Indications of Bulk-Fluid Motion in Direct-Drive Implosions
NASA Astrophysics Data System (ADS)
Mannion, O. M.; Anderson, K. S.; Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.
2017-10-01
The neutron spectrum produced by a burning plasma encodes essential information about the fusion products and serves as an important diagnostic for inertial confinement fusion experiments. At the Omega Laser Facility, neutron time-of-flight measurements are used to interpret the first and second moment of the neutron spectrum. These moments have been shown to be directly related to properties of the plasma, such as bulk fluid motion and apparent ion temperature. New measurement devices allow for unprecedented accuracy in the measurement of these moments and will provide a better understanding of the performance of direct-drive implosions. We present measurements of the first moment of the DT and D2 peaks in DT implosions and show that variations in the first moment indicate bulk fluid motion of the plasma. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Radiating gravitational collapse with shearing motion and bulk viscosity
NASA Astrophysics Data System (ADS)
Chan, R.
2001-03-01
A model is proposed of a collapsing radiating star consisting of a shearing fluid with bulk viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the bulk viscosity the pressure becomes more and more anisotropic. The behavior of the density, pressure, mass, luminosity, the effective adiabatic index and the Kretschmann scalar is analyzed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6 Msun.
Localized diffusive motion on two different time scales in solid alkane nanoparticles
NASA Astrophysics Data System (ADS)
Wang, S.-K.; Mamontov, E.; Bai, M.; Hansen, F. Y.; Taub, H.; Copley, J. R. D.; García Sakai, V.; Gasparovic, G.; Jenkins, T.; Tyagi, M.; Herwig, K. W.; Neumann, D. A.; Montfrooij, W.; Volkmann, U. G.
2010-09-01
High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a "fast" motion corresponding to uniaxial rotation about the long molecular axis; and a "slow" motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.
Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings
NASA Technical Reports Server (NTRS)
SanAndres, Luis
1996-01-01
Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.
Dynamic Mesh CFD Simulations of Orion Parachute Pendulum Motion During Atmospheric Entry
NASA Technical Reports Server (NTRS)
Halstrom, Logan D.; Schwing, Alan M.; Robinson, Stephen K.
2016-01-01
This paper demonstrates the usage of computational fluid dynamics to study the effects of pendulum motion dynamics of the NASAs Orion Multi-Purpose Crew Vehicle parachute system on the stability of the vehicles atmospheric entry and decent. Significant computational fluid dynamics testing has already been performed at NASAs Johnson Space Center, but this study sought to investigate the effect of bulk motion of the parachute, such as pitching, on the induced aerodynamic forces. Simulations were performed with a moving grid geometry oscillating according to the parameters observed in flight tests. As with the previous simulations, OVERFLOW computational fluid dynamics tool is used with the assumption of rigid, non-permeable geometry. Comparison to parachute wind tunnel tests is included for a preliminary validation of the dynamic mesh model. Results show qualitative differences in the flow fields of the static and dynamic simulations and quantitative differences in the induced aerodynamic forces, suggesting that dynamic mesh modeling of the parachute pendulum motion may uncover additional dynamic effects.
1980-02-01
migration of the chemical mass in the fluid volume according to two entirely different means, yet governed by the same form of the equation: molecular ...pressure or temperature gradients, gravitational or other body forces, or bulk fluid motion, is observed as molecular diffusion. In general, the...need be made at this stage as to whether the diffusion of a released mass in the fluid is molecular or turbulent in nature. The general form of the one
Fluid flow in solidifying monotectic alloys
NASA Technical Reports Server (NTRS)
Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.
1989-01-01
Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.
Longitudinal and bulk viscosities of Lennard-Jones fluids
NASA Astrophysics Data System (ADS)
Tankeshwar, K.; Pathak, K. N.; Ranganathan, S.
1996-12-01
Expressions for the longitudinal and bulk viscosities have been derived using Green Kubo formulae involving the time integral of the longitudinal and bulk stress autocorrelation functions. The time evolution of stress autocorrelation functions are determined using the Mori formalism and a memory function which is obtained from the Mori equation of motion. The memory function is of hyperbolic secant form and involves two parameters which are related to the microscopic sum rules of the respective autocorrelation function. We have derived expressions for the zeroth-, second-and fourth- order sum rules of the longitudinal and bulk stress autocorrelation functions. These involve static correlation functions up to four particles. The final expressions for these have been put in a form suitable for numerical calculations using low- order decoupling approximations. The numerical results have been obtained for the sum rules of longitudinal and bulk stress autocorrelation functions. These have been used to calculate the longitudinal and bulk viscosities and time evolution of the longitudinal stress autocorrelation function of the Lennard-Jones fluids over wide ranges of densities and temperatures. We have compared our results with the available computer simulation data and found reasonable agreement.
Broadband boundary effects on Brownian motion.
Mo, Jianyong; Simha, Akarsh; Raizen, Mark G
2015-12-01
Brownian motion of particles in confined fluids is important for many applications, yet the effects of the boundary over a wide range of time scales are still not well understood. We report high-bandwidth, comprehensive measurements of Brownian motion of an optically trapped micrometer-sized silica sphere in water near an approximately flat wall. At short distances we observe anisotropic Brownian motion with respect to the wall. We find that surface confinement not only occurs in the long time scale diffusive regime but also in the short time scale ballistic regime, and the velocity autocorrelation function of the Brownian particle decays faster than that of a particle in bulk fluid. Furthermore, at low frequencies the thermal force loses its color due to the reflected flow from the no-slip boundary. The power spectrum of the thermal force on the particle near a no-slip boundary becomes flat at low frequencies. This detailed understanding of boundary effects on Brownian motion opens a door to developing a 3D microscope using particles as remote sensors.
Velocity relaxation of a particle in a confined compressible fluid
NASA Astrophysics Data System (ADS)
Tatsumi, Rei; Yamamoto, Ryoichi
2013-05-01
The velocity relaxation of an impulsively forced spherical particle in a fluid confined by two parallel plane walls is studied using a direct numerical simulation approach. During the relaxation process, the momentum of the particle is transmitted in the ambient fluid by viscous diffusion and sound wave propagation, and the fluid flow accompanied by each mechanism has a different character and affects the particle motion differently. Because of the bounding walls, viscous diffusion is hampered, and the accompanying shear flow is gradually diminished. However, the sound wave is repeatedly reflected and spreads diffusely. As a result, the particle motion is governed by the sound wave and backtracks differently in a bulk fluid. The time when the backtracking of the particle occurs changes non-monotonically with respect to the compressibility factor ɛ = ν/ac and is minimized at the characteristic compressibility factor. This factor depends on the wall spacing, and the dependence is different at small and large wall spacing regions based on the different mechanisms causing the backtracking.
NASA Astrophysics Data System (ADS)
Barati, H.; Wu, M.; Kharicha, A.; Ludwig, A.
2016-07-01
Turbulent fluid flow due to the electromagnetic forces in induction crucible furnace (ICF) is modeled using k-ɛ, k-ω SST and Large Eddy Simulation (LES) turbulence models. Fluid flow patterns calculated by different turbulence models and their effects on the motion of non-metallic inclusions (NMI) in the bulk melt have been investigated. Results show that the conventional k-ɛ model cannot solve the transient flow in ICF properly. With k-ω model transient flow and oscillation behavior of the flow pattern can be solved, and the motion of NMI can be tracked fairly well. LES model delivers the best modeling result on both details of the transient flow pattern and motion trajectories of NMI without the limitation of NMI size. The drawback of LES model is the long calculation time. Therefore, for general purpose to estimate the dynamic behavior of NMI in ICF both k-ω SST and LES are recommended. For the precise calculation of the motion of NMI smaller than 10 μm only LES model is appropriate.
PREFACE: Ionic fluids Ionic fluids
NASA Astrophysics Data System (ADS)
Levin, Yan; Kornyshev, Alexei; Barbosa, Marcia C.
2009-10-01
In spite of its apparent simplicity Coulomb law, when applied to many body systems, leads to an amazingly rich mathematical structure. The simple idea that two similarly charged objects always repel, is not necessarily true in a colloidal suspension or a dusty plasma. Neither can one simply predict the direction of the electrophoretic motion of a polyion from only knowing its chemical charge. Strong Coulomb correlations in ionic fluids result in instabilities very similar to the gas--liquid phase separation observed in atomic fluids. It is fair to say that bulk behavior of simple aqueous monovalent electrolytes is now very well understood. Unfortunately this is not the case for multivalent electrolytes or molten salts. In these systems cation-anion association leads to strong non-linear effects which manifest themselves in formations of tightly bound ionic clusters. In spite of the tremendous effort invested over the years, our understanding of these systems remains qualitative. In this special issue we have collected articles from some of the biggest experts working on ionic fluids. The papers are both experimental and theoretical. They range from simple electrolytes in the bulk and near interfaces, to polyelectrolytes, colloids, and molten salts. The special issue, covers a wide spectrum of the ongoing research on ionic fluids. All readers should find something of interest here.
Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications.
Soumya, S S; Gupta, Animesh; Cugno, Andrea; Deseri, Luca; Dayal, Kaushik; Das, Dibyendu; Sen, Shamik; Inamdar, Mandar M
2015-12-01
Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.
Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications
Soumya, S S; Gupta, Animesh; Cugno, Andrea; Deseri, Luca; Dayal, Kaushik; Das, Dibyendu; Sen, Shamik; Inamdar, Mandar M.
2015-01-01
Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements. PMID:26691341
Non-rigid precession of magnetic stars
NASA Astrophysics Data System (ADS)
Lander, S. K.; Jones, D. I.
2017-06-01
Stars are, generically, rotating and magnetized objects with a misalignment between their magnetic and rotation axes. Since a magnetic field induces a permanent distortion to its host, it provides effective rigidity even to a fluid star, leading to bulk stellar motion that resembles free precession. This bulk motion is, however, accompanied by induced interior velocity and magnetic field perturbations, which are oscillatory on the precession time-scale. Extending previous work, we show that these quantities are described by a set of second-order perturbation equations featuring cross-terms scaling with the product of the magnetic and centrifugal distortions to the star. For the case of a background toroidal field, we reduce these to a set of differential equations in radial functions, and find a method for their solution. The resulting magnetic field and velocity perturbations show complex multipolar structure and are strongest towards the centre of the star.
Multi-fluid MHD simulations of Europa's interaction with Jupiter's magnetosphere
NASA Astrophysics Data System (ADS)
Harris, C. D. K.; Jia, X.; Slavin, J. A.; Rubin, M.; Toth, G.
2017-12-01
Several distinct physical processes generate the interaction between Europa, the smallest of Jupiter's Galilean moons, and Jupiter's magnetosphere. The 10˚ tilt of Jupiter's dipole causes time varying magnetic fields at Europa's orbit which interact with Europa's subsurface conducting ocean to induce magnetic perturbations around the moon. Jovian plasma interacts with Europa's icy surface to sputter off neutral particles, forming a tenuous exosphere which is then ionized by impact and photo-ionization to form an ionosphere. As jovian plasma flows towards the moon, mass-loading and interaction with the ionosphere slow the flow, producing magnetic perturbations that propagate along the field lines to form an Alfvén wing current system, which connects Europa to its bright footprint in Jupiter's ionosphere. The Galileo mission has shown that the plasma interaction generates significant magnetic perturbations that obscure signatures of the induced field from the subsurface ocean. Modeling the plasma-related perturbations is critical to interpreting the magnetic signatures of Europa's induction field, and therefore to magnetic sounding of its interior, a central goal of the upcoming Europa Clipper mission. Here we model the Europa-Jupiter interaction with multi-fluid magnetohydrodynamic simulations to understand quantitatively how these physical processes affect the plasma and magnetic environment around the moon. Our model separately tracks the bulk motion of three different ion fluids (exospheric O2+, O+, and magnetospheric O+), and includes sources and losses of mass, momentum and energy to each of the ion fluids due to ionization, charge-exchange and recombination. We include calculations of the electron temperature allowing for field-aligned electron heat conduction, and Hall effects due to differential ion-electron motion. Compared to previous simulations, this multi-fluid model allows us to more accurately determine the precipitation flux of jovian plasma to Europa's surface, which has significant implications for space weathering at the moon. Including the Hall effect in our simulations enables us to determine the effects of separate ion-electron bulk motion throughout the interaction, and our simulations reveal noticeable asymmetries and small-scale features in the Alfvén wings.
Two-particle microrheology of quasi-2D viscous systems.
Prasad, V; Koehler, S A; Weeks, Eric R
2006-10-27
We study the spatially correlated motions of colloidal particles in a quasi-2D system (human serum albumin protein molecules at an air-water interface) for different surface viscosities eta s. We observe a transition in the behavior of the correlated motion, from 2D interface dominated at high eta s to bulk fluid dependent at low eta s. The correlated motions can be scaled onto a master curve which captures the features of this transition. This master curve also characterizes the spatial dependence of the flow field of a viscous interface in response to a force. The scale factors used for the master curve allow for the calculation of the surface viscosity eta s that can be compared to one-particle measurements.
NASA Astrophysics Data System (ADS)
Xue, Xiaochun; Yu, Yonggang; Mang, Shanshan
2017-07-01
Data are presented showing that the problem of gas-liquid interaction instability is an important subject in the combustion and the propellant projectile motion process of a bulk-loaded liquid propellant gun (BLPG). The instabilities themselves arise from the sources, including fluid motion, to form a combustion gas cavity called Taylor cavity, fluid turbulence and breakup caused by liquid motion relative to the combustion chamber walls, and liquid surface breakup arising from a velocity mismatch on the gas-liquid interface. Typically, small disturbances that arise early in the BLPG combustion interior ballistic cycle can become amplified in the absence of burn rate limiting characteristics. Herein, significant attention has been given to developing and emphasizing the need for better combustion repeatability in the BLPG. Based on this goal, the concept of using different geometries of the combustion chamber is introduced and the concept of using a stepped-wall structure on the combustion chamber itself as a useful means of exerting boundary control on the combustion evolution to thus restrain the combustion instability has been verified experimentally in this work. Moreover, based on this background, the numerical simulation is devoted to a special combustion issue under transient high-pressure and high-temperature conditions, namely, studying the combustion mechanism in a stepped-wall combustion chamber with full monopropellant on one end that is stationary and the other end can move at high speed. The numerical results also show that the burning surface of the liquid propellant can be defined geometrically and combustion is well behaved as ignition and combustion progressivity are in a suitable range during each stage in this combustion chamber with a stepped-wall structure.
NASA Astrophysics Data System (ADS)
Dietrich, Kilian; Renggli, Damian; Zanini, Michele; Volpe, Giovanni; Buttinoni, Ivo; Isa, Lucio
2017-06-01
Colloidal particles equipped with platinum patches can establish chemical gradients in H2O2-enriched solutions and undergo self-propulsion due to local diffusiophoretic migration. In bulk (3D), this class of active particles swim in the direction of the surface heterogeneities introduced by the patches and consequently reorient with the characteristic rotational diffusion time of the colloids. In this article, we present experimental and numerical evidence that planar 2D confinements defy this simple picture. Instead, the motion of active particles both on solid substrates and at flat liquid-liquid interfaces is captured by a 2D active Brownian motion model, in which rotational and translational motion are constrained in the xy-plane. This leads to an active motion that does not follow the direction of the surface heterogeneities and to timescales of reorientation that do not match the free rotational diffusion times. Furthermore, 2D-confinement at fluid-fluid interfaces gives rise to a unique distribution of swimming velocities: the patchy colloids uptake two main orientations leading to two particle populations with velocities that differ up to one order of magnitude. Our results shed new light on the behavior of active colloids in 2D, which is of interest for modeling and applications where confinements are present.
Cerebrospinal Fluid Mechanics and Its Coupling to Cerebrovascular Dynamics
NASA Astrophysics Data System (ADS)
Linninger, Andreas A.; Tangen, Kevin; Hsu, Chih-Yang; Frim, David
2016-01-01
Cerebrospinal fluid (CSF) is not stagnant but displays fascinating oscillatory flow patterns inside the ventricular system and reversing fluid exchange between the cranial vault and spinal compartment. This review provides an overview of the current knowledge of pulsatile CSF motion. Observations contradicting classical views about its bulk production and clearance are highlighted. A clinical account of diseases of abnormal CSF flow dynamics, including hydrocephalus, syringomyelia, Chiari malformation type 1, and pseudotumor cerebri, is also given. We survey medical imaging modalities used to observe intracranial dynamics in vivo. Additionally, we assess the state of the art in predictive models of CSF dynamics. The discussion addresses open questions regarding CSF dynamics as they relate to the understanding and management of diseases.
High energy power-law tail in X-ray binaries and bulk Comptonization due to an outflow from a disk
NASA Astrophysics Data System (ADS)
Kumar, Nagendra
2018-02-01
We study the high energy power-law tail emission of X-ray binaries (XRBs) by a bulk Comptonization process which is usually observed in the very high soft (VHS) state of black hole (BH) XRBs and the high soft (HS) state of the neutron star (NS) and BH XRBs. Earlier, to generate the power-law tail in bulk Comptonization framework, a free-fall converging flow into BH or NS had been considered as a bulk region. In this work, for a bulk region we consider mainly an outflow geometry from the accretion disk which is bounded by a torus surrounding the compact object. We have two choices for an outflow geometry: (i) collimated flow and (ii) conical flow of opening angle θ _b and the axis is perpendicular to the disk. We also consider an azimuthal velocity of the torus fluids as a bulk motion where the fluids are rotating around the compact object (a torus flow). We find that the power-law tail can be generated in a torus flow having large optical depth and bulk speed (>0.75 c), and in conical flow with θ _b > ˜ 30° for a low value of Comptonizing medium temperature. Particularly, in conical flow the low opening angle is more favourable to generate the power-law tail in both the HS state and the VHS state. We notice that when the outflow is collimated, then the emergent spectrum does not have power-law component for a low Comptonizing medium temperature.
NASA Astrophysics Data System (ADS)
Blackburn, Brecken J.; Gu, Shi; Jenkins, Michael W.; Rollins, Andrew M.
2017-02-01
A robust method to measure viscosity of microquantities of biological samples, such as blood and mucus, could lead to a better understanding and diagnosis of diseases. Microsamples have presented persistent challenges to conventional rheology, which requires bulk quantities of a sample. Alternatively, fluid viscosity can be probed by monitoring microscale motion of particles. Here, we present a decorrelation-based method using M-mode phase-sensitive optical coherence tomography (OCT) to measure particle Brownian motion. This is similar to previous methods using laser speckle decorrelation but with sensitivity to nanometer-scale displacement. This allows for the measurement of decorrelation in less than 1 millisecond and significantly decreases sensitivity to bulk motion, thereby potentially enabling in vivo and in situ applications. From first principles, an analytical method is established using M-mode images obtained from a 47 kHz spectral-domain OCT system. A g(1) first-order autocorrelation is calculated from windows containing several pixels over a time frame of 200-1000 microseconds. Total imaging time is 500 milliseconds for averaging purposes. The autocorrelation coefficient over this short time frame decreases linearly and at a rate proportional to the diffusion constant of the particles, allowing viscosity to be calculated. In verification experiments using phantoms of microbeads in 200 µL glycerol-water mixtures, this method showed insensitivity to 2 mm/s lateral bulk motion and accurate viscosity measurements over a depth of 400 µm. In addition, the method measured a significant decrease of the apparent diffusion constant of soft tissue after formalin fixation, suggesting potential applications in mapping tissue stiffness.
Pattern formation in rotating Bénard convection
NASA Astrophysics Data System (ADS)
Fantz, M.; Friedrich, R.; Bestehorn, M.; Haken, H.
1992-12-01
Using an extension of the Swift-Hohenberg equation we study pattern formation in the Bénard experiment close to the onset of convection in the case of rotating cylindrical fluid containers. For small Taylor numbers we emphasize the existence of slowly rotating patterns and describe behaviour exhibiting defect motion. Finally, we study pattern formation close to the Küppers-Lortz instability. The instability is nucleated at defects and proceeds through front propagation into the bulk patterns.
Wave propagation through elastic porous media containing two immiscible fluids
NASA Astrophysics Data System (ADS)
Lo, Wei-Cheng; Sposito, Garrison; Majer, Ernest
2005-02-01
Acoustic wave phenomena in porous media containing multiphase fluids have received considerable attention in recent years because of an increasing scientific awareness of poroelastic behavior in groundwater aquifers. To improve quantitative understanding of these phenomena, a general set of coupled partial differential equations was derived to describe dilatational wave propagation through an elastic porous medium permeated by two immiscible fluids. These equations, from which previous models of dilatational wave propagation can be recovered as special cases, incorporate both inertial coupling and viscous drag in an Eulerian frame of reference. Two important poroelasticity concepts, the linearized increment of fluid content and the closure relation for porosity change, originally defined for an elastic porous medium containing a single fluid, also are generalized for a two-fluid system. To examine the impact of relative fluid saturation and wave excitation frequency (50, 100, 150, and 200 Hz) on free dilatational wave behavior in unconsolidated porous media, numerical simulations of the three possible modes of wave motion were conducted for Columbia fine sandy loam containing either an air-water or oil-water mixture. The results showed that the propagating (P1) mode, which results from in-phase motions of the solid framework and the two pore fluids, moves with a speed equal to the square root of the ratio of an effective bulk modulus to an effective density of the fluid-containing porous medium, regardless of fluid saturation and for both fluid mixtures. The nature of the pore fluids exerts a significant influence on the attenuation of the P1 wave. In the air-water system, attenuation was controlled by material density differences and the relative mobilities of the pore fluids, whereas in the oil-water system an effective kinematic shear viscosity of the pore fluids was the controlling parameter. On the other hand, the speed and attenuation of the two diffusive modes (P2, resulting from out-of-phase motions of the solid framework and the fluids, and P3, the result of capillary pressure fluctuations) were closely associated with an effective dynamic shear viscosity of the pore fluids. The P2 and P3 waves also had the same constant value of the quality factor, and by comparison of our results with previous research on these two dilatational wave modes in sandstones, both were found to be sensitive to the state of consolidation of the porous medium.
Glymphatic solute transport does not require bulk flow
Asgari, Mahdi; de Zélicourt, Diane; Kurtcuoglu, Vartan
2016-01-01
Observations of fast transport of fluorescent tracers in mouse brains have led to the hypothesis of bulk water flow directed from arterial to venous paravascular spaces (PVS) through the cortical interstitium. At the same time, there is evidence for interstitial solute transport by diffusion rather than by directed bulk fluid motion. It has been shown that the two views may be consolidated by intracellular water flow through astrocyte networks combined with mainly diffusive extracellular transport of solutes. This requires the presence of a driving force that has not been determined to date, but for which arterial pulsation has been suggested as the origin. Here we show that arterial pulsation caused by pulse wave propagation is an unlikely origin of this hypothetical driving force. However, we further show that such pulsation may still lead to fast para-arterial solute transport through dispersion, that is, through the combined effect of local mixing and diffusion in the para-arterial space. PMID:27929105
NASA Astrophysics Data System (ADS)
Rahaman, Md. Mashiur; Islam, Hafizul; Islam, Md. Tariqul; Khondoker, Md. Reaz Hasan
2017-12-01
Maneuverability and resistance prediction with suitable accuracy is essential for optimum ship design and propulsion power prediction. This paper aims at providing some of the maneuverability characteristics of a Japanese bulk carrier model, JBC in calm water using a computational fluid dynamics solver named SHIP Motion and OpenFOAM. The solvers are based on the Reynolds average Navier-Stokes method (RaNS) and solves structured grid using the Finite Volume Method (FVM). This paper comprises the numerical results of calm water test for the JBC model with available experimental results. The calm water test results include the total drag co-efficient, average sinkage, and trim data. Visualization data for pressure distribution on the hull surface and free water surface have also been included. The paper concludes that the presented solvers predict the resistance and maneuverability characteristics of the bulk carrier with reasonable accuracy utilizing minimum computational resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potomkin, Mykhailo; Kaiser, Andreas; Berlyand, Leonid
We consider active particles swimming in a convergent fluid flow in a trapezoid nozzle with no-slip walls. We use mathematical modeling to analyze trajectories of these particles inside the nozzle. By extensive Monte Carlo simulations, we show that trajectories are strongly affected by the background fluid flow and geometry of the nozzle leading to wall accumulation and upstream motion (rheotaxis). In particular, we describe the non-trivial focusing of active rods depending on physical and geometrical parameters. It is also established that the convergent component of the background flow leads to stability of both downstream and upstream swimming at the centerline.more » The stability of downstream swimming enhances focusing, and the stability of upstream swimming enables rheotaxis in the bulk.« less
Shearing black holes and scans of the quark matter phase diagram
NASA Astrophysics Data System (ADS)
McInnes, Brett
2014-01-01
Future facilities such as FAIR and NICA are expected to produce collisions of heavy ions generating quark-gluon plasmas (QGPs) with large values of the quark chemical potential; peripheral collisions in such experiments will also lead to large values of the angular momentum density, associated with the internal shearing motion of the plasma. It is well known that shearing motions in fluids can lead to instabilities which cause a transition from laminar to turbulent flow, and such instabilities in the QGP have recently attracted some attention. We set up a holographic model of this situation by constructing a gravitational dual system exhibiting an instability which is indeed triggered by shearing angular momentum in the bulk. We show that holography indicates that the transition to an unstable fluid happens more quickly as one scans across the quark matter phase diagram towards large values of the chemical potential. This may have negative consequences for the observability of quark polarization effects.
Monitoring corneal crosslinking using phase-decorrelation OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Blackburn, Brecken J.; Gu, Shi; Jenkins, Michael W.; Rollins, Andrew M.
2017-02-01
Viscosity is often a critical characteristic of biological fluids such as blood and mucus. However, traditional rheology is often inadequate when only small quantities of sample are available. A robust method to measure viscosity of microquantities of biological samples could lead to a better understanding and diagnosis of diseases. Here, we present a method to measure viscosity by observing particle Brownian motion within a sample. M-mode optical coherence tomography (OCT) imaging, obtained with a phase-sensitive 47 kHz spectral domain system, yields a viscosity measurement from multiple 200-1000 microsecond frames. This very short period of continuous acquisition, as compared to laser speckle decorrelation, decreases sensitivity to bulk motion, thereby potentially enabling in vivo and in situ applications. The theory linking g(1) first-order image autocorrelation to viscosity is derived from first principles of Brownian motion and the Stokes-Einstein relation. To improve precision, multiple windows acquired over 500 milliseconds are analyzed and the resulting linear fit parameters are averaged. Verification experiments were performed with 200 µL samples of glycerol and water with polystyrene microbeads. Lateral bulk motion up to 2 mm/s was tolerated and accurate viscosity measurements were obtained to a depth of 400 µm or more. Additionally, the method measured a significant decrease of the apparent diffusion constant of soft tissue after formalin fixation, suggesting potential for mapping tissue stiffness over a volume.
Bulk Viscosity of Bubbly Magmas and the Amplification of Pressure Waves
NASA Astrophysics Data System (ADS)
Navon, O.; Lensky, N. G.; Neuberg, J. W.; Lyakhovsky, V.
2001-12-01
The bulk viscosity of magma is needed in order to describe the dynamics of a compressible bubbly magma flowing in conduits and to follow the attenuation of pressure waves travelling through a compressible magma. We developed a model for the bulk viscosity of a suspension of gas bubbles in an incompressible Newtonian liquid that exsolves volatiles (e.g. magma). The suspension is modeled as a close pack of spherical cells, consisting of gas bubbles centered in spherical shells of a volatile-bearing liquid. Following a drop in the ambient pressure the resulting dilatational motion and driving pressure are obtained in terms of the two-phase cell parameters, i.e. bubble radius and gas pressure. By definition, the bulk viscosity of a fluid is the relation between changes of the driving pressure with respect to changes in the resulted expansion strain-rate. Thus, we can use the two-phase solution to define the bulk viscosity of a hypothetical cell, composed of a homogeneously compressible, one-phase, continuous fluid. The resulted bulk viscosity is highly non-linear. At the beginning of the expansion process, when gas exsolution is efficient, the expansion rate grows exponentially while the driving pressure decreases slightly. That means that bulk viscosity is formally negative. The negative value reflects the release of the energy stored in the supersaturated liquid (melt) and its conversion to mechanical work during exsolution. Later, when bubbles are large enough and the gas influx decreases significantly, the strain rate decelerates and the bulk viscosity becomes positive as expected in a dissipative system. We demonstrate that amplification of seismic wave travelling through a volcanic conduit filled with a volatile saturated magma may be attributed to the negative bulk viscosity of the compressible magma. Amplification of an expansion wave may, at some level in the conduit, damage the conduit walls and initiate opening of new pathways for magma to erupt.
Ravazzoli, C L; Santos, J E; Carcione, J M
2003-04-01
We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.
On effects of topography in rotating flows
NASA Astrophysics Data System (ADS)
Burmann, Fabian; Noir, Jerome; Jackson, Andrew
2017-11-01
Both, seismological studies and geodynamic arguments suggest that there is significant topography at the core mantle boundary (CMB). This leads to the question whether the topography of the CMB could influence the flow in the Earth's outer core. As a preliminary experiment, we investigate the effects of bottom topography in the so-called Spin-Up, where motion of a contained fluid is created by a sudden increase of rotation rate. Experiments are performed in a cylindrical container mounted on a rotating table and quantitative results are obtained with particle image velocimetry. Several horizontal length scales of topography (λ) are investigated, ranging from cases where λ is much smaller then the lateral extend of the experiment (R) to cases where λ is a fraction of R. We find that there is an optimal λ that creates maximum dissipation of kinetic energy. Depending on the length scale of the topography, kinetic energy is either dissipated in the boundary layer or in the bulk of the fluid. Two different phases of fluid motion are present: a starting flow in the from of solid rotation (phase I), which is later replaced by meso scale vortices on the length scale of bottom topography (phase II).
Active and Passive Microrheology: Theory and Simulation
NASA Astrophysics Data System (ADS)
Zia, Roseanna N.
2018-01-01
Microrheological study of complex fluids traces its roots to the work of the botanist Robert Brown in the early nineteenth century. Indeed, passive microrheology and Brownian motion are one and the same. Once thought to reveal a fundamental life force, the phenomenon was ultimately leveraged by Einstein in proof of the atomic nature of matter ( Haw 2006 ). His work simultaneously paved the way for modern-day passive microrheology by connecting observable particle motion—diffusion—to solvent properties—the viscosity—via the well-known Stokes-Einstein relation. Advances in microscopy techniques in the last two decades have prompted extensions of the original model to generalized forms for passive probing of complex fluids. In the last decade, active microrheology has emerged as a means by which to interrogate the nonequilibrium behavior of complex fluids, in particular, the non-Newtonian rheology of dynamically heterogeneous and microscopically small systems. Here we review theoretical and computational approaches and advances in both passive and active microrheology, with a focus on the extent to which these techniques preserve the connection between single-particle motion and flow properties, as well as the rather surprising recovery of non-Newtonian flow behavior observed in bulk rheology.
Dynamical density functional theory for microswimmers
NASA Astrophysics Data System (ADS)
Menzel, Andreas M.; Saha, Arnab; Hoell, Christian; Löwen, Hartmut
2016-01-01
Dynamical density functional theory (DDFT) has been successfully derived and applied to describe on one hand passive colloidal suspensions, including hydrodynamic interactions between individual particles. On the other hand, active "dry" crowds of self-propelled particles have been characterized using DDFT. Here, we go one essential step further and combine these two approaches. We establish a DDFT for active microswimmer suspensions. For this purpose, simple minimal model microswimmers are introduced. These microswimmers self-propel by setting the surrounding fluid into motion. They hydrodynamically interact with each other through their actively self-induced fluid flows and via the common "passive" hydrodynamic interactions. An effective soft steric repulsion is also taken into account. We derive the DDFT starting from common statistical approaches. Our DDFT is then tested and applied by characterizing a suspension of microswimmers, the motion of which is restricted to a plane within a three-dimensional bulk fluid. Moreover, the swimmers are confined by a radially symmetric trapping potential. In certain parameter ranges, we find rotational symmetry breaking in combination with the formation of a "hydrodynamic pumping state," which has previously been observed in the literature as a result of particle-based simulations. An additional instability of this pumping state is revealed.
The circulation of the cerebrospinal fluid (CSF) in the spinal canal
NASA Astrophysics Data System (ADS)
Sanchez, Antonio L.; Martinez-Bazan, Carlos; Lasheras, Juan C.
2016-11-01
Cerebrospinal Fluid (CSF) is secreted in the choroid plexus in the lateral sinuses of the brain and fills the subarachnoid space bathing the external surfaces of the brain and the spinal canal. Absence of CSF circulation has been shown to impede its physiological function that includes, among others, supplying nutrients to neuronal and glial cells and removing the waste products of cellular metabolism. Radionuclide scanning images published by Di Chiro in 1964 showed upward migration of particle tracers from the lumbar region of the spinal canal, thereby suggesting the presence of an active bulk circulation responsible for bringing fresh CSF into the spinal canal and returning a portion of it to the cranial vault. However, the existence of this slow moving bulk circulation in the spinal canal has been a subject of dispute for the last 50 years. To date, there has been no physical explanation for the mechanism responsible for the establishment of such a bulk motion. We present a perturbation analysis of the flow in an idealized model of the spinal canal and show how steady streaming could be responsible for the establishment of such a circulation. The results of this analysis are compared to flow measurements conducted on in-vitro models of the spinal canal of adult humans.
Topology changes in a water-oil swirling flow
NASA Astrophysics Data System (ADS)
Carrión, Luis; Herrada, Miguel A.; Shtern, Vladimir N.
2017-03-01
This paper reveals the flow topology hidden in the experimental study by Fujimoto and Takeda ["Topology changes of the interface between two immiscible liquid layers by a rotating lid," Phys. Rev. E 80, 015304(R) (2009)]. Water and silicone oil fill a sealed vertical cylindrical container. The rotating top disk induces the meridional circulation and swirl of both fluids. As the rotation strength Reo increases, the interface takes shapes named, by the authors, hump, cusp, Mt. Fuji, and bell. Our numerical study reproduces the interface geometry and discloses complicated flow patterns. For example at Reo = 752, where the interface has the "Mt. Fuji" shape, the water motion has three bulk cells and the oil motion has two bulk cells. This topology helps explain the interface geometry. In addition, our study finds that the steady axisymmetric flow suffers from the shear-layer instability for Reo > 324, i.e., before the interface becomes remarkably deformed. The disturbance energy is concentrated in the water depth. This explains why the instability does not significantly affect the interface shape in the experiment.
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-04-01
Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-07-01
Seismic waves travelling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency-dependent Pwave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The Pwave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyse their effect on the mesoscopic loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps
NASA Technical Reports Server (NTRS)
SanAndres, Luis
1998-01-01
A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs on a Windows 95/NT personal computer. The program, help files and examples are licensed by Texas A&M University Technology License Office. The study of the static and dynamic performance of two hydrostatic/hydrodynamic bearings demonstrates the importance of centrifugal and advection fluid inertia effects for operation at high rotational speeds. The first example considers a conceptual hydrostatic thrust bearing for an advanced liquid hydrogen turbopump operating at 170,000 rpm. The large axial stiffness and damping coefficients of the bearing should provide accurate control and axial positioning of the turbopump and also allow for unshrouded impellers, therefore increasing the overall pump efficiency. The second bearing uses a refrigerant R134a, and its application in oil-free air conditioning compressors is of great technological importance and commercial value. The computed predictions reveal that the LH2 bearing load capacity and flow rate increase with the recess pressure (i.e. increasing orifice diameters). The bearing axial stiffness has a maximum for a recess pressure rati of approx. 0.55. while the axial damping coefficient decreases as the recess pressure ratio increases. The computer results from three flow models are compared. These models are a) inertialess, b) fluid inertia at recess edges only, and c) full fluid inertia at both recess edges and film lands. The full inertia model shows the lowest flow rates, axial load capacity and stiffness coefficient but on the other hand renders the largest damping coefficients and inertia coefficients. The most important findings are related to the reduction of the outflow through the inner radius and the appearance of subambient pressures. The performance of the refrigerant hybrid thrust bearing is evaluated at two operating speeds and pressure drops. The computed results are presented in dimensionless form to evidence consistent trends in the bearing performance characteristics. As the applied axial load increases, the bearing film thickness and flow rate decrease while the recess pressure increases. The axial stiffness coefficient shows a maximum for a certain intermediate load while the damping coefficient steadily increases. The computed results evidence the paramount of centrifugal fluid inertia at low recess pressures (i.e. low loads), and where there is actually an inflow through the bearing inner diameter, accompanied by subambient pressures just downstream of the bearing recess edge. These results are solely due to centrifugal fluid inertia and advection transport effects. Recommendations include the extension of the computer program to handle flexure pivot tilting pad hybrid bearings and the ability to calculate moment coefficients for shaft angular misalignments.
Focusing of active particles in a converging flow
Potomkin, Mykhailo; Kaiser, Andreas; Berlyand, Leonid; ...
2017-10-20
We consider active particles swimming in a convergent fluid flow in a trapezoid nozzle with no-slip walls. We use mathematical modeling to analyze trajectories of these particles inside the nozzle. By extensive Monte Carlo simulations, we show that trajectories are strongly affected by the background fluid flow and geometry of the nozzle leading to wall accumulation and upstream motion (rheotaxis). In particular, we describe the non-trivial focusing of active rods depending on physical and geometrical parameters. It is also established that the convergent component of the background flow leads to stability of both downstream and upstream swimming at the centerline.more » The stability of downstream swimming enhances focusing, and the stability of upstream swimming enables rheotaxis in the bulk.« less
Wei, Xiang; Camino, Acner; Pi, Shaohua; Cepurna, William; Huang, David; Morrison, John C; Jia, Yali
2018-05-01
Phase-based optical coherence tomography (OCT), such as OCT angiography (OCTA) and Doppler OCT, is sensitive to the confounding phase shift introduced by subject bulk motion. Traditional bulk motion compensation methods are limited by their accuracy and computing cost-effectiveness. In this Letter, to the best of our knowledge, we present a novel bulk motion compensation method for phase-based functional OCT. Bulk motion associated phase shift can be directly derived by solving its equation using a standard deviation of phase-based OCTA and Doppler OCT flow signals. This method was evaluated on rodent retinal images acquired by a prototype visible light OCT and human retinal images acquired by a commercial system. The image quality and computational speed were significantly improved, compared to two conventional phase compensation methods.
NASA Astrophysics Data System (ADS)
Chong, Kai Leong; Yang, Yantao; Huang, Shi-Di; Zhong, Jin-Qiang; Stevens, Richard J. A. M.; Verzicco, Roberto; Lohse, Detlef; Xia, Ke-Qing
2017-08-01
Many natural and engineering systems are simultaneously subjected to a driving force and a stabilizing force. The interplay between the two forces, especially for highly nonlinear systems such as fluid flow, often results in surprising features. Here we reveal such features in three different types of Rayleigh-Bénard (RB) convection, i.e., buoyancy-driven flow with the fluid density being affected by a scalar field. In the three cases different stabilizing forces are considered, namely (i) horizontal confinement, (ii) rotation around a vertical axis, and (iii) a second stabilizing scalar field. Despite the very different nature of the stabilizing forces and the corresponding equations of motion, at moderate strength we counterintuitively but consistently observe an enhancement in the flux, even though the flow motion is weaker than the original RB flow. The flux enhancement occurs in an intermediate regime in which the stabilizing force is strong enough to alter the flow structures in the bulk to a more organized morphology, yet not too strong to severely suppress the flow motions. Near the optimal transport enhancements all three systems exhibit a transition from a state in which the thermal boundary layer (BL) is nested inside the momentum BL to the one with the thermal BL being thicker than the momentum BL. The observed optimal transport enhancement is explained through an optimal coupling between the suction of hot or fresh fluid and the corresponding scalar fluctuations.
Density and Phase State of a Confined Nonpolar Fluid
NASA Astrophysics Data System (ADS)
Kienle, Daniel F.; Kuhl, Tonya L.
2016-07-01
Measurements of the mean refractive index of a spherelike nonpolar fluid, octamethytetracylclosiloxane (OMCTS), confined between mica sheets, demonstrate direct and conclusive experimental evidence of the absence of a first-order liquid-to-solid phase transition in the fluid when confined, which has been suggested to occur from previous experimental and simulation results. The results also show that the density remains constant throughout confinement, and that the fluid is incompressible. This, along with the observation of very large increases (many orders of magnitude) in viscosity during confinement from the literature, demonstrate that the molecular motion is limited by the confining wall and not the molecular packing. In addition, the recently developed refractive index profile correction method, which enables the structural perturbation inherent at a solid-liquid interface and that of a liquid in confinement to be determined independently, was used to show that there was no measurable excess or depleted mass of OMCTS near the mica surface in bulk films or confined films of only two molecular layers.
Steady-streaming effects on the motion of the cerebrospinal fluid (CSF) in the spinal canal
NASA Astrophysics Data System (ADS)
Lawrence, Jenna; Coenen, Wilfried; Sanchez, Antonio; Lasheras, Juan
2017-11-01
With each heart beat the oscillatory blood supply to the rigid cranial vault produces a time-periodic variation of the intracranial pressure that drives the cerebrospinal fluid (CSF) periodically in and out of the compliant spinal canal. We have recently conducted an analysis of this flow-structure interaction problem taking advantage of the small compliance of the dura membrane bounding externally the CSF and of the disparity of length scales associated with the geometry of the subarachnoid space. We have shown in an idealized geometry that the steady-streaming motion associated with this periodic flow, resulting from the nonlinear cumulative effects of convective acceleration, causes a bulk recirculation of CSF inside the spinal canal, which has been observed in many radiological studies. We extend here our study to investigate the possible contribution arising from the flow around the nerve roots protruding from the spinal cord, an effect that was neglected in our previous work. For this purpose, we consider the oscillatory motion around a cylindrical post confined between two parallel plates. For large values of the relevant Strouhal number we find at leading order a harmonic Stokes flow, whereas steady-streaming effects enter in the first-order corrections, which are computed for realistic values of the Womersley number and of the cylinder height-to-radius ratio.
Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.
Luo, W-J
2004-10-15
This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the application of an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Euler time-stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applied electric field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axial velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density exists at the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or minimum axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative direction. As the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentum from the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain phase shift between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transient evolution are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the double layer to the central region of the microtube.
Phoretic self-propulsion: a mesoscopic description of reaction dynamics that powers motion.
de Buyl, Pierre; Kapral, Raymond
2013-02-21
The fabrication of synthetic self-propelled particles and the experimental investigations of their dynamics have stimulated interest in self-generated phoretic effects that propel nano- and micron-scale objects. Theoretical modeling of these phenomena is often based on a continuum description of the solvent for different phoretic propulsion mechanisms, including, self-electrophoresis, self-diffusiophoresis and self-thermophoresis. The work in this paper considers various types of catalytic chemical reaction at the motor surface and in the bulk fluid that come into play in mesoscopic descriptions of the dynamics. The formulation is illustrated by developing the mesoscopic reaction dynamics for exothermic and dissociation reactions that are used to power motor motion. The results of simulations of the self-propelled dynamics of composite Janus particles by these mechanisms are presented.
Characterization of the potential energy landscape of an antiplasticized polymer.
Riggleman, Robert A; Douglas, Jack F; de Pablo, Juan J
2007-07-01
The nature of the individual transitions on the potential energy landscape (PEL) associated with particle motion are directly examined for model fragile glass-forming polymer melts, and the results are compared to those of an antiplasticized polymer system. In previous work, we established that the addition of antiplasticizer reduces the fragility of glass formation so that the antiplasticized material is a stronger glass former. In the present work, we find that the antiplasticizing molecules reduce the energy barriers for relaxation compared to the pure polymer, implying that the antiplasticized system has smaller barriers to overcome in order to explore its configuration space. We examine the cooperativity of segmental motion in these bulk fluids and find that more extensive stringlike collective motion enables the system to overcome larger potential energy barriers, in qualitative agreement with both the Stillinger-Weber and Adam-Gibbs views of glass formation. Notably, the stringlike collective motion identified by our PEL analysis corresponds to incremental displacements that occur within larger-scale stringlike particle displacement processes associated with PEL metabasin transitions that mediate structural relaxation. These "substrings" nonetheless seem to exhibit changes in relative size with antiplasticization similar to those observed in "superstrings" that arise at elevated temperatures. We also study the effects of confinement on the energy barriers in each system. Film confinement makes the energy barriers substantially smaller in the pure polymer, while it has little effect on the energy barriers in the antiplasticized system. This observation is qualitatively consistent with our previous studies of stringlike motion in these fluids at higher temperatures and with recent experimental measurements by Torkelson and co-workers.
Fluid Dynamics Appearing during Simulated Microgravity Using Random Positioning Machines
Stern, Philip; Casartelli, Ernesto; Egli, Marcel
2017-01-01
Random Positioning Machines (RPMs) are widely used as tools to simulate microgravity on ground. They consist of two gimbal mounted frames, which constantly rotate biological samples around two perpendicular axes and thus distribute the Earth’s gravity vector in all directions over time. In recent years, the RPM is increasingly becoming appreciated as a laboratory instrument also in non-space-related research. For instance, it can be applied for the formation of scaffold-free spheroid cell clusters. The kinematic rotation of the RPM, however, does not only distribute the gravity vector in such a way that it averages to zero, but it also introduces local forces to the cell culture. These forces can be described by rigid body analysis. Although RPMs are commonly used in laboratories, the fluid motion in the cell culture flasks on the RPM and the possible effects of such on cells have not been examined until today; thus, such aspects have been widely neglected. In this study, we used a numerical approach to describe the fluid dynamic characteristic occurring inside a cell culture flask turning on an operating RPM. The simulations showed that the fluid motion within the cell culture flask never reached a steady state or neared a steady state condition. The fluid velocity depends on the rotational velocity of the RPM and is in the order of a few centimeters per second. The highest shear stresses are found along the flask walls; depending of the rotational velocity, they can reach up to a few 100 mPa. The shear stresses in the “bulk volume,” however, are always smaller, and their magnitude is in the order of 10 mPa. In conclusion, RPMs are highly appreciated as reliable tools in microgravity research. They have even started to become useful instruments in new research fields of mechanobiology. Depending on the experiment, the fluid dynamic on the RPM cannot be neglected and needs to be taken into consideration. The results presented in this study elucidate the fluid motion and provide insight into the convection and shear stresses that occur inside a cell culture flask during RPM experiments. PMID:28135286
Directed collective motion of bacteria under channel confinement
NASA Astrophysics Data System (ADS)
Wioland, H.; Lushi, E.; Goldstein, R. E.
2016-07-01
Dense suspensions of swimming bacteria are known to exhibit collective behaviour arising from the interplay of steric and hydrodynamic interactions. Unconfined suspensions exhibit transient, recurring vortices and jets, whereas those confined in circular domains may exhibit order in the form of a spiral vortex. Here we show that confinement into a long and narrow macroscopic ‘racetrack’ geometry stabilises bacterial motion to form a steady unidirectional circulation. This motion is reproduced in simulations of discrete swimmers that reveal the crucial role that bacteria-driven fluid flows play in the dynamics. In particular, cells close to the channel wall produce strong flows which advect cells in the bulk against their swimming direction. We examine in detail the transition from a disordered state to persistent directed motion as a function of the channel width, and show that the width at the crossover point is comparable to the typical correlation length of swirls seen in the unbounded system. Our results shed light on the mechanisms driving the collective behaviour of bacteria and other active matter systems, and stress the importance of the ubiquitous boundaries found in natural habitats.
Monroy, Francisco
2017-09-01
From the recent advent of the new soft-micro technologies, the hydrodynamic theory of surface modes propagating on viscoelastic bodies has reinvigorated this field of technology with interesting predictions and new possible applications, so recovering its scientific interest very limited at birth to the academic scope. Today, a myriad of soft small objects, deformable meso- and micro-structures, and macroscopically viscoelastic bodies fabricated from colloids and polymers are already available in the materials catalogue. Thus, one can envisage a constellation of new soft objects fabricated by-design with a functional dynamics based on the mechanical interplay of the viscoelastic material with the medium through their interfaces. In this review, we recapitulate the field from its birth and theoretical foundation in the latest 1980s up today, through its flourishing in the 90s from the prediction of extraordinary Rayleigh modes in coexistence with ordinary capillary waves on the surface of viscoelastic fluids, a fact first confirmed in experiments by Dominique Langevin and me with soft gels [Monroy and Langevin, Phys. Rev. Lett. 81, 3167 (1998)]. With this observational discovery at sight, we not only settled the theory previously formulated a few years before, but mainly opened a new field of applications with soft materials where the mechanical interplay between surface and bulk motions matters. Also, new unpublished results from surface wave experiments performed with soft colloids are reported in this contribution, in which the analytic methods of wave surfing synthetized together with the concept of coexisting capillary-shear modes are claimed as an integrated tool to insightfully scrutinize the bulk rheology of soft solids and viscoelastic fluids. This dedicatory to the figure of Dominique Langevin includes an appraisal of the relevant theoretical aspects of the surface hydrodynamics of viscoelastic fluids, and the coverage of the most important experimental results obtained during the three decades of research on this field. Copyright © 2017 Elsevier B.V. All rights reserved.
Glycerol in micellar confinement with tunable rigidity
NASA Astrophysics Data System (ADS)
Lannert, Michael; Müller, Allyn; Gouirand, Emmanuel; Talluto, Vincenzo; Rosenstihl, Markus; Walther, Thomas; Stühn, Bernd; Blochowicz, Thomas; Vogel, Michael
2016-12-01
We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.
Why coronal flux tubes have axially invariant cross-section
NASA Astrophysics Data System (ADS)
Bellan, Paul
2001-10-01
We present here a model that not only explains the long-standing mystery^1 of why solar coronal flux tubes tend towards having axially invariant cross-sections but also explains several other enigmatic features, namely: rotating jets emanating from the ends (surges), counter-streaming beams, ingestion of photospheric material, and elevated pressure/temperature compared to adjacent plasma. The model shows that when a steady current flows along a flux tube with a bulging middle (i.e., a flux tube that is initially produced by a potential magnetic field), non-conservative forces develop which accelerate fluid axially from both ends towards the middle. Remarkably, this axial pumping of fluid into the flux tube causes the flux tube cross-section and volume to decrease in a manner such that the flux tube develops an axial uniform cross-section as observed in coronal loops. The pumping process produces counter-rotating, counter-streaming Alfvenic bulk motion consistent with observations. Collision of the counter-streaming beams causes non-localized bulk heating. This picture also has relevance to astrophysical jets and coaxial spheromak guns and explains why these systems tend to form an axial jet along the geometric axis. Supported by USDOE. l ^1 J. A. Klimchuk, Solar Phys. 193, 53 (2000)
Why coronal flux tubes have axially invariant cross-section
NASA Astrophysics Data System (ADS)
Bellan, P. M.
2001-12-01
We present here a model that not only explains the long-standing mystery of why solar coronal flux tubes tend towards having axially in-variant cross-sections but also explains several other enigmatic features, namely: rotating jets emanating from the ends (surges), counter-streaming beams, ingestion of photospheric material, and elevated pressure/temperature compared to adjacent plasma. The model shows that when a steady current flows along a flux tube with a bulging middle (i.e., a flux tube that is initially produced by a potential magnetic field), non-conservative forces develop which accelerate fluid axially from both ends towards the middle. Remarkably, this axial pumping of fluid into the flux tube causes the flux tube cross-section and volume to decrease in a manner such that the flux tube develops an axial uniform cross-section as observed in coronal loops. The pumping process produces counter-rotating, counter-streaming Alfvenic bulk motion consistent with observations. Collision of the counter-streaming beams causes non-localized bulk heating. This picture also has relevance to astrophysical jets and coaxial spheromak guns and explains why these systems tend to form an axial jet along the geometric axis. Supported by USDOE. [1]J. A. Klimchuk, Solar Phys. 193, 53 (2000)
Gravitational microlensing - The effect of random motion of individual stars in the lensing galaxy
NASA Technical Reports Server (NTRS)
Kundic, Tomislav; Wambsganss, Joachim
1993-01-01
We investigate the influence of random motion of individual stars in the lensing galaxy on the light curve of a gravitationally lensed background quasar. We compare this with the effects of the transverse motion of the galaxy. We find that three-dimensional random motion of stars with a velocity dispersion sigma in each dimension is more effective in producing 'peaks' in a microlensed light curve by a factor a about 1.3 than motion of the galaxy with a transverse velocity v(t) = sigma. This effectiveness parameter a seems to depend only weakly on the surface mass density. With an assumed transverse velocity of v(t) = 600 km/s of the galaxy lensing the QSO 2237+0305 and a measured velocity dispersion of sigma = 215 km/s, the expected rate of maxima in the light curves calculated for bulk motion alone has to be increased by about 10 percent due to the random motion of stars. As a consequence, the average time interval Delta t between two high-magnification events is smaller than the time interval Delta(t) bulk, calculated for bulk motion alone, Delta t about 0.9 Delta(t) bulk.
Water Transport and the Evolution of CM Parent Bodies
NASA Technical Reports Server (NTRS)
Coker, Rob; Cohen, Barbara
2014-01-01
Meteorites have amino acids and hydrated minerals which constrain the peak temperature ranges they have experienced. CMs in particular have a narrow range (273-325K). Bulk fluid motion during hydration constrained to small scales (less than mm). Some asteroids are known to have hydrated minerals on their surfaces. It is presumed these two facts may be related. Problem: hydration only occurs (significantly) with liquid water; melting water only occurs early on in nebula (1-10 Myrs ANC); in nebula asteroid surface temperature very cold (approximately 150K). Can indigenous alteration produce CMs and/or surface hydration?
General connected and reconnected fields in plasmas
NASA Astrophysics Data System (ADS)
Mahajan, Swadesh M.; Asenjo, Felipe A.
2018-02-01
For plasma dynamics, more encompassing than the magnetohydrodynamical (MHD) approximation, the foundational concepts of "magnetic reconnection" may require deep revisions because, in the larger dynamics, magnetic field is no longer connected to the fluid lines; it is replaced by more general fields (one for each plasma specie) that are weighted combination of the electromagnetic and the thermal-vortical fields. We study the two-fluid plasma dynamics plasma expressed in two different sets of variables: the two-fluid (2F) description in terms of individual fluid velocities, and the one-fluid (1F) variables comprising the plasma bulk motion and plasma current. In the 2F description, a Connection Theorem is readily established; we show that, for each specie, there exists a Generalized (Magnetofluid/Electro-Vortic) field that is frozen-in the fluid and consequently remains, forever, connected to the flow. This field is an expression of the unification of the electromagnetic, and fluid forces (kinematic and thermal) for each specie. Since the magnetic field, by itself, is not connected in the first place, its reconnection is never forbidden and does not require any external agency (like resistivity). In fact, a magnetic field reconnection (local destruction) must be interpreted simply as a consequence of the preservation of the dynamical structure of the unified field. In the 1F plasma description, however, it is shown that there is no exact physically meaningful Connection Theorem; a general and exact field does not exist, which remains connected to the bulk plasma flow. It is also shown that the helicity conservation and the existence of a Connected field follow from the same dynamical structure; the dynamics must be expressible as an ideal Ohm's law with a physical velocity. This new perspective, emerging from the analysis of the post MHD physics, must force us to reexamine the meaning as well as our understanding of magnetic reconnection.
Hammond, Andrew P; Corwin, Eric I
2017-10-01
A thermal colloid suspended in a liquid will transition from a short-time ballistic motion to a long-time diffusive motion. However, the transition between ballistic and diffusive motion is highly dependent on the properties and structure of the particular liquid. We directly observe a free floating tracer particle's ballistic motion and its transition to the long-time regime in both a Newtonian fluid and a viscoelastic Maxwell fluid. We examine the motion of the free particle in a Newtonian fluid and demonstrate a high degree of agreement with the accepted Clercx-Schram model for motion in a dense fluid. Measurements of the functional form of the ballistic-to-diffusive transition provide direct measurements of the temperature, viscosity, and tracer radius. We likewise measure the motion in a viscoelastic Maxwell fluid and find a significant disagreement between the theoretical asymptotic behavior and our measured values of the microscopic properties of the fluid. We observe a greatly increased effective mass for a freely moving particle and a decreased plateau modulus.
The Effects of Ultra Thin Films on Dynamic Wetting
NASA Astrophysics Data System (ADS)
Chen, Xia; Garoff, Stephen; Rame, Enrique
2002-11-01
Dynamic wetting, the displacement of one fluid by another immiscible fluid on a surface, controls many natural and technological phenomena, such as coating, printing, spray painting and lubricating. Particularly in coating and spraying applications, contact lines advance across pre-existing fluid films. Most previous work has focused on contact lines advancing across films sufficiently thick that they behave as simple Newtonian fluids. Ultrathin films, where the film thickness may impinge on fundamental length scales in the fluid, have received less attention. In this talk, we will discuss the effects of ultrathin polymer films on dynamic wetting. We measure the interface shape within microns of moving contact lines advancing across preexisting films and compare the measurements to existing models of viscous bending for interfaces advancing across dry surfaces and 'thick' (in the sense that they behave as liquids) films. In the experiments, we advance a contact line of 10-poise and 1-poise polydimethylsiloxane (silicone oil) across pre-coated films of the same fluid with thickness from a single chain thickness (approx. 10 A) through a couple of radii of gyration (100-200 A) to films so thick they are likely bulk in behavior (103 A). All films are physisorbed, i.e. they readily rinse from the surface. Thus, molecules in the film are not anchored to the surface and can move within the film if the hydrodynamics dictate such motion. For films of the thickness of a single chain (approx. 10 A), our experiments indicate that the advancing fluid behaves just as it would if it advanced over a dry surface. For the thicker films (103 A), we find behavior indicating that the molecules in the film are acting as a fluid with the bulk properties. In this regime, results for the two different fluids are identical when the experiments are performed at the same pre-existing film thickness and advancing capillary number, Ca. For film of thickness of a few radii of gyration (approx. 100-200 A), the behavior depends on Ca of the advancing meniscus. At low Ca, the viscous bending of the interface near the contact line does not behave as it would on a dry surface. It has a lower curvature than expected. However, at higher Ca, the viscous bending is described by the model for spreading over a dry surface. These results show that the fluid flow in the film does behave differently than bulk as the film thickness becomes comparable to molecular length scale. But even more intriguing is the unusual velocity dependence of that behavior where the film behaves more solid-like at higher contact line speeds. We will discuss these results in terms of the properties of confined polymer melts.
The Effects of Ultra Thin Films on Dynamic Wetting
NASA Technical Reports Server (NTRS)
Chen, Xia; Garoff, Stephen; Rame, Enrique
2002-01-01
Dynamic wetting, the displacement of one fluid by another immiscible fluid on a surface, controls many natural and technological phenomena, such as coating, printing, spray painting and lubricating. Particularly in coating and spraying applications, contact lines advance across pre-existing fluid films. Most previous work has focused on contact lines advancing across films sufficiently thick that they behave as simple Newtonian fluids. Ultrathin films, where the film thickness may impinge on fundamental length scales in the fluid, have received less attention. In this talk, we will discuss the effects of ultrathin polymer films on dynamic wetting. We measure the interface shape within microns of moving contact lines advancing across preexisting films and compare the measurements to existing models of viscous bending for interfaces advancing across dry surfaces and 'thick' (in the sense that they behave as liquids) films. In the experiments, we advance a contact line of 10-poise and 1-poise polydimethylsiloxane (silicone oil) across pre-coated films of the same fluid with thickness from a single chain thickness (approx. 10 A) through a couple of radii of gyration (100-200 A) to films so thick they are likely bulk in behavior (10(exp 3) A). All films are physisorbed, i.e. they readily rinse from the surface. Thus, molecules in the film are not anchored to the surface and can move within the film if the hydrodynamics dictate such motion. For films of the thickness of a single chain (approx. 10 A), our experiments indicate that the advancing fluid behaves just as it would if it advanced over a dry surface. For the thicker films (10(exp 3) A), we find behavior indicating that the molecules in the film are acting as a fluid with the bulk properties. In this regime, results for the two different fluids are identical when the experiments are performed at the same pre-existing film thickness and advancing capillary number, Ca. For film of thickness of a few radii of gyration (approx. 100-200 A), the behavior depends on Ca of the advancing meniscus. At low Ca, the viscous bending of the interface near the contact line does not behave as it would on a dry surface. It has a lower curvature than expected. However, at higher Ca, the viscous bending is described by the model for spreading over a dry surface. These results show that the fluid flow in the film does behave differently than bulk as the film thickness becomes comparable to molecular length scale. But even more intriguing is the unusual velocity dependence of that behavior where the film behaves more solid-like at higher contact line speeds. We will discuss these results in terms of the properties of confined polymer melts.
Numerical computations of the dynamics of fluidic membranes and vesicles
NASA Astrophysics Data System (ADS)
Barrett, John W.; Garcke, Harald; Nürnberg, Robert
2015-11-01
Vesicles and many biological membranes are made of two monolayers of lipid molecules and form closed lipid bilayers. The dynamical behavior of vesicles is very complex and a variety of forms and shapes appear. Lipid bilayers can be considered as a surface fluid and hence the governing equations for the evolution include the surface (Navier-)Stokes equations, which in particular take the membrane viscosity into account. The evolution is driven by forces stemming from the curvature elasticity of the membrane. In addition, the surface fluid equations are coupled to bulk (Navier-)Stokes equations. We introduce a parametric finite-element method to solve this complex free boundary problem and present the first three-dimensional numerical computations based on the full (Navier-)Stokes system for several different scenarios. For example, the effects of the membrane viscosity, spontaneous curvature, and area difference elasticity (ADE) are studied. In particular, it turns out, that even in the case of no viscosity contrast between the bulk fluids, the tank treading to tumbling transition can be obtained by increasing the membrane viscosity. Besides the classical tank treading and tumbling motions, another mode (called the transition mode in this paper, but originally called the vacillating-breathing mode and subsequently also called trembling, transition, and swinging mode) separating these classical modes appears and is studied by us numerically. We also study how features of equilibrium shapes in the ADE and spontaneous curvature models, like budding behavior or starfish forms, behave in a shear flow.
Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation
NASA Technical Reports Server (NTRS)
Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q.
2015-01-01
A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments relies upon the global momentum conservation of the fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. Numerical examples illustrate the method's application to predicting bulk fluid motion including lateral propellant slosh in low-g conditions.
Stratification calculations in a heated cryogenic oxygen storage tank at zero gravity
NASA Technical Reports Server (NTRS)
Shuttles, J. T.; Smith, G. L.
1971-01-01
A cylindrical one-dimensional model of the Apollo cyrogenic oxygen storage tank has been developed to study the effect of stratification in the tank. Zero gravity was assumed, and only the thermally induced motions were considered. The governing equations were derived from conservation laws and solved on a digital computer. Realistic thermodynamic and transport properties were used. Calculations were made for a wide range of conditions. The results show the fluid behavior to be dependent on the quantity in the tank or equivalently the bulk fluid temperature. For high quantities (low temperatures) the tank pressure rose rapidly with heat addition, the heater temperature remained low, and significant pressure drop potentials accrued. For low quantities the tank pressure rose more slowly with heat addition and the heater temperature became high. A high degree of stratification resulted for all conditions; however, the stratified region extended appreciably into the tank only for the lowest tank quantity.
Numerical solution of chemically reactive non-Newtonian fluid flow: Dual stratification
NASA Astrophysics Data System (ADS)
Rehman, Khalil Ur; Malik, M. Y.; Khan, Abid Ali; Zehra, Iffat; Zahri, Mostafa; Tahir, M.
2017-12-01
We have found that only a few attempts are available in the literature relatively to the tangent hyperbolic fluid flow induced by stretching cylindrical surfaces. In particular, temperature and concentration stratification effects have not been investigated until now with respect to the tangent hyperbolic fluid model. Therefore, we have considered the tangent hyperbolic fluid flow induced by an acutely inclined cylindrical surface in the presence of both temperature and concentration stratification effects. To be more specific, the fluid flow is attained with the no slip condition, which implies that the bulk motion of the fluid particles is the same as the stretching velocity of a cylindrical surface. Additionally, the flow field situation is manifested with heat generation, mixed convection and chemical reaction effects. The flow partial differential equations give a complete description of the present problem. Therefore, to trace out the solution, a set of suitable transformations is introduced to convert these equations into ordinary differential equations. In addition, a self-coded computational algorithm is executed to inspect the numerical solution of these reduced equations. The effect logs of the involved parameters are provided graphically. Furthermore, the variations of the physical quantities are examined and given with the aid of tables. It is observed that the fluid temperature is a decreasing function of the thermal stratification parameter and a similar trend is noticed for the concentration via the solutal stratification parameter.
The Micromechanics of the Moving Contact Line
NASA Technical Reports Server (NTRS)
Han, Minsub; Lichter, Seth; Lin, Chih-Yu; Perng, Yeong-Yan
1996-01-01
The proposed research is divided into three components concerned with molecular structure, molecular orientation, and continuum averages of discrete systems. In the experimental program, we propose exploring how changes in interfacial molecular structure generate contact line motion. Rather than rely on the electrostatic and electrokinetic fields arising from the molecules themselves, we augment their interactions by an imposed field at the solid/liquid interface. By controling the field, we can manipulate the molecular structure at the solid/liquid interface. In response to controlled changes in molecular structure, we observe the resultant contact line motion. In the analytical portion of the proposed research we seek to formulate a system of equations governing fluid motion which accounts for the orientation of fluid molecules. In preliminary work, we have focused on describing how molecular orientation affects the forces generated at the moving contact line. Ideally, as assumed above, the discrete behavior of molecules can be averaged into a continuum theory. In the numerical portion of the proposed research, we inquire whether the contact line region is, in fact, large enough to possess a well-defined average. Additionally, we ask what types of behavior distinguish discrete systems from continuum systems. Might the smallness of the contact line region, in itself, lead to behavior different from that in the bulk? Taken together, our proposed research seeks to identify and accurately account for some of the molecular dynamics of the moving contact line, and attempts to formulate a description from which one can compute the forces at the moving contact line.
Large-eddy simulation of a stratocumulus cloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheou, Georgios; Chung, Daniel; Teixeira, João
This paper is associated with a poster winner of a 2016 APS/DFD Gallery of Fluid Motion Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion,
Large-eddy simulation of a stratocumulus cloud
Matheou, Georgios; Chung, Daniel; Teixeira, João
2017-09-29
This paper is associated with a poster winner of a 2016 APS/DFD Gallery of Fluid Motion Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion,
NASA Astrophysics Data System (ADS)
Rollin, Bertrand; Denissen, Nicholas A.; Reisner, Jon M.; Andrews, Malcolm J.
2012-11-01
The tilted rig experiment is a derivative of the rocket rig experiment designed to investigate turbulent mixing induced by the Rayleigh-Taylor (RT) instability. A tank containing two fluids of different densities is accelerated downwards between two parallel guiding rods by rocket motors. The acceleration is such that the pressure and density gradients face opposite directions at the fluids interface, creating a Rayleigh-Taylor unstable configuration. The rig is tilted such that the tank is initially at an angle and the acceleration is not perpendicular to the fluids interface when the rockets fire. This results in a two dimensional Rayleigh-Taylor instability case where the fluids experience RT mixing and a bulk overturning motion. The tilted rig is therefore a valuable experiment to help calibrating two-dimensional mixing models. Large Eddy Simulations of the tilted rig experiments will be compared to available experimental results. A study of the behavior of turbulence variables relevant to turbulence modeling will be presented. LA-UR 12-23829. This work was performed for the U.S. Department of Energy by Los Alamos National Laboratory under Contract No.DEAC52- 06NA2-5396.
NASA Astrophysics Data System (ADS)
Premnath, Kannan N.; Hajabdollahi, Farzaneh; Welch, Samuel W. J.
2018-04-01
The presence of surfactants in two-phase flows results in the transport and adsorption of surfactants to the interface, and the resulting local interfacial concentration significantly influences the surface tension between the liquid and vapor phases in a fluid undergoing phase change. This computational study is aimed at understanding and elucidating the mechanisms of enhanced flows and thermal transport processes in film boiling due to the addition of surfactants. A change in surface tension results in a change in the critical Rayleigh-Taylor wavelength leading to different bubble release patterns and a change in the overall heat transfer rates. Due to the presence of surfactants, an additional transport mechanism of the Marangoni convection arises from the resulting tangential gradients in the surfactant concentration along the phase interface. Our computational approach to study such phenomena consists of representing the interfacial motion by means of the coupled level set-volume-of-fluid method, the fluid motion via the classical marker-and-cell approach, as well as representations for the bulk transport of energy and surfactants, in conjunction with a phase change model and an interfacial surfactant model. Using such an approach, we perform numerical simulations of surfactant-laden single mode as well as multiple mode film boiling and study the effect of surfactants on the transport processes in film boiling, including bubble release patterns, vapor generation rates, and heat transfer rates at different surfactant concentrations. The details of the underlying mechanisms will be investigated and interpreted.
A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolbitsch, Christoph, E-mail: christoph.1.kolbitsch@kcl.ac.uk; Prieto, Claudia; Schaeffter, Tobias
Purpose: Positron emission tomography (PET) is a highly sensitive medical imaging technique commonly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high resolution anatomical images with different contrasts and a range of additional information important for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise to provide complementary information from both modalities in a single examination. Due to long scan times, subject nonrigid bulk motion, i.e., changes of the patient's position on the scanner table leading to nonrigid changes of the patient's anatomy, during data acquisition can negatively impair image quality and tracermore » uptake quantification. A 3D MR-acquisition scheme is proposed to detect and correct for nonrigid bulk motion in simultaneously acquired PET-MR data. Methods: A respiratory navigated three dimensional (3D) MR-acquisition with Radial Phase Encoding (RPE) is used to obtain T1- and T2-weighted data with an isotropic resolution of 1.5 mm. Healthy volunteers are asked to move the abdomen two to three times during data acquisition resulting in overall 19 movements at arbitrary time points. The acquisition scheme is used to retrospectively reconstruct dynamic 3D MR images with different temporal resolutions. Nonrigid bulk motion is detected and corrected in this image data. A simultaneous PET acquisition is simulated and the effect of motion correction is assessed on image quality and standardized uptake values (SUV) for lesions with different diameters. Results: Six respiratory gated 3D data sets with T1- and T2-weighted contrast have been obtained in healthy volunteers. All bulk motion shifts have successfully been detected and motion fields describing the transformation between the different motion states could be obtained with an accuracy of 1.71 ± 0.29 mm. The PET simulation showed errors of up to 67% in measured SUV due to bulk motion which could be reduced to less than 10% with the proposed motion compensation approach. Conclusions: A MR acquisition scheme which yields both high resolution 3D anatomical data and highly accurate nonrigid motion information without an increase in scan time is presented. The proposed method leads to a strong improvement in both MR and PET image quality and ensures an accurate assessment of tracer uptake.« less
The ''self-stirred'' genome: Bulk and surface dynamics of the chromatin globule
NASA Astrophysics Data System (ADS)
Zidovska, Alexandra
Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood. In interphase, time between two cell divisions, chromatin fills the cell nucleus in its minimally condensed polymeric state. Chromatin serves as substrate to a number of biological processes, e.g. gene expression and DNA replication, which require it to become locally restructured. These are energy-consuming processes giving rise to non-equilibrium dynamics. Chromatin dynamics has been traditionally studied by imaging of fluorescently labeled nuclear proteins and single DNA-sites, thus focusing only on a small number of tracer particles. Recently, we developed an approach, displacement correlation spectroscopy (DCS) based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. DCS revealed that chromatin movement was coherent across large regions (4-5 μm) for several seconds. Regions of coherent motion extended beyond the boundaries of single-chromosome territories, suggesting elastic coupling of motion over length scales much larger than those of genes. These large-scale, coupled motions were ATP-dependent and unidirectional for several seconds. Following these observations, we developed a hydrodynamic theory of active chromatin dynamics, using the two-fluid model and describing the content of cell nucleus as a chromatin solution, which is subject to both passive thermal fluctuations and active (ATP-consuming) scalar and vector events. In this work we continue in our efforts to elucidate the mechanism and function of the chromatin dynamics in interphase. We investigate the chromatin interactions with the nuclear envelope and compare the surface dynamics of the chromatin globule with its bulk dynamics.
On a viable first-order formulation of relativistic viscous fluids and its applications to cosmology
NASA Astrophysics Data System (ADS)
Disconzi, Marcelo M.; Kephart, Thomas W.; Scherrer, Robert J.
We consider a first-order formulation of relativistic fluids with bulk viscosity based on a stress-energy tensor introduced by Lichnerowicz. Choosing a barotropic equation-of-state, we show that this theory satisfies basic physical requirements and, under the further assumption of vanishing vorticity, that the equations of motion are causal, both in the case of a fixed background and when the equations are coupled to Einstein's equations. Furthermore, Lichnerowicz's proposal does not fit into the general framework of first-order theories studied by Hiscock and Lindblom, and hence their instability results do not apply. These conclusions apply to the full-fledged nonlinear theory, without any equilibrium or near equilibrium assumptions. Similarities and differences between the approach explored here and other theories of relativistic viscosity, including the Mueller-Israel-Stewart formulation, are addressed. Cosmological models based on the Lichnerowicz stress-energy tensor are studied. As the topic of (relativistic) viscous fluids is also of interest outside the general relativity and cosmology communities, such as, for instance, in applications involving heavy-ion collisions, we make our presentation largely self-contained.
Hydrodynamic simulations of pulsar glitch recovery
NASA Astrophysics Data System (ADS)
Howitt, G.; Haskell, B.; Melatos, A.
2016-08-01
Glitches are sudden jumps in the spin frequency of pulsars believed to originate in the superfluid interior of neutron stars. Superfluid flow in a model neutron star is simulated by solving the equations of motion of a two-component superfluid consisting of a viscous proton-electron plasma and an inviscid neutron condensate in a spherical Couette geometry. We examine the response of the model to glitches induced in three different ways: by instantaneous changes of the spin frequency of the inner and outer boundaries, and by instantaneous recoupling of the fluid components in the bulk. All simulations are performed with strong and weak mutual friction. It is found that the maximum size of a glitch originating in the bulk decreases as the mutual friction strengthens. It is also found that mutual friction determines the fraction of the frequency jump which is later recovered, a quantity known as the `healing parameter'. These behaviours may explain some of the diversity in observed glitch recoveries.
Dual motion valve with single motion input
NASA Technical Reports Server (NTRS)
Belew, Robert (Inventor)
1987-01-01
A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.
A molecular Debye-Huckel theory of solvation in polar fluids: An extension of the Born model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Tiejun; Song, Xueyu
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated inmore » a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. In conclusion, our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.« less
A molecular Debye-Huckel theory of solvation in polar fluids: An extension of the Born model
Xiao, Tiejun; Song, Xueyu
2017-12-06
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated inmore » a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. In conclusion, our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.« less
A molecular Debye-Hückel theory of solvation in polar fluids: An extension of the Born model
NASA Astrophysics Data System (ADS)
Xiao, Tiejun; Song, Xueyu
2017-12-01
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. Our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.
A molecular Debye-Hückel theory of solvation in polar fluids: An extension of the Born model.
Xiao, Tiejun; Song, Xueyu
2017-12-07
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. Our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Chia-Lin; Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario; Sussman, Marshall S.
2015-04-01
Purpose: To assess motion of the spinal cord and cauda equina, which are critical neural tissues (CNT), which is important when evaluating the planning organ-at-risk margin required for stereotactic body radiation therapy. Methods and Materials: We analyzed CNT motion in 65 patients with spinal metastases (11 cervical, 39 thoracic, and 24 lumbar spinal segments) in the supine position using dynamic axial and sagittal magnetic resonance imaging (dMRI, 3T Verio, Siemens) over a 137-second interval. Motion was segregated according to physiologic cardiorespiratory oscillatory motion (characterized by the average root mean square deviation) and random bulk shifts associated with gross patient motionmore » (characterized by the range). Displacement was evaluated in the anteroposterior (AP), lateral (LR), and superior-inferior (SI) directions by use of a correlation coefficient template matching algorithm, with quantification of random motion measure error over 3 separate trials. Statistical significance was defined according to P<.05. Results: In the AP, LR, and SI directions, significant oscillatory motion was observed in 39.2%, 35.1%, and 10.8% of spinal segments, respectively, and significant bulk motions in all cases. The median oscillatory CNT motions in the AP, LR, and SI directions were 0.16 mm, 0.17 mm, and 0.44 mm, respectively, and the maximal statistically significant oscillatory motions were 0.39 mm, 0.41 mm, and 0.77 mm, respectively. The median bulk displacements in the AP, LR, and SI directions were 0.51 mm, 0.59 mm, and 0.66 mm, and the maximal statistically significant displacements were 2.21 mm, 2.87 mm, and 3.90 mm, respectively. In the AP, LR, and SI directions, bulk displacements were greater than 1.5 mm in 5.4%, 9.0%, and 14.9% of spinal segments, respectively. No significant differences in axial motion were observed according to cord level or cauda equina. Conclusions: Oscillatory CNT motion was observed to be relatively minor. Our results support the importance of controlling bulk patient motion and the practice of applying a planning organ-at-risk margin.« less
Halpern, David; Gaver, Donald P.
2012-01-01
We investigate the influence of a soluble surfactant on the steady-state motion of a finger of air through a compliant channel. This study provides a basic model from which to understand the fluid–structure interactions and physicochemical hydrodynamics of pulmonary airway reopening. Airway closure occurs in lung diseases such as respiratory distress syndrome and acute respiratory distress syndrome as a result of fluid accumulation and surfactant insufficiency. This results in ‘compliant collapse’ with the airway walls buckled and held in apposition by a liquid occlusion that blocks the passage of air. Airway reopening is essential to the recovery of adequate ventilation, but has been associated with ventilator-induced lung injury because of the exposure of airway epithelial cells to large interfacial flow-induced pressure gradients. Surfactant replacement is helpful in modulating this deleterious mechanical stimulus, but is limited in its effectiveness owing to slow surfactant adsorption. We investigate the effect of surfactant on micro-scale models of reopening by computationally modelling the steady two-dimensional motion of a semi-infinite bubble propagating through a liquid-filled compliant channel doped with soluble surfactant. Many dimensionless parameters affect reopening, but we primarily investigate how the reopening pressure pb depends upon the capillary number Ca (the ratio of viscous to surface tension forces), the adsorption depth parameter λ (a bulk concentration parameter) and the bulk Péclet number Peb (the ratio of bulk convection to diffusion). These studies demonstrate a dependence of pb on λ, and suggest that a critical bulk concentration must be exceeded to operate as a low-surface-tension system. Normal and tangential stress gradients remain largely unaffected by physicochemical interactions – for this reason, further biological studies are suggested that will clarify the role of wall flexibility and surfactant on the protection of the lung from atelectrauma. PMID:22997476
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.
2016-07-01
Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw
2014-01-01
Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less
Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers.
Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T
2015-12-01
Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.
Liu, Qingkun; Cui, Yanxia; Gardner, Dennis; Li, Xin; He, Sailing; Smalyukh, Ivan I
2010-04-14
We demonstrate the bulk self-alignment of dispersed gold nanorods imposed by the intrinsic cylindrical micelle self-assembly in nematic and hexagonal liquid crystalline phases of anisotropic fluids. External magnetic field and shearing allow for alignment and realignment of the liquid crystal matrix with the ensuing long-range orientational order of well-dispersed plasmonic nanorods. This results in a switchable polarization-sensitive plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The device-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of properties arising from combining the switchable nanoscale structure of anisotropic fluids with the surface plasmon resonance properties of the plasmonic nanorods.
Higano, NS; Hahn, AD; Tkach, JA; Cao, X; Walkup, LL; Thomen, RP; Merhar, SL; Kingma, PS; Fain, SB; Woods, JC
2016-01-01
PURPOSE To implement pulmonary 3D radial ultrashort echo-time (UTE) MRI in non-sedated, free-breathing neonates and adults with retrospective motion-tracking of respiratory and intermittent bulk motion, to obtain diagnostic-quality, respiratory-gated images. METHODS Pulmonary 3D radial UTE MRI was performed at 1.5T during free-breathing in neonates and adult volunteers for validation. Motion-tracking waveforms were obtained from the time-course of each free induction decay’s initial point (i.e. k-space center), allowing for respiratory-gated image reconstructions that excluded data acquired during bulk motion. Tidal volumes were calculated from end-expiration and end-inspiration images. Respiratory rates were calculated from the Fourier transform of the motion-tracking waveform during quiet-breathing, with comparison to physiologic prediction in neonates and validation with spirometry in adults. RESULTS High-quality respiratory-gated anatomic images were obtained at inspiration and expiration, with less respiratory blurring at the expense of signal-to-noise for narrower gating windows. Inspiration-expiration volume differences agreed with physiologic predictions (neonates; Bland-Altman bias = 6.2 mL) and spirometric values (adults; bias = 0.11 L). MRI-measured respiratory rates compared well with observed rates (biases = −0.5 and 0.2 breaths/min for neonates and adults, respectively). CONCLUSIONS 3D radial pulmonary UTE MRI allows for retrospective respiratory self-gating and removal of intermittent bulk motion in free-breathing, non-sedated neonates and adults. PMID:26972576
Numerical simulation of artificial microswimmers driven by Marangoni flow
NASA Astrophysics Data System (ADS)
Stricker, L.
2017-10-01
In the present paper the behavior of a single artificial microswimmer is addressed, namely an active droplet moving by Marangoni flow. We provide a numerical treatment for the main factors playing a role in real systems, such as advection, diffusion and the presence of chemical species with different behaviors. The flow field inside and outside the droplet is modeled to account for the two-way coupling between the surrounding fluid and the motion of the swimmer. Mass diffusion is also taken into account. In particular, we consider two concentration fields: the surfactant concentration in the bulk, i.e. in the liquid surrounding the droplet, and the surfactant concentration on the surface. The latter is related to the local surface tension, through an equation of state (Langmuir equation). We examine different interaction mechanisms between the bulk and the surface concentration fields, namely the case of insoluble surfactants attached to the surface (no exchange between the bulk and the surface) and soluble surfactants with adsorption/desorption at the surface. We also consider the case where the bulk concentration field is in equilibrium with the content of the droplet. The numerical results are validated through comparison with analytical calculations. We show that our model can reproduce the typical pusher/puller behavior presented by squirmers. It is also able to capture the self-propulsion mechanism of droplets driven by Belousov-Zhabotinsky (BZ) reactions, as well as a typical chemotactic behavior.
Multiscale turbulence models based on convected fluid microstructure
NASA Astrophysics Data System (ADS)
Holm, Darryl D.; Tronci, Cesare
2012-11-01
The Euler-Poincaré approach to complex fluids is used to derive multiscale equations for computationally modeling Euler flows as a basis for modeling turbulence. The model is based on a kinematic sweeping ansatz (KSA) which assumes that the mean fluid flow serves as a Lagrangian frame of motion for the fluctuation dynamics. Thus, we regard the motion of a fluid parcel on the computationally resolvable length scales as a moving Lagrange coordinate for the fluctuating (zero-mean) motion of fluid parcels at the unresolved scales. Even in the simplest two-scale version on which we concentrate here, the contributions of the fluctuating motion under the KSA to the mean motion yields a system of equations that extends known results and appears to be suitable for modeling nonlinear backscatter (energy transfer from smaller to larger scales) in turbulence using multiscale methods.
NASA Astrophysics Data System (ADS)
Kaitna, Roland; Palucis, Marisa C.; Yohannes, Bereket; Hill, Kimberly M.; Dietrich, William E.
2016-02-01
Debris flows are typically a saturated mixture of poorly sorted particles and interstitial fluid, whose density and flow properties depend strongly on the presence of suspended fine sediment. Recent research suggests that grain size distribution (GSD) influences excess pore pressures (i.e., pressure in excess of predicted hydrostatic pressure), which in turn plays a governing role in debris flow behaviors. We report a series of controlled laboratory experiments in a 4 m diameter vertically rotating drum where the coarse particle size distribution and the content of fine particles were varied independently. We measured basal pore fluid pressures, pore fluid pressure profiles (using novel sensor probes), velocity profiles, and longitudinal profiles of the flow height. Excess pore fluid pressure was significant for mixtures with high fines fraction. Such flows exhibited lower values for their bulk flow resistance (as measured by surface slope of the flow), had damped fluctuations of normalized fluid pressure and normal stress, and had velocity profiles where the shear was concentrated at the base of the flow. These effects were most pronounced in flows with a wide coarse GSD distribution. Sustained excess fluid pressure occurred during flow and after cessation of motion. Various mechanisms may cause dilation and contraction of the flows, and we propose that the sustained excess fluid pressures during flow and once the flow has stopped may arise from hindered particle settling and yield strength of the fluid, resulting in transfer of particle weight to the fluid. Thus, debris flow behavior may be strongly influenced by sustained excess fluid pressures controlled by particle settling rates.
Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms.
de Ceglia, Domenico; Scalora, Michael; Vincenti, Maria A; Campione, Salvatore; Kelley, Kyle; Runnerstrom, Evan L; Maria, Jon-Paul; Keeler, Gordon A; Luk, Ting S
2018-06-19
Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we report experimental observation of viscoelastic nonlocalities in the infrared optical response of epsilon-near-zero nanofilms made of low-loss doped cadmium-oxide. The nonlocality is detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons' elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggers the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.
Viscoelastic optical nonlocality of doped cadmium oxide epsilon-near-zero thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, Ting S.; De Ceglia, Domenico; Scalora, Michael
Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we experimentally observe and theoretically model viscoelastic nonlocalities in the infrared optical response of a doped, cadmium oxide epsilon-near-zero thin film. The nonlocality is clearly detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons’ elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggersmore » the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.« less
Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes
NASA Astrophysics Data System (ADS)
Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.
2018-03-01
The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.
Stochastic Simulation of Complex Fluid Flows
The PI has developed novel numerical algorithms and computational codes to simulate the Brownian motion of rigidparticles immersed in a viscous fluid...processes and to the design of novel nanofluid materials. Therandom Brownian motion of particles in fluid can be accounted for in fluid-structure
Laminar Motion of the Incompressible Fluids in Self-Acting Thrust Bearings with Spiral Grooves
Velescu, Cornel; Popa, Nicolae Calin
2014-01-01
We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the “pumping” direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime. PMID:24526896
Laminar motion of the incompressible fluids in self-acting thrust bearings with spiral grooves.
Velescu, Cornel; Popa, Nicolae Calin
2014-01-01
We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the "pumping" direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime.
Brownian microhydrodynamics of active filaments.
Laskar, Abhrajit; Adhikari, R
2015-12-21
Slender bodies capable of spontaneous motion in the absence of external actuation in an otherwise quiescent fluid are common in biological, physical and technological contexts. The interplay between the spontaneous fluid flow, Brownian motion, and the elasticity of the body presents a challenging fluid-structure interaction problem. Here, we model this problem by approximating the slender body as an elastic filament that can impose non-equilibrium velocities or stresses at the fluid-structure interface. We derive equations of motion for such an active filament by enforcing momentum conservation in the fluid-structure interaction and assuming slow viscous flow in the fluid. The fluid-structure interaction is obtained, to any desired degree of accuracy, through the solution of an integral equation. A simplified form of the equations of motion, which allows for efficient numerical solutions, is obtained by applying the Kirkwood-Riseman superposition approximation to the integral equation. We use this form of equation of motion to study dynamical steady states in free and hinged minimally active filaments. Our model provides the foundation to study collective phenomena in momentum-conserving, Brownian, active filament suspensions.
Acoustic resonances in cylinder bundles oscillating in a compressibile fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.H.; Raptis, A.C.
1984-12-01
This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determinedmore » from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.« less
Gassmann Theory Applies to Nanoporous Media
NASA Astrophysics Data System (ADS)
Gor, Gennady Y.; Gurevich, Boris
2018-01-01
Recent progress in extraction of unconventional hydrocarbon resources has ignited the interest in the studies of nanoporous media. Since many thermodynamic and mechanical properties of nanoscale solids and fluids differ from the analogous bulk materials, it is not obvious whether wave propagation in nanoporous media can be described using the same framework as in macroporous media. Here we test the validity of Gassmann equation using two published sets of ultrasonic measurements for a model nanoporous medium, Vycor glass, saturated with two different fluids, argon, and n-hexane. Predictions of the Gassmann theory depend on the bulk and shear moduli of the dry samples, which are known from ultrasonic measurements and the bulk moduli of the solid and fluid constituents. The solid bulk modulus can be estimated from adsorption-induced deformation or from elastic effective medium theory. The fluid modulus can be calculated according to the Tait-Murnaghan equation at the solvation pressure in the pore. Substitution of these parameters into the Gassmann equation provides predictions consistent with measured data. Our findings set up a theoretical framework for investigation of fluid-saturated nanoporous media using ultrasonic elastic wave propagation.
Is the boundary layer of an ionic liquid equally lubricating at higher temperature?
Hjalmarsson, Nicklas; Atkin, Rob; Rutland, Mark W
2016-04-07
Atomic force microscopy has been used to study the effect of temperature on normal forces and friction for the room temperature ionic liquid (IL) ethylammonium nitrate (EAN), confined between mica and a silica colloid probe at 25 °C, 50 °C, and 80 °C. Force curves revealed a strong fluid dynamic influence at room temperature, which was greatly reduced at elevated temperatures due to the reduced liquid viscosity. A fluid dynamic analysis reveals that bulk viscosity is manifested at large separation but that EAN displays a nonzero slip, indicating a region of different viscosity near the surface. At high temperatures, the reduction in fluid dynamic force reveals step-like force curves, similar to those found at room temperature using much lower scan rates. The ionic liquid boundary layer remains adsorbed to the solid surface even at high temperature, which provides a mechanism for lubrication when fluid dynamic lubrication is strongly reduced. The friction data reveals a decrease in absolute friction force with increasing temperature, which is associated with increased thermal motion and reduced viscosity of the near surface layers but, consistent with the normal force data, boundary layer lubrication was unaffected. The implications for ILs as lubricants are discussed in terms of the behaviour of this well characterised system.
NASA Astrophysics Data System (ADS)
Cai, Liheng
Numerous infectious particles such as bacteria and pathogens are deposited on the airway surface of the human lungs during our daily breathing. To avoid infection the lung has evolved to develop a smart and powerful defense system called mucociliary clearance. The airway surface layer is a critical component of this mucus clearance system, which consists of two parts: (1) a mucus layer, that traps inhaled particles and transports them out of the lung by cilia-generated flow; and (2) a periciliary layer, that provides a favorable environment for ciliary beating and cell surface lubrication. For 75 years, it has been dogma that a single gel-like mucus layer, which is composed of secreted mucin glycoproteins, is transported over a "watery" periciliary layer. This one-gel model, however, does not explain fundamental features of the normal system, e.g. formation of a distinct mucus layer, nor accurately predict how the mucus clearance system fails in disease. In the first part of this thesis we propose a novel "Gel-on-Brush" model with a mucus layer (the "gel") and a "brush-like" periciliary layer, composed of mucins tethered to the luminal of airway surface, and supporting data accurately describes both the biophysical and cell biological bases for normal mucus clearance and its failure in disease. Our "Gel-on-Brush" model describes for the first time how and why mucus is efficiently cleared in health and unifies the pathogenesis of major human diseases, including cystic fibrosis and chronic obstructive pulmonary disease. It is expected that this "Gel-on-Brush" model of airway surface layer opens new directions for treatments of airway diseases. A dilemma regarding the function of mucus is that, although mucus traps any inhaled harmful particulates, it also poses a long-time problem for drug delivery: mobility of cargos carrying pharmaceutical agents is slowed down in mucus. The second part of this thesis aims to answer the question: can we theoretically understand the relation between the motion of a probe particle and the local structure and dynamics of complex fluids such as mucus, or even one step back, simple polymer solutions and gels? It is well known that the thermal motion of a particle in simple solutions like water can be described by Stokes-Einstein relation, in which the mean-square displacement of the particle is (1) linearly proportional to time and (2) inversely proportional to the bulk viscosity of the solution. We found that these two statements become questionable if the particle size is relatively small and the solutions become complex fluids such as polymer solutions and gels. The motion of small particles with size smaller than the entanglement length (network mesh size) of a polymer solution (gel) is sub-diffusive with mean-square displacement proportional to the square root of time at relatively short time scales. Even at long time scales at which the mean-square displacement of the particles is diffusive, the mean-square displacement of the particles is not necessarily determined by the bulk viscosity, and is inversely proportional to an effective viscosity that is much smaller than the bulk value. An interesting question related to the particle motion in polymer gels is whether particles with size larger than the network mesh size can move through the gel? An intuitive answer would be that such large particles are trapped by the local network cages. We argue that the large particles can still diffuse via hopping mechanism, i.e., particles can wait for fluctuations of surrounding network cages that could be large enough to allow them to slip though. This hopping diffusion can be applied to understand the motion of large particles subjected to topological constraints such as permanent or reversible crosslinked networks as well as entanglements in high molecular weight polymer solutions, melts, and networks.
The dynamics of a space station tethered refueling facility
NASA Technical Reports Server (NTRS)
Abbott, P.; Rudolph, L. K.; Fester, D. A.
1986-01-01
The fluid stored in a tethered orbital refueling facility is settled at the bottom of the storage tanks by gravity-gradient forces. The fluid motions (slosh) induced by outside disturbances must be limited to ensure the tank outlet is not uncovered during a fluid transfer. The dynamics of a LO2/LH2 TORF attached to the space station have been analyzed to identify design parameters necessary to limit fluid motion. Using the worst case disturbance of a shuttle docking at the space station, the fluid motion was found to be a function of tether length and allowable facility swing angle. Acceptable fluid behavior occurs for tether lengths of at least 1000 ft. To ensure motions induced by separate disturbances do not add to unacceptable values, a slosh damping coefficient of 5 percent is recommended.
Simulations of Model Microswimmers with Fully Resolved Hydrodynamics
NASA Astrophysics Data System (ADS)
Oyama, Norihiro; Molina, John J.; Yamamoto, Ryoichi
2017-10-01
Swimming microorganisms, which include bacteria, algae, and spermatozoa, play a fundamental role in most biological processes. These swimmers are a special type of active particle, that continuously convert local energy into propulsive forces, thereby allowing them to move through their surrounding fluid medium. While the size, shape, and propulsion mechanism vary from one organism to the next, they share certain general characteristics: they exhibit force-free motion and they swim at a small Reynolds number. To study the dynamics of such systems, we use the squirmer model, which provides an ideal representation of swimmers as spheroidal particles that propel owing to a modified boundary condition at their surface. We have considered the single-particle and many-particle dynamics of swimmers in bulk and confined systems using the smoothed profile method, which allows us to efficiently solve the coupled particle-fluid problem. For the single-particle dynamics, we studied the diffusive behavior caused by the swimming of the particles. At short-time scales, the diffusion is caused by the hydrodynamic interactions, whereas at long-time scales, it is determined by the particle-particle collisions. Thus, the short-time diffusion will be the same for both swimmers and inert tracer particles. We then investigated the dynamics of confined microswimmers using cylindrical and parallel-plate confining walls. For the cylindrical confinement, we find evidence of an order/disorder phase transition which depends on the specific type of swimmers and the size of the cylinder. Under parallel-plane walls, some swimmers exhibit wavelike modes, which lead to traveling density waves that bounce back and forth between the walls. From an analysis of the bulk systems, we can show that this wavelike motion can be understood as a pseudoacoustic mode and is a consequence of the intrinsic swimming properties of the particles. The results presented here, together with the simulation method that we have developed, allow us to better understand the complex hydrodynamic interactions in microswimmer dispersions.
Study of the Motion of a Vertically Falling Sphere in a Viscous Fluid
ERIC Educational Resources Information Center
Soares, A. A.; Caramelo, L.; Andrade, M. A. P. M.
2012-01-01
This paper aims at contributing to a better understanding of the motion of spherical particles in viscous fluids. The classical problem of spheres falling through viscous fluids for small Reynolds numbers was solved taking into account the effects of added mass. The analytical solution for the motion of a falling sphere, from the beginning to the…
NASA Astrophysics Data System (ADS)
Majdalani, Joseph
2012-10-01
In this work, two families of helical motions are investigated as prospective candidates for describing the bidirectional vortex field in a right-cylindrical chamber. These basic solutions are relevant to cyclone separators and to idealized representations of vortex-fired liquid and hybrid rocket engines in which bidirectional vortex motion is established. To begin, the bulk fluid motion is taken to be isentropic along streamlines, with no concern for reactions, heat transfer, viscosity, compressibility or unsteadiness. Then using the Bragg-Hawthorne equation for steady, inviscid, axisymmetric motion, two families of Euler solutions are derived. Among the characteristics of the newly developed solutions one may note the axial dependence of the swirl velocity, the Trkalian and Beltramian types of the helical motions, the sensitivity of the solutions to the outlet radius, the alternate locations of the mantle, and the increased axial and radial velocity magnitudes, including the rate of mass transfer across the mantle, for which explicit approximations are obtained. Our results are compared to an existing, complex lamellar model of the bidirectional vortex in which the swirl velocity reduces to a free vortex. In this vein, we find the strictly Beltramian flows to share virtually identical pressure variations and radial pressure gradients with those associated with the complex lamellar motion. Furthermore, both families warrant an asymptotic treatment to overcome their endpoint limitations caused by their omission of viscous stresses. From a broader perspective, the work delineates a logical framework through which self-similar, axisymmetric solutions to bidirectional and multidirectional vortex motions may be pursued. It also illustrates the manner through which different formulations may be arrived at depending on the types of wall boundary conditions. For example, both the slip condition at the sidewall and the inlet flow pattern at the headwall may be enforced or relaxed.
Effects of spacecraft motions on fluids experiments
NASA Technical Reports Server (NTRS)
Gans, R. F.
1981-01-01
The equations of motion governing an incompressible fluid contained in an orbiting laboratory were examined to isolate various fictitious forces and their relative influence on the fluid. The forces are divided into those arising from the orbital motions and those arising from small local motions of the spacecraft about its center of mass. The latter dominate the nonrotating experiments. Both are important for rotating experiments. A brief discussion of the onset of time-dependence and violent instability in earth-based rotating and processing systems is given.
The interaction of sound with a poroelastic ground
NASA Astrophysics Data System (ADS)
Hickey, C. J.
2012-12-01
An airborne acoustic wave impinging on the surface of the ground provides a good mechanical source for investigating the near surface. Since the ground is porous, the impinging sound wave induces motion of the fluid within the pores as well as vibrating the solid framework. The most complete understanding of the interaction of airborne sound with the ground is to treat the ground as a poroelastic or poroviscoelastic medium. This treatment predicts that three types of waves can propagate in a ground with a deformable framework: two compressional waves, the fast or Type I and slow or Type II wave and one shear wave. Model calculations of the energy partition and an air-soil interface predict that most of the energy is partitioned into the Type II compressional wave, less into the Type I compressional wave, and little energy is partitioned into the shear wave. However, when measuring the solid motion of the soil one must consider how much of that wave energy is in terms of solid velocity. The deformation associated with Type II compressional wave has only a small contribution from the solid component whereas the bulk deformation of the Type I compressional wave has a solid to fluid deformation ratio of approximately one. This modeling suggests that the soil solid velocity induced by an acoustic source is associated with the Type I compressional wave. In other words, the airborne source is simply an inefficient seismic source.
Angled injection: Hybrid fluid film bearings for cryogenic applications
NASA Technical Reports Server (NTRS)
SanAndres, Luis
1995-01-01
A computational bulk-flow analysis for prediction of the force coefficients of hybrid fluid film bearings with angled orifice injection is presented. Past measurements on water-lubricated hybrid bearings with angle orifice injection have demonstrated improved rotordynamic performance with virtual elimination of cross-coupled stiffness coefficients and nul or negative whirl frequency ratios. A simple analysis reveals that the fluid momentum exchange at the orifice discharge produces a pressure rise in the recess which retards the shear flow induced by journal rotation, and consequently, reduces cross-coupling forces. The predictions from the model correlate well with experimental measurements from a radial and 45 deg angled orifice injection, five recess water hybrid bearings (C = 125 microns) operating at 10.2, 17.4, and 24.6 krpm and with nominal supply pressures equal to 4, 5.5, and 7 MPa. An application example for a liquid oxygen six recess/pad hybrid journal bearing shows the advantages of tangential orifice injection on the rotordynamic force coefficients and stability indicator for forward whirl motions and without performance degradation on direct stiffness and damping coefficients. The computer program generated, 'hydrojet,' extends and complements previously developed codes.
Dynamic force response of spherical hydrostatic journal bearing for cryogenic applications
NASA Technical Reports Server (NTRS)
Sanandres, Luis
1994-01-01
Hydrostatic Journal Bearings (HJB's) are reliable and resilient fluid film rotor support elements ideal to replace roller bearings in cryogenic turbomachinery. HJB' will be used for primary space-power applications due to their long lifetime, low friction and wear, large load capacity, large direct stiffness, and damping force coefficients. An analysis for the performance characteristics of turbulent flow, orifice compensated, spherical hydrostatic journal bearings (HJB's) is presented. Spherical bearings allow tolerance for shaft misalignment without force performance degradation and have also the ability to support axial loads. The spherical HJB combines these advantages to provide a bearing design which could be used efficiently on high performance turbomachinery. The motion of a barotropic liquid on the thin film bearing lands is described by bulk-flow mass and momentum equations. These equations are solved numerically using an efficient CFD method. Numerical predictions of load capacity and force coefficients for a 6 recess, spherical HJB in a LO2 environment are presented. Fluid film axial forces and force coefficients of a magnitude about 20% of the radial load capacity are predicted for the case analyzed. Fluid inertia effects, advective and centrifugal, are found to affect greatly the static and dynamic force performance of the bearing studied.
Acoustic cavity transducers for the manipulation of cells and biomolecules
NASA Astrophysics Data System (ADS)
Tovar, Armando; Patel, Maulik; Lee, Abraham P.
2010-02-01
A novel fluidic actuator that is simple to fabricate, integrate, and operate is demonstrated for use within microfluidic systems. The actuator is designed around the use of trapped air bubbles in lateral cavities and the resultant acoustic streaming generated from an outside acoustic energy source. The orientation of the lateral cavities to the main microchannel is used to control the bulk fluid motion within the device. The first order flow generated by the oscillating bubble is used to develop a pumping platform that is capable of driving fluid within a chip. This pump is integrated into a recirculation immunoassay device for enhanced biomolecule binding through fluid flow for convection limited transport. The recirculation system showed an increase in binding site concentration when compared with traditional passive and flow-through methods. The acoustic cavity transducer has also been demonstrated for application in particle switching. Bursts of acoustic energy are used to generate a second order streaming pattern near the cavity interface to drive particles away or towards the cavity. The use of this switching mechanism is being extended to the application of sorting cells and other particles within a microfluidic system.
NASA Astrophysics Data System (ADS)
Chen, Huaizhen; Zhang, Guangzhi
2017-05-01
Fracture detection and fluid identification are important tasks for a fractured reservoir characterization. Our goal is to demonstrate a direct approach to utilize azimuthal seismic data to estimate fluid bulk modulus, porosity, and dry fracture weaknesses, which decreases the uncertainty of fluid identification. Combining Gassmann's (Vier. der Natur. Gesellschaft Zürich 96:1-23, 1951) equations and linear-slip model, we first establish new simplified expressions of stiffness parameters for a gas-bearing saturated fractured rock with low porosity and small fracture density, and then we derive a novel PP-wave reflection coefficient in terms of dry background rock properties (P-wave and S-wave moduli, and density), fracture (dry fracture weaknesses), porosity, and fluid (fluid bulk modulus). A Bayesian Markov chain Monte Carlo nonlinear inversion method is proposed to estimate fluid bulk modulus, porosity, and fracture weaknesses directly from azimuthal seismic data. The inversion method yields reasonable estimates in the case of synthetic data containing a moderate noise and stable results on real data.
Study of journal bearing dynamics using 3-dimensional motion picture graphics
NASA Technical Reports Server (NTRS)
Brewe, D. E.; Sosoka, D. J.
1985-01-01
Computer generated motion pictures of three dimensional graphics are being used to analyze journal bearings under dynamically loaded conditions. The motion pictures simultaneously present the motion of the journal and the pressures predicted within the fluid film of the bearing as they evolve in time. The correct prediction of these fluid film pressures can be complicated by the development of cavitation within the fluid. The numerical model that is used predicts the formation of the cavitation bubble and its growth, downstream movement, and subsequent collapse. A complete physical picture is created in the motion picture as the journal traverses through the entire dynamic cycle.
Numerical modeling of on-orbit propellant motion resulting from an impulsive acceleration
NASA Technical Reports Server (NTRS)
Aydelott, John C.; Mjolsness, Raymond C.; Torrey, Martin D.; Hochstein, John I.
1987-01-01
In-space docking and separation maneuvers of spacecraft that have large fluid mass fractions may cause undesirable spacecraft motion in response to the impulsive-acceleration-induced fluid motion. An example of this potential low gravity fluid management problem arose during the development of the shuttle/Centaur vehicle. Experimentally verified numerical modeling techniques were developed to establish the propellant dynamics, and subsequent vehicle motion, associated with the separation of the Centaur vehicle from the shuttle orbiter cargo bay. Although the shuttle/Centaur development activity was suspended, the numerical modeling techniques are available to predict on-orbit liquid motion resulting from impulsive accelerations for other missions and spacecraft.
Higano, Nara S; Hahn, Andrew D; Tkach, Jean A; Cao, Xuefeng; Walkup, Laura L; Thomen, Robert P; Merhar, Stephanie L; Kingma, Paul S; Fain, Sean B; Woods, Jason C
2017-03-01
To implement pulmonary three-dimensional (3D) radial ultrashort echo-time (UTE) MRI in non-sedated, free-breathing neonates and adults with retrospective motion tracking of respiratory and intermittent bulk motion, to obtain diagnostic-quality, respiratory-gated images. Pulmonary 3D radial UTE MRI was performed at 1.5 tesla (T) during free breathing in neonates and adult volunteers for validation. Motion-tracking waveforms were obtained from the time course of each free induction decay's initial point (i.e., k-space center), allowing for respiratory-gated image reconstructions that excluded data acquired during bulk motion. Tidal volumes were calculated from end-expiration and end-inspiration images. Respiratory rates were calculated from the Fourier transform of the motion-tracking waveform during quiet breathing, with comparison to physiologic prediction in neonates and validation with spirometry in adults. High-quality respiratory-gated anatomic images were obtained at inspiration and expiration, with less respiratory blurring at the expense of signal-to-noise for narrower gating windows. Inspiration-expiration volume differences agreed with physiologic predictions (neonates; Bland-Altman bias = 6.2 mL) and spirometric values (adults; bias = 0.11 L). MRI-measured respiratory rates compared well with the observed rates (biases = -0.5 and 0.2 breaths/min for neonates and adults, respectively). Three-dimensional radial pulmonary UTE MRI allows for retrospective respiratory self-gating and removal of intermittent bulk motion in free-breathing, non-sedated neonates and adults. Magn Reson Med 77:1284-1295, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Chemotactic and hydrodynamic effects on collective dynamics of self-diffusiophoretic Janus motors
NASA Astrophysics Data System (ADS)
Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond
2017-12-01
Collective motion in nonequilibrium steady state suspensions of self-propelled Janus motors driven by chemical reactions can arise due to interactions coming from direct intermolecular forces, hydrodynamic flow effects, or chemotactic effects mediated by chemical gradients. The relative importance of these interactions depends on the reactive characteristics of the motors, the way in which the system is maintained in a steady state, and properties of the suspension, such as the volume fraction. From simulations of a microscopic hard collision model for the interaction of fluid particles with the Janus motor we show that dynamic cluster states exist and determine the interaction mechanisms that are responsible for their formation. The relative importance of chemotactic and hydrodynamic effects is identified by considering a microscopic model in which chemotactic effects are turned off while the full hydrodynamic interactions are retained. The system is maintained in a steady state by means of a bulk reaction in which product particles are reconverted into fuel particles. The influence of the bulk reaction rate on the collective dynamics is also studied.
Dynamics of a fluid-driven crack in three dimensions by the finite difference method
NASA Astrophysics Data System (ADS)
Chouet, Bernard
1986-12-01
The finite difference method is applied to the study of the dynamics of a three-dimensional fluid-filled crack excited into resonance by the sudden failure of a small barrier of area ΔS on the crack surface. The impulse response of the crack is examined for various ratios of crack width to crack length and for several values of the crack stiffness C = (b/μ)(L/d), where b is the bulk modulus of the fluid, μ is the rigidity of the solid, and L and d are the crack length and crack thickness, respectively. The motion of the crack is characterized by distinct time scales representing the duration of brittle failure and the periods of acoustic resonance in the lateral and longitudinal dimensions of the source. The rupture has a duration proportional to the area of crack expansion and is the trigger responsible for the excitation of the crack into resonance; the resonant periods are proportional to the crack stiffness and to the width and length of the crack. The crack wave sustaining the resonance is analogous to the tube wave propagating in a fluid-filled borehole. It is dispersive, showing a phase velocity that decreases with increasing wavelength. Its wave speed is always lower than the acoustic velocity of the fluid and shows a strong dependence on the crack stiffness, decreasing as the stiffness increases. The initial motion of the crack surface is an opening, and the radiated far-field compressional wave starts with a strong but brief compression which has a duration proportional to the crack stiffness and size of the rupture area; the amplitude of this pulse increases with the area of rupture but decreases with increasing stiffness. Flow into the newly created cavity triggers a pressure drop in the fluid, which produces a partial collapse of the wall propagated over the crack surface at the speed of the crack wave. The collapse of the crack surface generates a weak long-period component of dilatation following the compressional first motion in the far-field P wave train; the dilatational component is clearer in the signal from stiffer cracks when seen in the direction of the rupture. The energy loss by radiation is stronger for high frequencies, resulting in a progressive enrichment of the crack response in lower frequencies over the duration of resonance. These source characteristics translate into a far-field signature that is marked by a high-frequency content near its onset and dominated by a longer-period component in its coda. The source duration shows a strong dependence on the fluid viscosity and associated viscous damping at the crack wall.
PREFACE: Special section on vortex rings Special section on vortex rings
NASA Astrophysics Data System (ADS)
Fukumoto, Yasuhide
2009-10-01
This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill. Their formation is a problem of vortex sheet dynamics, the steady state is a problem of existence, their duration is a problem of stability, and if there are several we have the problem of vortex interactions. Helmholtz himself, in the same paper (1858), devoted a few pages to an analysis of the motion of a vortex ring, and made substantial contributions. Since then, theoretical, experimental and numerical treatments of vortex rings have been developing continuously, yet we encounter mysteries and novel phenomena, with which vortex rings find new applications in, say, bio-fluid mechanics. Recently vortex rings have enlarged their scope beyond classical fluids to encompass super-fluids and Bose-Einstein condensates. On the occasion of the 150th anniversary of Helmholtz's theory on a vortex ring, it is worthwhile to bring together, in one issue, the latest understandings of and open problems in vortex rings from various aspects. The topics in this issue include development of theories and experiments for motion of vortex rings and their interaction with other vortex rings, flows and boundaries, with application to vortex-ring manipulation for flow control, original experiments on collision of vortex rings with a porous boundary, a novel numerical technique to simulate three-dimensional motion of vortex rings and new theories of dynamics of quantum vortex rings governed by nonlinear Schrödinger equations. I hope that this special section gives a sketch, in some proportion, of the current frontier of the field and provides a means to tackle future problems. References Saffman P G 1981 Dynamics of vorticity J. Fluid Mech. 106 49-58 von Helmholtz H 1858 Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen J. Reine Angew. Math. 55 25-55 (Engl. transl.: Tait P G 1867 On the integrals of the hydrodynamical equations which express vortex-motion Phil. Mag. 33 (4) 485-512)
On a class of exact solutions of the equations of motion of a viscous fluid
NASA Technical Reports Server (NTRS)
Yatseyev, V I
1953-01-01
The general solution is obtained of the equations of motion of a viscous fluid in which the velocity field is inversely proportional to the distance from a certain point. Some particular cases of such motion are investigated.
Rapacchi, Stanislas; Wen, Han; Viallon, Magalie; Grenier, Denis; Kellman, Peter; Croisille, Pierre; Pai, Vinay M
2011-12-01
Diffusion-weighted imaging (DWI) using low b-values permits imaging of intravoxel incoherent motion in tissues. However, low b-value DWI of the human heart has been considered too challenging because of additional signal loss due to physiological motion, which reduces both signal intensity and the signal-to-noise ratio (SNR). We address these signal loss concerns by analyzing cardiac motion during a heartbeat to determine the time-window during which cardiac bulk motion is minimal. Using this information to optimize the acquisition of DWI data and combining it with a dedicated image processing approach has enabled us to develop a novel low b-value diffusion-weighted cardiac magnetic resonance imaging approach, which significantly reduces intravoxel incoherent motion measurement bias introduced by motion. Simulations from displacement encoded motion data sets permitted the delineation of an optimal time-window with minimal cardiac motion. A number of single-shot repetitions of low b-value DWI cardiac magnetic resonance imaging data were acquired during this time-window under free-breathing conditions with bulk physiological motion corrected for by using nonrigid registration. Principal component analysis (PCA) was performed on the registered images to improve the SNR, and temporal maximum intensity projection (TMIP) was applied to recover signal intensity from time-fluctuant motion-induced signal loss. This PCATMIP method was validated with experimental data, and its benefits were evaluated in volunteers before being applied to patients. Optimal time-window cardiac DWI in combination with PCATMIP postprocessing yielded significant benefits for signal recovery, contrast-to-noise ratio, and SNR in the presence of bulk motion for both numerical simulations and human volunteer studies. Analysis of mean apparent diffusion coefficient (ADC) maps showed homogeneous values among volunteers and good reproducibility between free-breathing and breath-hold acquisitions. The PCATMIP DWI approach also indicated its potential utility by detecting ADC variations in acute myocardial infarction patients. Studying cardiac motion may provide an appropriate strategy for minimizing the impact of bulk motion on cardiac DWI. Applying PCATMIP image processing improves low b-value DWI and enables reliable analysis of ADC in the myocardium. The use of a limited number of repetitions in a free-breathing mode also enables easier application in clinical conditions.
Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY
2008-09-02
A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ang; Yu, Heng; Tozzi, Paolo
2016-04-10
We search for bulk motions in the intracluster medium (ICM) of massive clusters showing evidence of an ongoing or recent major merger with spatially resolved spectroscopy in Chandra CCD data. We identify a sample of six merging clusters with >150 ks Chandra exposure in the redshift range 0.1 < z < 0.3. By performing X-ray spectral analysis of projected ICM regions selected according to their surface brightness, we obtain the projected redshift maps for all of these clusters. After performing a robust analysis of the statistical and systematic uncertainties in the measured X-ray redshift z{sub X}, we check whether or not themore » global z{sub X} distribution differs from that expected when the ICM is at rest. We find evidence of significant bulk motions at more than 3σ in A2142 and A115, and less than 2σ in A2034 and A520. Focusing on single regions, we identify significant localized velocity differences in all of the merger clusters. We also perform the same analysis on two relaxed clusters with no signatures of recent mergers, finding no signs of bulk motions, as expected. Our results indicate that deep Chandra CCD data enable us to identify the presence of bulk motions at the level of v{sub BM} > 1000 km s{sup −1} in the ICM of massive merging clusters at 0.1 < z < 0.3. Although the CCD spectral resolution is not sufficient for a detailed analysis of the ICM dynamics, Chandra CCD data constitute a key diagnostic tool complementing X-ray bolometers on board future X-ray missions.« less
Bulk viscosity of water in acoustic modal analysis and experiment
NASA Astrophysics Data System (ADS)
Kůrečka, Jan; Habán, Vladimír; Himr, Daniel
2018-06-01
Bulk viscosity is an important factor in the damping properties of fluid systems and exhibits frequency dependent behaviour. A comparison between modal analysis in ANSYS Acoustics, custom code and experimental data is presented in this paper. The measured system consists of closed ended water-filled steel pipes of different lengths. The influence of a pipe wall, flanges on both ends and longitudinal waves in the structural part were included in measurement evaluation. Therefore, the obtained values of sound speed and bulk viscosity are parameters of the fluid. A numerical simulation was carried out only using fluid volume in a range of bulk viscosity. Damping characteristics in this range were compared to measured values. The results show a significant influence of sound speed and subsequently, the use of sound speed value regressed from experimental data yields a better fit between the measurement and the computation.
Zhou, Shiqi; Jamnik, Andrej
2005-09-22
The structure of a Lennard-Jones (LJ) fluid subjected to diverse external fields maintaining the equilibrium with the bulk LJ fluid is studied on the basis of the third-order+second-order perturbation density-functional approximation (DFA). The chosen density and potential parameters for the bulk fluid correspond to the conditions situated at "dangerous" regions of the phase diagram, i.e., near the critical temperature or close to the gas-liquid coexistence curve. The accuracy of DFA predictions is tested against the results of a grand canonical ensemble Monte Carlo simulation. It is found that the DFA theory presented in this work performs successfully for the nonuniform LJ fluid only on the condition of high accuracy of the required bulk second-order direct correlation function. The present report further indicates that the proposed perturbation DFA is efficient and suitable for both supercritical and subcritical temperatures.
Hydrodynamic interaction of two deformable drops in confined shear flow.
Chen, Yongping; Wang, Chengyao
2014-09-01
We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.
NASA Technical Reports Server (NTRS)
Martin, J. J.; Holt, J. B.
2000-01-01
This report details the results of a series of fluid motion experiments to investigate the use of magnets to orient fluids in a low-gravity environment. The fluid of interest for this project was liquid oxygen (LO2) since it exhibits a paramagnetic behavior (is attracted to magnetic fields). However, due to safety and handling concerns, a water-based ferromagnetic mixture (produced by Ferrofluidics Corporation) was selected to simplify procedures. Three ferromagnetic fluid mixture strengths and a nonmagnetic water baseline were tested using three different initial fluid positions with respect to the magnet. Experiment accelerometer data were used with a modified computational fluid dynamics code termed CFX-4 (by AEA Technologies) to predict fluid motion. These predictions compared favorably with experiment video data, verifying the code's ability to predict fluid motion with and without magnetic influences. Additional predictions were generated for LO2 with the same test conditions and geometries used in the testing. Test hardware consisted of a cylindrical Plexiglas tank (6-in. bore with 10-in. length), a 6,000-G rare Earth magnet (10-in. ring), three-axis accelerometer package, and a video recorder system. All tests were conducted aboard the NASA Reduced-Gravity Workshop, a KC-135A aircraft.
NASA Astrophysics Data System (ADS)
Paul, Shuvojit; Kumar, Randhir; Banerjee, Ayan
2018-04-01
Two-point microrheology measurements from widely separated colloidal particles approach the bulk viscosity of the host medium more reliably than corresponding single-point measurements. In addition, active microrheology offers the advantage of enhanced signal to noise over passive techniques. Recently, we reported the observation of a motional resonance induced in a probe particle in dual-trap optical tweezers when the control particle was driven externally [Paul et al., Phys. Rev. E 96, 050102(R) (2017), 10.1103/PhysRevE.96.050102]. We now demonstrate that the amplitude and phase characteristics of the motional resonance can be used as a sensitive tool for active two-point microrheology to measure the viscosity of a viscous fluid. Thus, we measure the viscosity of viscous liquids from both the amplitude and phase response of the resonance, and demonstrate that the zero crossing of the phase response of the probe particle with respect to the external drive is superior compared to the amplitude response in measuring viscosity at large particle separations. We compare our viscosity measurements with those using a commercial rheometer and obtain an agreement ˜1 % . The method can be extended to viscoelastic material where the frequency dependence of the resonance may provide further accuracy for active microrheological measurements.
Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects
Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S.; Eckmann, David M.
2009-01-01
We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model—a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=ρlUmaxd/μapp, in the neighborhood of 0.2, 2, and 200 are investigated. Here, ρl is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and μapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), λ, in the range 0.9≤λ≤1.05. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the “endothelial cell” (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ → − → +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble; (iv) computed magnitudes of shear stress gradients coupled with their sign reversals may correspond to levels that cause injury to the cell by membrane disruption through impulsive compression and stretching; and (v) for the vessel sizes and flow rates investigated, gravitational effects are negligible. PMID:18851139
Interfacial instabilities in vibrated fluids
NASA Astrophysics Data System (ADS)
Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier
2016-07-01
Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced that leads to splitting (fluid separation). We investigate the interaction of these prominent interfacial instabilities in the absence of gravity, concentrating on harmonically vibrated rectangular containers of fluid. We compare vibroequilibria theory with direct numerical simulations and consider the effect of surfaces waves, which can excite sloshing motion of the vibroequilibria. We systematically investigate the saddle-node bifurcation experienced by a symmetric singly connected vibroequilibria solution, for sufficiently deep containers, as forcing is increased. Beyond this instability, the fluid rapidly separates into (at least) two distinct masses. Pronounced hysteresis is associated with this transition, even in the presence of gravity. The interaction of vibroequilibria and frozen waves is investigated in two-fluid systems. Preparations for a parabolic flight experiment on fluids vibrated at high frequencies are discussed.
Two fluid anisotropic dark energy models in a scale invariant theory
NASA Astrophysics Data System (ADS)
Tripathy, S. K.; Mishra, B.; Sahoo, P. K.
2017-09-01
Some anisotropic Bianchi V dark energy models are investigated in a scale invariant theory of gravity. We consider two non-interacting fluids such as dark energy and a bulk viscous fluid. Dark energy pressure is considered to be anisotropic in different spatial directions. A dynamically evolving pressure anisotropy is obtained from the models. The models favour phantom behaviour. It is observed that, in presence of dark energy, bulk viscosity has no appreciable effect on the cosmic dynamics.
Numerical study of fluid motion in bioreactor with two mixers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheleva, I., E-mail: izheleva@uni-ruse.bg; Lecheva, A., E-mail: alecheva@uni-ruse.bg
2015-10-28
Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.
A mean curvature model for capillary flows in asymmetric containers and conduits
NASA Astrophysics Data System (ADS)
Chen, Yongkang; Tavan, Noël; Weislogel, Mark M.
2012-08-01
Capillarity-driven flows resulting from critical geometric wetting criterion are observed to yield significant shifts of the bulk fluid from one side of the container to the other during "zero gravity" experiments. For wetting fluids, such bulk shift flows consist of advancing and receding menisci sometimes separated by secondary capillary flows such as rivulet-like flows along gaps. Here we study the mean curvature of an advancing meniscus in hopes of approximating a critical boundary condition for fluid dynamics solutions. It is found that the bulk shift flows behave as if the bulk menisci are either "connected" or "disconnected." For the connected case, an analytic method is developed to calculate the mean curvature of the advancing meniscus in an asymptotic sense. In contrast, for the disconnected case the method to calculate the mean curvature of the advancing and receding menisci uses a well-established procedure. Both disconnected and connected bulk shifts can occur as the first tier flow of more complex compound capillary flows. Preliminary comparisons between the analytic method and the results of drop tower experiments are encouraging.
NASA Astrophysics Data System (ADS)
Parfenyev, Vladimir M.; Vergeles, Sergey S.
2018-06-01
Recently the generation of eddy currents by interacting surface waves was observed experimentally. The phenomenon provides the possibility for manipulation of particles which are immersed in the fluid. The analysis shows that the amplitude of the established eddy currents produced by stationary surface waves does not depend on the fluid viscosity in the free surface case. The currents become parametrically larger, being inversely proportional to the square root of the fluid viscosity in the case when the fluid surface is covered by an almost incompressible thin liquid (i.e., shear elasticity is zero) film formed by an insoluble agent with negligible internal viscous losses as compared to the dissipation in the fluid bulk. Here we extend the theory for a thin insoluble film with zero shear elasticity and small shear and dilational viscosities on the case of an arbitrary elastic compression modulus. We find both contributions into the Lagrangian motion of passive tracers, which are the advection by the Eulerian vertical vorticity and the Stokes drift. Whereas the Stokes drift contribution preserves its value for the free surface case outside a thin viscous sublayer, the Eulerian vertical vorticity strongly depends on the fluid viscosity at high values of the film compression modulus. The Stokes drift acquires a strong dependence on the fluid viscosity inside the viscous sublayer; however, the change is compensated by an opposite change in the Eulerian vertical vorticity. As a result, the vertical dependence of the intensity of eddy currents is given by a sum of two decaying exponents with both decrements being of the order of the wave number. The decrements are numerically different, so the Eulerian contribution becomes dominant at some depth for the surface film with any compression modulus.
Compton Scattering by Static and Moving Media. Part 1; The Transfer Equation and its Moments
NASA Technical Reports Server (NTRS)
Psaltis, Dimitrios; Lamb, Frederick K.
1997-01-01
Compton scattering of photons by nonrelativistic particles is thought to play an important role in forming the radiation spectrum of many astrophysical systems. Here we derive the time-dependent photon kinetic equation that describes spontaneous and induced Compton scattering, as well as absorption and emission by static and moving media, the corresponding radiative transfer equation, and their zeroth and first angular moments, both in the system frame and in the frame comoving with the medium. We show that it is necessary to use the correct relativistic differential scattering cross section in order to obtain a photon kinetic equation that is correct to first order in Epsilon/m(sub e), T(sub e)/m(sub e), and V, where Epsilon is the photon energy, T(sub e) and m(sub e) are the electron temperature and rest mass, and V is the electron bulk velocity in units of the speed of light. We also demonstrate that the terms in the radiative transfer equation that are second order in V should usually be retained, because if the radiation energy density is sufficiently large, compared to the radiation flux, the effects of bulk Comptonization described by the terms that are second order in V can be as important as the effects described by the terms that are first order in V, even when V is small. The system- and fluid-frame equations that we derive are correct to first order in Epsilon/m(sub e). Our system-frame equations, which are correct to second order in V, may be used when V is not too large. Our fluid-frame equations, which are exact in V, may be used when V approaches 1. Both sets of equations are valid for systems of arbitrary optical depth and can therefore be used in both the free-streaming and diffusion regimes. We demonstrate that Comptonization by the electron bulk motion occurs whether or not the radiation field is isotropic or the bulk flow converges and that it is more important than thermal Comptonization if V(sup 2) is greater than 3T(sub e)/m(sub e).
Masses of Fluid for Cylindrical Tanks in Rock With Partial Uplift of Bottom Plate
Taniguchi, Tomoyo; Katayama, Yukihiro
2016-01-01
This study proposes the use of a slice model consisting of a set of thin rectangular tanks for evaluating the masses of fluid contributing to the rocking motion of cylindrical tanks; the effective mass of fluid for rocking motion, that for rocking–bulging interaction, effective moment inertia of fluid for rocking motion and its centroid. They are mathematically or numerically quantified, normalized, tabulated, and depicted as functions of the aspect of tanks for different values of the ratio of the uplift width of the tank bottom plate to the diameter of tank for the designer's convenience. PMID:27303110
Computer code for gas-liquid two-phase vortex motions: GLVM
NASA Technical Reports Server (NTRS)
Yeh, T. T.
1986-01-01
A computer program aimed at the phase separation between gas and liquid at zero gravity, induced by vortex motion, is developed. It utilizes an explicit solution method for a set of equations describing rotating gas-liquid flows. The vortex motion is established by a tangential fluid injection. A Lax-Wendroff two-step (McCormack's) numerical scheme is used. The program can be used to study the fluid dynamical behavior of the rotational two-phase fluids in a cylindrical tank. It provides a quick/easy sensitivity test on various parameters and thus provides the guidance for the design and use of actual physical systems for handling two-phase fluids.
Nanoscale Viscoelasticity of Extracellular Matrix Proteins in Soft Tissues: a Multiscale Approach
Miri, Amir K.; Heris, Hossein K.; Mongeau, Luc; Javid, Farhad
2013-01-01
We propose that the bulk viscoelasticity of soft tissues results from two length-scale-dependent mechanisms: the time-dependent response of extracellular matrix proteins (ECM) at the nanometer scale and the biophysical interactions between the ECM solid structure and interstitial fluid at the micrometer scale. The latter was modeled using the poroelasticity theory with an assumption of free motion of the interstitial fluid within the porous ECM structure. Following a recent study (Heris, H.K., Miri, A.K., Tripathy, U., Barthelat, F., Mongeau, L., 2013. Journal of the Mechanical Behavior of Biomedical Materials), atomic force microscopy was used to perform creep loading and 50-nm sinusoidal oscillations on porcine vocal folds. The proposed model was calibrated by a finite element model to accurately predict the nanoscale viscoelastic moduli of ECM. A linear correlation was observed between the in-depth distribution of the viscoelastic moduli and that of hyaluronic acids in the vocal fold tissue. We conclude that hyaluronic acids may regulate the vocal fold viscoelasticity at nanoscale. The proposed methodology offers a characterization tool for biomaterials used in vocal fold augmentations. PMID:24317493
Non-homogeneous flow profiles in sheared bacterial suspensions
NASA Astrophysics Data System (ADS)
Samanta, Devranjan; Cheng, Xiang
Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.
Do hydrodynamic interactions affect the swim pressure?
Burkholder, Eric W; Brady, John F
2018-05-09
We study the motion of a spherical active Brownian particle (ABP) of size a, moving with a fixed speed U0, and reorienting on a time scale τR in the presence of a confining boundary. Because momentum is conserved in the embedding fluid, we show that the average force per unit area on the boundary equals the bulk mechanical pressure P∞ = p∞f + Π∞, where p∞f is the fluid pressure and Π∞ is the particle pressure; this is true for active and passive particles alike regardless of how the particles interact with the boundary. As an example, we investigate how hydrodynamic interactions (HI) change the particle-phase pressure at the wall, and find that Πwall = n∞(kBT + ζ(Δ)U0l(Δ)/6), where ζ is the (Stokes) drag on the swimmer, l = U0τR is the run length, and Δ is the minimum gap size between the particle and the wall; as Δ → ∞ this is the familiar swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 1-5].
NASA Astrophysics Data System (ADS)
Karam, Pascal; Pennathur, Sumita
2016-11-01
Characterization of the electrophoretic mobility and zeta potential of micro and nanoparticles is important for assessing properties such as stability, charge and size. In electrophoretic techniques for such characterization, the bulk fluid motion due to the interaction between the fluid and the charged surface must be accounted for. Unlike current industrial systems which rely on DLS and oscillating potentials to mitigate electroosmotic flow (EOF), we propose a simple alternative electrophoretic method for optically determining electrophoretic mobility using a DC electric fields. Specifically, we create a system where an adverse pressure gradient counters EOF, and design the geometry of the channel so that the flow profile of the pressure driven flow matches that of the EOF in large regions of the channel (ie. where we observe particle flow). Our specific COMSOL-optimized geometry is two large cross sectional areas adjacent to a central, high aspect ratio channel. We show that this effectively removes EOF from a large region of the channel and allows for the accurate optical characterization of electrophoretic particle mobility, no matter the wall charge or particle size.
NASA Technical Reports Server (NTRS)
Bierschenk, Thomas R.; Kawa, Hajimu; Juhlke, Timothy J.; Lagow, Richard J.
1988-01-01
A series of perfluoroalkylether (PFAE) fluids were synthesized by direct fluorination. Viscosity-temperature properties, oxidation stabilities, oxidation-corrosion properties, and lubricity were determined. The fluids were tested in the presence of common elastomers to check for compatibility. The bulk modulus of each was measured to determine if any could be used as nonflammable aircraft hydraulic fluid. It was determined that as the carbon to oxygen ratio decreases, the viscometric properties improve, the fluids may become poor lubricants, the bulk modulus increases, the surface tension increases, and the fluid density increases. The presence of difluoromethylene oxide units in the polymer does not seriously lower the oxidation and oxidation-corrosion stabilities as long as the difluoromethylene oxide units are separated by other units.
Numerical simulations of internal wave generation by convection in water.
Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton J; Vasil, Geoffrey M; Brown, Benjamin P; Quataert, Eliot; Oishi, Jeffrey S
2015-06-01
Water's density maximum at 4°C makes it well suited to study internal gravity wave excitation by convection: an increasing temperature profile is unstable to convection below 4°C, but stably stratified above 4°C. We present numerical simulations of a waterlike fluid near its density maximum in a two-dimensional domain. We successfully model the damping of waves in the simulations using linear theory, provided we do not take the weak damping limit typically used in the literature. To isolate the physical mechanism exciting internal waves, we use the spectral code dedalus to run several simplified model simulations of our more detailed simulation. We use data from the full simulation as source terms in two simplified models of internal-wave excitation by convection: bulk excitation by convective Reynolds stresses, and interface forcing via the mechanical oscillator effect. We find excellent agreement between the waves generated in the full simulation and the simplified simulation implementing the bulk excitation mechanism. The interface forcing simulations overexcite high-frequency waves because they assume the excitation is by the "impulsive" penetration of plumes, which spreads energy to high frequencies. However, we find that the real excitation is instead by the "sweeping" motion of plumes parallel to the interface. Our results imply that the bulk excitation mechanism is a very accurate heuristic for internal-wave generation by convection.
Atomic structure and dynamics properties of Cu50Zr50 films
NASA Astrophysics Data System (ADS)
Chen, Heng; Qu, Bingyan; Li, Dongdong; Zhou, Rulong; Zhang, Bo
2018-01-01
In this paper, the structural and dynamic properties of Cu50Zr50 films are investigated by molecular dynamics simulations. Our results show that the dynamics of the surface atoms are much faster than those of the bulk. Especially, the diffusion coefficient of the surface atoms is about forty times larger than that of the bulk at 600 K, which qualitatively agrees with the experimental results. Meanwhile, we find that the population of the icosahedral (-like) clusters in the surface region is obviously higher than that of the bulk, which prevents the surface from crystallization. A new method to determine the string-like collective atomic motion is introduced in the paper, and it suggests a possible connection between the glass formation ability and collective atomic motion. By using the method, the effects of surface on collective motion are illustrated. Our results show that the string-like collective atomic motion of surface atoms is weakened while that of the interior atoms is strengthened. The studies clearly explain the effects of surface on the structural and dynamic properties of Cu50Zr50 films from the atomic scale.
Temporal and spatial variation in porosity and compaction pressure for the viscoelastic slab
NASA Astrophysics Data System (ADS)
Morishige, M.; Van Keken, P. E.
2017-12-01
Fluid is considered to play key roles in subduction zones. It triggers various types of earthquakes by elevating pore-fluid pressure or forming hydrous minerals, and it also facilitates magma genesis by lowering the solidus temperatures of mantle and crustal rocks. Several previous numerical studies have worked on how fluid migrates and how porosity changes in time and space, but our knowledge of the fluid behavior remains limited. In this presentation, we demonstrate the detailed fluid behavior in the slab. The main features of this study are that (1) viscoelasticity is included, and that (2) fluid flow toward the inner part of the slab is also considered. We construct 2D and 3D finite element models for viscoelastic slab based on a theory of two-phase flow, which allows us to treat the movement of rock- and fluid- phases simultaneously. We solve the equations for porosity and compaction pressure which is defined as the pressure difference in between the two phases. Fluid source is fixed in time and space, and a uniform slab velocity is imposed for the whole model domain. There are several important parameters affecting the fluid behavior which includes bulk viscosity, bulk modulus, permeability, and fluid viscosity. Among these we fix bulk modulus and change the other parameters to investigate their effects on fluid migration. We find that when bulk viscosity is relatively high, elasticity is dominant and large amount of fluid is trapped in and around the fluid source. In addition, fluid migrates along the fluid source when relatively high ratio of permeability to fluid viscosity is assumed. Fluid generally moves with the slab when the ratio of permeability to fluid viscosity is low. One interesting feature is that in some cases porosity increases also in the deeper part of the fluid source due to the diffusion of compaction pressure. It suggests that the effects of resistance to volume change can be an alternative mechanism to effectively hydrate the inner part in the slab. In 3D, we find that fluid migrates in the maximum-dip direction of the slab. It leads to a fluid focusing where the slab bends away from the trench and it results in the increase in porosity and compaction pressure there. This finding may be useful to explain the observed along-arc variation in short-term slow slip events and the upper plane of double seismic zone.
Lattice Boltzmann study of chemically-driven self-propelled droplets.
Fadda, F; Gonnella, G; Lamura, A; Tiribocchi, A
2017-12-19
We numerically study the behavior of self-propelled liquid droplets whose motion is triggered by a Marangoni-like flow. This latter is generated by variations of surfactant concentration which affect the droplet surface tension promoting its motion. In the present paper a model for droplets with a third amphiphilic component is adopted. The dynamics is described by Navier-Stokes and convection-diffusion equations, solved by the lattice Boltzmann method coupled with finite-difference schemes. We focus on two cases. First, the study of self-propulsion of an isolated droplet is carried on and, then, the interaction of two self-propelled droplets is investigated. In both cases, when the surfactant migrates towards the interface, a quadrupolar vortex of the velocity field forms inside the droplet and causes the motion. A weaker dipolar field emerges instead when the surfactant is mainly diluted in the bulk. The dynamics of two interacting droplets is more complex and strongly depends on their reciprocal distance. If, in a head-on collision, droplets are close enough, the velocity field initially attracts them until a motionless steady state is achieved. If the droplets are vertically shifted, the hydrodynamic field leads to an initial reciprocal attraction followed by a scattering along opposite directions. This hydrodynamic interaction acts on a separation of some droplet radii otherwise it becomes negligible and droplets motion is only driven by the Marangoni effect. Finally, if one of the droplets is passive, this latter is generally advected by the fluid flow generated by the active one.
Todd, Jocelyn N; Maak, Travis G; Ateshian, Gerard A; Maas, Steve A; Weiss, Jeffrey A
2018-03-01
Osteoarthritis of the hip can result from mechanical factors, which can be studied using finite element (FE) analysis. FE studies of the hip often assume there is no significant loss of fluid pressurization in the articular cartilage during simulated activities and approximate the material as incompressible and elastic. This study examined the conditions under which interstitial fluid load support remains sustained during physiological motions, as well as the role of the labrum in maintaining fluid load support and the effect of its presence on the solid phase of the surrounding cartilage. We found that dynamic motions of gait and squatting maintained consistent fluid load support between cycles, while static single-leg stance experienced slight fluid depressurization with significant reduction of solid phase stress and strain. Presence of the labrum did not significantly influence fluid load support within the articular cartilage, but prevented deformation at the cartilage edge, leading to lower stress and strain conditions in the cartilage. A morphologically accurate representation of collagen fibril orientation through the thickness of the articular cartilage was not necessary to predict fluid load support. However, comparison with simplified fibril reinforcement underscored the physiological importance. The results of this study demonstrate that an elastic incompressible material approximation is reasonable for modeling a limited number of cyclic motions of gait and squatting without significant loss of accuracy, but is not appropriate for static motions or numerous repeated motions. Additionally, effects seen from removal of the labrum motivate evaluation of labral reattachment strategies in the context of labral repair. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mittal, Jeetain; Errington, Jeffrey R; Truskett, Thomas M
2007-08-30
Static measures such as density and entropy, which are intimately connected to structure, have featured prominently in modern thinking about the dynamics of the liquid state. Here, we explore the connections between self-diffusivity, density, and excess entropy for two of the most widely used model "simple" liquids, the equilibrium Lennard-Jones and square-well fluids, in both bulk and confined environments. We find that the self-diffusivity data of the Lennard-Jones fluid can be approximately collapsed onto a single curve (i) versus effective packing fraction and (ii) in appropriately reduced form versus excess entropy, as suggested by two well-known scaling laws. Similar data collapse does not occur for the square-well fluid, a fact that can be understood on the basis of the nontrivial effects that temperature has on its static structure. Nonetheless, we show that the implications of confinement for the self-diffusivity of both of these model fluids, over a broad range of equilibrium conditions, can be predicted on the basis of knowledge of the bulk fluid behavior and either the effective packing fraction or the excess entropy of the confined fluid. Excess entropy is perhaps the most preferable route due to its superior predictive ability and because it is a standard, unambiguous thermodynamic quantity that can be readily predicted via classical density functional theories of inhomogeneous fluids.
NASA Astrophysics Data System (ADS)
Samanta, Gauranga Charan; Myrzakulov, Ratbay; Shah, Parth
2017-04-01
The authors considered the bulk viscous fluid in f(R, T) gravity within the framework of Kaluza-Klein space time. The bulk viscous coefficient (ξ) expressed as ξ = {ξ_0} + {ξ_1}{{\\dot a} \\over a} + {ξ_2}{{\\ddot a} \\over {\\dot a}}, where ξ0, ξ1, and ξ2 are positive constants. We take p=(γ-1)ρ, where 0≤γ≤2 as an equation of state for perfect fluid. The exact solutions to the corresponding field equations are given by assuming a particular model of the form of f(R, T)=R+2f(T), where f(T)=λT, λ is constant. We studied the cosmological model in two stages, in first stage: we studied the model with no viscosity, and in second stage: we studied the model involve with viscosity. The cosmological model involve with viscosity is studied by five possible scenarios for bulk viscous fluid coefficient (ξ). The total bulk viscous coefficient seems to be negative, when the bulk viscous coefficient is proportional to {ξ _2}{{\\ddot a} \\over {\\dot a}}, hence, the second law of thermodynamics is not valid; however, it is valid with the generalised second law of thermodynamics. The total bulk viscous coefficient seems to be positive, when the bulk viscous coefficient is proportional to ξ = {ξ _1}{{\\dot a} \\over a} + {ξ _2}{{\\ddot a} \\over {\\dot a}} and ξ = {ξ _0} + {ξ _1}{{\\dot a} \\over a} + {ξ _2}{{\\ddot a} \\over {\\dot a}}, so the second law of thermodynamics and the generalised second law of thermodynamics is satisfied throughout the evolution. We calculate statefinder parameters of the model and observed that it is different from the ∧CDM model. Finally, some physical and geometrical properties of the models are discussed.
Swimming by reciprocal motion at low Reynolds number.
Qiu, Tian; Lee, Tung-Chun; Mark, Andrew G; Morozov, Konstantin I; Münster, Raphael; Mierka, Otto; Turek, Stefan; Leshansky, Alexander M; Fischer, Peer
2014-11-04
Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell's scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric 'micro-scallop', a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.
NASA Astrophysics Data System (ADS)
Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland
2017-10-01
Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.
The Motion and Control of a Chaplygin Sleigh with Internal Shape in an Ideal Fluid
NASA Astrophysics Data System (ADS)
Barot, Christopher
In this dissertation we will examine a nonholonomic system with Lie group symmetry: the Chaplygin sleigh coupled to an oscillator moving through a potential fluid in two dimensions. This example is chosen to illustrate several general features. The sleigh system in the plane has SE(2) symmetry. This group symmetry will be used to separate the dynamics of the system into those along the group directions and those not. The oscillator motion is not along the group and so acts as an additional configuration space coordinate that plays the role of internal "shape". The potential fluid serves as an interactive environment for the sleigh. The interaction between the fluid and sleigh depends not only on the sleigh body shape and size but also on its motion. The motion of the sleigh causes motion in the surrounding fluid and vice-versa. Since the sleigh body is coupled to the oscillator, the oscillator will have indirect interaction with the fluid. This oscillator serves as internal shape and interacts with the external environment of the sleigh through its coupling to the sleigh body and the nonholonomic constraint; it will be shown that this interaction can produce a variety of types of motion depending on the sleigh geometry. In particular, when the internal shape of the system is actively controlled, it will be proven that the sleigh can be steered through the plane towards any desired position. In this way the sleigh-fluid-oscillator system will demonstrate how a rigid body can be steered through an interactive environment by controlling things wholly within the body itself and without use of external thrust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chugunov, Nikita; Altundas, Bilgin
The submission contains a .xls files consisting of 10 excel sheets, which contain combined list of pressure, saturation, salinity, temperature profiles from the simulation of CO2 push-pull using Brady reservoir model and the corresponding effective compressional and shear velocity, bulk density, and fluid and time-lapse neutron capture cross section profiles of rock at times 0 day (baseline) through 14 days. First 9 sheets (each named after the corresponding CO2 push-pull simulation time) contains simulated pressure, saturation, temperature, salinity profiles and the corresponding effective elastic and neutron capture cross section profiles of rock matrix at the time of CO2 injection. Eachmore » sheet contains two sets of effective compressional velocity profiles of the rock, one based on Gassmann and the other based on Patchy saturation model. Effective neutron capture cross section calculations are done using a proprietary neutron cross-section simulator (SNUPAR) whereas for the thermodynamic properties of CO2 and bulk density of rock matrix filled with fluid, a standalone fluid substitution tool by Schlumberger is used. Last sheet in the file contains the bulk modulus of solid rock, which is inverted from the rock properties (porosity, sound speed etc) based on Gassmann model. Bulk modulus of solid rock in turn is used in the fluid substitution.« less
Statistical mechanics of homogeneous partly pinned fluid systems.
Krakoviack, Vincent
2010-12-01
The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.
Rotary adsorbers for continuous bulk separations
Baker, Frederick S [Oak Ridge, TN
2011-11-08
A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2017-02-01
In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.
McCarney, Evan R; Armstrong, Brandon D; Kausik, Ravinath; Han, Songi
2008-09-16
We present a unique analysis tool for the selective detection of local water inside soft molecular assemblies (hydrophobic cores, vesicular bilayers, and micellar structures) suspended in bulk water. Through the use of dynamic nuclear polarization (DNP), the (1)H NMR signal of water is amplified, as it interacts with stable radicals that possess approximately 658 times higher spin polarization. We utilized stable nitroxide radicals covalently attached along the hydrophobic tail of stearic acid molecules that incorporate themselves into surfactant-based micelle or vesicle structures. Here, we present a study of local water content and fluid viscosity inside oleate micelles and vesicles and Triton X-100 micelles to serve as model systems for soft molecular assemblies. This approach is unique because the amplification of the NMR signal is performed in bulk solution and under ambient conditions with site-specific spin labels that only detect the water that is directly interacting with the localized spin labels. Continuous wave (cw) electron spin resonance (ESR) analysis provides rotational dynamics of the spin-labeled molecular chain segments and local polarity parameters that can be related to hydration properties, whereas we show that DNP-enhanced (1)H NMR analysis of fluid samples directly provides translational water dynamics and permeability of the local environment probed by the spin label. Our technique therefore has the potential to become a powerful analysis tool, complementary to cw ESR, to study hydration characteristics of surfactant assemblies, lipid bilayers, or protein aggregates, where water dynamics is a key parameter of their structure and function. In this study, we find that there is significant penetration of water inside the oleate micelles with a higher average local water viscosity (approximately 1.8 cP) than in bulk water, and Triton X-100 micelles and oleate vesicle bilayers mostly exclude water while allowing for considerable surfactant chain motion and measurable water permeation through the soft structure.
Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations
NASA Astrophysics Data System (ADS)
Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako
2014-03-01
We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.
Financial Brownian particle in the layered order-book fluid and fluctuation-dissipation relations.
Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako
2014-03-07
We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.
Wave-particle interaction in the Faraday waves.
Francois, N; Xia, H; Punzmann, H; Shats, M
2015-10-01
Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.
CFD simulation of flow through heart: a perspective review.
Khalafvand, S S; Ng, E Y K; Zhong, L
2011-01-01
The heart is an organ which pumps blood around the body by contraction of muscular wall. There is a coupled system in the heart containing the motion of wall and the motion of blood fluid; both motions must be computed simultaneously, which make biological computational fluid dynamics (CFD) difficult. The wall of the heart is not rigid and hence proper boundary conditions are essential for CFD modelling. Fluid-wall interaction is very important for real CFD modelling. There are many assumptions for CFD simulation of the heart that make it far from a real model. A realistic fluid-structure interaction modelling the structure by the finite element method and the fluid flow by CFD use more realistic coupling algorithms. This type of method is very powerful to solve the complex properties of the cardiac structure and the sensitive interaction of fluid and structure. The final goal of heart modelling is to simulate the total heart function by integrating cardiac anatomy, electrical activation, mechanics, metabolism and fluid mechanics together, as in the computational framework.
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Ohayon, Roger
1991-01-01
A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derive semidiscrete equations of motion that account for such effects.
Motion estimation under location uncertainty for turbulent fluid flows
NASA Astrophysics Data System (ADS)
Cai, Shengze; Mémin, Etienne; Dérian, Pierre; Xu, Chao
2018-01-01
In this paper, we propose a novel optical flow formulation for estimating two-dimensional velocity fields from an image sequence depicting the evolution of a passive scalar transported by a fluid flow. This motion estimator relies on a stochastic representation of the flow allowing to incorporate naturally a notion of uncertainty in the flow measurement. In this context, the Eulerian fluid flow velocity field is decomposed into two components: a large-scale motion field and a small-scale uncertainty component. We define the small-scale component as a random field. Subsequently, the data term of the optical flow formulation is based on a stochastic transport equation, derived from the formalism under location uncertainty proposed in Mémin (Geophys Astrophys Fluid Dyn 108(2):119-146, 2014) and Resseguier et al. (Geophys Astrophys Fluid Dyn 111(3):149-176, 2017a). In addition, a specific regularization term built from the assumption of constant kinetic energy involves the very same diffusion tensor as the one appearing in the data transport term. Opposite to the classical motion estimators, this enables us to devise an optical flow method dedicated to fluid flows in which the regularization parameter has now a clear physical interpretation and can be easily estimated. Experimental evaluations are presented on both synthetic and real world image sequences. Results and comparisons indicate very good performance of the proposed formulation for turbulent flow motion estimation.
Fluid and hybrid models for streamers
NASA Astrophysics Data System (ADS)
Bonaventura, Zdeněk
2016-09-01
Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.
NASA Astrophysics Data System (ADS)
Forestier, M.; Haldenwang, P.
We consider free convection driven by a heated vertical plate immersed in a nonlinearly stratified medium. The plate supplies a uniform horizontal heat flux to a fluid, the bulk of which has a stable stratification, characterized by a non-uniform vertical temperature gradient. This gradient is assumed to have a typical length scale of variation, denoted Z0, while 0, and the physical properties of the medium.We then apply the new theory to the natural convection affecting the vapour phase in a liquefied pure gas tank (e.g. the cryogenic storage of hydrogen). It is assumed that the cylindrical storage tank is subject to a constant uniform heat flux on its lateral and top walls. We are interested in the vapour motion above a residual layer of liquid in equilibrium with the vapour. High-precision axisymmetric numerical computations show that the flow remains steady for a large range of parameters, and that a bulk stratification characterized by a quadratic temperature profile is undoubtedly present. The application of the theory permits a comparison of the numerical and analytic results, showing that the theory satisfactorily predicts the primary dynamical and thermal properties of the storage tank.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodadi, M., E-mail: M.Khodadi@sbu.ac.ir; Sepangi, H.R., E-mail: hr-sepangi@sbu.ac.ir
We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigatemore » the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.« less
Flight of a falling maple seed
NASA Astrophysics Data System (ADS)
Lee, Injae; Choi, Haecheon
2017-09-01
This paper is associated with a video winner of a 2016 APS/DFD Gallery of Fluid Motion Award. The original video is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2016.GFM.V0046
Resistive dissipation and magnetic field topology in the stellar corona
NASA Technical Reports Server (NTRS)
Parker, E. N.
1993-01-01
Tangential discontinuities, or current sheets, in a magnetic field embedded in a fluid with vanishing resistivity are created by discontinuous fluid motion. Tangential discontinuities are also created when a magnetic field is allowed to relax to magnetostatic equilibrium after mixing by fluid motions (either continuous or discontinuous) into any but the simplest topologies. This paper shows by formal examples that the current sheets arising solely from discontinuous fluid motions do not contribute significantly to the dissipation of magnetic free energy when a small resistivity is introduced. Dissipation that is significant under coronal conditions occurs only by rapid reconnection, which arises when, and only when, the current sheets are required by the field topology. Hence it is topological dissipation that is primarily responsible for heating tenuous coronal gases in astronomical settings, whether the fluid displacements of the field are continuous or discontinuous.
Scaling laws and bulk-boundary decoupling in heat flow.
del Pozo, Jesús J; Garrido, Pedro L; Hurtado, Pablo I
2015-03-01
When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier's law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier's law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal anomaly of the heat conductivity predicted for hard disks.
Oscillations in a half-empty bottle
NASA Astrophysics Data System (ADS)
Bourges, Andréane; Chardac, Amélie; Caussarieu, Aude; Plihon, Nicolas; Taberlet, Nicolas
2018-02-01
When a half-empty bottle of water is pushed to roll on a flat surface, the oscillations of the fluid inside the bottle induce an overall jerky motion. These velocity fluctuations of the bottle are studied through simple laboratory experiments accessible to undergraduate students and can help them to grasp fundamental concepts in mechanics and hydrodynamics. We first demonstrate through an astute experiment that the rotation of the fluid and the bottle is decoupled. The equations of motion are then derived using a mechanical approach, while the hydrodynamics of the fluid motion is explained. Finally, the theory is tested against two benchmark experiments.
NASA Astrophysics Data System (ADS)
Il'ichev, A. T.; Savin, A. S.
2017-12-01
We consider a planar evolution problem for perturbations of the ice cover by a dipole starting its uniform rectilinear horizontal motion in a column of an initially stationary fluid. Using asymptotic Fourier analysis, we show that at supercritical velocities, waves of two types form on the water-ice interface. We describe the process of establishing these waves during the dipole motion. We assume that the fluid is ideal and incompressible and its motion is potential. The ice cover is modeled by the Kirchhoff-Love plate.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
NASA Astrophysics Data System (ADS)
Kou, Jisheng; Sun, Shuyu
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Jisheng; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from themore » microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.« less
NASA Astrophysics Data System (ADS)
Shogin, Dmitry; Amund Amundsen, Per
2016-10-01
We test the physical relevance of the full and the truncated versions of the Israel-Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.
Reduction of vortex induced forces and motion through surface roughness control
Bernitsas, Michael M; Raghavan, Kamaldev
2014-04-01
Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.
NASA Technical Reports Server (NTRS)
Gonda, Steve R. (Inventor); Tsao, Yow-Min D. (Inventor); Lee, Wenshan (Inventor)
2006-01-01
A gas-liquid separator uses a helical passageway to impart a spiral motion to a fluid passing therethrough. The centrifugal force generated by the spiraling motion urges the liquid component of the fluid radially outward which forces the gas component radially inward. The gas component is then separated through a gas-permeable, liquid-impervious membrane and discharged through a central passageway. A filter material captures target substances contained in the fluid.
Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruszkiewicz, Miroslaw S.; Rother, Gernot; Wesolowski, David J.
2012-02-27
The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 °C and 97 °C) and supercritical carbon dioxide (between 32 C and 50°C) saturating hydrophobic silica aerogel (0.2 g/cm 3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercriticalmore » CO 2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.« less
NASA Technical Reports Server (NTRS)
Hung, R. J.
1994-01-01
The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.
Influence of mixing conditions on the rheological properties and structure of capillary suspensions
Bossler, Frank; Weyrauch, Lydia; Schmidt, Robert; Koos, Erin
2017-01-01
The rheological properties of a suspension can be dramatically altered by adding a small amount of a secondary fluid that is immiscible with the bulk liquid. These capillary suspensions exist either in the pendular state where the secondary fluid preferentially wets the particles or the capillary state where the bulk fluid is preferentially wetting. The yield stress, as well as storage and loss moduli, depends on the size and distribution of secondary phase droplets created during sample preparation. Enhanced droplet breakup leads to stronger sample structures. In capillary state systems, this can be achieved by increasing the mixing speed and time of turbulent mixing using a dissolver stirrer. In the pendular state, increased mixing speed also leads to better droplet breakup, but spherical agglomeration is favored at longer times decreasing the yield stress. Additional mixing with a ball mill is shown to be beneficial to sample strength. The influence of viscosity variance between the bulk and second fluid on the droplet breakup is excluded by performing experiments with viscosity-matched fluids. These experiments show that the capillary state competes with the formation of Pickering emulsion droplets and is often more difficult to achieve than the pendular state. PMID:28194044
Experimental Exploration of Scale Effects and Factors Controlling Bed Load Sediment Entrainment
NASA Astrophysics Data System (ADS)
Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.
2015-12-01
Detailed measurements of individual sand grains moving on a streambed allow us to obtain a deeper understanding of the characteristics of incipient motion and evaluate spatial and temporal trends in particle entrainment. We use bed load particle motions measured from high-speed imaging (250 Hz) of uniform, coarse grained sand from two flume experiments, which have different mean fluid velocities near the bed. Particle tracking reveals more than 6,000 entrainment events in 5 seconds (Run 1) and over 5,000 events in 2 seconds (Run 2). We manually track particles, at sub-pixel resolution, from entrainment to either disentrainment or until the particle leaves the frame. Within these experiments we find that over 90% of all initial motions contain a cross-stream component of motion where approximately a third of the motions may be cross-stream dominated, and furthermore, up to 7% of the motions may be negative (i.e. move backwards). We propose that the variability in the direction of initial motion is, in part, a product of the bed topography, where we find that with increasing mean fluid velocity, the initial motion of the sand particles are less sensitive to bed topography, and are more likely to be dominated by the fluid. The high resolution of this data set, containing positions of particles measured start-to-stop, allows us to calculate the characteristic timescale required for a particle to become streamwise, or fluid, dominated in these systems. We also evaluate these data to further show whether the nature of entrainment is a memoryless, uncorrelated process, a correlated process related to the number of particles already in motion (i.e., possibly reflecting collective entrainment), or some combination of the two. This work suggests that the probability of entrainment depends on physical factors such as bed microtopography and the magnitude of the fluid velocity, in addition to varying with space and time scales.
Study of the long-time dynamics of a viscous vortex sheet with a fully adaptive nonstiff method
NASA Astrophysics Data System (ADS)
Ceniceros, Hector D.; Roma, Alexandre M.
2004-12-01
A numerical investigation of the long-time dynamics of two immiscible two-dimensional fluids shearing past one another is presented. The fluids are incompressible and the interface between the bulk phases is subjected to surface tension. The simple case of density and viscosity matched fluids is considered. The two-dimensional Navier-Stokes equations are solved numerically with a fully adaptive nonstiff strategy based on the immersed boundary method. Dynamically adaptive mesh refinements are used to cover at all times the separately tracked fluid interface at the finest grid level. In addition, by combining adaptive front tracking, in the form of continuous interface marker equidistribution, with a predictor-corrector discretization an efficient method is introduced to successfully treat the well-known numerical difficulties associated with surface tension. The resulting numerical method can be used to compute stably and with high resolution the flow for wide-ranging Weber numbers but this study focuses on the computationally challenging cases for which elongated fingering and interface roll-up are observed. To assess the importance of the viscous and vortical effects in the interfacial dynamics the full viscous flow simulations are compared with inviscid counterparts computed with a state-of-the-art boundary integral method. In the examined cases of roll-up, it is found that in contrast to the inviscid flow in which the interface undergoes a topological reconfiguration, the viscous interface remarkably escapes self-intersection and rich long-time dynamics due to separation, transport, and diffusion of vorticity is observed. An even more striking motion occurs at an intermediate Weber number for which elongated interpenetrating fingers of fluid develop. In this case, it is found that the Kelvin-Helmholtz instability weakens due to shedding of vorticity and unlike the inviscid counterpart in which there is indefinite finger growth the viscous interface is pulled back by surface tension. As the interface recedes, thin necks connecting pockets of fluid with the rest of the fingers form. Narrow jets are observed at the necking regions but the vorticity there ultimately appears to be insufficient to drain all the fluid and cause reconnection. However, at another point, two disparate portions of the interface come in close proximity as the interface continues to contract. Large curvature points and an intense concentration of vorticity are observed in this region and then the motion is abruptly terminated by the collapse of the interface.
Effects of CO2 injection and Kerogen Maturation on Low-Field Nuclear Magnetic Resonance Response
NASA Astrophysics Data System (ADS)
Prasad, M.; Livo, K.
2017-12-01
Low-field Nuclear Magnetic Resonance (NMR) is commonly used in petrophysical analysis of petroleum reservoir rocks. NMR experiments record the relaxation and polarization of in-situ hydrogen protons present in gaseous phases such as free-gas intervals and solution gas fluids, bulk fluid phases such as oil and aquifer intervals, and immovable fractions of kerogen and bitumen. Analysis of NMR relaxation spectra is performed to record how fluid composition, maturity, and viscosity change NMR experimental results. We present T1-T2 maps as thermal maturity of a water-saturated, sub-mature Woodford shale is increased at temperatures from 125 to 400 degrees Celsius. Experiments with applied fluid pressure in paraffinic mineral oil and DI water with varying fluid pH have been performed to mimic reservoir conditions in analysis of the relaxation of bulk fluid phases. We have recorded NMR spectra, T1-T2 maps, and fluid diffusion coefficients using a low-field (2 MHz) MagritekTM NMR. CO2 was injected at a pressure of 900 psi in an in house developed NMR pressure vessel made of torlon plastic. Observable 2D NMR shifts in immature kerogen formations as thermal maturity is increased show generation of lighter oils with increased maturity. CO2 injection leads to a decrease in bulk fluid relaxation time that is attributed to viscosity modification with gas presence. pH variation with increased CO2 presence were shown to not effect NMR spectra. From this, fluid properties have been shown to greatly affect NMR readings and must be taken into account for more accurate NMR reservoir characterization.
Swimming by reciprocal motion at low Reynolds number
Qiu, Tian; Lee, Tung-Chun; Mark, Andrew G.; Morozov, Konstantin I.; Münster, Raphael; Mierka, Otto; Turek, Stefan; Leshansky, Alexander M.; Fischer, Peer
2014-01-01
Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell’s scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric ‘micro-scallop’, a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids. PMID:25369018
Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.
Chagnaud, Boris P; Brücker, Christoph; Hofmann, Michael H; Bleckmann, Horst
2008-04-23
If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to flow fluctuations. We show by means of particle image velocimetry that, if a flow contains fluctuations, these fluctuations propagate with the flow. A cross-correlation of water motion measured at an upstream point with that at a downstream point can then provide information about flow velocity and flow direction. In this study, we recorded from pairs of primary lateral line afferents while a fish was exposed to either bulk water flow, or to the water motion caused by a moving object. We confirm that lateral line afferents responded to the flow fluctuations and not to the DC component of the flow, and that responses of many fiber pairs were highly correlated, if they were time-shifted to correct for gross flow velocity and gross flow direction. To prove that a cross-correlation mechanism can be used to retrieve the information about gross flow velocity and direction, we measured the flow-induced bending motions of two flexible micropillars separated in a downstream direction. A cross-correlation of the bending motions of these micropillars did indeed produce an accurate estimate of the velocity vector along the direction of the micropillars.
Sloshing dynamics on rotating helium dewar tank
NASA Technical Reports Server (NTRS)
Hung, R. J.
1993-01-01
The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics were based on the non-inertia frame spacecraft bound coordinate, and solve time dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers were derived. Results were widely published in the open journals.
Numerical studies of the surface tension effect of cryogenic liquid helium
NASA Technical Reports Server (NTRS)
Hung, R. J.
1994-01-01
The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose of performing scientific observation during the normal spacecraft operation is investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics has been based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers, have been derived.
Catalytically induced electrokinetics for motors and micropumps.
Paxton, Walter F; Baker, Paul T; Kline, Timothy R; Wang, Yang; Mallouk, Thomas E; Sen, Ayusman
2006-11-22
We have explored the role of electrokinetics in the spontaneous motion of platinum-gold nanorods suspended in hydrogen peroxide (H2O2) solutions that may arise from the bimetallic electrochemical decomposition of H2O2. The electrochemical decomposition pathway was confirmed by measuring the steady-state short-circuit current between platinum and gold interdigitated microelectrodes (IMEs) in the presence of H2O2. The resulting ion flux from platinum to gold implies an electric field in the surrounding solution that can be estimated from Ohm's Law. This catalytically generated electric field could in principle bring about electrokinetic effects that scale with the Helmholtz-Smoluchowski equation. Accordingly, we observed a linear relationship between bimetallic rod speed and the resistivity of the bulk solution. Previous observations relating a decrease in speed to an increase in ethanol concentration can be explained in terms of a decrease in current density caused by the presence of ethanol. Furthermore, we found that the catalytically generated electric field in the solution near a Pt/Au IME in the presence of H2O2 is capable of inducing electroosmotic fluid flow that can be switched on and off externally. We demonstrate that the velocity of the fluid flow in the plane of the IME is a function of the electric field, whether catalytically generated or applied from an external current source. Our findings indicate that the motion of PtAu nanorods in H2O2 is primarily due to a catalytically induced electrokinetic phenomenon and that other mechanisms, such as those related to interfacial tension gradients, play at best a minor role.
Translational and rotational diffusion of Janus nanoparticles at liquid interfaces
NASA Astrophysics Data System (ADS)
Rezvantalab, Hossein; Shojaei-Zadeh, Shahab
2014-11-01
We use molecular dynamics simulations to understand the thermal motion of nanometer-sized Janus particles at the interface between two immiscible fluids. We consider spherical nanoparticles composed of two sides with different affinity to fluid phases, and evaluate their dynamics and changes in fluid structure as a function of particle size and surface chemistry. We show that as the amphiphilicity increases upon enhancing the wetting of each side with its favored fluid, the in-plane diffusivity at the interface becomes slower. Detail analysis of the fluid structure reveals that this is mainly due to formation of a denser adsorption layer around more amphiphilic particles, which leads to increased drag acting against nanoparticle motion. Similarly, the rotational thermal motion of Janus particles is reduced compared to their homogeneous counterparts as a result of the higher resistance of neighboring fluid species against rotation. We also incorporate the influence of fluid density and surface tension on the interfacial dynamics of such Janus nanoparticles. Our findings may have implications in understanding the adsorption mechanism of drugs and protein molecules with anisotropic surface properties to biological interfaces including cell membranes.
Physiological and behavioral effects of tilt-induced body fluid shifts
NASA Technical Reports Server (NTRS)
Parker, D. E.; Tjernstrom, O.; Ivarsson, A.; Gulledge, W. L.; Poston, R. L.
1983-01-01
This paper addresses the 'fluid shift theory' of space motion sickness. The primary purpose of the research was the development of procedures to assess individual differences in response to rostral body fluid shifts on earth. Experiment I examined inner ear fluid pressure changes during head-down tilt in intact human beings. Tilt produced reliable changes. Differences among subjects and between ears within the same subject were observed. Experiment II examined auditory threshold changes during tilt. Tilt elicited increased auditory thresholds, suggesting that sensory depression may result from increased inner ear fluid pressure. Additional observations on rotation magnitude estimation during head-down tilt, which indicate that rostral fluid shifts may depress semicircular canal activity, are briefly described. The results of this research suggest that the inner ear pressure and auditory threshold shift procedures could be used to assess individual differences among astronauts prior to space flight. Results from the terrestrial observations could be related to reported incidence/severity of motion sickness in space and used to evaluate the fluid shift theory of space motion sickness.
Self-propulsion of a planar electric or magnetic microbot immersed in a polar viscous fluid
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
2011-05-01
A planar sheet immersed in an electrically polar liquid like water can propel itself by means of a plane wave charge density propagating in the sheet. The corresponding running electric wave polarizes the fluid and causes an electrical torque density to act on the fluid. The sheet is convected by the fluid motion resulting from the conversion of rotational particle motion, generated by the torque density, into translational fluid motion by the mechanism of friction and spin diffusion. Similarly, a planar sheet immersed in a magnetic ferrofluid can propel itself by means of a plane wave current density in the sheet and the torque density acting on the fluid corresponding to the running wave magnetic field and magnetization. The effect is studied on the basis of the micropolar fluid equations of motion and Maxwell’s equations of electrostatics or magnetostatics, respectively. An analytic expression is derived for the velocity of the sheet by perturbation theory to second order in powers of the amplitude of the driving charge or current density. Under the assumption that the equilibrium magnetic equation of state may be used in linearized form and that higher harmonics than the first may be neglected, a set of self-consistent integral equations is derived which can be solved numerically by iteration. In typical situations the second-order perturbation theory turns out to be quite accurate.
NASA Astrophysics Data System (ADS)
Nastula, J.; Kolaczek, B.; Salstein, D. A.
2008-04-01
Understanding changes in the global balance of the Earths angular momentum due to the mass redistribution of geophysical fluids is needed to explain the observed polar motion. The impact of continental hydrologic signals, from land water, snow, and ice, on polar motion excitation (hydrological angular momentum-HAM), is still inadequately known. Although estimates of HAM have been made from several models of global hydrology based upon the observed distribution of surface water, snow, and soil moisture, the relatively sparse observation network and the presence of errors in the data and the geophysical fluid models preclude a full understanding of the HAM influence on polar motion variations. Recently the GRACE mission monitoring Earths time variable gravity field has allowed us to determine the mass term of polar motion excitation functions and compare them with the mass term derivable as a residual from the geodetic excitation functions and geophysical fluid motion terms on seasonal time scales. Differences between these mass terms in the years 2004 - 2005.5 are still on the order of 20 mas. Besides the overall mass excitation of polar motion comparisons with GRACE (RL04-release), we also intercompare the non-atmospheric, non-oceanic signals in the mass term of geodetic polar motion excitation with hydrological excitation of polar motion.
Turning on a dime: Asymmetric vortex formation in hummingbird maneuvering flight
NASA Astrophysics Data System (ADS)
Ren, Yan; Dong, Haibo; Deng, Xinyan; Tobalske, Bret
2016-09-01
This paper is associated with a video winner of a 2015 APS/DFD Gallery of Fluid Motion Award. The original video is available from the Gallery of Fluid Motion, http://dx.doi.org/10.1103/APS.DFD.2015.GFM.V0088
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denicol, G. S.; Koide, T.; Rischke, D. H.
2010-10-15
We rederive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast with the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for the dissipative currents, we directly use the latter's definition. Although the equations of motion obtained via the two approaches are formally identical, the coefficients are different. We show that, for the one-dimensional scaling expansion, our method is in better agreement with the solution obtained from the Boltzmann equation.
Direct observation of cerebrospinal fluid bulk flow in the brain
NASA Astrophysics Data System (ADS)
Mestre, Humberto; Tithof, Jeffrey; Thomas, John; Kelley, Douglas; Nedergaard, Maiken
2017-11-01
Cerebrospinal fluid (CSF) serves a vital role in normal brain function. Its adequate flow and exchange with interstitial fluid through perivascular spaces (PVS) has been shown to be important in the clearance of toxic metabolites like amyloid- β, and its disturbance can cause severe neurological diseases. It has long been suspected that bulk flow may transport CSF, but limitations in imaging techniques have prevented direct observation of such flows in the PVS. In this talk, we describe a novel approach using high speed two photon laser scanning microscopy which has allowed for the first ever direct observation of CSF flow in the PVS of a mouse brain. By performing particle tracking velocimetry, we quantify the CSF bulk flow speeds and PVS geometry. This technique enables future studies of CSF flow disturbances on a new scale and will pave the way for evaluating the role of these fluxes in neurodegenerative disease. R01NS100366 (to M.N.).
Hydraulic modeling of unsteady debris-flow surges with solid-fluid interactions
Iverson, Richard M.
1997-01-01
Interactions of solid and fluid constituents produce the unique style of motion that typifies debris flows. To simulate this motion, a new hydraulic model represents debris flows as deforming masses of granular solids variably liquefied by viscous pore fluid. The momentum equation of the model describes how internal and boundary forces change as coarse-grained surge heads dominated by grain-contact friction grade into muddy debris-flow bodies more strongly influenced by fluid viscosity and pressure. Scaling analysis reveals that pore-pressure variations can cause flow resistance in surge heads to surpass that in debris-flow bodies by orders of magnitude. Numerical solutions of the coupled momentum and continuity equations provide good predictions of unsteady, nonuniform motion of experimental debris flows from initiation through deposition.
Dynamics of a spherical particle in an acoustic field: A multiscale approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jin-Han, E-mail: J.H.Xie@ed.ac.uk; Vanneste, Jacques
2014-10-15
A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, andmore » viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.« less
Effect of interface deformability on thermocapillary motion of a drop in a tube
NASA Astrophysics Data System (ADS)
Mahesri, S.; Haj-Hariri, H.; Borhan, A.
2014-03-01
The effect of an externally imposed axial temperature gradient on the mobility and deformation of a drop in an otherwise stagnant liquid within an insulated cylindrical tube is investigated. In the absence of bulk transport of momentum and energy, the boundary integral technique is used to obtain the flow and temperature fields inside and outside the deformable drop. The steady drop shapes and the corresponding migration velocities are examined over a wide range of the dimensionless parameters. The steady drop shape is nearly spherical for dimensionless drop sizes <0.5, but becomes slightly elongated in the axial direction for drop sizes comparable to tube diameter. The adverse effect of drop deformation on the effective temperature gradient driving the motion is slightly more pronounced than its favorable effect of reducing drag, thereby leading to a slight reduction in drop mobility with increasing drop deformation. Increasing the viscosity ratio reduces drop deformation and leads to a slight enhancement in the relative mobility (with respect to free thermocapillary motion) of confined drops. When the drop fluid has a lower thermal conductivity than the exterior phase, the presence of the thermally-insulating wall increases the thermal driving force for drop motion (compared to that for the same drop in unbounded domain) by causing more pronounced bending of the isotherms toward the drop. However, the favorable thermal effect of the confining wall is overwhelmed by its retarding hydrodynamic effect, causing the confined drop to always move slower than its unbounded counterpart regardless of the value of the thermal conductivity ratio.
Flames in vortices & tulip-flame inversion
NASA Astrophysics Data System (ADS)
Dold, J. W.
This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.
Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth
NASA Astrophysics Data System (ADS)
Peters, D.; John, T.; Scambelluri, M.; Pettke, D. T.
2016-12-01
The HP metamorphic serpentinised peridotites of Erro-Tobbio (ET, Italy) offer a unique possibility to study fluid-rock interactions in subducted ultrabasic rocks that reached 550-650°C at 2-2.5 GPa. They contain metamorphic olivine + Ti-clinohumite in both the serpentinite matrix and veins cutting the rock foliation, interpreted to represent partial serpentinite dehydration fluid pathways [1,2] being variably retrogressed as e.g., indicated by chrysotile/lizardite mesh textures in vein olivine in strongly altered samples. This study aims to constraining the origin of fluid(s) and the scale(s) of fluid-rock interaction based on major to trace element systematics employing detailed bulk rock (nanoparticulate pressed powder pellet LA-ICP-MS [3] and ion chromatography / liquid ICP-MS analysis), and in situ mineral analysis (work in progress). Bulk data show moderate fluid-mobile element (FME) enrichment for Cs, Rb, Ba, Pb, As, and Sb (up to 100 times primitive mantle (PM)), W (1000 PM), and B (10000 PM). Alkali over U ratios of compiled serpentinite data (n ˜ 620) reveal distinctive global FME enrichment trends for MOR vs. forearc (FA) serpentinisation. ET serpentinites fall into the latter, indicating both sediment-equilibrated fluids and the preservation of characteristic FME enrichment patterns in HP serpentinites. Petrography reveals a multiphase evolution of the HP veins including retrograde serpentinisation, whereas serpentinite hosts have remained largely unaffected by retrogression. Comparison of vein vs. wall rock bulk data indicate vein-forming fluids in equilibrium with wall rocks, however, without evidence for external fluid ingress. The preservation of multiple fluid-rock interaction episodes and the lack of external fluid ingress in the ET HP serpentinites indicate near-closed system behaviour throughout subduction and imprint of characteristic fluid signatures onto the mantle. [1] Scambelluri et al. (1995) Geology, 23, 459-462. [2] John et al. (2011) Earth Planet Sci Lett 308, 65-76. [3] Peters and Pettke (2016) GGR, DOI: 10.1111/ggr.12125.
Dynamic Behavior of Spicules Inferred from Perpendicular Velocity Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rahul; Verth, Gary; Erdélyi, Robertus
2017-05-10
Understanding the dynamic behavior of spicules, e.g., in terms of magnetohydrodynamic (MHD) wave mode(s), is key to unveiling their role in energy and mass transfer from the photosphere to corona. The transverse, torsional, and field-aligned motions of spicules have previously been observed in imaging spectroscopy and analyzed separately for embedded wave-mode identification. Similarities in the Doppler signatures of spicular structures for both kink and torsional Alfvén wave modes have led to the misinterpretation of the dominant wave mode in these structures and is a subject of debate. Here, we aim to combine line- of-sight (LOS) and plane-of-sky (POS) velocity componentsmore » using the high spatial/temporal resolution H α imaging-spectroscopy data from the CRisp Imaging SpectroPolarimeter based at the Swedish Solar Telescope to achieve better insight into the underlying nature of these motions as a whole. The resultant three-dimensional velocity vectors and the other derived quantities (e.g., magnetic pressure perturbations) are used to identify the MHD wave mode(s) responsible for the observed spicule motion. We find a number of independent examples where the bulk transverse motion of the spicule is dominant either in the POS or along the LOS. It is shown that the counterstreaming action of the displaced external plasma due to spicular bulk transverse motion has a similar Doppler profile to that of the m = 0 torsional Alfvén wave when this motion is predominantly perpendicular to the LOS. Furthermore, the inferred magnetic pressure perturbations support the kink wave interpretation of observed spicular bulk transverse motion rather than any purely incompressible MHD wave mode, e.g., the m = 0 torsional Alfvén wave.« less
Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder
NASA Astrophysics Data System (ADS)
Subbotin, Stanislav; Dyakova, Veronika
2018-05-01
The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.
Nonlocal dynamics of dissipative phononic fluids
NASA Astrophysics Data System (ADS)
Nemati, Navid; Lee, Yoonkyung E.; Lafarge, Denis; Duclos, Aroune; Fang, Nicholas
2017-06-01
We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal made by periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such as air. The description is based on a nonlocal theory of sound propagation in stationary random fluid/rigid media that was proposed by Lafarge and Nemati [Wave Motion 50, 1016 (2013), 10.1016/j.wavemoti.2013.04.007]. This scheme arises from a deep analogy with electromagnetism and a set of physics-based postulates including, particularly, the action-response procedures, whereby the effective density and bulk modulus are determined. Here, we revisit this approach, and clarify further its founding physical principles through presenting it in a unified formulation together with the two-scale asymptotic homogenization theory that is interpreted as the local limit. Strong evidence is provided to show that the validity of the principles and postulates within the nonlocal theory extends to high-frequency bands, well beyond the long-wavelength regime. In particular, we demonstrate that up to the third Brillouin zone including the Bragg scattering, the complex and dispersive phase velocity of the least-attenuated wave in the phononic crystal which is generated by our nonlocal scheme agrees exactly with that reproduced by a direct approach based on the Bloch theorem and multiple scattering method. In high frequencies, the effective wave and its associated parameters are analyzed by treating the phononic crystal as a random medium.
Effective surface Debye temperature for NiMnSb(100) epitaxial films
NASA Astrophysics Data System (ADS)
Borca, C. N.; Komesu, Takashi; Jeong, Hae-kyung; Dowben, P. A.; Ristoiu, D.; Hordequin, Ch.; Pierre, J.; Nozières, J. P.
2000-07-01
The surface Debye temperature of the NiMnSb (100) epitaxial films has been obtained using low energy electron diffraction, inverse photoemission, and core-level photoemission. The normal dynamic motion of the (100) surface results in a value for the effective surface Debye temperature of 145±13 K. This is far smaller than the bulk Debye temperature of 312±5 K obtained from wave vector dependent inelastic neutron scattering. The large difference between these measures of surface and bulk dynamic motion indicates a soft and compositionally different (100) surface.
Motion of fluids with very little viscosity
NASA Technical Reports Server (NTRS)
Prandtl, L
1928-01-01
I have set myself the task to investigate systematically the laws of motion of a fluid whose viscosity is assumed to be very small. The viscosity is supposed to be so small that it can be disregarded wherever there are no great velocity differences nor accumulative effects.
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.; Jones, William Prichard; Huerta, Robert H.
1961-01-01
Reported here are the results of a systematic study of a model of the direct-current electromagnetic pump. Of particular interest is the motion imparted to the electrically conducting fluid in the rectangular duct by the body forces that result from applied electric and magnetic fields. The purpose of the investigation is to associate the observed fluid motion with the characteristics of the electric and magnetic fields which cause them. The experiments were carried out with electromagnetic fields that moved a stream of copper sulphate solution through a clear plastic channel. Ink filaments injected into the stream ahead of the region where the fields were applied identify the motion of the fluid elements as they passed through the test channel. Several magnetic field configurations were employed with a two-dimensional electric current distribution in order to study and identify the magnitude of some of the effects on the fluid motion brought about by nonuniformities in the electromagnetic fields. A theoretical analysis was used to guide and evaluate the identification of the several fluid motions observed. The agreement of the experimental data with the theoretical predictions is satisfactory. It is found that sizable variations in the velocity profile and pressure head of the output stream are produced by the shape of the electric and magnetic fields.
Fluid-structure coupling for an oscillating hydrofoil
NASA Astrophysics Data System (ADS)
Münch, C.; Ausoni, P.; Braun, O.; Farhat, M.; Avellan, F.
2010-08-01
Fluid-structure investigations in hydraulic machines using coupled simulations are particularly time-consuming. In this study, an alternative method is presented that linearizes the hydrodynamic load of a rigid, oscillating hydrofoil. The hydrofoil, which is surrounded by incompressible, turbulent flow, is modeled with forced and free pitching motions, where the mean incidence angle is 0° with a maximum angle amplitude of 2°. Unsteady simulations of the flow, performed with ANSYS CFX, are presented and validated with experiments which were carried out in the EPFL High-Speed Cavitation Tunnel. First, forced motion is investigated for reduced frequencies ranging from 0.02 to 100. The hydrodynamic load is modeled as a simple combination of inertia, damping and stiffness effects. As expected, the potential flow analysis showed the added moment of inertia is constant, while the fluid damping and the fluid stiffness coefficients depend on the reduced frequency of the oscillation motion. Behavioral patterns were observed and two cases were identified depending on if vortices did or did not develop in the hydrofoil wake. Using the coefficients identified in the forced motion case, the time history of the profile incidence is then predicted analytically for the free motion case and excellent agreement is found for the results from coupled fluid-structure simulations. The model is validated and may be extended to more complex cases, such as blade grids in hydraulic machinery.
Modeling moving systems with RELAP5-3D
Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; ...
2015-12-04
RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less
Left ventricular filling under elevated left atrial pressure
NASA Astrophysics Data System (ADS)
Gaddam, Manikantam; Samaee, Milad; Santhanakrishnan, Arvind
2017-11-01
Left atrial pressure (LAP) is elevated in diastolic dysfunction, where left ventricular (LV) filling is impaired due to increase in ventricular stiffness. The impact of increasing LAP and LV stiffness on intraventricular filling hemodynamics remains unclear. We conducted particle image velocimetry and hemodynamics measurements in a left heart simulator (LHS) under increasing LAP and LV stiffness at a heart rate of 70 bpm. The LHS consisted of a flexible-walled LV physical model fitted within a fluid-filled chamber. LV wall motion was generated by a piston pump that imparted pressure fluctuations in the chamber. Resistance and compliance elements in the flow loop were adjusted to obtain bulk physiological hemodynamics in the least stiff LV model. Two LV models of increasing stiffness were subsequently tested under unchanged loop settings. LAP was varied between 5-20 mm Hg for each LV model, by adjusting fluid level in a reservoir upstream of the LV. For constant LV stiffness, increasing LAP lowered cardiac output (CO), while ejection fraction (EF) and E/A ratio were increased. For constant LAP, increasing LV stiffness lowered CO and EF, and increased E/A ratio. The implications of these altered hemodynamics on intraventricular filling vortex characteristics will be presented.
Nanoscale viscoelasticity of extracellular matrix proteins in soft tissues: A multiscale approach.
Miri, Amir K; Heris, Hossein K; Mongeau, Luc; Javid, Farhad
2014-02-01
It is hypothesized that the bulk viscoelasticity of soft tissues is determined by two length-scale-dependent mechanisms: the time-dependent response of the extracellular matrix (ECM) proteins at the nanometer scale and the biophysical interactions between the ECM solid structure and interstitial fluid at the micrometer scale. The latter is governed by poroelasticity theory assuming free motion of the interstitial fluid within the porous ECM structure. In a recent study (Heris, H.K., Miri, A.K., Tripathy, U., Barthelat, F., Mongeau, L., 2013. J. Mech. Behav. Biomed. Mater.), atomic force microscopy was used to measure the response of porcine vocal folds to a creep loading and a 50-nm sinusoidal oscillation. A constitutive model was calibrated and verified using a finite element model to accurately predict the nanoscale viscoelastic moduli of ECM. A generally good correlation was obtained between the predicted variation of the viscoelastic moduli with depth and that of hyaluronic acids in vocal fold tissue. We conclude that hyaluronic acids may regulate vocal fold viscoelasticity. The proposed methodology offers a characterization tool for biomaterials used in vocal fold augmentations. © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hilpert, Markus; Rasmuson, Anna; Johnson, William P.
2017-07-01
Colloid transport in saturated porous media is significantly influenced by colloidal interactions with grain surfaces. Near-surface fluid domain colloids experience relatively low fluid drag and relatively strong colloidal forces that slow their downgradient translation relative to colloids in bulk fluid. Near-surface fluid domain colloids may reenter into the bulk fluid via diffusion (nanoparticles) or expulsion at rear flow stagnation zones, they may immobilize (attach) via primary minimum interactions, or they may move along a grain-to-grain contact to the near-surface fluid domain of an adjacent grain. We introduce a simple model that accounts for all possible permutations of mass transfer within a dual pore and grain network. The primary phenomena thereby represented in the model are mass transfer of colloids between the bulk and near-surface fluid domains and immobilization. Colloid movement is described by a Markov chain, i.e., a sequence of trials in a 1-D network of unit cells, which contain a pore and a grain. Using combinatorial analysis, which utilizes the binomial coefficient, we derive the residence time distribution, i.e., an inventory of the discrete colloid travel times through the network and of their probabilities to occur. To parameterize the network model, we performed mechanistic pore-scale simulations in a single unit cell that determined the likelihoods and timescales associated with the above colloid mass transfer processes. We found that intergrain transport of colloids in the near-surface fluid domain can cause extended tailing, which has traditionally been attributed to hydrodynamic dispersion emanating from flow tortuosity of solute trajectories.
NASA Technical Reports Server (NTRS)
Childs, Dara W.
1993-01-01
The bulk-flow analysis results for this contract are incorporated in the following publications: 'Fluid-Structure Interaction Forces at Pump-Impeller Shroud Surfaces for Axial Vibration Analysis'; 'Centrifugal Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing'; 'Influence of Impeller Shroud Forces on Pump Rotordynamics'; 'Pressure Oscillation in the Leakage Annulus Between a Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure Disturbances'; and 'Compressibility Effects on Rotor Forces in the Leakage Path Between a Shrouded Pump Impeller and Its Housing'. These publications are summarized and included in this final report. Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are reported separately.
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Bierschenk, T. R.; Juhlke, T. J.; Kawa, H.; Lagow, R. J.
1993-01-01
A series of perfluoropolyalkylether (PFPAE) fluids was synthesized by direct fluorination. Viscosity-temperature properties, oxidation stabilities, oxidation-corrosion properties, bulk modulus, lubricity, surface tension and density were measured. It was shown that as the carbon to oxygen ratio in the polymer repeating unit decreases, the viscometric properties improve, the fluids may become poorer boundary lubricants, the bulk modulus increases, the surface tension increases and the fluid density increases. The presence of difluoromethylene oxide units in the polymer does not significantly lower the oxidation and oxidation-corrosion stabilities as long as the difluoromethylene oxide units are separated by other units.
The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid
NASA Technical Reports Server (NTRS)
Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John
1988-01-01
The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.
NASA Astrophysics Data System (ADS)
Chen, Jincai; Jin, Guodong; Zhang, Jian
2016-03-01
The rotational motion and orientational distribution of ellipsoidal particles in turbulent flows are of significance in environmental and engineering applications. Whereas the translational motion of an ellipsoidal particle is controlled by the turbulent motions at large scales, its rotational motion is determined by the fluid velocity gradient tensor at small scales, which raises a challenge when predicting the rotational dispersion of ellipsoidal particles using large eddy simulation (LES) method due to the lack of subgrid scale (SGS) fluid motions. We report the effects of the SGS fluid motions on the orientational and rotational statistics, such as the alignment between the long axis of ellipsoidal particles and the vorticity, the mean rotational energy at various aspect ratios against those obtained with direct numerical simulation (DNS) and filtered DNS. The performances of a stochastic differential equation (SDE) model for the SGS velocity gradient seen by the particles and the approximate deconvolution method (ADM) for LES are investigated. It is found that the missing SGS fluid motions in LES flow fields have significant effects on the rotational statistics of ellipsoidal particles. Alignment between the particles and the vorticity is weakened; and the rotational energy of the particles is reduced in LES. The SGS-SDE model leads to a large error in predicting the alignment between the particles and the vorticity and over-predicts the rotational energy of rod-like particles. The ADM significantly improves the rotational energy prediction of particles in LES.
Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors.
Varley, Mark C; Markaki, Athina E; Brooks, Roger A
2017-06-01
Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∼14 mm s -1 producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p < 0.002) or when the chamber was 60% or 100% full (p < 0.01). The fluid flow and scaffold motion experiments show that biaxial rotation would not improve the mass transfer of medium into the scaffold as the second axis of rotation can only transition the scaffold toward oscillatory or orbital motion and, hence, reduce mass transport to the scaffold. The cell culture results confirmed that there was no benefit to the second axis of rotation with no significant difference in cell proliferation either when the scaffolds were free floating or constrained (p > 0.05).
Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors
Varley, Mark C.; Markaki, Athina E.
2017-01-01
Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∼14 mm s−1 producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p < 0.002) or when the chamber was 60% or 100% full (p < 0.01). The fluid flow and scaffold motion experiments show that biaxial rotation would not improve the mass transfer of medium into the scaffold as the second axis of rotation can only transition the scaffold toward oscillatory or orbital motion and, hence, reduce mass transport to the scaffold. The cell culture results confirmed that there was no benefit to the second axis of rotation with no significant difference in cell proliferation either when the scaffolds were free floating or constrained (p > 0.05). PMID:28125920
Determination of Stability and Translation in a Boundary Layer
NASA Technical Reports Server (NTRS)
Crepeau, John; Tobak, Murray
1996-01-01
Reducing the infinite degrees of freedom inherent in fluid motion into a manageable number of modes to analyze fluid motion is presented. The concepts behind the center manifold technique are used. Study of the Blasius boundary layer and a precise description of stability within the flow field are discussed.
ERIC Educational Resources Information Center
Koh, Hwan Cui; Milne, Elizabeth; Dobkins, Karen
2010-01-01
The magnocellular (M) pathway hypothesis proposes that impaired visual motion perception observed in individuals with Autism Spectrum Disorders (ASD) might be mediated by atypical functioning of the subcortical M pathway, as this pathway provides the bulk of visual input to cortical motion detectors. To test this hypothesis, we measured luminance…
Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans
NASA Astrophysics Data System (ADS)
Ulrich, Xialing
Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings of some birds and insects. This doctoral thesis presents the study of sinusoidal locomotion of the nematode C. elegans in experiments and the application of the state-space airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB program has been developed to analyze the video records of C. elegans' movement in different fluids, including Newtonian and non-Newtonian fluids. The experimental and numerical studies of swimming C. elegans has revealed three conclusions. First, though the amplitude and wavelength are varying with time, the motion of swimming C. elegans can still be viewed as sinusoidal locomotion with slips. The average normalized wavelength is a conserved character of the locomotion for both Newtonian and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the moving speed of C. elegans, while fluid elasticity affects the moving speed but not the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of resistive coefficients becomes smaller. Inspired by the motion of C. elegans and other animals performing sinusoidal motion, we investigated the sinusoidal motion of a thin flexible wing in theory. Given the equation of the motion, we have derived the closed forms of propulsive force, lift and other generalized forces applying on the wing. We also calculated the power required to perform the motion, the power lost due to the shed vortices and the propulsive efficiency. These forces and powers are given as functions of reduced frequency k, dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results show that a positive, time-averaged propulsive force is produced for all k>k0=pi/ z. At k=k0, which implies the moment when the moving speed of the wing is the same as the wave speed of its undulation, the motion reaches a steady state with all forces being zero. If there were no shed vorticity effects, the propulsive force would be zero at z = 0.569 and z = 1.3 for all k, and for a fixed k the wing would gain the optimal propulsive force when z = 0.82. With the effects of shed vorticity, the propulsive efficiency decreases from 1.0 to 0.5 as k goes to infinity, and the propulsive efficiency increases almost in a linear relationship with k0.
Black hole acoustics in the minimal geometric deformation of a de Laval nozzle
NASA Astrophysics Data System (ADS)
da Rocha, Roldão
2017-05-01
The correspondence between sound waves, in a de Laval propelling nozzle, and quasinormal modes emitted by brane-world black holes deformed by a 5D bulk Weyl fluid are here explored and scrutinized. The analysis of sound waves patterns in a de Laval nozzle in the laboratory, reciprocally, is here shown to provide relevant data about the 5D bulk Weyl fluid and its on-brane projection, comprised by the minimal geometrically deformed compact stellar distribution on the brane. Acoustic perturbations of the gas fluid flow in the de Laval nozzle are proved to coincide with the quasinormal modes of black holes solutions deformed by the 5D Weyl fluid, in the geometric deformation procedure. Hence, in a phenomenological Eötvös-Friedmann fluid brane-world model, the realistic shape of a de Laval nozzle is derived and its consequences studied.
An Analysis of Water Line Profiles in Star Formation Regions Observed by SWAS
NASA Technical Reports Server (NTRS)
Ashby, Matthew L. N.; Bergin, Edwin A.; Plume, Rene; Carpenter, John M.; Neufeld, David A.; Chin, Gordon; Erickson, Neal R.; Goldsmith, Paul F.; Harwit, Martin; Howe, J. E.
2000-01-01
We present spectral line profiles for the 557 GHz 1(sub 1,0) yields 1(sub 0,1) ground-state rotational transition of ortho-H2(16)O for 18 galactic star formation regions observed by SWAS. 2 Water is unambiguously detected in every source. The line profiles exhibit a wide variety of shapes, including single-peaked spectra and self-reversed profiles. We interpret these profiles using a Monte Carlo code to model the radiative transport. The observed variations in the line profiles can be explained by variations in the relative strengths of the bulk flow and small-scale turbulent motions within the clouds. Bulk flow (infall, outflow) must be present in some cloud cores, and in certain cases this bulk flow dominates the turbulent motions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, S. G.; Walentosky, M. J.; Messinger, Justin
We present a new computational method for calculating the motion of stars in a dwarf spheroidal galaxy (dSph) that can use either Newtonian gravity or Modified Newtonian Dynamics (MOND). In our model, we explicitly calculate the motion of several thousand stars in a spherically symmetric gravitational potential, and we statistically obtain both the line-of-sight bulk velocity dispersion and dispersion profile. Our results for MOND calculated bulk dispersions for Local Group dSph’s agree well with previous calculations and observations. Our MOND calculated dispersion profiles are compared with the observations of Walker et al. for Milky Way dSph’s, and we present calculatedmore » dispersion profiles for a selection of Andromeda dSph’s.« less
Surfactant effects on contact line alteration of a liquid drop in a capillary tube
NASA Astrophysics Data System (ADS)
Yulianti, K.; Marwati, R.
2018-05-01
In this paper, the effect of an insoluble surfactant on the moving contact line of an interface between two fluids filling a capillary tube is studied. The governing equations are the incompressible Navier-Stokes equations with the couple of Eulerian fluid variables and Lagrangian interfacial markers. In our model, capillary force plays a role in the fluids motion. Here, we propose that besides lowering the interfacial tension which affects the capillary force, the surfactant also decreases the surface tension between fluids and a solid surface. That condition is applied to the unbalanced Young condition at the contact line. The front-tracking method is used to solve numerically the free boundary motion of the interface. Results show that the surfactant has a significant effect on the motion of the contact line.
NASA Astrophysics Data System (ADS)
Güth, Dirk; Schamoni, Markus; Maas, Jürgen
2013-09-01
No-load losses within brakes and clutches based on magnetorheological fluids are unavoidable and represent a major barrier towards their wide-spread commercial adoption. Completely torque free rotation is not yet possible due to persistent fluid contact within the shear gap. In this paper, a novel concept is presented that facilitates the controlled movement of the magnetorheological fluid from an active, torque-transmitting region into an inactive region of the shear gap. This concept enables complete decoupling of the fluid engaging surfaces such that viscous drag torque can be eliminated. In order to achieve the desired effect, motion in the magnetorheological fluid is induced by magnetic forces acting on the fluid, which requires an appropriate magnetic circuit design. In this investigation, we propose a methodology to determine suitable magnetic circuit designs with well-defined fail-safe behavior. The magnetically induced motion of magnetorheological fluids is modeled by the use of the Kelvin body force, and a multi-physics domain simulation is performed to elucidate various transitions between an engaged and disengaged operating mode. The modeling approach is validated by captured high-speed video frames which show the induced motion of the magnetorheological fluid due to the magnetic field. Finally, measurements performed with a prototype actuator prove that the induced viscous drag torque can be reduced significantly by the proposed magnetic fluid control methodology.
NASA Technical Reports Server (NTRS)
Parker, D. E.
1977-01-01
This study was undertaken to explore the hypothesis that shifts of body fluids from the legs and torso toward the head contribute to the motion sickness experienced by astronauts and cosmonauts. The shifts in body fluids observed during zero-G exposure were simulated by elevating guinea pigs' and monkeys' torsos and hindquarters. Cerebral-spinal fluid pressure was recorded from a transducer located in a brain ventricle; labyrinth fluid pressure was recorded from a pipette cemented in a hole in a semicircular canal. An anticipated divergence in cerebral-spinal fluid pressure and labyrinth fluid pressure during torso elevation was not observed. The results of this study do not support a fluid shift mechanism of zero-G-induced motion sickness. However, a more complete test of the fluid shift mechanism would be obtained if endolymph and perilymph pressure changes were determined separately; we have been unable to perform this test to date.
NASA Technical Reports Server (NTRS)
Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim S. (Technical Monitor)
2000-01-01
Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is applied to the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow which propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillarity to direct the movement of bubbles in space is the fact that surfactant impurities which are unavoidably present in the continuous phase can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature tension gradient, and decreases to near zero the thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have been retarded by the adsorption onto the bubble surface of a surfactant impurity, Our remobilization theory proposes to use surfactant molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher concentrations than the impurity, it adsorbs to the bubble much faster than the impurity when the bubble is formed, and thereby prevents the impurity from adsorbing onto the surface. In addition the rapid kinetic exchange and high bulk concentration maintain a saturated surface with a uniform surface concentrations. This prevents retarding surface tension gradients and keeps the velocity high. In our first report last year, we detailed experimental results which verified the theory of remobilization in ground based experiments in which the steady velocity of rising bubbles was measured in a continuous phase consisting of a glycerol/water mixture containing a polyethylene glycol surfactant C12E6 (CH3(CH2)11(OCH2CH2)6OH). In our report this year, we detail our efforts to describe theoretically the remobilization observed. We construct a model in which a bubble rises steadily by buoyancy in a continuous (Newtonian) viscous fluid containing surfactant with a uniform far field bulk concentration. We account for the effects of inertia as well as viscosity in the flow in the continuous phase caused by the bubble motion (order one Reynolds number), and we assume that the bubble shape remains spherical (viscous and inertial forces are smaller than capillary forces, i e. small Weber and capillary numbers). The surfactant distribution is calculated by solving the mass transfer equations including convection and diffusion in the bulk, and finite kinetic exchange the bulk and the surface. Convective effects dominate diffusive mass transfer in the bulk of the liquid (high Peclet numbers) except in a thin boundary layer near the surface. A finite volume method is used to numerically solve the hydrodynamic and mass transfer equations on a staggered grid which accounts specifically for the thin boundary layer. We present the results of the nondimensional drag as a function of the bulk concentration of surfactant for different rates of kinetic exchange, from which we develop criteria for the concentration necessary to develop a prescribed degree of remobilization. The criteria compare favorably with the experimental results.
Scaled particle theory for bulk and confined fluids: A review
NASA Astrophysics Data System (ADS)
Dong, Wei; Chen, XiaoSong
2018-07-01
More than half a century after its first formulation by Reiss, Frisch and Lebowitz in 1959, scaled particle theory (SPT) has proven its immense usefulness and has become one of the most successful theories in liquid physics. In recent years, we have strived to extend SPT to fluids confined in a variety of random porous matrices. In this article, we present a timely review of these developments. We have endeavored to present a formulation that is pedagogically more accessible than those presented in various original papers, and we hope this benefits newcomers in their research work. We also use more consistent notations for different cases. In addition, we discuss issues that have been scarcely considered in the literature, e.g., the one-fluid structure of SPT due to the isomorphism between the equation of state for a multicomponent fluid and that for a one-component fluid or the pure-confinement scaling relation that provides a connection between a confined and a bulk fluid.
Impact of temperature-velocity distribution on fusion neutron peak shape
Munro, D. H.; Field, J. E.; Hatarik, R.; ...
2017-02-21
Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences amongmore » several lines of sight. Finally, this paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.« less
Impact of temperature-velocity distribution on fusion neutron peak shape
NASA Astrophysics Data System (ADS)
Munro, D. H.; Field, J. E.; Hatarik, R.; Peterson, J. L.; Hartouni, E. P.; Spears, B. K.; Kilkenny, J. D.
2017-05-01
Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.
Statistical mechanics of an ideal active fluid confined in a channel
NASA Astrophysics Data System (ADS)
Wagner, Caleb; Baskaran, Aparna; Hagan, Michael
The statistical mechanics of ideal active Brownian particles (ABPs) confined in a channel is studied by obtaining the exact solution of the steady-state Smoluchowski equation for the 1-particle distribution function. The solution is derived using results from the theory of two-way diffusion equations, combined with an iterative procedure that is justified by numerical results. Using this solution, we quantify the effects of confinement on the spatial and orientational order of the ensemble. Moreover, we rigorously show that both the bulk density and the fraction of particles on the channel walls obey simple scaling relations as a function of channel width. By considering a constant-flux steady state, an effective diffusivity for ABPs is derived which shows signatures of the persistent motion that characterizes ABP trajectories. Finally, we discuss how our techniques generalize to other active models, including systems whose activity is modeled in terms of an Ornstein-Uhlenbeck process.
Numerical modeling of temperature and species distributions in hydrocarbon reservoirs
NASA Astrophysics Data System (ADS)
Bolton, Edward W.; Firoozabadi, Abbas
2014-01-01
We examine bulk fluid motion and diffusion of multicomponent hydrocarbon species in porous media in the context of nonequilibrium thermodynamics, with particular focus on the phenomenology induced by horizontal thermal gradients at the upper and lower horizontal boundaries. The problem is formulated with respect to the barycentric (mass-averaged) frame of reference. Thermally induced convection, with fully time-dependent temperature distributions, can lead to nearly constant hydrocarbon composition, with minor unmixing due to thermal gradients near the horizontal boundaries. Alternately, the composition can be vertically segregated due to gravitational effects. Independent and essentially steady solutions have been found to depend on how the compositions are initialized in space and may have implications for reservoir history. We also examine injection (to represent filling) and extraction (to represent leakage) of hydrocarbons at independent points and find a large distortion of the gas-oil contact for low permeability.
Cytoskeletal Dynamics and Fluid Flow in Drosophila Oocytes
NASA Astrophysics Data System (ADS)
de Canio, Gabriele; Goldstein, Raymond; Lauga, Eric
2015-11-01
The biological world includes a broad range of phenomena in which transport in a fluid plays a central role. Among these is the fundamental issue of cell polarity arising during development, studied historically using the model organism Drosophila melanogaster. The polarity of the oocyte is known to be induced by the translocation of mRNAs by kinesin motor proteins along a dense microtubule cytoskeleton, a process which also induces cytoplasmic streaming. Recent experimental observations have revealed the remarkable fluid-structure interactions that occur as the streaming flows back-react on the microtubules. In this work we use a combination of theory and simulations to address the interplay between the fluid flow and the configuration of cytoskeletal filaments leading to the directed motion inside the oocyte. We show in particular that the mechanical coupling between the fluid motion and the orientation of the microtubules can lead to a transition to coherent motion within the oocyte, as observed. Supported by EPSRC and ERC Advanced Investigator Grant 247333.
Numerical modeling of the SNS H{sup −} ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veitzer, Seth A.; Beckwith, Kristian R. C.; Kundrapu, Madhusudhan
Ion source rf antennas that produce H- ions can fail when plasma heating causes ablation of the insulating coating due to small structural defects such as cracks. Reducing antenna failures that reduce the operating capabilities of the Spallation Neutron Source (SNS) accelerator is one of the top priorities of the SNS H- Source Program at ORNL. Numerical modeling of ion sources can provide techniques for optimizing design in order to reduce antenna failures. There are a number of difficulties in developing accurate models of rf inductive plasmas. First, a large range of spatial and temporal scales must be resolved inmore » order to accurately capture the physics of plasma motion, including the Debye length, rf frequencies on the order of tens of MHz, simulation time scales of many hundreds of rf periods, large device sizes on tens of cm, and ion motions that are thousands of times slower than electrons. This results in large simulation domains with many computational cells for solving plasma and electromagnetic equations, short time steps, and long-duration simulations. In order to reduce the computational requirements, one can develop implicit models for both fields and particle motions (e.g. divergence-preserving ADI methods), various electrostatic models, or magnetohydrodynamic models. We have performed simulations using all three of these methods and have found that fluid models have the greatest potential for giving accurate solutions while still being fast enough to perform long timescale simulations in a reasonable amount of time. We have implemented a number of fluid models with electromagnetics using the simulation tool USim and applied them to modeling the SNS H- ion source. We found that a reduced, single-fluid MHD model with an imposed magnetic field due to the rf antenna current and the confining multi-cusp field generated increased bulk plasma velocities of > 200 m/s in the region of the antenna where ablation is often observed in the SNS source. We report here on comparisons of simulated plasma parameters and code performance using more accurate physical models, such as two-temperature extended MHD models, for both a related benchmark system describing a inductively coupled plasma reactor, and for the SNS ion source. We also present results from scaling studies for mesh generation and solvers in the USim simulation code.« less
Impact on a Compressible Fluid
NASA Technical Reports Server (NTRS)
Egorov, L. T.
1958-01-01
Upon impact of a solid body on the plane surface of a fluid, there occurs on the vetted surface of the body an abrupt pressure rise which propagates into both media with the speed of sound. Below, we assume the case where the speed of propagation of sound in the body which falls on the surface of the fluid may be regarded as infinitely large in comparison with the speed of propagation of sound in the fluid; that is, we shall assume that the falling body is absolutely rigid. IN this case, the entire relative speed of the motion which takes place at the beginning of the impact is absorbed by the fluid. The hydrodynamic pressures arising thereby are propagated from the contact surface within the fluid with the speed of sound in the form of compression and expansion waves and are gradually damped. After this, they are dispersed like impact pressures, reach ever larger regions of the fluid remote fran the body and became equal to zero; in the fluid there remain hydrodynamic pressures corresponding to the motion of the body after the impact. Neglecting the forces of viscosity and taking into account, furthermore, that the motion of the fluid begins from a state of rest, according to Thomson's theorem, we may consider the motion of an ideal compressible fluid in the process of impact to be potential. We examine the case of impact upon the surface of a ccmpressible fluid of a flat plate of infinite extent or of a body, the immersed part of the surface of which may be called approximately flat. In this report we discuss the first phase of the impact pressure on the surface of a fluid, prior to the appearance of a cavity, since at this stage the hydrodynamic pressures reach their maximum values. Observations, after the fall of the bodies on the surface of the fluid, show that the free surface of the fluid at this stage is almost completely at rest if one does not take into account the small rise in the neighborhood of the boundaries of the impact surface.
NASA Astrophysics Data System (ADS)
Morgan, G. B., VI; Chou, I.-Ming; Pasteris, J. D.
1992-01-01
Fluid speciations and their related reaction pathways were studied in C-O-H-system fluids produced by the thermal dissociation of oxalic acid dihydrate (OAD: H 2C 2O 4 · 2H 2O) sealed in silica glass capsules. Experiments were conducted in the temperature range 230-750°C, with bulk fluid densities in the range 0.01-0.53 g/cm 3. Pressure was controlled by temperature and density in the isochoric systems. The quenched products of dissociation experiments were an aqueous liquid and one (supercritical fluid) or, rarely, two (vapor plus liquid) carbonic phase (s). In-situ Raman microanalyses were performed on the quenched carbonic phases at room temperature, at which fluid pressures ranged from about 50 to 340 bars. Bulk fluid speciations were reconstructed from the Raman analyses via mass balance constraints, and appear to monitor the true fluid speciations at run conditions. In experiments from the lowtemperature range (230-350°C), fluid speciations record the dissociation of OAD according to the reaction OAD = CO2 + CO + 3 H2O. A process of the form CO + H2O = CO2 + H2 is driven to the right with increasing temperature. The hydrogen gas produced tends to escape from the sample systems via diffusion into/through the silica glass capsules, shifting bulk compositions toward equimolar binary H 2O-CO 2 mixtures. The speciations of fluids in experiments with minimal hydrogen loss show poor agreement with speciations calculated for equilibrium fluids by the corresponding-states model of SAXENA and FEI (1988). Such disagreement suggests that the formations of CH 4 and graphite are metastably inhibited in the current experiments, which correlates with their absence or trivial abundances in experimental products. Moreover, calculations in which the stabilities of methane and graphite are suppressed suggest that such metastable equilibrium is approached only in experiments at temperatures greater than about 600-650°C. These results have applications to fluid processes in geological environments, in addition to considerations of using oxalate compounds as volatile sources in experimental studies. It is possible that disequilibrium or metastable fluids may be entrapped as inclusions; re-speciation (toward metastable or stable equilibrium) during P-T evolution of a given terrain would place the fluid inclusion on a new isochore that would not project through the original conditions of entrapment. Moreover, the disequilibrium to metastable nature of dissociation reactions, coupled with the diffusional mobility of hydrogen gas observed in the current experiments, suggests that the predominance of binary H 2O-CO 2 fluid mixtures in natural inclusions from medium- to high-grade metamorphic terrains may be more than a coincidence of similar initial bulk compositions.
Morgan, G.B.; Chou, I.-Ming; Pasteris, J.D.
1992-01-01
Fluid speciations and their related reaction pathways were studied in C-O-H-system fluids produced by the thermal dissociation of oxalic acid dihydrate (OAD: H2C2O4 ?? 2H2O) sealed in silica glass capsules. Experiments were conducted in the temperature range 230-750??C, with bulk fluid densities in the range 0.01-0.53 g/cm3. Pressure was controlled by temperature and density in the isochoric systems. The quenched products of dissociation experiments were an aqueous liquid and one (supercritical fluid) or, rarely, two (vapor plus liquid) carbonic phase (s). In-situ Raman microanalyses were performed on the quenched carbonic phases at room temperature, at which fluid pressures ranged from about 50 to 340 bars. Bulk fluid speciations were reconstructed from the Raman analyses via mass balance constraints, and appear to monitor the true fluid speciations at run conditions. In experiments from the lowtemperature range (230-350??C), fluid speciations record the dissociation of OAD according to the reaction OAD = CO2 + CO + 3H2O. A process of the form CO + H2O = CO2 + H2 is driven to the right with increasing temperature. The hydrogen gas produced tends to escape from the sample systems via diffusion into/through the silica glass capsules, shifting bulk compositions toward equimolar binary H2O-CO2 mixtures. The speciations of fluids in experiments with minimal hydrogen loss show poor agreement with speciations calculated for equilibrium fluids by the corresponding-states model of Saxena and Fei (1988). Such disagreement suggests that the formations of CH4 and graphite are metastably inhibited in the current experiments, which correlates with their absence or trivial abundances in experimental products. Moreover, calculations in which the stabilities of methane and graphite are suppressed suggest that such metastable equilibrium is approached only in experiments at temperatures greater than about 600-650??C. These results have applications to fluid processes in geological environments, in addition to considerations of using oxalate compounds as volatile sources in experimental studies. It is possible that disequilibrium or metastable fluids may be entrapped as inclusions; re-speciation (toward metastable or stable equilibrium) during P-T evolution of a given terrain would place the fluid inclusion on a new isochore that would not project through the original conditions of entrapment. Moreover, the disequilibrium to metastable nature of dissociation reactions, coupled with the diffusional mobility of hydrogen gas observed in the current experiments, suggests that the predominance of binary H2O-CO2 fluid mixtures in natural inclusions from medium- to high-grade metamorphic terrains may be more than a coincidence of similar initial bulk compositions. ?? 1992.
NASA Astrophysics Data System (ADS)
Oelkers, Eric H.; Berninger, Ulf-Niklas; Pérez-Fernàndez, Andrea; Chmeleff, Jérôme; Mavromatis, Vasileios
2018-04-01
This study provides experimental evidence of the resetting of the magnesium (Mg) isotope signatures of hydromagnesite in the presence of an aqueous fluid during its congruent dissolution, precipitation, and at equilibrium at ambient temperatures over month-long timescales. All experiments were performed in batch reactors in aqueous sodium carbonate buffer solutions having a pH from 7.8 to 9.2. The fluid phase in all experiments attained bulk chemical equilibrium within analytical uncertainty with hydromagnesite within several days, but the experiments were allowed to continue for up to 575 days. During congruent hydromagnesite dissolution, the fluid first became enriched in isotopically light Mg compared to the dissolving hydromagnesite, but this Mg isotope composition became heavier after the fluid attained chemical equilibrium with the mineral. The δ26Mg composition of the fluid was up to ∼0.35‰ heavier than the initial dissolving hydromagnesite at the end of the dissolution experiments. Hydromagnesite precipitation was provoked during one experiment by increasing the reaction temperature from 4 to 50 °C. The δ26Mg composition of the fluid increased as hydromagnesite precipitated and continued to increase after the fluid attained bulk equilibrium with this phase. These observations are consistent with the hypothesis that mineral-fluid equilibrium is dynamic (i.e. dissolution and precipitation occur at equal, non-zero rates at equilibrium). Moreover the results presented in this study confirm (1) that the transfer of material from the solid to the fluid phase may not be conservative during stoichiometric dissolution, and (2) that the isotopic compositions of carbonate minerals can evolve even when the mineral is in bulk chemical equilibrium with its coexisting fluid. This latter observation suggests that the preservation of isotopic signatures of carbonate minerals in the geological record may require a combination of the isolation of fluid-mineral system from external chemical input and/or the existence of a yet to be defined dissolution/precipitation inhibition mechanism.
On the rising motion of a drop in stratified fluids
NASA Astrophysics Data System (ADS)
Bayareh, M.; Doostmohammadi, A.; Dabiri, S.; Ardekani, A. M.
2013-10-01
The rising dynamics of a deformable drop in a linearly stratified fluid is numerically obtained using a finite-volume/front-tracking method. Our results show that the drag coefficient of a spherical drop in a stratified fluid enhances as C_{d,s}/C_{d,h}-1˜ Fr_d^{-2.86} for drop Froude numbers in the range of 4 < Frd < 16. The role of the deformability of the drop on the temporal evolution of the motion is investigated along with stratification and inertial effects. We also present the important role of stratification on the transient rising motion of the drop. It is shown that a drop can levitate in the presence of a vertical density gradient. The drop undergoes a fading oscillatory motion around its neutrally buoyant position except for high viscosity ratio drops where the oscillation occurs around a density level lighter than the neutral buoyancy level. In addition, a detailed characterization of the flow signature of a rising drop in a linearly stratified fluid including the buoyancy induced vortices and the resultant buoyant jet is presented.
So, Hongyun; Pisano, Albert P; Seo, Young Ho
2014-07-07
This paper presents a microfluidic pump operated by an asymmetrically deformed membrane, which was inspired by caterpillar locomotion. Almost all mechanical micropumps consist of two major components of fluid halting and fluid pushing parts, whereas the proposed caterpillar locomotion-inspired micropump has only a single, bilaterally symmetric membrane-like teardrop shape. A teardrop-shaped elastomeric membrane was asymmetrically deformed and then consecutively touched down to the bottom of the chamber in response to pneumatic pressure, thus achieving fluid pushing. Consecutive touchdown motions of the teardrop-shaped membrane mimicked the propagation of a caterpillar's hump during its locomotory gait. The initial touchdown motion of the teardrop-shaped membrane at the centroid worked as a valve that blocked the inlet channel, and then, the consecutive touchdown motions pushed fluid in the chamber toward the tail of the chamber connected to the outlet channel. The propagation of the touchdown motion of the teardrop-shaped membrane was investigated using computational analysis as well as experimental studies. This caterpillar locomotion-inspired micropump composed of only a single membrane can provide new opportunities for simple integration of microfluidic systems.
Adsorption behaviors of supercritical Lennard-Jones fluid in slit-like pores.
Li, Yingfeng; Cui, Mengqi; Peng, Bo; Qin, Mingde
2018-05-18
Understanding the adsorption behaviors of supercritical fluid in confined space is pivotal for coupling the supercritical technology and the membrane separation technology. Based on grand canonical Monte Carlo simulations, the adsorption behaviors of a Lennard-Jones (LJ) fluid in slit-like pores at reduced temperatures over the critical temperature, T c * = 1.312, are investigated; and impacts of the wall-fluid interactions, the pore width, and the temperature are taken into account. It is found that even if under supercritical conditions, the LJ fluid can undergo a "vapor-liquid phase transition" in confined space, i.e., the adsorption density undergoes a sudden increase with the bulk density. A greater wall-fluid attractive potential, a smaller pore width, and a lower temperature will bring about a stronger confinement effect. Besides, the adsorption pressure reaches a local minimum when the bulk density equals to a certain value, independent of the wall-fluid potential or pore width. The insights in this work have both practical and theoretical significances. Copyright © 2018 Elsevier Inc. All rights reserved.
Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu
2015-12-01
Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential influence of volatiles and melt films on electrical conductivity of partially molten rocks is discussed.
Using Nonlinearity and Contact Lines to Control Fluid Flow in Microgravity
NASA Technical Reports Server (NTRS)
Perlin, M.; Schultz, W. W.; Bian, X.; Agarwal, M.
2002-01-01
Slug flows in a tube are affected by surface tension and contact lines, especially under microgravity. Numerical analyses and experiments are conducted of slug flows in small-diameter tubes with horizontal, inclined and vertical orientations. A PID-controlled, meter-long platform capable of following specified motions is used. An improved understanding of the contact line boundary condition for steady and unsteady contact-line motion is expected. Lastly, a direct fluid-handling method using nonlinear oscillatory motion of a tube is presented.
Salt-Finger Convection in a Stratified Fluid Layer Induced by Thermal and Solutal Capillary Motion
NASA Technical Reports Server (NTRS)
Chen, Chuan F.; Chan, Cho Lik
1996-01-01
Salt-finger convection in a double-diffusive system is a motion driven by the release of gravitational potential due to different diffusion rates. Normally, when the gravitational field is reduced, salt-finger convection together with other convective motions driven by buoyancy forces will be rapidly suppressed. However, because the destabilizing effect of the concentration gradient is amplified by the Lewis number, with values varying from 10(exp 2) for aqueous salt solutions to 10 (exp 4) for liquid metals, salt-finger convection may be generated at much reduced gravity levels. In the microgravity environment, the surface tension gradient assumes a dominant role in causing fluid motion. In this paper, we report on some experimental results showing the generation of salt-finger convection due to capillary motio on the surface of a stratified fluid layer. A numerical simulation is presented to show the cause of salt-finger convection.
Elements of an improved model of debris‐flow motion
Iverson, Richard M.
2009-01-01
A new depth‐averaged model of debris‐flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore‐fluid pressure. Non‐hydrostatic pore‐fluid pressure is produced by dilatancy, a state‐dependent property that links the depth‐averaged shear rate and volumetric strain rate of the granular phase. Pore‐pressure changes caused by shearing allow the model to exhibit rate‐dependent flow resistance, despite the fact that the basal shear traction involves only rate‐independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore‐pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states.
Elements of an improved model of debris-flow motion
Iverson, R.M.
2009-01-01
A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore-fluid pressure. Non-hydrostatic pore-fluid pressure is produced by dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular phase. Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the fact that the basal shear traction involves only rate-independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states. ?? 2009 American Institute of Physics.
Streaming and particle motion in acoustically-actuated leaky systems
NASA Astrophysics Data System (ADS)
Nama, Nitesh; Barnkob, Rune; Jun Huang, Tony; Kahler, Christian; Costanzo, Francesco
2017-11-01
The integration of acoustics with microfluidics has shown great promise for applications within biology, chemistry, and medicine. A commonly employed system to achieve this integration consists of a fluid-filled, polymer-walled microchannel that is acoustically actuated via standing surface acoustic waves. However, despite significant experimental advancements, the precise physical understanding of such systems remains a work in progress. In this work, we investigate the nature of acoustic fields that are setup inside the microchannel as well as the fundamental driving mechanism governing the fluid and particle motion in these systems. We provide an experimental benchmark using state-of-art 3D measurements of fluid and particle motion and present a Lagrangian velocity based temporal multiscale numerical framework to explain the experimental observations. Following verification and validation, we employ our numerical model to reveal the presence of a pseudo-standing acoustic wave that drives the acoustic streaming and particle motion in these systems.
Large-scale motions in the universe: Using clusters of galaxies as tracers
NASA Technical Reports Server (NTRS)
Gramann, Mirt; Bahcall, Neta A.; Cen, Renyue; Gott, J. Richard
1995-01-01
Can clusters of galaxies be used to trace the large-scale peculiar velocity field of the universe? We answer this question by using large-scale cosmological simulations to compare the motions of rich clusters of galaxies with the motion of the underlying matter distribution. Three models are investigated: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models, all normalized to the Cosmic Background Explorer (COBE) background fluctuations. We compare the cluster and mass distribution of peculiar velocities, bulk motions, velocity dispersions, and Mach numbers as a function of scale for R greater than or = 50/h Mpc. We also present the large-scale velocity and potential maps of clusters and of the matter. We find that clusters of galaxies trace well the large-scale velocity field and can serve as an efficient tool to constrain cosmological models. The recently reported bulk motion of clusters 689 +/- 178 km/s on approximately 150/h Mpc scale (Lauer & Postman 1994) is larger than expected in any of the models studied (less than or = 190 +/- 78 km/s).
George, David L.; Iverson, Richard M.
2011-01-01
Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.
NASA Astrophysics Data System (ADS)
Bai, M.; Miskowiec, A.; Hansen, F. Y.; Taub, H.; Jenkins, T.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.; Wang, S.-K.
2012-05-01
High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules.
Shear and mixing effects on cells in agitated microcarrier tissue culture reactors
NASA Technical Reports Server (NTRS)
Cherry, Robert S.; Papoutsakis, E. Terry
1987-01-01
Tissue cells are known to be sensitive to mechanical stresses imposed on them by agitation in bioreactors. The amount of agitation provided in a microcarrier or suspension bioreactor should be only enough to provide effective homogeneity. Three distinct flow regions can be identified in the reactor: bulk turbulent flow, bulk laminar flow and boundary-layer flows. Possible mechanisms of cell damage are examined by analyzing the motion of microcarriers or free cells relative to the surrounding fluid, to each other and to moving or stationary solid surfaces. The primary mechanisms of cell damage appear to result from: (1) direct interaction between microcarriers and turbulent eddies; (2) collisions between microcarriers in turbulent flow; and (3) collisions against the impeller or other stationary surfaces. If the smallest eddies of turbulent flow are of the same size as the microcarrier beads, they may cause high shear stresses on the cells. Eddies the size of the average interbead spacing may cause bead-bead collisions which damage cells. The severity of the collisions increases when the eddies are also of the same size as the beads. Impeller collisions occur when beads cannot avoid the impeller leading edge as it advances through the liquid. The implications of the results of this analysis on the design and operation of tissue culture reactors are discussed.
Tribology Experiment in Zero Gravity
NASA Technical Reports Server (NTRS)
Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.
2015-01-01
A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.
NASA Astrophysics Data System (ADS)
Akers, Caleb; Hale, Jacob
2014-11-01
It has been observed that non-coalescence between a droplet and pool of like fluid can be prolonged or inhibited by sustained relative motion between the two fluids. In this study, we quantitatively describe the motion of freely moving droplets that skirt across the surface of a still pool of like fluid. Droplets of different sizes and small Weber number were directed horizontally onto the pool surface. After stabilization of the droplet shape after impact, the droplets smoothly moved across the surface, slowing until coalescence. Using high-speed imaging, we recorded the droplet's trajectory from a top-down view as well as side views both slightly above and below the fluid surface. The droplets' speed is observed to decrease exponentially, with the smaller droplets slowing down at a greater rate. Droplets infused with neutral density micro beads showed that the droplet rolls along the surface of the pool. A qualitative model of this motion is presented.
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.
1990-01-01
The solution was sought of a 2-D axisymmetric moving boundary problem for the sensitivity of isothermal and nonisothermal liquid columns and the sensitivity of thermo-capillary flows to buoyancy driven convection caused by residual accelerations. The sensitivity of a variety of space experiments to residual accelerations are examined. In all the cases discussed, the sensitivity is related to the dynamic response of a fluid. In some cases the sensitivity can be defined by the magnitude of the response of the velocity field. This response may involve motion of the fluid associated with internal density gradients, or the motion of a free liquid surface. For fluids with internal density gradients, the type of acceleration to which the experiment is sensitive will depend on whether buoyancy driven convection must be small in comparison to other types of fluid motion (such as thermocapillary flow), or fluid motion must be suppressed or eliminated (such as in diffusion studies, or directional solidification experiments). The effect of the velocity on the composition and temperature field must be considered, particularly in the vicinity of the melt crystal interface. As far as the response to transient disturbances is concerned the sensitivity is determined by both the magnitude and frequency the acceleration and the characteristic momentum and solute diffusion times.
Orientational dynamics of a triaxial ellipsoid in simple shear flow: Influence of inertia.
Rosén, Tomas; Kotsubo, Yusuke; Aidun, Cyrus K; Do-Quang, Minh; Lundell, Fredrik
2017-07-01
The motion of a single ellipsoidal particle in simple shear flow can provide valuable insights toward understanding suspension flows with nonspherical particles. Previously, extensive studies have been performed on the ellipsoidal particle with rotational symmetry, a so-called spheroid. The nearly prolate ellipsoid (one major and two minor axes of almost equal size) is known to perform quasiperiodic or even chaotic orbits in the absence of inertia. With small particle inertia, the particle is also known to drift toward this irregular motion. However, it is not previously understood what effects from fluid inertia could be, which is of highest importance for particles close to neutral buoyancy. Here, we find that fluid inertia is acting strongly to suppress the chaotic motion and only very weak fluid inertia is sufficient to stabilize a rotation around the middle axis. The mechanism responsible for this transition is believed to be centrifugal forces acting on fluid, which is dragged along with the rotational motion of the particle. With moderate fluid inertia, it is found that nearly prolate triaxial particles behave similarly to the perfectly spheroidal particles. Finally, we also are able to provide predictions about the stable rotational states for the general triaxial ellipsoid in simple shear with weak inertia.
Generation of large-scale density fluctuations by buoyancy
NASA Technical Reports Server (NTRS)
Chasnov, J. R.; Rogallo, R. S.
1990-01-01
The generation of fluid motion from a state of rest by buoyancy forces acting on a homogeneous isotropic small-scale density field is considered. Nonlinear interactions between the generated fluid motion and the initial isotropic small-scale density field are found to create an anisotropic large-scale density field with spectrum proportional to kappa(exp 4). This large-scale density field is observed to result in an increasing Reynolds number of the fluid turbulence in its final period of decay.
NASA Astrophysics Data System (ADS)
Zeng, R.; Wang, S. Y.; Liao, X. L.; Deng, Z. G.; Wang, J. S.
2013-04-01
In practical applications, the acceleration and deceleration motions inevitably happen in the operation of high temperature superconducting (HTS) maglev trains. For further research of the maglev properties of YBaCuO bulk above a permanent magnet guideway (PMG), by moving a fixed vertical distance, this paper studies the relationship of the levitation force between single and multiple YBCO bulks above a PMG operating dive-lift movement with different angles. Experimental results show that the maximal levitation force increment of two bulks than one bulk is smaller than the maximal levitation force increment of three bulks than two bulks. With the degree decreasing, the maximal levitation force increment of three bulks is bigger than the maximal levitation force increment of two bulks and one bulk, and the hysteresis loop of the levitation force of the three-bulk arrangement is getting smaller.
On the adsorption properties of magnetic fluids: Impact of bulk structure
NASA Astrophysics Data System (ADS)
Kubovcikova, Martina; Gapon, Igor V.; Zavisova, Vlasta; Koneracka, Martina; Petrenko, Viktor I.; Soltwedel, Olaf; Almasy, László; Avdeev, Mikhail V.; Kopcansky, Peter
2017-04-01
Adsorption of nanoparticles from magnetic fluids (MFs) on solid surface (crystalline silicon) was studied by neutron reflectometry (NR) and related to the bulk structural organization of MFs concluded from small-angle neutron scattering (SANS). The initial aqueous MF with nanomagnetite (co-precipitation reaction) stabilized by sodium oleate and MF modified by a biocompatible polymer, poly(ethylene glycol) (PEG), were considered. Regarding the bulk structure it was confirmed in the SANS experiment that comparatively small and compact (size 30 nm) aggregates of nanoparticle in the initial sample transfer to large and developed (size>130 nm, fractal dimension 2.7) associates in the PEG modified MF. This reorganization in the aggregates correlates with the changes in the neutron reflectivity that showed that a single adsorption layer of individual nanoparticles on the oxidized silicon surface for the initial MF disappears after the PEG modification. It is concluded that all particles in the modified fluid are in the aggregates that are not adsorbed by silicon.
NASA Astrophysics Data System (ADS)
Gao, Yan; Liu, Yuyou
2017-06-01
Vibrational energy is transmitted in buried fluid-filled pipes in a variety of wave types. Axisymmetric (n = 0) waves are of practical interest in the application of acoustic techniques for the detection of leaks in underground pipelines. At low frequencies n = 0 waves propagate longitudinally as fluid-dominated (s = 1) and shell-dominated (s = 2) waves. Whilst sensors such as hydrophones and accelerometers are commonly used to detect leaks in water distribution pipes, the mechanism governing the structural and fluid motions is not well documented. In this paper, the low-frequency behaviour of the pipe wall and the contained fluid is investigated. For most practical pipework systems, these two waves are strongly coupled; in this circumstance the ratios of the radial pipe wall displacements along with the internal pressures associated with these two wave types are obtained. Numerical examples show the relative insensitivity of the structural and fluid motions to the s = 2 wave for both metallic and plastic pipes buried in two typical soils. It is also demonstrated that although both acoustic and vibration sensors at the same location provide the identical phase information of the transmitted signals, pressure responses have significantly higher levels than acceleration responses, and thus hydrophones are better suited in a low signal-to-noise ratio (SNR) environment. This is supported by experimental work carried out at a leak detection facility. Additional pressure measurements involved excitation of the fluid and the pipe fitting (hydrant) on a dedicated water pipe. This work demonstrates that the s = 1 wave is mainly responsible for the structural and fluid motions at low frequencies in water distribution pipes as a result of water leakage and direct pipe excitation.
The incompressible Rindler fluid versus the Schwarzschild-AdS fluid
NASA Astrophysics Data System (ADS)
Matsuo, Yoshinori; Natsuume, Makoto; Ohta, Masahiro; Okamura, Takashi
2013-02-01
We study the proposal by Bredberg et al. [J. High Energy Phys. 1103, 141 (2011)], where the fluid is defined by the Brown-York tensor on a timelike surface at r = rc in black hole backgrounds. We consider both Rindler space and the Schwarzschild-AdS (SAdS) black hole. The former describes an incompressible fluid, whereas the latter describes the vanishing bulk viscosity at arbitrary rc. Although the near-horizon limit of the SAdS black hole is Rindler space, these two results do not contradict each other. We also find an interesting "coincidence" with the black hole membrane paradigm that gives a negative bulk viscosity. In order to show these results, we rewrite the hydrodynamic stress tensor via metric perturbations using the conservation equation. The resulting expressions are suitable to compare with the Brown-York tensor.
Predicting the pKa and stability of organic acids and bases at an oil-water interface.
Andersson, M P; Olsson, M H M; Stipp, S L S
2014-06-10
We have used density functional theory and the implicit solvent model, COSMO-RS, to investigate how the acidity constant, pKa, of organic acids and bases adsorbed at the organic compound-aqueous solution interface changes, compared to its value in the aqueous phase. The pKa determine the surface charge density of the molecules that accumulate at the fluid-fluid interface. We have estimated the pKa by comparing the stability of the protonated and unprotonated forms of a series of molecules in the bulk aqueous solution and at an interface where parts of each molecule reside in the hydrophobic phase and the rest remains in the hydrophilic phase. We found that the pKa for acids is shifted by ∼1 pH unit to higher values compared to the bulk water pKa, whereas they are shifted to lower values by a similar amount for bases. Because this pKa shift is similar in magnitude for each of the molecules studied, we propose that the pKa for molecules at a water-organic compound interface can easily be predicted by adding a small shift to the aqueous pKa. This shift is general and correlates with the functional group. We also found that the relative composition of molecules at the fluid-fluid interface is not the same as in the bulk. For example, species such as carboxylic acids are enriched at the interface, where they can dominate surface properties, even when they are a modest component in the bulk fluid. For high surface concentrations of carboxylic acid groups at an interface, such as a self-assembled monolayer, we have demonstrated that the pKa depends on the degree of deprotonation through direct hydrogen bonding between protonated and deprotonated acidic headgroups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Stephen J.; Ni, Guangjian
The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motionmore » will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a “coupling mass” effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.« less
Magnetohydrodynamic motion of a two-fluid plasma
Burby, Joshua W.
2017-07-21
Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less
Magnetohydrodynamic motion of a two-fluid plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burby, Joshua W.
Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less
Dynamics of Nanoparticles in Entangled Polymer Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, Pooja; Mangal, Rahul; Kohle, Ferdinand
The mean square displacement < r 2 > of nanoparticle probes dispersed in simple isotropic liquids and in polymer solutions is interrogated using fluorescence correlation spectroscopy and single-particle tracking (SPT) experiments. Probe dynamics in different regimes of particle diameter (d), relative to characteristic polymer length scales, including the correlation length (ξ), the entanglement mesh size (a), and the radius of gyration (R g), are investigated. In simple fluids and for polymer solutions in which d >> R g, long-time particle dynamics obey random-walk statistics < r 2 >:t, with the bulk zero-shear viscosity of the polymer solution determining the frictionalmore » resistance to particle motion. In contrast, in polymer solutions with d < R g, polymer molecules in solution exert noncontinuum resistances to particle motion and nanoparticle probes appear to interact hydrodynamically only with a local fluid medium with effective drag comparable to that of a solution of polymer chain segments with sizes similar to those of the nanoparticle probes. Under these conditions, the nanoparticles exhibit orders of magnitude faster dynamics than those expected from continuum predictions based on the Stokes–Einstein relation. SPT measurements further show that when d > a, nanoparticle dynamics transition from diffusive to subdiffusive on long timescales, reminiscent of particle transport in a field with obstructions. This last finding is in stark contrast to the nanoparticle dynamics observed in entangled polymer melts, where X-ray photon correlation spectroscopy measurements reveal faster but hyperdiffusive dynamics. As a result, we analyze these results with the help of the hopping model for particle dynamics in polymers proposed by Cai et al. and, on that basis, discuss the physical origins of the local drag experienced by the nanoparticles in entangled polymer solutions.« less
Dynamics of Nanoparticles in Entangled Polymer Solutions
Nath, Pooja; Mangal, Rahul; Kohle, Ferdinand; ...
2017-12-01
The mean square displacement < r 2 > of nanoparticle probes dispersed in simple isotropic liquids and in polymer solutions is interrogated using fluorescence correlation spectroscopy and single-particle tracking (SPT) experiments. Probe dynamics in different regimes of particle diameter (d), relative to characteristic polymer length scales, including the correlation length (ξ), the entanglement mesh size (a), and the radius of gyration (R g), are investigated. In simple fluids and for polymer solutions in which d >> R g, long-time particle dynamics obey random-walk statistics < r 2 >:t, with the bulk zero-shear viscosity of the polymer solution determining the frictionalmore » resistance to particle motion. In contrast, in polymer solutions with d < R g, polymer molecules in solution exert noncontinuum resistances to particle motion and nanoparticle probes appear to interact hydrodynamically only with a local fluid medium with effective drag comparable to that of a solution of polymer chain segments with sizes similar to those of the nanoparticle probes. Under these conditions, the nanoparticles exhibit orders of magnitude faster dynamics than those expected from continuum predictions based on the Stokes–Einstein relation. SPT measurements further show that when d > a, nanoparticle dynamics transition from diffusive to subdiffusive on long timescales, reminiscent of particle transport in a field with obstructions. This last finding is in stark contrast to the nanoparticle dynamics observed in entangled polymer melts, where X-ray photon correlation spectroscopy measurements reveal faster but hyperdiffusive dynamics. As a result, we analyze these results with the help of the hopping model for particle dynamics in polymers proposed by Cai et al. and, on that basis, discuss the physical origins of the local drag experienced by the nanoparticles in entangled polymer solutions.« less
Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilley, Lorie M.
2015-04-13
The purpose of this project was to: 1) evaluate the relationship between geothermal fluid processes and the compositions of the fluid inclusion gases trapped in the reservoir rocks; and 2) develop methodologies for interpreting fluid inclusion gas data in terms of the chemical, thermal and hydrological properties of geothermal reservoirs. Phase 1 of this project was designed to conduct the following: 1) model the effects of boiling, condensation, conductive cooling and mixing on selected gaseous species; using fluid compositions obtained from geothermal wells, 2) evaluate, using quantitative analyses provided by New Mexico Tech (NMT), how these processes are recorded bymore » fluid inclusions trapped in individual crystals; and 3) determine if the results obtained on individual crystals can be applied to the bulk fluid inclusion analyses determined by Fluid Inclusion Technology (FIT). Our initial studies however, suggested that numerical modeling of the data would be premature. We observed that the gas compositions, determined on bulk and individual samples were not the same as those discharged by the geothermal wells. Gases discharged from geothermal wells are CO 2-rich and contain low concentrations of light gases (i.e. H 2, He, N, Ar, CH4). In contrast many of our samples displayed enrichments in these light gases. Efforts were initiated to evaluate the reasons for the observed gas distributions. As a first step, we examined the potential importance of different reservoir processes using a variety of commonly employed gas ratios (e.g. Giggenbach plots). The second technical target was the development of interpretational methodologies. We have develop methodologies for the interpretation of fluid inclusion gas data, based on the results of Phase 1, geologic interpretation of fluid inclusion data, and integration of the data. These methodologies can be used in conjunction with the relevant geological and hydrological information on the system to create fluid models for the system. The hope is that the methodologies developed will allow bulk fluid inclusion gas analysis to be a useful tool for estimating relative temperatures, identifying the sources and origins of the geothermal fluids, and developing conceptual models that can be used to help target areas of enhanced permeability.« less
Disentangling Random Motion and Flow in a Complex Medium
Koslover, Elena F.; Chan, Caleb K.; Theriot, Julie A.
2016-01-01
We describe a technique for deconvolving the stochastic motion of particles from large-scale fluid flow in a dynamic environment such as that found in living cells. The method leverages the separation of timescales to subtract out the persistent component of motion from single-particle trajectories. The mean-squared displacement of the resulting trajectories is rescaled so as to enable robust extraction of the diffusion coefficient and subdiffusive scaling exponent of the stochastic motion. We demonstrate the applicability of the method for characterizing both diffusive and fractional Brownian motion overlaid by flow and analytically calculate the accuracy of the method in different parameter regimes. This technique is employed to analyze the motion of lysosomes in motile neutrophil-like cells, showing that the cytoplasm of these cells behaves as a viscous fluid at the timescales examined. PMID:26840734
Cerebrospinal fluid constituents of cat vary with susceptibility to motion sickness
NASA Technical Reports Server (NTRS)
Lucot, James B.; Crampton, George H.; Matson, Wayne R.; Gamache, Paul H.
1989-01-01
The cerebrospinal fluid drawn from the fourth ventricles of the brains of cats during and after the development of motion sickness was studied to determine what neurotransmitters may be involved in the development of the sickness. The analytical procedure, which uses HPLC coupled with n-electrode coulometric electrochemical detection to measure many compounds with picogram sensitivity, is described. Baseline levels of DOPAC, MHPGSO4, uric acid, DA, 5-HIAA, and HVA were lower on motion and control days in cats which became motion sick when compared with cats which did not. None of the total of 36 identified compounds identified in the samples varied as a function of either exposure to motion or provocation of emesis. It is concluded that susceptibility to motion sickness is a manifestation of individual differences related to fundamental neurochemical composition.
Patterning of colloidal particles in the galvanic microreactor
NASA Astrophysics Data System (ADS)
Jan, Linda
A Cu-Au galvanic microreactor is used to demonstrate the autonomous patterning of two-dimensional colloidal crystals with spatial and orientational order which are adherent to the electrode substrate. The microreactor is comprised of a patterned array of copper and gold microelectrodes in a coplanar arrangement that is immersed in a dilute hydrochloric acid solution in which colloidal polystyrene microspheres are suspended. During the electrochemical dissolution of copper, polystyrene colloids are transported to the copper electrodes. The spatial arrangement of the electrodes determines whether the colloids initiate aggregation at the edges or centers of the copper electrodes. Depending on the microreactor parameters, two-dimensional colloidal crystals can form and adhere to the electrode. This thesis investigates the mechanisms governing the autonomous particle motion, the directed particle trajectory (inner- versus edge-aggregation) as affected by the spatial patterning of the electrodes, and the adherence of the colloidal particles onto the substrate. Using in situ current density measurements, particle velocimetry, and order-of-magnitude arguments, it is shown that particle motion is governed by bulk fluid motion and electrophoresis induced by the electrochemical reactions. Bulk electrolyte flow is most likely driven by electrochemical potential gradients of reaction products formed during the inhomogeneous copper dissolution, particularly due to localized high current density at the electrode junction. Preferential aggregation of the colloidal particles resulting in inner- and edge-aggregation is influenced by changes to the flow pattern in response to difference in current density profiles as affected by the spatial patterning of the electrode. Finally, by determining the onset of particle cementation through particle tracking analysis, and by monitoring the deposition of reaction products through the observation of color changes of the galvanic electrodes in situ, it is shown that particle cementation coincides with the precipitation and deposition of reaction products. The precipitation process is caused by shifts in the chemical equilibria of the microreactor due to changes in the composition of the electrolyte during the reactions, which can be used to control particle cementation. The corrosion driven transport, deposition and adherence of colloidal particles at corrosion sites have implications for the development of autonomous self-healing materials.
The effect of artificial bulk viscosity in simulations of forced compressible turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, A.; Morgan, B.
The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less
The effect of artificial bulk viscosity in simulations of forced compressible turbulence
Campos, A.; Morgan, B.
2018-05-17
The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less
NASA Astrophysics Data System (ADS)
Budzyń, Bartosz; Harlov, Daniel E.; Majka, Jarosław; Kozub, Gabriela A.
2014-05-01
Stability relations of monazite-fluorapatite-allanite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote are strongly dependent on pressure, temperature and fluid composition. The increased Ca bulk content expands stability field of allanite relative to monazite towards higher temperatures (Spear, 2010, Chem Geol 279, 55-62). It was also reported from amphibolite facies Alpine metapelites, that both temperature and bulk CaO/Na2O ratio control relative stabilities of allanite, monazite and xenotime (Janots et al., 2008, J Metam Geol 26, 5, 509-526). This study experimentally defines influence of pressure, temperature, high activity of Ca vs. Na in the fluid, and high vs. moderate bulk CaO/Na2O ratio on the relative stabilities of monazite-fluorapatite-allanite/REE-rich epidote and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote. This work expands previous experimental study on monazite (Budzyń et al., 2011, Am Min 96, 1547-1567) to wide pressure-temperature range of 2-10 kbar and 450-750°C, utilizing most reactive fluids used in previous experiments. Experiments were performed using cold-seal autoclaves on a hydrothermal line (2-4 kbar runs) and piston-cylinder apparatus (6-10 kbar runs) over 4-16 days. Four sets of experiments, two for monazite and two for xenotime, were performed with 2M Ca(OH)2 and Na2Si2O5 + H2O fluids. The starting materials included inclusion-free crystals of monazite (pegmatite, Burnet County, TX, USA) or xenotime (pegmatite, Northwest Frontier Province, Pakistan) mixed with (1) labradorite (Ab37An60Kfs3) + K-feldspar + biotite + muscovite ± garnet + SiO2 + CaF2 + 2M Ca(OH)2 or (2) albite (Ab100) + K-feldspar + biotite + muscovite ± garnet + SiO2 + CaF2 + Na2Si2O5 + H2O. 20-35 mg of solids and 5 mg of fluid were loaded into 3x15 mm Au capsules and arc welded shut. The monazite alteration is observed in all runs. Newly formed REE-rich fluorapatite and/or britholite are stable in all experimental P-T range in the presence of both fluids. Alteration of monazite and subsequent formation of REE-rich epidote or allanite, REE-rich fluorapatite and britholite was promoted by high activity of Ca in the fluid, with high bulk CaO/Na2O ratio of ca. 11.5 in the system. In contrast, neither REE-rich epidote nor allanite does form in the presence of Na2Si2O5 + H2O fluid, with bulk CaO/Na2O ratio of ca. 1.0. Results indicating that stability field of allanite relative to monazite expands towards higher temperatures along with increased Ca bulk content are consistent with recent thermodynamic modeling of phase equilibria (Spear, 2010). Experiments also support natural observations from the amphibolite-facies Alpine metapelites regarding the influence of CaO/Na2O ratio in bulk content on the relative stabilities of monazite and REE-rich epidote (Janots et al., 2008). Alteration of xenotime is observed in all runs. (Y,HREE)-rich britholite or (Y,HREE)-rich fluorapatite always formed. In contrast to monazite experiments, (Y,HREE)-rich epidote formed only at 650°C and 8-10 kbar, in the presence of 2M Ca(OH)2. Results are partially consistent with natural observations showing that stability of (Y,HREE)-rich epidote is promoted by high Ca bulk content with high CaO/Na2O ratio (Janots et al., 2008). However, experimental results indicate that the relative stabilities of xenotime and (Y,HREE)-rich epidote are strongly controlled by pressure. Acknowledgements. The project was funded by the National Science Center of Poland, grant no. 2011/01/D/ST10/04588.
Performance of journal bearings with semi-compressible fluids
NASA Technical Reports Server (NTRS)
Carpino, M.; Peng, J.-P.
1991-01-01
Cryogenic fluids in isothermal rigid surface and foil type journal bearings can sometimes be treated as semicompressible fluids. In these applications, the fluid density is a function of the pressure. At low pressures, the fluids can change from a liquid to a saturated liquid-vapor phase. The performance of a rigid surface journal bearing with an idealized semicompressible fluid is discussed. Pressure solutions are based upon a Reynolds equation which includes the effects of a compressibility via the bulk modulus of the fluid. Results are contrasted with the performance of isothermal constant property incompressible fluids.
Nanoscopic dynamics of phospholipid in unilamellar vesicles: Effect of gel to fluid phase transition
Sharma, V. K.; Mamontov, E.; Anunciado, D. B.; ...
2015-03-04
Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, amore » sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen atoms of the lipid tails is a manifestation of the flexibility of the chains acquired in the fluid phase. Because of this flexibility, both the local diffusivity and the confinement volume for the hydrogen atoms increase linearly from near the lipid s polar head group to the end of its hydrophobic tail. Our results present a quantitative and detailed picture of the effect of the gel-fluid phase transition on the nanoscopic lipid dynamics in ULV. Lastly, the data analysis approach developed here has a potential for probing the dynamic response of lipids to the presence of additional cell membrane components.« less
Viscoelastic fluid-structure interactions between a flexible cylinder and wormlike micelle solution
NASA Astrophysics Data System (ADS)
Dey, Anita A.; Modarres-Sadeghi, Yahya; Rothstein, Jonathan P.
2018-06-01
It is well known that when a flexible or flexibly mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. Unlike Newtonian fluids, the flow of viscoelastic fluids can become unstable even at infinitesimal Reynolds numbers due to a purely elastic flow instability that can occur at large Weissenberg numbers. Recent work has shown that these elastic flow instabilities can drive the motion of flexible sheets. The fluctuating fluid forces exerted on the structure from the elastic flow instabilities can lead to a coupling between an oscillatory structural motion and the state of stress in the fluid flow. In this paper, we present the results of an investigation into the flow of a viscoelastic wormlike micelle solution past a flexible circular cylinder. The time variation of the flow field and the state of stress in the fluid are shown using a combination of particle image tracking and flow-induced birefringence images. The static and dynamic responses of the flexible cylinder are presented for a range of flow velocities. The nonlinear dynamics of the structural motion is studied to better understand an observed transition from a symmetric to an asymmetric structural deformation and oscillation behavior.
Solving Fluid Structure Interaction Problems with an Immersed Boundary Method
NASA Technical Reports Server (NTRS)
Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.
2016-01-01
An immersed boundary method for the compressible Navier-Stokes equations can be used for moving boundary problems as well as fully coupled fluid-structure interaction is presented. The underlying Cartesian immersed boundary method of the Launch Ascent and Vehicle Aerodynamics (LAVA) framework, based on the locally stabilized immersed boundary method previously presented by the authors, is extended to account for unsteady boundary motion and coupled to linear and geometrically nonlinear structural finite element solvers. The approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems. Keywords: Immersed Boundary Method, Higher-Order Finite Difference Method, Fluid Structure Interaction.
On exact solutions for some oscillating motions of a generalized Oldroyd-B fluid
NASA Astrophysics Data System (ADS)
Khan, M.; Anjum, Asia; Qi, Haitao; Fetecau, C.
2010-02-01
This paper deals with exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. The fractional calculus approach is used in the constitutive relationship of fluid model. Analytical expressions for the velocity field and the corresponding shear stress for flows due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined using Fourier sine and Laplace transforms. The obtained solutions are presented under integral and series forms in terms of the Mittag-Leffler functions. For α = β = 1, our solutions tend to the similar solutions for ordinary Oldroyd-B fluid. A comparison between generalized and ordinary Oldroyd-B fluids is shown by means of graphical illustrations.
Brownian motion studies of viscoelastic colloidal gels by rotational single particle tracking
Liang, Mengning; Harder, Ross; Robinson, Ian K.
2014-04-14
Colloidal gels have unique properties due to a complex microstructure which forms into an extended network. Although the bulk properties of colloidal gels have been studied, there has been difficulty correlating those properties with individual colloidal dynamics on the microscale due to the very high viscosity and elasticity of the material. We utilize rotational X-ray tracking (RXT) to investigate the rotational motion of component crystalline colloidal particles in a colloidal gel of alumina and decanoic acid. Our investigation has determined that the high elasticity of the bulk is echoed by a high elasticity experienced by individual colloidal particles themselves butmore » also finds an unexpected high degree of rotational diffusion, indicating a large degree of freedom in the rotational motion of individual colloids even within a tightly bound system.« less
Microparticle analysis system and method
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor)
2007-01-01
A device for analyzing microparticles is provided which includes a chamber with an inlet and an outlet for respectively introducing and dispensing a flowing fluid comprising microparticles, a light source for providing light through the chamber and a photometer for measuring the intensity of light transmitted through individual microparticles. The device further includes an imaging system for acquiring images of the fluid. In some cases, the device may be configured to identify and determine a quantity of the microparticles within the fluid. Consequently, a method for identifying and tracking microparticles in motion is contemplated herein. The method involves flowing a fluid comprising microparticles in laminar motion through a chamber, transmitting light through the fluid, measuring the intensities of the light transmitted through the microparticles, imaging the fluid a plurality of times and comparing at least some of the intensities of light between different images of the fluid.
Physical aspects of computing the flow of a viscous fluid
NASA Technical Reports Server (NTRS)
Mehta, U. B.
1984-01-01
One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.
NASA Astrophysics Data System (ADS)
Bakker, Ronald J.
2018-06-01
The program AqSo_NaCl has been developed to calculate pressure - molar volume - temperature - composition (p-V-T-x) properties, enthalpy, and heat capacity of the binary H2O-NaCl system. The algorithms are designed in BASIC within the Xojo programming environment, and can be operated as stand-alone project with Macintosh-, Windows-, and Unix-based operating systems. A series of ten self-instructive interfaces (modules) are developed to calculate fluid inclusion properties and pore fluid properties. The modules may be used to calculate properties of pure NaCl, the halite-liquidus, the halite-vapourus, dew-point and bubble-point curves (liquid-vapour), critical point, and SLV solid-liquid-vapour curves at temperatures above 0.1 °C (with halite) and below 0.1 °C (with ice or hydrohalite). Isochores of homogeneous fluids and unmixed fluids in a closed system can be calculated and exported to a.txt file. Isochores calculated for fluid inclusions can be corrected according to the volumetric properties of quartz. Microthermometric data, i.e. dissolution temperatures and homogenization temperatures, can be used to calculated bulk fluid properties of fluid inclusions. Alternatively, in the absence of total homogenization temperature the volume fraction of the liquid phase in fluid inclusions can be used to obtain bulk properties.
Bulk properties and near-critical behaviour of SiO2 fluid
NASA Astrophysics Data System (ADS)
Green, Eleanor C. R.; Artacho, Emilio; Connolly, James A. D.
2018-06-01
Rocky planets and satellites form through impact and accretion processes that often involve silicate fluids at extreme temperatures. First-principles molecular dynamics (FPMD) simulations have been used to investigate the bulk thermodynamic properties of SiO2 fluid at high temperatures (4000-6000 K) and low densities (500-2240 kg m-3), conditions which are relevant to protoplanetary disc condensation. Liquid SiO2 is highly networked at the upper end of this density range, but depolymerises with increasing temperature and volume, in a process characterised by the formation of oxygen-oxygen (Odbnd O) pairs. The onset of vaporisation is closely associated with the depolymerisation process, and is likely to be non-stoichiometric at high temperature, initiated via the exsolution of O2 molecules to leave a Si-enriched fluid. By 6000 K the simulated fluid is supercritical. A large anomaly in the constant-volume heat capacity occurs near the critical temperature. We present tabulated thermodynamic properties for silica fluid that reconcile observations from FPMD simulations with current knowledge of the SiO2 melting curve and experimental Hugoniot curves.
Helicity and other conservation laws in perfect fluid motion
NASA Astrophysics Data System (ADS)
Serre, Denis
2018-03-01
In this review paper, we discuss helicity from a geometrical point of view and see how it applies to the motion of a perfect fluid. We discuss its relation with the Hamiltonian structure, and then its extension to arbitrary space dimensions. We also comment about the existence of additional conservation laws for the Euler equation, and its unlikely integrability in Liouville's sense.
Fluid Dynamics of the Heart and its Valves
NASA Astrophysics Data System (ADS)
Peskin, Charles S.
1997-11-01
The fluid dynamics of the heart involve the interaction of blood, a viscous incompressible fluid, with the flexible, elastic, fiber-reinforced heart valve leaflets that are immersed in that fluid. Neither the fluid motion nor the valve leaflet motion are known in advance: both must be computed simultaneously by solving their coupled equations of motion. This can be done by the immersed boundary method(Peskin CS and McQueen DM: A general method for the computer simulation of biological systems interacting with fluids. In: Biological Fluid Dynamics (Ellington CP and Pedley TJ, eds.), The Company of Biologists Limited, Cambridge UK, 1995, pp. 265-276.), which can be extended to incorporate the contractile fiber architecture of the muscular heart walls as well as the valve leaflets and the blood. In this way we arrive at a three-dimensional computer model of the heart(Peskin CS and McQueen DM: Fluid dynamics of the heart and its valves. In: Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology (Othmer HG, Adler FR, Lewis MA, and Dallon JC, eds.), Prentice-Hall, Englewood Cliffs NJ, 1996, pp. 309-337.), which can be used as a test chamber for the design of prosthetic cardiac valves, and also to study the function of the heart in health and in disease. Numerical solutions of the equations of cardiac fluid dynamics obtained by the immersed boundary method will be presented in the form of a video animation of the beating heart.
Dynamic behavior of microscale particles controlled by standing bulk acoustic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu; Guevara Vasquez, F.
2014-10-06
We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependentmore » on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.« less
NASA Astrophysics Data System (ADS)
M. C. Sagis, Leonard
2001-03-01
In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.
Formulation and evaluation of C-Ether fluids as lubricants useful to 260 C. [air breathing engines
NASA Technical Reports Server (NTRS)
Clark, F. S.; Miller, D. R.
1980-01-01
Three base stocks were evaluated in bench and bearing tests to determine their suitability for use at bulk oil temperatures (BOT) from -40 C to +260 C. A polyol ester gave good bearing tests at a bulk temperature of 218 C, but only a partially successful run at 274 C. These results bracket the fluid's maximum operating temperature between these values. An extensive screening program selected lubrication additives for a C-ether (modified polyphenyl ether) base stock. One formulation lubricated a bearing for 111 hours at 274 C (BOT), but this fluid gave many deposit related problems. Other C-ether blends produced cage wear or fatigue failures. Studies of a third fluid, a C-ether/disiloxane blend, consisted of bench oxidation and lubrication tests. These showed that some additives react differently in the blend than in pure C-ethers.
Nonlinear viscosity in brane-world cosmology with a Gauss–Bonnet term
NASA Astrophysics Data System (ADS)
Debnath, P. S.; Beesham, A.; Paul, B. C.
2018-06-01
Cosmological solutions are obtained with nonlinear bulk viscous cosmological fluid in the Randall–Sundrum type II (RS) brane-world model with or without Gauss–Bonnet (GB) terms. To describe such a viscous fluid, we consider the nonlinear transport equation which may be used far from equilibrium during inflation or reheating. Cosmological models are explored for both (i) power law and (ii) exponential evolution of the early universe in the presence of an imperfect fluid described by the non-linear Israel and Stewart theory (nIS). We obtain analytic solutions and the complex field equations are also analyzed numerically to study the evolution of the universe. The stability analysis of the equilibrium points of the dynamical system associated with the evolution of the nonlinear bulk viscous fluid in the RS Brane in the presence (or absence) of a GB term are also studied.
Hort, Ryan D; Revil, André; Munakata-Marr, Junko
2014-09-01
Time lapse resistivity surveys could potentially improve monitoring of permanganate-based in situ chemical oxidation (ISCO) of organic contaminants such as trichloroethene (TCE) by tracking changes in subsurface conductivity that result from injection of permanganate and oxidation of the contaminant. Bulk conductivity and pore fluid conductivity changes during unbuffered TCE oxidation using permanganate are examined through laboratory measurements and conductivity modeling using PHREEQC in fluid samples and porous media samples containing silica sand. In fluid samples, oxidation of one TCE molecule produces three chloride ions and one proton, resulting in an increase in fluid electrical conductivity despite the loss of two permanganate ions in the reaction. However, in saturated sand samples in which up to 8mM TCE was oxidized, at least 94% of the fluid conductivity associated with the presence of protons was removed within 3h of sand contact, most likely through protonation of silanol groups found on the surface of the sand grains. Minor conductivity effects most likely associated with pH-dependent reductive dissolution of manganese dioxide were also observed but not accounted for in pore-fluid conductivity modeling. Unaccounted conductivity effects resulted in an under-calculation of post-reaction pore fluid conductivity of 2.1% to 5.5%. Although small increases in the porous media formation factor resulting from precipitation of manganese dioxide were detected (about 3%), these increases could not be confirmed to be statistically significant. Both injection of permanganate and oxidation of TCE cause increases in bulk conductivity that would be detectable through time-lapse resistivity surveys in field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Conductivity measurements on H 2O-bearing CO 2-rich fluids
Capobianco, Ryan M.; Miroslaw S. Gruszkiewicz; Bodnar, Robert J.; ...
2014-09-10
Recent studies report rapid corrosion of metals and carbonation of minerals in contact with carbon dioxide containing trace amounts of dissolved water. One explanation for this behavior is that addition of small amounts of H 2O to CO 2 leads to significant ionization within the fluid, thus promoting reactions at the fluid-solid interface analogous to corrosion associated with aqueous fluids. The extent of ionization in the bulk CO 2 fluid was determined using a flow-through conductivity cell capable of detecting very low conductivities. Experiments were conducted from 298 to 473 K and 7.39 to 20 MPa with H 2O concentrationsmore » up to ~1600 ppmw (xH 2O ≈ 3.9 x 10 -3), corresponding to the H 2O solubility limit in liquid CO 2 at ambient temperature. All solutions showed conductivities <10 nS/cm, indicating that the solutions were essentially ion-free. Furthermore, this observation suggests that the observed corrosion and carbonation reactions are not the result of ionization in CO 2-rich bulk phase, but does not preclude ionization in the fluid at the fluid-solid interface.« less
Process modelling for Space Station experiments
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Rosenberger, Franz; Nadarajah, Arunan; Ouazzani, Jalil; Amiroudine, Sakir
1990-01-01
Examined here is the sensitivity of a variety of space experiments to residual accelerations. In all the cases discussed the sensitivity is related to the dynamic response of a fluid. In some cases the sensitivity can be defined by the magnitude of the response of the velocity field. This response may involve motion of the fluid associated with internal density gradients, or the motion of a free liquid surface. For fluids with internal density gradients, the type of acceleration to which the experiment is sensitive will depend on whether buoyancy driven convection must be small in comparison to other types of fluid motion, or fluid motion must be suppressed or eliminated. In the latter case, the experiments are sensitive to steady and low frequency accelerations. For experiments such as the directional solidification of melts with two or more components, determination of the velocity response alone is insufficient to assess the sensitivity. The effect of the velocity on the composition and temperature field must be considered, particularly in the vicinity of the melt-crystal interface. As far as the response to transient disturbances is concerned, the sensitivity is determined by both the magnitude and frequency of the acceleration and the characteristic momentum and solute diffusion times. The microgravity environment, a numerical analysis of low gravity tolerance of the Bridgman-Stockbarger technique, and modeling crystal growth by physical vapor transport in closed ampoules are discussed.
Young-Laplace equation for liquid crystal interfaces
NASA Astrophysics Data System (ADS)
Rey, Alejandro D.
2000-12-01
This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.
Apparatus and method for excluding gas from a liquid
Murphy, Jr., Robert J.
1985-01-01
The present invention is directed to an apparatus and method for preventing diffusion of a gas under high pressure into the bulk of a liquid filling a substantially closed chamber. This apparatus and method is particularly useful in connection with test devices for testing fluid characteristics under harsh conditions of extremely high pressure and high temperature. These devices typically pressurize the liquid by placing the liquid in pressure and fluid communication with a high pressure inert gas. The apparatus and method of the present invention prevent diffusion of the pressurizing gas into the bulk of the test liquid by decreasing the chamber volume at a rate sufficient to maintain the bulk of the liquid free of absorbed or dissolved gas by expelling that portion of the liquid which is contaminated by the pressurizing gas.
NASA Astrophysics Data System (ADS)
Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan
2015-03-01
A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.
NASA Astrophysics Data System (ADS)
Xi, Heng-Dong; Chen, Xin; Xia, Ke-Qing
2017-11-01
We report an experimental study of the temperature oscillation and the sloshing motion of the large-scale circulation (LSC) in turbulent Rayleigh-Bénard convection in water. Temperature measurements were made in aspect ratio one cylindrical cell by probes put in fluid and embedded in the sidewall simultaneously, and located at the 1/4, 1/2 and 3/4 heights of the convection cell. The results show that the temperature measured in fluid contains information of both the LSC and the signature of the hot and cold plumes, while the temperature measured in sidewall only contains information of the LSC. It is found that the sloshing motion of the LSC can be measured by both the temperatures in fluid and in sidewall. We also studies the effect of cell tilting on the temperature oscillation and sloshing motion of the LSC. It is found that both the amplitude and the frequency of the temperature oscillation (and the sloshing motion) increase when the tilt angle increases, while the off-center distance of the sloshing motion of the LSC remains unchanged. This work is supported by the NSFC of China (Grant Nos. 11472094 and U1613227), the RGC of Hong Kong SAR (Grant No. 403712) and the 111 project of China (Grant No. B17037).
Dynamics of premelted liquid films
NASA Astrophysics Data System (ADS)
Worster, Grae
2005-11-01
On small scales, surface tension forces are enormously powerful. When such forces act on every grain of a fine soil, they can move mountains, quite literally, in a process called frost heave. In fact, it is not surface tension per se but the intermolecular forces that underlie surface tension that also cause frost heave in partially solidified soils. In detail, these forces cause the premelting of solids. For example, at temperatures below 0^oC, water is solid (ice) in bulk but remains liquid in thin films adjacent to surfaces in contact with many other materials, such as silica. The intermolecular forces, such as the van der Waals force, acting between the materials on either side of an interface can cause interfacial premelting and simultaneously produce a strong normal stress across the premelted film. Whether these stresses cause large-scale motions relies significantly on the fluid mechanics of the microscopic films. I shall introduce the fundamental thermodynamic principles of premelting and illustrate its fluid mechanical consequences with simple theoretical models and experimental results. Applications of these ideas include the rejection of particulate matter during solidification, with consequences for the fabrication of composite materials, the freezing of colloidal suspensions, with consequences for the cryopreservation of biological systems, and the evolution of grain boundaries, with consequences for the redistribution of climate proxies sequestered in the Earth's ice sheets.
Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles
NASA Astrophysics Data System (ADS)
Guo, C. Q.; Zhang, C. H.; Païdoussis, M. P.
2010-07-01
Considering the non-uniformity of the flow velocity distribution in fluid-conveying pipes caused by the viscosity of real fluids, the centrifugal force term in the equation of motion of the pipe is modified for laminar and turbulent flow profiles. The flow-profile-modification factors are found to be 1.333, 1.015-1.040 and 1.035-1.055 for laminar flow in circular pipes, turbulent flow in smooth-wall circular pipes and turbulent flow in rough-wall circular pipes, respectively. The critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%, 0.74-1.9% and 1.7-2.6%, respectively, lower than that with plug flow, while those for flutter are even lower, which could reach 36% for the laminar flow profile. By introducing two new concepts of equivalent flow velocity and equivalent mass, fluid-conveying pipe problems with different flow profiles can be solved with the equation of motion for plug flow.
Numerical evaluation of a single ellipsoid motion in Newtonian and power-law fluids
NASA Astrophysics Data System (ADS)
Férec, Julien; Ausias, Gilles; Natale, Giovanniantonio
2018-05-01
A computational model is developed for simulating the motion of a single ellipsoid suspended in a Newtonian and power-law fluid, respectively. Based on a finite element method (FEM), the approach consists in seeking solutions for the linear and angular particle velocities using a minimization algorithm, such that the net hydrodynamic force and torque acting on the ellipsoid are zero. For a Newtonian fluid subjected to a simple shear flow, the Jeffery's predictions are recovered at any aspect ratios. The motion of a single ellipsoidal fiber is found to be slightly disturbed by the shear-thinning character of the suspending fluid, when compared with the Jeffery's solutions. Surprisingly, the perturbation can be completely neglected for a particle with a large aspect ratio. Furthermore, the particle centroid is also found to translate with the same linear velocity as the undisturbed simple shear flow evaluated at particle centroid. This is confirmed by recent works based on experimental investigations and modeling approach (1-2).
A novel mechanical model for phase-separation in debris flows
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.
2015-04-01
Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
Fluid property measurements study
NASA Technical Reports Server (NTRS)
Devaney, W. E.
1976-01-01
Fluid properties of refrigerant-21 were investigated at temperatures from the freezing point to 423 Kelvin and at pressures to 1.38 x 10 to the 8th power N/sq m (20,000 psia). The fluid properties included were: density, vapor pressure, viscosity, specific heat, thermal conductivity, thermal expansion coefficient, freezing point and bulk modulus. Tables of smooth values are reported.
Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter
NASA Astrophysics Data System (ADS)
Jiménez-Lozano, Joel; Sen, Mihir; Dunn, Patrick F.
2009-04-01
Particle motion in an unsteady peristaltic fluid flow is analyzed. The fluid is incompressible and Newtonian in a two-dimensional planar geometry. A perturbation method based on a small ratio of wave height to wavelength is used to obtain a closed-form solution for the fluid velocity field. This analytical solution is used in conjunction with an equation of motion for a small rigid sphere in nonuniform flow taking Stokes drag, virtual mass, Faxén, Basset, and gravity forces into account. Fluid streamlines and velocity profiles are calculated. Theoretical values for pumping rates are compared with available experimental data. An application to ureteral peristaltic flow is considered since fluid flow in the ureter is sometimes accompanied by particles such as stones or bacteriuria. Particle trajectories for parameters that correspond to calcium oxalates for calculosis and Escherichia coli type for bacteria are analyzed. The findings show that retrograde or reflux motion of the particles is possible and bacterial transport can occur in the upper urinary tract when there is a partial occlusion of the wave. Dilute particle mixing is also investigated, and it is found that some of the particles participate in the formation of a recirculating bolus, and some of them are delayed in transit and eventually reach the walls. This can explain the failure of clearing residuals from the upper urinary tract calculi after successful extracorporeal shock wave lithotripsy. The results may also be relevant to the transport of other physiological fluids and industrial applications in which peristaltic pumping is used.
NASA Astrophysics Data System (ADS)
Archer, Andrew J.; Chacko, Blesson; Evans, Robert
2017-07-01
In classical density functional theory (DFT), the part of the Helmholtz free energy functional arising from attractive inter-particle interactions is often treated in a mean-field or van der Waals approximation. On the face of it, this is a somewhat crude treatment as the resulting functional generates the simple random phase approximation (RPA) for the bulk fluid pair direct correlation function. We explain why using standard mean-field DFT to describe inhomogeneous fluid structure and thermodynamics is more accurate than one might expect based on this observation. By considering the pair correlation function g(x) and structure factor S(k) of a one-dimensional model fluid, for which exact results are available, we show that the mean-field DFT, employed within the test-particle procedure, yields results much superior to those from the RPA closure of the bulk Ornstein-Zernike equation. We argue that one should not judge the quality of a DFT based solely on the approximation it generates for the bulk pair direct correlation function.
Using record player demonstrations as analog models for geophysical fluids
NASA Astrophysics Data System (ADS)
Grannan, A. M.; Cheng, J. S.; Hawkins, E. K.; Ribeiro, A.; Aurnou, J. M.
2015-12-01
All celestial bodies, including stars, planets, satellites, and asteroids, rotate. The influence of rotation on the fluid layers in these bodies plays an important and diverse role, affecting many processes including oceanic and atmospheric circulation at the surface and magnetic field generation occurring in the interior. To better understand these large-scale processes, record players and containers of water are used as analog models to demonstrate the basic interplay between rotation and fluid motions. To contrast between rotating and non-rotating fluid motions, coffee creamer and food coloring are used as fluid tracers to provide a hands-on method of understanding the influence of rotation on the shapes of the planets, weather patterns, and the alignment of magnetic fields with rotational axes. Such simple demonstrations have been successfully employed for children in public outreach events and for adults in graduate level fluid dynamics courses.
Force effects on rotor of squeeze film damper using Newtonian and non-Newtonian fluid
NASA Astrophysics Data System (ADS)
Dominik, Šedivý; Petr, Ferfecki; Simona, Fialová
2017-09-01
This article presents the evaluation of force effects on rotor of squeeze film damper. Rotor is eccentric placed and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were gained by using computational modeling. Two types of fluid were considered as filling of damper. First type of fluid is Newtonian (has constant viscosity) and second type is magnetorheological fluid (does not have constant viscosity). Viscosity of non-Newtonian fluid is given using Bingham rheology model. Yield stress is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width which is between rotor and stator. Comparison of application two given types of fluids is shown in results.
NASA Technical Reports Server (NTRS)
Wolf, David A.; Schwarz, Ray P.
1992-01-01
Measurements were taken of the path of a simulated typical tissue segment or 'particle' within a rotating fluid as a function of gravitational strength, fluid rotation rate, particle sedimentation rate, and particle initial position. Parameters were examined within the useful range for tissue culture in the NASA rotating wall culture vessels. The particle moves along a nearly circular path through the fluid (as observed from the rotating reference frame of the fluid) at the same speed as its linear terminal sedimentation speed for the external gravitational field. This gravitationally induced motion causes an increasing deviation of the particle from its original position within the fluid for a decreased rotational rate, for a more rapidly sedimenting particle, and for an increased gravitational strength. Under low gravity conditions (less than 0.1 G), the particle's motion through the fluid and its deviation from its original position become negligible. Under unit gravity conditions, large distortions (greater than 0.25 inch) occur even for particles of slow sedimentation rate (less than 1.0 cm/sec). The particle's motion is nearly independent of the particle's initial position. Comparison with mathematically predicted particle paths show that a significant error in the mathematically predicted path occurs for large particle deviations. This results from a geometric approximation and numerically accumulating error in the mathematical technique.
Free Swimming in Ground Effect
NASA Astrophysics Data System (ADS)
Cochran-Carney, Jackson; Wagenhoffer, Nathan; Zeyghami, Samane; Moored, Keith
2017-11-01
A free-swimming potential flow analysis of unsteady ground effect is conducted for two-dimensional airfoils via a method of images. The foils undergo a pure pitching motion about their leading edge, and the positions of the body in the streamwise and cross-stream directions are determined by the equations of motion of the body. It is shown that the unconstrained swimmer is attracted to a time-averaged position that is mediated by the flow interaction with the ground. The robustness of this fluid-mediated equilibrium position is probed by varying the non-dimensional mass, initial conditions and kinematic parameters of motion. Comparisons to the foil's fixed-motion counterpart are also made to pinpoint the effect that free swimming near the ground has on wake structures and the fluid-mediated forces over time. Optimal swimming regimes for near-boundary swimming are determined by examining asymmetric motions.
Enhancement of vortex induced forces and motion through surface roughness control
Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX
2011-11-01
Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).
Gyro-Landau fluid models for toroidal geometry
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Dominguez, R. R.; Hammett, G. W.
1992-10-01
Gyro-Landau fluid model equations provide first-order time advancement for a limited number of moments of the gyrokinetic equation, while approximately preserving the effects of the gyroradius averaging and Landau damping. This paper extends the work of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for electrostatic motion parallel to the magnetic field and E×B motion to include the gyroaveraging linearly and the curvature drift motion. The equations are tested by comparing the ion-temperature-gradient mode linear growth rates for the model equations with those of the exact gyrokinetic theory over a full range of parameters.
NASA Astrophysics Data System (ADS)
Vetchanin, E. V.; Kilin, A. A.
2016-01-01
The free and controlled motion of an arbitrary two-dimensional body with a moving internal mass and constant circulation around the body in an ideal fluid is studied. Bifurcation analysis of the free motion is performed (under the condition of a fixed internal mass). It is shown that the body can be moved to a given point by varying the position of the internal mass. Some problems related to the presence of a nonzero drift of the body with a fixed internal mass are noted.
Diesel contaminated layer (i.e. 32-45 cm) was the most geoelectrically conductive and showed the peak microbial activity. Below the saturated zone microbial enhanced mineral weathering increases the ionic concentration of pore fluids, leading to increased bulk electrical conducit...
Code of Federal Regulations, 2011 CFR
2011-04-01
... container material. (a) The test. Bulk material shall be tested separately from final container material and material from each final container shall be tested in individual test vessels as follows: (1) Using Fluid Thioglycollate Medium—(i) Bulk and final container material. The volume of product, as required by paragraph (d...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Pooja; Ali, Sk. M., E-mail: musharaf@barc.gov.in; Shenoy, K. T.
2015-02-21
Thermodynamic properties of the fluid in the hydrophobic pores of nanotubes are known to be different not only from the bulk phase but also from other conventional confinements. Here, we use a recently developed theoretical scheme of “two phase thermodynamic (2PT)” model to understand the driving forces inclined to spontaneous filling of carbon nanotubes (CNTs) with polar (water) and nonpolar (methane) fluids. The CNT confinement is found to be energetically favorable for both water and methane, leading to their spontaneous filling inside CNT(6,6). For both the systems, the free energy of transfer from bulk to CNT confinement is favored bymore » the increased entropy (TΔS), i.e., increased translational entropy and increased rotational entropy, which were found to be sufficiently high to conquer the unfavorable increase in enthalpy (ΔE) when they are transferred inside CNT. To the best of our knowledge, this is the first time when it has been established that the increase in translational entropy during confinement in CNT(6,6) is not unique to water-like H bonding fluid but is also observed in case of nonpolar fluids such as methane. The thermodynamic results are explained in terms of density, structural rigidity, and transport of fluid molecules inside CNT. The faster diffusion of methane over water in bulk phase is found to be reversed during the confinement in CNT(6,6). Studies reveal that though hydrogen bonding plays an important role in transport of water through CNT, but it is not the solitary driving factor, as the nonpolar fluids, which do not have any hydrogen bond formation capacity can go inside CNT and also can flow through it. The associated driving force for filling and transport of water and methane is enhanced translational and rotational entropies, which are attributed mainly by the strong correlation between confined fluid molecules and availability of more free space for rotation of molecule, i.e., lower density of fluid inside CNT due to their single file-like arrangement. To the best of our information, this is perhaps the first study of nonpolar fluid within CNT using 2PT method. Furthermore, the fast flow of polar fluid (water) over nonpolar fluid (methane) has been captured for the first time using molecular dynamic simulations.« less
Bandgap modulation in photoexcited topological insulator Bi{sub 2}Te{sub 3} via atomic displacements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hada, Masaki, E-mail: hadamasaki@okayama-u.ac.jp; Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503; PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012
2016-07-14
The atomic and electronic dynamics in the topological insulator (TI) Bi{sub 2}Te{sub 3} under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novelmore » mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi{sub 2}Te{sub 3} trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.« less
Heyden, Matthias; Sun, Jian; Forbert, Harald; Mathias, Gerald; Havenith, Martina; Marx, Dominik
2012-08-16
The combination of vibrational spectroscopy and molecular dynamics simulations provides a powerful tool to obtain insights into the molecular details of water structure and dynamics in the bulk and in aqueous solutions. Applying newly developed approaches to analyze correlations of charge currents, molecular dipole fluctuations, and vibrational motion in real and k-space, we compare results from nonpolarizable water models, widely used in biomolecular modeling, to ab initio molecular dynamics. For the first time, we unfold the infrared response of bulk water into contributions from correlated fluctuations in the three-dimensional, anisotropic environment of an average water molecule, from the OH-stretching region down to the THz regime. Our findings show that the absence of electronic polarizability in the force field model not only results in differences in dipolar couplings and infrared absorption but also induces artifacts into the correlated vibrational motion between hydrogen-bonded water molecules, specifically at the intramolecular bending frequency. Consequently, vibrational motion is partially ill-described with implications for the accuracy of non-self-consistent, a posteriori methods to add polarizability.
Accurate bulk density determination of irregularly shaped translucent and opaque aerogels
NASA Astrophysics Data System (ADS)
Petkov, M. P.; Jones, S. M.
2016-05-01
We present a volumetric method for accurate determination of bulk density of aerogels, calculated from extrapolated weight of the dry pure solid and volume estimates based on the Archimedes' principle of volume displacement, using packed 100 μm-sized monodispersed glass spheres as a "quasi-fluid" media. Hard particle packing theory is invoked to demonstrate the reproducibility of the apparent density of the quasi-fluid. Accuracy rivaling that of the refractive index method is demonstrated for both translucent and opaque aerogels with different absorptive properties, as well as for aerogels with regular and irregular shapes.
Supercritical Fuel Measurements
2012-09-01
TERMS Fuels, supercritical fluids , stimulated scattering, Brillouin scattering, Rayleigh scattering, elastic properties, thermal properties 16...10 Supercritical Cell and Fluid Handling ....................................................................................... 11...motion in supercritical fluids . Thus, the method can perform diagnostics on the heat transfer of high-temperature and high-pressure fuels, measuring
Bulk viscosity of molecular fluids
NASA Astrophysics Data System (ADS)
Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.
2018-05-01
The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.
NASA Astrophysics Data System (ADS)
Azih, Chukwudi; Yaras, Metin I.
2018-01-01
The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism generates streamwise vorticity of the opposing sense of rotation in the close vicinity to the respective legs of the hairpin vortices causing a net reduction in thermal mixing. Finally, in the case of downstream-oriented gravitational acceleration, baroclinic vorticity generation as per spanwise density gradients causes additional wall-normal thermal mixing by promoting larger-scale ejection and sweep motions.
Origin of matter and space-time in the big bang
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, G. J.; Kajino, T.; Yamazaki, D.
We review the case for and against a bulk cosmic motion resulting from the quantum entanglement of our universe with the multiverse beyond our horizon. Within the current theory for the selection of the initial state of the universe from the landscape multiverse there is a generic prediction that pre-inflation quantum entanglement with other universes should give rise to a cosmic bulk flow with a correlation length of order horizon size and a velocity field relative to the expansion frame of the universe. Indeed, the parameters of this motion are are tightly constrained. A robust prediction can be deduced indicatingmore » that there should be an overall motion of of about 800 km/s relative to the background space time as defined by the cosmic microwave background (CMB). This talk will summarize the underlying theoretical motivation for this hypothesis. Of course our motion relative to the background space time (CMB dipole) has been known for decades and is generally attributed to the gravitational pull of the local super cluster. However, this cosmic peculiar velocity field has been recently deduced out to very large distances well beyond that of the local super cluster by using X-ray galaxy clusters as tracers of matter motion. This is achieved via the kinematic component of the Sunyaev-Zeldovich (KSZ) effect produced by Compton scattering of cosmic microwave background photons from the local hot intracluster gas. As such, this method measures peculiar velocity directly in the frame of the cluster. Similar attempts by our group and others have attempted to independently assess this bulk flow via Type la supernova redshifts. In this talk we will review the observation case for and against the existence of this bulk flow based upon the observations and predictions of the theory. If this interpretation is correct it has profound implications in that we may be observing for the first time both the physics that occurred before the big bang and the existence of the multiverse beyond our horizon.« less
Multiscale modeling and simulation for polymer melt flows between parallel plates
NASA Astrophysics Data System (ADS)
Yasuda, Shugo; Yamamoto, Ryoichi
2010-03-01
The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).
Multiscale modeling and simulation for polymer melt flows between parallel plates.
Yasuda, Shugo; Yamamoto, Ryoichi
2010-03-01
The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).
Bottier, Mathieu; Peña Fernández, Marta; Pelle, Gabriel; Grotberg, James B.
2017-01-01
Mucociliary clearance is one of the major lines of defense of the human respiratory system. The mucus layer coating the airways is constantly moved along and out of the lung by the activity of motile cilia, expelling at the same time particles trapped in it. The efficiency of the cilia motion can experimentally be assessed by measuring the velocity of micro-beads traveling through the fluid surrounding the cilia. Here we present a mathematical model of the fluid flow and of the micro-beads motion. The coordinated movement of the ciliated edge is represented as a continuous envelope imposing a periodic moving velocity boundary condition on the surrounding fluid. Vanishing velocity and vanishing shear stress boundary conditions are applied to the fluid at a finite distance above the ciliated edge. The flow field is expanded in powers of the amplitude of the individual cilium movement. It is found that the continuous component of the horizontal velocity at the ciliated edge generates a 2D fluid velocity field with a parabolic profile in the vertical direction, in agreement with the experimental measurements. Conversely, we show than this model can be used to extract microscopic properties of the cilia motion by extrapolating the micro-bead velocity measurement at the ciliated edge. Finally, we derive from these measurements a scalar index providing a direct assessment of the cilia beating efficiency. This index can easily be measured in patients without any modification of the current clinical procedures. PMID:28708866
Thermal analysis of turbulent flow of a supercritical fluid
NASA Technical Reports Server (NTRS)
Yamane, E.
1979-01-01
The influence of the large variation of thermodynamics and transport properties near the pseudocritical temperature on the heat transfer coefficient of supercritical fluid in turbulent flow was studied. The formation of the characteristics peak in the heat transfer coefficient vs. bulk temperature curve is described, and the necessity of the fluid element at pseudocritical temperature located in the buffer layer is discussed.
Resonances arising from hydrodynamic memory in Brownian motion.
Franosch, Thomas; Grimm, Matthias; Belushkin, Maxim; Mor, Flavio M; Foffi, Giuseppe; Forró, László; Jeney, Sylvia
2011-10-05
Observation of the Brownian motion of a small probe interacting with its environment provides one of the main strategies for characterizing soft matter. Essentially, two counteracting forces govern the motion of the Brownian particle. First, the particle is driven by rapid collisions with the surrounding solvent molecules, referred to as thermal noise. Second, the friction between the particle and the viscous solvent damps its motion. Conventionally, the thermal force is assumed to be random and characterized by a Gaussian white noise spectrum. The friction is assumed to be given by the Stokes drag, suggesting that motion is overdamped at long times in particle tracking experiments, when inertia becomes negligible. However, as the particle receives momentum from the fluctuating fluid molecules, it also displaces the fluid in its immediate vicinity. The entrained fluid acts back on the particle and gives rise to long-range correlations. This hydrodynamic 'memory' translates to thermal forces, which have a coloured, that is, non-white, noise spectrum. One hundred years after Perrin's pioneering experiments on Brownian motion, direct experimental observation of this colour is still elusive. Here we measure the spectrum of thermal noise by confining the Brownian fluctuations of a microsphere in a strong optical trap. We show that hydrodynamic correlations result in a resonant peak in the power spectral density of the sphere's positional fluctuations, in strong contrast to overdamped systems. Furthermore, we demonstrate different strategies to achieve peak amplification. By analogy with microcantilever-based sensors, our results reveal that the particle-fluid-trap system can be considered a nanomechanical resonator in which the intrinsic hydrodynamic backflow enhances resonance. Therefore, instead of being treated as a disturbance, details in thermal noise could be exploited for the development of new types of sensor and particle-based assay in lab-on-a-chip applications.
Method and apparatus for adapting steady flow with cyclic thermodynamics
Swift, Gregory W.; Reid, Robert S.; Ward, William C.
2000-01-01
Energy transfer apparatus has a resonator for supporting standing acoustic waves at a selected frequency with a steady flow process fluid thermodynamic medium and a solid medium having heat capacity. The fluid medium and the solid medium are disposed within the resonator for thermal contact therebetween and for relative motion therebetween. The relative motion is produced by a first means for producing a steady velocity component and second means for producing an oscillating velocity component at the selected frequency and concomitant wavelength of the standing acoustic wave. The oscillating velocity and associated oscillating pressure component provide energy transfer between the steady flow process fluid and the solid medium as the steady flow process fluid moves through the resonator.
Cytoplasmic motion induced by cytoskeleton stretching and its effect on cell mechanics.
Zhang, T
2011-09-01
Cytoplasmic motion assumed as a steady state laminar flow induced by cytoskeleton stretching in a cell is determined and its effect on the mechanical behavior of the cell under externally applied forces is demonstrated. Non-Newtonian fluid is assumed for the multiphase cytoplasmic fluid and the analytical velocity field around the macromolecular chain is obtained by solving the reduced nonlinear momentum equation using homotopy technique. The entropy generation by the fluid internal friction is calculated and incorporated into the entropic elasticity based 8-chain constitutive relations. Numerical examples showed strengthening behavior of cells in response to externally applied mechanical stimuli. The spatial distribution of the stresses within a cell under externally applied fluid flow forces were also studied.
Molecular aspect ratio and anchoring strength effects in a confined Gay-Berne liquid crystal
NASA Astrophysics Data System (ADS)
Cañeda-Guzmán, E.; Moreno-Razo, J. A.; Díaz-Herrera, E.; Sambriski, E. J.
2014-04-01
Phase diagrams for Gay-Berne (GB) fluids were obtained from molecular dynamics simulations for GB(2, 5, 1, 2) (i.e. short mesogens) and GB(3, 5, 1, 2) (i.e. long mesogens), which yield isotropic, nematic, and smectic-B phases. The long-mesogen fluid also yields the smectic-A phase. Ordered phases of the long-mesogen fluid form at higher temperatures and lower densities when compared to those of the short-mesogen fluid. The effect of confinement under weak and strong substrate couplings in slab geometry was investigated. Compared to the bulk, the isotropic-nematic transition does not shift in temprature significantly for the weakly coupled substrate in either mesogen fluid. However, the strongly coupled substrate shifts the transition to lower temperature. Confinement induces marked stratification in the short-mesogen fluid. This effect diminishes with distance from the substrate, yielding bulk-like behaviour in the slab central region. Fluid stratification is very weak for the long-mesogen fluid, but the strongly coupled substrate induces 'smectisation', an ordering effect that decays with distance. Orientation of the fluid on the substrate depends on the mesogen. There is no preferred orientation in a plane parallel to the substrate for the weakly coupled case. In the strongly coupled case, the mesogen orientation mimics that of adjacent fluid layers. Planar anchoring is observed with a broad distribution of orientations in the weakly coupled case. In the strongly coupled case, the distribution leans toward planar orientations for the short-mesogen fluid, while a marginal preference for tilting persists in the long-mesogen fluid.
Advanced Respiratory Motion Compensation for Coronary MR Angiography
Henningsson, Markus; Botnar, Rene M.
2013-01-01
Despite technical advances, respiratory motion remains a major impediment in a substantial amount of patients undergoing coronary magnetic resonance angiography (CMRA). Traditionally, respiratory motion compensation has been performed with a one-dimensional respiratory navigator positioned on the right hemi-diaphragm, using a motion model to estimate and correct for the bulk respiratory motion of the heart. Recent technical advancements has allowed for direct respiratory motion estimation of the heart, with improved motion compensation performance. Some of these new methods, particularly using image-based navigators or respiratory binning, allow for more advanced motion correction which enables CMRA data acquisition throughout most or all of the respiratory cycle, thereby significantly reducing scan time. This review describes the three components typically involved in most motion compensation strategies for CMRA, including respiratory motion estimation, gating and correction, and how these processes can be utilized to perform advanced respiratory motion compensation. PMID:23708271
Fluid powered linear piston motor with harmonic coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.
2016-09-20
A motor is disclosed that includes a module assembly including a piston that is axially cycled. The piston axial motion is coupled to torque couplers that convert the axial motion into rotary motion. The torque couplers are coupled to a rotor to rotate the rotor.
NASA Technical Reports Server (NTRS)
Homick, J. L.
1979-01-01
Research on the etiology, prediction, treatment and prevention of space motion sickness, designed to minimize the impact of this syndrome which was experienced frequently and with severity by individuals on the Skylab missions, on Space Shuttle crews is reviewed. Theories of the cause of space motion sickness currently under investigation by NASA include sensory conflict, which argues that motion sickness symptoms result from a mismatch between the total pattern of information from the spatial senses and that stored from previous experiences, and fluid shift, based upon the redistribution of bodily fluids that occurs upon continued exposure to weightlessness. Attempts are underway to correlate space motion sickness susceptibility to different provocative environments, vestibular and nonvestibular responses, and the rate of acquisition and length of retention of sensory adaptation. Space motion sickness countermeasures under investigation include various drug combinations, of which the equal combination of promethazine and ephedrine has been found to be as effective as the scopolomine and dexedrine combination, and vestibular adaptation and biofeedback training and autogenic therapy.
Geophysical Fluid Dynamics Outreach Films
NASA Astrophysics Data System (ADS)
Aurnou, J. M.; Schwarz, J. W.; Noguez, G.
2012-12-01
Here we will present high definition films of laboratory experiments demonstrating basic fluid motions similar to those occurring in atmospheres and oceans. In these experiments, we use water to simulate the fluid dynamics of both the liquid (oceans) and gaseous (atmospheric) envelopes. To simulate the spinning of the earth, we carry out the experiments on a rotating table. For each experiment, we begin by looking at our system first without the effects of rotation. Then, we include rotation to see how the behavior of the fluid changes due to the Coriolis accelerations. Our hope is that by viewing these experiments one will develop a sense for how fluids behave both in rotating and non-rotating systems. By noting the differences between the experiments, it should then be possible to establish a basis to think about large-scale fluid motions that exist in Earth's oceans and atmospheres as well as on planets other than Earth.Plan view image of vortices in a rotating tank of fluid. Movies of such flows make accessible the often difficult to comprehend fluid dynamical processes that occur in planetary atmospheres and oceans.
Variational principles for stochastic fluid dynamics
Holm, Darryl D.
2015-01-01
This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083
Controlled propulsion and separation of helical particles at the nanoscale.
Alcanzare, Maria Michiko T; Thakore, Vaibhav; Ollila, Santtu T T; Karttunen, Mikko; Ala-Nissila, Tapio
2017-03-15
Controlling the motion of nano and microscale objects in a fluid environment is a key factor in designing optimized tiny machines that perform mechanical tasks such as transport of drugs or genetic material in cells, fluid mixing to accelerate chemical reactions, and cargo transport in microfluidic chips. Directed motion is made possible by the coupled translational and rotational motion of asymmetric particles. A current challenge in achieving directed and controlled motion at the nanoscale lies in overcoming random Brownian motion due to thermal fluctuations in the fluid. We use a hybrid lattice-Boltzmann molecular dynamics method with full hydrodynamic interactions and thermal fluctuations to demonstrate that controlled propulsion of individual nanohelices in an aqueous environment is possible. We optimize the propulsion velocity and the efficiency of externally driven nanohelices. We quantify the importance of the thermal effects on the directed motion by calculating the Péclet number for various shapes, number of turns and pitch lengths of the helices. Consistent with the experimental microscale separation of chiral objects, our results indicate that in the presence of thermal fluctuations at Péclet numbers >10, chiral particles follow the direction of propagation according to its handedness and the direction of the applied torque making separation of chiral particles possible at the nanoscale. Our results provide criteria for the design and control of helical machines at the nanoscale.
NASA Astrophysics Data System (ADS)
Leary, K. C. P.; Schmeeckle, M. W.
2017-12-01
Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.
Active fluids at circular boundaries: swim pressure and anomalous droplet ripening.
Jamali, Tayeb; Naji, Ali
2018-06-13
We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave circular boundaries are used to model a fixed inclusion immersed in an active bath and a cavity (or container) enclosing the active particles, respectively. We first present a detailed analysis of the role of convex versus concave boundary curvature and of the chirality of active particles in their spatial distribution, chirality-induced currents, and the swim pressure they exert on the bounding surfaces. The results will then be used to predict the mechanical equilibria of suspended fluid enclosures (generically referred to as 'droplets') in a bulk with active particles being present either inside the bulk fluid or within the suspended droplets. We show that, while droplets containing active particles behave in accordance with standard capillary paradigms when suspended in a normal bulk, those containing a normal fluid exhibit anomalous behaviors when suspended in an active bulk. In the latter case, the excess swim pressure results in non-monotonic dependence of the inside droplet pressure on the droplet radius; hence, revealing an anomalous regime of behavior beyond a threshold radius, in which the inside droplet pressure increases upon increasing the droplet size. Furthermore, for two interconnected droplets, mechanical equilibrium can occur also when the droplets have different sizes. We thus identify a regime of anomalous droplet ripening, where two unequal-sized droplets can reach a final state of equal size upon interconnection, in stark contrast with the standard Ostwald ripening phenomenon, implying shrinkage of the smaller droplet in favor of the larger one.
Force and moment rotordynamic coefficients for pump-impeller shroud surfaces
NASA Technical Reports Server (NTRS)
Childs, Dara W.
1987-01-01
Governing equations of motion are derived for a bulk-flow model of the leakage path between an impeller shroud and a pump housing. The governing equations consist of a path-momentum, a circumferential - momentum, and a continuity equation. The fluid annulus between the impeller shroud and pump housing is assumed to be circumferentially symmetric when the impeller is centered; i.e., the clearance can vary along the pump axis but does not vary in the circumferential direction. A perturbation expansion of the governing equations in the eccentricity ratio yields a set of zeroth and first-order governing equations. The zeroth-order equations define the leaking rate and the circumferential and path velocity distributions and pressure distributions for a centered impeller position. The first-order equations define the perturbations in the velocity and pressure distributions due to either a radial-displacement perturbation or a tilt perturbation of the impeller. Integration of the perturbed pressure and shear-stress distribution acting on the rotor yields the reaction forces and moments acting on the impeller face.
Impact of temperature-velocity distribution on fusion neutron peak shape
NASA Astrophysics Data System (ADS)
Munro, David
2016-10-01
Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This talk will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radhydro implosion simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Detection of postseismic fault-zone collapse following the Landers earthquake
Massonnet, D.; Thatcher, W.; Vadon, H.
1996-01-01
Stress changes caused by fault movement in an earthquake induce transient aseismic crustal movements in the earthquake source region that continue for months to decades following large events. These motions reflect aseismic adjustments of the fault zone and/or bulk deformation of the surroundings in response to applied stresses, and supply information regarding the inelastic behaviour of the Earth's crust. These processes are imperfectly understood because it is difficult to infer what occurs at depth using only surface measurements, which are in general poorly sampled. Here we push satellite radar interferometry to near its typical artefact level, to obtain a map of the postseismic deformation field in the three years following the 28 June 1992 Landers, California earthquake. From the map, we deduce two distinct types of deformation: afterslip at depth on the fault that ruptured in the earthquake, and shortening normal to the fault zone. The latter movement may reflect the closure of dilatant cracks and fluid expulsion from a transiently over-pressured fault zone.
Molecular Mechanism of Pancreatic and Salivary Glands Fluid and HCO3− Secretion
Lee, Min Goo; Ohana, Ehud; Park, Hyun Woo; Yang, Dongki; Muallem, Shmuel
2013-01-01
Fluid and HCO3− secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO3− secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren’s syndrome and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO3− secretion, in particular by secretory glands. Fluid and HCO3− secretion by secretory glands is a two step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl− and secrete HCO3−. The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete small amount of NaCl-rich fluid, while the duct absorbs the Cl− and secretes HCO3− and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO3− secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that contains high concentrations of Na+ and Cl− and fluid secretion is mediated by active Cl− secretion. The salivary glands duct absorbs both the Na+ and Cl− and secretes K+ and HCO3−. In this review, we focus on the molecular mechanism of fluid and HCO3− secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and point the differences to meet glands specific secretions. PMID:22298651
Iverson, R.M.; Denlinger, R.P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
NASA Astrophysics Data System (ADS)
Iverson, Richard M.; Denlinger, Roger P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
BULK AND FILM CONTRIBUTIONS TO FLUID/FLUID INTERFACIAL AREA IN GRANULAR MEDIA. (R827116)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Astrophysics Data System (ADS)
Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.
2017-12-01
During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 < Mw < -3) is observed several meters away from the injection, in a part of the fault zone where the fluid overpressure is null or very low. Using hydromechanical modeling with friction laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and suggest that controlled field experiments at meter-scale are important for better assessing the role of fluid pressure in natural and human-induced earthquakes.
Microscale hydrodynamics near moving contact lines
NASA Technical Reports Server (NTRS)
Garoff, Stephen; Chen, Q.; Rame, Enrique; Willson, K. R.
1994-01-01
The hydrodynamics governing the fluid motions on a microscopic scale near moving contact lines are different from those governing motion far from the contact line. We explore these unique hydrodynamics by detailed measurement of the shape of a fluid meniscus very close to a moving contact line. The validity of present models of the hydrodynamics near moving contact lines as well as the dynamic wetting characteristics of a family of polymer liquids are discussed.
Erosion of tungsten armor after multiple intense transient events in ITER
NASA Astrophysics Data System (ADS)
Bazylev, B. N.; Janeschitz, G.; Landman, I. S.; Pestchanyi, S. E.
2005-03-01
Macroscopic erosion by melt motion is the dominating damage mechanism for tungsten armour under high-heat loads with energy deposition W > 1 MJ/m 2 and τ > 0.1 ms. For ITER divertor armour the results of a fluid dynamics simulation of the melt motion erosion after repetitive stochastically varying plasma heat loads of consecutive disruptions interspaced by ELMs are presented. The heat loads for particular single transient events are numerically simulated using the two-dimensional MHD code FOREV-2D. The whole melt motion is calculated by the fluid dynamics code MEMOS-1.5D. In addition for the ITER dome melt motion erosion of tungsten armour caused by the lateral radiation impact from the plasma shield at the disruption and ELM heat loads is estimated.
NASA Astrophysics Data System (ADS)
Vimmr, Jan; Bublík, Ondřej; Prausová, Helena; Hála, Jindřich; Pešek, Luděk
2018-06-01
This paper deals with a numerical simulation of compressible viscous fluid flow around three flat plates with prescribed harmonic motion. This arrangement presents a simplified blade cascade with forward wave motion. The aim of this simulation is to determine the aerodynamic forces acting on the flat plates. The mathematical model describing this problem is formed by Favre-averaged system of Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) formulation completed by one-equation Spalart-Allmaras turbulence model. The simulation was performed using the developed in-house CFD software based on discontinuous Galerkin method, which offers high order of accuracy.
Radhakrishnan, Ravi; Yu, Hsiu-Yu; Eckmann, David M.; Ayyaswamy, Portonovo S.
2017-01-01
Traditionally, the numerical computation of particle motion in a fluid is resolved through computational fluid dynamics (CFD). However, resolving the motion of nanoparticles poses additional challenges due to the coupling between the Brownian and hydrodynamic forces. Here, we focus on the Brownian motion of a nanoparticle coupled to adhesive interactions and confining-wall-mediated hydrodynamic interactions. We discuss several techniques that are founded on the basis of combining CFD methods with the theory of nonequilibrium statistical mechanics in order to simultaneously conserve thermal equipartition and to show correct hydrodynamic correlations. These include the fluctuating hydrodynamics (FHD) method, the generalized Langevin method, the hybrid method, and the deterministic method. Through the examples discussed, we also show a top-down multiscale progression of temporal dynamics from the colloidal scales to the molecular scales, and the associated fluctuations, hydrodynamic correlations. While the motivation and the examples discussed here pertain to nanoscale fluid dynamics and mass transport, the methodologies presented are rather general and can be easily adopted to applications in convective heat transfer. PMID:28035168
Dynamical Tidal Response of a Rotating Neutron Star
NASA Astrophysics Data System (ADS)
Landry, Philippe; Poisson, Eric
2017-01-01
The gravitational wave phase of a neutron star (NS) binary is sensitive to the deformation of the NS that results from its companion's tidal influence. In a perturbative treatment, the tidal deformation can be characterized by a set of dimensionless constants, called Love numbers, which depend on the NS equation of state. For static NSs, one type of Love number encodes the response to gravitoelectric tidal fields (associated with mass multipole moments), while another does likewise for gravitomagnetic fields (associated with mass currents). A NS subject to a gravitomagnetic tidal field develops internal fluid motions through gravitomagnetic induction; the fluid motions are irrotational, provided the star is non-rotating. When the NS is allowed to rotate, the situation is complicated by couplings between the tidal field and the star's spin. The problem becomes tractable in the slow-rotation limit. In this case, the fluid motions induced by an external gravitomagnetic field are fully dynamical, even if the tidal field is stationary: interior metric and fluid variables are time-dependent, and vary on the timescale of the rotation period. Remarkably, the exterior geometry of the NS remains time-independent.
Shear-driven motion of supported lipid bilayers in microfluidic channels.
Jönsson, Peter; Beech, Jason P; Tegenfeldt, Jonas O; Höök, Fredrik
2009-04-15
In this work, we demonstrate how a lateral motion of a supported lipid bilayer (SLB) and its constituents can be created without relying on self-spreading forces. The force driving the SLB is instead a viscous shear force arising from a pressure-driven bulk flow acting on the SLB that is formed on a glass wall inside a microfluidic channel. In contrast to self-spreading bilayers, this method allows for accurate control of the bilayer motion by altering the bulk flow in the channel. Experiments showed that an egg yolk phosphatidylcholine SLB formed on a glass support moved in a rolling motion under these shear forces, with the lipids in the upper leaflet of the bilayer moving at twice the velocity of the bilayer front. The drift velocity of different lipid probes in the SLB was observed to be sensitive to the interactions between the lipid probe and the surrounding molecules, resulting in drift velocities that varied by up to 1 order of magnitude for the different lipid probes in our experiments. Since the method provides a so far unattainable control of the motion of all molecules in an SLB, we foresee great potential for this technique, alone or in combination with other methods, for studies of lipid bilayers and different membrane-associated molecules.
Fluid mechanics in crystal growth - The 1982 Freeman scholar lecture
NASA Technical Reports Server (NTRS)
Ostrach, S.
1983-01-01
An attempt is made to unify the current state of knowledge in crystal growth techniques and fluid mechanics. After identifying important fluid dynamic problems for such representative crystal growth processes as closed tube vapor transport, open reactor vapor deposition, and the Czochralski and floating zone melt growth techniques, research results obtained to date are presented. It is noted that the major effort to date has been directed to the description of the nature and extent of bulk transport under realistic conditions, where bulk flow determines the heat and solute transport which strongly influence the temperature and concentration fields in the vicinity of the growth interface. Proper treatment of near field, or interface, problems cannot be given until the far field, or global flow, involved in a given crystal growth technique has been adequately described.
NASA Technical Reports Server (NTRS)
Lurie, Boris J. (Inventor); Schier, J. Alan (Inventor); Iskenderian, Theodore C. (Inventor)
1991-01-01
An improved fluid actuating system for imparting motion to a body such as a spacecraft is disclosed. The fluid actuating system consists of a fluid mass that may be controllably accelerated through at least one fluid path whereby an opposite acceleration is experienced by the spacecraft. For full control of the spacecraft's orientation, the system would include a plurality of fluid paths. The fluid paths may be circular or irregular, and the fluid paths may be located on the interior or exterior of the spacecraft.
Langasite, langanite, and langatate bulk-wave Y-cut resonators.
Smythe, R C; Helmbold, R C; Hague, G E; Snow, K A
2000-01-01
Materials in the langasite family are of current interest for both bulk wave and surface wave devices. Piano-convex Y-cut bulk wave resonators have been built and tested on overtones 1 through 9 using LGS (langasite; La(3)Ga(5)SiO(14)), LGN (langanite; La(3)Ga(5.5)Nb(0.5)O(14)), and LGT (langatate; La(3)Ga(5.5)Ta(5.5)O(14)). Frequencies and motional inductances are compared with calculated values, with good agreement except for the motional inductance of LGT. For all three materials, frequency variation is an essentially parabolic function of temperature. For LGN and LGT, reported values of the Q-frequency product are significantly above the classical limit for AT-cut quartz. A maximum 4 f value of 25.6x10(6), where frequency is in megahertz;, was observed for an LGT resonator; for an unplated resonator, 29.2x10(6) was measured. Still higher values are believed possible.
On the apparent power law in CDM halo pseudo-phase space density profiles
NASA Astrophysics Data System (ADS)
Nadler, Ethan O.; Oh, S. Peng; Ji, Suoqing
2017-09-01
We investigate the apparent power-law scaling of the pseudo-phase space density (PPSD) in cold dark matter (CDM) haloes. We study fluid collapse, using the close analogy between the gas entropy and the PPSD in the fluid approximation. Our hydrodynamic calculations allow for a precise evaluation of logarithmic derivatives. For scale-free initial conditions, entropy is a power law in Lagrangian (mass) coordinates, but not in Eulerian (radial) coordinates. The deviation from a radial power law arises from incomplete hydrostatic equilibrium (HSE), linked to bulk inflow and mass accretion, and the convergence to the asymptotic central power-law slope is very slow. For more realistic collapse, entropy is not a power law with either radius or mass due to deviations from HSE and scale-dependent initial conditions. Instead, it is a slowly rolling power law that appears approximately linear on a log-log plot. Our fluid calculations recover PPSD power-law slopes and residual amplitudes similar to N-body simulations, indicating that deviations from a power law are not numerical artefacts. In addition, we find that realistic collapse is not self-similar; scalelengths such as the shock radius and the turnaround radius are not power-law functions of time. We therefore argue that the apparent power-law PPSD cannot be used to make detailed dynamical inferences or extrapolate halo profiles inwards, and that it does not indicate any hidden integrals of motion. We also suggest that the apparent agreement between the PPSD and the asymptotic Bertschinger slope is purely coincidental.
Ideal glass transitions in thin films: An energy landscape perspective
NASA Astrophysics Data System (ADS)
Truskett, Thomas M.; Ganesan, Venkat
2003-07-01
We introduce a mean-field model for the potential energy landscape of a thin fluid film confined between parallel substrates. The model predicts how the number of accessible basins on the energy landscape and, consequently, the film's ideal glass transition temperature depend on bulk pressure, film thickness, and the strength of the fluid-fluid and fluid-substrate interactions. The predictions are in qualitative agreement with the experimental trends for the kinetic glass transition temperature of thin films, suggesting the utility of landscape-based approaches for studying the behavior of confined fluids.
Ishihara, Daisuke; Horie, T; Denda, Mitsunori
2009-01-01
In this study, the passive pitching due to wing torsional flexibility and its lift generation in dipteran flight were investigated using (a) the non-linear finite element method for the fluid-structure interaction, which analyzes the precise motions of the passive pitching of the wing interacting with the surrounding fluid flow, (b) the fluid-structure interaction similarity law, which characterizes insect flight, (c) the lumped torsional flexibility model as a simplified dipteran wing, and (d) the analytical wing model, which explains the characteristics of the passive pitching motion in the simulation. Given sinusoidal flapping with a frequency below the natural frequency of the wing torsion, the resulting passive pitching in the steady state, under fluid damping, is approximately sinusoidal with the advanced phase shift. We demonstrate that the generated lift can support the weight of some Diptera.
Bulk viscous cosmology with causal transport theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried, E-mail: oliver.piattella@gmail.com, E-mail: fabris@pq.cnpq.br, E-mail: winfried.zimdahl@pq.cnpq.br
2011-05-01
We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDMmore » case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10{sup −11} || cb{sup 2} ∼< 10{sup −8}.« less
Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran
2014-12-15
Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-García, Carlos; Maroto, Antonio L.; Martín-Moruno, Prado, E-mail: cargar08@ucm.es, E-mail: maroto@ucm.es, E-mail: pradomm@ucm.es
We study cosmological implications of bigravity and massive gravity solutions with non-simultaneously diagonal metrics by considering the generalized Gordon and Kerr-Schild ansatzes. The scenario that we obtain is equivalent to that of General Relativity with additional non-comoving perfect fluids. We show that the most general ghost-free bimetric theory generates three kinds of effective fluids whose equations of state are fixed by a function of the ansatz. Different choices of such function allow to reproduce the behaviour of different dark fluids. In particular, the Gordon ansatz is suitable for the description of various kinds of slowly-moving fluids, whereas the Kerr-Schild onemore » is shown to describe a null dark energy component. The motion of those dark fluids with respect to the CMB is shown to generate, in turn, a relative motion of baryonic matter with respect to radition which contributes to the CMB anisotropies. CMB dipole observations are able to set stringent limits on the dark sector described by the effective bimetric fluid.« less
Dynamics of yield-stress droplets: Morphology of impact craters
NASA Astrophysics Data System (ADS)
Neufeld, Jerome; Sohr, David; Ferrari, Leo; Dalziel, Stuart
2017-11-01
Yield strength can play an important role for the dynamics of droplets impacting on surfaces, whether at the industrial or planetary scale, and can capture a zoo of impact crater morphologies, from simple parabolic craters, to more complex forms with forms with, for example, multiple rings, central peaks. Here we show that the morphology of planetary impact craters can be reproduced in the laboratory using carbopol, a transparent yield-stress fluid, as both impactor and bulk fluid. Using high-speed video photography, we characterise the universal, transient initial excavation stage of impact and show the dependence of the subsequent relaxation to final crater morphology on impactor size, impact speed and yield stress. To further interrogate our laboratory impacts, we dye our impactor to map its final distribution and use particle tracking to determine the flow fields during impact and the maximal extent of the yield surface. We characterise the flow-fields induced during impact, and the maximal extent of the yield surface, by tracking particles within the bulk fluid and map the distribution of impactor and bulk by tracing the final distribution of dyed impactor. The results of laboratory impact droplets are used to infer the properties of planetary impactors, and aid in inter.
Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell
NASA Astrophysics Data System (ADS)
Gomez-Perez, N.; Rodriguez, J. F.; McWilliams, R. S.
2017-04-01
The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.
The Geophysical Fluid Flow Cell Experiment
NASA Technical Reports Server (NTRS)
Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.
1999-01-01
The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.
Energy from Ocean Waves, River Currents, and Wind
NASA Astrophysics Data System (ADS)
Guha, Shyamal
2006-05-01
The earth we live in is surrounded by fluids, which are in perpetual motion. There is air in the atmosphere, water in lakes, oceans and rivers. The air and water around us form our natural environment. Much of the fluid medium is in constant motion. The kinetic energy of this moving fluid is astronomical in magnitude. Over the years, I considered methods of converting a fraction of the vast reserve of this kinetic energy into electro-mechanical energy. I conceived a few schemes of such conversion. The fluids whose kinetic energy can be converted into electro-mechanical energy are: ocean waters, river current and atmospheric air. In a book to be published in 2006, I have described different techniques of energy conversion. In the APS meeting, I plan to discuss some of these techniques.
Linear and nonlinear analysis of fluid slosh dampers
NASA Astrophysics Data System (ADS)
Sayar, B. A.; Baumgarten, J. R.
1982-11-01
A vibrating structure and a container partially filled with fluid are considered coupled in a free vibration mode. To simplify the mathematical analysis, a pendulum model to duplicate the fluid motion and a mass-spring dashpot representing the vibrating structure are used. The equations of motion are derived by Lagrange's energy approach and expressed in parametric form. For a wide range of parametric values the logarithmic decrements of the main system are calculated from theoretical and experimental response curves in the linear analysis. However, for the nonlinear analysis the theoretical and experimental response curves of the main system are compared. Theoretical predictions are justified by experimental observations with excellent agreement. It is concluded finally that for a proper selection of design parameters, containers partially filled with viscous fluids serve as good vibration dampers.
Stochastic Modeling of the Persistence of HIV: Early Population Dynamics
2013-05-10
fluid, Brownian motion is named after the botanist Robert Brown. In the late nineteenth century, he observed that pollen floating in water appeared...to move about in a random manner. When he replaced the pollen with inorganic material, he noticed that the motion persisted. Upon plotting the motion
Measurements of unjacketed moduli of porous rock
NASA Astrophysics Data System (ADS)
Tarokh, A.; Makhnenko, R. Y.; Labuz, J.
2017-12-01
Coupling of stress and pore pressure appears in a number of applications dealing with subsurface (sedimentary) rock, including petroleum exploration and waste storage. Poroelastic analyses consider the compressibility of the solid constituents forming the rock, and often times solid bulk modulus Ks is assumed to be the same as the dominant mineral bulk modulus. In fact, there are two different parameters describing solid compressibility of a porous rock: the unjacketed bulk modulus Ks' and the unjacketed pore modulus Ks". Experimental techniques are developed to measure the two poroelastic parameters of fluid-saturated porous rock under the unjacketed condition. In an unjacketed experiment, the rock without a membrane is loaded by the fluid in a pressure vessel. The confining fluid permeates the connected pore space throughout the interior of the rock. Therefore, changes in mean stress P will produce equal changes in pore pressure p, i.e. ΔP = Δp. The test can also be performed with a jacketed rock specimen by applying equal increments of mean stress and pore pressure. The unjacketed bulk modulus, Ks', is obtained by measuring the bulk strain with resistive strain gages. The unjacketed pore modulus, Ks", the pore volume counterpart to Ks', is a measure of the change in pore pressure per unit pore volume strain under the unjacketed condition. Several indirect estimates of Ks" have been reported but limitations of these approaches do not provide an accurate value. We present direct measurements of Ks" with detailed calibration on the system volumetric response. The results indicate that for Dunnville sandstone Ks' and Ks" are equal while for Berea sandstone, a difference between the two moduli exists, which is explained by the presence of non-connected pores. The experiments also strongly suggest that both Ks' and Ks" are independent of effective stress.
Correlated motion in the bulk of dense granular flows.
Staron, Lydie
2008-05-01
Numerical simulations of two-dimensional stationary dense granular flows are performed. We check that the system obeys the h_{stop} phenomenology. Focusing on the spatial correlations of the instantaneous velocity fluctuations of the grains, we give evidence of the existence of correlated motion over several grain diameters in the bulk of the flow. Investigating the role of contact friction and restitution, we show that the associated typical length scale lambda is essentially independent of the grain properties. Moreover, we show that lambda is not controlled by the packing compacity. However, in agreement with previous experimental work, we observe that the correlation length decreases with the shear rate. Computing the flows inertia number I , we show a first-order dependence of lambda on I .
Computational fluid mechanics utilizing the variational principle of modeling damping seals
NASA Technical Reports Server (NTRS)
Abernathy, J. M.
1986-01-01
A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.
NASA Astrophysics Data System (ADS)
Harvey, J.; Gannoun, A.; Burton, K. W.; Schiano, P.; Rogers, N. W.; Alard, O.
2010-01-01
Spinel lherzolite xenoliths from Mont Briançon, French Massif Central, retain evidence for multiple episodes of melt depletion and melt/fluid infiltration (metasomatism). Evidence for primary melt depletion is still preserved in the co-variation of bulk-rock major elements (MgO 38.7-46.1 wt.%; CaO 0.9-3.6 wt.%), and many samples yield unradiogenic bulk-rock Os isotope ratios ( 187Os/ 188Os = 0.11541-0.12626). However, many individual xenoliths contain interstitial glasses and melt inclusions that are not in equilibrium with the major primary minerals. Incompatible trace element mass balance calculations demonstrate that metasomatic components comprise a significant proportion of the bulk-rock budget for these elements in some rocks, ranging to as much as 25% of Nd and 40% of Sr Critically, for Re-Os geochronology, melt/fluid infiltration is accompanied by the mobilisation of sulfide. Consequently, bulk-rock isotope measurements, whether using lithophile (e.g. Rb-Sr, Sm-Nd) or siderophile (Re-Os) based isotope systems, may only yield a perturbed and/or homogenised average of these multiple events. Osmium mass balance calculations demonstrate that bulk-rock Os in peridotite is dominated by contributions from two populations of sulfide grain: (i) interstitial, metasomatic sulfide with low [Os] and radiogenic 187Os/ 188Os, and (ii) primary sulfides with high [Os] and unradiogenic 187Os/ 188Os, which have been preserved within host silicate grains and shielded from interaction with transient melts and fluid. The latter can account for >97% of bulk-rock Os and preserve geochronological information of the melt from which they originally precipitated as an immiscible liquid. The Re-depletion model ages of individual primary sulfide grains preserve evidence for melt depletion beneath the Massif Central from at least 1.8 Gyr ago despite the more recent metasomatic event(s).
Kaku, Nobuhiro; Tabata, Tomonori; Tsumura, Hiroshi
2015-12-01
We verified the index cup position required for bulk bone grafting instead of morcellized grafting immediately after cementless total hip arthroplasty. Three-dimensional finite element analysis was used to evaluate changes in the volume of the slippage of the cup-host bone interface as micro-motion of the cup at the acetabular bone defect site depending on the cup-center-edge (CE) angle. The conditions of bulk bone grafts were similar to those of cortical bone. Slippage increased with decreasing cup-CE angle. A bulk bone graft tightly fixed to the host bone prevented considerably larger slippage between the cup and host bone. A smaller cup-CE angle increased the impact of the bulk bone graft on slippage. When the cup-CE angle was 0° or -10°, the criterion for slippage in favorable initial fixation in all conditions was <40 μm. Even if transplanted bulk bone is used, unless good fixation is obtained between the host bone, and the cup and bone graft, it is impossible to obtain reliable fixation of the cup with a cup-CE angle <-10° and slippage exceeding 40 μm. Bulk bone grafting tightly fixed to the host bone improves initial the cup-host bone fixation, especially when the cup-CE angle is small, such as <-10°. In clinical practice, negative factors are implicated in the initial fixation of various cups, and sufficient fixation between the host bone and cup or bulk bone graft using a screw is effective when the cup-CE angle is extremely small.
Motion of a liquid bridge between nonparallel surfaces.
Ataei, Mohammadmehdi; Tang, Tian; Amirfazli, Alidad
2017-04-15
Bulk motion of a liquid bridge between two nonparallel identical solid surfaces undergoing multiple loading cycles (compressing and stretching) was investigated numerically and experimentally. The effects of the following governing parameters were studied: the dihedral angle between the two surfaces (ψ), the amount of compressing and stretching (Δh), and wettability parameters i.e. the advancing contact angle (θ a ) and Contact Angle Hysteresis (CAH). Experiments were done using various combinations of ψ, Δh and on surfaces with different wettabilities to understand the effect of each parameter individually. Additionally, a numerical model using Surface Evolver software was developed to augment the experimental data and extract information about the shape of the bridge. An empirical function was proposed and validated to calculate the minimum amount of Δh needed to initiate the bulk motion (i.e. to overcome the initial lag of the motion in response to the compressing of the bridge), at a given dihedral angle ψ. The effect of governing parameters on magnitude and precision of the motion was investigated. The magnitude of the motion was found to be increased by increasing ψ and Δh, and/or by decreasing θ a and CAH. We demonstrated the possibility of modulating the precision of the motion with θ a . Additionally, it was shown that the magnitude of the motion (in one loading cycle) increases after each loading cycle, if the contact lines depin only on the narrower side of the bridge during compressing and only on the wider side during stretching (asymmetric depinning). Whereas, depinning on both sides of the bridge (symmetric depinning) reduced the magnitude of bridge motion in each cycle under cyclic loading. A larger ψ was found to convert symmetric depinning into asymmetric depinning. These findings not only enhance the understanding of bridge motion between nonparallel surfaces, but also are beneficial in controlling magnitude, precision, and lag of the motion in practical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Wada, Yuji; Kundu, Tribikram; Nakamura, Kentaro
2014-08-01
The distributed point source method (DPSM) is extended to model wave propagation in viscous fluids. Appropriate estimation on attenuation and boundary layer formation due to fluid viscosity is necessary for the ultrasonic devices used for acoustic streaming or ultrasonic levitation. The equations for DPSM modeling in viscous fluids are derived in this paper by decomposing the linearized viscous fluid equations into two components-dilatational and rotational components. By considering complex P- and S-wave numbers, the acoustic fields in viscous fluids can be calculated following similar calculation steps that are used for wave propagation modeling in solids. From the calculations reported the precision of DPSM is found comparable to that of the finite element method (FEM) for a fundamental ultrasonic field problem. The particle velocity parallel to the two bounding surfaces of the viscous fluid layer between two rigid plates (one in motion and one stationary) is calculated. The finite element results agree well with the DPSM results that were generated faster than the transient FEM results.
Conductivity dependence of seismoelectric wave phenomena in fluid-saturated sediments
NASA Astrophysics Data System (ADS)
Block, Gareth I.; Harris, John G.
2006-01-01
Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study the conductivity dependence of the electrokinetic (EK) effect are described, and outcomes for studies in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves and (2) the electromagnetic waves produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores; this feature is characteristic of poroelastic (Biot) media but is not predicted by either viscoelastic fluid or solid models. A model of plane wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both loose glass microspheres and medium-grain sand.
Analysis of intra-uterine fluid motion induced by uterine contractions.
Eytan, O; Elad, D
1999-03-01
Evaluation of the fluid flow pattern in a non-pregnant uterus is important for understanding embryo transport in the uterus. Fertilization occurs in the fallopian tube and the embryo (fertilized ovum) enters the uterine cavity within 3 days of ovulation. In the uterus, the embryo is conveyed by the uterine fluid for another 3 to 4 days to a successful implantation site at the upper part of the uterus. Fluid movements within the uterus may be induced by several mechanisms, but they seem to be dominated by myometrial contractions. Intra-uterine fluid transport in a sagittal cross-section of the uterus was simulated by a model of wall-induced fluid motion within a two-dimensional channel. The time-dependent fluid pattern was studied by employing the lubrication theory. A comprehensive analysis of peristaltic transport resulting from symmetric and asymmetric contractions is presented for various displacement waves on the channel walls. The results provide information on the flow field and possible trajectories by which an embryo may be transported before implantation at the uterine wall.
Modelling the normal bouncing dynamics of spheres in a viscous fluid
NASA Astrophysics Data System (ADS)
Izard, Edouard; Lacaze, Laurent; Bonometti, Thomas
2017-06-01
Bouncing motions of spheres in a viscous fluid are numerically investigated by an immersed boundary method to resolve the fluid flow around solids which is combined to a discrete element method for the particles motion and contact resolution. Two well-known configurations of bouncing are considered: the normal bouncing of a sphere on a wall in a viscous fluid and a normal particle-particle bouncing in a fluid. Previous experiments have shown the effective restitution coefficient to be a function of a single parameter, namely the Stokes number which compares the inertia of the solid particle with the fluid viscous dissipation. The present simulations show a good agreement with experimental observations for the whole range of investigated parameters. However, a new definition of the coefficient of restitution presented here shows a dependence on the Stokes number as in previous works but, in addition, on the fluid to particle density ratio. It allows to identify the viscous, inertial and dry regimes as found in experiments of immersed granular avalanches of Courrech du Pont et al. Phys. Rev. Lett. 90, 044301 (2003), e.g. in a multi-particle configuration.
Entropy, extremality, euclidean variations, and the equations of motion
NASA Astrophysics Data System (ADS)
Dong, Xi; Lewkowycz, Aitor
2018-01-01
We study the Euclidean gravitational path integral computing the Rényi entropy and analyze its behavior under small variations. We argue that, in Einstein gravity, the extremality condition can be understood from the variational principle at the level of the action, without having to solve explicitly the equations of motion. This set-up is then generalized to arbitrary theories of gravity, where we show that the respective entanglement entropy functional needs to be extremized. We also extend this result to all orders in Newton's constant G N , providing a derivation of quantum extremality. Understanding quantum extremality for mixtures of states provides a generalization of the dual of the boundary modular Hamiltonian which is given by the bulk modular Hamiltonian plus the area operator, evaluated on the so-called modular extremal surface. This gives a bulk prescription for computing the relative entropies to all orders in G N . We also comment on how these ideas can be used to derive an integrated version of the equations of motion, linearized around arbitrary states.
Shapes of Bubbles and Drops in Motion.
ERIC Educational Resources Information Center
O'Connell, James
2000-01-01
Explains the shape distortions that take place in fluid packets (bubbles or drops) with steady flow motion by using the laws of Archimedes, Pascal, and Bernoulli rather than advanced vector calculus. (WRM)
7 CFR 1032.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of solids-not-fat other than protein (other solids), and the value of the somatic cell adjustment pursuant... of fluid milk products and bulk fluid cream products; (3) The utilization or disposition of all milk...
7 CFR 1033.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of solids-not-fat other than protein (other solids), and the value of the somatic cell adjustment pursuant... of fluid milk products and bulk fluid cream products; (3) The utilization or disposition of all milk...
7 CFR 1032.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of solids-not-fat other than protein (other solids), and the value of the somatic cell adjustment pursuant... of fluid milk products and bulk fluid cream products; (3) The utilization or disposition of all milk...
7 CFR 1033.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of solids-not-fat other than protein (other solids), and the value of the somatic cell adjustment pursuant... of fluid milk products and bulk fluid cream products; (3) The utilization or disposition of all milk...
7 CFR 1032.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of solids-not-fat other than protein (other solids), and the value of the somatic cell adjustment pursuant... of fluid milk products and bulk fluid cream products; (3) The utilization or disposition of all milk...
7 CFR 1033.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of solids-not-fat other than protein (other solids), and the value of the somatic cell adjustment pursuant... of fluid milk products and bulk fluid cream products; (3) The utilization or disposition of all milk...
7 CFR 1126.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pool plant operator shall report for each of its operations the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of nonfat solids other than protein (other solids...) Inventories at the beginning and end of the month of fluid milk products and bulk fluid cream products; (3...
7 CFR 1032.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of solids-not-fat other than protein (other solids), and the value of the somatic cell adjustment pursuant... of fluid milk products and bulk fluid cream products; (3) The utilization or disposition of all milk...
7 CFR 1126.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pool plant operator shall report for each of its operations the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of nonfat solids other than protein (other solids...) Inventories at the beginning and end of the month of fluid milk products and bulk fluid cream products; (3...
7 CFR 1124.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, and pounds of solids-not-fat other than protein (other solids) contained in or represented by: (i) Receipts of producer... and end of the month of fluid milk products and bulk fluid cream products; (3) The utilization or...
7 CFR 1126.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pool plant operator shall report for each of its operations the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of nonfat solids other than protein (other solids...) Inventories at the beginning and end of the month of fluid milk products and bulk fluid cream products; (3...
7 CFR 1124.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, and pounds of solids-not-fat other than protein (other solids) contained in or represented by: (i) Receipts of producer... and end of the month of fluid milk products and bulk fluid cream products; (3) The utilization or...
7 CFR 1124.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, and pounds of solids-not-fat other than protein (other solids) contained in or represented by: (i) Receipts of producer... and end of the month of fluid milk products and bulk fluid cream products; (3) The utilization or...
7 CFR 1126.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pool plant operator shall report for each of its operations the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of nonfat solids other than protein (other solids...) Inventories at the beginning and end of the month of fluid milk products and bulk fluid cream products; (3...
7 CFR 1032.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of solids-not-fat other than protein (other solids), and the value of the somatic cell adjustment pursuant... of fluid milk products and bulk fluid cream products; (3) The utilization or disposition of all milk...
7 CFR 1126.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pool plant operator shall report for each of its operations the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of nonfat solids other than protein (other solids...) Inventories at the beginning and end of the month of fluid milk products and bulk fluid cream products; (3...
7 CFR 1033.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of solids-not-fat other than protein (other solids), and the value of the somatic cell adjustment pursuant... of fluid milk products and bulk fluid cream products; (3) The utilization or disposition of all milk...
7 CFR 1033.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, pounds of solids-not-fat other than protein (other solids), and the value of the somatic cell adjustment pursuant... of fluid milk products and bulk fluid cream products; (3) The utilization or disposition of all milk...
7 CFR 1124.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, and pounds of solids-not-fat other than protein (other solids) contained in or represented by: (i) Receipts of producer... and end of the month of fluid milk products and bulk fluid cream products; (3) The utilization or...
7 CFR 1124.30 - Reports of receipts and utilization.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the following information: (1) Product pounds, pounds of butterfat, pounds of protein, and pounds of solids-not-fat other than protein (other solids) contained in or represented by: (i) Receipts of producer... and end of the month of fluid milk products and bulk fluid cream products; (3) The utilization or...
Alimohammadi, Mona; Sherwood, Joseph M; Karimpour, Morad; Agu, Obiekezie; Balabani, Stavroula; Díaz-Zuccarini, Vanessa
2015-04-15
The management and prognosis of aortic dissection (AD) is often challenging and the use of personalised computational models is being explored as a tool to improve clinical outcome. Including vessel wall motion in such simulations can provide more realistic and potentially accurate results, but requires significant additional computational resources, as well as expertise. With clinical translation as the final aim, trade-offs between complexity, speed and accuracy are inevitable. The present study explores whether modelling wall motion is worth the additional expense in the case of AD, by carrying out fluid-structure interaction (FSI) simulations based on a sample patient case. Patient-specific anatomical details were extracted from computed tomography images to provide the fluid domain, from which the vessel wall was extrapolated. Two-way fluid-structure interaction simulations were performed, with coupled Windkessel boundary conditions and hyperelastic wall properties. The blood was modelled using the Carreau-Yasuda viscosity model and turbulence was accounted for via a shear stress transport model. A simulation without wall motion (rigid wall) was carried out for comparison purposes. The displacement of the vessel wall was comparable to reports from imaging studies in terms of intimal flap motion and contraction of the true lumen. Analysis of the haemodynamics around the proximal and distal false lumen in the FSI model showed complex flow structures caused by the expansion and contraction of the vessel wall. These flow patterns led to significantly different predictions of wall shear stress, particularly its oscillatory component, which were not captured by the rigid wall model. Through comparison with imaging data, the results of the present study indicate that the fluid-structure interaction methodology employed herein is appropriate for simulations of aortic dissection. Regions of high wall shear stress were not significantly altered by the wall motion, however, certain collocated regions of low and oscillatory wall shear stress which may be critical for disease progression were only identified in the FSI simulation. We conclude that, if patient-tailored simulations of aortic dissection are to be used as an interventional planning tool, then the additional complexity, expertise and computational expense required to model wall motion is indeed justified.
Coupled large eddy simulation and discrete element model of bedload motion
NASA Astrophysics Data System (ADS)
Furbish, D.; Schmeeckle, M. W.
2011-12-01
We combine a three-dimensional large eddy simulation of turbulence to a three-dimensional discrete element model of turbulence. The large eddy simulation of the turbulent fluid is extended into the bed composed of non-moving particles by adding resistance terms to the Navier-Stokes equations in accordance with the Darcy-Forchheimer law. This allows the turbulent velocity and pressure fluctuations to penetrate the bed of discrete particles, and this addition of a porous zone results in turbulence structures above the bed that are similar to previous experimental and numerical results for hydraulically-rough beds. For example, we reproduce low-speed streaks that are less coherent than those over smooth-beds due to the episodic outflow of fluid from the bed. Local resistance terms are also added to the Navier-Stokes equations to account for the drag of individual moving particles. The interaction of the spherical particles utilizes a standard DEM soft-sphere Hertz model. We use only a simple drag model to calculate the fluid forces on the particles. The model reproduces an exponential distribution of bedload particle velocities that we have found experimentally using high-speed video of a flat bed of moving sand in a recirculating water flume. The exponential distribution of velocity results from the motion of many particles that are nearly constantly in contact with other bed particles and come to rest after short distances, in combination with a relatively few particles that are entrained further above the bed and have velocities approaching that of the fluid. Entrainment and motion "hot spots" are evident that are not perfectly correlated with the local, instantaneous fluid velocity. Zones of the bed that have recently experienced motion are more susceptible to motion because of the local configuration of particle contacts. The paradigm of a characteristic saltation hop length in riverine bedload transport has infused many aspects of geomorphic thought, including even bedrock erosion. In light of our theoretical, experimental, and numerical findings supporting the exponential distribution of bedload particle motion, the idea of a characteristic saltation hop should be scrapped or substantially modified.
Distinguishing advective and powered motion in self-propelled colloids
NASA Astrophysics Data System (ADS)
Byun, Young-Moo; Lammert, Paul E.; Hong, Yiying; Sen, Ayusman; Crespi, Vincent H.
2017-11-01
Self-powered motion in catalytic colloidal particles provides a compelling example of active matter, i.e. systems that engage in single-particle and collective behavior far from equilibrium. The long-time, long-distance behavior of such systems is of particular interest, since it connects their individual micro-scale behavior to macro-scale phenomena. In such analyses, it is important to distinguish motion due to subtle advective effects—which also has long time scales and length scales—from long-timescale phenomena that derive from intrinsically powered motion. Here, we develop a methodology to analyze the statistical properties of the translational and rotational motions of powered colloids to distinguish, for example, active chemotaxis from passive advection by bulk flow.
Transient Cooperative Processes in Dewetting Polymer Melts.
Chandran, Sivasurender; Reiter, Günter
2016-02-26
We compare the high velocity dewetting behavior, at elevated temperatures, of atactic polystyrene (aPS) and isotactic polystyrene (iPS) films, with the zero shear bulk viscosity (η_{bulk}) of aPS being approximately ten times larger than iPS. As expected, for aPS the apparent viscosity of the films (η_{f}) derived from high-shear dewetting is less than η_{bulk}, displaying a shear thinning behavior. Surprisingly, for iPS films, η_{f} is always larger than η_{bulk}, even at about 50 °C above the melting point, with η_{f}/η_{bulk} following an Arrhenius behavior. The corresponding activation energy of ∼160±10 kJ/mol for iPS films suggests a cooperative motion of segments which are aligned and agglomerated by fast dewetting.
Motion of polymer cholesteric liquid crystal flakes in an electric field
NASA Astrophysics Data System (ADS)
Kosc, Tanya Zoriana
Polymer cholesteric liquid crystal (PCLC) flakes suspended in a host fluid can be manipulated with an electric field. Controlling a flake's orientation provides the opportunity to change and control the amount of selective reflection from the flake surface. Flake motion results from charge accumulation and an induced dipole moment established due to Maxwell-Wagner polarization. The type of flake behavior, whether random motion or uniform reorientation, depends upon the dielectric properties of the host fluid, which in turn dictate whether a DC or an AC electric field must be applied. PCLC flakes suspended in highly dielectric silicone oil host fluids tend to move randomly in the presence of a DC electric field, and no motion is seen in AC fields. Flakes suspended in a moderately conductive host fluid reorient 90° in the presence of an AC field within a specific frequency range. The flake shape and size are also important parameters that need to be controlled in order to produce uniform motion. Several methods for patterning flakes were investigated and identical square flakes were produced. Square PCLC flakes (80 mum sides) suspended in propylene carbonate reorient in 400 ms when a 40mVrms/mum field at 70 Hz is applied to the test device. Theoretical modeling supported experimental observations well, particularly in identifying the inverse quadratic dependence on the applied electric field and the electric field frequency dependence that is governed by the host fluid conductivity. Future goals and suggested experiments are provided, as well as an explanation and comparison of possible commercial applications for PCLC flakes. This research has resulted in one patent application and a series of invention disclosures that could place this research group and any industrial collaborators in a strong position to pursue commercial applications, particularly in the area of displays, and more specifically, electronic paper.
Physics of field-responsive fluids
NASA Astrophysics Data System (ADS)
Wan, Tsz Kai Jones
Electrorheological (ER) fluid is a new class of material, which possesses a variety of potential applications, such as shock absorbers and clutches. It is formed by microparticles that are dispersed in a host fluid. The particles will form chains rapidly when we apply an electric field to the ER fluid. However, due to the inadequacy of knowledge, the proposed applications have not been commercialized yet. The prediction of the strength of the ER effect is the main concern in the theoretical investigation of ER fluids. The ER effect is originated from the induced interaction between the polarized particles in an ER fluid. Existing theories assume that the particles are at rest. In a realistic situation, the fluid flow exerts force and torque on the particles, setting the particles in both translational and rotational motions under these actions. Recent experiments showed that the induced forces between the rotating particles are markedly different from the values predicted by existing theories. To overcome the discrepancy between theory and experiment, we formulate a model to take the particle motion into account, and derive the dependence of forces on the angular velocity of the rotating particles. We develop first-principles methods to investigate the dynamic ER effects in which the suspended particles can have translational or rotational motions. A model based on the relaxation of polarization charge on the particle surfaces is proposed and solved for various experimental conditions. The method can be extended to study the ER effects of coated particles, crystalline particles, and to the magnetorheological effects of paramagnetic particles. Moreover, the nonlinear ER effects under a strong applied field will be studied by the same approach. The results may help in the preparation of materials for the design of ER fluids.
Current structure of strongly nonlinear interfacial solitary waves
NASA Astrophysics Data System (ADS)
Semin, Sergey; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim; Churaev, Egor
2015-04-01
The characteristics of highly nonlinear solitary internal waves (solitons) in two-layer flow are computed within the fully nonlinear Navier-Stokes equations with use of numerical model of the Massachusetts Institute of Technology (MITgcm). The verification and adaptation of the model is based on the data from laboratory experiments [Carr & Davies, 2006]. The present paper also compares the results of our calculations with the computations performed in the framework of the fully nonlinear Bergen Ocean Model [Thiem et al, 2011]. The comparison of the computed soliton parameters with the predictions of the weakly nonlinear theory based on the Gardner equation is given. The occurrence of reverse flow in the bottom layer directly behind the soliton is confirmed in numerical simulations. The trajectories of Lagrangian particles in the internal soliton on the surface, on the interface and near the bottom are computed. The results demonstrated completely different trajectories at different depths of the model area. Thus, in the surface layer is observed the largest displacement of Lagrangian particles, which can be more than two and a half times larger than the characteristic width of the soliton. Located at the initial moment along the middle pycnocline fluid particles move along the elongated vertical loop at a distance of not more than one third of the width of the solitary wave. In the bottom layer of the fluid moves in the opposite direction of propagation of the internal wave, but under the influence of the reverse flow, when the bulk of the velocity field of the soliton ceases to influence the trajectory, it moves in the opposite direction. The magnitude of displacement of fluid particles in the bottom layer is not more than the half-width of the solitary wave. 1. Carr, M., and Davies, P.A. The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid. Phys. Fluids, 2006, vol. 18, No. 1, 1 - 10. 2. Thiem, O., Carr, M., Berntsen, J., and Davies, P.A. Numerical simulation of internal solitary wave-induced reverse flow and associated vortices in a shallow, two-layer fluid benthic boundary layer. Ocean Dynamics, 2011, vol. 61, No. 6, 857 - 872.
Development of Magnetorheological Fluid Elastomeric Dampers for Helicopter Stability Augmentation
2005-01-01
ABSTRACT Title of Dissertation: DEVELOPMENT OF MAGNETORHEOLOGICAL FLUID ELASTOMERIC DAMPERS FOR HELICOPTER STABILITY AUGMENTATION Wei Hu, Doctor of...motion increases. Magnetorheological (MR) fluids based dampers have controllable damping with little or no stiffness. In order to combine the...advantages of both elastomeric materials and MR flu- ids, semi-active magnetorheological fluid elastomeric (MRFE) lag dampers are developed in this thesis. In
Directed Fluid Transport with Biomimetic ``Silia'' Arrays
NASA Astrophysics Data System (ADS)
Shields, A. R.; Evans, B. A.; Carstens, B. L.; Falvo, M. R.; Washburn, S.; Superfine, R.
2008-10-01
We present results on the long-range, directed fluid transport produced by the collective beating of arrays of biomimetic ``silia.'' Silia are arrays of free-standing nanorods roughly the size of biological cilia, which we fabricate from a polymer-magnetic nanoparticle composite material. With external permanent magnets we actuate our silia such that their motion mimics the beating of biological cilia. Biological cilia have evolved to produce microscale fluid transport and are increasingly being recognized as critical components in a wide range of biological systems. However, despite much effort cilia generated fluid flows remain an area of active study. In the last decade, cilia-driven fluid flow in the embryonic node of vertebrates has been implicated as the initial left-right symmetry breaking event in these embryos. With silia we generate directional fluid transport by mimicking the tilted conical beating of these nodal cilia and seek to answer open questions about the nature of particle advection in such a system. By seeding fluorescent microparticles into the fluid we have noted the existence of two distinct flow regimes. The fluid flow is directional and coherent above the tips of the silia, while between the silia tips and floor particle motion is complicated and suggestive of chaotic advection.
Fluid Flow Phenomena during Welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei
2011-01-01
MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction andmore » speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.« less
Particle-fluid interactions for flow measurements
NASA Technical Reports Server (NTRS)
Berman, N. S.
1973-01-01
Study has been made of the motion of single particle and of group of particles, emphasizing solid particles in gaseous fluid. Velocities of fluid and particle are compared for several conditions of physical interest. Mean velocity and velocity fluctuations are calculated for single particle, and some consideration is given to multiparticle systems.
Molecular modeling the microstructure and phase behavior of bulk and inhomogeneous complex fluids
NASA Astrophysics Data System (ADS)
Bymaster, Adam
Accurate prediction of the thermodynamics and microstructure of complex fluids is contingent upon a model's ability to capture the molecular architecture and the specific intermolecular and intramolecular interactions that govern fluid behavior. This dissertation makes key contributions to improving the understanding and molecular modeling of complex bulk and inhomogeneous fluids, with an emphasis on associating and macromolecular molecules (water, hydrocarbons, polymers, surfactants, and colloids). Such developments apply broadly to fields ranging from biology and medicine, to high performance soft materials and energy. In the bulk, the perturbed-chain statistical associating fluid theory (PC-SAFT), an equation of state based on Wertheim's thermodynamic perturbation theory (TPT1), is extended to include a crossover correction that significantly improves the predicted phase behavior in the critical region. In addition, PC-SAFT is used to investigate the vapor-liquid equilibrium of sour gas mixtures, to improve the understanding of mercaptan/sulfide removal via gas treating. For inhomogeneous fluids, a density functional theory (DFT) based on TPT1 is extended to problems that exhibit radially symmetric inhomogeneities. First, the influence of model solutes on the structure and interfacial properties of water are investigated. The DFT successfully describes the hydrophobic phenomena on microscopic and macroscopic length scales, capturing structural changes as a function of solute size and temperature. The DFT is used to investigate the structure and effective forces in nonadsorbing polymer-colloid mixtures. A comprehensive study is conducted characterizing the role of polymer concentration and particle/polymer size ratio on the structure, polymer induced depletion forces, and tendency towards colloidal aggregation. The inhomogeneous form of the association functional is used, for the first time, to extend the DFT to associating polymer systems, applicable to any association scheme. Theoretical results elucidate how reversible bonding governs the structure of a fluid near a surface and in confined environments, the molecular connectivity (formation of supramolecules, star polymers, etc.) and the phase behavior of the system. Finally, the DFT is extended to predict the inter- and intramolecular correlation functions of polymeric fluids. A theory capable of providing such local structure is important to understanding how local chemistry, branching, and bond flexibility affect the thermodynamic properties of polymers.
Flow-synchronous field motion refrigeration
Hassen, Charles N.
2017-08-22
An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.
2004-04-15
Fluid Physics is study of the motion of fluids and the effects of such motion. When a liquid is heated from the bottom to the boiling point in Earth's microgravity, small bubbles of heated gas form near the bottom of the container and are carried to the top of the liquid by gravity-driven convective flows. In the same setup in microgravity, the lack of convection and buoyancy allows the heated gas bubbles to grow larger and remain attached to the container's bottom for a significantly longer period.
Coupled fluid-structure interaction. Part 1: Theory. Part 2: Application
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Ohayon, Roger
1991-01-01
A general three dimensional variational principle is obtained for the motion of an acoustic field enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. Semidiscrete finite element equations of motion based on this principle are derived and sample cases are given.
Determining the benefits of Vorticella cell body motion
NASA Astrophysics Data System (ADS)
Specht, Matty C.; Pepper, Rachel E.
2016-11-01
Microscopic sessile suspension feeders are single-celled organisms found in aquatic ecosystems. They live attached to underwater surfaces and create a fluid flow in order to feed on bacteria and debris. They participate in the natural degradation of contaminants in water. Understanding the fluid flow they create enhances our knowledge of their environmental impact. One type of suspension feeder, Vorticella, have been observed to vary their cell body orientation with respect to their surface, but the benefits of this motion are still unknown. We use simulations to investigate the effect of Vorticella body motion on the feeding current and the nutrient flux to the cell body to determine whether or not the motion increases nutrient consumption. We determine the nutrient flux using COMSOL Multiphysics software to solve the advection-diffusion equation with the flow given by a stokeslet model. We use a range of motions similar and dissimilar to that of live Vorticella. We find that most patterns of motion do not increase the nutrient flux, since the Vorticella feed from regions where they already have depleted the water of nutrients. However, it is possible that their motion could help the Vorticella find nutrients that are inhomogenously distributed in water.
Acoustically Driven Fluid and Particle Motion in Confined and Leaky Systems
NASA Astrophysics Data System (ADS)
Barnkob, Rune; Nama, Nitesh; Ren, Liqiang; Huang, Tony Jun; Costanzo, Francesco; Kähler, Christian J.
2018-01-01
The acoustic motion of fluids and particles in confined and acoustically leaky systems is receiving increasing attention for its use in medicine and biotechnology. A number of contradicting physical and numerical models currently exist, but their validity is uncertain due to the unavailability of hard-to-access experimental data for validation. We provide experimental benchmarking data by measuring 3D particle trajectories and demonstrate that the particle trajectories can be described numerically without any fitting parameter by a reduced-fluid model with leaky impedance-wall conditions. The results reveal the hitherto unknown existence of a pseudo-standing wave that drives the acoustic streaming as well as the acoustic radiation force on suspended particles.
NASA Astrophysics Data System (ADS)
Khan, Mair; Hussain, Arif; Malik, M. Y.; Salahuddin, T.; Khan, Farzana
This article presents the two-dimensional flow of MHD hyperbolic tangent fluid with nanoparticles towards a stretching surface. The mathematical modelling of current flow analysis yields the nonlinear set of partial differential equations which then are reduce to ordinary differential equations by using suitable scaling transforms. Then resulting equations are solved by using shooting technique. The behaviour of the involved physical parameters (Weissenberg number We , Hartmann number M , Prandtl number Pr , Brownian motion parameter Nb , Lewis number Le and thermophoresis number Nt) on velocity, temperature and concentration are interpreted in detail. Additionally, local skin friction, local Nusselt number and local Sherwood number are computed and analyzed. It has been explored that Weissenberg number and Hartmann number are decelerate fluid motion. Brownian motion and thermophoresis both enhance the fluid temperature. Local Sherwood number is increasing function whereas Nusselt number is reducing function for increasing values of Brownian motion parameter Nb , Prandtl number Pr , thermophoresis parameter Nt and Lewis number Le . Additionally, computed results are compared with existing literature to validate the accuracy of solution, one can see that present results have quite resemblance with reported data.
Segmental and local dynamics of stacked thin films of poly(methyl methacrylate)
NASA Astrophysics Data System (ADS)
Hayashi, Tatsuhiko; Fukao, Koji
2014-02-01
The glass transition temperature and the dynamics of the α and β processes have been investigated using differential scanning calorimetry and dielectric relaxation spectroscopy during successive annealing processes above the glass transition temperature for stacked thin films of poly(methyl methacrylate) (PMMA) of various thicknesses. The glass transition temperature and the dynamics of the α process (segmental motion) of as-stacked PMMA thin films exhibit thin-film-like behavior, insofar as the glass transition temperature is depressed and the dynamics of the α process are faster than those of the bulk system. Annealing at high temperature causes the glass transition temperature to increase from the reduced value and causes the dynamics of the α process to become slower approaching those of the bulk. Contrary to the segmental motion, the relaxation time of the β process (local motion) of the stacked PMMA thin films is almost equal to that of the bulk PMMA and is unaffected by the annealing process. However, the relaxation strengths of both the α process and β process show a strong correlation between each other. The sum of the relaxation strengths remains almost unchanged, while the individual relaxation strengths change during the annealing process. The fragility index of the stacked PMMA thin films increases with annealing, which suggests that the glassy state of the stacked thin films changes from strong to fragile.
Notes on aerodynamic forces 1 : rectilinear motion
NASA Technical Reports Server (NTRS)
Munk, Max M
1922-01-01
The study of the motion of perfect fluids is of paramount importance for the understanding of the chief phenomena occurring in the air surrounding an aircraft, and for the numerical determination of their effects. The author recently successfully employed some simple methods for the investigation of the flow of a perfect fluid that have never been mentioned in connection with aeronautical problems. These methods appeal particularly to the engineer who is untrained in performing laborious mathematical computations, as they do away with these and allow one to obtain many interesting results by the mere application of some general and well-known principles of mechanics. Discussed here are the kinetic energy of moving fluids, the momentum of a body in a perfect fluid, two dimensional flow, three dimensional flow, and the distribution of the transverse forces of very elongated surfaces of revolution.
NASA Astrophysics Data System (ADS)
Kosek, W.; Popinski, W.; Niedzielski, T.
2011-10-01
It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.
Energy from Ocean Waves, River Currents, and Wind
NASA Astrophysics Data System (ADS)
Guha, Shyamal
2006-03-01
The Earth we live in is surrounded by fluids, which are in perpetual motion. The air in the atmosphere and water found in lakes, ocean, and rivers form our natural environment. Much of the fluid medium is in constant motion. The kinetic energy of this moving fluid is astronomical in magnitude. Over the years, I have considered methods of converting a fraction of the vast reserve of this kinetic energy into electro-mechanical energy. I have conceived a few schemes of such conversions. The fluids whose kinetic energy can be converted into electro-mechanical energy are the following: ocean waters, river currents and atmospheric air. In a book to be published in the spring of 2006, I have described different techniques of energy conversion. In the upcoming APS meeting, I plan to discuss some of these techniques.
A numerical simulation of peristaltic motion in the ureter using fluid structure interactions.
Vahidi, Bahman; Fatouraee, Nasser
2007-01-01
An axisymmetric model with fluid-structure interactions (FSI) is introduced and solved to perform ureter flow and stress analysis. The Navier-Stokes equations are solved for the fluid and a linear elastic model for ureter is used. The finite element equations for both the structure and the fluid were solved by the Newton-Raphson iterative method. Our results indicated that shear stresses were high around the throat of moving contracted wall. The pressure gradient magnitude along the ureter wall and the symmetry line had the maximum value around the throat of moving contracted wall which decreased as the peristalsis propagates toward the bladder. The flow rate at the ureter outlet at the end of the peristaltic motion was about 650 mm3/s. During propagation of the peristalsis toward the bladder, the inlet backward flow region was limited to the areas near symmetry line but the inner ureter backward flow regions extended to the whole ureter contraction part. The backward flow was vanished after 1.5 seconds of peristalsis propagation start up and after that time the urine flow was forward in the whole ureter length, so reflux is more probable to be present at the beginning of the wall peristaltic motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Gorder, Robert A., E-mail: rav@knights.ucf.edu
2014-11-15
In R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014) I discussed properties of generalized vortex filaments exhibiting purely rotational motion under the low-temperature Svistunov model of the local induction approximation. Such solutions are stationary in terms of translational motion. In the Comment [N. Hietala, “Comment on ‘General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation’ [Phys. Fluids 26, 065105 (2014)],” Phys. Fluids 26, 119101 (2014)], the author criticizes my paper for not including translational motion (although it wasmore » clearly stated that the filament motion was assumed rotational). As it turns out, if one is interested in studying the geometric structure of solutions (which was the point of my paper), one obtains the needed qualitative results on the structure of such solutions by studying the purely rotational case. Nevertheless, in this Response I shall discuss the vortex filaments that have both rotational and translational motions. I then briefly discuss why one might want to study such generalized rotating filament solutions, in contrast to simple the standard helical or planar examples (which are really special cases). I also discuss how one can study the time evolution of filaments which exhibit more complicated dynamics than pure translation and rotation. Doing this, one can study non-stationary solutions which initially appear purely rotational and gradually display other dynamics as the filaments evolve.« less
CFD-DEM Onset of Motion Analysis for Application to Bed Scour Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitek, M. A.; Lottes, S. A.
This CFD study with DEM was done as a part of the Federal Highway Administration’s (FHWA’s) effort to improve scour design procedures. The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) model, available in CD-Adapco’s StarCCM+ software, was used to simulate multiphase systems, mainly those which combine fluids and solids. In this method the motion of discrete solids is accounted for by DEM, which applies Newton's laws of motion to every particle. The flow of the fluid is determined by the local averaged Navier–Stokes equations that can be solved using the traditional CFD approach. The interactions between the fluid phase and solidsmore » phase are modeled by use of Newton's third law. The inter-particle contact forces are included in the equations of motion. Soft-particle formulation is used, which allows particles to overlap. In this study DEM was used to model separate sediment grains and spherical particles laying on the bed with the aim to analyze their movement due to flow conditions. Critical shear stress causing the incipient movement of the sediment was established and compared to the available experimental data. An example of scour around a cylindrical pier is considered. Various depths of the scoured bed and flow conditions were taken into account to gain a better understanding of the erosion forces existing around bridge foundations. The decay of these forces with increasing scour depth was quantified with a ‘decay function’, which shows that particles become increasingly less likely to be set in motion by flow forces as a scour hole increases in depth. Computational and experimental examples of the scoured bed around a cylindrical pier are presented.« less
2015-12-15
axial direction; v – fluid velocity; Twc – wall temperature; Tb – fuel bulk temperature; q″ – heat flux ; ρ – fluid density. INTRODUCTION In...and cyclic paraffins ] and distribution are not. Chromatograms demonstrating RP compositional variability are shown in Fig. 2 alongside aviation
Venous compliance and fluid shift measurements on Spacelab IML-1
NASA Technical Reports Server (NTRS)
Leiski, D.; Thirsk, R. B.; Charles, J. B.; Bennett, B.
1992-01-01
During the first few hours of a human spaceflight mission, a headward fluid shift out of the abdomen, pelvis, and legs initiates a number of adaptive cardiovascular responses, including a loss of intravascular and extravascular fluid volume. On return to earth, these cardiovascular changes may lead to debilitating symptoms of orthostatic intolerance in an unprotected astronaut. To test the hypothesis that an inflight increase in compliance of the leg veins may contribute to this condition, measurements of lower leg fluid shift and bulk venous compliance were collected from crew members during the eight-day First International Microgravity Laboratory shuttle mission. An ultrasonic limb plethysmograph, in conjunction with two compression cuffs encircling the calf and thigh, was used to determine bulk compliance of the underlying veins over a range of negative and positive transmural pressures. The data from inflight experiment sessions were compared to preflight and postflight sessions. The preliminary results indicate that the volume of the lower leg decreased by over 10 percent by the sixth day of flight, but there was no apparent change in venous compliance.
Smectite diagenesis, pore-water freshening, and fluid flow at the toe of the Nankai wedge
Brown, K.M.; Saffer, D.M.; Bekins, B.A.
2001-01-01
The presence of low-chloride fluids in the lowermost sediments drilled at Ocean Drilling Program Site 808, at the Nankai accretionary wedge, has been considered as prime evidence for long-distance, lateral fluid flow from depth. Here, we re-evaluate the potential role of in situ reaction of smectite (S) to illite (I) in the genesis of this low chloride anomaly. This reaction is known to be occurring at Site 808, with both the S content and S to I ratio in the mixed layer clays decreasing substantially with depth. We show that the bulk of the chloride anomaly can generate by in situ clay dehydration, particularly if pre-reaction smectite abundances (Ai) approach ?? 10-15% of the bulk sediment. The Ai values, however, are not well constrained. At Ai values < 10-15%, an additional source of low-Cl fluid centered close to the de??collement could be required. Thus, there remains the important possibility that the observed low-Cl anomaly is a compound effect of both lateral flow and in situ smectite dehydration. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Iverson, Richard M.
1997-08-01
Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.
Iverson, R.M.
1997-01-01
Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.
Description and detection of burst events in turbulent flows
NASA Astrophysics Data System (ADS)
Schmid, P. J.; García-Gutierrez, A.; Jiménez, J.
2018-04-01
A mathematical and computational framework is developed for the detection and identification of coherent structures in turbulent wall-bounded shear flows. In a first step, this data-based technique will use an embedding methodology to formulate the fluid motion as a phase-space trajectory, from which state-transition probabilities can be computed. Within this formalism, a second step then applies repeated clustering and graph-community techniques to determine a hierarchy of coherent structures ranked by their persistencies. This latter information will be used to detect highly transitory states that act as precursors to violent and intermittent events in turbulent fluid motion (e.g., bursts). Used as an analysis tool, this technique allows the objective identification of intermittent (but important) events in turbulent fluid motion; however, it also lays the foundation for advanced control strategies for their manipulation. The techniques are applied to low-dimensional model equations for turbulent transport, such as the self-sustaining process (SSP), for varying levels of complexity.
NASA Astrophysics Data System (ADS)
Ashmawy, E. A.
2017-03-01
In this paper, we investigate the translational motion of a slip sphere with time-dependent velocity in an incompressible viscous fluid. The modified Navier-Stokes equation with fractional order time derivative is used. The linear slip boundary condition is applied on the spherical boundary. The integral Laplace transform technique is employed to solve the problem. The solution in the physical domain is obtained analytically by inverting the Laplace transform using the complex inversion formula together with contour integration. An exact formula for the drag force exerted by the fluid on the spherical object is deduced. This formula is applied to some flows, namely damping oscillation, sine oscillation and sudden motion. The numerical results showed that the order of the fractional derivative contributes considerably to the drag force. The increase in this parameter resulted in an increase in the drag force. In addition, the values of the drag force increased with the increase in the slip parameter.
Dynamic fluid sloshing in a one-dimensional array of coupled vessels
NASA Astrophysics Data System (ADS)
Huang, Y. H.; Turner, M. R.
2017-12-01
This paper investigates the coupled motion between the dynamics of N vessels coupled together in a one-dimensional array by springs and the motion of the inviscid fluid sloshing within each vessel. We develop a fully nonlinear model for the system relative to a moving frame such that the fluid in each vessel is governed by the Euler equations and the motion of each vessel is modeled by a forced spring equation. By considering a linearization of the model, the characteristic equation for the natural frequencies of the system is derived and analyzed for a variety of nondimensional parameter regimes. It is found that the problem can exhibit a variety of resonance situations from the 1 :1 resonance to (N +1 ) -fold 1 :⋯:1 resonance, as well as more general r :s :⋯:t resonances for natural numbers r ,s ,t . This paper focuses in particular on determining the existence of regions of parameter space where the (N +1 ) -fold 1 :⋯:1 resonance can be found.
The steady and transient motion of a sphere through a viscoelastic fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arigo, M.T.; McKinley, G.H.
1994-12-31
The settling motion of a sphere along the centerline of a cylindrical tube filled with a viscoelastic fluid is examined experimentally to quantify both the initial transient acceleration from rest and the ultimate steady state motion. A digital imaging system is used to determine the initial transient behavior of the sphere, and a laser Doppler velocimetry (LDV) system is used to independently measure the velocity of the fluid along the centerline of the cylinder as the sphere falls at its ultimate settling velocity. The motion of the sphere is a sensitive function of the dimensionless ratio of the sphere tomore » tube radii a/R and the dimensionless parameter called the Deborah number De. In this study, the authors extend the previous work of Becker et al. (1994), who examined a single ratio of a/R = 0.243, by considering a smaller aspect ratio of a/R = 0.121. Deborah numbers in the range 0.767 {le} De {le} 8.366 were obtained and experimental results who transient velocity over shoots of up to fifty percent of the final constant settling velocity at high De. comparison of the steady state velocity of the sphere in a non-Newtonian fluid to the theoretically-predicted stokes settling velocity reveals an initial drag reduction for low values of De followed by a drag enhancement at high De. LDV measurements in the viscoelastic fluid for both aspect ratios indicate a flow field in which the fore/aft symmetry is broken with the velocity profile in the wake of the sphere extending up to 50 radii behind the sphere at high De.« less
NASA Technical Reports Server (NTRS)
Young, A. T.
1974-01-01
An overlooked systematic error exists in the apparent radial velocities of solar lines reflected from regions of Venus near the terminator, owing to a combination of the finite angular size of the Sun and its large (2 km/sec) equatorial velocity of rotation. This error produces an apparent, but fictitious, retrograde component of planetary rotation, typically on the order of 40 meters/sec. Spectroscopic, photometric, and radiometric evidence against a 4-day atmospheric rotation is also reviewed. The bulk of the somewhat contradictory evidence seems to favor slow motions, on the order of 5 m/sec, in the atmosphere of Venus; the 4-day rotation may be due to a traveling wave-like disturbance, not bulk motions, driven by the UV albedo differences.
Laser speckle imaging based on photothermally driven convection.
Regan, Caitlin; Choi, Bernard
2016-02-01
Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications.
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1987-01-01
The Boussinesq approximation is extended so as to explicitly account for the transfer of fluid energy through viscous action into thermal energy. Ideal and dissipative integral invariants are discussed, in addition to the general equations for thermal-fluid motion.
Aagaard, Brad T.; Barall, Michael; Brocher, Thomas M.; Dolenc, David; Dreger, Douglas; Graves, Robert W.; Harmsen, Stephen; Hartzell, Stephen; Larsen, Shawn; McCandless, Kathleen; Nilsson, Stefan; Petersson, N. Anders; Rodgers, Arthur; Sjogreen, Bjorn; Zoback, Mary Lou
2009-01-01
This data set contains results from ground-motion simulations of the 1906 San Francisco earthquake, seven hypothetical earthquakes on the northern San Andreas Fault, and the 1989 Loma Prieta earthquake. The bulk of the data consists of synthetic velocity time-histories. Peak ground velocity on a 1/60th degree grid and geodetic displacements from the simulations are also included. Details of the ground-motion simulations and analysis of the results are discussed in Aagaard and others (2008a,b).
NASA Astrophysics Data System (ADS)
Santosh, M.; Naik, S. Pavan Kumar; Koblischka, M. R.
2017-07-01
In the upcoming generation, bulk high temperature superconductors (HTS) will play a crucial and a promising role in numerous industrial applications ranging from Maglev trains to magnetic resonance imaging, etc. Especially, the bulk HTS as permanent magnets are suitable due to the fact that they can trap magnetic fields being several orders of magnitude higher than those of the best hard ferromagnets. The bulk HTS LREBa2Cu3O7-δ (LREBCO or LRE-123, LRE: Y, Gd, etc.,) materials could obtain very powerful compact superconducting super-magnets, which can be operated at the cheaper liquid nitrogen temperature or below due to higher critical temperatures (i.e., ∼90 K). As a result, the new advanced technology can be utilized in a more attractive manner for a variety of technological and medical applications which have the capacity to revolutionize the field. An understanding of the magnetic field dependence of the critical current density (J c(H)) is important to develop better adapted materials. To achieve this goal, a variety of Jc (H) behaviours of bulk LREBCO samples were modelled regarding thermally activated flux motion. In essence, the Jc (H) curves follows a certain criterion where an exponential model is applied. However, to fit the complete Jc (H) curve of the LRE-123 samples an unique model is necessary to explain the behavior at low and high fields. The modelling of the various superconducting materials could be understood in terms of the pinning mechanisms.
Boundary layers and resistance on liquid motion with only slight friction
NASA Technical Reports Server (NTRS)
1980-01-01
The laws of fluid motion are examined systematically for the case where friction is assumed to be very slight. Calculations are carried out with the appropriate differential equation and practical investigations are illustrated.
NASA Astrophysics Data System (ADS)
Šedivý, Dominik; Ferfecki, Petr; Fialová, Simona
2018-06-01
This article presents the evaluation of force effects on squeeze film damper rotor. The rotor is placed eccentrically and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were measured by using computational modeling. Damper was filled with magnetorheological fluid. Viscosity of this non-Newtonian fluid is given using Bingham rheology model. Yield stress is not constant and it is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width between rotor and stator. The simulations were made in finite volume method based solver. The motion of the inner ring of squeeze film damper was carried out by dynamic mesh. Numerical solution was solved for five different initial eccentricities and angular velocities of rotor motion.
NASA Astrophysics Data System (ADS)
Wan, Yu; Jin, Kai; Ahmad, Talha J.; Black, Michael J.; Xu, Zhiping
2017-03-01
Fluidic environment is encountered for mechanical components in many circumstances, which not only damps the oscillation but also modulates their dynamical behaviors through hydrodynamic interactions. In this study, we examine energy transfer and motion synchronization between two mechanical micro-oscillators by performing thermal lattice-Boltzmann simulations. The coefficient of inter-oscillator energy transfer is measured to quantify the strength of microhydrodynamic coupling, which depends on their distance and fluid properties such as density and viscosity. Synchronized motion of the oscillators is observed in the simulations for typical parameter sets in relevant applications, with the formation and loss of stable anti-phase synchronization controlled by the oscillating frequency, amplitude, and hydrodynamic coupling strength. The critical ranges of key parameters to assure efficient energy transfer or highly synchronized motion are predicted. These findings could be used to advise mechanical design of passive and active devices that operate in fluid.
Dipolar eddies in a decaying stratified turbulent flow
NASA Astrophysics Data System (ADS)
Voropayev, S. I.; Fernando, H. J. S.; Morrison, R.
2008-02-01
Laboratory experiments on the evolution of dipolar (momentum) eddies in a stratified fluid in the presence of random background motions are described. A turbulent jet puff was used to generate the momentum eddies, and a decaying field of ambient random vortical motions was generated by a towed grid. Data on vorticity/velocity fields of momentum eddies, those of background motions, and their interactions were collected in the presence and absence of the other, and the main characteristics thereof were parametrized. Similarity arguments predict that dipolar eddies in stratified fluids may preserve their identity in decaying grid-generated stratified turbulence, which was verified experimentally. Possible applications of the results include mushroomlike currents and other naturally/artificially generated large dipolar eddies in strongly stratified layers of the ocean, the longevity of which is expected to be determined by the characteristics of the eddies and random background motions.
Static analysis of a sonar dome rubber window
NASA Technical Reports Server (NTRS)
Lai, J. L.
1978-01-01
The application of NASTRAN (level 16.0.1) to the static analysis of a sonar dome rubber window (SDRW) was demonstrated. The assessment of the conventional model (neglecting the enclosed fluid) for the stress analysis of the SDRW was made by comparing its results to those based on a sophisticated model (including the enclosed fluid). The fluid was modeled with isoparametric linear hexahedron elements with approximate material properties whose shear modulus was much smaller than its bulk modulus. The effect of the chosen material property for the fluid is discussed.
NASA Astrophysics Data System (ADS)
Faber, T. E.
1995-08-01
This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.
Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2006-01-01
This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…
On Flexible Tubes Conveying Fluid: Geometric Nonlinear Theory, Stability and Dynamics
NASA Astrophysics Data System (ADS)
Gay-Balmaz, François; Putkaradze, Vakhtang
2015-08-01
We derive a fully three-dimensional, geometrically exact theory for flexible tubes conveying fluid. The theory also incorporates the change of the cross section available to the fluid motion during the dynamics. Our approach is based on the symmetry-reduced, exact geometric description for elastic rods, coupled with the fluid transport and subject to the volume conservation constraint for the fluid. We first derive the equations of motion directly, by using an Euler-Poincaré variational principle. We then justify this derivation with a more general theory elucidating the interesting mathematical concepts appearing in this problem, such as partial left (elastic) and right (fluid) invariance of the system, with the added holonomic constraint (volume). We analyze the fully nonlinear behavior of the model when the axis of the tube remains straight. We then proceed to the linear stability analysis and show that our theory introduces important corrections to previously derived results, both in the consistency at all wavelength and in the effects arising from the dynamical change of the cross section. Finally, we derive and analyze several analytical, fully nonlinear solutions of traveling wave type in two dimensions.
Feeding of swimming Paramecium with fore-aft asymmetry in viscous fluid
NASA Astrophysics Data System (ADS)
Zhang, Peng; Jana, Saikat; Giarra, Matthew; Vlachos, Pavlos; Jung, Sunghwan
2013-11-01
Swimming behaviours and feeding efficiencies of Paramecium Multimicronucleatum with fore-aft asymmetric body shapes are studied experimentally and numerically. Among various possible swimming ways, ciliates typically exhibit only one preferred swimming directions in favorable conditions. Ciliates, like Paramecia, with fore-aft asymmetric shapes preferably swim towards the slender anterior while feeding fluid to the oral groove located at the center of the body. Since both feeding and swimming efficiencies are influenced by fluid motions around the body, it is important to reveal the fluid mechanics around a moving object. Experimentally, μ-PIV methods are employed to characterize the source-dipole streamline patterns and fluid motions around Paramecium. Numerical simulations by boundary element methods are also used to evaluate surface stresses and velocities, which give insights into the efficiencies of swimming and feeding depending on body asymmetry. It is concluded that a slender anterior and fat posterior increases the combined efficiency of swimming and feeding, which matches well with actual shapes of Paramecium. Discrepancies between experiments and simulations are also discussed.
A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow
NASA Technical Reports Server (NTRS)
Baker, Gregory; Siegel, Michael; Tanveer, Saleh
1995-01-01
We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. This situation is disastrous for numerical computation, as small round-off errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out.
Fluid-driven origami-inspired artificial muscles.
Li, Shuguang; Vogt, Daniel M; Rus, Daniela; Wood, Robert J
2017-12-12
Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ∼600 kPa, and produce peak power densities over 2 kW/kg-all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration. Copyright © 2017 the Author(s). Published by PNAS.
Surface motion of a fluid planet induced by impacts
NASA Astrophysics Data System (ADS)
Ni, Sidao; Ahrens, Thomas J.
2006-10-01
In order to approximate the free-surface motion of an Earth-sized planet subjected to a giant impact, we have described the excitation of body and surface waves in a spherical compressible fluid planet without gravity or intrinsic material attenuation for a buried explosion source. Using the mode summation method, we obtained an analytical solution for the surface motion of the fluid planet in terms of an infinite series involving the products of spherical Bessel functions and Legendre polynomials. We established a closed form expression for the mode summation excitation coefficient for a spherical buried explosion source, and then calculated the surface motion for different spherical explosion source radii a (for cases of a/R = 0.001 to 0.035, R is the radius of the Earth) We also studied the effect of placing the explosion source at different radii r0 (for cases of r0/R = 0.90 to 0.96) from the centre of the planet. The amplitude of the quasi-surface waves depends substantially on a/R, and slightly on r0/R. For example, in our base-line case, a/R = 0.03, r0/R = 0.96, the free-surface velocity above the source is 0.26c, whereas antipodal to the source, the peak free surface velocity is 0.19c. Here c is the acoustic velocity of the fluid planet. These results can then be applied to studies of atmosphere erosion via blow-off caused by asteroid impacts.
Fluid-driven origami-inspired artificial muscles
Li, Shuguang; Vogt, Daniel M.; Rus, Daniela; Wood, Robert J.
2017-01-01
Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ∼600 kPa, and produce peak power densities over 2 kW/kg—all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration. PMID:29180416
Fluid dynamics during Random Positioning Machine micro-gravity experiments
NASA Astrophysics Data System (ADS)
Leguy, Carole A. D.; Delfos, René; Pourquie, Mathieu J. B. M.; Poelma, Christian; Westerweel, Jerry; van Loon, Jack J. W. A.
2017-06-01
A Random Positioning Machine (RPM) is a device used to study the role of gravity on biological systems. This is accomplished through continuous reorientation of the sample such that the net influence of gravity is randomized over time. The aim of this study is to predict fluid flow behavior during such RPM simulated microgravity studies, which may explain differences found between RPM and space flight experiments. An analytical solution is given for a cylinder as a model for an experimental container. Then, a dual-axis rotating frame is used to mimic the motion characteristics of an RPM with sinusoidal rotation frequencies of 0.2 Hz and 0.1 Hz while Particle Image Velocimetry is used to measure the velocity field inside a flask. To reproduce the same experiment numerically, a Direct Numerical Simulation model is used. The analytical model predicts that an increase in the Womersley number leads to higher shear stresses at the cylinder wall and decrease in fluid angular velocity inside the cylinder. The experimental results show that periodic single-axis rotation induces a fluid motion parallel to the wall and that a complex flow is observed for two-axis rotation with a maximum wall shear stress of 8.0 mPa (80 mdyne /cm2). The experimental and numerical results show that oscillatory motion inside an RPM induces flow motion that can, depending on the experimental samples, reduce the quality of the simulated microgravity. Thus, it is crucial to determine the appropriate oscillatory frequency of the axes to design biological experiments.
Fluid-driven origami-inspired artificial muscles
NASA Astrophysics Data System (ADS)
Li, Shuguang; Vogt, Daniel M.; Rus, Daniela; Wood, Robert J.
2017-12-01
Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ˜600 kPa, and produce peak power densities over 2 kW/kg—all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration.
Fluid-Structure Interaction Study on a Pre-Buckled Deformable Flat Ribbon
NASA Astrophysics Data System (ADS)
Fovargue, Lauren; Shams, Ehsan; Watterson, Amy; Corson, Dave; Filardo, Benjamin; Zimmerman, Daniel; Shan, Bob; Oberai, Assad
2015-11-01
A Fluid-Structure Interaction study is conducted for the flow over a deformable flat ribbon. This mechanism, which is called ribbon frond, maybe used as a device for pumping water and/or harvesting energy in rivers. We use a lower dimensional mathematical model, which represents the ribbon as a pre-buckled structure. The surface forces from the fluid flow, dictate the deformation of the ribbon, and the ribbon in turn imposes boundary conditions for the incompressible Navier-Stokes equations. The mesh motion is handled using an Arbitrary Lagrangian-Eulerian (ALE) scheme and the fluid-structure coupling is handled by iterating over the staggered governing equations for the structure, the fluid and the mesh. Simulations are conducted at three different free stream velocities. The results, including the frequency of oscillations, show agreement with experimental data. The vortical structures near the surface of the ribbon and its deformation are highly correlated. It is observed that the ribbon motion exhibits deviation from a harmonic motion, especially at lower free stream velocities. The behavior of the ribbon is compared to swimming animals, such as eels, in order to better understand its performance. The authors acknowledge support from ONR SBIR Phase II, contract No. N0001412C0604 and USDA, NIFA SBIR Phase I, contract No. 2013-33610-20836 and NYSERDA PON 2569, contract No. 30364.
Augmented longitudinal acoustic trap for scalable microparticle enrichment.
Cui, M; Binkley, M M; Shekhani, H N; Berezin, M Y; Meacham, J M
2018-05-01
We introduce an acoustic microfluidic device architecture that locally augments the pressure field for separation and enrichment of targeted microparticles in a longitudinal acoustic trap. Pairs of pillar arrays comprise "pseudo walls" that are oriented perpendicular to the inflow direction. Though sample flow is unimpeded, pillar arrays support half-wave resonances that correspond to the array gap width. Positive acoustic contrast particles of supracritical diameter focus to nodal locations of the acoustic field and are held against drag from the bulk fluid motion. Thus, the longitudinal standing bulk acoustic wave (LSBAW) device achieves size-selective and material-specific separation and enrichment of microparticles from a continuous sample flow. A finite element analysis model is used to predict eigenfrequencies of LSBAW architectures with two pillar geometries, slanted and lamellar. Corresponding pressure fields are used to identify longitudinal resonances that are suitable for microparticle enrichment. Optimal operating conditions exhibit maxima in the ratio of acoustic energy density in the LSBAW trap to that in inlet and outlet regions of the microchannel. Model results guide fabrication and experimental evaluation of realized LSBAW assemblies regarding enrichment capability. We demonstrate separation and isolation of 20 μ m polystyrene and ∼10 μ m antibody-decorated glass beads within both pillar geometries. The results also establish several practical attributes of our approach. The LSBAW device is inherently scalable and enables continuous enrichment at a prescribed location. These features benefit separations applications while also allowing concurrent observation and analysis of trap contents.
Prediction of the rate of the rise of an air bubble in nanofluids in a vertical tube.
Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T
2018-04-19
Our recent experiments have demonstrated that when a bubble rises through a nanofluid (a liquid containing dispersed nanoparticles) in a vertical tube, a nanofluidic film with several particle layers is formed between the gas bubble and the glass tube wall, which significantly changes the bubble velocity due to the nanoparticle layering phenomenon in the film. We calculated the structural nanofilm viscosity as a function of the number of particle layers confined in it and found that the film viscosity increases rather steeply when the film contains only one or two particle layers. The nanofilm viscosity was found to be several times higher than the bulk viscosity of the fluid. Consequently, the Bretherton equation cannot accurately predict the rate of the rise of a slow-moving long bubble in a vertical tube in a nanofluid because it is valid only for very thick films and uses the bulk viscosity of the fluid. However, in this brief note, we demonstrate that the Bretherton equation can indeed be used for predicting the rate of the rise of a long single bubble through a vertical tube filled with a nanofluid by simply replacing the bulk viscosity with the proper structural nanofilm viscosity of the fluid. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
González Cornejo, Felipe A.; Cruchaga, Marcela A.; Celentano, Diego J.
2017-11-01
The present work reports a fluid-rigid solid interaction formulation described within the framework of a fixed-mesh technique. The numerical analysis is focussed on the study of a vortex-induced vibration (VIV) of a circular cylinder at low Reynolds number. The proposed numerical scheme encompasses the fluid dynamics computation in an Eulerian domain where the body is embedded using a collection of markers to describe its shape, and the rigid solid's motion is obtained with the well-known Newton's law. The body's velocity is imposed on the fluid domain through a penalty technique on the embedded fluid-solid interface. The fluid tractions acting on the solid are computed from the fluid dynamic solution of the flow around the body. The resulting forces are considered to solve the solid motion. The numerical code is validated by contrasting the obtained results with those reported in the literature using different approaches for simulating the flow past a fixed circular cylinder as a benchmark problem. Moreover, a mesh convergence analysis is also done providing a satisfactory response. In particular, a VIV problem is analyzed, emphasizing the description of the synchronization phenomenon.
Formation of a wave on an ice-sheet above the dipole, moving in a fluid
NASA Astrophysics Data System (ADS)
Il'ichev, A. T.; Savin, A. A.; Savin, A. S.
2012-05-01
Theory of wave motions of a fluid with an ice-sheet was developed due to the necessity of solving of a number of problems of marine and land physics. The main attention in these investigations was focused on propagation and interaction of free waves, and also on appearance of waves under action of different loadings on the ice-sheet. From the other side, the problems dealing with waves on the fluid surface, free from the ice due to motion in the mass of the fluid of rigid bodies, has the known solutions. In this connection, it seems natural to disserminate the formulation and methods of such problems to the case of the fluid with the ice-sheet. In the present note we describe the character of formation of waves from the singularity, localized in the fluid of infinite depth beneath the ice-sheet. We use the example of the dipole, which models a cylinder in the infinite mass of the fluid. The character of the formation does not depend on the type of singularity. The ice-sheet is considered as a thin elastic plate of a constant width, floating on the water surface.
NASA Astrophysics Data System (ADS)
Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan
2017-12-01
This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence
NASA Astrophysics Data System (ADS)
Johnsen, Eric; Pan, Shaowu
2016-11-01
The practice of neglecting bulk viscosity in studies of compressible turbulence is widespread. While exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, this assumption is not justifiable for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g., CO2). To understand the mechanisms by which bulk viscosity and the associated phenomena affect compressible turbulence, we conduct DNS of freely decaying compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0-1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; while enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by an order of magnitude within the two eddy turnover time. Via a Helmholtz decomposition of the flow, we determined that bulk viscosity damps the dilatational velocity and reduces dilatational-solenoidal exchanges, as well as pressure-dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal modes.
Residual stress at fluid interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, P.E.
We extend the Navier-Stokes equations to allow for residual stress in Newtonian fluids. A fluid, which undergoes a constrained volume change, will have residual stress. Corresponding to every constrained volume change is an eigenstrain. We present a method to include in the equations of fluid motion the eigenstrain that is a result of the presence in a fluid of a soluble chemical species. This method is used to calculate the residual stress associated with a chemical transformation. 9 refs., 1 fig.
Analytical Prediction of Turbulent Heat Transfer Parameters.
1985-04-01
responsible for the observed whiplash motion of turbulent jets. The buckling theory predicts correctly the natural frequency of the whiplash motion and...number increases frcm % 102 to 10 , the whiplash motion of jets evolves from a sinusoid to a helix and eventually to a train of axisymmetric waves... whiplash and fluctuating motion of turbulent jets. The period of this fluctua- tion scales with the buckling time t. = A/V , i.e., with the time of fluid
Thermo-hydro-mechanical coupling in long-term sedimentary rock response
NASA Astrophysics Data System (ADS)
Makhnenko, R. Y.; Podladchikov, Y.
2017-12-01
Storage of nuclear waste or CO2 affects the state of stress and pore pressure in the subsurface and may induce large thermal gradients in the rock formations. In general, the associated coupled thermo-hydro-mechanical effect on long-term rock deformation and fluid flow have to be studied. Principles behind mathematical models for poroviscoelastic response are reviewed, and poroviscous model parameter, the bulk viscosity, is included in the constitutive equations. Time-dependent response (creep) of fluid-filled sedimentary rocks is experimentally quantified at isotropic stress states. Three poroelastic parameters are measured by drained, undrained, and unjacketed geomechanical tests for quartz-rich Berea sandstone, calcite-rich Apulian limestone, and clay-rich Jurassic shale. The bulk viscosity is calculated from the measurements of pore pressure growth under undrained conditions, which requires time scales 104 s. The bulk viscosity is reported to be on the order of 1015 Pa•s for the sandstone, limestone, and shale. It is found to be decreasing with the increase of pore pressure despite corresponding decrease in the effective stress. Additionally, increase of temperature (from 24 ºC to 40 ºC) enhances creep, where the most pronounced effect is reported for the shale with bulk viscosity decrease by a factor of 3. Viscous compaction of fluid-filled porous media allows a generation of a special type of fluid flow instability that leads to formation of high-porosity, high-permeability domains that are able to self-propagate upwards due to interplay between buoyancy and viscous resistance of the deforming porous matrix. This instability is known as "porosity wave" and its formation is possible under conditions applicable to deep CO2 storage in reservoirs and explains creation of high-porosity channels and chimneys. The reported experiments show that the formation of high-permeability pathways is most likely to occur in low-permeable clay-rich materials (caprock representatives) at elevated temperatures.
Untangling Topographic and Climatic Forcing of Earthflow Motion
NASA Astrophysics Data System (ADS)
Finnegan, N. J.; Nereson, A. L.
2017-12-01
Earthflows commonly form in steep river canyons and are argued to initiate from rapid incision that destabilizes hill slope toes. At the same time, earthflows are known to exhibit a temporal pattern of movement that is correlated with seasonal precipitation and associated changes in effective stress. In this contribution, we use infinite slope analysis to illuminate the relative roles of topographic slope and climate (via its control on pore fluid pressure) in influencing earthflow motion at Oak Ridge earthflow, near San Jose, CA. To this end, we synthesize two years of shallow (2.7 m depth) pore fluid pressure data and continuous GPS-derived velocities with an 80-year record of historical deformation derived from tracking of trees and rocks on orthophotos along much of the 1.4 km length and 400 m relief of the earthflow. Multiple lines of evidence suggest that motion of Oak Ridge earthflow occurs as frictional sliding along a discrete failure surface, as argued for other earthflows. Spatial patterns of sliding velocity along the earthflow show the same sensitivity to topographic slope for five discrete periods of historical sliding, accelerating by roughly an order of magnitude along a 20 degree increase in earthflow gradient. In contrast, during the 2016-2017 winter, velocity increased much more rapidly for an equivalent increase in driving stress due to pore-fluid pressure rise at our GPS antenna. During this time period, Oak Ridge earthflow moved approximately 30 cm and we observed a relatively simple, non-linear relationship between GPS-derived sliding velocity and shallow pore fluid pressure. Rapid sliding in 2016-2017 (> 0.6 cm/day) occurred exclusively during the week following a large winter storm event that raised pore pressures to seasonal highs within only 1-2 days of the storm peak. These observations suggests that a mechanism, such as dilatant strengthening, acts to stabilize velocities for a given value of pore fluid pressure in the landslide mass. They also suggest that earthflow motion is more sensitive to pore-fluid pressure forcing than to topographic forcing and challenge the view that attenuation of pore fluid pressure with depth renders large landslides relatively insensitive to high frequency climate variability.
NASA Astrophysics Data System (ADS)
Zafar, A. A.; Riaz, M. B.; Shah, N. A.; Imran, M. A.
2018-03-01
The objective of this article is to study some unsteady Couette flows of an Oldroyd-B fluid with non-integer derivatives. The fluid fills an annular region of two infinite co-axial circular cylinders. Flows are due to the motion of the outer cylinder, that rotates about its axis with an arbitrary time-dependent velocity while the inner cylinder is held fixed. Closed form solutions of dimensionless velocity field and tangential tension are obtained by means of the finite Hankel transform and the theory of Laplace transform for fractional calculus. Several results in the literature including the rotational flows through an infinite cylinder can be obtained as limiting cases of our general solutions. Finally, the control of the fractional framework on the dynamics of fluid is analyzed by numerical simulations and graphical illustrations.
Energy dissipation in flows through curved spaces.
Debus, J-D; Mendoza, M; Succi, S; Herrmann, H J
2017-02-14
Fluid dynamics in intrinsically curved geometries is encountered in many physical systems in nature, ranging from microscopic bio-membranes all the way up to general relativity at cosmological scales. Despite the diversity of applications, all of these systems share a common feature: the free motion of particles is affected by inertial forces originating from the curvature of the embedding space. Here we reveal a fundamental process underlying fluid dynamics in curved spaces: the free motion of fluids, in the complete absence of solid walls or obstacles, exhibits loss of energy due exclusively to the intrinsic curvature of space. We find that local sources of curvature generate viscous stresses as a result of the inertial forces. The curvature- induced viscous forces are shown to cause hitherto unnoticed and yet appreciable energy dissipation, which might play a significant role for a variety of physical systems involving fluid dynamics in curved spaces.
To what extent is water responsible for the maintenance of the life for warm-blooded organisms?
Fisenko, Anatoliy I; Malomuzh, Nikolay P
2009-05-22
In this work, attention is mainly focused on those properties of water which are essentially changed in the physiological temperature range of warm-blooded organisms. Studying in detail the half-width of the diffusion peak in the quasi-elastic incoherent neutron scattering, the behavior of the entropy and the kinematic shear viscosity, it is shown that the character of the translational and rotational thermal motions in water radically change near T(H) ~ 315 K, which can be interpreted as the temperature of the smeared dynamic phase transition. These results for bulk pure water are completed by the analysis of the isothermic compressibility and the NMR-spectra for water-glycerol solutions. It was noted that the non-monotone temperature dependence of the isothermic compressibility (beta(T)) takes also place for the water-glycerol solutions until the concentration of glycerol does not exceed 30 mol%. At that, the minimum of beta(T) shifts at left when the concentration increases. All these facts give us some reasons to assume that the properties of the intracellular and extracellular fluids are close to ones for pure water. Namely therefore, we suppose that the upper temperature limit for the life of warm-blooded organisms [T(D) = (315 +/- 3) K] is tightly connected with the temperature of the dynamic phase transition in water. This supposition is equivalent to the assertion that the denaturation of proteins at T > or = T(H) is mainly provoked by the rebuilding of the H-bond network in the intracellular and extracellular fluids, which takes place at T > or = T(H). A question why the heavy water cannot be a matrix for the intracellular and extracellular fluids is considered. The lower physiological pH limit for the life of warm-blooded organisms is discussed.
Ganeshnarayan, Krishnaraj; Shah, Suhagi M; Libera, Matthew R; Santostefano, Anthony; Kaplan, Jeffrey B
2009-03-01
Biofilms are composed of bacterial cells encased in a self-synthesized, extracellular polymeric matrix. Poly-beta(1,6)-N-acetyl-d-glucosamine (PNAG) is a major biofilm matrix component in phylogenetically diverse bacteria. In this study we investigated the physical and chemical properties of the PNAG matrix in biofilms produced in vitro by the gram-negative porcine respiratory pathogen Actinobacillus pleuropneumoniae and the gram-positive device-associated pathogen Staphylococcus epidermidis. The effect of PNAG on bulk fluid flow was determined by measuring the rate of fluid convection through biofilms cultured in centrifugal filter devices. The rate of fluid convection was significantly higher in biofilms cultured in the presence of the PNAG-degrading enzyme dispersin B than in biofilms cultured without the enzyme, indicating that PNAG decreases bulk fluid flow. PNAG also blocked transport of the quaternary ammonium compound cetylpyridinium chloride (CPC) through the biofilms. Binding of CPC to biofilms further impeded fluid convection and blocked transport of the azo dye Allura red. Bioactive CPC was efficiently eluted from biofilms by treatment with 1 M sodium chloride. Taken together, these findings suggest that CPC reacts directly with the PNAG matrix and alters its physical and chemical properties. Our results indicate that PNAG plays an important role in controlling the physiological state of biofilms and may contribute to additional biofilm-associated processes such as biocide resistance.
Schwalbe, Jonathan T; Vlahovska, Petia M; Miksis, Michael J
2011-04-01
A small amplitude perturbation analysis is developed to describe the effect of a uniform electric field on the dynamics of a lipid bilayer vesicle in a simple shear flow. All media are treated as leaky dielectrics and fluid motion is described by the Stokes equations. The instantaneous vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. We find that in the absence of ambient shear flow, it is possible that an applied stepwise uniform dc electric field could cause the vesicle shape to evolve from oblate to prolate over time if the encapsulated fluid is less conducting than the suspending fluid. For a vesicle in ambient shear flow, the electric field damps the tumbling motion, leading to a stable tank-treading state.
On the non-persistence of irrotational motion in a viscous heat-conducting fluid
NASA Astrophysics Data System (ADS)
Kleinstein, Gerald G.
1988-06-01
We consider the possibility of irrotational flow in a fluid exterior to a moving rigid obstacle, or interior to a moving rigid shell. Observations show that when a rigid body is impulsively set into motion an irrotational flow may exist initially but does not persist. The breakup of this irrotational flow and the associated phenomenon of generation of vorticity at the wall are generally attributed to the condition of adherence at the fluid-solid interface. Since this condition itself is derived from observation, one can ask whether there is another explanation for the phenomenon. The purpose of this paper is to show that a persistent irrotational flow is incompatible with the second law of thermodynamics.
NASA Technical Reports Server (NTRS)
Ray, J. R.
1982-01-01
The fundamental variational principle for a perfect fluid in general relativity is extended so that it applies to the metric-torsion Einstein-Cartan theory. Field equations for a perfect fluid in the Einstein-Cartan theory are deduced. In addition, the equations of motion for a fluid with intrinsic spin in general relativity are deduced from a special relativistic variational principle. The theory is a direct extension of the theory of nonspinning fluids in special relativity.
Basal melting driven by turbulent thermal convection
NASA Astrophysics Data System (ADS)
Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico
2018-05-01
Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.
Numerical simulation of fluid flow around a scramaccelerator projectile
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.
1991-01-01
Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.
Calculation of Macrosegregation in an Ingot
NASA Technical Reports Server (NTRS)
Poirier, D. R.; Maples, A. L.
1986-01-01
Report describes both two-dimensional theoretical model of macrosegregation (separating into regions of discrete composition) in solidification of binary alloy in chilled rectangular mold and interactive computer program embodying model. Model evolved from previous ones limited to calculating effects of interdendritic fluid flow on final macrosegregation for given input temperature field under assumption of no fluid in bulk melt.
7 CFR 1000.42 - Classification of transfers and diversions.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (a) Transfers and diversions to pool plants. Skim milk or butterfat transferred or diverted in the form of a fluid milk product or transferred in the form of a bulk fluid cream product from a pool plant... corresponding step of § 1000.44(b); (2) If the transferring plant received during the month other source milk to...
Highly resolved fluid flows: "liquid plasmas" at the kinetic level.
Morfill, Gregor E; Rubin-Zuzic, Milenko; Rothermel, Hermann; Ivlev, Alexei V; Klumov, Boris A; Thomas, Hubertus M; Konopka, Uwe; Steinberg, Victor
2004-04-30
Fluid flow around an obstacle was observed at the kinetic (individual particle) level using "complex (dusty) plasmas" in their liquid state. These "liquid plasmas" have bulk properties similar to water (e.g., viscosity), and a comparison in terms of similarity parameters suggests that they can provide a unique tool to model classical fluids. This allows us to study "nanofluidics" at the most elementary-the particle-level, including the transition from fluid behavior to purely kinetic transport. In this (first) experimental investigation we describe the kinetic flow topology, discuss our observations in terms of fluid theories, and follow this up with numerical simulations.
Causal implications of viscous damping in compressible fluid flows
Jordan; Meyer; Puri
2000-12-01
Classically, a compressible, isothermal, viscous fluid is regarded as a mathematical continuum and its motion is governed by the linearized continuity, Navier-Stokes, and state equations. Unfortunately, solutions of this system are of a diffusive nature and hence do not satisfy causality. However, in the case of a half-space of fluid set to motion by a harmonically vibrating plate the classical equation of motion can, under suitable conditions, be approximated by the damped wave equation. Since this equation is hyperbolic, the resulting solutions satisfy causal requirements. In this work the Laplace transform and other analytical and numerical tools are used to investigate this apparent contradiction. To this end the exact solutions, as well as their special and limiting cases, are found and compared for the two models. The effects of the physical parameters on the solutions and associated quantities are also studied. It is shown that propagating wave fronts are only possible under the hyperbolic model and that the concept of phase speed has different meanings in the two formulations. In addition, discontinuities and shock waves are noted and a physical system is modeled under both formulations. Overall, it is shown that the hyperbolic form gives a more realistic description of the physical problem than does the classical theory. Lastly, a simple mechanical analog is given and connections to viscoelastic fluids are noted. In particular, the research presented here supports the notion that linear compressible, isothermal, viscous fluids can, at least in terms of causality, be better characterized as a type of viscoelastic fluid.
Lee, Kenneth K C; Mariampillai, Adrian; Yu, Joe X Z; Cadotte, David W; Wilson, Brian C; Standish, Beau A; Yang, Victor X D
2012-07-01
Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Feng, E-mail: chenfengmath@163.com, E-mail: hanyc@jlu.edu.cn; Han, Yuecai, E-mail: chenfengmath@163.com, E-mail: hanyc@jlu.edu.cn
2013-12-15
The existence of time-periodic stochastic motions of an incompressible fluid is obtained. Here the fluid is subject to a time-periodic body force and an additional time-periodic stochastic force that is produced by a rigid body moves periodically stochastically with the same period in the fluid.
NASA Technical Reports Server (NTRS)
Dickey, J. O.; Bentley, C. R.; Bilham, R.; Carton, J. A.; Eanes, R. J.; Herring, T. A.; Kaula, W. M.; Lagerloef, G. S. E.; Rojstaczer, S.; Smith, W. H. F.;
1998-01-01
The Earth is a dynamic system-it has a fluid, mobile atmosphere and oceans, a continually changing distribution of ice, snow, and groundwater, a fluid core undergoing hydromagnetic motion, a mantle undergoing both thermal convection and rebound from glacial loading of the last ice age, and mobile tectonic plates.
Volume-energy parameters for heat transfer to supercritical fluids
NASA Technical Reports Server (NTRS)
Kumakawa, A.; Niino, M.; Hendricks, R. C.; Giarratano, P. J.; Arp, V. D.
1986-01-01
Reduced Nusselt numbers of supercritical fluids from different sources were grouped by several volume-energy parameters. A modified bulk expansion parameter was introduced based on a comparative analysis of data scatter. Heat transfer experiments on liquefied methane were conducted under near-critical conditions in order to confirm the usefulness of the parameters. It was experimentally revealed that heat transfer characteristics of near-critical methane are similar to those of hydrogen. It was shown that the modified bulk expansion parameter and the Gibbs-energy parameter grouped the heat transfer data of hydrogen, oxygen and methane including the present data on near-critical methane. It was also indicated that the effects of surface roughness on heat transfer were very important in grouping the data of high Reynolds numbers.
Rutter, Ernest; Hackston, Abigail
2017-09-28
Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 10 5 , but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Authors.
NASA Astrophysics Data System (ADS)
Rutter, Ernest; Hackston, Abigail
2017-08-01
Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.
Rotary-To-Axial Motion Converter For Valve
NASA Technical Reports Server (NTRS)
Reinicke, Robert H.; Mohtar, Rafic
1991-01-01
Nearly frictionless mechanism converts rotary motion into axial motion. Designed for use in electronically variable pressure-regulator valve. Changes rotary motion imparted by motor into translation that opens and closes valve poppet. Cables spaced equidistantly around edge of fixed disk support movable disk. As movable disk rotated, cables twist, lifting it. When rotated in opposite direction, cables untwist, lowering it. Spider disk helps to prevent cables from tangling. Requires no lubrication and insensitive to contamination in fluid flowing through valve.
Inner ear contribution to bone conduction hearing in the human.
Stenfelt, Stefan
2015-11-01
Bone conduction (BC) hearing relies on sound vibration transmission in the skull bone. Several clinical findings indicate that in the human, the skull vibration of the inner ear dominates the response for BC sound. Two phenomena transform the vibrations of the skull surrounding the inner ear to an excitation of the basilar membrane, (1) inertia of the inner ear fluid and (2) compression and expansion of the inner ear space. The relative importance of these two contributors were investigated using an impedance lumped element model. By dividing the motion of the inner ear boundary in common and differential motion it was found that the common motion dominated at frequencies below 7 kHz but above this frequency differential motion was greatest. When these motions were used to excite the model it was found that for the normal ear, the fluid inertia response was up to 20 dB greater than the compression response. This changed in the pathological ear where, for example, otosclerosis of the stapes depressed the fluid inertia response and improved the compression response so that inner ear compression dominated BC hearing at frequencies above 400 Hz. The model was also able to predict experimental and clinical findings of BC sensitivity in the literature, for example the so called Carhart notch in otosclerosis, increased BC sensitivity in superior semicircular canal dehiscence, and altered BC sensitivity following a vestibular fenestration and RW atresia. Copyright © 2014 Elsevier B.V. All rights reserved.
Laser speckle imaging based on photothermally driven convection
Regan, Caitlin; Choi, Bernard
2016-01-01
Abstract. Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications. PMID:26927221
Boundary singularities produced by the motion of soap films.
Goldstein, Raymond E; McTavish, James; Moffatt, H Keith; Pesci, Adriana I
2014-06-10
Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.
A Bulk Comptonization Model for the Prompt GRB Emission and its Relation to the Fermi GRB Spectra
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
2010-01-01
We present a model in which the GRB prompt emission at E E(sub peak) is due to bulk Comptonization by the relativistic blast wave motion of either its own synchrotron photons of ambient photons of the stellar configuration that gave birth to the GRB. The bulk Comptonization process then induces the production of relativistic electrons of Lorentz factor equal to that of the blast wave through interactions with its ambient protons. The inverse compton emission of these electrons produces a power law component that extends to multi GeV energies in good agreement with the LAT GRB observations.
NASA Astrophysics Data System (ADS)
Pan, Tsorng-Whay; Glowinski, Roland
2016-11-01
In this talk we present a numerical study of the dynamics of two disks settling in a narrow vertical channel filled with an Oldroyd-B fluid. Two kinds of particle dynamics are obtained: (i) periodic interaction between two disks and (ii) the formation of the chain of two disks. For the periodic interaction of two disks, two different motions are obtained: (a) two disks stay far apart and interact is periodically, which is similar to one of the motions of two disks settling in a narrow channel filled with a Newtonian fluid discussed by Aidun & Ding and (b) two disks draft, kiss and break away periodically and the chain is not formed due to not strong enough elastic force. For the formation of two disk chain occurred at higher values of the elasticity number, it is either a tilted chain or a vertical chain. The tilted chain can be obtained for either that the elasticity number is less than the critical value for having the vertical chain or that the Mach number is greater than the critical value for a long body to fall broadside-on, which is consistent with the results for the elliptic particles settling in Oldroyd-B fluids. NSF.
Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures
NASA Astrophysics Data System (ADS)
Bhowmick, Aklant K.; Abarzhi, Snezhana
2016-11-01
We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.
Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures
NASA Astrophysics Data System (ADS)
Bhowmick, Aklant K.; Abarzhi, Snezhana
2016-10-01
We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.
Detection of postseismic fault-zone collapse following the Landers earthquake
NASA Astrophysics Data System (ADS)
Massonnet, Didier; Thatcher, Wayne; Vadon, Hélèna
1996-08-01
STRESS changes caused by fault movement in an earthquake induce transient aseismic crustal movements in the earthquake source region that continue for months to decades following large events1-4. These motions reflect aseismic adjustments of the fault zone and/or bulk deformation of the surroundings in response to applied stresses2,5-7, and supply information regarding the inelastic behaviour of the Earth's crust. These processes are imperfectly understood because it is difficult to infer what occurs at depth using only surface measurements2, which are in general poorly sampled. Here we push satellite radar interferometry to near its typical artefact level, to obtain a map of the postseismic deformation field in the three years following the 28 June 1992 Landers, California earthquake. From the map, we deduce two distinct types of deformation: afterslip at depth on the fault that ruptured in the earthquake, and shortening normal to the fault zone. The latter movement may reflect the closure of dilatant cracks and fluid expulsion from a transiently over-pressured fault zone6-8.
Managing oils pumplessly on open surfaces
NASA Astrophysics Data System (ADS)
Ghosh, Aritra; Morrissette, Jared; Mates, Joseph; Megaridis, Constantine
2017-11-01
Passive management of low-surface-tension liquids (e.g. oils) can be achieved by tuning curvature of liquid volumes (Laplace pressure) on juxtaposed oleophobic/oleophilic domains. Recent advancements in material chemistry in repelling low-surface-tension liquids has enabled researchers to fabricate surfaces and transport oils without the aid of gravity or using a pump. Liquid transport on such surfaces harnesses the force arising from the spatial contrast of surface energy on the substrate, providing rapid fluid actuation. In this work, we demonstrate and study the liquid transport dynamics (velocity, acceleration) in open air for several oils of interest (Jet A, hexadecane, mineral oil) with varying surface tension and viscosity. High-speed image analysis of the motion of the bulk liquid is performed using a droplet-shape tracking algorithm; dominant forces are identified and model predictions are compared with experimental data. Experimental and analytical tools offer new insight on a problem that is relevant to open-surface passive oil transport devices like propellant management devices, oil tankers and many more. Office of Naval Research, Air Force Research Laboratory.
Gravity-induced dynamics of a squirmer microswimmer in wall proximity
NASA Astrophysics Data System (ADS)
Rühle, Felix; Blaschke, Johannes; Kuhr, Jan-Timm; Stark, Holger
2018-02-01
We perform hydrodynamic simulations using the method of multi-particle collision dynamics and a theoretical analysis to study a single squirmer microswimmer at high Péclet number, which moves in a low Reynolds number fluid and under gravity. The relevant parameters are the ratio α of swimming to bulk sedimentation velocity and the squirmer type β. The combination of self-propulsion, gravitational force, hydrodynamic interactions with the wall, and thermal noise leads to a surprisingly diverse behavior. At α > 1 we observe cruising states, while for α < 1 the squirmer resides close to the bottom wall with the motional state determined by stable fixed points in height and orientation. They strongly depend on the squirmer type β. While neutral squirmers permanently float above the wall with upright orientation, pullers float for α larger than a threshold value {α }th} and are pinned to the wall below {α }th}. In contrast, pushers slide along the wall at lower heights, from which thermal orientational fluctuations drive them into a recurrent floating state with upright orientation, where they remain on the timescale of orientational persistence.
Microvolume index of refraction determinations by interferometric backscatter
NASA Astrophysics Data System (ADS)
Bornhop, Darryl J.
1995-06-01
A new method has been applied to the determination of fluid bulk properties in small detection volumes. Through the use of an unfocused He-Ne laser beam and a cylindrical tube of capillary dimensions, relative refractive-index measurements are possible. The backscattered light from the illumination of a tube of capillary dimensions produces an interference pattern that is spatially defined and that contains information related to the bulk properties of the fluid contained in the tube. Positional changes in the intensity-modulated beam profile (interference fringes) are directly related to the refractive index of the fluid in the tube. The determination of dn/n at the 10-7 level is possible in probe volumes of 350 pL. The technique has been applied to tubes as small as 75 mu m inner diameter and as large as 1.0 mm inner diameter. No modification of the simple optical bench is required for facilitating the determination of refractive index for the complete range of tube diameters.
High bulk modulus of ionic liquid and effects on performance of hydraulic system.
Kambic, Milan; Kalb, Roland; Tasner, Tadej; Lovrec, Darko
2014-01-01
Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication), and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus), compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems' dynamic responses.
NASA Astrophysics Data System (ADS)
Lee, Young Ki; Ahn, Kyung Hyun; Lee, Seung Jong
2014-12-01
The local shear stress of non-Brownian suspensions was investigated using the lattice Boltzmann method coupled with the smoothed profile method. Previous studies have only focused on the bulk rheology of complex fluids because the local rheology of complex fluids was not accessible due to technical limitations. In this study, the local shear stress of two-dimensional solid particle suspensions in Couette flow was investigated with the method of planes to correlate non-Newtonian fluid behavior with the structural evolution of concentrated particle suspensions. Shear thickening was successfully captured for highly concentrated suspensions at high particle Reynolds number, and both the local rheology and local structure of the suspensions were analyzed. It was also found that the linear correlation between the local particle stress and local particle volume fraction was dramatically reduced during shear thickening. These results clearly show how the change in local structure of suspensions influences the local and bulk rheology of the suspensions.
Cerebrospinal fluid bulk flow is driven by the cardiac cycle
NASA Astrophysics Data System (ADS)
Tithof, Jeffrey; Mestre, Humberto; Thomas, John; Nedergaard, Maiken; Kelley, Douglas
2017-11-01
Recent discoveries have uncovered a cerebrospinal fluid (CSF) transport system in the perivascular spaces (PVS) of the mammalian brain which clears excess extracellular fluid and protein waste products. The oscillatory pattern of CSF flow has long been attributed to arterial pulsations due to cardiac contractility but limitations in imaging techniques have impeded quantitative measurement of flow rates within the PVS. In this talk, we describe quantitative measurements from the first ever direct imaging of CSF flow in the PVS of a mouse brain. We perform particle tracking velocimetry to obtain time-resolved velocity measurements. To identify the cardiac and/or respiratory dependence of the flow, while imaging, we simultaneously record the mouse's electrocardiogram and respiration. Our measurements conclusively indicate that CSF pulsatility in the arterial PVS is directly driven by the cardiac cycle and not by the respiratory cycle or cerebral vasomotion. These results offer a substantial step forward in understanding bulk flow of CSF in the mammalian brain and may have important implications related to neurodegenerative diseases.
Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Xuguang; Rischke, Dirk H.; Institut fuer Theoretische Physik, J.W. Goethe-Universitaet, D-60438 Frankfurt am Main
2011-02-15
The microscopic formulas of the bulk viscosity {zeta} and the corresponding relaxation time {tau}{sub {Pi}} in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and {tau}{sub {Pi}} and {zeta} are related as {tau}{sub {Pi}={zeta}}/[{beta}{l_brace}(1/3-c{sub s}{sup 2})({epsilon}+P)-2({epsilon}-3P)/9{r_brace}], where {epsilon}, P, and c{sub s} are the energy density, pressure, and velocity of sound, respectively. The predictedmore » {zeta} and {tau}{sub {Pi}} should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.« less
Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology.
Qi, Jianping; Lu, Y I; Wu, Wei
2015-01-01
Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.
Anatomy and pathophysiology of the pleura and pleural space.
Yalcin, Nilay Gamze; Choong, Cliff K C; Eizenberg, Norman
2013-02-01
Pleural effusions are most often secondary to an underlying condition and may be the first sign of the underlying pathologic condition. The balance between the hydrostatic and oncotic forces dictates pleural fluid homeostasis. The parietal pleura has a more significant role in pleural fluid homeostasis. Its vessels are closer to the pleural space compared with its visceral counterpart; it contains lymphatic stomata, absent on visceral pleura, which are responsible for a bulk clearance of fluid. The diagnosis and successful treatment of pleural effusions requires a mixture of imaging techniques and pleural fluid analysis. Copyright © 2013. Published by Elsevier Inc.
How animals drink and swim in fluids
NASA Astrophysics Data System (ADS)
Jung, Sunghwan
2011-10-01
Fluids are essential for most living organisms to maintain a healthy body and also serve as a medium in which they locomote. The fluid bulk or interfaces actively interact with biological structures, which produces highly nonlinear, interesting, and complicated dynamical problems. We studied the lapping of cats and the swimming of Paramecia in various fluidic environments. The problem of the cat drinking can be simplified as the competition between inertia and gravity whereas the problem of Paramecium swimming in viscous fluids results from the competition between viscous drag and thrust. The underlying mechanisms are discussed and understood through laboratory experiments utilizing high-speed photography.
Conformal collineations and anisotropic fluids in general relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duggal, K.L.; Sharma, R.
1986-10-01
Recently, Herrera et al. (L. Herrera, J. Jimenez, L. Leal, J. Ponce de Leon, M. Esculpi, and V. Galino, J. Math. Phys. 25, 3274 (1984)) studied the consequences of the existence of a one-parameter group of conformal motions for anisotropic matter. They concluded that for special conformal motions, the stiff equation of state (p = ..mu..) is singled out in a unique way, provided the generating conformal vector field is orthogonal to the four-velocity. In this paper, the same problem is studied by using conformal collineations (which include conformal motions as subgroups). It is shown that, for a special conformalmore » collineation, the stiff equation of state is not singled out. Non-Einstein Ricci-recurrent spaces are considered as physical models for the fluid matter.« less
ERIC Educational Resources Information Center
Physics Education, 1983
1983-01-01
An experiment on cooling by convection, holographic processes achieved using optical fibers and observation of magnetic domains are described. Also describes four demonstrations: mechanical resonance on air track, independence of horizontal/vertical motion, motion of sphere in fluid medium, and light scattering near the critical point. (JN)
A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, G.; Siegel, M.; Tanveer, S.
1995-09-01
We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. The situation is disastrous for numerical computation, as small roundoff errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. Themore » method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out. 47 refs., 10 figs., 1 tab.« less
Lattice Boltzmann for Simulation of Gases Mixture in Fruit Storage Chambers
NASA Astrophysics Data System (ADS)
Fabero, J. C.; Barreiro, P.; Casasús, L.
2003-04-01
Fluid Dynamics can be modelled through the Navier-Stokes equations. This description corresponds to a macroscopic definition of the fluid motion phenomena. During the past 20 year new simulation procedures are emerging from Statistical Physics and Computer Science domains. One of them is the Lattice Gas Cellular Automata (LGCA) method. This approach, which is considered to be a microscopic description of the world, in spite of its intuitiveness and numerical efficiency, fails to simulate the real Navier-Stokes equations. Another classical simulation procedure for the fluid motion phenomena is the so called Lattice Boltzmann method [1]. This corresponds to a meso-scale description of the world [2]. Simulation of laminar and turbulent motions of fluids, specially when considering several gas species is still an ongoing research [3]. Nowadays, the use of Low Oxygen and Ultra Low Oxygen Controlled Atmospheres has been recognized as a reliable method to extend the storage life of fruits an vegetables. However, small spatial gradients in gas concentration during storage may generate internal disorders in the commodities. In this work, four different gases will be considered: oxygen, carbon dioxide, water vapor and ethylene. Physiological effects such as transpiration, which affects the level of water vapor, respiration, which modifies both oxygen and carbon dioxide concentrations, and ethylene emission, must be taken into account in the hole model. The numerical model, based on that proposed by Shan and Chen, is implemented, being able to consider the behavior of multiple mixable gas species. Forced air motion, needed to obtain a correct ventilation of the chamber, has also been modelled.
Advanced Microwave Ferrite Research (AMFeR): Phase Two
2006-12-31
motion for the single crystal LPE films were a qualitative success, but a complete set of parameters for these films has not yet been achieved. Key...biasing field. In order to address these issues, we investigated and optimized a new LPE flux system to grow high quality thick films and bulk single...self-biased circulators. III. Methodology: BaM thick film and bulk single crystal growth by LPE process BaFe 120 19 flux melt was prepared from a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangeetha, C. R.; Rajaguru, S. P., E-mail: crsangeetha@iiap.res.in
We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory . From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar tomore » that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.« less