud. The vapor content was always over water saturation; moreover, the supersaturation gradually increased after the appearance of precipitation ice particles.
Xia, Xianping; Xie, Changsheng; Zhu, Changhong; Cai, Shuizhou; Yang, Xiangliang
2007-08-01
To investigate the damage of endometrium caused by the implanted Cu/low-density polyethylene (LDPE) nanocomposite and the contraceptive effect of this novel copper-containing intrauterine device material. Experimental animal study. TongJi Medical College of Huazhong University of Science and Technology. Sixty healthy female mice. Twenty mice received no implants, 20 mice received the Cu/LDPE nanocomposite, and 20 mice received bulk copper. Morphologic features of the endometrium, contraceptive effect, and surface condition of the implanted implants. The contraceptive effect of both the Cu/LDPE nanocomposite and bulk copper is 100%, the damage of the endometrium caused by the Cu/LDPE nanocomposite is much less than that caused by bulk copper, and the surface of the implanted Cu/LDPE nanocomposite is much smoother and much softer than that of the implanted bulk copper. The contraceptive effect of the Cu/LDPE nanocomposite is comparable with that of bulk copper, and the damage of the endometrium caused by the Cu/LDPE nanocomposite is much less than that caused by bulk copper. The endometrium injury is related to the surface condition of the implanted intrauterine device material.
Foam shell cryogenic ICF target
Darling, Dale H.
1987-01-01
A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.
Strain and Ni substitution induced ferromagnetism in LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Vinod; Kumar, Rajesh; Kumar, Ravi
2018-05-01
We have grown epitaxial strained films of LaCoO3 and LaCo0.7Ni0.3O3 on LaAlO3 (100) substrate via pulsed laser deposition. Superconducting quantum interference device magnetization measurements show that, unlike its bulk counterpart, the ground state of the strained LaCoO3 on LAO is ferromagnetic. The saturation magnetization has been found increase strongly from a value of 118 emu/cm3 to 350 emu/ cm3 for Ni substituted thin film. Present study reveals that strain can stabilize FM order in these thin films down to low temperature, which can further be tuned to higher saturation magnetization with the Ni substitution.
A low-dimensional analogue of holographic baryons
NASA Astrophysics Data System (ADS)
Bolognesi, Stefano; Sutcliffe, Paul
2014-04-01
Baryons in holographic QCD correspond to topological solitons in the bulk. The most prominent example is the Sakai-Sugimoto model, where the bulk soliton in the five-dimensional spacetime of AdS-type can be approximated by the flat space self-dual Yang-Mills instanton with a small size. Recently, the validity of this approximation has been verified by comparison with the numerical field theory solution. However, multi-solitons and solitons with finite density are currently beyond numerical field theory computations. Various approximations have been applied to investigate these important issues and have led to proposals for finite density configurations that include dyonic salt and baryonic popcorn. Here we introduce and investigate a low-dimensional analogue of the Sakai-Sugimoto model, in which the bulk soliton can be approximated by a flat space sigma model instanton. The bulk theory is a baby Skyrme model in a three-dimensional spacetime with negative curvature. The advantage of the lower-dimensional theory is that numerical simulations of multi-solitons and finite density solutions can be performed and compared with flat space instanton approximations. In particular, analogues of dyonic salt and baryonic popcorn configurations are found and analysed.
Zeng, L. F.; Gao, R.; Xie, Z. M.; Miao, S.; Fang, Q. F.; Wang, X. P.; Zhang, T.; Liu, C. S.
2017-01-01
Traditional nanostructured metals are inherently comprised of a high density of high-energy interfaces that make this class of materials not stable in extreme conditions. Therefore, high performance bulk nanostructured metals containing stable interfaces are highly desirable for extreme environments applications. Here, we reported an attractive bulk Cu/V nanolamellar composite that was successfully developed by integrating interface engineering and severe plastic deformation techniques. The layered morphology and ordered Cu/V interfaces remained stable with respect to continued rolling (total strain exceeding 12). Most importantly, for layer thickness of 25 nm, this bulk Cu/V nanocomposite simultaneously achieves high strength (hardness of 3.68 GPa) and outstanding thermal stability (up to 700 °C), which are quite difficult to realize simultaneously in traditional nanostructured materials. Such extraordinary property in our Cu/V nanocomposite is achieved via an extreme rolling process that creates extremely high density of stable Cu/V heterophase interfaces and low density of unstable grain boundaries. In addition, high temperature annealing result illustrates that Rayleigh instability is the dominant mechanism driving the onset of thermal instability after exposure to 800 °C. PMID:28094346
3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples
NASA Technical Reports Server (NTRS)
Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.
2015-01-01
In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible
High density crystalline boron prepared by hot isostatic pressing in refractory metal containers
Hoenig, C.L.
1993-08-31
Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.
High density crystalline boron prepared by hot isostatic pressing in refractory metal containers
Hoenig, Clarence L.
1993-01-01
Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.
High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers
Hoenig, Clarence L.
1994-01-01
Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2200.degree. C. and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made.
High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers
Hoenig, C.L.
1994-08-09
Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2,200 C and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made. 1 fig.
Nonequilibrium electrokinetic effects in beds of ion-permselective particles.
Leinweber, Felix C; Tallarek, Ulrich
2004-12-21
Electrokinetic transport of fluorescent tracer molecules in a bed of porous glass beads was investigated by confocal laser scanning microscopy. Refractive index matching between beads and the saturating fluid enabled a quantitative analysis of intraparticle and extraparticle fluid-side concentration profiles. Kinetic data were acquired for the uptake and release of electroneutral and counterionic tracer under devised conditions with respect to constant pressure-driven flow through the device and the effect of superimposed electrical fields. Transport of neutral tracer is controlled by intraparticle mass transfer resistance which can be strongly reduced by electroosmotic flow, while steady-state distributions and bead-averaged concentrations are unaffected by the externally applied fields. Electrolytes of low ionic strength caused the transport through the charged (mesoporous) beads to become highly ion-permselective, and concentration polarization is induced in the bulk solution due to the superimposed fields. The depleted concentration polarization zone comprises extraparticle fluid-side mass transfer resistance. Ionic concentrations in this diffusion boundary layer decrease at increasing field strength, and the flux densities approach an upper limit. Meanwhile, intraparticle transport of counterions by electromigration and electroosmosis continues to increase and finally exceeds the transport from bulk solution into the beads. A nonequilibrium electrical double layer is induced which consists of mobile and immobile space charge regions in the extraparticle bulk solution and inside a bead, respectively. These electrical field-induced space charges form the basis for nonequilibrium electrokinetic phenomena. Caused by the underlying transport discrimination (intraparticle electrokinetic vs extraparticle boundary-layer mass transfer), the dynamic adsorption capacity for counterions can be drastically reduced. Further, the extraparticle mobile space charge region leads to nonlinear electroosmosis. Flow patterns can become highly chaotic, and electrokinetic instability mixing is shown to increase lateral dispersion. Under these conditions, the overall axial dispersion of counterionic tracer can be reduced by more than 2 orders of magnitude, as demonstrated by pulse injections.
Why do gallium clusters have a higher melting point than the bulk?
Chacko, S; Joshi, Kavita; Kanhere, D G; Blundell, S A
2004-04-02
Density functional molecular dynamical simulations have been performed on Ga17 and Ga13 clusters to understand the recently observed higher-than-bulk melting temperatures in small gallium clusters [Phys. Rev. Lett. 91, 215508 (2003)
Bulk synthesis of monodisperse magnetic FeNi3 nanopowders by flow levitation method.
Chen, Shanjun; Chen, Yan; Kang, Xiaoli; Li, Song; Tian, Yonghong; Wu, Weidong; Tang, Yongjian
2013-10-01
In this work, a novel bulk synthesis method for monodisperse FeNi3 nanoparticles was developed by flow levitation method (FL). The Fe and Ni vapours ascending from the high temperature levitated droplet was condensed by cryogenic Ar gas under atmospheric pressure. X-ray diffraction was used to identify and characterize the crystal phase of prepared powders exhibiting a FeNi3 phase. The morphology and size of nanopowders were observed by transmission electron microscopy (TEM). The chemical composition of the nanoparticles was determined with energy dispersive spectrometer (EDS). The results indicated that the FeNi3 permalloy powders are nearly spherical-shaped with diameter about 50-200 nm. Measurement of the magnetic property of nanopowders by a superconducting quantum interference device (SQUID, Quantum Design MPMS-7) showed a symmetric hysteresis loop of ferromagnetic behavior with coercivity of 220 Oe and saturation magnetization of 107.17 emu/g, at 293 K. At 5 K, the obtained saturation magnetization of the sample was 102.16 emu/g. The production rate of FeNi3 nanoparticles was estimated to be about 6 g/h. This method has great potential in mass production of FeNi3 nannoparticles.
Improved Saturated Hydraulic Conductivity Pedotransfer Functions Using Machine Learning Methods
NASA Astrophysics Data System (ADS)
Araya, S. N.; Ghezzehei, T. A.
2017-12-01
Saturated hydraulic conductivity (Ks) is one of the fundamental hydraulic properties of soils. Its measurement, however, is cumbersome and instead pedotransfer functions (PTFs) are often used to estimate it. Despite a lot of progress over the years, generic PTFs that estimate hydraulic conductivity generally don't have a good performance. We develop significantly improved PTFs by applying state of the art machine learning techniques coupled with high-performance computing on a large database of over 20,000 soils—USKSAT and the Florida Soil Characterization databases. We compared the performance of four machine learning algorithms (k-nearest neighbors, gradient boosted model, support vector machine, and relevance vector machine) and evaluated the relative importance of several soil properties in explaining Ks. An attempt is also made to better account for soil structural properties; we evaluated the importance of variables derived from transformations of soil water retention characteristics and other soil properties. The gradient boosted models gave the best performance with root mean square errors less than 0.7 and mean errors in the order of 0.01 on a log scale of Ks [cm/h]. The effective particle size, D10, was found to be the single most important predictor. Other important predictors included percent clay, bulk density, organic carbon percent, coefficient of uniformity and values derived from water retention characteristics. Model performances were consistently better for Ks values greater than 10 cm/h. This study maximizes the extraction of information from a large database to develop generic machine learning based PTFs to estimate Ks. The study also evaluates the importance of various soil properties and their transformations in explaining Ks.
Leslie, Timothy; Pawloski, Lisa; Kallman-Price, Jillian; Escheik, Carey; Hossain, Noreen; Fang, Yun; Gerber, Lynn H; Younossi, Zobair M
2014-01-01
Obesity, a complex disease determined both by genetic and environmental factors, is strongly associated with NAFLD, and has been demonstrated to have a negative impact on HCV and other chronic liver diseases (CLD). This study assessed the association between type and location of food sources and chronic liver disease (CLD) using Geographic Information Systems (GIS). CLD patients completed surveys [267 subjects, 56.5% female, age 55.8 ± 12.0, type of CLD: 36.5% hepatitis C (HCV), 19.9% hepatitis B (HBV), 19.9% non-alcoholic fatty liver disease (NAFLD); primary food source (PFS): 80.8% grocery store, secondary: 26.2% bulk food store, tertiary: 20.5% restaurants; fresh food (FF): 83%, pre-packaged (PP) 8.7%, already prepared (AP) 8.3%]. FF consumers had significantly fewer UEH servings/month (p = 0.030) and lived further away from convenience stores (1.69 vs. 0.95 km, p = 0.0001). Stepwise regression reveals the lowest FF consumers were NAFLD patients, subjects with UEH or restaurants and ethnic food stores as their PFS (R = 0.557, p = 0.0001). Eating already-packaged foods and utilizing restaurants or ethnic food stores as the PFS positively correlated with NAFLD (R = 0.546, p = 0.0001). Environmental food source measures, including type and density, should be included when examining areas hyper-saturated with a variety of food options. In hyper-saturated food environments, NAFLD patients consume more prepared food and less FF. CLD patients with UEH also eat significantly more prepared food and frequent restaurants and ethnic food stores as their PFS.
NASA Astrophysics Data System (ADS)
Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen; Enzmann, Frieder; Kersten, Michael; Haberthür, David; Kuhs, Werner F.
2015-06-01
The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in situ at submicron resolution. Here we report on synchrotron-based microtomographic studies by which the nucleation and growth processes of gas hydrate were observed at 276 K in various sedimentary matrices such as natural quartz (with and without admixtures of montmorillonite type clay) or glass beads with different surface properties, at varying water saturation. Both juvenile water and metastably gas-enriched water obtained from gas hydrate decomposition was used. Xenon gas was employed to enhance the density contrast between gas hydrate and the fluid phases involved. The nucleation sites can be easily identified and the various growth patterns are clearly established. In sediments under-saturated with juvenile water, nucleation starts at the water-gas interface resulting in an initially several micrometer thick gas hydrate film; further growth proceeds to form isometric single crystals of 10-20 µm size. The growth of gas hydrate from gas-enriched water follows a different pattern, via the nucleation in the bulk of liquid producing polyhedral single crystals. A striking feature in both cases is the systematic appearance of a fluid phase film of up to several micron thickness between gas hydrates and the surface of the quartz grains. These microstructural findings are relevant for future efforts of quantitative rock physics modeling of gas hydrates in sedimentary matrices and explain the anomalous attenuation of seismic/sonic waves.
Effect of reabsorbed recombination radiation on the saturation current of direct gap p-n junctions
NASA Technical Reports Server (NTRS)
Von Roos, O.; Mavromatis, H.
1984-01-01
The application of the radiative transfer theory for semiconductors to p-n homojunctions subject to low level injection conditions is discussed. By virtue of the interaction of the radiation field with free carriers across the depletion layer, the saturation current density in Shockley's expression for the diode current is reduced at high doping levels. The reduction, due to self-induced photon generation, is noticeable for n-type material owing to the small electron effective mass in direct band-gap III-V compounds. The effect is insignificant in p-type material. At an equilibrium electron concentration of 2 x 10 to the 18th/cu cm in GaAs, a reduction of the saturation current density by 15 percent is predicted. It is concluded that realistic GaAs p-n junctions possess a finite thickness.
Improvement of flow and bulk density of pharmaceutical powders using surface modification.
Jallo, Laila J; Ghoroi, Chinmay; Gurumurthy, Lakxmi; Patel, Utsav; Davé, Rajesh N
2012-02-28
Improvement in flow and bulk density, the two most important properties that determine the ease with which pharmaceutical powders can be handled, stored and processed, is done through surface modification. A limited design of experiment was conducted to establish a standardized dry coating procedure that limits the extent of powder attrition, while providing the most consistent improvement in angle of repose (AOR). The magnetically assisted impaction coating (MAIC) was considered as a model dry-coater for pharmaceutical powders; ibuprofen, acetaminophen, and ascorbic acid. Dry coated drug powders were characterized by AOR, particle size as a function of dispersion pressure, particle size distribution, conditioned bulk density (CBD), Carr index (CI), flow function coefficient (FFC), cohesion coefficient using different instruments, including a shear cell in the Freeman FT4 powder rheometer, and Hansen flowability index. Substantial improvement was observed in all the measured properties after dry coating relative to the uncoated powders, such that each powder moved from a poorer to a better flow classification and showed improved dispersion. The material intrinsic property such as cohesion, plotted as a function of particle size, gave a trend similar to those of bulk flow properties, AOR and CI. Property improvement is also illustrated in a phase map of inverse cohesion (or FFC) as a function of bulk density, which also indicated a significant positive shift due to dry coating. It is hoped that such phase maps are useful in manufacturing decisions regarding the need for dry coating, which will allow moving from wet granulation to roller compaction or to direct compression based formulations. Copyright © 2011 Elsevier B.V. All rights reserved.
Piezoelectric coefficients of bulk 3R transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Konabe, Satoru; Yamamoto, Takahiro
2017-09-01
The piezoelectric properties of bulk transition metal dichalcogenides (TMDCs) with a 3R structure were investigated using first-principles calculations based on density functional theory combined with the Berry phase treatment. Values for the elastic constant Cijkl , the piezoelectric coefficient eijk , and the piezoelectric coefficient dijk are given for bulk 3R-TMDCs (MoS2, MoSe2, WS2, and WSe2). The piezoelectric coefficients of bulk 3R-TMDCs are shown to be sufficiently large or comparable to those of conventional bulk piezoelectric materials such as α-quartz, wurtzite GaN, and wurtzite AlN.
von Konigslow, Kier; Park, Chul B; Thompson, Russell B
2018-06-06
A variant of the Sanchez-Lacombe equation of state is applied to several polymers, blowing agents, and saturated mixtures of interest to the polymer foaming industry. These are low-density polyethylene-carbon dioxide and polylactide-carbon dioxide saturated mixtures as well as polystyrene-carbon dioxide-dimethyl ether and polystyrene-carbon dioxide-nitrogen ternary saturated mixtures. Good agreement is achieved between theoretically predicted and experimentally determined solubilities, both for binary and ternary mixtures. Acceptable agreement with swelling ratios is found with no free parameters. Up-to-date pure component Sanchez-Lacombe characteristic parameters are provided for carbon dioxide, dimethyl ether, low-density polyethylene, nitrogen, polylactide, linear and branched polypropylene, and polystyrene. Pure fluid low-density polyethylene and nitrogen parameters exhibit more moderate success while still providing acceptable quantitative estimations. Mixture estimations are found to have more moderate success where pure components are not as well represented. The Sanchez-Lacombe equation of state is found to correctly predict the anomalous reversal of solubility temperature dependence for low critical point fluids through the observation of this behaviour in polystyrene nitrogen mixtures.
Page, William R.; Gray, Floyd; Bultman, Mark W.; Menges, Christopher M.
2016-07-28
Hydrogeologic investigations were conducted to evaluate the groundwater resource potential for the Miocene Nogales Formation in the Nogales area, southern Arizona. Results indicate that parts of the formation may provide new, deeper sources of groundwater for the area. Geologic mapping determined the hydrogeologic framework of the formation by defining lithologic, mineralogic, and stratigraphic characteristics; identifying potential aquifers and confining units; and mapping faults and fractures which likely influence groundwater flow. Geophysical modeling was used to determine the basin geometry and thickness of the Nogales Formation and younger alluvial aquifers and to identify target areas (deep subbasins) which may prove to be productive aquifers.Volcaniclastic sandstone samples from the formation were analyzed for porosity, bulk density, saturated hydraulic conductivity, and fabric. Effective porosity ranges from 16 to 42 percent, bulk density from 1.6 to 2.47 grams per cubic centimeter, and saturated hydraulic conductivity (SHC) from 4 to 57 centimeters per day (4.9×10-5 to 6.7×10-4 centimeters per second). Thin sections show that sandstone framework grains consist of quartz, feldspar, biotite, hornblende, pumice, volcanic glass, and opaque minerals. The matrix in most samples consists of pumice fragments, and some contain predominantly silt and clay. Samples with a mostly silt and clay matrix have lower porosity and SHC compared to samples with mostly pumice, which have higher and wider ranges of porosity and SHC. Pore space in the Nogales Formation sediments includes moldic, intercrystalline, and fracture porosity. Some intercrystalline pore space is partially filled with calcite cement. About one third of the samples contain fractures, which correspond to fractures noted in outcrops in all members of the formation.Scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses indicate that most of the samples contained the zeolite clinoptilolite and mixed-layer clay. X-ray diffraction analyses verified clinoptilolite as the only zeolite in Nogales Formation samples; they also verified the presence of smectite and illite clay and some kaolinite. Samples which contain greater amounts of clinoptilolite and lesser amounts of smectite have high porosity and SHC in narrow ranges. However, samples with abundant smectite and lesser amounts of clinoptilolite span the entire ranges of porosity and SHC for the formation.All members of the Nogales Formation are fractured and faulted as a result of Tertiary Basin and Range extensional deformation, which was broadly contemporaneous with deposition of the formation. These structures may have significant influence on groundwater flow in the upper Santa Cruz basin because, although many of the sediments in the formation have characteristics indicating they may be productive aquifers based only on porous-media flow, fracturing in these sediments may further enhance permeability and groundwater flow in these basin-fill aquifers by orders of magnitude.
Ab-initio study of electronic structure and elastic properties of ZrC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mund, H. S., E-mail: hmoond@gmail.com; Ahuja, B. L.
2016-05-23
The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.
Elastic Anomaly and Polyamorphic Transition in (La, Ce)-based Bulk Metallic Glass under Pressure
Qi, Xintong; Zou, Yongtao; Wang, Xuebing; ...
2017-04-07
In this paper, we discovered that in association with the polyamorphism of La 32Ce 32Al 16Ni 5Cu 15 bulk metallic glass, the acoustic velocities, measured up to 12.3 GPa using ultrasonic interferometry, exhibit velocity minima at 1.8 GPa for P wave and 3.2 GPa for S wave. The low and high density amorphous states are distinguished by their distinct pressure derivatives of the bulk and shear moduli. The elasticity, permanent densification, and polyamorphic transition are interpreted by the topological rearrangement of solute-centered clusters in medium-range order (MRO) mediated by the 4f electron delocalization of Ce under pressure. The precisely measuredmore » acoustic wave travel times which were used to derive the velocities and densities provided unprecedented data to document the evolution of the bulk and shear elastic moduli associated with a polyamorphic transition in La 32Ce 32Al 16Ni 5Cu 15 bulk metallic glass and can shed new light on the mechanisms of polyamorphism and structural evolution in metallic glasses under pressure.« less
Methods of synthesizing hydroxyapatite powders and bulk materials
Luo, Ping
1999-01-12
Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 .mu.m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogenous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided.
Methods of synthesizing hydroxyapatite powders and bulk materials
Luo, P.
1999-01-12
Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 {micro}m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogeneous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided. 26 figs.
Nonlocal description of sound propagation through an array of Helmholtz resonators
NASA Astrophysics Data System (ADS)
Nemati, Navid; Kumar, Anshuman; Lafarge, Denis; Fang, Nicholas X.
2015-12-01
A generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous media saturated with a viscothermal fluid has been recently proposed, which takes into account both temporal and spatial dispersion. Here, we consider applying this theory, which enables the description of resonance effects, to the case of sound propagation through an array of Helmholtz resonators whose unusual metamaterial properties, such as negative bulk moduli, have been experimentally demonstrated. Three different calculations are performed, validating the results of the nonlocal theory, related to the frequency-dependent Bloch wavenumber and bulk modulus of the first normal mode, for 1D propagation in 2D or 3D periodic structures. xml:lang="fr"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weilnboeck, F.; Metzler, D.; Kumar, N.
2011-12-26
Roughening of nanoscale polymer masks during plasma etching (PE) limits feature critical dimensions in current and future lithographic technologies. Roughness formation of 193 nm photoresist (PR) is mechanistically explained by plasma-induced changes in mechanical properties introduced at the PR surface ({approx}2 nm) by ions and in parallel in the material bulk ({approx}200 nm) by ultraviolet (UV) plasma radiation. Synergistic roughening of polymer masks can be prevented by pretreating PR patterns with a high dose of He plasma UV exposure to saturate bulk material modifications. During subsequent PE, PR patterns are stabilized and exhibit improved etch resistance and reduced surface/line-edge roughness.
Packing microstructure and local density variations of experimental and computational pebble beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auwerda, G. J.; Kloosterman, J. L.; Lathouwers, D.
2012-07-01
In pebble bed type nuclear reactors the fuel is contained in graphite pebbles, which form a randomly stacked bed with a non-uniform packing density. These variations can influence local coolant flow and power density and are a possible cause of hotspots. To analyse local density variations computational methods are needed that can generate randomly stacked pebble beds with a realistic packing structure on a pebble-to-pebble level. We first compare various properties of the local packing structure of a computed bed with those of an image made using computer aided X-ray tomography, looking at properties in the bulk of the bedmore » and near the wall separately. Especially for the bulk of the bed, properties of the computed bed show good comparison with the scanned bed and with literature, giving confidence our method generates beds with realistic packing microstructure. Results also show the packing structure is different near the wall than in the bulk of the bed, with pebbles near the wall forming ordered layers similar to hexagonal close packing. Next, variations in the local packing density are investigated by comparing probability density functions of the packing fraction of small clusters of pebbles throughout the bed. Especially near the wall large variations in local packing fractions exists, with a higher probability for both clusters of pebbles with low (<0.6) and high (>0.65) packing fraction, which could significantly affect flow rates and, together with higher power densities, could result in hotspots. (authors)« less
Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide
Cui, Yudong; Lu, Feifei; Liu, Xueming
2017-01-01
Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm2 and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system. PMID:28053313
NASA Astrophysics Data System (ADS)
Häberlen, Oliver D.; Chung, Sai-Cheong; Stener, Mauro; Rösch, Notker
1997-03-01
A series of gold clusters spanning the size range from Au6 through Au147 (with diameters from 0.7 to 1.7 nm) in icosahedral, octahedral, and cuboctahedral structure has been theoretically investigated by means of a scalar relativistic all-electron density functional method. One of the main objectives of this work was to analyze the convergence of cluster properties toward the corresponding bulk metal values and to compare the results obtained for the local density approximation (LDA) to those for a generalized gradient approximation (GGA) to the exchange-correlation functional. The average gold-gold distance in the clusters increases with their nuclearity and correlates essentially linearly with the average coordination number in the clusters. An extrapolation to the bulk coordination of 12 yields a gold-gold distance of 289 pm in LDA, very close to the experimental bulk value of 288 pm, while the extrapolated GGA gold-gold distance is 297 pm. The cluster cohesive energy varies linearly with the inverse of the calculated cluster radius, indicating that the surface-to-volume ratio is the primary determinant of the convergence of this quantity toward bulk. The extrapolated LDA binding energy per atom, 4.7 eV, overestimates the experimental bulk value of 3.8 eV, while the GGA value, 3.2 eV, underestimates the experiment by almost the same amount. The calculated ionization potentials and electron affinities of the clusters may be related to the metallic droplet model, although deviations due to the electronic shell structure are noticeable. The GGA extrapolation to bulk values yields 4.8 and 4.9 eV for the ionization potential and the electron affinity, respectively, remarkably close to the experimental polycrystalline work function of bulk gold, 5.1 eV. Gold 4f core level binding energies were calculated for sites with bulk coordination and for different surface sites. The core level shifts for the surface sites are all positive and distinguish among the corner, edge, and face-centered sites; sites in the first subsurface layer show still small positive shifts.
An overview of rotating machine systems with high-temperature bulk superconductors
NASA Astrophysics Data System (ADS)
Zhou, Difan; Izumi, Mitsuru; Miki, Motohiro; Felder, Brice; Ida, Tetsuya; Kitano, Masahiro
2012-10-01
The paper contains a review of recent advancements in rotating machines with bulk high-temperature superconductors (HTS). The high critical current density of bulk HTS enables us to design rotating machines with a compact configuration in a practical scheme. The development of an axial-gap-type trapped flux synchronous rotating machine together with the systematic research works at the Tokyo University of Marine Science and Technology since 2001 are briefly introduced. Developments in bulk HTS rotating machines in other research groups are also summarized. The key issues of bulk HTS machines, including material progress of bulk HTS, in situ magnetization, and cooling together with AC loss at low-temperature operation are discussed.
Data analysis on physical and mechanical properties of cassava pellets.
Oguntunde, Pelumi E; Adejumo, Oluyemisi A; Odetunmibi, Oluwole A; Okagbue, Hilary I; Adejumo, Adebowale O
2018-02-01
In this data article, laboratory experimental investigation results carried out at National Centre for Agricultural Mechanization (NCAM) on moisture content, machine speed, die diameter of the rig, and the outputs (hardness, durability, bulk density, and unit density of the pellets) at different levels of cassava pellets were observed. Analysis of variance using randomized complete block design with factorial was used to perform analysis for each of the outputs: hardness, durability, bulk density, and unit density of the pellets. A clear description on each of these outputs was considered separately using tables and figures. It was observed that for all the output with the exception of unit density, their main factor effects as well as two and three ways interactions is significant at 5% level. This means that the hardness, bulk density and durability of cassava pellets respectively depend on the moisture content of the cassava dough, the machine speed, the die diameter of the extrusion rig and the combinations of these factors in pairs as well as the three altogether. Higher machine speeds produced more quality pellets at lower die diameters while lower machine speed is recommended for higher die diameter. Also the unit density depends on die diameter and the three-way interaction only. Unit density of cassava pellets is neither affected by machine parameters nor moisture content of the cassava dough. Moisture content of cassava dough, speed of the machine and die diameter of the extrusion rig are significant factors to be considered in pelletizing cassava to produce pellets. Increase in moisture content of cassava dough increase the quality of cassava pellets.
Mechanism for detecting NAPL using electrical resistivity imaging.
Halihan, Todd; Sefa, Valina; Sale, Tom; Lyverse, Mark
2017-10-01
The detection of non-aqueous phase liquid (NAPL) related impacts in freshwater environments by electrical resistivity imaging (ERI) has been clearly demonstrated in field conditions, but the mechanism generating the resistive signature is poorly understood. An electrical barrier mechanism which allows for detecting NAPLs with ERI is tested by developing a theoretical basis for the mechanism, testing the mechanism in a two-dimensional sand tank with ERI, and performing forward modeling of the laboratory experiment. The NAPL barrier theory assumes at low bulk soil NAPL concentrations, thin saturated NAPL barriers can block pore throats and generate a detectable electrically resistive signal. The sand tank experiment utilized a photographic technique to quantify petroleum saturation, and to help determine whether ERI can detect and quantify NAPL across the water table. This experiment demonstrates electrical imaging methods can detect small quantities of NAPL of sufficient thickness in formations. The bulk volume of NAPL is not the controlling variable for the amount of resistivity signal generated. The resistivity signal is primarily due to a zone of high resistivity separate phase liquid blocking current flow through the fully NAPL saturated pores spaces. For the conditions in this tank experiment, NAPL thicknesses of 3.3cm and higher in the formation was the threshold for detectable changes in resistivity of 3% and greater. The maximum change in resistivity due to the presence of NAPL was an increase of 37%. Forward resistivity models of the experiment confirm the barrier mechanism theory for the tank experiment. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We aimed to investigate the relationship between dietary saturated fat on fasting triglyceride (TG) and cholesterol levels, and any mediation of this relationship by dietary carbohydrate intake. Men and women in the NHLBI Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study (n = 1036, mea...
NASA Astrophysics Data System (ADS)
Outcalt, Stephanie L.; McLinden, Mark O.
1996-03-01
A modified Benedict-Webb-Rubin (MBWR) equation of state has been developed for R152a (1,1-difluoroethane). The correlation is based on a selection of available experimental thermodynamic property data. Single-phase pressure-volume-temperature (PVT), heat capacity, and sound speed data, as well as second virial coefficient, vapor pressure, and saturated liquid and saturated vapor density data, were used with multi-property linear least-squares fitting to determine the 32 adjustable coefficients of the MBWR equation. Ancillary equations representing the vapor pressure, saturated liquid and saturated vapor densities, and the ideal gas heat capacity were determined. Coefficients for the equation of state and the ancillary equations are given. Experimental data used in this work covered temperatures from 162 K to 453 K and pressures to 35 MPa. The MBWR equation established in this work may be used to predict thermodynamic properties of R152a from the triple-point temperature of 154.56 K to 500 K and for pressures up to 60 MPa except in the immediate vicinity of the critical point.
Frictional response of fatty acids on steel.
Sahoo, Rashmi R; Biswas, S K
2009-05-15
Self-assembled monolayers of fatty acids were formed on stainless steel by room-temperature solution deposition. The acids are covalently bound to the surface as carboxylate in a bidentate manner. To explore the effect of saturation in the carbon backbone on friction in sliding tribology, we study the response of saturated stearic acid (SA) and unsaturated linoleic acid (LA) as self-assembled monolayers using lateral force microscopy and nanotribometry and when the molecules are dispersed in hexadecane, using pin-on-disc tribometry. Over a very wide range (10 MPa-2.5 GPa) of contact pressures it is consistently demonstrated that the unsaturated linoleic acid molecules yield friction which is significantly lower than that of the saturated stearic acid. It is argued, using density functional theory predictions and XPS of slid track, that when the molecular backbone of unsaturated fatty acids are tilted and pressed strongly by a probe, in tribological contact, the high charge density of the double bond region of the backbone allows coupling with the steel substrate. The interaction yields a low friction carboxylate soap film on the substrate. The saturated fatty acid does not show this effect.
Physiochemical Characterization of Briquettes Made from Different Feedstocks
Karunanithy, C.; Wang, Y.; Muthukumarappan, K.; Pugalendhi, S.
2012-01-01
Densification of biomass can address handling, transportation, and storage problems and also lend itself to an automated loading and unloading of transport vehicles and storage systems. The purpose of this study is to compare the physicochemical properties of briquettes made from different feedstocks. Feedstocks such as corn stover, switchgrass, prairie cord grass, sawdust, pigeon pea grass, and cotton stalk were densified using a briquetting system. Physical characterization includes particle size distribution, geometrical mean diameter (GMD), densities (bulk and true), porosity, and glass transition temperature. The compositional analysis of control and briquettes was also performed. Statistical analyses confirmed the existence of significant differences in these physical properties and chemical composition of control and briquettes. Correlation analysis confirms the contribution of lignin to bulk density and durability. Among the feedstocks tested, cotton stalk had the highest bulk density of 964 kg/m3 which is an elevenfold increase compared to control cotton stalk. Corn stover and pigeon pea grass had the highest (96.6%) and lowest (61%) durability. PMID:22792471
Near-surface bulk densities of asteroids derived from dual-polarization radar observations
NASA Astrophysics Data System (ADS)
Virkki, A.; Taylor, P. A.; Zambrano-Marin, L. F.; Howell, E. S.; Nolan, M. C.; Lejoly, C.; Rivera-Valentin, E. G.; Aponte, B. A.
2017-09-01
We present a new method to constrain the near-surface bulk density and surface roughness of regolith on asteroid surfaces using planetary radar measurements. The number of radar observations has increased rapidly during the last five years, allowing us to compare and contrast the radar scattering properties of different small-body populations and compositional types. This provides us with new opportunities to investigate their near-surface physical properties such as the chemical composition, bulk density, porosity, or the structural roughness in the scale of centimeters to meters. Because the radar signal can penetrate into a planetary surface up to a few decimeters, radar can reveal information that is hidden from other ground-based methods, such as optical and infrared measurements. The near-surface structure of asteroids and comets in centimeter-to-meter scale is essential information for robotic and human space missions, impact threat mitigation, and understanding the history of these bodies as well as the formation of the whole Solar System.
Microstructure and critical current density in MgB2 bulk made of 4.5 wt% carbon-coated boron
NASA Astrophysics Data System (ADS)
Higuchi, M.; Muralidhar, M.; Jirsa, M.; Murakami, M.
2017-07-01
Superconducting performance and its uniformity was studied in the single-step sintered MgB2 bulk prepared with 4.5 wt% of carbon in the carbon-encapsulated boron. The 20 mm in diameter MgB2 pellet was cut into several pieces from bottom to top and the microstructure, superconducting transition temperature (Tc onset), and critical current density at 20 K were studied. DC magnetization measurements showed a sharp superconducting transition with onset Tc at around 35.5 K in all positions. SEM analysis indicated a dispersion of grains between 200 and 300 nm in size, as the main pinning medium in this MgB2 superconductors. The critical current density at 20 K was quite uniform, around 330 kA/cm2 and 200 kA/cm2 at self-field and 1 T, respectively, for all measured positions. The results indicate that the carbon-encapsulated boron is very promising for production of high quality bulk MgB2 material for various industrial applications.
Zhou, Shiqi; Jamnik, Andrej
2005-09-22
The structure of a Lennard-Jones (LJ) fluid subjected to diverse external fields maintaining the equilibrium with the bulk LJ fluid is studied on the basis of the third-order+second-order perturbation density-functional approximation (DFA). The chosen density and potential parameters for the bulk fluid correspond to the conditions situated at "dangerous" regions of the phase diagram, i.e., near the critical temperature or close to the gas-liquid coexistence curve. The accuracy of DFA predictions is tested against the results of a grand canonical ensemble Monte Carlo simulation. It is found that the DFA theory presented in this work performs successfully for the nonuniform LJ fluid only on the condition of high accuracy of the required bulk second-order direct correlation function. The present report further indicates that the proposed perturbation DFA is efficient and suitable for both supercritical and subcritical temperatures.
Biswas, Biswajit; Mondal, Saptarsi; Singh, Prashant Chandra
2017-02-16
The presence of the fluorocarbon group in fluorinated alcohols makes them an important class of molecules that have diverse applications in the field of separation techniques, synthetic chemistry, polymer industry, and biology. In this paper, we have performed the density function theory calculation along with atom in molecule analysis, molecular dynamics simulation, and IR measurements of bulk monofluoroethanol (MFE) and compared them with the data for bulk ethanol (ETH) to understand the effect of the fluorocarbon group in the structure and the hydrogen bond network of bulk MFE. It has been found that the intramolecular O-H···F hydrogen bond is almost absent in bulk MFE. Molecular dynamics simulation and density function theory calculation along with atom in molecule analysis clearly depict that in the case of bulk MFE, a significant amount of intermolecular O-H···F and C-H···F hydrogen bonds are present along with the intermolecular O-H···O hydrogen bond. The presence of intermolecular O-H···F and C-H···F hydrogen bonds causes the difference in the IR spectrum of bulk MFE as compared to bulk ETH. This study clearly depicts that the organic fluorine (fluorocarbon) of MFE acts as a hydrogen bond acceptor and plays a significant role in the structure and hydrogen bond network of bulk MFE through the formation of weak O-H···F as well C-H···F hydrogen bonds, which may be one of the important reasons behind the unique behavior of the fluoroethanols.
Traffic signal synchronization in the saturated high-density grid road network.
Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye
2015-01-01
Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN.
EFFECTIVE POROSITY IMPLIES EFFECTIVE BULK DENSITY IN SORBING SOLUTE TRANSPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G.
2012-02-27
The concept of an effective porosity is widely used in solute transport modeling to account for the presence of a fraction of the medium that effectively does not influence solute migration, apart from taking up space. This non-participating volume or ineffective porosity plays the same role as the gas phase in single-phase liquid unsaturated transport: it increases pore velocity, which is useful towards reproducing observed solute travel times. The prevalent use of the effective porosity concept is reflected by its prominent inclusion in popular texts, e.g., de Marsily (1986), Fetter (1988, 1993) and Zheng and Bennett (2002). The purpose ofmore » this commentary is to point out that proper application of the concept for sorbing solutes requires more than simply reducing porosity while leaving other material properties unchanged. More specifically, effective porosity implies the corresponding need for an effective bulk density in a conventional single-porosity model. The reason is that the designated non-participating volume is composed of both solid and fluid phases, both of which must be neglected for consistency. Said another way, if solute does not enter the ineffective porosity then it also cannot contact the adjoining solid. Conceptually neglecting the fluid portion of the non-participating volume leads to a lower (effective) porosity. Likewise, discarding the solid portion of the non-participating volume inherently leads to a lower or effective bulk density. In the author's experience, practitioners virtually never adjust bulk density when adopting the effective porosity approach.« less
Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.
2017-11-01
We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (Cd) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of Cd with positive and negative surface potentials.
Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study.
Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K
2017-11-21
We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (C d ) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of C d with positive and negative surface potentials.
Drexler, Judith Z.; Christian S. de Fontaine,; Steven J. Deverel,
2009-01-01
Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 55–80% of the original peat layer on the farmed islands has been lost due to landsurface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 2900-5700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface.
Random deposition of particles of different sizes.
Forgerini, F L; Figueiredo, W
2009-04-01
We study the surface growth generated by the random deposition of particles of different sizes. A model is proposed where the particles are aggregated on an initially flat surface, giving rise to a rough interface and a porous bulk. By using Monte Carlo simulations, a surface has grown by adding particles of different sizes, as well as identical particles on the substrate in (1+1) dimensions. In the case of deposition of particles of different sizes, they are selected from a Poisson distribution, where the particle sizes may vary by 1 order of magnitude. For the deposition of identical particles, only particles which are larger than one lattice parameter of the substrate are considered. We calculate the usual scaling exponents: the roughness, growth, and dynamic exponents alpha, beta, and z, respectively, as well as, the porosity in the bulk, determining the porosity as a function of the particle size. The results of our simulations show that the roughness evolves in time following three different behaviors. The roughness in the initial times behaves as in the random deposition model. At intermediate times, the surface roughness grows slowly and finally, at long times, it enters into the saturation regime. The bulk formed by depositing large particles reveals a porosity that increases very fast at the initial times and also reaches a saturation value. Excepting the case where particles have the size of one lattice spacing, we always find that the surface roughness and porosity reach limiting values at long times. Surprisingly, we find that the scaling exponents are the same as those predicted by the Villain-Lai-Das Sarma equation.
Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.
2016-01-01
We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg−1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg−1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365
NASA Astrophysics Data System (ADS)
Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.
2016-06-01
We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.
Hoenig, Clarence L.
1992-01-01
Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru; Lope Tabil; Anthony Opoku
2011-04-01
The rapid expansion of ethanol processing plants in Canada has resulted in a significant increase in the production of wheat-based distiller's dried grains with solubles (DDGS). Transportation and flowability problems associated with DDGS necessitate investigations on pelleting. In the present study, the effect of process variables like die temperature (T) and feed moisture content (Mw) on the pellet properties like pellet moisture content, durability and pellet density was explored using a single pelleting machine; further studies on pelleting DDGS using a pilot-scale pellet mill were also conducted to understand the effect of die diameter and steam conditioning on durability andmore » bulk density of pellets. Proximate analysis of DDGS indicated that crude protein and dry matter were in the range of 37.37–40.33% and 91.27–92.60%, respectively. Linear regression models developed for pellet quality attributes like pellet moisture content, pellet density and durability adequately described the single pelleting process with R2 value of 0.97, 0.99 and 0.7, respectively. ANOVA results have indicated that linear terms T and Mw and the interaction term T × Mw were statistically significant at P < 0.01 and P < 0.1 for pellet moisture content and pellet density. Based on the trends of the surface plots, a medium T of about 50–80 °C and a low Mw of about 5.1% resulted in maximum pellet density and durability and minimum pellet moisture content. Results from pilot-scale studies indicated that bulk density, durability and throughput values were 436.8–528.9 kg m-3, 60.3–92.7% and 45.52–68.77 kg h-1, respectively. It was observed that both die diameter and steam addition had a significant effect on the bulk density and the durability values. The highest bulk density and durability were achieved with 6.4 mm die diameter with steam addition compared to 7.9 mm die with or without steam addition.« less
Chen, Ying; Bylaska, Eric J; Weare, John H
2017-03-31
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick). The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe 3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe 3+ . The water molecules capping surface Fe 3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe 3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe 3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe 3+ , those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe 3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism. Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe-OH 2 distances in the DFT calculations it was proposed that the surface Fe 3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination. Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe 3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe 3+ is coordinated with only 5 neighbors.
Povilaitis, R Z; Robinson, M S; van der Bogert, C H; Hiesinger, Harald; Meyer, H M; Ostrach, Lillian
2017-01-01
The global population of lunar craters >20 km in diameter was analyzed by Head et al., (2010) to correlate crater distribution with resurfacing events and multiple impactor populations. The work presented here extends the global crater distribution analysis to smaller craters (5–20 km diameters, n = 22,746). Smaller craters form at a higher rate than larger craters and thus add granularity to age estimates of larger units and can reveal smaller and younger areas of resurfacing. An areal density difference map generated by comparing the new dataset with that of Head et al., (2010) shows local deficiencies of 5–20 km diameter craters, which we interpret to be caused by a combination of resurfacing by the Orientale basin, infilling of intercrater plains within the nearside highlands, and partial mare flooding of the Australe region. Chains of 5–30 km diameter secondaries northwest of Orientale and possible 8–22 km diameter basin secondaries within the farside highlands are also distinguishable. Analysis of the new database indicates that craters 57–160 km in diameter across much of the lunar highlands are at or exceed relative crater densities of R = 0.3 or 10% geometric saturation, but nonetheless appear to fit the lunar production function. Combined with the observation that small craters on old surfaces can reach saturation equilibrium at 1% geometric saturation (Xiao and Werner, 2015), this suggests that saturation equilibrium is a size-dependent process, where large craters persist because of their resistance to destruction, degradation, and resurfacing.
Phase transitions in core-collapse supernova matter at sub-saturation densities
NASA Astrophysics Data System (ADS)
Pais, Helena; Newton, William G.; Stone, Jirina R.
2014-12-01
Phase transitions in hot, dense matter in the collapsing cores of massive stars have an important impact on the core-collapse supernova mechanism as they absorb heat, disrupt homology, and so weaken the developing shock. We perform a three-dimensional, finite temperature Skyrme-Hartree-Fock (SHF) study of inhomogeneous nuclear matter to determine the critical density and temperature for the phase transition between the pasta phase and homogeneous matter and its properties. We employ four different parametrizations of the Skyrme nuclear energy-density functional, SkM*, SLy4, NRAPR, and SQMC700, which span a range of saturation-density symmetry energy behaviors constrained by a variety of nuclear experimental probes. For each of these interactions we calculate free energy, pressure, entropy, and chemical potentials in the range of particle number densities where the nuclear pasta phases are expected to exist, 0.02-0.12 fm-3, temperatures 2-8 MeV, and a proton fraction of 0.3. We find unambiguous evidence for a first-order phase transition to uniform matter, unsoftened by the presence of the pasta phases. No conclusive signs of a first-order phase transition between the pasta phases is observed, and it is argued that the thermodynamic quantities vary continuously right up to the first-order phase transition to uniform matter. We compare our results with thermodynamic spinodals calculated using the same Skyrme parametrizations, finding that the effect of short-range Coulomb correlations and quantum shell effects included in our model leads to the pasta phases existing at densities up to 0.01 fm-3 above the spinodal boundaries, thus increasing the transition density to uniform matter by the same amount. The transition density is otherwise shown to be insensitive to the symmetry energy at saturation density within the range constrained by the concordance of a variety of experimental constraints, and can be taken to be a well determined quantity.
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2017-02-01
In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.
Hedley, John D; McMahon, Kathryn; Fearns, Peter
2014-01-01
A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.
Hedley, John D.; McMahon, Kathryn; Fearns, Peter
2014-01-01
A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments. PMID:25347849
Statistical-physical model of the hydraulic conductivity
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Usowicz, J. B.; Lukowski, M. I.
2012-04-01
The water content in unsaturated subsurface soil layer is determined by processes of exchanging mass and energy between media of soil and atmosphere, and particular members of layered media. Generally they are non-homogeneous on different scales, considering soil porosity, soil texture including presence of vegetation elements in the root zone, and canopy above the surface, and varying biomass density of plants above the surface in clusters. That heterogeneity determines statistically effective values of particular physical properties. This work considers mainly those properties which determine the hydraulic conductivity of soil. This property is necessary for characterizing physically water transfer in the root zone and access of nutrient matter for plants, but it also the water capacity on the field scale. The temporal variability of forcing conditions and evolutionarily changing vegetation causes substantial effects of impact on the water capacity in large scales, bringing the evolution of water conditions in the entire area, spanning a possible temporal state in the range between floods and droughts. The dynamic of this evolution of water conditions is highly determined by vegetation but is hardly predictable in evaluations. Hydrological models require feeding with input data determining hydraulic properties of the porous soil which are proposed in this paper by means of the statistical-physical model of the water hydraulic conductivity. The statistical-physical model was determined for soils being typical in Euroregion Bug, Eastern Poland. The model is calibrated on the base of direct measurements in the field scales, and enables determining typical characteristics of water retention by the retention curves bounding the hydraulic conductivity to the state of water saturation of the soil. The values of the hydraulic conductivity in two reference states are used for calibrating the model. One is close to full saturation, and another is for low water content far from saturation, in a particular case of the soil type. Effects of calibrating a soil depends on assumed ranges of soil properties engaged to recognizing the soil type. Among those properties, the key role is for the bulk density, the porosity and its dependence on the specific area of the soil. The aim of this work is to provide such variables of auxiliary data to SMOS, which would bring a relation of the soil moisture to the water capacity, under retrieving SM from SMOS L1C data. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.
NASA Astrophysics Data System (ADS)
Staines, K.; Balogh, A.; Cowley, S. W. H.; Hynds, R. J.; Yates, T. S.; Richardson, I. G.; Sanderson, T. R.; Wenzel, K. P.; McComas, D. J.; Tsurutani, B. T.
1991-03-01
The bulk parameters (number density and thermal energy density) of cometary water-group ions in the region surrounding Comet Giacobini-Zinner have been derived using data from the EPAS instrument on the ICE spacecraft. The derivation is based on the assumption that the pick-up ion distribution function is isotropic in the frame of the bulk flow, an approximation which has previously been shown to be reasonable within about 400,000 km of the comet nucleus along the spacecraft trajectory. The transition between the pick-up and mass-loaded regions occurs at the cometary shock, which was traversed at a cometocentric distance of about 100,000 km along the spacecraft track. Examination of the ion distribution functions in this region, transformed to the bulk flow frame, indicates the occurrence of a flattened distribution in the vicinity of the local pick-up speed, and a steeply falling tail at speeds above, which may be approximated as an exponential in ion speed.
Excess electrons in ice: a density functional theory study.
Bhattacharya, Somesh Kr; Inam, Fakharul; Scandolo, Sandro
2014-02-21
We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals.
NASA Astrophysics Data System (ADS)
Mallik, Ananya; Dasgupta, Rajdeep; Tsuno, Kyusei; Nelson, Jared
2016-12-01
This study investigates the partial melting of variable bulk H2O-bearing parcels of mantle-wedge hybridized by partial melt derived from subducted metapelites, at pressure-temperature (P-T) conditions applicable to the hotter core of the mantle beneath volcanic arcs. Experiments are performed on mixtures of 25% sediment-melt and 75% fertile peridotite, from 1200 to 1300 °C, at 2 and 3 GPa, with bulk H2O concentrations of 4 and 6 wt.%. Combining the results from these experiments with previous experiments containing 2 wt.% bulk H2O (Mallik et al., 2015), it is observed that all melt compositions, except those produced in the lowest bulk H2O experiments at 3 GPa, are saturated with olivine and orthopyroxene. Also, higher bulk H2O concentration increases melt fraction at the same P-T condition, and causes exhaustion of garnet, phlogopite and clinopyroxene at lower temperatures, for a given pressure. The activity coefficient of silica (ϒSiO2) for olivine-orthopyroxene saturated melt compositions (where the activity of silica, aSiO2 , is buffered by the reaction olivine + SiO2 = orthopyroxene) from this study and from mantle melting studies in the literature are calculated. In melt compositions generated at 2 GPa or shallower, with increasing H2O concentration, ϒSiO2 increases from <1 to ∼1, indicating a transition from non-ideal mixing as OH- in the melt (ϒSiO2 <1) to ideal mixing as molecular H2O (ϒSiO2 ∼1). At pressures >2 GPa, ϒSiO2 >1 at higher H2O concentrations in the melt, indicate requirement of excess energy to incorporate molecular H2O in the silicate melt structure, along with a preference for bridging species and polyhedral edge decorations. With vapor saturation in the presence of melt, ϒSiO2 decreases indicating approach towards ideal mixing of H2O in silicate melt. For similar H2O concentrations in the melt, ϒSiO2 for olivine-orthopyroxene saturated melts at 3 GPa is higher than melts at 2 GPa or shallower. This results in melts generated at 3 GPa being more silica-poor than melts at 2 GPa. Thus, variable bulk H2O and pressure of melt generation results in the partial melts from this study varying in composition from phonotephrite to basaltic andesite at 2 GPa and foidite/phonotephrite to basalt at 3 GPa, forming a spectrum of arc magmas. Modeling suggests that the trace element patterns of sediment-melt are unaffected by the process of hybridization within the hotter core of the mantle-wedge. K2O/H2O and H2O/Ce ratios of the sediment-melts are unaffected, within error, by the process of hybridization of the mantle-wedge. This implies that thermometers based on K2O/H2O and H2O/Ce ratios of arc lavas may be used to estimate slab-top temperatures when (a) sediment-melt from the slab reaches the hotter core of the mantle-wedge by focused flow (b) sediment-melt freezes in the overlying mantle at the slab-mantle interface and the hybridized package rises as a mélange diapir and partially melts at the hotter core of the mantle-wedge. Based on the results from this study and previous studies, both channelized and porous flow of sediment-melt/fluid through the sub-arc mantle can explain geochemical signatures of arc lavas under specific geodynamic scenarios of fluid/melt fluxing, hybridization, and subsequent mantle melting.
Anharmonic, dimensionality and size effects in phonon transport
NASA Astrophysics Data System (ADS)
Thomas, Iorwerth O.; Srivastava, G. P.
2017-12-01
We have developed and employed a numerically efficient semi- ab initio theory, based on density-functional and relaxation-time schemes, to examine anharmonic, dimensionality and size effects in phonon transport in three- and two-dimensional solids of different crystal symmetries. Our method uses third- and fourth-order terms in crystal Hamiltonian expressed in terms of a temperature-dependent Grüneisen’s constant. All input to numerical calculations are generated from phonon calculations based on the density-functional perturbation theory. It is found that four-phonon processes make important and measurable contribution to lattice thermal resistivity above the Debye temperature. From our numerical results for bulk Si, bulk Ge, bulk MoS2 and monolayer MoS2 we find that the sample length dependence of phonon conductivity is significantly stronger in low-dimensional solids.
Reynolds, Sara A; Brassil, Chad E
2013-12-21
Single-species population models often include density-dependence phenomenologically in order to approximate higher order mechanisms. Here we consider the common scenario in which density-dependence acts via depletion of a renewed resource. When the response of the resource is very quick relative to that of the consumer, the consumer dynamics can be captured by a single-species, density-dependent model. Time scale separation is used to show analytically how the shape of the density-dependent relationship depends on the type of resource and the form of the functional response. Resource types of abiotic, biotic, and biotic with migration are considered, in combination with linear and saturating functional responses. In some cases, we derive familiar forms of single-species models, adding to the justification for their use. In other scenarios novel forms of density-dependence are derived, for example an abiotic resource and a saturating functional response can result in a nonlinear density-dependent relationship in the associated single-species model of the consumer. In this case, the per capita relationship has both concave-up and concave-down sections. © 2013 Published by Elsevier Ltd. All rights reserved.
Zahid, A.; Hassan, M.Q.; Breit, G.N.; Balke, K.-D.; Flegr, M.
2009-01-01
Accumulations of iron, manganese, and arsenic occur in the Chandina alluvium of southeastern Bangladesh within 2.5 m of the ground surface. These distinctive orange-brown horizons are subhorizontal and consistently occur within 1 m of the contact of the aerated (yellow-brown) and water-saturated (gray) sediment. Ferric oxyhydroxide precipitates that define the horizons form by oxidation of reduced iron in pore waters near the top of the saturated zone when exposed to air in the unsaturated sediment. Hydrous Fe-oxide has a high specific surface area and thus a high adsorption capacity that absorbs the bulk of arsenic also present in the reduced pore water, resulting in accumulations containing as much as 280 ppm arsenic. The steep redox gradient that characterizes the transition of saturated and unsaturated sediment also favors accumulation of manganese oxides in the oxidized sediment. Anomalous concentrations of phosphate and molybdenum also detected in the ferric oxyhydroxide-enriched sediment are attributed to sorption processes. ?? Springer Science+Business Media B.V. 2008.
Improvement of Biocatalysts for Industrial and Environmental Purposes by Saturation Mutagenesis
Valetti, Francesca; Gilardi, Gianfranco
2013-01-01
Laboratory evolution techniques are becoming increasingly widespread among protein engineers for the development of novel and designed biocatalysts. The palette of different approaches ranges from complete randomized strategies to rational and structure-guided mutagenesis, with a wide variety of costs, impacts, drawbacks and relevance to biotechnology. A technique that convincingly compromises the extremes of fully randomized vs. rational mutagenesis, with a high benefit/cost ratio, is saturation mutagenesis. Here we will present and discuss this approach in its many facets, also tackling the issue of randomization, statistical evaluation of library completeness and throughput efficiency of screening methods. Successful recent applications covering different classes of enzymes will be presented referring to the literature and to research lines pursued in our group. The focus is put on saturation mutagenesis as a tool for designing novel biocatalysts specifically relevant to production of fine chemicals for improving bulk enzymes for industry and engineering technical enzymes involved in treatment of waste, detoxification and production of clean energy from renewable sources. PMID:24970191
Parameterization of bulk condensation in numerical cloud models
NASA Technical Reports Server (NTRS)
Kogan, Yefim L.; Martin, William J.
1994-01-01
The accuracy of the moist saturation adjustment scheme has been evaluated using a three-dimensional explicit microphysical cloud model. It was found that the error in saturation adjustment depends strongly on the Cloud Condensation Nucleii (CCN) concentration in the ambient atmosphere. The scheme provides rather accurate results in the case where a sufficiently large number of CCN (on the order of several hundred per cubic centimeter) is available. However, under conditions typical of marine stratocumulus cloud layers with low CCN concentration, the error in the amounts of condensed water vapor and released latent heat may be as large as 40%-50%. A revision of the saturation adjustment scheme is devised that employs the CCN concentration, dynamical supersaturation, and cloud water content as additional variables in the calculation of the condensation rate. The revised condensation model reduced the error in maximum updraft and cloud water content in the climatically significant case of marine stratocumulus cloud layers by an order of magnitude.
Collett, T.S.; Wendlandt, R.F.
2000-01-01
The analyses of downhole log data from Ocean Drilling Program (ODP) boreholes on the Blake Ridge at Sites 994, 995, and 997 indicate that the Schlumberger geochemical logging tool (GLT) may yield useful gas hydrate reservoir data. In neutron spectroscopy downhole logging, each element has a characteristic gamma ray that is emitted from a given neutron-element interaction. Specific elements can be identified by their characteristic gamma-ray signature, with the intensity of emission related to the atomic elemental concentration. By combining elemental yields from neutron spectroscopy logs, reservoir parameters including porosities, lithologies, formation fluid salinities, and hydrocarbon saturations (including gas hydrate) can be calculated. Carbon and oxygen elemental data from the GLT was used to determine gas hydrate saturations at all three sites (Sites 994, 995, and 997) drilled on the Blake Ridge during Leg 164. Detailed analyses of the carbon and oxygen content of various sediments and formation fluids were used to construct specialized carbon/oxygen ratio (COR) fan charts for a series of hypothetical gas hydrate accumulations. For more complex geologic systems, a modified version of the standard three-component COR hydrocarbon saturation equation was developed and used to calculate gas hydrate saturations on the Blake Ridge. The COR-calculated gas hydrate saturations (ranging from about 2% to 14% bulk volume gas hydrate) from the Blake Ridge compare favorably to the gas hydrate saturations derived from electrical resistivity log measurements.
Physical properties of sidewall cores from Decatur, Illinois
Morrow, Carolyn A.; Kaven, Joern; Moore, Diane E.; Lockner, David A.
2017-10-18
To better assess the reservoir conditions influencing the induced seismicity hazard near a carbon dioxide sequestration demonstration site in Decatur, Ill., core samples from three deep drill holes were tested to determine a suite of physical properties including bulk density, porosity, permeability, Young’s modulus, Poisson’s ratio, and failure strength. Representative samples of the shale cap rock, the sandstone reservoir, and the Precambrian basement were selected for comparison. Physical properties were strongly dependent on lithology. Bulk density was inversely related to porosity, with the cap rock and basement samples being both least porous (
NASA Astrophysics Data System (ADS)
Henault, M.; Wattieaux, G.; Lecas, T.; Renouard, J. P.; Boufendi, L.
2016-02-01
Nanoparticles growing or injected in a low pressure cold plasma generated by a radiofrequency capacitively coupled capacitive discharge induce strong modifications in the electrical parameters of both plasma and discharge. In this paper, a non-intrusive method, based on the measurement of the plasma impedance, is used to determine the volume averaged electron density and effective coupled power to the plasma bulk. Good agreements are found when the results are compared to those given by other well-known and established methods.
Bianchi type-VIh string cloud cosmological models with bulk viscosity
NASA Astrophysics Data System (ADS)
Tripathy, Sunil K.; Behera, Dipanjali
2010-11-01
String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.
NASA Astrophysics Data System (ADS)
Dimitrova, M.; Cahyna, P.; Peterka, M.; Hasan, E.; Popov, Tsv K.; Ivanova, P.; Vasileva, E.; Panek, R.; Cavalier, J.; Seidl, J.; Markovic, T.; Havlicek, J.; Dejarnac, R.; Weinzettl, V.; Hacek, P.; Tomes, M.; the COMPASS Team; the EUROfusion MST1 Team
2018-02-01
The resonant magnetic perturbation (RMP) has proven to be a useful way to suppress edge-localized modes that under certain conditions can damage the device by the large power fluxes carried from the bulk plasma to the wall. The effect of RMP on the L-mode plasma parameters in the divertor region of the COMPASS tokamak was studied using the array of 39 Langmuir probes embedded into the divertor target. The current-voltage (IV) probe characteristics were processed by the first-derivative probe technique to obtain the plasma potential and the electron energy distribution function (EEDF) which was approximated by a bi-Maxwellian EEDF with a low-energy (4-6 eV) fraction and a high-energy (11-35 eV) one, the both factions having similar electron density. Clear splitting was observed during the RMP pulse in the low-field-side scrape-off-layer profiles of the floating potential U fl and the ion saturation current density J sat; these two quantities were obtained both by direct continuous measurement and by evaluation of the IV characteristics of probes with swept bias. The negative peaks of U fl induced by RMP spatially overlaps with the local minima of J sat (and n e) rather than with its local maxima which is partly caused by the spatial variation of the plasma potential and partly by the changed shape of the EEDF. The effective temperature of the whole EEDF is not correlated with the negative peaks of U fl, and the profile of the parallel power flux density shows secondary maxima due to RMP which mimic those of J sat.
Natural thermal convection in fractured porous media
NASA Astrophysics Data System (ADS)
Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.
2015-12-01
In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) < 150 (hence, the fluid is in thermal equilibrium with the medium), cubic boxes and closed-top conditions. Checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4p². 2D convection was verified up to Ra=800. The influence of parameters such as fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50
Technical issues of a high-Tc superconducting bulk magnet
NASA Astrophysics Data System (ADS)
Fujimoto, Hiroyuki
2000-06-01
Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.
Exploring packaging strategies of nano-embedded thermoelectric generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singha, Aniket; Muralidharan, Bhaskaran, E-mail: bm@ee.iitb.ac.in; Mahanti, Subhendra D.
2015-10-15
Embedding nanostructures within a bulk matrix is an important practical approach towards the electronic engineering of high performance thermoelectric systems. For power generation applications, it ideally combines the efficiency benefit offered by low dimensional systems along with the high power output advantage offered by bulk systems. In this work, we uncover a few crucial details about how to embed nanowires and nanoflakes in a bulk matrix so that an overall advantage over pure bulk may be achieved. First and foremost, we point out that a performance degradation with respect to bulk is inevitable as the nanostructure transitions to a multimore » moded one. It is then shown that a nano embedded system of suitable cross-section offers a power density advantage over a wide range of efficiencies at higher packing fractions, and this range gradually narrows down to the high efficiency regime, as the packing fraction is reduced. Finally, we introduce a metric - the advantage factor, to elucidate quantitatively, the enhancement in the power density offered via nano-embedding at a given efficiency. In the end, we explore the maximum effective width of nano-embedding which serves as a reference in designing generators in the efficiency range of interest.« less
The homogeneity of levitation force in single domain YBCO bulk
NASA Astrophysics Data System (ADS)
Zhou, Keran; Xu, Ke-Xi; Wu, Xing-da; Pan, Peng-jun
2007-11-01
The pellet homogeneity of levitation force versus the position in comparison to the seed or to the top surface has been studied in the entire volume of a single domain YBa 2Cu 3O 7-δ bulk sample processed by the top-seeded melt texturing growth (TSMTG). It is found that the levitation forces increase and peak at a depth of 3 mm from the top of the sample at liquid nitrogen temperature. In other words, the second disk has the largest levitation force density. The phenomenon can be interpreted by the interaction between the microcracks or pores produced by crystal growth and the oxygenation. We propose a model in which Y211 particles distribution leading to microcracks and pores reduces the effective induced shielding current loops (ISCL) and increases the perimeters of ISCL. This corresponds to a decrease in the grain size and results in greatly reduced levitation forces of the bottom of the bulk. From the research, we know that the density of the YBCO bulk is also an important parameter for the levitation properties. The result is very attractive and useful for the fundamental studies and fabrication of TSMTG YBa 2Cu 3O 7-δ bulk.
Low Gravity venting of Refrigerant 11
NASA Technical Reports Server (NTRS)
Labus, T. L.; Aydelott, J. C.; Lacovic, R. F.
1972-01-01
An experimental investigation was conducted in a five-second zero gravity facility to examine the effects of venting initially saturated Refrigerant 11 from a cylindrical container (15-cm diameter) under reduced gravitational conditions. The system Bond numbers studied were 0 (weightlessness), 9 and 63; the liquid exhibited a nearly zero-degree contact angle on the container surface. During the venting process, both liquid-vapor interface and liquid bulk vaporization occurred. The temperature of the liquid in the immediate vicinity of the liquid-vapor interface was found to decrease during venting, while the liquid bulk temperature remained constant. Qualitative observations of the effects of system acceleration, vent rate, and vapor volume presented. Quantitative information concerning the ullage pressure decay during low gravity venting is also included.
Evidence Of A Black Hole In The X-ray Binary System Cygnus X-3
NASA Astrophysics Data System (ADS)
Lombardi, C.; Virgilli, E.; Titarchuk, L.; Frontera, F.; Farinelli, R.
2011-09-01
Recently a close correlation between the photon index of the power law component and either the frequency of Quasi Periodic Oscillations (QPOs) or the flow of accretion disk has been found in the X-ray data concerning Black Holes (BH) in binary systems. The shape of this relationship, characterized by a saturation index when the system achieves high spectral brightness, finds a natural explanation in the processes of thermal and bulk Comptonization which are unique characteristic of the presence of a BH. For the whole set of observation we adopted a model consisting of the spectral component of BMC (Bulk Motion Comptonization model) that takes into account the direct emission of black body and the Comptonization process.
The research of single intersection sensor signal control based on section data
NASA Astrophysics Data System (ADS)
Liu, Yunxiang; Huang, Yue; Wang, Hao
2016-12-01
Propose a sensing signal intersection control design electronic license based on the design by setting the intersection readers to interact with active electronic tags equipped vehicles, vehicle information obtained on the road section. In the vehicle detection sensor may control the green density as evaluation criteria are extended when the vehicle is higher than the threshold, the green density continuity, whereas the switching phases. Induction showed improved control strategy can achieve real-time traffic signal control effectively in high saturation intersection, to overcome the traditional sensor control failure at high saturation drawbacks and improve the utilization of urban Intersection comparative analysis by simulation.
Seismoelectric couplings in a poroelastic material containing two immiscible fluid phases
NASA Astrophysics Data System (ADS)
Jardani, A.; Revil, A.
2015-08-01
A new approach of seismoelectric imaging has been recently proposed to detect saturation fronts in which seismic waves are focused in the subsurface to scan its heterogeneous nature and determine saturation fronts. Such type of imaging requires however a complete modelling of the seismoelectric properties of porous media saturated by two immiscible fluid phases, one being usually electrically insulating (for instance water and oil). We combine an extension of Biot dynamic theory, valid for porous media containing two immiscible Newtonian fluids, with an extension of the electrokinetic theory based on the notion of effective volumetric charge densities dragged by the flow of each fluid phase. These effective charge densities can be related directly to the permeability and saturation of each fluid phase. The coupled partial differential equations are solved with the finite element method. We also derive analytically the transfer function connecting the macroscopic electrical field to the acceleration of the fast P wave (coseismic electrical field) and we study the influence of the water content on this coupling. We observe that the amplitude of the co-seismic electrical disturbance is very sensitive to the water content with an increase in amplitude with water saturation. We also investigate the seismoelectric conversions (interface effect) occurring at the water table. We show that the conversion response at the water table can be identifiable only when the saturation contrasts between the vadose and saturated zones are sharp enough. A relatively dry vadose zone represents the best condition to identify the water table through seismoelectric measurements. Indeed, in this case, the coseismic electrical disturbances are vanishingly small compared to the seismoelectric interface response.
Investigating evaporation of melting ice particles within a bin melting layer model
NASA Astrophysics Data System (ADS)
Neumann, Andrea J.
Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the first melting layer profile on 10 May 2011 from the Midlatitude Continental Convective Clouds Experiment (MC3E) that is neither too saturated nor too subsaturated is possible and shows considerable mass loss for all particle sizes. Most melting layer profiles sampled during MC3E were too saturated for more than a dozen or two of the smallest particle sizes to experience significant mass loss. The aggregation, accretion, and collision and coalescence processes also countered significant mass loss at the largest particles sizes because these particles are efficient at collecting smaller particles due to their relative large sweep-out area. From these results, it appears that the assumption of negligible mass loss due to evaporation while melting is occurring is not always valid. Studies that use large, low-density snowflakes and high RH environments can safely use the assumption of negligible mass loss. Studies that use small ice particles or low RH environments (RH less than about 80%) cannot use the assumption of negligible mass loss due to evaporation. Retrieval algorithms may be overestimating surface precipitation rates and intensities in subsaturated environments due to the assumptions of negligible mass loss while melting and near-saturated melting layer environments.
Equations of state and anisotropy of Fe-Ni-Si alloys
NASA Astrophysics Data System (ADS)
Morrison, R. A.; Jackson, J. M.; Sturhahn, W.; Zhang, D.; Greenberg, E.
2017-12-01
Seismic observations provide constraints on the density, bulk sound speed, and bulk modulus of Earth's inner core, and x-ray diffraction (XRD) experiments can experimentally constrain such properties of iron alloys. The deviation of these seismically-inferred values from the properties of iron suggests the presence of light elements (e.g. Si, O, S, C, H) inside the core. While cosmochemical studies suggest Earth's core is composed primarily of iron alloyed with 5 wt% nickel, existing experimental XRD studies constraining pressure-density relations have predominantly focused on iron and iron alloyed with light elements, while neglecting the effect of nickel. In this study, we present high-precision equations of state for bcc- and hcp-structured Fe0.91Ni0.09 and Fe0.80Ni0.10Si0.10 using powder XRD at room temperature up to 167 GPa and 175 GPa, respectively. By using tungsten powder as a pressure calibrant and helium as a pressure transmitting medium, we minimize error due to pressure calibration and non-hydrostatic stresses. The results are high fidelity equations of state (EOS). By systematically comparing our findings to an established EOS of hcp-Fe [Dewaele et al. 2006], we constrain the effect of nickel and silicon on the density, bulk sound speed, and bulk modulus of iron alloys, which is a critical step towards constraining the inner core's composition. We find that for iron alloys, high quality ambient temperature EOSs can dramatically improve the extrapolated high temperature equations of state to inner core conditions. By combining seismic observations and their associated uncertainties with our data and existing Fe light-element-alloy EOSs, we estimate their densities, bulk moduli, and bulk sound speeds at inner core conditions and propose an experimentally and seismologically consistent range of inner core compositions. Additionally, we obtain an unprecedented constraint on the effect of nickel and silicon on the axial ratio of iron alloys. Nickel has a measurably distinct effect on the c/a axial ratio of iron, as does alloying iron-nickel with silicon. We investigate the relationship between the c/a axial ratio and elastic anisotropy of iron alloys and discuss the implications for inner core seismic anisotropy.
NASA Astrophysics Data System (ADS)
Yao, Rihui; Zheng, Zeke; Xiong, Mei; Zhang, Xiaochen; Li, Xiaoqing; Ning, Honglong; Fang, Zhiqiang; Xie, Weiguang; Lu, Xubing; Peng, Junbiao
2018-03-01
In this work, low temperature fabrication of a sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors (TFTs) on polyimide substrates was investigated. The effects of Ar-pressure during the sputtering process and then especially the post-annealing treatments at low temperature (≤200 °C) for HfO2 on reducing the density of defects in the bulk and on the surface were systematically studied. X-ray reflectivity, UV-vis and X-ray photoelectron spectroscopy, and micro-wave photoconductivity decay measurements were carried out and indicated that the high quality of optimized HfO2 film and its high dielectric properties contributed to the low concentration of structural defects and shallow localized defects such as oxygen vacancies. As a result, the well-structured HfO2 gate dielectric exhibited a high density of 9.7 g/cm3, a high dielectric constant of 28.5, a wide optical bandgap of 4.75 eV, and relatively low leakage current. The corresponding flexible a-IGZO TFT on polyimide exhibited an optimal device performance with a saturation mobility of 10.3 cm2 V-1 s-1, an Ion/Ioff ratio of 4.3 × 107, a SS value of 0.28 V dec-1, and a threshold voltage (Vth) of 1.1 V, as well as favorable stability under NBS/PBS gate bias and bending stress.
Three-dimensional analytic model of the magnetic field for the Chalk River Superconducting Cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, W.G.; Lee-Whiting, G.E.; Douglas, S.R.
1994-07-01
A three-dimensional analytic model of the magnetic field for the TASCC cyclotron that satisfies Maxwell`s equations exactly has been constructed for use with the new differential-algebra orbit-dynamics code. The model includes: (1) the superconducting coils; (2) the saturated iron poles; (3) the partially saturated yoke; (4) the saturated-iron trim rods. Lines of dipole density along the edges of the hills account for the non-uniformities and edge effects and along with three yoke constants constitute the only free parameters.
Thermal island destabilization and the Greenwald limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R. B.; Gates, D. A.; Brennan, D. P.
Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. In a fusion device, a magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Further modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturated island. Becausemore » field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. An additional destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.« less
Evaluation of a microwave resonator for predicting grain moisture independent of bulk density
USDA-ARS?s Scientific Manuscript database
This work evaluated the ability of a planar whispering mode resonator to predict moisture considering moisture and densities expected in an on-harvester application. A calibration model was developed to accurately predict moisture over the moisture, density and temperature ranges evaluated. This mod...
Evaluation of techniques for determining the density of fine woody debris
Becky Fasth; Mark E. Harmon; Christopher W. Woodall; Jay. Sexton
2010-01-01
Evaluated various techniques for determining the density (i.e., bulk density) of fine woody debris during forest inventory activities. It was found that only experts in dead wood inventory may be able to identify fine woody debris stages of decay. Suggests various future research directions such as...
NASA Astrophysics Data System (ADS)
Zumr, David; Vláčilová, Markéta; Dostál, Tomáš; Jeřábek, Jakub; Sobotková, Martina; Sněhota, Michal
2015-04-01
Soil compaction is a well recognized phenomena in the agricultural land. Various effects can alter the degree of the compaction in the field. The topsoil is regularly loosened due to agrotechnical operations, but the subsoil remains usually compacted. Various studies show increasing bulk density and decreasing saturated hydraulic conductivity in the plough pan, even though some authors argue that it does not have to be always the case due to presence of bio-macropores. Hence the structural properties of the subsoil and the spatial distribution of the compacted layer depth within the cultivated fields are important factors influencing soil water regime, nutrients regime and runoff generation. The aim of the contribution is to present the results of the monitoring of the plough pan depth spatial distribution at the experimental catchment Nucice (Central Bohemia, Czech Republic). The soils are classified as Luvisols and Cambisols with a loamy Ap horizon (0.1 - 0.2 m deep) underlined by a silty and silty-clay B horizon. The content of clay particles in the topsoil is around 8%. The soil has low inner aggregate (soil matrix) hydraulic conductivity, with measured values of approximately 0.1 - 2 cm d-1. The bulk topsoil saturated hydraulic conductivity (Ks) is significantly higher and varies depending on the season. To observe the divide between topsoil and subsoil layers in detail and to be able to compare the soil structure and pore networks of both layers we inspected undisturbed soil samples with X-ray computed tomography. The divide between the conservatively tilled topsoil and the subsoil is clearly observable also on terrain. To identify its exact position we implemented a combination of penetrometry, soil sampling and electrical resistance tomography (ERT). The penetration tests accompanied by soil probing were done in an irregular network across the whole catchment based on the slopes and distance to the stream. Several 2D ERT measurements were done locally on a plot of approximately 10 x 50 m. Dipole-dipole scheme with electrode span of 10 cm was used. The results obtained by different techniques are in a good agreement with observed plough pan position. The contribution was prepared within the project of Czech Science Foundation No. 13-20388P. We thank Johannes Koestel from SLU Uppsala for his great help during CT imaging of the soil samples.
NASA Astrophysics Data System (ADS)
Amakor, X. N.; Jacobson, A. R.; Cardon, G. E.; Grossl, P. R.
2011-12-01
A recent water quality report recognized concentrations of salts and selenium above total maximum daily loads (TMDLs) in the Pariette Wetlands located in the Uintah Basin, Utah. Since the wetlands are located in the Pacific Migratory Flyway and frequented by numerous water fowl, the elevated levels of total dissolved solids and Se are of concern. To determine whether it possible to manage the mobilization of salts and associated contaminants through the watershed soils into the Pariette Wetlands, knowledge of the spatio-temporal dynamics and distribution of these contaminants is required. Thus, the objective of this study is to characterize the spatio-temporal mobilization of salts and total selenium in the Pariette Draw watershed. Intensive soil information is being collected along the streams feeding the wetlands from fields representing the dominant land-uses in the watershed (irrigated agricultural fields, fallow salt-crusted fields, oil and natural gas extraction fields) using both the noninvasive electromagnetic induction (EMI) sensing technique (EM38DD) and the invasive time-domain reflectometry (TDR). At each site, ground truth samples were collected from optimally determined points generated using the ESAP-RSSD program based on the bulk soil electrical conductivity survey information. Stable soil properties affecting the measurement of salinity (e.g., clay content, organic matter content, cation exchange capacity, bulk density) were also characterized at these points. Parameters affected by fluctuations in soil moisture content (e.g., pH, electrical conductivity of saturation paste extract (ECe), dissolved organic carbon (DOC), and total selenium in the dissolved saturation extract) are being measured repeatedly over a minimum of 1 year. Based on regression models of collocated EMI, TDR and ECe measurements, the dense survey data are transformed into ECe. Geostatistical kriging methods are applied to the transformed ECe and volumetric water content to reveal the complex spatio-temporal patterns of salinity, water content, and total selenium (based on the association between ECe and total Se) across portions of the watershed. Temporal changes are being compared using the paired t-test. Here we present the spatio-temporal correlations among the properties and over the sampling times for the 2011 summer and fall seasons with an initial evaluation of the underlying processes contributing to the elevated contaminant loads at the wetlands. Additional measurements will be made in 2012 to capture the effects of early spring snowmelt and runoff.
NASA Astrophysics Data System (ADS)
Kitamura, M.; Kitajima, H.; Henry, P.; Valdez, R. D., II; Josh, M.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.
2014-12-01
Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of ~2.7 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density, but higher bulk density and lower porosity, respectively. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical conductivity and P-wave velocity on discrete samples, which were prepared from both cuttings and core samples in the depth interval of 1745.5-3058.5 mbsf, range 0.15-0.9 S/m and 1.7-4.5 km/s, respectively. The electrical resistivity on discrete samples is higher than the LWD resistivity data but the overall depth trends are similar. The electrical conductivity and P-wave velocity on discrete samples corrected for in-situ pressure and temperature will be presented. The shipboard physical properties measurements on cuttings are very limited but can be useful with careful treatment and observation.
Effect of composition on physical properties of food powders
NASA Astrophysics Data System (ADS)
Szulc, Karolina; Lenart, Andrzej
2016-04-01
The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.
Assessment of the Density Functional Tight Binding Method for Protic Ionic Liquids
2015-01-01
Density functional tight binding (DFTB), which is ∼100–1000 times faster than full density functional theory (DFT), has been used to simulate the structure and properties of protic ionic liquid (IL) ions, clusters of ions and the bulk liquid. Proton affinities for a wide range of IL cations and anions determined using DFTB generally reproduce G3B3 values to within 5–10 kcal/mol. The structures and thermodynamic stabilities of n-alkyl ammonium nitrate clusters (up to 450 quantum chemical atoms) predicted with DFTB are in excellent agreement with those determined using DFT. The IL bulk structure simulated using DFTB with periodic boundary conditions is in excellent agreement with published neutron diffraction data. PMID:25328497
Stored grain pack factors for wheat: comparison of three methods to field measurements
USDA-ARS?s Scientific Manuscript database
Storing grain in bulk storage units results in grain packing from overbearing pressure, which increases grain bulk density and storage-unit capacity. This study compared pack factors of hard red winter (HRW) wheat in vertical storage bins using different methods: the existing packing model (WPACKING...
Forrester, Stephanie E; McLaren, Nicholas J
2015-01-01
Third generation artificial grass pitches have been observed to get harder over time. The maintenance technique of rubber infill decompaction is intended to help slow, or reverse, this process. At present, little is understood about either the science of the infill compaction process or the efficacy of decompaction maintenance. The objective of this study was to measure the changes in rubber infill net bulk density, force reduction (impact absorption) and vertical ball rebound under various levels of compactive effort in controlled laboratory-based testing. The assessments were repeated after the systems had been raked to simulate the decompaction maintenance techniques. These tests defined the limits of compaction (loose to maximally compacted) in terms of the change in rubber infill net bulk density, force reduction and vertical ball rebound. Site testing was also undertaken at four third generation pitches immediately pre and post decompaction, to determine the measurable effects in the less well controlled field environment. Rubber infill net bulk density was found to increase as compactive effort increased, resulting in increased hardness. Decompacting the surface was found to approximately fully reverse these effects. In comparison, the site measurements demonstrated similar but notably smaller magnitudes of change following the decompaction process suggesting that the field state pre and post decompaction did not reach the extremes obtained in the laboratory. The findings suggest that rubber infill net bulk density is an important parameter influencing the hardness of artificial grass and that decompactions can be an effective method to reverse compaction related hardness changes. PMID:29708108
Drexler, J.Z.; De Fontaine, C. S.; Deverel, S.J.
2009-01-01
Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 5580 of the original peat layer on the farmed islands has been lost due to land-surface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 29005700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface. ?? 2009 The Society of Wetland Scientists.
Gigantic negative magnetoresistance in the bulk of a disordered topological insulator
NASA Astrophysics Data System (ADS)
Breunig, Oliver; Wang, Zhiwei; Taskin, A. A.; Lux, Jonathan; Rosch, Achim; Ando, Yoichi
2017-05-01
With the recent discovery of Weyl semimetals, the phenomenon of negative magnetoresistance (MR) is attracting renewed interest. Large negative MR is usually related to magnetism, but the chiral anomaly in Weyl semimetals is a rare exception. Here we report a mechanism for large negative MR which is also unrelated to magnetism but is related to disorder. In the nearly bulk-insulating topological insulator TlBi0.15Sb0.85Te2, we observed gigantic negative MR reaching 98% in 14 T at 10 K, which is unprecedented in a nonmagnetic system. Supported by numerical simulations, we argue that this phenomenon is likely due to the Zeeman effect on a barely percolating current path formed in the disordered bulk. Since disorder can also lead to non-saturating linear MR in Ag2+δSe, the present finding suggests that disorder engineering in narrow-gap systems is useful for realizing gigantic MR in both positive and negative directions.
Unexpected optical limiting properties from MoS2 nanosheets modified by a semiconductive polymer.
Zhao, Min; Chang, Meng-Jie; Wang, Qiang; Zhu, Zhen-Tong; Zhai, Xin-Ping; Zirak, Mohammad; Moshfegh, Alireza Z; Song, Ying-Lin; Zhang, Hao-Li
2015-08-07
Direct solvent exfoliation of bulk MoS2 with the assistance of poly(3-hexylthiophene) (P3HT) produces a novel two-dimensional organic/inorganic semiconductor hetero-junction. The obtained P3HT-MoS2 nanohybrid exhibits unexpected optical limiting properties in contrast to the saturated absorption behavior of both P3HT and MoS2, showing potential in future photoelectric applications.
Liger-Belair, Gérard; Topgaard, Daniel; Voisin, Cédric; Jeandet, Philippe
2004-05-11
In this paper, the transversal diffusion coefficient D perpendicular of CO2 dissolved molecules through the wall of a hydrated cellulose fiber was approached, from the liquid bulk diffusion coefficient of CO2 dissolved molecules modified by an obstruction factor. The porous network between the cellulose microfibrils of the fiber wall was assumed being saturated with liquid. We retrieved information from previous NMR experiments on the self-diffusion of water in cellulose fibers to reach an order of magnitude for the transversal diffusion coefficient of CO2 molecules through the fiber wall. A value of about D perpendicular approximately 0.2D0 was proposed, D0 being the diffusion coefficient of CO2 molecules in the liquid bulk. Because most of bubble nucleation sites in a glass poured with carbonated beverage are cellulose fibers cast off from paper or cloth which floated from the surrounding air, or remaining from the wiping process, this result directly applies to the kinetics of carbon dioxide bubble formation from champagne and sparkling wines. If the cellulose fiber wall was impermeable with regard to CO2 dissolved molecules, it was suggested that the kinetics of bubbling would be about three times less than it is.
Traffic Signal Synchronization in the Saturated High-Density Grid Road Network
Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye
2015-01-01
Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN. PMID:25663835
Production of High Density Aviation Fuels via Novel Zeolite Catalyst Routes
1989-10-23
range fraction of a naphthenic crude; saturation of an aromatic FCC cycle stock I the appropriate boiling range: saturation of an appropriate boiling...aromatic hydrocarbons and selected aromatic feedstocks to the corresponding mono- and dicyclic naphthenes in the aviation turbine fuel boiling range; and...Paraffins from Naphthenic Refinery Feed Streams .......... 8 Solvent Extraction ........................................... 8 Shape Selective Catalytic
NASA Astrophysics Data System (ADS)
Setoyama, Yui; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Awaji, Satoshi; Kon, Koichi; Ichikawa, Naoki; Inamori, Satoshi; Naito, Kyogo
2016-12-01
Effects of densification of precursor disks on the density of residual voids and critical current properties for YBCO melt-textured bulk superconductors were systematically investigated. Six YBCO bulks were prepared from precursor pellets with different initial particle sizes of YBa2Cu3Oy (Y123) powder and applied pressures for pelletization. It was revealed that use of finer Y123 powder and consolidation using cold-isostatic-pressing (CIP) with higher pressures result in reduction of residual voids at inner regions of bulks and enhance Jc especially under low fields below the second peak.
NASA Astrophysics Data System (ADS)
Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.
2017-12-01
The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our understanding of transport properties from field-scale time-lapse ERT.
Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment
NASA Astrophysics Data System (ADS)
Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.
2006-12-01
Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).
Rausch, Alexander M; Küng, Vera E; Pobel, Christoph; Markl, Matthias; Körner, Carolin
2017-09-22
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts.
Rausch, Alexander M.; Küng, Vera E.; Pobel, Christoph; Körner, Carolin
2017-01-01
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts. PMID:28937633
Density functional theory study of bulk and single-layer magnetic semiconductor CrPS4
NASA Astrophysics Data System (ADS)
Zhuang, Houlong L.; Zhou, Jia
2016-11-01
Searching for two-dimensional (2D) materials with multifunctionality is one of the main goals of current research in 2D materials. Magnetism and semiconducting are certainly two desirable functional properties for a single 2D material. In line with this goal, here we report a density functional theory (DFT) study of bulk and single-layer magnetic semiconductor CrPS4. We find that the ground-state magnetic structure of bulk CrPS4 exhibits the A-type antiferromagnetic ordering, which transforms to ferromagnetic (FM) ordering in single-layer CrPS4. The calculated formation energy and phonon spectrum confirm the stability of single-layer CrPS4. The band gaps of FM single-layer CrPS4 calculated with a hybrid density functional are within the visible-light range. We also study the effects of FM ordering on the optical absorption spectra and band alignments for water splitting, indicating that single-layer CrPS4 could be a potential photocatalyst. Our work opens up ample opportunities of energy-related applications of single-layer CrPS4.
First-principles study of the structural, electronic and thermal properties of CaLiF3
NASA Astrophysics Data System (ADS)
Chouit, N.; Amara Korba, S.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.
2013-09-01
Density functional theory calculations have been performed to study the structural, electronic and optical properties of CaLiF3 cubic fluoroperovskite. Our calculations were carried out by means of the full-potential linearized augmented plane-wave method. The exchange-correlation potential is treated by the local density approximation and the generalized gradient approximation (GGA) (Perdew, Burke and Ernzerhof). Moreover, the alternative form of GGA proposed by Engel and Vosko is also used for band structure calculations. The calculated total energy versus volume allows us to obtain structural properties such as the lattice constant (a0), bulk modulus (B0) and pressure derivative of the bulk modulus (B'0 ). Band structure, density of states and band gap pressure coefficients are also given. Our calculations show that CaLiF3 has an indirect band gap (R-Γ). Following the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the lattice constant, bulk modulus, thermal expansion coefficient, Debye temperature and heat capacities are calculated.
Self-consistent pseudopotential calculation of the bulk properties of Mo and W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zunger, A.; Cohen, M.L.
The bulk properties of Mo and W are calculated using the recently developed momentum-space approach for calculating total energy via a nonlocal pseudopotential. This approach avoids any shape approximation to the variational charge density (e.g., muffin tins), is fully self-consistent, and replaces the multidimensional and multicenter integrals akin to real-space representations by simple and readily convergent reciprocal-space lattice sums. We use first-principles atomic pseudopotentials which have been previously demonstrated to yield band structures and charge densities for both semiconductors and transition metals in good agreement with experiment and all-electron calculations. Using a mixed-basis representation for the crystalline wave function, wemore » are able to accurately reproduce both the localized and itinerant features of the electronic states in these systems. These first-principles pseudopotentials, together with the self-consistent density-functional representation for both the exchange and the correlation screening, yields agreement with experiment of 0.2% in the lattice parameters, 2% and 11% for the binding energies of Mo and W, respectively, and 12% and 7% for the bulk moduli of Mo and W, respectively.« less
NASA Astrophysics Data System (ADS)
Atapour, Hadi; Mortazavi, Ali
2018-04-01
The effects of textural characteristics, especially grain size, on index properties of weakly solidified artificial sandstones are studied. For this purpose, a relatively large number of laboratory tests were carried out on artificial sandstones that were produced in the laboratory. The prepared samples represent fifteen sandstone types consisting of five different median grain sizes and three different cement contents. Indices rock properties including effective porosity, bulk density, point load strength index, and Schmidt hammer values (SHVs) were determined. Experimental results showed that the grain size has significant effects on index properties of weakly solidified sandstones. The porosity of samples is inversely related to the grain size and decreases linearly as grain size increases. While a direct relationship was observed between grain size and dry bulk density, as bulk density increased with increasing median grain size. Furthermore, it was observed that the point load strength index and SHV of samples increased as a result of grain size increase. These observations are indirectly related to the porosity decrease as a function of median grain size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Tayebjee, Murad J. Y.; Smyth, Suntrana
2016-03-28
We have investigated the ultrafast carrier dynamics in a 1 μm bulk In{sub 0.265}Ga{sub 0.735}N thin film grown using energetic neutral atom-beam lithography/epitaxy molecular beam epitaxy. Cathodoluminescence and X-ray diffraction experiments are used to observe the existence of indium-rich domains in the sample. These domains give rise to a second carrier population and bi-exponential carrier cooling is observed with characteristic lifetimes of 1.6 and 14 ps at a carrier density of 1.3 × 10{sup 16 }cm{sup −3}. A combination of band-filling, screening, and hot-phonon effects gives rise to a two-fold enhanced mono-exponential cooling rate of 28 ps at a carrier density of 8.4 × 10{sup 18 }cm{sup −3}. Thismore » is the longest carrier thermalization time observed in bulk InGaN alloys to date.« less
Theoretical Study of α-V2O5 -Based Double-Wall Nanotubes.
Porsev, Vitaly V; Bandura, Andrei V; Evarestov, Robert A
2015-10-05
First-principles calculations of the atomic and electronic structure of double-wall nanotubes (DWNTs) of α-V2 O5 are performed. Relaxation of the DWNT structure leads to the formation of two types of local regions: 1) bulk-type regions and 2) puckering regions. Calculated total density of states (DOS) of DWNTs considerably differ from that of single-wall nanotubes and the single layer, as well as from the DOS of the bulk and double layer. Small shoulders that appear on edges of valence and conduction bands result in a considerable decrease in the band gaps of the DWNTs (up to 1 eV relative to the single-layer gaps). The main reason for this effect is the shift of the inner- and outer-wall DOS in opposite directions on the energetic scale. The electron density corresponding to shoulders at the conduction-band edges is localized on vanadium atoms of the bulk-type regions, whereas the electron density corresponding to shoulders at the valence-band edges belongs to oxygen atoms of both regions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading
Koohbor, Behrad; Mallon, Silas; Kidane, Addis; ...
2015-04-07
The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digitalmore » image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. As a result, it is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.« less
Li, Keyan; Xie, Hui; Liu, Jun; Ma, Zengsheng; Zhou, Yichun; Xue, Dongfeng
2013-10-28
Toward engineering high performance anode alloys for Li-ion batteries, we proposed a useful method to quantitatively estimate the bulk modulus of binary alloys in terms of metallic electronegativity (EN), alloy composition and formula volume. On the basis of our proposed potential viewpoint, EN as a fundamental chemistry concept can be extended to be an important physical parameter to characterize the mechanical performance of Li-Si and Li-Sn alloys as anode materials for Li-ion batteries. The bulk modulus of binary alloys is linearly proportional to the combination of average metallic EN and atomic density of alloys. We calculated the bulk moduli of Li-Si and Li-Sn alloys with different Li concentrations, which can agree well with the reported data. The bulk modulus of Li-Si and Li-Sn alloys decreases with increasing Li concentration, leading to the elastic softening of the alloys, which is essentially caused by the decreased strength of constituent chemical bonds in alloys from the viewpoint of EN. This work provides a deep understanding of mechanical failure of Si and Sn anodes for Li-ion batteries, and permits the prediction of the composition dependent bulk modulus of various lithiated alloys on the basis of chemical formula, metallic EN and cell volume (or alloy density), with no structural details required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Shoron, Omor F.; Park, Pil Sung
We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity showsmore » that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.« less
Microbial and physical properties as indicators of sandy soil quality under cropland and grassland
NASA Astrophysics Data System (ADS)
Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw; Oszust, Karolina; Brzezinska, Malgorzata
2017-04-01
Land use is one of the key factor driving changes in soil properties influencing on soil health and quality. Microbial diversity and physical properties are sensitive indicators for assessing soil health and quality. The alterations of microbial diversity and physical properties following land use changes have not been sufficiently elucidated, especially for sandy soils. We investigated microbial diversity indicators including fungal communities composition and physical properties of sandy acid soil under cropland and more than 20-yr-old grassland (after cropland) in Trzebieszów, Podlasie Region, Poland (N 51° 59' 24", E 22° 33' 37"). The study included four depths within 0-60 cm. Microbial genetic diversity was assessed by terminal restriction fragment length polymorphism (t-RFLP) analysis, fungal community composition was evaluated by next generation sequencing (NGS) analysis and functional diversity was determined by Biolog EcoPlate method. Overall microbial activity was assessed by soil enzymes (dehydrogenases, β-glucosidase) and respiration test. At the same places soil texture, organic carbon content, pH, bulk density, water holding capacity were determined. Our results showed that grassland soil was characterized by higher activity of soil enzymes than cropland. The average well color development of soil microorganisms, the microbial functional diversity and the number of carbon source utilization were significantly affected by land use type and were differentiated among soil depths. In grassland compared to cropland soil a significant increase of carboxylic acids and decrease of amino acids utilization was observed. The quantitative and qualitative differences were found in community of ammonia oxidizing archaea in cropland and grassland soil. The results of fungal community composition help to explain the soil health of grassland and cropland based on the appearance of phytopathogenic and antagonistic fungi. In general bulk density and field water capacity were greater and saturated hydraulic conductivity was lower under grassland than cropland soil. The study was funded by HORIZON 2020, European Commission, Programme: H2020-SFS-4-2014: Soil quality and function, project No. 635750, Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience (iSQAPER, 2015-2020).
NASA Astrophysics Data System (ADS)
Lakew, Walle; Baartman, Jantiene; Fleskens, Luuk; Selassie, Yihenew; Ritsema, Coen
2017-04-01
Prolonged soil drying and severe moisture stress during the dry season, and soil saturation and erosion during the short rainy season are critical problems in the Ethiopian highlands. Large-scale implementation of bund structures has been used as soil and water management (SWM) strategy to fight these problems and establish a sustainable land management (SLM) system. However, many SWM practices are implemented with design flaws or without proper design and maintenance, and do not match conservation requirements. The quality of implementation and effects of bund structures on soil physical properties is not yet documented. Therefore, in this study, field investigations and laboratory analysis were carried out to evaluate the variation in bund structure design and its impact on soil-water retention, bulk density, porosity and soil depth. Results show that the dimensions and stability of bund structures, and consequently, the impacts of bunds varied widely. The widths and heights of bunds, and slope gradients were significantly correlated with infiltration rate and available soil-water content. Water holding capacity was 24% higher compared to that on untreated farms. Bunds with larger dimensions of top width (>85 cm) and height (>75 cm) showed 17 and 18% higher water holding capacity compared to fields with bunds having lower dimensions. In addition, results exhibited that the porosity and soil depth were significantly affected by the dimensions of bund structures and increased with increasing widths and heights of bunds. A 14.2% increase in porosity; a 41.2% increase in infiltration rate; and a 17.5% decrease in bulk density was found in soils of treated farms compared to those of untreated farm plots. Differences in particle size distribution and soil erodibility among widths of the bunds were low. It can be concluded that bund structure design varied substantially throughout the study area, which had impacted soil-water storage and soil physical properties. Bund structure design should be adapted to local biophysical settings at catchment level to enhance on- and offsite impacts.
NASA Astrophysics Data System (ADS)
Saravanan, P.; Vinod, V. T. P.; Černík, Miroslav; Selvapriya, A.; Chakravarty, Dibyendu; Kamat, S. V.
2015-01-01
The potential of spark plasma sintering (SPS) in combination with rapid thermal annealing (RTA) for the processing of Mn-Al nanostructured magnets is explored in this study. Ferromagnetic α-Mn alloy powders were processed by high-energy ball milling using Mn (56 at%) and Al (44 at%) as constituent metal elements. The alloying action between Mn and Al due to intensive milling was studied by X-ray diffraction and field-emission scanning electron microscope; while the phase transformation kinetics was investigated using differential scanning calorimetry. The evolution of ferromagnetic properties in the as-milled powders was studied by superconducting quantum interference device (SQUID). Among the Mn-Al alloy powders collected at various milling intervals, the 25 h milled Mn-Al powders showed a good combination of coercivity, Hc (11.3 kA/m) and saturation magnetization, Ms (5.0 A/m2/kg); accordingly, these powders were chosen for SPS. The SPS experiments were conducted at different temperatures: 773, 873 and 973 K and its effect on the density, phase composition and magnetic properties of the Mn-Al bulk samples were investigated. Upon increasing the SPS temperature from 773 to 973 K, the bulk density was found to increase from 3.6 to 4.0 g/cm3. The occurrence of equilibrium β-phase with significant amount of γ2-phase was obvious at all the SPS temperatures; however, crystallization of some amount of τ-phase was evident at 973 K. Irrespective of the SPS temperatures, all the samples demonstrated soft magnetic behavior with Hc and Ms values similar to those obtained for the 25 h milled powders. The magnetic properties of the SPSed samples were significantly improved upon subjecting them to RTA at 1100 K. Through the RTA process, Hc values of 75, 174 and 194 kA/m and Ms values of 19, 21 and 28 A/m2/kg were achieved for the samples SPSed at 773, 873 and 973 K, respectively. The possible reasons for the observed improvement in the magnetic properties of the SPSed samples due to RTA in correlation with their phase composition and microstructure were analyzed and discussed.
NASA Astrophysics Data System (ADS)
Leigh, D.; Gragson, T. L.
2017-12-01
Summits of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, including use of fire. We hypothesize differences in soil chemical and physical traits evolved because of this transformation. Paired forest versus grassland soils were sampled at four separate hillslope sites having a clear boundary between the two vegetation types. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples from the upper 7.6 cm of the mineral soil within each vegetation type and the A horizon thickness was recorded at each core hole. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. Analyses included bulk density, pH, plant-available nutrients, organic matter, fulvic versus humic acids, total carbon and nitrogen, amorphous silica, and charcoal content. Results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, and have lower bulk densities. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we validated with saturated hydraulic conductivity tests. Melanization has been more pronounced in the managed pastures, which contain significantly more humic acids than forests. Significantly more charcoal (black carbon) is present in the pastured soils from long-term use of fire, and having implications for sequestration of carbon. Pastures register significantly higher soil magnetic susceptibility than forests, also related to past use of fire as a management tool. Pastures contain greater contents of amorphous silica due to more rapid phytolith production from grasses as opposed to trees. Anthropic manipulation of the biotic factor of pedogenesis has created new soil materials, processes, and functions. Our results indicate better soil quality in pastured soils, counter to stereotypical concepts of soil degradation due to grazing, and having important implications for soil sustainability
NASA Astrophysics Data System (ADS)
Ali, Akbar; Grössinger, R.; Imran, Muhammad; Khan, M. Ajmal; Elahi, Asmat; Akhtar, Majid Niaz; Mustafa, Ghulam; Khan, Muhammad Azhar; Ullah, Hafeez; Murtaza, Ghulam; Ahmad, Mukhtar
2017-02-01
Polycrystalline W-type hexagonal ferrites with chemical formulae Ba0.5Sr0.5 Co2- x Me x Fe16O27 ( x = 0, 0.5, Me = Mn, Mg, Zn, Ni) have been prepared using sol-gel autocombustion. It has been reported in our earlier published work that all the samples exhibit a single-phase W-type hexagonal structure which was confirmed by x-ray diffraction (XRD) analysis. The values of bulk density lie in the range of 4.64-4.78 g/cm3 for all the samples which are quite high as compared to those for other types of hexaferrites. It was also observed that Zn-substituted ferrite reflects the highest (14.7 × 107 Ω-cm) whereas Mn-substituted ferrite has the lowest (11.3 × 107 Ω-cm) values of direct current (DC) electrical resistivity. The observed values of saturation magnetization ( M s) are found to be in the range of 62.01-68.7 emu/g depending upon the type of cation substitution into the hexagonal lattice. All the samples exhibit a typical soft magnetic character with low values of coercivity ( H c) that are in the range of 26-85 Oe. These ferrites may be promising materials for microwave absorbers due to their higher saturation magnetization and low coercivities. Both the dielectric constant and tangent loss decrease with increasing frequency in the lower frequency region and become constant in the higher frequency region. The much lower dielectric constant obtained in this study makes the investigated ferrites very useful for high-frequency applications, i.e. dielectric resonators and for camouflaging military targets such as ships, tanks and aircrafts, etc.
Cohesive Strength of Gas-hydrate-bearing Marine Sediments
NASA Astrophysics Data System (ADS)
Cook, A. E.; Goldberg, D.
2005-12-01
We examine the relationship between gas hydrate saturation and the cohesive strength of marine sediments in a variety of continental margin settings. The cohesive strength (cohesion) is a fundamental physical property controlling sediment resistance to compressive failure. The cohesion (Co), is typically defined by the uncompressive rock strength and the friction angle, but it can also be related to the dynamic Young's modulus (ED), where: Co = 1.5*10-3 ED. The dynamic Young's modulus is computed using in situ Vp, Vs, and bulk density borehole logs. The Co profiles are compared to estimates of the in situ hydrate saturation, Sh, calculated using electrical resistivity logs and the modified Archie formula: Sh = 1 - (aRw/RΦm)1/n. We will present results of these comparisons from data collected during Ocean Drilling Program Legs at Cascadia margin (204 & 168) and Blake Ridge (164), the JIP gas hydrate drilling project in the Gulf of Mexico, and Malik permafrost wells. In general, at all the sites investigated, Co steadily increases downhole as sediments compact due to overburden. In marine sediments, cohesion ranges from 500-2000kPa above the BSR, with a baseline gradient usually between 5 and 10 kPa/m. Preliminary results show at Cascadia margin that sediments with Sh > 15%, Co increases dramatically, at least 200kPa greater than the general trend of the downhole gradient. This suggests that Co is affected directly by Sh, and may be related to the rate of change in Sh (e.g. gradual or sharp) as a function of depth. Further study on the relationship between Co and Sh may provide information on the growth habit of gas hydrates in sediment pore spaces.
Johnson, R.H.; Poeter, E.P.
2007-01-01
Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9??m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess. ?? 2006 Elsevier B.V. All rights reserved.
The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space
NASA Astrophysics Data System (ADS)
Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.
2018-02-01
Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.
van Der Laak, J A; Pahlplatz, M M; Hanselaar, A G; de Wilde, P C
2000-04-01
Transmitted light microscopy is used in pathology to examine stained tissues. Digital image analysis is gaining importance as a means to quantify alterations in tissues. A prerequisite for accurate and reproducible quantification is the possibility to recognise stains in a standardised manner, independently of variations in the staining density. The usefulness of three colour models was studied using data from computer simulations and experimental data from an immuno-doublestained tissue section. Direct use of the three intensities obtained by a colour camera results in the red-green-blue (RGB) model. By decoupling the intensity from the RGB data, the hue-saturation-intensity (HSI) model is obtained. However, the major part of the variation in perceived intensities in transmitted light microscopy is caused by variations in staining density. Therefore, the hue-saturation-density (HSD) transform was defined as the RGB to HSI transform, applied to optical density values rather than intensities for the individual RGB channels. In the RGB model, the mixture of chromatic and intensity information hampers standardisation of stain recognition. In the HSI model, mixtures of stains that could be distinguished from other stains in the RGB model could not be separated. The HSD model enabled all possible distinctions in a two-dimensional, standardised data space. In the RGB model, standardised recognition is only possible by using complex and time-consuming algorithms. The HSI model is not suitable for stain recognition in transmitted light microscopy. The newly derived HSD model was found superior to the existing models for this purpose. Copyright 2000 Wiley-Liss, Inc.