Zhang, Lipei; Xing, Xing; Zheng, Lingling; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang
2014-01-01
Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends. PMID:24861168
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Min Ho; Rhyee, Jong-Soo, E-mail: jsrhyee@khu.ac.kr
We investigated the thermoelectric properties of PbTe/Ag{sub 2}Te bulk composites, synthesized by hand milling, mixing, and hot press sintering. From x-ray diffraction and energy dispersive x-ray spectroscopy measurements, we observed Ag{sub 2}Te phase separation in the PbTe matrix without Ag atom diffusion. In comparison with previously reported pseudo-binary (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} composites, synthesized by high temperature phase separation, the PbTe/Ag{sub 2}Te bulk composites fabricated with a low temperature phase mixing process give rise to p-type conduction of carriers with significantly decreased electrical conductivity. This indicates that Ag atom diffusion in the PbTe matrix changes the sign of the Seebeckmore » coefficient to n-type and also increases the carrier concentration. Effective p-type doping with low temperature phase separation by mixing and hot press sintering can enhance the thermoelectric performance of PbTe/Ag{sub 2}Te bulk composites, which can be used as a p-type counterpart of n-type (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} bulk composites.« less
Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites.
Bischak, Connor G; Hetherington, Craig L; Wu, Hao; Aloni, Shaul; Ogletree, D Frank; Limmer, David T; Ginsberg, Naomi S
2017-02-08
The distinct physical properties of hybrid organic-inorganic materials can lead to unexpected nonequilibrium phenomena that are difficult to characterize due to the broad range of length and time scales involved. For instance, mixed halide hybrid perovskites are promising materials for optoelectronics, yet bulk measurements suggest the halides reversibly phase separate upon photoexcitation. By combining nanoscale imaging and multiscale modeling, we find that the nature of halide demixing in these materials is distinct from macroscopic phase separation. We propose that the localized strain induced by a single photoexcited charge interacting with the soft, ionic lattice is sufficient to promote halide phase separation and nucleate a light-stabilized, low-bandgap, ∼8 nm iodide-rich cluster. The limited extent of this polaron is essential to promote demixing because by contrast bulk strain would simply be relaxed. Photoinduced phase separation is therefore a consequence of the unique electromechanical properties of this hybrid class of materials. Exploiting photoinduced phase separation and other nonequilibrium phenomena in hybrid materials more generally could expand applications in sensing, switching, memory, and energy storage.
Laboratory Evaluation of Remediation Alternatives for U.S. Coast Guard Small Arms Firing Ranges
1999-11-01
S) is an immobilization process that involves the mixing of a contaminated soil with a binder material to enhance the physical and chemical...samples were shipped to WES for laboratory analysis. Phase III: Homogenization of the Bulk Samples. Each of the bulk samples was separately mixed to...produce uniform samples for testing. These mixed bulk soil samples were analyzed for metal content. Phase IV: Characterization of the Bulk Soils
Fluid flow in solidifying monotectic alloys
NASA Technical Reports Server (NTRS)
Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.
1989-01-01
Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.
Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces.
Misawa, Takahiro; Nomura, Yusuke; Biermann, Silke; Imada, Masatoshi
2016-07-01
Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2-x Sr x CuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices.
Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces
Misawa, Takahiro; Nomura, Yusuke; Biermann, Silke; Imada, Masatoshi
2016-01-01
Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2−xSrxCuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices. PMID:27482542
Szczepanski, Caroline R.; Stansbury, Jeffrey W.
2014-01-01
A mechanism for polymerization shrinkage and stress reduction was developed for heterogeneous networks formed via ambient, photo-initiated polymerization-induced phase separation (PIPS). The material system used consists of a bulk homopolymer matrix of triethylene glycol dimethacrylate (TEGDMA) modified with one of three non-reactive, linear prepolymers (poly-methyl, ethyl and butyl methacrylate). At higher prepolymer loading levels (10–20 wt%) an enhanced reduction in both shrinkage and polymerization stress is observed. The onset of gelation in these materials is delayed to a higher degree of methacrylate conversion (~15–25%), providing more time for phase structure evolution by thermodynamically driven monomer diffusion between immiscible phases prior to network macro-gelation. The resulting phase structure was probed by introducing a fluorescently tagged prepolymer into the matrix. The phase structure evolves from a dispersion of prepolymer at low loading levels to a fully co-continuous heterogeneous network at higher loadings. The bulk modulus in phase separated networks is equivalent or greater than that of poly(TEGDMA), despite a reduced polymerization rate and cross-link density in the prepolymer-rich domains. PMID:25418999
Accelerated sintering in phase-separating nanostructured alloys
Park, Mansoo; Schuh, Christopher A.
2015-01-01
Sintering of powders is a common means of producing bulk materials when melt casting is impossible or does not achieve a desired microstructure, and has long been pursued for nanocrystalline materials in particular. Acceleration of sintering is desirable to lower processing temperatures and times, and thus to limit undesirable microstructure evolution. Here we show that markedly enhanced sintering is possible in some nanocrystalline alloys. In a nanostructured W–Cr alloy, sintering sets on at a very low temperature that is commensurate with phase separation to form a Cr-rich phase with a nanoscale arrangement that supports rapid diffusional transport. The method permits bulk full density specimens with nanoscale grains, produced during a sintering cycle involving no applied stress. We further show that such accelerated sintering can be evoked by design in other nanocrystalline alloys, opening the door to a variety of nanostructured bulk materials processed in arbitrary shapes from powder inputs. PMID:25901420
Continuum theory of phase separation kinetics for active Brownian particles.
Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J; Marenduzzo, Davide; Cates, Michael E
2013-10-04
Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.
Microfluidic and nanofluidic phase behaviour characterization for industrial CO2, oil and gas.
Bao, Bo; Riordon, Jason; Mostowfi, Farshid; Sinton, David
2017-08-08
Microfluidic systems that leverage unique micro-scale phenomena have been developed to provide rapid, accurate and robust analysis, predominantly for biomedical applications. These attributes, in addition to the ability to access high temperatures and pressures, have motivated recent expanded applications in phase measurements relevant to industrial CO 2 , oil and gas applications. We here present a comprehensive review of this exciting new field, separating microfluidic and nanofluidic approaches. Microfluidics is practical, and provides similar phase properties analysis to established bulk methods with advantages in speed, control and sample size. Nanofluidic phase behaviour can deviate from bulk measurements, which is of particular relevance to emerging unconventional oil and gas production from nanoporous shale. In short, microfluidics offers a practical, compelling replacement of current bulk phase measurement systems, whereas nanofluidics is not practical, but uniquely provides insight into phase change phenomena at nanoscales. Challenges, trends and opportunities for phase measurements at both scales are highlighted.
Bader, M S H
2005-05-20
A novel hybrid system combining liquid-phase precipitation (LPP) and membrane distillation (MD) is integrated for the treatment of the INEEL sodium-bearing liquid waste. The integrated system provides a "full separation" approach that consists of three main processing stages. The first stage is focused on the separation and recovery of nitric acid from the bulk of the waste stream using vacuum membrane distillation (VMD). In the second stage, polyvalent cations (mainly TRU elements and their fission products except cesium along with aluminum and other toxic metals) are separated from the bulk of monovalent anions and cations (dominantly sodium nitrate) by a front-end LPP. In the third stage, MD is used first to concentrate sodium nitrate to near saturation followed by a rear-end LPP to precipitate and separate sodium nitrate along with the remaining minor species from the bulk of the aqueous phase. The LPP-MD hybrid system uses a small amount of an additive and energy to carry out the treatment, addresses multiple critical species, extracts an economic value from some of waste species, generates minimal waste with suitable disposal paths, and offers rapid deployment. As such, the LPP-MD could be a valuable tool for multiple needs across the DOE complex where no effective or economic alternatives are available.
Phases, phase equilibria, and phase rules in low-dimensional systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, T., E-mail: timfrol@berkeley.edu; Mishin, Y., E-mail: ymishin@gmu.edu
2015-07-28
We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phasemore » rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.« less
Ghari, Tayebeh; Kobarfard, Farzad; Mortazavi, Seyed Alireza
2013-01-01
The present study was designed to develop a simple, validated liquid chromatographic method for the analysis of azithromycin in bulk and pharmaceutical dosage forms using ultraviolet detector. The best stationary phase was determined as C18 column, 5 μm, 250 mm × 4.6 mm. Mobile phase was optimized to obtain a fast and selective separation of the drug. Flow rate was 1.5 mL/min, Wavelength was set at 210 nm and the volume of each injection was 500 μL. An isocratic methanol/buffer mobile phase at the ratio of 90:10 v/v gave the best separation and resolution. The proposed method was accurate, precise, sensitive, and linear over a wide range of concentration of azithromycin. The developed method has the advantage of using UV detector compared to the USP method in which electrochemical detector has been used. The validated method was successfully applied to the determination of azithromycin in bulk and pharmaceutical dosage forms. PMID:24250672
Floating liquid phase in sedimenting colloid-polymer mixtures.
Schmidt, Matthias; Dijkstra, Marjolein; Hansen, Jean-Pierre
2004-08-20
Density functional theory and computer simulation are used to investigate sedimentation equilibria of colloid-polymer mixtures within the Asakura-Oosawa-Vrij model of hard sphere colloids and ideal polymers. When the ratio of buoyant masses of the two species is comparable to the ratio of differences in density of the coexisting bulk (colloid) gas and liquid phases, a stable "floating liquid" phase is found, i.e., a thin layer of liquid sandwiched between upper and lower gas phases. The full phase diagram of the mixture under gravity shows coexistence of this floating liquid phase with a single gas phase or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple point. This scenario remains valid for general asymmetric binary mixtures undergoing bulk phase separation.
Polymer amide as an early topology.
McGeoch, Julie E M; McGeoch, Malcolm W
2014-01-01
Hydrophobic polymer amide (HPA) could have been one of the first normal density materials to accrete in space. We present ab initio calculations of the energetics of amino acid polymerization via gas phase collisions. The initial hydrogen-bonded di-peptide is sufficiently stable to proceed in many cases via a transition state into a di-peptide with an associated bound water molecule of condensation. The energetics of polymerization are only favorable when the water remains bound. Further polymerization leads to a hydrophobic surface that is phase-separated from, but hydrogen bonded to, a small bulk water complex. The kinetics of the collision and subsequent polymerization are discussed for the low-density conditions of a molecular cloud. This polymer in the gas phase has the properties to make a topology, viz. hydrophobicity allowing phase separation from bulk water, capability to withstand large temperature ranges, versatility of form and charge separation. Its flexible tetrahedral carbon atoms that alternate with more rigid amide groups allow it to deform and reform in hazardous conditions and its density of hydrogen bonds provides adhesion that would support accretion to it of silicon and metal elements to form a stellar dust material.
Vacancy-mediated fcc/bcc phase separation in Fe1 -xNix ultrathin films
NASA Astrophysics Data System (ADS)
Menteş, T. O.; Stojić, N.; Vescovo, E.; Ablett, J. M.; Niño, M. A.; Locatelli, A.
2016-08-01
The phase separation occurring in Fe-Ni thin films near the Invar composition is studied by using high-resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 ∘C ,Fe0.70Ni0.30 films on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the diffusing species in forming the chemical heterogeneity. The experimentally determined energy barrier of 1.59 ±0.09 eV is identified as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separation process is attributed to vacancy creation without interstitials.
Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; ...
2015-06-29
We have systematically studied a variety of vanadium dioxide (VO 2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO 2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO 2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for amore » comprehensive understanding of complex energy landscapes that may not be readily determined by macroscopic approaches.« less
NASA Astrophysics Data System (ADS)
Hassnain Jaffari, G.; Aftab, M.; Anjum, D. H.; Cha, Dongkyu; Poirier, Gerald; Ismat Shah, S.
2015-12-01
Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/ Fe atom and a bulk like negligible value of coercivity over the temperature range of 5-300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.
Surface sum-frequency vibrational spectroscopy of nonpolar media
Sun, Shumei; Tian, Chuanshan; Shen, Y. Ron
2015-04-27
Sum-frequency generation spectroscopy is surface specific only if the bulk contribution to the signal is negligible. Negligible bulk contribution is, however, not necessarily true, even for media with inversion symmetry. The inevitable challenge is to find the surface spectrum in the presence of bulk contribution, part of which has been believed to be inseparable from the surface contribution. Here, we show that, for nonpolar media, it is possible to separately deduce surface and bulk spectra from combined phase-sensitive sum-frequency vibrational spectroscopic measurements in reflection and transmission. Finally, the study of benzene interfaces is presented as an example.
A novel mechanical model for phase-separation in debris flows
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.
2015-04-01
Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
NASA Astrophysics Data System (ADS)
Galaleldin, S.; Mannan, H. A.; Mukhtar, H.
2017-12-01
In this study, mixed matrix membranes comprised of polyethersulfone as the bulk polymer phase and titanium dioxide (TiO2) nanoparticles as the inorganic discontinuous phase were prepared for CO2/CH4 separation. Membranes were synthesized at filler loading of 0, 5, 10 and 15 wt % via dry phase inversion method. Morphology, chemical bonding and thermal characteristics of membranes were scrutinized utilizing different techniques, namely: Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform InfraRed (FTIR) spectra and Thermogravimetric analysis (TGA) respectively. Membranes gas separation performance was evaluated for CO2 and CH4 gases at 4 bar feed pressure. The highest separation performance was achieved by mixed matrix membrane (MMM) at 5 % loading of TiO2.
Dutta, Binita; Lahiri, Susanta; Tomar, B S
2014-02-01
The aqueous biphasic system (ABS) involving sodium malonate-polyethylene glycol (PEG) phases has been applied for the first time for separation of no-carrier-added (183)Re (T1/2=70 d) from α-particle irradiated bulk tantalum target. The various ABS conditions were applied for investigating the separation by varying pH, temperature, PEG-molecular weight, concentration of salt. The extraction pattern was hardly affected by change in pH and the molecular weight of PEG. One step separation of nca (183)Re from Ta was achieved at the optimal conditions of (i) 50% (w/w) PEG-4000-2 M sodium malonate, 40 °C and (ii) 50% (w/w) PEG-4000-3 M sodium malonate, room temperature (27 °C). © 2013 Published by Elsevier Ltd.
Improvement of glass-forming ability and phase separation in Cu Ti-rich
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, E S; Chang, H J; Kim, D H
2010-01-01
Present study reports improvement of glass-forming ability (GFA) and phase separation in Cu Ti-rich Cu Ti Zr Ni Si bulk metallic glasses (BMGs) by tailoring the constituent elements. The MA of metalloid element, Sn having relatively large negative enthalpy of mixing can lead to improve GFA (up to 8mm in diameter) as well as thermal stability (up toTx = 48K) by optimizing the substitution element. And the addition of elements having relatively large positive enthalpy of mixing (partial substitution of Zr or Ti with Y) can lead to the liquid state phase separation in Cu Ti Sn Zr Ni Simore » BMG, although the addition lead to drastic deterioration of the GFA.« less
Bingham, N. S.; Lampen, P.; Phan, M. H.; ...
2012-08-16
Bulk manganites of the form La 5/8–yPr yCa 3/8MnO₃ (LPCMO) exhibit a complex phase diagram due to coexisting charge-ordered antiferromagnetic (CO/AFM), charge-disordered paramagnetic (PM), and ferromagnetic (FM) phases. Because phase separation in LPCMO occurs on the microscale, reducing particle size to below this characteristic length is expected to have a strong impact on the magnetic properties of the system. Through a comparative study of the magnetic and magnetocaloric properties of single-crystalline (bulk) and nanocrystalline LPCMO (y=3/8) we show that the AFM, CO, and FM transitions seen in the single crystal can also be observed in the large particle sizes (400more » and 150 nm), while only a single PM to FM transition is found for the small particles (55 nm). Magnetic and magnetocaloric measurements reveal that decreasing particle size affects the balance of competing phases in LPCMO and narrows the range of fields over which PM, FM, and CO phases coexist. The FM volume fraction increases with size reduction, until CO is suppressed below some critical size, ~100 nm. With size reduction, the saturation magnetization and field sensitivity first increase as long-range CO is inhibited, then decrease as surface effects become increasingly important. The trend that the FM phase is stabilized on the nanoscale is contrasted with the stabilization of the charge-disordered PM phase occurring on the microscale, demonstrating that in terms of the characteristic phase separation length, a few microns and several hundred nanometers represent very different regimes in LPCMO.« less
Ternary Polymeric Composites Exhibiting Bulk and Surface Quadruple-Shape Memory Properties.
Buffington, Shelby Lois; Posnick, Benjamin M; Paul, Justine Elizabeth; Mather, Patrick T
2018-06-19
We report the design and characterization of a multiphase quadruple shape memory composite capable of switching between 4 programmed shapes, three temporary and one permanent. Our approach combined two previously reported fabrication methods by embedding an electrospun mat of PCL in a miscible blend of epoxy monomers and PMMA as a composite matrix. As epoxy polymerization occurred the matrix underwent phase separation between the epoxy and PMMA materials. This created a multiphase composite with PCL fibers and a two-phase matrix composed of phase-separated epoxy and PMMA. The resulting composite demonstrated three separate thermal transitions and amenability to mechanical programming of three separate temporary shapes in addition to one final, equilibrium shape. In addition, quadruple surface shape memory abilities are successfully demonstrated. The versatility of this approach offers a large degree of design flexibility for multi-shape memory materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu
2017-07-03
We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.
NASA Astrophysics Data System (ADS)
Zhang, Z. Q.; Song, K. K.; Sun, B. A.; Wang, L.; Cui, W. C.; Qin, Y. S.; Han, X. L.; Xue, Q. S.; Peng, C. X.; Sarac, B.; Spieckermann, F.; Kaban, I.; Eckert, J.
2018-07-01
The multiplication and interaction of self-organised shear bands often transform to a stick-slip behaviour of a major shear band along the primary shear plane, and ultimately the major shear band becomes runaway and terminates the plasticity of bulk metallic glasses (BMGs). Here, we examined the deformation behaviours of the nanoscale phase-separating Zr65-xCu25Al10Fex (x = 5 and 7.5 at.%) BMGs. The formation of multi-step phase separation, being mainly governed by nucleation and growth, results in the microstructural inhomogeneity on a wide range of length-scales and leads to obviously macroscopic and repeatable ductility. The good deformability can be attributed to two mechanisms for stabilizing shear banding process, i.e. the mutual interaction of multiple shear bands away from the major shear band and the delaying slip-to-failure of dense fine shear bands around the major shear band, both of which show a self-organised criticality yet with different power-law exponents. The two mechanisms could come into effect in the intermediate (stable) and later plastic deformation regime, respectively. Our findings provide a possibility to enhance the shear banding stability over the whole plastic deformation through a proper design of microstructure heterogeneities.
Hexaferrite multiferroics: from bulk to thick films
NASA Astrophysics Data System (ADS)
Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.
2018-03-01
We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.
Scanning measurement of Seebeck coefficient of a heated sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, G. Jeffrey; Iwanaga, Shiho
2016-04-19
A novel scanning Seebeck coefficient measurement technique is disclosed utilizing a cold scanning thermocouple probe tip on heated bulk and thin film samples. The system measures variations in the Seebeck coefficient within the samples. The apparatus may be used for two dimensional mapping of the Seebeck coefficient on the bulk and thin film samples. This technique can be utilized for detection of defective regions, as well as phase separations in the sub-mm range of various thermoelectric materials.
NASA Astrophysics Data System (ADS)
Stopper, Daniel; Roth, Roland
2018-06-01
By means of classical density functional theory and its dynamical extension, we consider a colloidal fluid with spherically symmetric competing interactions, which are well known to exhibit a rich bulk phase behavior. This includes complex three-dimensional periodically ordered cluster phases such as lamellae, two-dimensional hexagonally packed cylinders, gyroid structures, or spherical micelles. While the bulk phase behavior has been studied extensively in earlier work, in this paper we focus on such structures confined between planar repulsive walls under shear flow. For sufficiently high shear rates, we observe that microphase separation can become fully suppressed. For lower shear rates, however, we find that, e.g., the gyroid structure undergoes a kinetic phase transition to a hexagonally packed cylindrical phase, which is found experimentally and theoretically in amphiphilic block copolymer systems. As such, besides the known similarities between the latter and colloidal systems regarding the equilibrium phase behavior, our work reveals further intriguing nonequilibrium relations between copolymer melts and colloidal fluids with competing interactions.
Structural comparison of Ag-Ge-S bulk glasses and thin films
NASA Astrophysics Data System (ADS)
Wang, Fei; Jain, Mukul; Dunn, Porter; de Leo, Carter; Boolchand, Punit
2007-03-01
Ternary glasses of composition (GeS3)1-xAgx (x=0.1 and 0.2) are studied in form of bulk and thin films. Bulk glasses are synthesized and examined in Raman scattering and SEM. Raman scattering results of bulk glasses show that with increasing x, an increasing fraction of the Ag additive enters the base glass as Ag^+ with S^-anions serving to form thiogermanate species with one, two and three non-bridging S^- species. SEM measurements of the bulk glass show the material is intrinsically phase separated. White colored islands are observed distributed in a dark base. The EDS measurements show islands are Ag rich and the base is relatively Ag deficient. The Ag rich islands are expected to be mainly glassy phase Ag2S. Thin films of same compositions are fabricated using thermal evaporation. Films are evaporated following two different procedures to prevent the material from spitting. One method was preheating outgas and the other method was using tungsten mesh wrapped boats. The stoichiometry and molecular structure of films under each procedure are analyzed by Raman scattering and SEM to be compared with bulk glasses.
NASA Astrophysics Data System (ADS)
Stephen, N. R.
2016-08-01
IR spectroscopy is used to infer composition of extraterrestrial bodies, comparing bulk spectra to databases of separate mineral phases. We extract spatially resolved meteorite-specific spectra from achondrites with respect to zonation and orientation.
Brewster, Robert; Safran, Samuel A
2010-03-17
A simple model of the line activity of a hybrid lipid (e.g., POPC) with one fully saturated chain and one partially unsaturated chain demonstrates that these lipids preferentially pack at curved interfaces between phase-separated saturated and unsaturated domains. We predict that the domain sizes typically range from tens to hundreds of nm, depending on molecular interactions and parameters such as molecular volume and area per headgroup in the bulk fluid phase. The role of cholesterol is taken into account by an effective change in the headgroup areas and the domain sizes are predicted to increase with cholesterol concentration. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Malijevský, Alexandr; Archer, Andrew J
2013-10-14
We present dynamical density functional theory results for the time evolution of the density distribution of a sedimenting model two-dimensional binary mixture of colloids. The interplay between the bulk phase behaviour of the mixture, its interfacial properties at the confining walls, and the gravitational field gives rise to a rich variety of equilibrium and non-equilibrium morphologies. In the fluid state, the system exhibits both liquid-liquid and gas-liquid phase separation. As the system sediments, the phase separation significantly affects the dynamics and we explore situations where the final state is a coexistence of up to three different phases. Solving the dynamical equations in two-dimensions, we find that in certain situations the final density profiles of the two species have a symmetry that is different from that of the external potentials, which is perhaps surprising, given the statistical mechanics origin of the theory. The paper concludes with a discussion on this.
Phthalimide Copolymer Solar Cells
NASA Astrophysics Data System (ADS)
Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson
2010-03-01
Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.
1987-10-01
discharged from these wells was containerized and transported to the base oil separator plant for treatment. It is estimated that approximately 25 percent...and 29). The fly ash is probably associated with the power plant tc the west of the Bulk Fuel Storage Area. Just below the fill, at 13 to 15 feet, is...been widely used in petroleum refineries and fuel terminals in response to similar spill impact situations. Although the collect ion/recov- ery
Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies
NASA Astrophysics Data System (ADS)
Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse
2018-05-01
The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.
Effect of Sn addition on glassy Si-Te bulk sample
NASA Astrophysics Data System (ADS)
Babanna, Jagannatha K.; Roy, Diptoshi; Varma, Sreevidya G.; Asokan, Sundarrajan; Das, Chandasree
2018-05-01
Bulk Si20Te79Sn1 glass is prepared by melt-quenching method, amorphous nature of the as-quenched glass is confirmed by XRD. I-V characteristics reveals that Si20Te79Sn1 bulk sample exhibits threshold type electrical switching behavior. The thermal parameters such as crystallization temperature, glass transition temperature are obtained using differential scanning calorimetry. The crystalline peak study of the sample annealed at crystallization temperature for 2 hr shows that the Sn atom interact with Si or Te but do not interact with the Si-Te matrix in a greater extent and it forms a separate phase network individually.
NASA Astrophysics Data System (ADS)
Shen, Jian; Liu, Shouhua; Shen, Zicai; Shao, Jianda; Fan, Zhengxiu
2006-03-01
A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N1 sublayers of uniform thickness) and subsurface layer (separated into N2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification.
Theory of Phase Separation and Polarization for Pure Ionic Liquids.
Gavish, Nir; Yochelis, Arik
2016-04-07
Room temperature ionic liquids are attractive to numerous applications and particularly, to renewable energy devices. As solvent free electrolytes, they demonstrate a paramount connection between the material morphology and Coulombic interactions: the electrode/RTIL interface is believed to be a product of both polarization and spatiotemporal bulk properties. Yet, theoretical studies have dealt almost exclusively with independent models of morphology and electrokinetics. Introduction of a distinct Cahn-Hilliard-Poisson type mean-field framework for pure molten salts (i.e., in the absence of any neutral component), allows a systematic coupling between morphological evolution and the electrokinetic phenomena, such as transient currents. Specifically, linear analysis shows that spatially periodic patterns form via a finite wavenumber instability and numerical simulations demonstrate that while labyrinthine type patterns develop in the bulk, lamellar structures are favored near charged surfaces. The results demonstrate a qualitative phenomenology that is observed empirically and thus, provide a physically consistent methodology to incorporate phase separation properties into an electrochemical framework.
Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells
2014-01-01
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107
Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.
Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo
2014-01-01
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.
Vacancy-mediated fcc/bcc phase separation in Fe 1-xNi x ultrathin films
Mentes, T. O.; Stojic, N.; Vescovo, E.; ...
2016-08-01
The phase separation occurring in Fe-Ni thin lms near the Invar composition is studied by using high resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 C, Fe 0.70Ni 0.30 lms on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the di using species in forming the chemical heterogeneity. The experimentally-determined energy barrier of 1.59 0.09 eV is identi ed as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separationmore » process is attributed to vacancy creation without interstitials.« less
Donahoe, Casey D.; Cohen, Thomas L.; Li, Wenlu; Nguyen, Peter K.; Fortner, John D.; Mitra, Robi D.; Elbert, Donald L.
2013-01-01
Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by Quartz Crystal Microbalance with Dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly-L-lysine-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface crosslinking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus, producing the best performing 100% PEG coating that we have studied to date. PMID:23441808
Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett
2013-12-01
The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kimura, Taro; Akiyama, Ryo; Miyatake, Kenji; Inukai, Junji
2018-01-01
For higher performances of anion exchange membrane (AEM) fuel cells, understanding the phase-separated structures inside AEMs is essential, as well as those at the catalyst layer/membrane interfaces. The AEMs based on quaternized aromatic semi-block copolymers with different ion exchange capacities (IECs) were systematically investigated. With IECs of 1.23 and 1.95 mequiv g-1, the water uptakes at room temperature were 37% and 98%, and the anion conductivities 23.6 and 71.4 mS cm-1, respectively. The increases were not proportional to the IEC. Images obtained by transmission electron microscopy in vacuum were similar with both IEC values, but the development of a clear phase separation in humidified nitrogen was observed in the profiles only with 1.95 mequiv g-1obtained by small-angle X-ray scattering. At the temperature of 40 °C and the relative humidity (RH) of 30%, the average currents observed at the tip apex by current-sensing atomic force microscopy were <0.5 and 10 pA with 1.23 and 1.95 mequiv g-1, respectively, and those at 70% RH were 10 and 15 pA, respectively. The humidity gave a larger influence on the bulk structure with 1.95 mequiv g-1, whereas a larger influence on the surface conductivity with 1.23 mequiv g-1.
Mallik, Abul K; Cheah, Wee Keat; Shingo, Kaori; Ejzaki, Aika; Takafuji, Makoto; Ihara, Hirotaka
2014-07-01
A new hydrophilic and nonionic poly(2-vinyloxazoline)-grafted silica (Sil-VOX(n)) phase was synthesized and applied for the separation of nucleosides and nucleobases in hydrophilic interaction chromatography (HILIC). Polymerization and immobilization onto silica were confirmed by using characterization techniques including (1)H NMR spectroscopy, elemental analysis, and diffuse reflectance infrared Fourier transform spectroscopy. The hydrophilicity or wettability of Sil-VOX(n) was observed by measuring the contact angle (59.9°). The chromatographic results were compared with those obtained with a conventional HILIC silica column. The Sil-VOX(n) phase showed much better separation of polar test analytes than the silica column, and the elution order was different. Differences in selectivity between these two columns indicate that the stationary phase cannot function merely as an inert support for a water layer into which the solutes are partitioned from the bulk mobile phase. To elucidate the interaction mechanism, the separation of dihydroxybenzene isomers was performed on both columns in normal-phase liquid chromatography. Sil-VOX(n) was very sensitive to the dipole moments of the positional isomers of polycyclic aromatic compounds in normal-phase liquid chromatography. The interaction mechanism for Sil-VOX(n) in HILIC separation is also described.
Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Nadazdy, Peter; Nadazdy, Vojtech; Majkova, Eva
2017-03-08
Solvent annealing is an efficient way of phase separation in polymer-fullerene blends to optimize bulk heterojunction morphology of active layer in polymer solar cells. To track the process in real time across all relevant stages of solvent evaporation, laboratory-based in situ small- and wide-angle X-ray scattering measurements were applied simultaneously to a model P3HT:PCBM blend dissolved in dichlorobenzene. The PCBM molecule agglomeration starts at ∼7 wt % concentration of solid content of the blend in solvent. Although PCBM agglomeration is slowed-down at ∼10 wt % of solid content, the rate constant of phase separation is not changed, suggesting agglomeration and reordering of P3HT molecular chains. Having the longest duration, this stage most affects BHJ morphology. Phase separation is accelerated rapidly at concentration of ∼25 wt %, having the same rate constant as the growth of P3HT crystals. P3HT crystallization is driving force for phase separation at final stages before a complete solvent evaporation, having no visible temporal overlap with PCBM agglomeration. For the first time, such a study was done in laboratory demonstrating potential of the latest generation table-top high-brilliance X-ray source as a viable alternative before more sophisticated X-ray scattering experiments at synchrotron facilities are performed.
Extraction of heavy metal ions from waste colored glass through phase separation.
Chen, Danping; Masui, Hirotsugu; Miyoshi, Hiroshi; Akai, Tomoko; Yazawa, Tetsuo
2006-01-01
A new method utilizing phase separation phenomena for the extraction of heavy metal ions used as colorants in colored glass is proposed. Colored soda-lime-silica glass containing Co or Cr as a colorant was remelted with B2O3 to yield soda-lime-borosilicate glass. The soda-lime-borosilicate glass thus obtained was leached in 1M nitric acid at 90 degrees C to dissolve the borate phase. All cations (Na, Ca, Cr and Co) concentrated in the borate phase are successfully leached out with the dissolution of the borate phase, when the amount of the B2O3 added to the glass and heat treatment conditions are properly chosen. Porous silicate glass powders with high SiO2 purity are obtained as the result of the leaching. Porous glass can also be formed as bulk material by controlling the composition of additives during the remelting.
Jandera, Pavel; Hájek, Tomáš
2018-01-01
Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed-phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one- and two-dimensional liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition
An, Zhinan; Jia, Haoling; Wu, Yueying; ...
2015-05-04
The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.
Magnetic phase diagram and critical behavior of electron-doped LaxCa1-xMnO3(0⩽x⩽0.25) nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Yang; Fan, Hong Jin
2011-06-01
A comparative study of electron-doped perovskite manganites LaxCa1-xMnO3 (0 ⩽ x ⩽ 0.25) in nanoparticle and bulk form is reported. The bulks and nanoparticles exhibit different magnetic evolutions. Overall with increasing x, the bulks have a phase-separated ground state with ferromagnetic (FM) clusters and antiferromagnetic (AFM) matrix coexisting. The FM clusters gradually grow, and the magnetization M peaks at x= 0.1. Subsequently, charge-ordering (CO) or local CO occurs, which suppresses the increase in FM clusters but favors the development of antiferromagnetism so M starts to decrease. Finally the system becomes a homogeneous AFM state at x > 0.18. For the nanoparticles in the range of 0 ⩽ x ⩽ 0.1, the ground state is similar to that of the bulks, but M is slightly increased because of a surface ferromagnetism. Nevertheless because of the structure distortion induced by surface pressure and the size effect, CO does not occur in the nanoparticles. Consequently, the ferromagnetism still gradually develops at x > 0.1 and thus M monotonously rises. M reaches a maximum at x= 0.18, after which the competition between ferromagnetism and antiferromagnetism induces a cluster-glass (CG) state. On the basis of these observations the phase diagrams for both bulks and nanoparticles are established. For the nanoparticles that display enhanced ferromagnetism the critical behavior analysis indicates that they fall into a three-dimensional (3D) Heisenberg ferromagnet class.
Several vapor phase chemical treatments for dimensional stabilization of wood
H.M. Barnes; E.T. Choong; R.C. Mcllhenny
1969-01-01
A bench-scale system for the impregnation of wood with volatile compounds was constructed for the purpose of testing the system concept and evaluating various polymeric bulking materials as dimensional stabilizing agents. Provisions were incorporated for recycling the treating material, introduction of two separate materials alternately or simultaneously, timed-cycle...
Grooved nanowires from self-assembling hairpin molecules for solar cells.
Tevis, Ian D; Tsai, Wei-Wen; Palmer, Liam C; Aytun, Taner; Stupp, Samuel I
2012-03-27
One of the challenges facing bulk heterojunction organic solar cells is obtaining organized films during the phase separation of intimately mixed donor and acceptor components. We report here on the use of hairpin-shaped sexithiophene molecules to generate by self-assembly grooved nanowires as the donor component in bulk heterojunction solar cells. Photovoltaic devices were fabricated via spin-casting to produce by solvent evaporation a percolating network of self-assembled nanowires and fullerene acceptors. Thermal annealing was found to increase power conversion efficiencies by promoting domain growth while still maintaining this percolating network of nanostructures. The benefits of self-assembly and grooved nanowires were examined by building devices from a soluble sexithiophene derivative that does not form one-dimensional structures. In these systems, excessive phase separation caused by thermal annealing leads to the formation of defects and lower device efficiencies. We propose that the unique hairpin shape of the self-assembling molecules allows the nanowires as they form to interact well with the fullerenes in receptor-ligand type configurations at the heterojunction of the two domains, thus enhancing device efficiencies by 23%. © 2012 American Chemical Society
Abd El-Hay, Soad S; Hashem, Hisham; Gouda, Ayman A
2016-03-01
A novel, simple and robust high-performance liquid chromatography (HPLC) method was developed and validated for simultaneous determination of xipamide (XIP), triamterene (TRI) and hydrochlorothiazide (HCT) in their bulk powders and dosage forms. Chromatographic separation was carried out in less than two minutes. The separation was performed on a RP C-18 stationary phase with an isocratic elution system consisting of 0.03 mol L(-1) orthophosphoric acid (pH 2.3) and acetonitrile (ACN) as the mobile phase in the ratio of 50:50, at 2.0 mL min(-1) flow rate at room temperature. Detection was performed at 220 nm. Validation was performed concerning system suitability, limits of detection and quantitation, accuracy, precision, linearity and robustness. Calibration curves were rectilinear over the range of 0.195-100 μg mL(-1) for all the drugs studied. Recovery values were 99.9, 99.6 and 99.0 % for XIP, TRI and HCT, respectively. The method was applied to simultaneous determination of the studied analytes in their pharmaceutical dosage forms.
Enhancing the Efficiency of Bulk Heterojunction Solar Cells via Templated Self Assembly
NASA Astrophysics Data System (ADS)
Pan, Cheng; Li, Hongfei; Akgun, Bulent; Satijia, Sushil; Gersappe, Dilip; Zhu, Yimei; Rafailovich, Miriam
2013-03-01
Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. The mixture of polythiophene derivatives (donor) and fullerenes (acceptor) is spin coated on substrate as the active layer, and are phase-separated into interconnected domains. However, due to the disordered inner structures in the active layer, donor or acceptor domains isolated from electrodes and long path conduction, the power conversion efficiency (PCE) of BHJ solar cell is low. Therefore, morphology control in bulk heterojunction (BHJ) solar cell is considered to be critical for the power conversion efficiency (PCE). Here, we present a novel approach that introduces non-photoactive polymer that organizes the poly(3-hexylthiophene) (P3HT) into columnar phases decorated by [6,6]-phenyl C61-butyric acid methyl ester (PCBM) at the interface. This structure represents a realization of an idealized morphology of an organic solar cell, in which, both exiciton dissociation and the carrier transport are optimized leading to increased power conversion efficiency.
Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo
Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell–burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressuremore » and tension, replacing the domain texture by a uniform one. This isothermal phase transition—resulting from a well-coordinated sequence of mechanochemical events—suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment.« less
Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials
Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; ...
2014-10-15
Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell–burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressuremore » and tension, replacing the domain texture by a uniform one. This isothermal phase transition—resulting from a well-coordinated sequence of mechanochemical events—suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment.« less
Analytical Chemistry Developmental Work Using a 243Am Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Khalil J.; Stanley, Floyd E.; Porterfield, Donivan R.
2015-02-24
This project seeks to reestablish our analytical capability to characterize Am bulk material and develop a reference material suitable to characterizing the purity and assay of 241Am oxide for industrial use. The tasks associated with this phase of the project included conducting initial separations experiments, developing thermal ionization mass spectrometry capability using the 243Am isotope as an isotope dilution spike , optimizing the spike for the determination of 241Pu- 241 Am radiochemistry, and, additionally, developing and testing a methodology which can detect trace to ultra- trace levels of Pu (both assay and isotopics) in bulk Am samples .
The metal-insulator transition in a phase-separated manganite studied by in situ STS
NASA Astrophysics Data System (ADS)
Snijders, P. C.; Gao, M.; Guo, H.; Ward, T. Z.; Gao, H.-J.; Shen, J.; Gai, Z.
2012-02-01
Electronic phase separation (EPS) is a key feature at the heart of the wide variety of electronic and magnetic properties in complex oxides. One consequence of EPS is that electronic transport experiments in bulk materials or 2D films mostly probe the low resistivity electronic phases due to the percolative path of the current. We study oxygen deficient La5/8-xPrxCa3/8M nO3 (LPCMO) thin films using both in situ scanning tunneling spectroscopy (STS) and ex situ transport experiments. The oxygen deficiency is known to decrease the metal-insulator transition (MIT) temperature or even completely suppress the MIT in conventional transport experiments. We show that in situ STS is able to detect the MIT even in systems where conventional transport experiments do not show an MIT at zero magnetic field.
NASA Astrophysics Data System (ADS)
Totsuji, Hiroo
2008-07-01
The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.
Temperature-Induced Protein Release from Water-in-Oil-in-Water Double Emulsions
Rojas, Edith C.; Staton, Jennifer A.; John, Vijay T.; Papadopoulos, Kyriakos D.
2009-01-01
A model water-in-oil-in-water (W1/O/W2) double emulsion was prepared by a two-step emulsification procedure and subsequently subjected to temperature changes that caused the oil phase to freeze and thaw while the two aqueous phases remained liquid. Our previous work on individual double-emulsion globules1 demonstrated that crystallizing the oil phase (O) preserves stability, while subsequent thawing triggers coalescence of the droplets of the internal aqueous phase (W1) with the external aqueous phase (W2), termed external coalescence. Activation of this instability mechanism led to instant release of fluorescently tagged bovine serum albumin (fluorescein isothiocyanate (FITC)-BSA) from the W1 droplets and into W2. These results motivated us to apply the proposed temperature-induced globule-breakage mechanism to bulk double emulsions. As expected, no phase separation of the emulsion occurred if stored at temperatures below 18 °C (freezing point of the model oil n-hexadecane), whereas oil thawing readily caused instability. Crucial variables were identified during experimentation, and found to greatly influence the behavior of bulk double emulsions following freeze-thaw cycling. Adjustment of these variables accounted for a more efficient release of the encapsulated protein. PMID:18543998
Kasawar, G B; Farooqui, M N
2009-09-01
A chiral reverse phase liquid chromatographic method was developed for the enantiomeric resolution of racemic mixture of (-)-5-[2-aminopropyl]-2-methoxybenzene sulfonamide in bulk drug. The enantiomeric separation of sulfonamide was resolved on a Crownpak CR (+) column using perchloric acid buffer of pH 1.0 as mobile phase and with UV detection at 226 nm. The method is validated and proved to be robust. The limit of detection and quantification of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] was found to be 0.084 and 0.159 mug/ml, respectively for 20 mul injection volume. The percentage recovery of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] ranged from 99.57 to 101.88 in bulk drug samples of R (-)-(5)-[2- aminopropyl]-2-methoxybenzene sulfonamide].
Kasawar, G. B.; Farooqui, M. N.
2009-01-01
A chiral reverse phase liquid chromatographic method was developed for the enantiomeric resolution of racemic mixture of (-)-5-[2-aminopropyl]-2-methoxybenzene sulfonamide in bulk drug. The enantiomeric separation of sulfonamide was resolved on a Crownpak CR (+) column using perchloric acid buffer of pH 1.0 as mobile phase and with UV detection at 226 nm. The method is validated and proved to be robust. The limit of detection and quantification of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] was found to be 0.084 and 0.159 μg/ml, respectively for 20 μl injection volume. The percentage recovery of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] ranged from 99.57 to 101.88 in bulk drug samples of R (-)-(5)-[2- aminopropyl]-2-methoxybenzene sulfonamide]. PMID:20502572
Zhang, Kai; Xue, Na; Shi, Xiaowei; Liu, Weina; Meng, Jing; Du, Yumin
2011-04-28
A enantioselective reversed-phase high performance liquid chromatographic method was developed for the enantiomeric resolution of safinamide mesilate, 2(S)-[4-(3-fluorobenzyloxy)benzylamino] propionamide methanesulfonate, a neuroprotectant with antiparkinsonian and anticonvulsant activity for the treatment of Parkinson disease. The enantiomers of safinamide mesilate were baseline resolved on a Chiralcel OD-RH (150mm×4.6mm, 5μm) column using a mobile phase system containing 300mM sodium di-hydrogen phosphate buffer (pH 3.0):methanol:acetonitrile (65:25:10, v/v/v). The resolution between the enantiomers was not less than 3.0. The pH value of buffer solution in the mobile phase has played a key role in enhancing chromatographic efficiency and resolution between the enantiomers. The developed method was validated and proved to be robust. The limit of detection and limit of quantification of (R)-enantiomer were found to be 15 and 50ng/mL, respectively, for 20μL injection volume. The percentage recovery of (R)-enantiomer was ranged from 94.2 to 103.7 in bulk drug samples of safinamide mesilate. The sample solution and mobile phase were found to be stable at least for 48h. The final optimized method was successfully applied to separate (R)-enantiomer from safinamide mesilate and was proven to be reproducible and accurate for the quantitative determination of (R)-enantiomer in bulk drugs. Copyright © 2010 Elsevier B.V. All rights reserved.
X-Ray Nanoscopy of a Bulk Heterojunction
NASA Astrophysics Data System (ADS)
Patil, Nilesh; Torbjørn, Eirik; Skjønsfjell, Bakken; Van den Brande, Niko; Chavez Panduro, Elvia Anabela; Claessens, Raf; Guizar-Sicairos, Manuel; Van Mele, Bruno; Breiby, Dag Werner
2016-07-01
Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and thermally treated for different annealing times is imaged to high resolution. Moreover, using a fast-scanning calorimetry chip setup, the nano-morphological changes caused by repeated thermal annealing applied to the same sample could be monitored. X-ray ptychography resolves to better than 100 nm the phase-segregated domains of electron donor and electron acceptor materials over a large field of view within the active layers. The quantitative phase contrast images further allow us to estimate the local volume fraction of PCBM across the photovoltaically active layers. The volume fraction gradient for different regions provides insight on the PCBM diffusion across the depletion zone surrounding PCBM aggregates. Phase contrast X-ray microscopy is under rapid development, and the results presented here are promising for future studies of organic-organic blends, also under in situ conditions, e.g., for monitoring the structural stability during UV-Vis irradiation.
X-Ray Nanoscopy of a Bulk Heterojunction.
Patil, Nilesh; Skjønsfjell, Eirik Torbjørn Bakken; Van den Brande, Niko; Chavez Panduro, Elvia Anabela; Claessens, Raf; Guizar-Sicairos, Manuel; Van Mele, Bruno; Breiby, Dag Werner
2016-01-01
Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and thermally treated for different annealing times is imaged to high resolution. Moreover, using a fast-scanning calorimetry chip setup, the nano-morphological changes caused by repeated thermal annealing applied to the same sample could be monitored. X-ray ptychography resolves to better than 100 nm the phase-segregated domains of electron donor and electron acceptor materials over a large field of view within the active layers. The quantitative phase contrast images further allow us to estimate the local volume fraction of PCBM across the photovoltaically active layers. The volume fraction gradient for different regions provides insight on the PCBM diffusion across the depletion zone surrounding PCBM aggregates. Phase contrast X-ray microscopy is under rapid development, and the results presented here are promising for future studies of organic-organic blends, also under in situ conditions, e.g., for monitoring the structural stability during UV-Vis irradiation.
Surface and Bulk Phase Separations in Block Copolymers and Their Blends.
1984-03-01
research effort in _. the biomedical area to study polymeric surfaces which may be applied where biocompatibility (particularly, blood compatibilty) is...elasticity(thermoplastic) and good biocompatibility . Two such commercially available polyurethanes-, Avcothane and Biomer, have been used in this...the biocompatible properties depended considerably on the rate of evaporation of solvent during the film preparation. ATR-IR spectroscopy showed that
Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Li, Jinyan; Bai, Yiming; Wang, Fuzhi; Bian, Xingming; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao
2017-12-20
For bulk heterojunction polymer solar cells (PSCs), the donors and acceptors featuring specific phase separation and concentration distribution within the electron donor/acceptor blends crucially affect the exciton dissociation and charge transportation. Herein, efficient and stable nonfullerene inverted PSCs incorporating a phase separated photoactive layer and a titanium chelate electrode modification layer are demonstrated. Water contact angle (WCA), scanning kelvin probe microscopy (SKPM), and atomic force microscopy (AFM) techniques are implemented to characterize the morphology of photoactive layers. Compared with the control conventional device, the short-circuit current density (J sc ) is enhanced from 14.74 to 17.45 mAcm -2 . The power conversion efficiency (PCE) for the inverted PSCs with a titanium (diisopropoxide)-bis-(2,4-pentanedionate) (TIPD) layer increases from 9.67% to 11.69% benefiting from the declined exciton recombination and fairly enhanced charge transportation. Furthermore, the nonencapsulated inverted device with a TIPD layer demonstrates the best long-term stability, 85% of initial PCE remaining and an almost undecayed open-circuit voltage (V oc ) after 1440 h. Our results reveal that the titanium chelate is an excellent electrode modification layer to incorporate with a vertical phase separated photoactive layer for producing high-efficiency and high-stability inverted nonfullerene PSCs.
Bavand Savadkouhi, Maryam; Vahidi, Hossein; Ayatollahi, Abdul Majid; Hooshfar, Shirin; Kobarfard, Farzad
2017-01-01
A new, rapid, economical and isocratic reverse phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of eptifibatide acetate, a small synthetic antiplatelet peptide, in bulk drug substance and pharmaceutical dosage forms. The developed method was validated as per of ICH guidelines. The chromatographic separation was achieved isocratically on C18 column (150 x 4.60 mm i.d., 5 µM particle size) at ambient temperature using acetonitrile (ACN), water and trifluoroacetic acid (TFA) as mobile phase at flow rate of 1 mL/min and UV detection at 275 nm. Eptifibatide acetate exhibited linearity over the concentration range of 0.15-2 mg/mL (r 2 =0.997) with limit of detection of 0.15 mg/mL The accuracy of the method was 96.4-103.8%. The intra-day and inter-day precision were between 0.052% and 0.598%, respectively. The present successfully validated method with excellent selectivity, linearity, sensitivity, precision and accuracy was applicable for the assay of eptifibatide acetate in bulk drug substance and pharmaceutical dosage forms.
Ferritin nanocontainers that self-direct in synthetic polymer systems
NASA Astrophysics Data System (ADS)
Sengonul, Merih C.
Currently, there are many approaches to introduce functionality into synthetic polymers. Among these, for example, are copolymerization, grafting, and blending methods. However, modifications made by such methods also change the thermodynamics and rheological properties of the polymer system of interest, and each new modification often requires a costly reoptimization of polymer processing. Such a reoptimalization would not be necessary if new functionality could be introduced via a container whose external surface is chemically and physically tuned to interact with the parent polymer. The contents of the container could then be changed without changing other important properties of the parent polymer. In this context this thesis project explores an innovative nanocontainer platform which can be introduced into phase-separating homopolymer blends. Ferritin is a naturally existing nanocontainer that can be used synthetically to package and selectively transport functional moieties to a particular phase that is either in the bulk or on the surface of a homopolymer blend system. The principal focus of this work centers on modifying the surface of wild ferritin to: (1) render modified ferritin soluble in a non-aqueous solvent; and (2) impart it with self-directing properties when exposed to a homopolymer blend surface or incorporated into the bulk of a homopolymer blend. Wild ferritin is water soluble, and this research project successfully modified wild ferritin by grafting either amine-functional poly(ethylene glycol) (PEG) or short-chain alkanes to carbodiimide activated carboxylate groups on ferritin's surface. Such modified ferritin is soluble in dichloromethane (DCM). Modification was confirmed by ion-exchange chromatography, zeta-potential measurements, and electrospray mass spectroscopy. FT-IR was used to quantify the extent of PEGylation of the reaction products through area ratios of the -C-O-C asymmetric stretching vibration of the grafted PEG chains to the carbonyl stretching vibration (amide I band) of the protein. The dimensionless grafting density after PEGylation was found to be 0.13 with 120 average grafted PEG chains per ferritin nanocontainer. Modified ferritin was used for bulk modification of a phase-separated polymer blend of poly(desaminotyrosyl tyrosine dodecyl ester carbonate) [PDTD] and PEG. TEM micrographs showed remarkable selectivity of PEGylated ferritin to PEG domains, while alkylated ferritin self-directs to the PDTD matrix. We explain this strong selectivity by the favourable interaction energies between the grafted and free matrix chains. In addition, both modified and wild ferritin were used for surface modification of the phase-separated homopolymer blend of PDTD and poly(ε-caprolactone) (PCL). At physiological pH wild ferritin selectively adsorbed onto the PDTD phase, while alkylated ferritin showed a striking selectivity to PCL phase. We attribute this behavior to the increase in protein's pI point above physiological pH after modification, which changes the electrostatic interactions between the ferritin and the polymer surface. Collectively, these results demonstrate the versatile use of ferritin as a model nanocontainer for the selective modification of surface and bulk properties of polymers.
NASA Astrophysics Data System (ADS)
Balke, Benjamin
Half-Heusler (HH) compounds are one of the most promising candidates for thermoelectric materials for automotive and industrial waste heat recovery applications. In this talk, I will give an overview about our recent investigations of phase separations in HH thermoelectrics, focusing on the ternary system TiNiSn-ZrNiSn-HfNiSn. I will show how we adapted this knowledge to design a p-type HH compound which exhibits a ZT that is increased by 130% compared to the best published bulk p-type Heusler. I will also present how we used the phase separation to design thermoelectric highly efficient nano-composites of different single-phase materials. Since the price for Hafnium doubled within the last year, our research focused on the design of HH compounds without Hafnium. I will present a very recent calculation on ZT per Euro and efficiency per Euro for various materials followed by our latest very promising results for n-type Heusler compunds without Hafnium resulting in 20 times higher ZT/Euro values. These results strongly underline the importance of phase separations as a powerful tool for designing highly efficient materials for thermoelectric applications that fulfill the industrial demands for a thermoelectric converter. The author gratefully acknowledges financial support by the thermoHEUSLER2 Project (Project No. 19U15006F) of the German Federal Ministry of Economics and Technology (BMWi).
NASA Astrophysics Data System (ADS)
Yang, Kun
2017-12-01
We consider an interface separating the Moore-Read state and Halperin 331 state in a half-filled Landau level, which can be realized in a double quantum well system with varying interwell tunneling and/or interaction strengths. In the presence of electron tunneling and strong Coulomb interactions across the interface, we find that all charge modes localize and the only propagating mode left is a chiral Majorana fermion mode. Methods to probe this neutral mode are proposed. A quantum phase transition between the Moore-Read and Halperin 331 states is described by a network of such Majorana fermion modes. In addition to a direct transition, they may also be separated by a phase in which the Majorana fermions are delocalized, realizing an incompressible state which exhibits quantum Hall charge transport and bulk heat conduction.
Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.; ...
2018-01-11
Gadolinium silicide (Gd 5Si 4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd 5Si 4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd 5Si 4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd 5Si 3 impurity. Here as the particle sizes decrease, the volumemore » fraction of Gd 5Si 3 phase increases at the expense of the Gd 5Si 4 phase, and the ferromagnetic transition temperature of Gd 5Si 4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.« less
Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials
Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; Kraut, Rachel S; Parikh, Atul N
2014-01-01
Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell–burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition—resulting from a well-coordinated sequence of mechanochemical events—suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment. DOI: http://dx.doi.org/10.7554/eLife.03695.001 PMID:25318069
NASA Astrophysics Data System (ADS)
Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.; Gupta, Shalabh; Pecharsky, Vitalij K.; Hadimani, Ravi L.
2018-05-01
Gadolinium silicide (Gd5Si4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd5Si4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd5Si4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd5Si3 impurity. As the particle sizes decrease, the volume fraction of Gd5Si3 phase increases at the expense of the Gd5Si4 phase, and the ferromagnetic transition temperature of Gd5Si4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.
Gadolinium silicide (Gd 5Si 4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd 5Si 4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd 5Si 4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd 5Si 3 impurity. Here as the particle sizes decrease, the volumemore » fraction of Gd 5Si 3 phase increases at the expense of the Gd 5Si 4 phase, and the ferromagnetic transition temperature of Gd 5Si 4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.« less
Declining availability of outdoor skating in Canada
NASA Astrophysics Data System (ADS)
Brammer, Jeremy R.; Samson, Jason; Humphries, Murray M.
2015-01-01
We find a mixed chirality $d$-wave superconducting state in the coexistence region between antiferromagnetism and interaction-driven superconductivity in lightly doped honeycomb materials. This state has a topological chiral $d+id$-wave symmetry in one Dirac valley but $d-id$-wave symmetry in the other valley and hosts two counter-propagating edge states, protected in the absence of intervalley scattering. A first-order topological phase transition, with no bulk gap closing, separates the chiral $d$-wave state at small magnetic moments from the mixed chirality $d$-wave phase.
Wetting and phase separation in soft adhesion
Jensen, Katharine E.; Sarfati, Raphael; Style, Robert W.; Boltyanskiy, Rostislav; Chakrabarti, Aditi; Chaudhury, Manoj K.; Dufresne, Eric R.
2015-01-01
In the classic theory of solid adhesion, surface energy drives deformation to increase contact area whereas bulk elasticity opposes it. Recently, solid surface stress has been shown also to play an important role in opposing deformation of soft materials. This suggests that the contact line in soft adhesion should mimic that of a liquid droplet, with a contact angle determined by surface tensions. Consistent with this hypothesis, we observe a contact angle of a soft silicone substrate on rigid silica spheres that depends on the surface functionalization but not the sphere size. However, to satisfy this wetting condition without a divergent elastic stress, the gel phase separates from its solvent near the contact line. This creates a four-phase contact zone with two additional contact lines hidden below the surface of the substrate. Whereas the geometries of these contact lines are independent of the size of the sphere, the volume of the phase-separated region is not, but rather depends on the indentation volume. These results indicate that theories of adhesion of soft gels need to account for both the compressibility of the gel network and a nonzero surface stress between the gel and its solvent. PMID:26553989
Mobility restrictions and glass transition behaviour of an epoxy resin under confinement.
Djemour, A; Sanctuary, R; Baller, J
2015-04-07
Confinement can have a big influence on the dynamics of glass formers in the vicinity of the glass transition. Already 40 to 50 K above the glass transition temperature, thermal equilibration of glass formers can be strongly influenced by the confining substrate. We investigate the linear thermal expansion and the specific heat capacity cp of an epoxy resin (diglycidyl ether of bisphenol A, DGEBA) in a temperature interval of 120 K around the glass transition temperature. The epoxy resin is filled into controlled pore glasses with pore diameters between 4 and 111 nm. Since DGEBA can form H-bonds with silica surfaces, we also investigate the influence of surface silanization of the porous substrates. In untreated substrates a core/shell structure of the epoxy resin can be identified. The glass transition behaviours of the bulk phase and that of the shell phase are different. In silanized substrates, the shell phase disappears. At a temperature well above the glass transition, a second transition is found for the bulk phase - both in the linear expansion data as well as in the specific heat capacity. The cp data do not allow excluding the glass transition of a third phase as being the cause for this transition, whereas the linear expansion data do so. The additional transition temperature is interpreted as a separation between two regimes: above this temperature, macroscopic flow of the bulk phase inside the porous structure is possible to balance the mismatch of thermal expansion coefficients between DGEBA and the substrate. Below the transition temperature, this degree of freedom is hindered by geometrical constraints of the porous substrates. Moreover, this second transition could also be found in the linear expansion data of the shell phase.
Thermoelectric properties of SrTiO3 nano-particles dispersed indium selenide bulk composites
NASA Astrophysics Data System (ADS)
Lee, Min Ho; Rhyee, Jong-Soo; Vaseem, Mohammad; Hahn, Yoon-Bong; Park, Su-Dong; Jin Kim, Hee; Kim, Sung-Jin; Lee, Hyeung Jin; Kim, Chilsung
2013-06-01
We investigated the thermoelectric properties of the InSe, InSe/In4Se3 composite, and SrTiO3 (STO) nano-particles dispersed InSe/In4Se3 bulk composites. The electrical conductivity of the InSe/In4Se3 composite with self-assembled phase separation is significantly increased compared with those of InSe and In4Se3-δ implying the enhancement of surface conductivity between grain boundaries. The thermal conductivity of InSe/In4Se3 composite is decreased compared to those of InSe. When the STO nano-particle dispersion was employed in the InSe/In4Se3 composite, a coherent interface was observed between nano-particle precipitates and the InSe bulk matrix with a reduction of the thermal conductivity.
Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; ...
2015-03-02
There is a possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides; it is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of threemore » Ruddlesden-Popper phases, general form A n-1A 2'BnO 3n+1, A n-1A 2'BnX 3n+1; LaSrCo 0.5Fe 0.5O 4-δ (n = 1), La 0.3Sr 2.7CoFeO 7-δ (n = 2) and LaSr 3Co 1.5Fe 1.5O 10-δ (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. Furthermore this is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. This paper conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.« less
NASA Astrophysics Data System (ADS)
Seshadri, Ranjani; Sen, Diptiman
2018-04-01
We study the phases of a spin system on the kagome lattice with nearest-neighbor X X Z interactions with anisotropy ratio Δ and Dzyaloshinskii-Moriya interactions with strength D . In the classical limit where the spin S at each site is very large, we find a rich phase diagram of the ground state as a function of Δ and D . There are five distinct phases which correspond to different ground-state spin configurations in the classical limit. We use spin-wave theory to find the bulk energy bands of the magnons in some of these phases. We also study a strip of the system which has infinite length and finite width; we find states which are localized near one of the edges of the strip with energies which lie in the gaps of the bulk states. In the ferromagnetic phase in which all the spins point along the +z ̂ or -z ̂ direction, the bulk bands are separated from each other by finite energy gaps. This makes it possible to calculate the Berry curvature at all momenta, and hence the Chern numbers for every band; the number of edge states is related to the Chern numbers. Interestingly, we find that there are four different regions in this phase where the Chern numbers are different. Hence there are four distinct topological phases even though the ground-state spin configuration is identical in all these phases. We calculate the thermal Hall conductivity of the magnons as a function of the temperature in the above ferromagnetic phase; we find that this can distinguish between the various topological phases. These results are valid for all values of S . In the other phases, there are no gaps between the different bands; hence the edge states are not topologically protected.
Electro-optical modeling of bulk heterojunction solar cells
NASA Astrophysics Data System (ADS)
Kirchartz, Thomas; Pieters, Bart E.; Taretto, Kurt; Rau, Uwe
2008-11-01
We introduce a model for charge separation in bulk heterojunction solar cells that combines exciton transport to the interface between donor and acceptor phases with the dissociation of the bound electron/hole pair. We implement this model into a standard semiconductor device simulator, thereby creating a convenient method to simulate the optical and electrical characteristics of a bulk heterojunction solar cell with a commercially available program. By taking into account different collection probabilities for the excitons in the polymer and the fullerene, we are able to reproduce absorptance, internal and external quantum efficiency, as well as current/voltage curves of bulk heterojunction solar cells. We further investigate the influence of mobilities of the free excitons as well as the mobilities of the free charge carriers on the performance of bulk heterojunction solar cells. We find that, in general, the highest efficiencies are achieved with the highest mobilities. However, an optimum finite mobility of free charge carriers can result from a large recombination velocity at the contacts. In contrast, Langevin-type of recombination cannot lead to finite optimum mobilities even though this mechanism has a strong dependence on the free carrier mobilities.
Perspective: The Asakura Oosawa model: a colloid prototype for bulk and interfacial phase behavior.
Binder, Kurt; Virnau, Peter; Statt, Antonia
2014-10-14
In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of "inverted swan neck"-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.
Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior
NASA Astrophysics Data System (ADS)
Binder, Kurt; Virnau, Peter; Statt, Antonia
2014-10-01
In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of "inverted swan neck"-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.
Stability of Ni-bsed bulk metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarz, Michelle L; Speakman, Scott A; Porter, Wallace D
Several ternary (Ni{sub x}Nb{sub y}Sn{sub z}) refractory alloy glasses (RAGs) were studied at elevated temperatures in order to assess the stability of the amorphous state, i.e. devitrification, and to identify subsequent phase transformations in these materials. differential scanning calorimetry (DSC) experiments indicated a complex phase transformation sequence with several distinct crystallization and melting events being recorded above the glass transition temperature, T{sub g}. Below T{sub g} the RAG samples were studied with an in situ environmental X-ray furnace facility, which allowed step-wise isothermal ramping experiments commencing at a temperature below the reduced temperature of T/T{sub g} {approx} 0.80. Distinct crystallinemore » phases were observed when T/T{sub g} {approx} 0.84 for ternary RAG alloys, while similar experiments on Zr-based Vit 106 glass alloys did not reveal any apparent phase separation until T/T{sub g} {approx} 0.96. The phase separation kinetics followed an Arrhenius type of relationship with Ni{sub 3}Sn, and Nb{sub 2}O{sub 5} being the principle crystalline precipitates.« less
Wetting Transitions in ^4He/^3He Mixtures on Cesium
NASA Astrophysics Data System (ADS)
Ross, David
1997-03-01
Over the last several years, helium on cesium has proven to be an ideal model system for the study of wetting and wetting transitions(E. Cheng, M.W. Cole, W.F. Saam, and J. Treiner, Phys. Rev. Lett. 67), 1007 (1991).^,(J.E. Rutledge and P. Taborek, Phys. Rev. Lett. 69), 937 (1992).^,(D. Ross, J.E. Rutledge, and P. Taborek, Phys. Rev. Lett. 76), 2350 (1996).. This presentation will focus on the adsorption of binary liquid mixtures of the helium isotopes, ^3He and ^4He, on cesium substrates over a range of temperatures extending from 0.2 K to 1.0 K. The results, spanning ^3He concentrations from 0 to 1, constitute the first experimentally constructed complete wetting phase diagram for a two component liquid at a weakly binding substrate. The wetting behavior is particularly interesting in the vicinity of bulk liquid phase separation. A wetting transition of the ^4He rich liquid between the ^3He rich liquid and the cesium substrate has been found with Tw = 0.53 K. The surface phase transition line associated with this wetting transition is found to extend to both sides of the bulk phase separation line. On the ^3He rich side it is a prewetting line, and on the ^4He rich side it becomes a line of triple point induced dewetting transitions. General arguments indicate that this behavior should be typical of a large class of binary liquid mixtures at weakly binding substrates.
Particle separation by phase modulated surface acoustic waves.
Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L
2017-09-01
High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.
Heo, Tae Wook; Chen, Long-Qing; Wood, Brandon C.
2015-04-08
In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating Li XFePO 4 electrode particle for Li-ion batteries as a modelmore » system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.« less
Kim, Jongsik; Ilott, Andrew J.; Middlemiss, Derek S.; ...
2015-05-13
Although substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into the bulk iron oxide or oxyhydroxide phase or if they form separate, minor phase impurities. These differences have important implications for the chemistry of these iron-containing materials, which are ubiquitous in the environment. In this work, 27Al and 2H NMR experiments are performed on series of Al-substituted goethite, lepidocrocite, and 2-line ferrihydrite in ordermore » to develop an NMR method to track Al substitution. The extent of Al substitution into the structural frameworks of each compound is quantified by comparing quantitative 27Al MAS NMR results with those from elemental analysis. Magnetic measurements are performed for the goethite series to compare with NMR measurements. Static 27Al spin–echo mapping experiments are used to probe the local environments around the Al substituents, providing clear evidence that they are incorporated into the bulk iron phases. As a result, predictions of the 2H and 27Al NMR hyperfine contact shifts in Al-doped goethite and lepidocrocite, obtained from a combined first-principles and empirical magnetic scaling approach, give further insight into the distribution of the dopants within these phases.« less
Military Forges Path Forward to Reduce Contingency Basing Energy Requirements
2011-09-01
for environmental control. Unlike earlier phase change materials APChICs replace fluid modules with capillary structures that reduce bulk and...potential leaks. Initial test results indicate the power demand to heat and cool a shelter can be significantly reduced using composite insulation...instrumented our 18 month Joint Net Zero study at the National Training Center and captured on separate recorders, data on power draw of HVAC units and
High-Efficiency Small Molecule-Based Bulk-Heterojunction Solar Cells Enhanced by Additive Annealing.
Li, Lisheng; Xiao, Liangang; Qin, Hongmei; Gao, Ke; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Peng, Xiaobin
2015-09-30
Solvent additive processing is important in optimizing an active layer's morphology and thus improving the performance of organic solar cells (OSCs). In this study, we find that how 1,8-diiodooctane (DIO) additive is removed plays a critical role in determining the film morphology of the bulk heterojunction OSCs in inverted structure based on a porphyrin small molecule. Different from the cases reported for polymer-based OSCs in conventional structures, the inverted OSCs upon the quick removal of the additive either by quick vacuuming or methanol washing exhibit poorer performance. In contrast, the devices after keeping the active layers in ambient pressure with additive dwelling for about 1 h (namely, additive annealing) show an enhanced power conversion efficiency up to 7.78% with a large short circuit current of 19.25 mA/cm(2), which are among the best in small molecule-based solar cells. The detailed morphology analyses using UV-vis absorption spectroscopy, grazing incidence X-ray diffraction, resonant soft X-ray scattering, and atomic force microscopy demonstrate that the active layer shows smaller-sized phase separation but improved structure order upon additive annealing. On the contrary, the quick removal of the additive either by quick vacuuming or methanol washing keeps the active layers in an earlier stage of large scaled phase separation.
Bavand Savadkouhi, Maryam; Vahidi, Hossein; Ayatollahi, Abdul Majid; Hooshfar, Shirin; Kobarfard, Farzad
2017-01-01
A new, rapid, economical and isocratic reverse phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of eptifibatide acetate, a small synthetic antiplatelet peptide, in bulk drug substance and pharmaceutical dosage forms. The developed method was validated as per of ICH guidelines. The chromatographic separation was achieved isocratically on C18 column (150 x 4.60 mm i.d., 5 µM particle size) at ambient temperature using acetonitrile (ACN), water and trifluoroacetic acid (TFA) as mobile phase at flow rate of 1 mL/min and UV detection at 275 nm. Eptifibatide acetate exhibited linearity over the concentration range of 0.15-2 mg/mL (r2=0.997) with limit of detection of 0.15 mg/mL The accuracy of the method was 96.4-103.8%. The intra-day and inter-day precision were between 0.052% and 0.598%, respectively. The present successfully validated method with excellent selectivity, linearity, sensitivity, precision and accuracy was applicable for the assay of eptifibatide acetate in bulk drug substance and pharmaceutical dosage forms. PMID:28979304
A search for the prewetting line. [in binary liquid system at vapor-liquid interface
NASA Technical Reports Server (NTRS)
Schmidt, J. W.; Moldover, M. R.
1986-01-01
This paper describes efforts to locate the prewetting line in a binary liquid system (isopropanol-perfluoromethylcyclohexane) at the vapor-liquid interface. Tight upper bounds were placed on the temperature separation (0.2 K) between the prewetting line and the line of bulk liquid phase separation. The prewetting line in systems at equilibrium was not detected. Experimental signatures indicative of the prewetting line occurred only in nonequilibrium situations. Several theories predict that the adsorption of one of the components (the fluorocarbon, in this case) at the liquid-vapor interface should increase abruptly, at a temperature sightly above the temperature at which the mixture separates into two liquid phases. A regular solution calculation indicates that this prewetting line should have been easily detectable with the instruments used in this experiment. Significant features of the experiment are: (1) low-gradient thermostatting, (2) in situ stirring, (3) precision ellipsometry from the vapor-liquid interface, (4) high resolution differential index of refraction measurements using a novel cell design, and (5) computer control.
Phase stability, ordering tendencies, and magnetism in single-phase fcc Au-Fe nanoalloys
Zhuravlev, I. A.; Barabash, S. V.; An, J. M.; ...
2017-10-01
Bulk Au-Fe alloys separate into Au-based fcc and Fe-based bcc phases, but L1 0 and L1 2 orderings were reported in single-phase Au-Fe nanoparticles. Motivated by these observations, we study the structural and ordering energetics in this alloy by combining density functional theory (DFT) calculations with effective Hamiltonian techniques: a cluster expansion with structural filters, and the configuration-dependent lattice deformation model. The phase separation tendency in Au-Fe persists even if the fcc-bcc decomposition is suppressed. The relative stability of disordered bcc and fcc phases observed in nanoparticles is reproduced, but the fully ordered L1 0 AuFe, L1 2 Au 3Fe,more » and L1 2 AuFe 3 structures are unstable in DFT. But, a tendency to form concentration waves at the corresponding [001] ordering vector is revealed in nearly-random alloys in a certain range of concentrations. Furthermore, this incipient ordering requires enrichment by Fe relative to the equiatomic composition, which may occur in the core of a nanoparticle due to the segregation of Au to the surface. Effects of magnetism on the chemical ordering are also discussed.« less
Phase stability, ordering tendencies, and magnetism in single-phase fcc Au-Fe nanoalloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, I. A.; Barabash, S. V.; An, J. M.
Bulk Au-Fe alloys separate into Au-based fcc and Fe-based bcc phases, but L1 0 and L1 2 orderings were reported in single-phase Au-Fe nanoparticles. Motivated by these observations, we study the structural and ordering energetics in this alloy by combining density functional theory (DFT) calculations with effective Hamiltonian techniques: a cluster expansion with structural filters, and the configuration-dependent lattice deformation model. The phase separation tendency in Au-Fe persists even if the fcc-bcc decomposition is suppressed. The relative stability of disordered bcc and fcc phases observed in nanoparticles is reproduced, but the fully ordered L1 0 AuFe, L1 2 Au 3Fe,more » and L1 2 AuFe 3 structures are unstable in DFT. But, a tendency to form concentration waves at the corresponding [001] ordering vector is revealed in nearly-random alloys in a certain range of concentrations. Furthermore, this incipient ordering requires enrichment by Fe relative to the equiatomic composition, which may occur in the core of a nanoparticle due to the segregation of Au to the surface. Effects of magnetism on the chemical ordering are also discussed.« less
Gross violation of the Wiedemann–Franz law in a quasi-one-dimensional conductor
Wakeham, Nicholas; Bangura, Alimamy F.; Xu, Xiaofeng; Mercure, Jean-Francois; Greenblatt, Martha; Hussey, Nigel E.
2011-01-01
When charge carriers are spatially confined to one dimension, conventional Fermi-liquid theory breaks down. In such Tomonaga–Luttinger liquids, quasiparticles are replaced by distinct collective excitations of spin and charge that propagate independently with different velocities. Although evidence for spin–charge separation exists, no bulk low-energy probe has yet been able to distinguish successfully between Tomonaga–Luttinger and Fermi-liquid physics. Here we show experimentally that the ratio of the thermal and electrical Hall conductivities in the metallic phase of quasi-one-dimensional Li0.9Mo6O17 diverges with decreasing temperature, reaching a value five orders of magnitude larger than that found in conventional metals. Both the temperature dependence and magnitude of this ratio are consistent with Tomonaga–Luttinger liquid theory. Such a dramatic manifestation of spin–charge separation in a bulk three-dimensional solid offers a unique opportunity to explore how the fermionic quasiparticle picture recovers, and over what time scale, when coupling to a second or third dimension is restored. PMID:21772267
NASA Astrophysics Data System (ADS)
Kim, H.; McIntyre, P. C.
2002-11-01
Among several metal silicate candidates for high permittivity gate dielectric applications, the mixing thermodynamics of the ZrO2-SiO2 system were analyzed, based on previously published experimental phase diagrams. The driving force for spinodal decomposition was investigated in an amorphous silicate that was treated as a supercooled liquid solution. A subregular model was used for the excess free energy of mixing of the liquid, and measured invariant points were adopted for the calculations. The resulting simulated ZrO2-SiO2 phase diagram matched the experimental results reasonably well and indicated that a driving force exists for amorphous Zr-silicate compositions between approx40 mol % and approx90 mol % SiO2 to decompose into a ZrO2-rich phase (approx20 mol % SiO2) and SiO2-rich phase (>98 mol % SiO2) through diffusional phase separation at a temperature of 900 degC. These predictions are consistent with recent experimental reports of phase separation in amorphous Zr-silicate thin films. Other metal-silicate systems were also investigated and composition ranges for phase separation in amorphous Hf, La, and Y silicates were identified from the published bulk phase diagrams. The kinetics of one-dimensional spinodal decomposition normal to the plane of the film were simulated for an initially homogeneous Zr-silicate dielectric layer. We examined the effects that local stresses and the capillary driving force for component segregation to the interface have on the rate of spinodal decomposition in amorphous metal-silicate thin films.
Li, Ning; Perea, José Darío; Kassar, Thaer; Richter, Moses; Heumueller, Thomas; Matt, Gebhard J.; Hou, Yi; Güldal, Nusret S.; Chen, Haiwei; Chen, Shi; Langner, Stefan; Berlinghof, Marvin; Unruh, Tobias; Brabec, Christoph J.
2017-01-01
The performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark. A theoretical calculation of the molecular parameters and construction of the spinodal phase diagrams highlight molecular incompatibilities between the donor and acceptor as a dominant mechanism for burn-in degradation, which is to date the major short-time loss reducing the performance and stability of organic solar cells. PMID:28224984
Thermoelectric Properties of Self Assembled TiO2/SnO2 Nanocomposites
NASA Technical Reports Server (NTRS)
Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp
2008-01-01
Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.
Thermoelectric Properties of Self Assemble TiO2/SnO2 Nanocomposites
NASA Technical Reports Server (NTRS)
Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp
2008-01-01
Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 (mu)W/m sq K at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.
Chembio extraction on a chip by nanoliter droplet ejection.
Yu, Hongyu; Kwon, Jae Wan; Kim, Eun Sok
2005-03-01
This paper describes a novel liquid separation technique for chembio extraction by an ultrasonic nanoliter-liquid-droplet ejector built on a PZT sheet. This technique extracts material from an aqueous two-phase system (ATPS) in a precise amount through digital control of the number of nanoliter droplets, without any mixing between the two liquids in the ATPS. The ultrasonic droplet ejector uses an acoustic streaming effect produced by an acoustic beam focused on the liquid surface, and ejects liquid droplets only from the liquid surface without disturbing most of the liquid below the surface. This unique characteristic of the focused acoustic beam is perfect (1) for separating a top-layer liquid (from the bulk of liquid) that contains particles of interest or (2) for recovering a top-layer liquid that has different phase from a bottom-layer liquid. Three kinds of liquid extraction are demonstrated with the ultrasonic droplet ejector: (1) 16 microl of top layer in Dextran-polyethylene glycol-water ATPS (aqueous two-phase system) is recovered within 20 s; (2) micron sized particles that float on water surface are ejected out with water droplets; and (3) oil layer on top of water is separated out.
NASA Astrophysics Data System (ADS)
Gadelrab, Karim; Alexander-Katz, Alfredo; LaboratoryTheoretical Soft Materials Team
The self-assembly of block copolymers BCP has provided an impressive control over the nanoscale structure of soft matter. While the main focus of the research in the field has been directed towards simple linear diblocks, the development of advanced polymer architecture provided improved performance and access to new structures. In particular, bottlebrush BCPs (BBCPs) have interesting characteristics due to their dense functionality, high molecular weight, low levels of entanglement, and tendency to efficiently undergo rapid bulk phase separation. In this work, we are interested in theoretically studying the self-assembly of Janus-type ``A-branch-B'' BBCPs where A and B blocks can phase separate with the bottlebrush polymer backbone serving as the interface between the two blocks. Hence, the polymer backbone adds an extra constraint on the equilibrium spacing between neighboring linear diblock chains. In this regard, the segment length of the backbone separating the AB junctions has a direct effect of the observed domain spacing and effective segregation strength of the AB blocks. We employ self-consistent field theoretic SCFT simulations to capture the effect of volume fraction of different constituents and construct a phase diagram of the accessible morphologies of these BBCPs.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2000-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2001-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
Huang, Jiang; Carpenter, Joshua H.; Li, Chang -Zhi; ...
2015-12-02
A novel, yet simple solution fabrication technique to address the trade-off between photocurrent and fill factor in thick bulk heterojunction organic solar cells is described. Lastly, the inverted off-center spinning technique promotes a vertical gradient of the donor–acceptor phase-separated morphology, enabling devices with near 100% internal quantum efficiency and a high power conversion efficiency of 10.95%.
Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
Bazant, Martin Z
2013-05-21
Advances in the fields of catalysis and electrochemical energy conversion often involve nanoparticles, which can have kinetics surprisingly different from the bulk material. Classical theories of chemical kinetics assume independent reactions in dilute solutions, whose rates are determined by mean concentrations. In condensed matter, strong interactions alter chemical activities and create variations that can dramatically affect the reaction rate. The extreme case is that of a reaction coupled to a phase transformation, whose kinetics must depend not only on the order parameter but also on its gradients at phase boundaries. Reaction-driven phase transformations are common in electrochemistry, when charge transfer is accompanied by ion intercalation or deposition in a solid phase. Examples abound in Li-ion, metal-air, and lead-acid batteries, as well as metal electrodeposition-dissolution. Despite complex thermodynamics, however, the standard kinetic model is the Butler-Volmer equation, based on a dilute solution approximation. The Marcus theory of charge transfer likewise considers isolated reactants and neglects elastic stress, configurational entropy, and other nonidealities in condensed phases. The limitations of existing theories recently became apparent for the Li-ion battery material LixFePO4 (LFP). It has a strong tendency to separate into Li-rich and Li-poor solid phases, which scientists believe limits its performance. Chemists first modeled phase separation in LFP as an isotropic "shrinking core" within each particle, but experiments later revealed striped phase boundaries on the active crystal facet. This raised the question: What is the reaction rate at a surface undergoing a phase transformation? Meanwhile, dramatic rate enhancement was attained with LFP nanoparticles, and classical battery models could not predict the roles of phase separation and surface modification. In this Account, I present a general theory of chemical kinetics, developed over the past 7 years, which is capable of answering these questions. The reaction rate is a nonlinear function of the thermodynamic driving force, the free energy of reaction, expressed in terms of variational chemical potentials. The theory unifies and extends the Cahn-Hilliard and Allen-Cahn equations through a master equation for nonequilibrium chemical thermodynamics. For electrochemistry, I have also generalized both Marcus and Butler-Volmer kinetics for concentrated solutions and ionic solids. This new theory provides a quantitative description of LFP phase behavior. Concentration gradients and elastic coherency strain enhance the intercalation rate. At low currents, the charge-transfer rate is focused on exposed phase boundaries, which propagate as "intercalation waves", nucleated by surface wetting. Unexpectedly, homogeneous reactions are favored above a critical current and below a critical size, which helps to explain the rate capability of LFP nanoparticles. Contrary to other mechanisms, elevated temperatures and currents may enhance battery performance and lifetime by suppressing phase separation. The theory has also been extended to porous electrodes and could be used for battery engineering with multiphase active materials. More broadly, the theory describes nonequilibrium chemical systems at mesoscopic length and time scales, beyond the reach of molecular simulations and bulk continuum models. The reaction rate is consistently defined for inhomogeneous, nonequilibrium states, for example, with phase separation, large electric fields, or mechanical stresses. This research is also potentially applicable to fluid extraction from nanoporous solids, pattern formation in electrophoretic deposition, and electrochemical dynamics in biological cells.
Observational constraints on the multiphase ISM
NASA Astrophysics Data System (ADS)
Wolfire, Mark G.
2015-03-01
In recent years we have seen a wealth of new observations and analysis that sheds light on the distribution and physical properties of various ISM phases. In particular the thermal pressure from C I (Jenkins & Tripp 2011) shows the bulk of the CNM phase with a log normal pressure distribution. It appears that thermal instability is important for phase separation, but with with a thermal pressure variation about the mean driven by turbulence. In additional, there is evidence from C I, H2, and complex molecules, of both higher and lower pressure environments. An additional ``phase`` that is of increasing interest for high z, low metallicity galaxies is the C+/H2 gas that is not traced by H I or CO. This review presents the observational evidence for the existence and physical properties of these various ISM phases.
First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Shimizu, Koji; Kishida, Ryo; Kojima, Kazuki; Linh, Nguyen Hoang; Nakanishi, Hiroshi; Kasai, Hideaki
2017-06-01
The phase stability and surface effects on binary transition metal nano-alloy systems were investigated using density functional theory-based first principles calculations. In this study, we evaluated the cohesive and alloying energies of six binary metal alloy bulk systems that sample each type of alloys according to miscibility, i.e., Au-Ag and Pd-Ag for the solid solution-type alloys (SS), Pd-Ir and Pd-Rh for the high-temperature solid solution-type alloys (HTSS), and Au-Ir and Ag-Rh for the phase-separation (PS)-type alloys. Our results and analysis show consistency with experimental observations on the type of materials in the bulk phase. Varying the lattice parameter was also shown to have an effect on the stability of the bulk mixed alloy system. It was observed, particularly for the PS- and HTSS-type materials, that mixing gains energy from the increasing lattice constant. We furthermore evaluated the surface effects, which is an important factor to consider for nanoparticle-sized alloys, through analysis of the (001) and (111) surface facets. We found that the stability of the surface depends on the optimization of atomic positions and segregation of atoms near/at the surface, particularly for the HTSS and the PS types of metal alloys. Furthermore, the increase in energy for mixing atoms at the interface of the atomic boundaries of PS- and HTSS-type materials is low enough to overcome by the gain in energy through entropy. These, therefore, are the main proponents for the possibility of mixing alloys near the surface.
Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T
2001-12-01
The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.
Kahsay, Getu; Song, Huiying; Eerdekens, Fran; Tie, Yaxin; Hendriks, Danny; Van Schepdael, Ann; Cabooter, Deirdre; Adams, Erwin
2015-01-01
Misoprostol is a synthetic prostaglandin E1 analogue which is mainly used for prevention and treatment of gastric ulcers, but also for abortion due to its labour inducing effect. Misoprostol exists as a mixture of diastereoisomers (1:1) and has several related impurities owing to its instability at higher temperatures and moisture. A simple and robust reversed phase liquid chromatographic (RPLC) method is described for the separation of the related substances and a normal phase (NP) LC method for the separation of misoprostol diastereoisomers. The RPLC method was performed using an Ascentis Express C18 (150 mm × 4.6 mm, 5 μm) column kept at 35 °C. The mobile phase was a gradient mixture of mobile phase A (ACN-H2O-MeOH, 28:69:3 v/v/v) and mobile phase B (ACN-H2O-MeOH, 47:50:3 v/v/v) eluted at a flow rate of 1.5 mL/min. UV detection was performed at 200 nm. The NPLC method was undertaken by using an XBridge bare silica (150 mm × 2.1 mm, 3.5 μm) column at 35 °C. The mobile phase contained 1-propanol-heptane-TFA (4:96:0.1%, v/v/v), pumped at a flow rate of 0.5 mL/min. UV detection was performed at 205 nm. This LC method can properly separate the two diastereoisomers (Rs > 2) within an analysis time of less than 20 min. Both methods were validated according to the ICH guidelines. Furthermore, these new LC methods have been successfully applied for purity control and diastereoisomers ratio determination of misoprostol bulk drug, tablets and dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Guikai; Lu, Ming; Rui, Xiaoping
2017-03-01
Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.
NASA Technical Reports Server (NTRS)
Zhang, Yide (Inventor); Wang, Shihe (Inventor); Xiao, Danny (Inventor)
2004-01-01
A series of bulk-size magnetic/insulating nanostructured composite soft magnetic materials with significantly reduced core loss and its manufacturing technology. This insulator coated magnetic nanostructured composite is comprises a magnetic constituent, which contains one or more magnetic components, and an insulating constituent. The magnetic constituent is nanometer scale particles (1-100 nm) coated by a thin-layered insulating phase (continuous phase). While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase (or coupled nanoparticles) provide the desired soft magnetic properties, the insulating material provides the much demanded high resistivity which significantly reduces the eddy current loss. The resulting material is a high performance magnetic nanostructured composite with reduced core loss.
A numerical model to simulate foams during devolatilization of polymers
NASA Astrophysics Data System (ADS)
Khan, Irfan; Dixit, Ravindra
2014-11-01
Customers often demand that the polymers sold in the market have low levels of volatile organic compounds (VOC). Some of the processes for making polymers involve the removal of volatiles to the levels of parts per million (devolatilization). During this step the volatiles are phase separated out of the polymer through a combination of heating and applying lower pressure, creating foam with the pure polymer in liquid phase and the volatiles in the gas phase. The efficiency of the devolatilization process depends on predicting the onset of solvent phase change in the polymer and volatiles mixture accurately based on the processing conditions. However due to the complex relationship between the polymer properties and the processing conditions this is not trivial. In this work, a bubble scale model is coupled with a bulk scale transport model to simulate the processing conditions of polymer devolatilization. The bubble scale model simulates the nucleation and bubble growth based on the classical nucleation theory and the popular ``influence volume approach.'' As such it provides the information of bubble size distribution and number density inside the polymer at any given time and position. This information is used to predict the bulk properties of the polymer and its behavior under the applied processing conditions. Initial results of this modeling approach will be presented.
NASA Astrophysics Data System (ADS)
Omaraa, Ehsan; Saman, Wasim; Bruno, Frank; Liu, Ming
2017-06-01
Latent heat storage using phase change materials (PCMs) can be used to store large amounts of energy in a narrow temperature difference during phase transition. The thermophysical properties of PCMs such as latent heat, specific heat and melting and solidification temperature need to be defined at high precision for the design and estimating the cost of latent heat storage systems. The existing laboratory standard methods, such as differential thermal analysis (DTA) and differential scanning calorimetry (DSC), use a small sample size (1-10 mg) to measure thermophysical properties, which makes these methods suitable for homogeneous elements. In addition, this small amount of sample has different thermophysical properties when compared with the bulk sample and may have limitations for evaluating the properties of mixtures. To avoid the drawbacks in existing methods, the temperature - history (T-history) method can be used with bulk quantities of PCM salt mixtures to characterize PCMs. This paper presents a modified T-history setup, which was designed and built at the University of South Australia to measure the melting point, heat of fusion, specific heat, degree of supercooling and phase separation of salt mixtures for a temperature range between 200 °C and 400 °C. Sodium Nitrate (NaNO3) was used to verify the accuracy of the new setup.
NASA Astrophysics Data System (ADS)
Agyekyan, V. F.; Borisov, E. V.; Serov, A. Yu.; Filosofov, N. G.
2017-12-01
A gallium nitride crystal 5 mm in thickness was grown by chloride-hydride vapor-phase epitaxy on a sapphire substrate, from which the crystal separated during cooling. At an early stage, a three-dimensional growth mode was implemented, followed by a switch to a two-dimensional mode. Spectra of exciton reflection, exciton luminescence, and Raman scattering are studied in several regions characteristic of the sample. Analysis of these spectra and comparison with previously obtained data for thin epitaxial GaN layers with a wide range of silicon doping enabled conclusions about the quality of the crystal lattice in these characteristic regions.
NASA Astrophysics Data System (ADS)
Johnson, S. E.; Vel, S. S.; Cook, A. C.; Song, W. J.; Gerbi, C. C.; Okaya, D. A.
2014-12-01
Owing to the abundance of highly anisotropic minerals in the crust, the Voigt and Reuss bounds on the seismic velocities can be separated by more than 1 km/s. These bounds are determined by modal mineralogy and crystallographic preferred orientations (CPO) of the constituent minerals, but where the true velocities lie between these bounds is determined by other fabric parameters such as the shapes, shape-preferred orientations, and spatial arrangements of grains. Thus, the calculation of accurate bulk stiffness relies on explicitly treating the grain-scale heterogeneity, and the same principle applies at larger scales, for example calculating accurate bulk stiffness for a crustal volume with varying proportions and distributions of folds or shear zones. We have developed stand-alone GUI software - ESP Toolbox - for the calculation of 3D bulk elastic and seismic properties of heterogeneous and polycrystalline materials using image or EBSD data. The GUI includes a number of different homogenization techniques, including Voigt, Reuss, Hill, geometric mean, self-consistent and asymptotic expansion homogenization (AEH) methods. The AEH method, which uses a finite element mesh, is most accurate since it explicitly accounts for elastic interactions of constituent minerals/phases. The user need only specify the microstructure and material properties of the minerals/phases. We use the Toolbox to explore changes in bulk elasticity and related seismic anisotropy caused by specific variables, including: (a) the quartz alpha-beta phase change in rocks with varying proportions of quartz, (b) changes in modal mineralogy and CPO fabric that occur during progressive deformation and metamorphism, and (c) shear zones of varying thickness, abundance and geometry in continental crust. The Toolbox allows rapid sensitivity analysis around these and other variables, and the resulting bulk stiffness matrices can be used to populate volumes for synthetic wave propagation experiments that allow direct visualization of how variables of interest might affect propagation at a variety of scales. Sensitivity analyses also illustrate the value of the more precise AEH method. The ESP Toolbox can be downloaded here: http://umaine.edu/mecheng/faculty-and-staff/senthil-vel/software/
Wei, Xiang; Camino, Acner; Pi, Shaohua; Cepurna, William; Huang, David; Morrison, John C; Jia, Yali
2018-05-01
Phase-based optical coherence tomography (OCT), such as OCT angiography (OCTA) and Doppler OCT, is sensitive to the confounding phase shift introduced by subject bulk motion. Traditional bulk motion compensation methods are limited by their accuracy and computing cost-effectiveness. In this Letter, to the best of our knowledge, we present a novel bulk motion compensation method for phase-based functional OCT. Bulk motion associated phase shift can be directly derived by solving its equation using a standard deviation of phase-based OCTA and Doppler OCT flow signals. This method was evaluated on rodent retinal images acquired by a prototype visible light OCT and human retinal images acquired by a commercial system. The image quality and computational speed were significantly improved, compared to two conventional phase compensation methods.
Ding, Linlin; Wang, Yanji; Wu, Zhaoliang; Liu, Wei; Li, Rui; Wang, Yanyan
2016-10-02
A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180 µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography-mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.
Magnetic Separation Using HTS Bulk Magnet for Cs-Bearing Fe precipitates
NASA Astrophysics Data System (ADS)
Oka, T.; Ichiju, K.; Sasaki, S.; Ogawa, J.; Fukui, S.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Aoki, S.; Ohnishi, N.
2017-09-01
A peculiar magnetic separation technique has been examined in order to remove the Cs-bearing Fe precipitates formed of the waste ash from the withdrawn incinerator furnaces in Fukushima. The separation system was constructed in combination with high temperature superconducting bulk magnets which generates the intensive magnetic field over 2 T, which was activated by the pulsed field magnetization process. The separation experiment has been operated with use of the newly-built alternating channel type magnetic separating device, which followed the high-gradient magnetic separation technique. The magnetic stainless steel filters installed in the water channels are magnetized by the applied magnetic fields, and are capable of attracting the precipitates bearing the Fe compound and thin Cs contamination. The experimental results clearly exhibited the positive feasibility of HTS bulk magnets.
Peet, Jeffrey; Heeger, Alan J; Bazan, Guillermo C
2009-11-17
As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the United States comes directly from sunlight. The earliest commercial solar technology remains the basis for the most prevalent devices in current use, namely, highly-ordered crystalline, inorganic solar cells, commonly referred to as silicon cells. Another class of solar cells that has recently inspired significant academic and industrial excitement is the bulk heterojunction (BHJ) "plastic" solar cell. Research by a rapidly growing community of scientists across the globe is generating a steady stream of new insights into the fundamental physics, the materials design and synthesis, the film processing and morphology, and the device science and architecture of BHJ technology. Future progress in the fabrication of high-performance BHJ cells will depend on our ability to combine aspects of synthetic and physical chemistry, condensed matter physics, and materials science. In this Account, we use a combination of characterization tools to tie together recent advances in BHJ morphology characterization, device photophysics, and thin-film solution processing, illustrating how to identify the limiting factors in solar cell performance. We also highlight how new processing methods, which control both the BHJ phase separation and the internal order of the components, can be implemented to increase the power conversion efficiency (PCE). The failure of many innovative materials to achieve high performance in BHJ solar cell devices has been blamed on "poor morphology" without significant characterization of either the structure of the phase-separated morphology or the nature of the charge carrier recombination. We demonstrate how properly controlling the "nanomorphology", which is critically dependent on minute experimental details at every step, from synthesis to device construction, provides a clear path to >10% PCE BHJ cells, which can be fabricated at a fraction of the cost of conventional solar cells.
NASA Astrophysics Data System (ADS)
Tournier, Robert F.
2018-01-01
Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.
Model of chiral spin liquids with Abelian and non-Abelian topological phases
NASA Astrophysics Data System (ADS)
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; Tsvelik, A. M.
2017-12-01
We present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, the Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.
NASA Astrophysics Data System (ADS)
Qin, Lin; Fan, Shanhui; Zhou, Chuanqing
2017-04-01
To implement the optical coherence tomography (OCT) angiography on the low scanning speed OCT system, we developed a joint phase and amplitude method to generate 3-D angiograms by analysing the frequency distribution of signals from non-moving and moving scatterers and separating the signals from the tissue and blood flow with high-pass filter dynamically. This approach firstly compensates the sample motion between adjacent A-lines. Then according to the corrected phase information, we used a histogram method to determine the bulk non-moving tissue phases dynamically, which is regarded as the cut-off frequency of a high-pass filter, and separated the moving and non-moving scatters using the mentioned high-pass filter. The reconstructed image can visualize the components of moving scatters flowing, and enables volumetric flow mapping combined with the corrected phase information. Furthermore, retinal and choroidal blood vessels can be simultaneously obtained by separating the B-scan into retinal part and choroidal parts using a simple segmentation algorithm along the RPE. After the compensation of axial displacements between neighbouring images, three-dimensional vasculature of ocular vessels has been visualized. Experiments were performed to demonstrate the effectiveness of the proposed method for 3-D vasculature imaging of human retina and choroid. The results revealed depth-resolved vasculatures in retina and choroid, suggesting that our approach can be used for noninvasive and three-dimensional angiography with a low-speed clinical OCT, and it has a great potential for clinic application.
Electrospinning Nanofiber Based Organic Solar Cell
NASA Astrophysics Data System (ADS)
Yang, Zhenhua; Liu, Ying; Moffa, Maria; Nam, Chang-Yong; Pisignano, Dario; Rafailovich, Miriam
Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their potential to result in printable, inexpensive solar cells which can be processed onto flexible substrates. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the presence of unfavorable morphological features, including dead ends or isolated domains. Here we MEH-PPV:PVP:PCBM electrospun nanofiber into BHJ solar cell for the active layer morphology optimization. Larger interfacial area between donor and acceptor is abtained with electrospinning method and the high aspect ratio of the MEH-PPV:PVP:PCBM nanofibers allow them to easily form a continuous pathway. The surface morphology is investigated with atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrospun nanofibers are discussed as a favorable structure for application in bulk-heterojunction organic solar cells. Electrospinning Nanofiber Based Bulk Heterojunction Organic Solar Cell.
NASA Astrophysics Data System (ADS)
Zhang, Jianzhong; Vogel, Sven; Brown, Donald; Clausen, Bjorn; Hackenberg, Robert
2018-05-01
In-situ time-of-flight neutron diffraction experiments were conducted on the uranium-niobium alloy with 6 wt. % Nb (U-6Nb) at pressures up to 4.7 GPa and temperatures up to 1073 K. Upon static compression at room temperature, the monoclinic structure of U-6Nb (α″ U-6Nb) remains stable up to the highest experimental pressure. Based on the pressure-volume measurements at room temperature, the least-squares fit using the finite-strain equation of state (EOS) yields an isothermal bulk modulus of B0 = 127 ± 2 GPa for the α″-phase of U-6Nb. The calculated zero-pressure bulk sound speed from this EOS is 2.706 ± 0.022 km/s, which is in good agreement with the linear extrapolation of the previous Hugoniot data above 12 GPa for α″ U-6Nb, indicating that the dynamic response under those shock-loading conditions is consistent with the stabilization of the initial monoclinic phase of U-6Nb. Upon heating at ambient and high pressures, the metastable α″ U-6Nb exhibits complex transformation paths leading to the diffusional phase decomposition, which are sensitive to applied pressure, stress state, and temperature-time path. These findings provide new insight into the behavior of atypical systems such as U-Nb and suggest that the different U-Nb phases are separated by rather small energies and hence highly sensitive to compositional, thermal, and mechanical perturbations.
Yan, Junqing; Wu, Guangjun; Guan, Naijia; Li, Landong; Li, Zhuoxin; Cao, Xingzhong
2013-07-14
The sole effect of surface/bulk defects of TiO2 samples on their photocatalytic activity was investigated. Nano-sized anatase and rutile TiO2 were prepared by hydrothermal method and their surface/bulk defects were adjusted simply by calcination at different temperatures, i.e. 400-700 °C. High temperature calcinations induced the growth of crystalline sizes and a decrease in the surface areas, while the crystalline phase and the exposed facets were kept unchanged during calcination, as indicated by the characterization results from XRD, Raman, nitrogen adsorption-desorption, TEM and UV-Vis spectra. The existence of surface/bulk defects in calcined TiO2 samples was confirmed by photoluminescence and XPS spectra, and the surface/bulk defect ratio was quantitatively analyzed according to positron annihilation results. The photocatalytic activity of calcined TiO2 samples was evaluated in the photocatalytic reforming of methanol and the photocatalytic oxidation of α-phenethyl alcohol. Based on the characterization and catalytic results, a direct correlation between the surface specific photocatalytic activity and the surface/bulk defect density ratio could be drawn for both anatase TiO2 and rutile TiO2. The surface defects of TiO2, i.e. oxygen vacancy clusters, could promote the separation of electron-hole pairs under irradiation, and therefore, enhance the activity during photocatalytic reaction.
Self-Limited Growth in Pentacene Thin Films
2017-01-01
Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought. PMID:28287698
Self-Limited Growth in Pentacene Thin Films.
Pachmajer, Stefan; Jones, Andrew O F; Truger, Magdalena; Röthel, Christian; Salzmann, Ingo; Werzer, Oliver; Resel, Roland
2017-04-05
Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought.
2013-01-01
This work describes the combined use of synchrotron X-ray diffraction and density functional theory (DFT) calculations to understand the cocrystal formation or phase separation in 2D monolayers capable of halogen bonding. The solid monolayer structure of 1,4-diiodobenzene (DIB) has been determined by X-ray synchrotron diffraction. The mixing behavior of DIB with 4,4′-bipyridyl (BPY) has also been studied and interestingly is found to phase-separate rather than form a cocrystal, as observed in the bulk. DFT calculations are used to establish the underlying origin of this interesting behavior. The DFT calculations are demonstrated to agree well with the recently proposed monolayer structure for the cocrystal of BPY and 1,4-diiodotetrafluorobenzene (DITFB) (the perfluorinated analogue of DIB), where halogen bonding has also been identified by diffraction. Here we have calculated an estimate of the halogen bond strength by DFT calculations for the DITFB/BPY cocrystal monolayer, which is found to be ∼20 kJ/mol. Computationally, we find that the nonfluorinated DIB and BPY are not expected to form a halogen-bonded cocrystal in a 2D layer; for this pair of species, phase separation of the components is calculated to be lower energy, in good agreement with the diffraction results. PMID:24215390
Sacchi, Marco; Brewer, Adam Y; Jenkins, Stephen J; Parker, Julia E; Friščić, Tomislav; Clarke, Stuart M
2013-12-03
This work describes the combined use of synchrotron X-ray diffraction and density functional theory (DFT) calculations to understand the cocrystal formation or phase separation in 2D monolayers capable of halogen bonding. The solid monolayer structure of 1,4-diiodobenzene (DIB) has been determined by X-ray synchrotron diffraction. The mixing behavior of DIB with 4,4'-bipyridyl (BPY) has also been studied and interestingly is found to phase-separate rather than form a cocrystal, as observed in the bulk. DFT calculations are used to establish the underlying origin of this interesting behavior. The DFT calculations are demonstrated to agree well with the recently proposed monolayer structure for the cocrystal of BPY and 1,4-diiodotetrafluorobenzene (DITFB) (the perfluorinated analogue of DIB), where halogen bonding has also been identified by diffraction. Here we have calculated an estimate of the halogen bond strength by DFT calculations for the DITFB/BPY cocrystal monolayer, which is found to be ∼20 kJ/mol. Computationally, we find that the nonfluorinated DIB and BPY are not expected to form a halogen-bonded cocrystal in a 2D layer; for this pair of species, phase separation of the components is calculated to be lower energy, in good agreement with the diffraction results.
Preparation of mesoporous carbon nitride structure by the dealloying of Ni/a-CN nanocomposite films
NASA Astrophysics Data System (ADS)
Zhou, Han; Shen, Yongqing; Huang, Jie; Liao, Bin; Wu, Xianying; Zhang, Xu
2018-05-01
The preparation of mesoporous carbon nitride (p-CN) structure by the selective dealloying process of Ni/a-CN nanocomposite films is investigated. The composition and structure of the Ni/a-CN nanocomposite films and porous carbon nitride (p-CN) films are determined by scan electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Phase separated structure including nickel carbide phase and the surrounding amorphous carbon nitride (a-CN) matrix are detected for the as-deposited films. Though the bulk diffusion is introduced in the film during the annealing process, the grain sizes for the post-annealed films are around 10 nm and change little comparing with the ones of the as-deposited films, which is associated with the thermostability of the CN surrounding in the film. The p-CN skeleton with its pore size around 12.5 nm is formed by etching the post-annealed films, indicative of the stability of the phase separated structure during the annealing process.
NASA Astrophysics Data System (ADS)
Yang, Zhenhua; Li, Hongfei; Nam, Chang-Yong; Kisslinger, Kim; Satija, Sushil; Rafailovich, Miriam
Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their advantages such as mechanical flexibility. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the disordered inner structures in the active layer, donor or acceptor domains isolated from electrodes. Here we report a self-assembled columnar structure formed by phase separation between (PCDTBT) and polystyrene (PS) for the active layer morphology optimization. The BHJ solar cell device based on this structure is promising for exhibiting higher performance due to the shorter carrier transportation pathway and larger interfacial area between donor and acceptor. The surface morphology is investigated with atomic force microscopy (AFM) and the columnar structure is studied by investigation of cross-section of the blend thin film of PCDTBT and PS under the transmission electron microscopy (TEM). The different morphological structures formed via phase segregation are correlated with the performance of the BHJ solar cells.
Observation of valley-selective microwave transport in photonic crystals
NASA Astrophysics Data System (ADS)
Ye, Liping; Yang, Yuting; Hong Hang, Zhi; Qiu, Chunyin; Liu, Zhengyou
2017-12-01
Recently, the discrete valley degree of freedom has attracted extensive attention in condensed matter physics. Here, we present an experimental observation of the intriguing valley transport for microwaves in photonic crystals, including the bulk valley transport and the valley-projected edge modes along the interface separating different photonic insulating phases. For both cases, valley-selective excitations are realized by a point-like chiral source located at proper locations inside the samples. Our results are promising for exploring unprecedented routes to manipulate microwaves.
Solidification studies of nanocrystalline and quasicrystalline materials from the undercooled state
NASA Astrophysics Data System (ADS)
Croat, Thomas Kevin
2001-07-01
Nanocrystallization occurring during metallic glass devitrification is studied in Zr-Al-Ni-Cu bulk metallic glasses (BMGs) and Al-RE-TM (RE = rare-earth, TM = transition metal) metallic glasses. The importance of transient nucleation in BMG devitrification was established by a direct transmission electron microscopy (TEM) measurement of the grain density in two-stage annealed samples. TEM examination of low temperature annealed BMGs also suggest that amorphous phase separation is occurring prior to crystallization. Nanocrystallization of rapidly quenched Al-RE-Ni glasses was preceded by the compositional segregation of the initially homogeneous glass into Al-rich and solute-rich regions (mainly nickel-enriched) on a ≈50--100 nm length scale, suggesting amorphous phase separation. This pre-existing compositional modulation on a nanometer scale leads naturally to the development of nanocrystals. The average rare earth radius (rRE) in Al-RE-Ni alloys was altered by co-substitution of chemically similar rare earth elements. In glasses with smaller r RE, nucleation of alpha-Al occurred preferentially near the boundaries of the phase-separated regions. However, phase separation did not universally lead to alpha-Al nanocrystallization; glasses with larger rRE crystallized to metastable intermetallic phases with a 50--100 nm grain size. Kinetic analysis of the alpha-Al crystallization was performed using isothermal DSC, yielding abnormally low Avrami exponents (n = 1.0--1.5); these values were found to be consistent with the observed transformation using a model that considers the overlapping diffusion fields of the alpha-Al grains during growth within the phase separated region. Containerless solidification experiments on Ti-based quasicrystal-forming alloys have been performed using various techniques, including drop-tube solidification, electromagnetic levitation (EML) and electrostatic levitation (ESL). In Ti-Fe-Si-O, the alpha-1/1 quasicrystal approximant phase is found to nucleate directly from the liquid over the range TixFe94-xSi 4(SiO2)2 with 67 < x < 69 in EML experiments. Both the alpha-1/1 phase in Ti-Fe-Si-O and the C14 Laves phase in Ti-Zr-Ni have lower relative undercoolings than nearby crystal phases. This presumably reflects the structural similarity between these polytetrahedral phases and the undercooled liquid, which leads to smaller nucleation barriers and lower maximum undercoolings.
Crystal Growth of II-VI Semiconducting Alloys by Directional Solidification
NASA Technical Reports Server (NTRS)
Lehoczky, Sandor L.; Szofran, Frank R.; Su, Ching-Hua; Cobb, Sharon D.; Scripa, Rosalia A.; Sha, Yi-Gao
1999-01-01
This research study is investigating the effects of a microgravity environment during the crystal growth of selected II-VI semiconducting alloys on their compositional, metallurgical, electrical and optical properties. The on-going work includes both Bridgman-Stockbarger and solvent growth methods, as well as growth in a magnetic field. The materials investigated are II-VI, Hg(1-x)Zn(x)Te, and Hg(1-x)Zn(x)Se, where x is between 0 and 1 inclusive, with particular emphasis on x-values appropriate for infrared detection and imaging in the 5 to 30 micron wavelength region. Wide separation between the liquidus and solidus of the phase diagrams with consequent segregation during solidification and problems associated with the high volatility of one of the components (Hg), make the preparation of homogeneous, high-quality, bulk crystals of the alloys an extremely difficult nearly an impossible task in a gravitational environment. The three-fold objectives of the on-going investigation are as follows: (1) To determine the relative contributions of gravitationally-driven fluid flows to the compositional redistribution observed during the unidirectional crystal growth of selected semiconducting solid solution alloys having large separation between the liquidus and solidus of the constitutional phase diagram; (2) To ascertain the potential role of irregular fluid flows and hydrostatic pressure effects in generation of extended crystal defects and second-phase inclusions in the crystals; and, (3) To obtain a limited amount of "high quality" materials needed for bulk crystal property characterizations and for the fabrication of various device structures needed to establish ultimate material performance limits. The flight portion of the study was to be accomplished by performing growth experiments using the Crystal Growth Furnace (CGF) manifested to fly on various Spacelab missions.
NASA Technical Reports Server (NTRS)
Ovchinnikov, Mikhail; Ackerman, Andrew S.; Avramov, Alexander; Cheng, Anning; Fan, Jiwen; Fridlind, Ann M.; Ghan, Steven; Harrington, Jerry; Hoose, Corinna; Korolev, Alexei;
2014-01-01
Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds.
Micro- and Nano-Liquid Phases Coexistent with Ice as Separation and Reaction Media.
Okada, Tetsuo
2017-04-01
Ice has a variety of scientifically interesting features, some of which have not been reasonably interpreted despite substantial efforts by researchers. Most chemical studies of ice have focused on the elucidation of its physicochemical nature and its roles in the natural environment. Ice often contains impurities, such as salts, and in such cases, a liquid phase coexists with solid ice over a wide temperature range. This impure ice also acts as a cryoreactor, governing the circulation of chemical species of environmental importance. Reactions and phenomena occurring in this liquid phase show features different from those seen in normal bulk aqueous solutions. In the present account, we discuss the chemical characteristics of the liquid phase that develops in a frozen aqueous phase and show how novel analytical systems can be designed based on he features of the liquid phase which are predictable in some cases but unpredictable in others. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Role of structurally and magnetically modified nanoclusters in colossal magnetoresistance
Tao, Jing; Niebieskikwiat, Dario; Jie, Qing; Schofield, Marvin A.; Wu, Lijun; Li, Qiang; Zhu, Yimei
2011-01-01
It is generally accepted that electronic and magnetic phase separation is the origin of many of exotic properties of strongly correlated electron materials, such as colossal magnetoresistance (CMR), an unusually large variation in the electrical resistivity under applied magnetic field. In the simplest picture, the two competing phases are those associated with the material state on either side of the phase transition. Those phases would be paramagnetic insulator and ferromagnetic metal for the CMR effect in doped manganites. It has been speculated that a critical component of the CMR phenomenon is nanoclusters with quite different properties than either of the terminal phases during the transition. However, the role of these nanoclusters in the CMR effect remains elusive because the physical properties of the nanoclusters are hard to measure when embedded in bulk materials. Here we show the unexpected behavior of the nanoclusters in the CMR compound La1-xCaxMnO3 (0.4 ≤ x < 0.5) by directly correlating transmission electron microscopy observations with bulk measurements. The structurally modified nanoclusters at the CMR temperature were found to be ferromagnetic and exhibit much higher electrical conductivity than previously proposed. Only at temperatures much below the CMR transition, the nanoclusters are antiferromagnetic and insulating. These findings substantially alter the current understanding of these nanoclusters on the material’s functionality and would shed light on the microscopic study on the competing spin-lattice-charge orders in strongly correlated systems. PMID:22160678
Krishna, S Radha; Babu, P Suresh; Rao, B M; Rao, N Someswara
2009-12-01
A simple and accurate high-performance liquid chromatographic method was developed for the determination of exo-9-methyl-9-azabicyclo[3.3.1]nonan-3-amine in endo-9-methyl-9-azabicyclo[3.3.1]nonan-3-amine, commercially known as grantamine and used as a key intermediate in the preparation of granisetron bulk drug. Chromatographic separation of the exo and endo isomers of 9-methyl-9-azabicyclo[3.3.1]nonan-3-amine was achieved on an Inertsil C8 column using a mobile phase containing 0.3% trifluoroacetic acid. The resolution between the two isomers was found to be more than 4. The limit of detection (LOD) and limit of quantification (LOQ) of exo isomer were 0.8 and 2.5 microg x mL(-1) respectively, for a 10 microL injection volume. The percentage recovery of exo-isomer ranged from 99 to 102% w/w in the endo-9-methyl-9-azabicyclo[3.3.1]nonan-3-amine sample. The test solution and mobile phase were observed to be stable up to 48 h after preparation. The validated method yielded good results for precision, linearity, accuracy, robustness and ruggedness. The proposed method was found to be suitable and accurate for the quantitative determination of exo-isomer in bulk samples of endo-9-methyl-9-azabicyclo[3.3.1]nonan-3-amine.
HPTLC Determination of Artemisinin and Its Derivatives in Bulk and Pharmaceutical Dosage
NASA Astrophysics Data System (ADS)
Agarwal, Suraj P.; Ahuja, Shipra
A simple, selective, accurate, and precise high-performance thin-layer chromatographic (HPTLC) method has been established and validated for the analysis of artemisinin and its derivatives (artesunate, artemether, and arteether) in the bulk drugs and formulations. The artemisinin, artesunate, artemether, and arteether were separated on aluminum-backed silica gel 60 F254 plates with toluene:ethyl acetate (10:1), toluene: ethyl acetate: acetic acid (2:8:0.2), toluene:butanol (10:1), and toluene:dichloro methane (0.5:10) mobile phase, respectively. The linear detector response for concentrations between 100 and 600 ng/spot showed good linear relationship with r value 0.9967, 0.9989, 0.9981 and 0.9989 for artemisinin, artesunate, artemether, and arteether, respectively. Statistical analysis proves that the method is precise, accurate, and reproducible and hence can be employed for the routine analysis.
Protein Crystallization: Specific Phenomena and General Insights on Crystallization Kinetics
NASA Technical Reports Server (NTRS)
Rosenberger, F.
1998-01-01
Experimental and simulation studies of the nucleation and growth kinetics of proteins have revealed phenomena that are specific for macromolecular crystallization, and others that provide a more detailed understanding of solution crystallization in general. The more specific phenomena, which include metastable liquid-liquid phase separations and gelation prior to solid nucleation, are due to the small ratio of the intermolecular interaction-range to the size of molecules involved. The apparently more generally applicable mechanisms include the cascade-like formation of macrosteps, as an intrinsic morphological instability that roots in the coupled bulk transport and nonlinear interface kinetics in systems with mixed growth rate control. Analyses of this nonlinear response provide (a) criteria for the choice of bulk transport conditions to minimize structural defect formation, and (b) indications that the "slow" protein crystallization kinetics stems from the mutual retardation of growth steps.
Fine-scale traverses in cumulate rocks, Stillwater Complex: A lunar analogue study
NASA Technical Reports Server (NTRS)
Elthon, Donald
1988-01-01
The objective was to document finite-scale compositional variations in cumulate rocks from the Stillwater Complex in Montana and to interpret these data in the context of planetary magma fractionation processes such as those operative during the formation of the Earth's Moon. This research problem involved collecting samples in the Stillwater Complex and analyzing them by electron microprobe, X-ray fluorescence (XRF), and instrumental neutron activation analysis (INAA). The electron microprobe is used to determine the compositions of cumulus and intercumulus phases in the rocks, the XRF is used to determine the bulk-rock major element and trace element (Y, Sr, Rb, Zr, Ni, and Cr) abundances, and the INAA lab. is used to determine the trace element (Sc, Co, Cr, Ni, Ta, Hf, U, Th, and the REE) abundances of mineral separates and bulk rocks.
Effect of Crystallizable Solvent on Phase Separation and Charge Transport in Polymer-fullerene Films
NASA Astrophysics Data System (ADS)
Kaewprajak, A.; Lohawet, K.; Wutikhun, T.; Meemuk, B.; Kumnorkaew, P.; Sagawa, T.
2017-09-01
The effect of 1,3,5-trichlorobenzene (TCB) as crystallizable solvent on poly[N-9‧-heptadecanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) was investigated. We found that phase separation of PCDTBT and PC71BM and formation of the condensed network of polymers were appropriately regulated by addition of TCB in the BHJ films, which were confirmed by optical microscopic, AFM, and TEM observations in addition to current-voltage analyses. Through the formation of a good continuous pathway for carrier transport by the addition of TCB, 2.5 times enhancement of the hole mobility in the BHJ film was attained from 5.82 × 10-5 cm2 V-1 s-1 without TCB to 1.48 × 10-4 cm2 V-1 s-1 with 20 mg ml-1 of TCB.
Crystallization features of normal alkanes in confined geometry.
Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin
2014-01-21
How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D) confining environment. We have studied multiple parameters of these microencapsulated n-alkanes, including surface freezing, metastability of the rotator phase, and the phase separation behaviors of n-alkane mixtures using differential scanning calorimetry (DSC), temperature-dependent X-ray diffraction (XRD), and variable-temperature solid-state nuclear magnetic resonance (NMR). Our investigations revealed new direct evidence for the existence of surface freezing in microencapsulated n-alkanes. By examining the differences among chain packing and nucleation kinetics between bulk alkane solid solutions and their microencapsulated counterparts, we also discovered a mechanism responsible for the formation of a new metastable bulk phase. In addition, we found that confinement suppresses lamellar ordering and longitudinal diffusion, which play an important role in stabilizing the binary n-alkane solid solution in microcapsules. Our work also provided new insights into the phase separation of other mixed system, such as waxes, lipids, and polymer blends in confined geometry. These works provide a profound understanding of the relationship between molecular structure and material properties in the context of crystallization and therefore advance our ability to improve applications incorporating polymeric and molecular materials.
Simmons, Blake A [San Francisco, CA; Talin, Albert Alec [Livermore, CA
2009-11-27
A method for producing metal nanoparticles that when associated with an analyte material will generate an amplified SERS spectrum when the analyte material is illuminated by a light source and a spectrum is recorded. The method for preparing the metal nanoparticles comprises the steps of (i) forming a water-in-oil microemulsion comprising a bulk oil phase, a dilute water phase, and one or more surfactants, wherein the water phase comprises a transition metal ion; (ii) adding an aqueous solution comprising a mild reducing agent to the water-in-oil microemulsion; (iii) stirring the water-in-oil microemulsion and aqueous solution to initiate a reduction reaction resulting in the formation of a fine precipitate dispersed in the water-in-oil microemulsion; and (iv) separating the precipitate from the water-in-oil microemulsion.
Major and trace element chemistry of separated fragments from a hibonite-bearing Allende inclusion
NASA Technical Reports Server (NTRS)
Davis, A. M.; Grossman, L.; Allen, J. M.
1978-01-01
The major and trace elements of separated fragments and a bulk sample from CG-11, a hibonite-bearing inclusion in the Allende meteorite, were analyzed. Major element abundances were used to determine the minerology of separated fragments. The high degree of correlation between Eu/Sm ratios and Lu/Yb ratios for the samples studied indicates that their rare earth element (REE) distributions are governed by two components. One, Lu-, Eu-rich, is probably hibonite; the other, depleted in these elements, seems to be associated with the secondary alteration phases, grossular, nepheline and anorthite. The REE distribution in CG-11 precludes melting events after formation of the secondary alteration phases, but a melting event involving the primary minerals cannot be excluded. The enrichment of Lu with respect to other measured REE in hibonite can be explained by present REE condensation models. Two Hf-bearing components, most likely hibonite and perovskite, are necessary to account for variations in Sc/Hf ratios in the fragments studied. The lithophile volatiles Na, Mn, Fe, Zn, and probably Cr increase in the same order as the amount of secondary alteration minerals; the volatile siderophile elements Co and Au, however, do not.
Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging
Dyck, Ondrej; Hu, Sheng; Das, Sanjib; ...
2015-11-24
Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. Our paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. One complementary spectrum image capturing the carbon and sulfur core loss edges is compared with themore » plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We also show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.« less
Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.
Mun, Hyeona; Choi, Soon-Mok; Lee, Kyu Hyoung; Kim, Sung Wng
2015-07-20
Thermoelectrics, which transports heat for refrigeration or converts heat into electricity directly, is a key technology for renewable energy harvesting and solid-state refrigeration. Despite its importance, the widespread use of thermoelectric devices is constrained because of the low efficiency of thermoelectric bulk alloys. However, boundary engineering has been demonstrated as one of the most effective ways to enhance the thermoelectric performance of conventional thermoelectric materials such as Bi2 Te3 , PbTe, and SiGe alloys because their thermal and electronic transport properties can be manipulated separately by this approach. We review our recent progress on the enhancement of the thermoelectric figure of merit through boundary engineering together with the processing technologies for boundary engineering developed most recently using Bi2 Te3 -based bulk alloys. A brief discussion of the principles and current status of boundary-engineered bulk alloys for the enhancement of the thermoelectric figure of merit is presented. We focus mainly on (1) the reduction of the thermal conductivity by grain boundary engineering and (2) the reduction of thermal conductivity without deterioration of the electrical conductivity by phase boundary engineering. We also discuss the next potential approach using two boundary engineering strategies for a breakthrough in the area of bulk thermoelectric alloys. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Complex coacervation of supercharged proteins with polyelectrolytes.
Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D
2016-04-21
Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.
Advanced STEM microanalysis of bimetallic nanoparticle catalysts
NASA Astrophysics Data System (ADS)
Lyman, Charles E.; Dimick, Paul S.
2012-05-01
Individual particles within bimetallic nanoparticle populations are not always identical, limiting the usefulness of bulk analysis techniques such as EXAFS. The scanning transmission electron microscope (STEM) is the only instrument able to characterize supported nanoparticle populations on a particle-by-particle basis. Quantitative elemental analyses of sub-5-nm particles reveal phase separations among particles and surface segregation within particles. This knowledge can lead to improvements in bimetallic catalysts. Advanced STEMs with field-emission guns, aberration-corrected optics, and efficient signal detection systems allow analysis of sub-nanometer particles.
Model of chiral spin liquids with Abelian and non-Abelian topological phases
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; ...
2017-12-15
In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less
Model of chiral spin liquids with Abelian and non-Abelian topological phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio
In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less
Visualizing heavy fermion confinement and Pauli-limited superconductivity in layered CeCoIn 5
Gyenis, András; Feldman, Benjamin E.; Randeria, Mallika T.; ...
2018-02-07
Layered material structures play a key role in enhancing electron–electron interactions to create correlated metallic phases that can transform into unconventional superconducting states. The quasi-two-dimensional electronic properties of such compounds are often inferred indirectly through examination of bulk properties. Here we use scanning tunneling microscopy to directly probe in cross-section the quasi-two-dimensional electronic states of the heavy fermion superconductor CeCoIn 5. Our measurements reveal the strong confined nature of quasiparticles, anisotropy of tunneling characteristics, and layer-by-layer modulated behavior of the precursor pseudogap gap phase. In the interlayer coupled superconducting state, the orientation of line defects relative to the d-wave ordermore » parameter determines whether in-gap states form due to scattering. Spectroscopic imaging of the anisotropic magnetic vortex cores directly characterizes the short interlayer superconducting coherence length and shows an electronic phase separation near the upper critical in-plane magnetic field, consistent with a Pauli-limited first-order phase transition into a pseudogap phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyenis, András; Feldman, Benjamin E.; Randeria, Mallika T.
Layered material structures play a key role in enhancing electron–electron interactions to create correlated metallic phases that can transform into unconventional superconducting states. The quasi-two-dimensional electronic properties of such compounds are often inferred indirectly through examination of bulk properties. Here we use scanning tunneling microscopy to directly probe in cross-section the quasi-two-dimensional electronic states of the heavy fermion superconductor CeCoIn 5. Our measurements reveal the strong confined nature of quasiparticles, anisotropy of tunneling characteristics, and layer-by-layer modulated behavior of the precursor pseudogap gap phase. In the interlayer coupled superconducting state, the orientation of line defects relative to the d-wave ordermore » parameter determines whether in-gap states form due to scattering. Spectroscopic imaging of the anisotropic magnetic vortex cores directly characterizes the short interlayer superconducting coherence length and shows an electronic phase separation near the upper critical in-plane magnetic field, consistent with a Pauli-limited first-order phase transition into a pseudogap phase.« less
Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets
NASA Astrophysics Data System (ADS)
Oka, T.; Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Tsujimura, M.; Terasawa, T.
2013-01-01
The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni-P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.
Ghaderi, L; Moghimi, R; Aliahmadi, A; McClements, D J; Rafati, H
2017-10-01
Thymol-rich medicinal plants have been used in traditional medicine to relieve infectious diseases. However, the application of essential oils as medicine is limited by its low water solubility and high vapour pressure. The objective of this study was to produce stable nanoemulsions of Thymus daenensis oil in water by preventing Ostwald ripening and phase separation. The antibacterial activity of bulk and emulsified essential oil against selected pathogenic bacteria including Gram-negative (Haemophilus influenzae, Pseudomonas aeruginosa) and Gram-positive (Streptococcus pneumoniae) were investigated in the liquid and vapour phase. The optimum formulation (L2) contained 2% Tween 80 (surfactant) and 0·1% lecithin (cosurfactant) had a mean droplet diameter of 131 nm. In the liquid phase, the optimized nanoemulsion exhibited good antibacterial activity against S. pneumonia with MIC value of 0·0039 mg mL -1 . In the vapour phase, the MIC values against S. pneumonia were similar (<7·35 μL L -1 ) for both bulk and emulsified essential oil. However, there was no antibacterial activity in the vapour phase against H. influenzae and P. aeruginosa. Analysis of thymol concentration in the head space indicated that the nanoemulsion retarded the release of thymol into the vapour phase. These findings highlight the potential applications of nanoemulsions containing essential oils as antibacterial products. The results of the current study highlight the advantages of nanoemulsification for improvement of the physicochemical properties and the antibacterial activity of T. daenensis EOs in the liquid and vapour phase for therapeutic purposes. © 2017 The Society for Applied Microbiology.
Hydrodynamics of soap films probed by two-particle microrheology
NASA Astrophysics Data System (ADS)
Prasad, Vikram; Weeks, Eric R.
2007-11-01
A soap film consists of a thin water layer that is separated from two bulk air phases above and below it by surfactant monolayers. The flow fields in the soap film created in response to a perturbation depend on coupling between these different phases, the exact nature of which is unknown. In order to determine this coupling, we use polystyrene spheres as tracer particles and track their diffusive motions in the soap film. The correlated Brownian motion of pairs of particles (two-particle microrheology) maps out the flow field, and provides a measure of the surface viscosity of the soap film as well. This measured surface viscosity agrees well with the value obtained from self diffusion of single particles (one-particle microrheology) in the film.
Enantioselective HPLC resolution of synthetic intermediates of armodafinil and related substances.
Nageswara Rao, Ramisetti; Shinde, Dhananjay D; Kumar Talluri, Murali V N
2008-04-01
Armodafinil is a unique psychostimulant recently approved by the US Food and Drug Administration for the treatment of narcolepsy. The chromatographic resolution of its chiral intermediates including related substances in the total synthesis of armodafinil was studied on polysaccharide-based stationary phases, viz. cellulose tris-(3,5-dimethylphenylcarbamate) (Chiralcel OD-H) and amylose tris-(3,5-dimethylphenylcarbamate) (Chiralpak AD-H) by HPLC. The effects of 1-propanol, 2-propanol, ethanol, and trifluoroacetic acid added to the mobile phase and of column temperature on resolution were studied. A good separation was achieved on cellulose-based Chiralcel OD-H column compared to amylose-based Chiralpak AD-H. The effects of structural features of the solutes and solvents on discrimination between the enantiomers were examined. Baseline separation with R(s) >1.38 was obtained using a mobile phase containing n-hexane-ethanol-TFA (75:25:0.15 v/v/v). Detection was carried out at 225 nm with photodiode array detector while identification of enantiomers was accomplished by a polarimetric detector connected in series. The method was found to be suitable not only for process development of armodafinil but also for determination of the enantiomeric purity of bulk drugs and pharmaceuticals.
Stability of Soil Carbon Fractions - from molecules to aggregates
NASA Astrophysics Data System (ADS)
Mueller, C. W.; Mueller, K. E.; Freeman, K. H.; Eissenstat, D.; Kögel-Knabner, I.
2009-12-01
The turnover of soil organic matter (SOM) is controlled both by its chemical composition, its spatial bioavailability and the association with the mineral phase. Separation by physical fractionation of bulk soils and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of the study was to elucidate the relative abundance and recalcitrance of lignin and plant lipids (e.g. cutin and suberin) in the course of SOM decomposition within aggregated bulk soils and SOM fractions. By the parallel incubation of physically-separated size fractions and bulk soils of the Ah horizon from a forested soil (Picea abies L.Karst) over a period of 400 days, a unique set of samples was created to study SOM dynamics. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to recalcitrance at different scales of resolution (GC-MS, NMR). A relative enrichment of alkyl C and decreasing lignin contents in the order of sand < silt < clay were observed by 13C-NMR and GC-MS within soils and fractions before the incubation, resulting in increased lipid to lignin ratios with decreasing particle size. A relative enrichment of lignin in the incubated fractions compared to the incubated bulk soils clearly indicated the preferential mineralization of less recalcitrant C compounds that were spatially inaccessible in aggregates of the bulk soil. Differences in the abundance of various lignin, cutin, and suberin monomers measured by GC-MS before and after the incubation indicate selective degradation and preservation patterns at the molecular scale that are rarely observed and are unresolved by NMR analyses. We suggest that the monomer-specific patterns of lignin, cutin, and suberin decomposition facilitate better understanding and modelling of SOM dynamics by providing a tool to potentially separate the influence of input rates from selective preservation on the abundance of these bipolymers in soil.
Hemming, C J; Patey, G N
2004-10-01
Bridge phases associated with a phase transition between two liquid phases occur when a two-component liquid mixture is confined between chemically patterned walls. In the bulk the liquid mixture with components A, B undergoes phase separation into an A-rich phase and a B-rich phase. The walls bear stripes attractive to A. In the bridge phase A-rich and B-rich regions alternate. Grand canonical Monte Carlo studies are performed with the alignment between stripes on opposite walls varied. Misalignment of the stripes places the nanoscopic liquid bridges under shear strain. The bridges exert a Hookean restoring force on the walls for small displacements from equilibrium. As the strain increases there are deviations from Hooke's law. Eventually there is an abrupt yielding of the bridges. Molecular dynamics simulations show the bridges form or disintegrate on time scales which are fast compared to wall motion and transport of molecules into or from the confined space. Some interesting possible applications of the phenomena are discussed. (c) 2004 American Institute of Physics
NASA Astrophysics Data System (ADS)
Ramasamy, Parthiban; Stoica, Mihai; Taghvaei, A. H.; Prashanth, K. G.; Ravi Kumar, Eckert, Jürgen
2016-02-01
The crystallization kinetics of [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 and {[(Fe0.5Co0.5)0.75B0.2Si0.05]0.96Nb0.04}99.5Cu0.5 bulk metallic glasses were evaluated using differential scanning calorimetry under non-isothermal condition. The fully glassy rods with diameters up to 2 mm were obtained by copper mold injection casting. Both glasses show good thermal stability, but the addition of only 0.5% Cu completely changes the crystallization behavior. The average activation energy required for crystallization decreases from 645 kJ/mol to 425 kJ/mol after Cu addition. Upon heating, the Cu-free alloy forms only the metastable Fe23B6 phase. In contrast, two well-separated exothermic events are observed for the Cu-added bulk glassy samples. First, the (Fe,Co) phase nucleates and then (Fe,Co)2B and/or (Fe,Co)3B crystallize from the remaining glassy matrix. The Cu-added alloy exhibits a lower coercivity and a higher magnetic saturation than the base alloy, both in as-cast as well as in annealed condition. Besides, the Cu-added glassy sample with 2 mm diameter exhibits a maximum compressive fracture strength of 3913 MPa together with a plastic strain of 0.6%, which is highest plastic strain ever reported for 2 mm diameter ferromagnetic bulk metallic glass sample. Although Cu addition improves the magnetic and mechanical properties of the glass, it affects the glass-forming ability of the base alloy.
NASA Astrophysics Data System (ADS)
Firdaus, Yuliar; Vandenplas, Erwin; Justo, Yolanda; Gehlhaar, Robert; Cheyns, David; Hens, Zeger; Van der Auweraer, Mark
2014-09-01
Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system.
Sewage treatment method and apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelmann, J.A.
1982-07-13
A method and apparatus for treating sewage and converting the sewage into organic fertilizer which utilizes equipment for converting the solid material of the sewage into patties and a mixing apparatus for mixing the patties with bulking agents. The mixture of patties and bulking agents is stored in a pile and subjected to a supply of air to enhance the self-combustion or oxidation of the organic material in the patties. The bulking agents provide the patty-bulking agent mixture with air passages and pockets and minimize compaction of the patties. The selfcombustion of the patties continues until the organic material ismore » burned out, leaving a residual ash. A shaker separator having an elongated longitudinal perforated member is reciprocated to separate the ash from the bulking agents. The ash is collected and utilized as organic fertilizer. The bulking agents are recycled back to the mixing apparatus.« less
Hwang, Kyusung; Kim, Yong Baek
2016-01-01
We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect. PMID:27418293
Surface Premelting Coupled with Bulk Phase Transitions in Colloidal Crystals
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, Feng; Zhou, Di; Cao, Xin; Peng, Yi; Ni, Ran; Liao, Maijia; Han, Yilong
2015-03-01
Colloids have been used as outstanding model systems for the studies of various phase transitions in bulk, but not at interface yet. Here we obtained equilibrium crystal-vapor interfaces using tunable attractive colloidal spheres and studied the surface premelting at the single-particle level by video microscopy. We found that monolayer crystals exhibit a bulk isostructural solid-solid transition which triggers the surface premelting. The premelting is incomplete due to the interruption of a mechanical-instability-induced bulk melting. By contrast, two- or multilayer crystals do not have the solid-solid transition and the mechanical instability, hence they exhibit complete premelting with divergent surface-liquid thickness. These novel interplays between bulk and surface phase transitions cast new lights for both types of transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huipeng; Hsiao, Yu -Che; Chen, Jihua
2014-09-16
It is known, one way to improve power conversion efficiency (PCE) of polymer based bulk-heterojunction (BHJ) photovoltaic cells is to increase the open circuit voltage (V oc). Replacing PCBM with bis-adduct fullerenes significantly improves V oc and the PCE in devices based on the conjugated polymer poly(3-hexyl thiophene) (P3HT). However, for the most promising low band-gap polymer (LBP) system, replacing PCBM with ICBA results in poor short-circuit current (J sc) and PCE although V oc is significantly improved. The optimization of the morphology of as-cast LBP/bis-fullerene BHJ photovoltaics is attempted by adding a co-solvent to the polymer/fullerene solution prior tomore » film deposition. Varying the solubility of polymer and fullerene in the co-solvent, bulk heterojunctions are fabricated with no change of polymer ordering, but with changes in fullerene phase separation. The morphologies of the as-cast samples are characterized by small angle neutron scattering and neutron reflectometry. A homogenous dispersion of ICBA in LBP is found in the samples where the co-solvent is selective to the polymer, giving poor device performance. Aggregates of ICBA are formed in samples where the co-solvent is selective to ICBA. Furthermore, the resultant morphology improves PCE by up to 246%. Finally, a quantitative analysis of the neutron data shows that the interfacial area between ICBA aggregates and its surrounding matrix is improved, facilitating charge transport and improving the PCE.« less
NASA Astrophysics Data System (ADS)
Ali, Arshad; Jabeen, Iffat; Gregory, David; Verish, Robert; Banerjee, Neil R.
2016-05-01
We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty-Nakhla-Chassigny (SNC) meteorites using enhanced laser-assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px-ol and mask-ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass-dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs.
Gu, Xiaodan; Yan, Hongping; Kurosawa, Tadanori; ...
2016-08-22
Here in this work, the detailed morphology studies of polymer poly(3-hexylthiophene-2,5-diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all-polymer solar cells. The in situ X-ray scattering and optical interferometry and ex situ hard and soft X-ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the exmore » situ grazing incidence X-ray diffraction and soft X-ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer.« less
Epitaxial Ce and the magnetism of single-crystal Ce/Nd superlattices
NASA Astrophysics Data System (ADS)
Clegg, P. S.; Goff, J. P.; McIntyre, G. J.; Ward, R. C.; Wells, M. R.
2003-05-01
The chemical structure of epitaxial γ cerium and the chemical and magnetic structures of cerium/neodymium superlattices have been studied using x-ray and neutron diffraction techniques. The samples were grown using molecular-beam epitaxy, optimized to yield the desired Ce allotropes. The x-ray measurements show that, in the superlattices, both constituents adopt the dhcp structure and that the stacking sequence remains intact down to T˜2 K; these are the first measurements of magnetic ordering in single-crystal dhcp Ce. The magnetic structure of the superlattices with thicker Nd layers exhibit incommensurate order and ferromagnetism on separate sublattices in a similar manner to Nd under applied pressure. The sample with thickest Ce layers has a magnetic structure similar to bulk β Ce, which has commensurate transverse modulation with a propagation wave vector [1/2 0 0] and moments along the hexagonal a direction. These two types of magnetic order appear to be mutually exclusive. γ Ce is the high-temperature fcc phase of Ce, our single-phase epitaxial sample is observed to go through a new, but partial, structural transition not previously seen in the bulk material.
Demixing of polymers under nanoimprinting process
NASA Astrophysics Data System (ADS)
Wang, Zhen
Polymer blend has been an important area in polymer science for decades. The knowledge of polymer blend in bulk is well established and technologies based on it have created products ubiquitous in our daily life. More intriguing problem arises when the phase separation of a polymer blend occurs under physical confinement. In this thesis, we investigated the effect of interfacial interactions between constituent polymers and confinement environment on phase evolution. Specifically, morphologies of thin films of binary polymer blends were examined on chemically homogenous substrates (preferential surface, neutral surface), on chemical pattern, between two parallel rigid substrates, and under thermal embossing/step-and-flash nanoimprint lithography conditions. We found that preferential wetting of selective component dominates the phase evolution, which can be suppressed by the use of neutral surfaces or external pressure. By manipulating these factors, a wide range of unique non-equilibrium micro or nanostructures can thus be achieved.
Younus, Mohammad; Hawley, Adrian; Boyd, Ben J; Rizwan, Shakila B
2018-05-07
Tween 80 has been reported to provide a means of targeting drug nanocarriers to the blood- brain barrier. This study investigated the influence of addition of Tween 80 on the formation of different bulk and dispersed lyotropic liquid crystalline phases in selachyl alcohol-based systems. The effect of increasing concentrations of Tween 80 and Pluronic F127 (as a control) (0-25% w/w relative to SA) on the bulk phase behaviour and dispersions of selachyl alcohol (SA) were investigated using small angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy. The addition of Tween 80 to SA bulk phase samples triggered concentration-dependent phase changes with the structure sequentially evolving from a reverse hexagonal phase (H 2 ) to a mixed H 2 and inverse bicontinuous cubic (V 2 ) then a V 2 phase alone. In contrast, the addition of Pluronic F127 resulted in a phase change from H 2 phase to a mixed lamellar and H 2 phase system. The mean particle size of internally structured particles was 125-190 nm with low polydispersity indices (0.1-0.2). Nanoparticles retained the bulk phase internal structure in the presence of Tween 80, whereas in the presence of Pluronic F127, the additional lamellar phase that formed in bulk phase systems was not observed. Cryo-TEM revealed the formation of cubosomes and hexosomes by SA in excess water in the presence of Tween 80 and Pluronic F127 respectively. In summary, it was shown that stabilisation of SA dispersions using Tween 80 resulted in a decrease in negative curvature leading to a change in internal structure from H 2 to V 2 phase. The studies provide the core understanding of particle structure to progress these structured lipid nanocarriers into delivery studies with Tween 80 as a mechanism to target the blood-brain barrier. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Magnetic imaging of antiferromagnetic and superconducting phases in R bxF e2 -yS e2 crystals
NASA Astrophysics Data System (ADS)
Hazi, J.; Mousavi, T.; Dudin, P.; van der Laan, G.; Maccherozzi, F.; Krzton-Maziopa, A.; Pomjakushina, E.; Conder, K.; Speller, S. C.
2018-02-01
High-temperature superconducting (HTS) cuprate materials, with the ability to carry large electrical currents with no resistance at easily reachable temperatures, have stimulated enormous scientific and industrial interest since their discovery in the 1980's. However, technological applications of these promising compounds have been limited by their chemical and microstructural complexity and the challenging processing strategies required for the exploitation of their extraordinary properties. The lack of theoretical understanding of the mechanism for superconductivity in these HTS materials has also hindered the search for new superconducting systems with enhanced performance. The unexpected discovery in 2008 of HTS iron-based compounds has provided an entirely new family of materials for studying the crucial interplay between superconductivity and magnetism in unconventional superconductors. Alkali-metal-doped iron selenide (AxF e2 -yS e2 , A =alkali metal ) compounds are of particular interest owing to the coexistence of superconductivity at relatively high temperatures with antiferromagnetism. Intrinsic phase separation on the mesoscopic scale is also known to occur in what were intended to be single crystals of these compounds, making it difficult to interpret bulk property measurements. Here, we use a combination of two advanced microscopy techniques to provide direct evidence of the magnetic properties of the individual phases. First, x-ray linear dichroism studies in a photoelectron emission microscope, and supporting multiplet calculations, indicate that the matrix (majority) phase is antiferromagnetic whereas the minority phase is nonmagnetic at room temperature. Second, cryogenic magnetic force microscopy demonstrates unambiguously that superconductivity occurs only in the minority phase. The correlation of these findings with previous microstructural studies and bulk measurements paves the way for understanding the intriguing electronic and magnetic properties of these compounds.
Quantum Phase Transition in Few-Layer NbSe2 Probed through Quantized Conductance Fluctuations
NASA Astrophysics Data System (ADS)
Kundu, Hemanta Kumar; Ray, Sujay; Dolui, Kapildeb; Bagwe, Vivas; Choudhury, Palash Roy; Krupanidhi, S. B.; Das, Tanmoy; Raychaudhuri, Pratap; Bid, Aveek
2017-12-01
We present the first observation of dynamically modulated quantum phase transition between two distinct charge density wave (CDW) phases in two-dimensional 2 H -NbSe2 . There is recent spectroscopic evidence for the presence of these two quantum phases, but its evidence in bulk measurements remained elusive. We studied suspended, ultrathin 2 H -NbSe2 devices fabricated on piezoelectric substrates—with tunable flakes thickness, disorder level, and strain. We find a surprising evolution of the conductance fluctuation spectra across the CDW temperature: the conductance fluctuates between two precise values, separated by a quantum of conductance. These quantized fluctuations disappear for disordered and on-substrate devices. With the help of mean-field calculations, these observations can be explained as to arise from dynamical phase transition between the two CDW states. To affirm this idea, we vary the lateral strain across the device via piezoelectric medium and map out the phase diagram near the quantum critical point. The results resolve a long-standing mystery of the anomalously large spectroscopic gap in NbSe2 .
Simulating compressible-incompressible two-phase flows
NASA Astrophysics Data System (ADS)
Denner, Fabian; van Wachem, Berend
2017-11-01
Simulating compressible gas-liquid flows, e.g. air-water flows, presents considerable numerical issues and requires substantial computational resources, particularly because of the stiff equation of state for the liquid and the different Mach number regimes. Treating the liquid phase (low Mach number) as incompressible, yet concurrently considering the gas phase (high Mach number) as compressible, can improve the computational performance of such simulations significantly without sacrificing important physical mechanisms. A pressure-based algorithm for the simulation of two-phase flows is presented, in which a compressible and an incompressible fluid are separated by a sharp interface. The algorithm is based on a coupled finite-volume framework, discretised in conservative form, with a compressive VOF method to represent the interface. The bulk phases are coupled via a novel acoustically-conservative interface discretisation method that retains the acoustic properties of the compressible phase and does not require a Riemann solver. Representative test cases are presented to scrutinize the proposed algorithm, including the reflection of acoustic waves at the compressible-incompressible interface, shock-drop interaction and gas-liquid flows with surface tension. Financial support from the EPSRC (Grant EP/M021556/1) is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.
2014-01-01
The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.
Shaping Crystal-Crystal Phase Transitions
NASA Astrophysics Data System (ADS)
Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon
Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.
Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells
NASA Astrophysics Data System (ADS)
Wang, Kejia; Shin, Byungha; Reuter, Kathleen B.; Todorov, Teodor; Mitzi, David B.; Guha, Supratik
2011-01-01
We have carried out detailed microstructural studies of phase separation and grain boundary composition in Cu2ZnSnS4 based solar cells. The absorber layer was fabricated by thermal evaporation followed by post high temperature annealing on hot plate. We show that inter-reactions between the bottom molybdenum and the Cu2ZnSnS4, besides triggering the formation of interfacial MoSx, results in the out-diffusion of Cu from the Cu2ZnSnS4 layer. Phase separation of Cu2ZnSnS4 into ZnS and a Cu-Sn-S compound is observed at the molybdenum-Cu2ZnSnS4 interface, perhaps as a result of the compositional out-diffusion. Additionally, grain boundaries within the thermally evaporated absorber layer are found to be either Cu-rich or at the expected bulk composition. Such interfacial compound formation and grain boundary chemistry likely contributes to the lower than expected open circuit voltages observed for the Cu2ZnSnS4 devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Chandan K.; Singh, Jayant K., E-mail: jayantks@iitk.ac.in
The solid-liquid coexistence of a Lennard-Jones fluid confined in slit pores of variable pore size, H, is studied using molecular dynamics simulations. Three-stage pseudo-supercritical transformation path of Grochola [J. Chem. Phys. 120(5), 2122 (2004)] and multiple histogram reweighting are employed for the confined system, for various pore sizes ranging from 20 to 5 molecular diameters, to compute the solid-liquid coexistence. The Gibbs free energy difference is evaluated using thermodynamic integration method by connecting solid-liquid phases under confinement via one or more intermediate states without any first order phase transition among them. Thermodynamic melting temperature is found to oscillate with wallmore » separation, which is in agreement with the behavior seen for kinetic melting temperature evaluated in an earlier study. However, thermodynamic melting temperature for almost all wall separations is higher than the bulk case, which is contrary to the behavior seen for the kinetic melting temperature. The oscillation founds to decay at around H = 12, and beyond that pore size dependency of the shift in melting point is well represented by the Gibbs-Thompson equation.« less
Hiesgen, Renate; Helmly, Stefan; Galm, Ines; Morawietz, Tobias; Handl, Michael; Friedrich, K. Andreas
2012-01-01
The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail. PMID:24958429
Observation of magnetic excitons in LaCoO3
NASA Astrophysics Data System (ADS)
Giblin, S. R.; Terry, I.; Clark, S. J.; Prokscha, T.; Prabhakaran, D.; Boothroyd, A. T.; Wu, J.; Leighton, C.
2005-06-01
An impurity-driven magnetic phase transition has been investigated in LaCoO3 at temperatures below that of the thermally induced spin state transition of the Co3+ ion. We have discovered a saturating component of the magnetisation, which we attribute to previously unobserved interactions between magnetic excitons. These conclusions are confirmed by muon spin spectroscopy which indicates an ordering temperature of 50 K in both the transverse and zero-field configurations. Low-energy muon measurements demonstrate that the magnetic behaviour is independent of implantation energy and hence a property of the bulk of the material. The magnetic exciton formation is attributed to the interaction between electrons bound at oxygen vacancies and neighbouring cobalt ions, and is proposed as the precursor to the magneto-electronic phase separation recently observed in doped lanthanum cobaltite.
NASA Astrophysics Data System (ADS)
Schmidt, Rainer; Wu, J.; Leighton, C.; Terry, I.
2009-03-01
The dielectric and magnetic properties and their correlations were investigated in polycrystalline perovskite LaCoO3-δ . The intrinsic bulk and grain-boundary (GB) dielectric relaxation processes were deconvoluted using impedance spectroscopy between 20 and 120 K, and resistivity and capacitance were analyzed separately. A thermally induced magnetic transition from a Co3+ low-spin (LS) (S=0;t2g6eg0) to a higher spin state occurs at Ts1≈80K , which is controversial in nature and has been suggested to be an intermediate-spin (IS) state (S=1;t2g5eg1) or a high-spin (HS) state (S=2;t2g4eg2) transition. This spin state transition was confirmed by magnetic-susceptibility measurements and was reflected in the impedance by a split of the single GB relaxation process into two coexisting contributions. This apparent electronic phase coexistence at T>80K was interpreted as a reflection of the coexistence of magnetic LS and IS/HS states. At lower temperatures (T≤40K) perceptible variation in bulk dielectric permittivity with temperature appeared to be correlated with the magnetic susceptibility associated with a magnetic defect structure. At 40K
Wu, Chung-Shu; Liu, Fu-Ken; Ko, Fu-Hsiang
2011-01-01
Nanoparticle-based material is a revolutionary scientific and engineering venture that will invariably impact the existing analytical separation and preconcentration for a variety of analytes. Nanoparticles can be regarded as a hybrid between small molecule and bulk material. A material on the nanoscale produces considerable changes on various properties, making them size- and shape-dependent. Gold nanoparticles (Au NPs), one of the wide variety of core materials available, coupled with tunable surface properties in the form of inorganic or inorganic-organic hybrid have been reported as an excellent platform for a broad range of analytical methods. This review aims to introduce the basic principles, examples, and descriptions of methods for the characterization of Au NPs by using chromatography, electrophoresis, and self-assembly strategies for separation science. Some of the latest important applications of using Au NPs as stationary phases toward open-tubular capillary electrochromatography, gas chromatography, and liquid chromatography as well as roles of run buffer additive to enhance separation and preconcentration in the field of chromatographic, electrophoretic and in chip-based systems are reviewed. Additionally, we review Au NPs-assisted state-of-the-art techniques involving the use of micellar electrokinetic chromatography, an online diode array detector, solid-phase extraction, and mass spectrometry for the preconcentration of some chemical compounds and biomolecules.
New results on water in bulk, nanoconfined, and biological environments
NASA Astrophysics Data System (ADS)
Stanley, H. E.; Kumar, Pradeep; Xu, Limei; Yan, Zhenyu; Mazza, Marco G.; Buldyrev, S. V.; Chen, S.-H.; Mallamace, F.
2007-12-01
Water is perhaps the most ubiquitous, and the most essential, of any molecule on earth. Despite decades of research, however, water's puzzling properties are not understood and 63 anomalies that distinguish water from other liquids remain unsolved. We present evidence from experiments and computer simulations supporting the hypothesis that water displays polyamorphism, i.e., water separates into two distinct liquid phases. This concept of a new liquid-liquid critical point is finding application to other liquids as well as water, such as silicon and silica. We also discuss related puzzles, such as the mysterious behavior of water near a biomolecule.
Herath, Nuradhika; Das, Sanjib; Keum, Jong K.; ...
2015-08-28
Structural characteristics of the active layers in organic photovoltaic (OPV) devices play a critical role in charge generation, separation and transport. Here we report on morphology and structural control of p-DTS(FBTTh 2) 2:PC 71BM films by means of thermal annealing and 1,8-diiodooctane (DIO) solvent additive processing, and correlate it to the device performance. By combining surface imaging with nanoscale depth-sensitive neutron reflectometry (NR) and X-ray diffraction, three-dimensional morphologies of the films are reconstituted with information extending length scales from nanometers to microns. DIO promotes the formation of a well-mixed donor-acceptor vertical phase morphology with a large population of small p-DTS(FBTTh2)2more » nanocrystals arranged in an elongated domain network of the film, thereby enhancing the device performance. In contrast, films without DIO exhibit three-sublayer vertical phase morphology with phase separation in agglomerated domains. Our findings are supported by thermodynamic description based on the Flory-Huggins theory with quantitative evaluation of pairwise interaction parameters that explain the morphological changes resulting from thermal and solvent treatments. Our study reveals that vertical phase morphology of small-molecule based OPVs is significantly different from polymer-based systems. Lastly, the significant enhancement of morphology and information obtained from theoretical modeling may aid in developing an optimized morphology to enhance device performance for OPVs.« less
Large-Flow-Area Flow-Selective Liquid/Gas Separator
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Bradley, Karla F.
2010-01-01
This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.
Fabrication of single domain GdBCO bulk superconductors by a new modified TSIG technique
NASA Astrophysics Data System (ADS)
Yang, W. M.; Zhi, X.; Chen, S. L.; Wang, M.; Li, J. W.; Ma, J.; Chao, X. X.
2014-01-01
Single domain GdBCO bulk superconductors have been fabricated with new and traditional solid phases by a top seeded infiltration and growth (TSIG) process technique. In the conventional TSIG process, three types of powders, such as Gd2BaCuO5, GdBa2Cu3O7-x and Ba3Cu5O8, must be prepared, but in our new modified TSIG technique, only BaCuO2 powders are required during the fabrication of the single domain GdBCO bulk superconductors. The solid phase used in the conventional process is Gd2BaCuO5 instead of the solid phase (Gd2O3 + BaCuO2) utilized in the new process. The liquid phase used in the conventional process is a mixture of (GdBa2Cu3O7-x + Ba3Cu5O8), and the liquid phase in the new process is a mixture of (Gd2O3 + 10BaCuO2 + 6CuO). Single domain GdBCO bulk superconductors have been fabricated with the new solid and liquid phases. The levitation force of the GdBCO bulk samples fabricated by the new solid phase is 28 N, which is slightly higher than that of the samples fabricated using the conventional solid phases (26 N). The microstructure and the levitation force of the samples indicate that this new method can greatly simplify the fabrication process, introduce nanometer-sized flux centers, improve the levitation force and working efficiency, and greatly reduce the cost of fabrication of single domain GdBCO bulk superconductors by the TSIG process.
Nucleation via an unstable intermediate phase.
Sear, Richard P
2009-08-21
The pathway for crystallization from dilute vapors and solutions is often observed to take a detour via a liquid or concentrated-solution phase. For example, in moist subzero air, droplets of liquid water form, which then freeze. In this example and in many others, an intermediate phase (here liquid water) is dramatically accelerating the kinetics of a phase transition between two other phases (water vapor and ice). Here we study this phenomenon via exact computer simulations of a simple lattice model. Surprisingly, we find that the rate of nucleation of the new equilibrium phase is actually fastest when the intermediate phase is slightly unstable in the bulk, i.e., has a slightly higher free energy than the phase we start in. Nucleation occurs at a concave part of the surface and microscopic amounts of the intermediate phase can form there even before the phase is stable in the bulk. As the nucleus of the equilibrium phase is microscopic, this allows nucleation to occur effectively in the intermediate phase before it is stable in the bulk.
Investigation of domain walls in PPLN by confocal raman microscopy and PCA analysis
NASA Astrophysics Data System (ADS)
Shur, Vladimir Ya.; Zelenovskiy, Pavel; Bourson, Patrice
2017-07-01
Confocal Raman microscopy (CRM) is a powerful tool for investigation of ferroelectric domains. Mechanical stresses and electric fields existed in the vicinity of neutral and charged domain walls modify frequency, intensity and width of spectral lines [1], thus allowing to visualize micro- and nanodomain structures both at the surface and in the bulk of the crystal [2,3]. Stresses and fields are naturally coupled in ferroelectrics due to inverse piezoelectric effect and hardly can be separated in Raman spectra. PCA is a powerful statistical method for analysis of large data matrix providing a set of orthogonal variables, called principal components (PCs). PCA is widely used for classification of experimental data, for example, in crystallization experiments, for detection of small amounts of components in solid mixtures etc. [4,5]. In Raman spectroscopy PCA was applied for analysis of phase transitions and provided critical pressure with good accuracy [6]. In the present work we for the first time applied Principal Component Analysis (PCA) method for analysis of Raman spectra measured in periodically poled lithium niobate (PPLN). We found that principal components demonstrate different sensitivity to mechanical stresses and electric fields in the vicinity of the domain walls. This allowed us to separately visualize spatial distribution of fields and electric fields at the surface and in the bulk of PPLN.
Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping
2012-05-15
In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF-coated capillaries for high-resolution gas chromatography (GC). We have explored a dynamic coating approach to fabricate a MOF-coated capillary for the GC separation of important raw chemicals and persistent organic pollutants with high resolution and excellent selectivity. We have combined a MOF-coated fiber for solid-phase microextraction with a MOF-coated capillary for GC separation, which provides an effective MOF-based tandem molecular sieve platform for selective microextraction and high-resolution GC separation of target analytes in complex samples. Microsized MOFs with good solvent stability are attractive stationary phases for high-performance liquid chromatography (HPLC). These materials have shown high resolution and good selectivity and reproducibility in both the normal-phase HPLC separation of fullerenes and substituted aromatics on MIL-101 packed columns and position isomers on a MIL-53(Al) packed column and the reversed-phase HPLC separation of a wide range of analytes from nonpolar to polar and acidic to basic solutes. Despite the above achievements, further exploration of MOFs in analytical chemistry is needed. Especially, analytical application-oriented engineering of MOFs is imperative for specific applications.
Santhana Lakshmi, Karunanidhi; Lakshmi, Sivasubramanian
2012-01-01
A Simple high-performance thin layer chromatography (HPTLC) method for separation and quantitative analysis of losartan potassium, amlodipine, and hydrochlorothiazide in bulk and in pharmaceutical formulations has been established and validated. After extraction with methanol, sample and standard solutions were applied to silica gel plates and developed with chloroform : methanol : acetone : formic acid 7.5 : 1.3 : 0.5 : 0.03 (v/v/v/v) as mobile phase. Zones were scanned densitometrically at 254 nm. The R f values of amlodipine besylate, hydrochlorothiazide, and losartan potassium were 0.35, 0.57, and 0.74, respectively. Calibration plots were linear in the ranges 500–3000 ng per spot for losartan potassium, amlodipine and hydrochlorothiazide, the correlation coefficients, r, were 0.998, 0.998, and 0.999, respectively. The suitability of this method for quantitative determination of these compounds was by validation in accordance with the requirements of pharmaceutical regulatory standards. The method can be used for routine analysis of these drugs in bulk and in formulation. PMID:22567550
Validation of a Stability-Indicating Method for Methylseleno-l-Cysteine (l-SeMC)
Canady, Kristin; Cobb, Johnathan; Deardorff, Peter; Larson, Jami; White, Jonathan M.; Boring, Dan
2016-01-01
Methylseleno-l-cysteine (l-SeMC) is a naturally occurring amino acid analogue used as a general dietary supplement and is being explored as a chemopreventive agent. As a known dietary supplement, l-SeMC is not regulated as a pharmaceutical and there is a paucity of analytical methods available. To address the lack of methodology, a stability-indicating method was developed and validated to evaluate l-SeMC as both the bulk drug and formulated drug product (400 µg Se/capsule). The analytical approach presented is a simple, nonderivatization method that utilizes HPLC with ultraviolet detection at 220 nm. A C18 column with a volatile ion-pair agent and methanol mobile phase was used for the separation. The method accuracy was 99–100% from 0.05 to 0.15 mg/mL l-SeMC for the bulk drug, and 98–99% from 0.075 to 0.15 mg/mL l-SeMC for the drug product. Method precision was <1% for the bulk drug and was 3% for the drug product. The LOQ was 0.1 µg/mL l-SeMC or 0.002 µg l-SeMC on column. PMID:26199341
High Temperature Protonic Conductors
NASA Technical Reports Server (NTRS)
Dynys, Fred; Berger, Marie-Helen; Sayir, Ali
2007-01-01
High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.
NASA Astrophysics Data System (ADS)
Pester, N. J.; Seyfried, W. E.
2010-12-01
The chemistry of deep-sea hydrothermal vent fluids, expressed at the seafloor, reflects a complex history of physicochemical reactions. After three decades of field and experimental investigations, the processes of fluid-mineral equilibria that transform seawater into that of a typical “black smoker” are generally well described in the literature. Deep crustal fluids, when encountering a given heat source that ultimately drives hydrothermal circulation, routinely intersect the two-phase boundary. This process results in the nearly ubiquitous observations of variable salinity in vent fluids and is often a secondary driver of circulation via the evolution of a more buoyant (i.e. less saline) phase. Phase separation in chemically complex fluids results in the partitioning of dissolved species between the two evolved phases that deviates from simple charge balance calculations and these effects become more prominent with increasing temperature and/or decreasing pressure along the two-phase envelope. This process of partitioning has not been extensively studied and the interplay between the effects of phase separation and fluid-mineral equilibrium are not well understood. Most basalt-hosted hydrothermal systems appear to enter a steady state mode wherein fluids approach the heat source at depth and rise immediately once the two-phase boundary is met. Thus, venting fluids exhibit only modest deviations from seawater bulk salinity and the effects of partitioning are likely minor for all but the most volatile elements. Time series observations at integrated study sites, however, demonstrate dynamic changes in fluid chemistry following eruptions/magmatic events, including order of magnitude increases in gas concentrations and unexpectedly high Fe/Cl ratios. In this case, the time dependence of vapor-liquid partitioning relative to fluid-mineral equilibrium must be considered when attempting to interpret changes in subsurface reaction conditions. The two-phase region of vent fluids (as modeled by the NaCl-H2O system) represents challenging experimental conditions due to the extreme sensitivity to pressure and temperature. Using a novel flow through system that allows pressure and temperature to be controlled within 0.5 bars and 1°C, respectively, we have derived vapor-liquid partition coefficients for several species, including Fe and Mn. Divalent cations partition more drastically into the liquid phase than monovalent species and the demonstrated temperature sensitivity of equilibrium Fe/Mn ratios in basalt alteration experiments make these two elements excellent candidates when attempting to interpret time series changes in the aftermath of eruptions. Our experiments demonstrate that with decreasing vapor salinity, the Fe/Mn ratio can effectively double, relative to the bulk fluid composition, as the vapors approach the extremely low dissolved Cl concentrations observed at both EPR, 9°N and Main Endeavour, JdFR. Our results suggest that phase separation can easily account for the observed deviation from apparent Fe-Mn equilibrium in these fluids and further suggests that it may take more than a year for these hydrothermal systems to return to steady state.
Hydrogen isotope separation utilizing bulk getters
Knize, R.J.; Cecchi, J.L.
1991-08-20
Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.
Hydrogen isotope separation utilizing bulk getters
Knize, Randall J.; Cecchi, Joseph L.
1991-01-01
Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.
Hydrogen isotope separation utilizing bulk getters
Knize, Randall J.; Cecchi, Joseph L.
1990-01-01
Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.
NASA Astrophysics Data System (ADS)
Paul, Shuvojit; Kumar, Randhir; Banerjee, Ayan
2018-04-01
Two-point microrheology measurements from widely separated colloidal particles approach the bulk viscosity of the host medium more reliably than corresponding single-point measurements. In addition, active microrheology offers the advantage of enhanced signal to noise over passive techniques. Recently, we reported the observation of a motional resonance induced in a probe particle in dual-trap optical tweezers when the control particle was driven externally [Paul et al., Phys. Rev. E 96, 050102(R) (2017), 10.1103/PhysRevE.96.050102]. We now demonstrate that the amplitude and phase characteristics of the motional resonance can be used as a sensitive tool for active two-point microrheology to measure the viscosity of a viscous fluid. Thus, we measure the viscosity of viscous liquids from both the amplitude and phase response of the resonance, and demonstrate that the zero crossing of the phase response of the probe particle with respect to the external drive is superior compared to the amplitude response in measuring viscosity at large particle separations. We compare our viscosity measurements with those using a commercial rheometer and obtain an agreement ˜1 % . The method can be extended to viscoelastic material where the frequency dependence of the resonance may provide further accuracy for active microrheological measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bu, Wei; Yu, Hao; Luo, Guangming
2014-09-11
Selective extraction of metal ions from a complex aqueous mixture into an organic phase is used to separate toxic or radioactive metals from polluted environments and nuclear waste, as well as to produce industrially relevant metals, such as rare earth ions. Selectivity arises from the choice of an extractant amphiphile, dissolved in the organic phase, which interacts preferentially with the target metal ion. The extractant-mediated process of ion transport from an aqueous to an organic phase takes place at the aqueous–organic interface; nevertheless, little is known about the molecular mechanism of this process despite its importance. Although state-of-the-art X-ray scatteringmore » is uniquely capable of probing molecular ordering at a liquid–liquid interface with subnanometer spatial resolution, utilizing this capability to investigate interfacial dynamical processes of short temporal duration remains a challenge. We show that a temperature-driven adsorption transition can be used to turn the extraction on and off by controlling adsorption and desorption of extractants at the oil–water interface. Lowering the temperature through this transition immobilizes a supramolecular ion–extractant complex at the interface during the extraction of rare earth erbium ions. Under the conditions of these experiments, the ion–extractant complexes condense into a two-dimensional inverted bilayer, which is characterized on the molecular scale with synchrotron X-ray reflectivity and fluorescence measurements. Raising the temperature above the transition leads to Er ion extraction as a result of desorption of ion–extractant complexes from the interface into the bulk organic phase. XAFS measurements of the ion–extractant complexes in the bulk organic phase demonstrate that they are similar to the interfacial complexes.« less
Reactions between palladium and gallium arsenide: Bulk versus thin-film studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, J.; Hsieh, K.; Schulz, K.J.
1988-01-01
Reactions between Pd and GaAs have been studied using bulk-diffusion couples of Pd (approx.0.6 mm thick)/GaAs and thin-film Pd (50 and 160 nm)/GaAs samples. The sequence of phase formation at 600 /sup 0/C between bulk Pd and GaAs was established. Initial formation of the solution phase ..mu.. and the ternary phase T does not represent the stable configuration. The stable configuration is GaAs chemically bondepsilonchemically bondlambdachemically bond..gamma..chemically bond..nu..chemically bondPd and is termed the diffusion path between GaAs and Pd. The sequence of phase formation for the bulk-diffusion couples is similar at 500 /sup 0/C. Phase formation for the thin-film Pd/GaAsmore » specimens was studied at 180, 220, 250, 300, 350, 400, 450, 600, and 1000 /sup 0/C for various annealing times. The sequence of phase formation obtained from the thin-film experiments is rationalized readily from the known ternary phase equilibria of Ga--Pd--As and the results from the bulk-diffusion couples of Pd/GaAs. The thin-film results reported in the literature are likewise rationalized. The diffusion path concept provides a useful guide in understanding the phase formation in Pd--GaAs interface or any other M--GaAs interface. This information is important in designing a uniform, stable contact for the metallization of GaAs.« less
Fate of lignin, cutin and suberin in soil organic matter fractions - an incubation experiment
NASA Astrophysics Data System (ADS)
Mueller, Carsten W.; Mueller, Kevin E.; Freeman, Katherine H.; Ingrid, Kögel-Knabner
2010-05-01
The turnover of soil organic matter (SOM) is controlled by its chemical composition, its spatial accessibility and the association with the mineral phase. Separation of bulk soils by physical fractionation and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of this study was to elucidate the relative abundance and recalcitrance of lignin, cutin and suberin in aggregated bulk soils and SOM fractions in the course of SOM decomposition. Bulk soils and physically-separated size fractions (sand, silt and clay) of the Ah horizon of a forest soil (under Picea abies L.Karst) were parallel incubated over a period of one year. In order to differentiate between particulate OM (POM) and mineral-associated SOM the particle size fractions were additionally separated by density after the incubation experiment. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of the respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to biochemical recalcitrance at different scales of resolution (GC-MS, NMR). We found a relative enrichment of alkyl C and decreasing lignin contents in the order of sand < silt < clay by 13C-NMR spectroscopy and GC-MS within soils and fractions before the incubation, resulting in increased lipid to lignin ratios with decreasing particle size. An accumulation of aliphatic C compounds was especially found for the small silt and clay sized particulate OM (POM). For the fresh particulate OM (POM) of the sand fraction a clear decay of lignin was observed in the course of the incubation experiment, indicated by decreasing C/V and increasing ac/alV ratios. A relative decrease of aliphatic C in the incubated fractions compared to the incubated bulk soils showed the preferential mineralization of less recalcitrant C compounds that were spatially inaccessible in aggregates of the bulk soil. Differences in the abundance of lignin monomers, hydroxyl acids, n-alkanols and n-fatty acid methyl esters measured by GC MS before and after the incubation indicated selective degradation and preservation patterns at the molecular scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yiming, E-mail: yangyiming1988@outlook.com
Minor phases make considerable contributions to the mechanical and physical properties of metals and alloys. Unfortunately, it is difficult to identify unknown minor phases in a bulk polycrystalline material using conventional metallographic methods. Here, a non-destructive method based on three-dimensional X-ray diffraction (3DXRD) is developed to solve this problem. Simulation results demonstrate that this method is simultaneously able to identify minor phase grains and reveal their positions, orientations and sizes within bulk alloys. According to systematic simulations, the 3DXRD method is practicable for an extensive sample set, including polycrystalline alloys with hexagonal, orthorhombic and cubic minor phases. Experiments were alsomore » conducted to confirm the simulation results. The results for a bulk sample of aluminum alloy AA6061 show that the crystal grains of an unexpected γ-Fe (austenite) phase can be identified, three-dimensionally and nondestructively. Therefore, we conclude that the 3DXRD method is a powerful tool for the identification of unknown minor phases in bulk alloys belonging to a variety of crystal systems. This method also has the potential to be used for in situ observations of the effects of minor phases on the crystallographic behaviors of alloys. - Highlights: •A method based on 3DXRD is developed for identification of unknown minor phase. •Grain position, orientation and size, is simultaneously acquired. •A systematic simulation demonstrated the applicability of the proposed method. •Experimental results on a AA6061 sample confirmed the practicability of the method.« less
How Correlated is the FeSe /SrTiO3 System?
NASA Astrophysics Data System (ADS)
Mandal, Subhasish; Zhang, Peng; Ismail-Beigi, Sohrab; Haule, K.
2017-08-01
Recent observation of ˜10 times higher critical temperature in a FeSe monolayer compared with its bulk phase has drawn a great deal of attention because the electronic structure in the monolayer phase appears to be different than bulk FeSe. Using a combination of density functional theory and dynamical mean field theory, we find electronic correlations have important effects on the predicted atomic-scale geometry and the electronic structure of the monolayer FeSe on SrTiO3 . The electronic correlations are dominantly controlled by the Se-Fe-Se angle either in the bulk phase or the monolayer phase. But the angle sensitivity increases and the orbital differentiation decreases in the monolayer phase compared to the bulk phase. The correlations are more dependent on Hund's J than Hubbard U . The observed orbital selective incoherence to coherence crossover with temperature confirms the Hund's metallic nature of the monolayer FeSe. We also find electron doping by oxygen vacancies in SrTiO3 increases the correlation strength, especially in the dx y orbital by reducing the Se-Fe-Se angle.
Surface to bulk Fermi arcs via Weyl nodes as topological defects
Kim, Kun Woo; Lee, Woo-Ram; Kim, Yong Baek; Park, Kwon
2016-01-01
A hallmark of Weyl semimetal is the existence of surface Fermi arcs. An intriguing question is what determines the connectivity of surface Fermi arcs, when multiple pairs of Weyl nodes are present. To answer this question, we show that the locations of surface Fermi arcs are predominantly determined by the condition that the Zak phase integrated along the normal-to-surface direction is . The Zak phase can reveal the peculiar topological structure of Weyl semimetal directly in the bulk. Here, we show that the winding of the Zak phase around each projected Weyl node manifests itself as a topological defect of the Wannier–Stark ladder, energy eigenstates under an electric field. Remarkably, this leads to bulk Fermi arcs, open-line segments in the bulk spectra. Bulk Fermi arcs should exist in conjunction with surface counterparts to conserve the Weyl fermion number under an electric field, which is supported by explicit numerical evidence. PMID:27845342
Organic Separation Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.
2014-09-22
Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less
Glassy dielectric response in Tb2NiMnO6 double perovskite with similarities to a Griffiths phase
NASA Astrophysics Data System (ADS)
Nhalil, Hariharan; Nair, Harikrishnan S.; Bhat, H. L.; Elizabeth, Suja
2013-12-01
Results of frequency-dependent and temperature-dependent dielectric measurements performed on the double-perovskite Tb2NiMnO6 are presented. The real (\\epsilon_1 (f,T)) and imaginary (\\epsilon_2 (f,T)) parts of dielectric permittivity show three plateaus suggesting dielectric relaxation originating from the bulk, grain boundaries and the sample-electrode interfaces, respectively. The \\epsilon_1 (f,T) and \\epsilon_2 (f,T) are successfully simulated by a RC circuit model. The complex plane of impedance, Z'\\text{-}Z'' , is simulated using a series network with a resistor R and a constant phase element. Through the analysis of \\epsilon (f,T) using the modified Debye model, two different relaxation time regimes separated by a characteristic temperature, T^* , are identified. The temperature variation of R and C corresponding to the bulk and the parameter α from modified Debye fit lend support to this hypothesis. Interestingly, the T^* compares with the Griffiths temperature for this compound observed in magnetic measurements. Though these results cannot be interpreted as magnetoelectric coupling, the relationship between lattice and magnetism is markedly clear. We assume that the observed features have their origin in the polar nanoregions which originate from the inherent cationic defect structure of double perovskites.
The upper critical field of filamentary Nb3Sn conductors
NASA Astrophysics Data System (ADS)
Godeke, A.; Jewell, M. C.; Fischer, C. M.; Squitieri, A. A.; Lee, P. J.; Larbalestier, D. C.
2005-05-01
We have examined the upper critical field of a large and representative set of present multifilamentary Nb3Sn wires and one bulk sample over a temperature range from 1.4 K up to the zero-field critical temperature. Since all present wires use a solid-state diffusion reaction to form the A15 layers, inhomogeneities with respect to Sn content are inevitable, in contrast to some previously studied homogeneous samples. Our study emphasizes the effects that these inevitable inhomogeneities have on the field-temperature phase boundary. The property inhomogeneities are extracted from field-dependent resistive transitions which we find broaden with increasing inhomogeneity. The upper 90%-99% of the transitions clearly separates alloyed and binary wires but a pure, Cu-free binary bulk sample also exhibits a zero-temperature critical field that is comparable to the ternary wires. The highest μ0Hc2 detected in the ternary wires are remarkably constant: The highest zero-temperature upper critical fields and zero-field critical temperatures fall within 29.5±0.3 and 17.8±0.3K, respectively, independent of the wire layout. The complete field-temperature phase boundary can be described very well with the relatively simple Maki-DeGennes model using a two-parameter fit, independent of composition, strain state, sample layout, or applied critical state criterion.
Microstructural and bulk property changes in hardened cement paste during the first drying process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, Ippei, E-mail: ippei@dali.nuac.nagoya-u.ac.jp; Nishioka, Yukiko; Igarashi, Go
2014-04-01
This paper reports the microstructural changes and resultant bulk physical property changes in hardened cement paste (hcp) during the first desorption process. The microstructural changes and solid-phase changes were evaluated by water vapor sorption, nitrogen sorption, ultrasonic velocity, and {sup 29}Si and {sup 27}Al nuclear magnetic resonance. Strength, Young's modulus, and drying shrinkage were also examined. The first drying process increased the volume of macropores and decreased the volume of mesopores and interlayer spaces. Furthermore, in the first drying process globule clusters were interconnected. During the first desorption, the strength increased for samples cured at 100% to 90% RH, decreasedmore » for 90% to 40% RH, and increased again for 40% to 11% RH. This behavior is explained by both microstructural changes in hcp and C–S–H globule densification. The drying shrinkage strains during rapid drying and slow drying were compared and the effects of the microstructural changes and evaporation were separated.« less
Evidence of long-term seasonal climate forcing in rhizolith isotopes during the last glaciation
Wang, Hongfang; Ambrose, S.H.; Fouke, B.W.
2004-01-01
High density carbonate rhizoliths were found from a loess-paleosol succession from the late Wisconsin period (21-11 ka) in Illinois. Their morphology shows that they formed in a close contact with living and decomposing roots, suggesting a root/microbial respiration origin. Carbon (??13C) and oxygen (??18O) isotopic analyses were performed on 36 and 37 individual rhizoliths of two separate 10 cm intervals and 98 bulk rhizoliths of all 10 cm intervals. The results of the individual rhizolith ??13C and ??18O analyses suggest that the carbon source was largely derived from respiring C3, C4 and microbial biomass, and that meteoric water was controlled mainly by warm-season precipitation. The results of bulk rhizolith ??13C and ??18O analyses show that warm-season proxies varied in phase with glacial fluctuations at submillennial scales, suggesting long-term seasonal forcing may have played an important role on climate change during the late Wisconsin glaciation in North America. Copyright 2004 by the American Geophysical Union.
Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions
NASA Astrophysics Data System (ADS)
Nam, Minwoo; Cha, Minjeong; Lee, Hyun Hwi; Hur, Kahyun; Lee, Kyu-Tae; Yoo, Jaehong; Han, Il Ki; Kwon, S. Joon; Ko, Doo-Hyun
2017-01-01
A major impediment to the commercialization of organic photovoltaics (OPVs) is attaining long-term morphological stability of the bulk heterojunction (BHJ) layer. To secure the stability while pursuing optimized performance, multi-component BHJ-based OPVs have been strategically explored. Here we demonstrate the use of quaternary BHJs (q-BHJs) composed of two conjugated polymer donors and two fullerene acceptors as a novel platform to produce high-efficiency and long-term durable OPVs. A q-BHJ OPV (q-OPV) with an experimentally optimized composition exhibits an enhanced efficiency and extended operational lifetime than does the binary reference OPV. The q-OPV would retain more than 72% of its initial efficiency (for example, 8.42-6.06%) after a 1-year operation at an elevated temperature of 65 °C. This is superior to those of the state-of-the-art BHJ-based OPVs. We attribute the enhanced stability to the significant suppression of domain growth and phase separation between the components via kinetic trapping effect.
Alhazmi, Hassan A.; Alnami, Ahmed M.; Arishi, Mohammed A. A.; Alameer, Raad K.; Al Bratty, Mohammed; Rehman, Zia ur; Javed, Sadique A.; Arbab, Ismail A.
2017-01-01
The aim of this study was to develop and validate a fast and simple reversed-phase HPLC method for simultaneous determination of four cardiovascular agents—atorvastatin, simvastatin, telmisartan and irbesartan in bulk drugs and tablet oral dosage forms. The chromatographic separation was accomplished by using Symmetry C18 column (75 mm × 4.6 mm; 3.5 μ) with a mobile phase consisting of ammonium acetate buffer (10 mM; pH 4.0) and acetonitrile in a ratio 40:60 v/v. Flow rate was maintained at 1 mL/min up to 3.5 min, and then suddenly changed to 2 mL/min till the end of the run (7.5 min). The data was acquired using ultraviolet detector monitored at 220 nm. The method was validated for linearity, precision, accuracy and specificity. The developed method has shown excellent linearity (R2 > 0.999) over the concentration range of 1–16 µg/mL. The limits of detection (LODs) and limits of quantification (LOQs) were in the range of 0.189–0.190 and 0.603–0.630 µg/mL, respectively. Inter-day and intra-day accuracy and precision data were recorded in the acceptable limits. The new method has successfully been applied for quantification of all four drugs in their tablet dosage forms with percent recovery within 100 ± 2%. PMID:29257120
Ricci, A; Jullien, A; Forget, N; Crozatier, V; Tournois, P; Lopez-Martens, R
2012-04-01
We demonstrate compression of amplified carrier-envelope phase (CEP)-stable laser pulses using paired transmission gratings and high-index prisms, or grisms, with chromatic dispersion matching that of a bulk material pulse stretcher. Grisms enable the use of larger bulk stretching factors and thereby higher energy pulses with lower B-integral in a compact amplifier design suitable for long-term CEP control.
NASA Astrophysics Data System (ADS)
Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Zhang, Kai-Wen; Li, Xiang-Bing; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Lu, Ming-Hui; Li, Shao-Chun; Chen, Yan-Feng
2018-03-01
The study of ZrT e5 crystals is revived because of the recent theoretical prediction of topological phase in bulk ZrT e5 . However, the current conclusions for the topological character of bulk ZrT e5 are quite contradictory. To resolve this puzzle, we here identify the Berry phase on both b - and c planes of high-quality ZrT e5 crystals by the Shubnikov-de-Hass (SdH) oscillation under tilted magnetic field at 2 K. The angle-dependent SdH oscillation frequency, both on b - and c planes of ZrT e5 , demonstrates the two-dimensional feature. However, phase analysis of SdH verifies that a nontrivial π-Berry phase is observed in the c -plane SdH oscillation, but not in the b -plane one. Compared to bulk Fermi surface predicted by the first-principle calculation, the two-dimensional-like behavior of SdH oscillation measured at b plane comes from the bulk electron. Based on these analyses, it is suggested that bulk ZrT e5 at low temperature (˜2 K) belongs to a weak topological insulator, rather than Dirac semimetal or strong topological insulator as reported previously.
A phase-field method to analyze the dynamics of immiscible fluids in porous media
NASA Astrophysics Data System (ADS)
de Paoli, Marco; Roccon, Alessio; Zonta, Francesco; Soldati, Alfredo
2017-11-01
Liquid carbon dioxide (CO2) injected into geological formations (filled with brine) is not completely soluble in the surrounding fluid. For this reason, complex transport phenomena may occur across the interface that separates the two phases (CO2+brine and brine). Inspired by this geophysical instance, we used a Phase-Field Method (PFM) to describe the dynamics of two immiscible fluids in satured porous media. The basic idea of the PFM is to introduce an order parameter (ϕ) that varies continuously across the interfacial layer between the phases and is uniform in the bulk. The equation that describes the distribution of ϕ is the Cahn-Hilliard (CH) equation, which is coupled with the Darcy equation (to evaluate fluid velocity) through the buoyancy and Korteweg stress terms. The governing equations are solved through a pseudo-spectral technique (Fourier-Chebyshev). Our results show that the value of the surface tension between the two phases strongly influences the initial and the long term dynamics of the system. We believe that the proposed numerical approach, which grants an accurate evaluation of the interfacial fluxes of momentum/energy/species, is attractive to describe the transfer mechanism and the overall dynamics of immiscible and partially miscible phases.
Emerging single-phase state in small manganite nanodisks
Shao, Jian; Liu, Hao; Zhang, Kai; ...
2016-08-01
In complex oxides systems such as manganites, electronic phase separation (EPS), a consequence of strong electronic correlations, dictates the exotic electrical and magnetic properties of these materials. A fundamental yet unresolved issue is how EPS responds to spatial confinement; will EPS just scale with size of an object, or will the one of the phases be pinned? Understanding this behavior is critical for future oxides electronics and spintronics because scaling down of the system is unavoidable for these applications. In this work, we use La 0.325Pr 0.3Ca 0.375MnO 3 (LPCMO) single crystalline disks to study the effect of spatial confinementmore » on EPS. The EPS state featuring coexistence of ferromagnetic metallic and charge order insulating phases appears to be the low-temperature ground state in bulk, thin films, and large disks, a previously unidentified ground state (i.e., a single ferromagnetic phase state emerges in smaller disks). The critical size is between 500 nm and 800 nm, which is similar to the characteristic length scale of EPS in the LPCMO system. The ability to create a pure ferromagnetic phase in manganite nanodisks is highly desirable for spintronic applications.« less
Fukui, Satoshi; Shoji, Yoshihiro; Ogawa, Jun; Oka, Tetsuo; Yamaguchi, Mitsugi; Sato, Takao; Ooizumi, Manabu; Imaizumi, Hiroshi; Ohara, Takeshi
2009-02-01
We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.
Electrochemical Induced Calcium Phosphate Precipitation: Importance of Local pH
2017-01-01
Phosphorus (P) is an essential nutrient for living organisms and cannot be replaced or substituted. In this paper, we present a simple yet efficient membrane free electrochemical system for P removal and recovery as calcium phosphate (CaP). This method relies on in situ formation of hydroxide ions by electro mediated water reduction at a titanium cathode surface. The in situ raised pH at the cathode provides a local environment where CaP will become highly supersaturated. Therefore, homogeneous and heterogeneous nucleation of CaP occurs near and at the cathode surface. Because of the local high pH, the P removal behavior is not sensitive to bulk solution pH and therefore, efficient P removal was observed in three studied bulk solutions with pH of 4.0 (56.1%), 8.2 (57.4%), and 10.0 (48.4%) after 24 h of reaction time. While P removal efficiencies are not generally affected by bulk solution pH, the chemical-physical properties of CaP solids collected on the cathode are still related to bulk solution pH, as confirmed by structure characterizations. High initial solution pH promotes the formation of more crystalline products with relatively high Ca/P molar ratio. The Ca/P molar ratio increases from 1.30 (pH 4.0) to 1.38 (pH 8.2) and further increases to 1.55 (pH 10.0). The formation of CaP precipitates was a typical crystallization process, with an amorphous phase formed at the initial stage which then transforms to the most stable crystal phase, hydroxyapatite, which is inferred from the increased Ca/P molar ratio from 1.38 (day 1) to the theoretical 1.76 (day 11) and by the formation of needle-like crystals. Finally, we demonstrated the efficiency of this system for real wastewater. This, together with the fact that the electrochemical method can work at low bulk pH, without dosing chemicals and a need for a separation process, highlights the potential application of the electrochemical method for P removal and recovery. PMID:28872838
7 CFR 58.211 - Packaging room for bulk products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging room for bulk products. 58.211 Section 58... Service 1 Rooms and Compartments § 58.211 Packaging room for bulk products. A separate room or area shall... dust within the packaging room and where needed, a dust collector shall be provided and properly...
A Langevin approach to multi-scale modeling
Hirvijoki, Eero
2018-04-13
In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this paper, we propose a multi-scale method which allowsmore » us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. Finally, this allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.« less
A Langevin approach to multi-scale modeling
NASA Astrophysics Data System (ADS)
Hirvijoki, Eero
2018-04-01
In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this letter, we propose a multi-scale method which allows us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. This allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.
A Langevin approach to multi-scale modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirvijoki, Eero
In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this paper, we propose a multi-scale method which allowsmore » us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. Finally, this allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.« less
Quantitative analysis of thoria phase in Th-U alloys using diffraction studies
NASA Astrophysics Data System (ADS)
Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.
2017-05-01
In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.
Flow-enhanced solution printing of all-polymer solar cells
Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; ...
2015-08-12
Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhancedmore » all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.« less
Flow-enhanced solution printing of all-polymer solar cells
Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan
2015-01-01
Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility. PMID:26264528
Measurements in discrete hole film cooling behavior with periodic freestream unsteadiness
NASA Astrophysics Data System (ADS)
Fan, Danyang; Borup, Daniel D.; Elkins, Christopher J.; Eaton, John K.
2018-03-01
Magnetic resonance imaging (MRI) techniques were used to investigate a discrete, 30°-inclined round jet in crossflow subjected to periodic freestream unsteadiness. The freestream perturbations were generated by an oscillating airfoil upstream of the jet. The experiment operated at a Strouhal number of 0.014, channel Reynolds number of 25,000, hole Reynolds number of 2900, and jet blowing ratio of unity. 3D phase locked velocity measurements were obtained over the entire channel using magnetic resonance velocimetry (MRV). 3D time-averaged temperature measurements were acquired using magnetic resonance thermometry (MRT), along with phase-locked temperature measurements in the 2D centerplane of the channel and jet. The freestream flow just upstream of the jet was characterized by streamwise velocities ranging from 0.88 U_ {bulk} to 1.23 U_ {bulk} and wall-normal velocities from -0.11 U_ {bulk} to 0.02 U_ {bulk}. Flow inside the hole was observed to be insensitive to the freestream fluctuations, as velocities and temperatures in the hole remained largely unchanged throughout the cycle. Outside the hole, changes to the streamwise velocity produced an oscillating jet blowing ratio that led to the lengthening and shortening of the counter-rotating vortex pair (CVP) as well as a varying degree of coolant separation from the film cooled wall. During one portion of the cycle, downwashing freestream flow (i.e., flow with negative wall-normal velocities) promoted strong re-attachment and lateral spreading of the jet. Mean, spanwise-averaged film cooling effectiveness values were compared to those of an earlier experiment with a steady freestream and identical geometry, Reynolds number, and blowing ratio. Film cooling performance in the near-hole region was higher with steady freestream flow. However, at downstream locations, the downward transport of coolant by the periodic downwashing flow led to a higher mean surface effectiveness than in the steady case.
Mahaboob Basha, D; Venkata Reddy, G; Gopi Krishna, Y; Kumara Swamy, B E; Vijay, Rajani
2018-04-19
The first approach of this research paper explores the simultaneous characterization and determination of theAsulam active ingredient and its associated nine impurities in bulk batch production by the gradient reverse-phase high-performance liquid chromatographic (RP-HPLC) method. The best separation from its potential impurities and reproducible method was achieved by selecting the Cosmosil C-18 (250 × 4.6 mm, 5 μm particle size) analytical column with a run time of 40 min. The pumping chromatographic mobile phase was composed of 0.1% formic acid in milli-Q water (pH ~2.72) and methanol (80 + 20, v/v). An ambient column-oven temperature and UV detection at 260 nm were used. For this broad resolution, a gradient program was employed at a flow rate of 1.20 mL/min. All potential related substances in Asulam bulk manufacturing were ascertained by mass, proton nuclear magnetic resonance, and infrared spectroscopy. The developed HPLC method was validated with respect to linearity (25.64-151.83 mg/L for Asulam and 0.71-16.29, 1.02-12.26, 1.01-20.29, 0.60-10.01, 1.04-16.65, 0.94-22.47, 0.93-16.60, 1.00-12.45, 1.00-12.45, and 0.71-12.17 mg/L for Impurities A to I with a correlation coefficient 0.999 for Asulam and all the impurities), precision (RSD, % for active analyte Asulam and impurities were ˂2%), accuracy (percent recovery for Asulam at two levels ranged from 99.28 to 99.35%, and for Impurities A to I, it was 93.44 to 101.41%), and specificity. Hence, this simple and reliable HPLC method was able to determine the purity of Asulam active analyte and the level of impurities in bulk batch synthesis. By using this quantified procedure, five self-made production batches were analyzed simultaneously.
NASA Astrophysics Data System (ADS)
Triebel, W.; Mühlig, C.; Kufert, S.
2005-10-01
Precise absorption measurements of bulk materials and coatings upon pulsed ArF laser irradiation are presented using a compact experimental setup based on the laser induced deflection technique (LID). For absorption measurements of bulk materials the influence of pure bulk and pure surface absorption on the temperature and refractive index profile and thus for the probe beam deflection is analyzed in detail. The separation of bulk and surface absorption via the commonly used variation of the sample thickness is carried out for fused silica and calcium fluoride. The experimental results show that for the given surface polishing quality the bulk absorption coefficient of fused silica can be obtained by investigating only one sample. To avoid the drawback of different bulk and surface properties amongst a thickness series, we propose a strategy based on the LID technique to generally obtain surface and bulk absorption separately by investigating only one sample. Apart from measuring bulk absorption coefficients the LID technique is applied to determine the absorption of highly reflecting (HR) coatings on CaF2 substrates. Beside the measuring strategy the experimental results of a AlF3/LaF3 based HR coating are presented. In order to investigate a larger variety of coatings, including high transmitting coatings, a general measuring strategy based on the LID technique is proposed.
NASA Astrophysics Data System (ADS)
Busselez, Rémi; Cerclier, Carole V.; Ndao, Makha; Ghoufi, Aziz; Lefort, Ronan; Morineau, Denis
2014-10-01
A prototypical Gay Berne discotic liquid crystal was studied by means of molecular dynamics simulations both in the bulk state and under confinement in a nanoporous channel. The phase behavior of the confined system strongly differs from its bulk counterpart: the bulk isotropic-to-columnar transition is replaced by a continuous ordering from a paranematic to a columnar phase. Moreover, a new transition is observed at a lower temperature in the confined state, which corresponds to a reorganization of the intercolumnar order. It reflects the competing effects of pore surface interaction and genuine hexagonal packing of the columns. The translational molecular dynamics in the different phases has been thoroughly studied and discussed in terms of collective relaxation modes, non-Gaussian behavior, and hopping processes.
Isolation and identification of three potential impurities of pholcodine bulk drug substance.
Denk, O M; Gray, A I; Skellern, G G; Watson, D G
2000-07-01
Three previously unreported manufacturing impurities were isolated from a pholcodine mother liquor using preparative reversed-phase HPLC. The liquor was the residue remaining after recrystallisation of a production batch of pholcodine. The impurities, which are structurally related to pholcodine, were initially detected by thin-layer chromatography (TLC). Their structures were determined after separation by preparative HPLC (Econo-Prep 5 microm C18 column, 30 cm x 21.2 mm i.d.). Structure elucidation was carried out using nuclear magnetic resonance (NMR) spectroscopy, mass spectroscopy (MS) and ultra violet (UV) spectroscopy. The impurities were identified as alkylated derivatives of pholcodine possessing second 2-morpholinoethyl substituents at various positions.
Rheology of interfacial protein-polysaccharide composites
NASA Astrophysics Data System (ADS)
Fischer, P.
2013-05-01
The morphology and mechanical properties of protein adsorption layers can significantly be altered by the presence of surfactants, lipids, particles, other proteins, and polysaccharides. In food emulsions, polysaccharides are primarily considered as bulk thickener but can under appropriate environmental conditions stabilize or destabilize the protein adsorption layer and, thus, the entire emulsion system. Despite their ubiquitous usage as stabilization agent, relatively few investigations focus on the interfacial rheology of composite protein/polysaccharide adsorption layers. The manuscript provides a brief review on both main stabilization mechanisms, thermodynamic phase separation and electrostatic interaction and discusses the rheological response in light of the environmental conditions such as ionic strength and pH.
Beyer, W F
1976-12-01
A high-pressure liquid chromatographic assay was developed for the determination of chlorphenesin carbamate and its beta-isomeric carbamate. A single 4-mm i.d. X 30-cm column, prepacked with 10 micrometer fully porous silica gel particles, is used with 3% methanol in 50% water-saturated butyl chloride as the mobile phase. The procedure separates chlorphenesin carbamate from several possible impurities in addition to the beta-isomeric carbamate. The assay was applied to bulk drug and compressed tablets. The relative standard deviations for the assays of chlorphenesin carbamate and the beta-isomer are approximately 1 and 2%, respectively.
Dielectric and impedance properties of NiFe1.95R0.05O4 (R = Y, Yb and Lu)
NASA Astrophysics Data System (ADS)
Ugendar, Kodam; Kumar, Hanuma; Markaneyulu, G.; Rani, G. Neeraja
2018-04-01
The dielectric and impedance spectroscopic properties of NiFe1.95R0.05O4 (R = Y, Yb and Lu) were investigated. The materials were prepared by solid state reaction and crystallized in the cubic inverse spinel phase with a very small amount additional phase of RFeO3 (R = Y, Yb and Lu) as secondary phase. The scanning electron micrograph images clearly show grains (˜2μm) which are separated by thin grain boundaries. The presences of all elements were confirmed by the energy dispersive X-ray elemental mapping. The frequency variation of ɛ' shows the dispersion, following the Koop's phenomenological theory, which considers the dielectric structure as an inhomogeneous medium of two-layers of the Maxwell-Wagner type. Impedance spectroscopic analysis indicates the different relaxation mechanisms, which corresponds to bulk grain and grain-boundaries. Their contributions to the electrical conductivity and capacitance of these materials were discussed in detailed.
Andreev rectifier: A nonlocal conductance signature of topological phase transitions
NASA Astrophysics Data System (ADS)
Rosdahl, T. Ö.; Vuik, A.; Kjaergaard, M.; Akhmerov, A. R.
2018-01-01
The proximity effect in hybrid superconductor-semiconductor structures, crucial for realizing Majorana edge modes, is complicated to control due to its dependence on many unknown microscopic parameters. In addition, defects can spoil the induced superconductivity locally in the proximitized system, which complicates measuring global properties with a local probe. We show how to use the nonlocal conductance between two spatially separated leads to probe three global properties of a proximitized system: the bulk superconducting gap, the induced gap, and the induced coherence length. Unlike local conductance spectroscopy, nonlocal conductance measurements distinguish between nontopological zero-energy modes localized around potential inhomogeneities, and true Majorana edge modes that emerge in the topological phase. In addition, we find that the nonlocal conductance is an odd function of bias at the topological phase transition, acting as a current rectifier in the low-bias limit. More generally, we identify conditions for crossed Andreev reflection to dominate the nonlocal conductance and show how to design a Cooper pair splitter in the open regime.
Containerless, Low-Gravity Undercooling of Ti-Ce Alloys in the MSFC Drop Tube
NASA Technical Reports Server (NTRS)
Robinson, M. B.; Rathz, T. J.; Li, D.; Williams, G.; Workman, G.
1999-01-01
Previous tests of the classical nucleation theory as applied to liquid-liquid gap miscibility systems found a discrepancy between experiment and theory in the ability to undercool one of the liquids before the L1-L2 separation occurs. To model the initial separation process in a two-phase liquid mixture, different theoretical approaches, such as free-energy gradient and density gradient theories, have been put forth. If there is a large enough interaction between the critical liquid and the crucible, both models predict a wetting temperature (T(sub w)) above which the minority liquid perfectly wets and layers the crucible interface, but only on one side of the immiscibility dome. Materials with compositions on the other side of the dome will have simple surface adsorption by the minority liquid before bulk separation occurs when the coexistence (i.e., binoidal) line in reached. If the interaction between the critical liquid and the crucible were to decrease, T(sub w) would increase, eventually approaching the critical consolute temperature (T(sub cc)). If this situation occurs, then there could be large regions of the miscibility gap where non-perfect wetting conditions prevail resulting in droplets of L1 liquid at the surface having a non-zero contact angle. The resulting bulk structure will then depend on what happens on the surface and the subsequent processing conditions. In the past several decades, many experiments in space have been performed on liquid metal binary immiscible systems for the purpose of determining the effects that different crucibles may have on the wetting and separation process of the liquids. Potard performed experiments that showed different crucible materials could cause the majority phase to preferentially wet the container and thus produce a dispersed microstructure of the minority phase. Several other studies have been performed on immiscibles in a semi-container environment using an emulsion technique. Only one previous study was performed using completely containerless processing of immiscible metals and the results of that investigation are similar to some of the emulsion studies. In all the studies, surface wetting was attributed as the cause for the similar microstructures or the asymmetry in the ability to undercool the liquid below the binoidal on one side of the immiscibility dome. By removing the container completely from the separation process, it was proposed that the loss of the crucible/liquid interaction would produce a large shift in T(sub w) and thus change the wetting characteristics at the surface. By investigating various compositions across the miscibility gap, a change in the type and amount of liquid wetting at the surface of a containerless droplet should change the surface nucleating behavior of the droplet - whether it be the liquid-liquid wetting or the liquid-to-solid transition. Undercooling of the liquid into the metastable region should produce significant differences in the separation process and the microstructure upon solidification. In this study, we attempt to measure these transitions by monitoring the temperature of the sample by optical pyrometry. Microstructural analysis will be made to correlate with the degree of undercooling and the separation mechanisms involved.
Kahsay, Getu; Shraim, Fairouz; Villatte, Philippe; Rotger, Jacques; Cassus-Coussère, Céline; Van Schepdael, Ann; Hoogmartens, Jos; Adams, Erwin
2013-03-05
A simple, robust and fast high-performance liquid chromatographic method is described for the analysis of oxytetracycline and its related impurities. The principal peak and impurities are all baseline separated in 20 min using an Inertsil C₈ (150 mm × 4.6 mm, 5 μm) column kept at 50 °C. The mobile phase consists of a gradient mixture of mobile phases A (0.05% trifluoroacetic acid in water) and B (acetonitrile-methanol-tetrahydrofuran, 80:15:5, v/v/v) pumped at a flow rate of 1.3 ml/min. UV detection was performed at 254 nm. The developed method was validated for its robustness, sensitivity, precision and linearity in the range from limit of quantification (LOQ) to 120%. The limits of detection (LOD) and LOQ were found to be 0.08 μg/ml and 0.32 μg/ml, respectively. This method allows the separation of oxytetracycline from all known and 5 unknown impurities, which is better than previously reported in the literature. Moreover, the simple mobile phase composition devoid of non-volatile buffers made the method suitable to interface with mass spectrometry for further characterization of unknown impurities. The developed method has been applied for determination of related substances in oxytetracycline bulk samples available from four manufacturers. The validation results demonstrate that the method is reliable for quantification of oxytetracycline and its impurities. Copyright © 2012 Elsevier B.V. All rights reserved.
A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion.
Luo, Xiaofan; Ou, Runqing; Eberly, Daniel E; Singhal, Amit; Viratyaporn, Wantinee; Mather, Patrick T
2009-03-01
In this paper, we report on the development of a new and broadly applicable strategy to produce thermally mendable polymeric materials, demonstrated with an epoxy/poly(-caprolactone) (PCL) phase-separated blend. The initially miscible blend composed of 15.5 wt % PCL undergoes polymerization-induced phase separation during cross-linking of the epoxy, yielding a "bricks and mortar" morphology wherein the epoxy phase exists as interconnected spheres (bricks) interpenetrated with a percolating PCL matrix (mortar). The fully cured material is stiff, strong, and durable. A heating-induced "bleeding" behavior was witnessed in the form of spontaneous wetting of all free surfaces by the molten PCL phase, and this bleeding is capable of repairing damage by crack-wicking and subsequent recrystallization with only minor concomitant softening during that process. The observed bleeding is attributed to volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). In controlled thermal-mending experiments, heating of a cracked specimen led to PCL extrusion from the bulk to yield a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals formed at the site of the crack, restoring a significant portion of the mechanical strength. When a moderate force was applied to assist crack closure, thermal-mending efficiencies exceeded 100%. We further observed that the DEB phenomenon enables strong and facile adhesion of the same material to itself and to a variety of materials, without any requirement for macroscopic softening or flow.
Control of magnetic, nonmagnetic, and superconducting states in annealed Ca(Fe 1–xCo x)₂As₂
Ran, S.; Bud'ko, S. L.; Straszheim, W. E.; ...
2012-06-22
We have grown single-crystal samples of Co substituted CaFe₂As₂ using an FeAs flux and systematically studied the effects of annealing/quenching temperature on the physical properties of these samples. Whereas the as-grown samples (quenched from 960°C) all enter the collapsed tetragonal phase upon cooling, annealing/quenching temperatures between 350 and 800°C can be used to tune the system to low-temperature antiferromagnetic/orthorhomic or superconducting states as well. The progression of the transition temperature versus annealing/quenching temperature (T-T anneal) phase diagrams with increasing Co concentration shows that, by substituting Co, the antiferromagnetic/orthorhombic and the collapsed tetragonal phase lines are separated and bulk superconductivity ismore » revealed. We established a 3D phase diagram with Co concentration and annealing/quenching temperature as two independent control parameters. At ambient pressure, for modest x and T anneal values, the Ca(Fe₁₋ xCox)₂As₂ system offers ready access to the salient low-temperature states associated with Fe-based superconductors: antiferromagnetic/orthorhombic, superconducting, and nonmagnetic/collapsed tetragonal.« less
Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation
He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay
2016-01-01
At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922
Misichronis, Konstantinos; Chen, Jihua; Imel, Adam; ...
2017-03-15
A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined in this paper by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (T ODT), for the first time formore » PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χ eff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. Finally, these copolymers exhibit well-ordered structures even at high temperatures (~260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.« less
Instability in bacterial populations and the curvature tensor
NASA Astrophysics Data System (ADS)
Melgarejo, Augusto; Langoni, Laura; Ruscitti, Claudia
2016-09-01
In the geometry associated with equilibrium thermodynamics the scalar curvature Rs is a measure of the volume of correlation, and therefore the singularities of Rs indicates the system instabilities. We explore the use of a similar approach to study instabilities in non-equilibrium systems and we choose as a test example, a colony of bacteria. In this regard we follow the proposal made by Obata et al. of using the curvature tensor for studying system instabilities. Bacterial colonies are often found in nature in concentrated biofilms, or other colony types, which can grow into spectacular patterns visible under the microscope. For instance, it is known that a decrease of bacterial motility with density can promote separation into bulk phases of two coexisting densities; this is opposed to the logistic law for birth and death that allows only a single uniform density to be stable. Although this homogeneous configuration is stable in the absence of bacterial interactions, without logistic growth, a density-dependent swim speed v(ρ) leads to phase separation via a spinodal instability. Thus we relate the singularities in the curvature tensor R to the spinodal instability, that is the appearance of regions of different densities of bacteria.
Stress development in thin yttrium films on hard substrates during hydrogen loading
NASA Astrophysics Data System (ADS)
Dornheim, M.; Pundt, A.; Kirchheim, R.; Molen, S. J. v. d.; Kooij, E. S.; Kerssemakers, J.; Griessen, R.; Harms, H.; Geyer, U.
2003-06-01
Polycrystalline (0002)-textured yttrium (Y) films of 50-500 nm thickness on sapphire substrates were loaded electrolytically with hydrogen (H). The stresses which build up in these films were measured in situ using curvature measurements. The results are compared to the behavior of bulk Y-H. A linear elastic model is used to predict the behavior of clamped thin films. Basic properties of the bulk Y-H phase diagram and elastic constants resemble the measured values of the thin films. Compressive stress builds up during H-loading in the α-Y phase and in the (α-Y+β-YH2) two-phase field, showing an initial stress increase of -1.3 GPa per hydrogen concentration XH (compressive stress). While bulk Y-H samples are known to show a contraction in the β-YH2 phase during H loading, thin films show no evidence for such a contraction during the first loading cycle of the film. The stress remains constant in the bulk β-phase concentration range (ΔXH=0.1 H/Y). This is attributed to the narrow β-phase field (ΔXH=0.02 H/Y) of the thin film during the first loading. Only samples which have been kept at a hydrogen concentration of about 1.5 H/Y for weeks show tensile stress in the concentration range of the bulk β phase. Amazingly a stress increase of about +0.5 GPa/XH (tensile stress) is measured in the β+γ two-phase field. This is attributed to the smaller in-plane nearest-neighbor distance in the γ phase compared to the β phase. In the γ-phase field compressive stress is built up again, compensating the tensile stress. It increases by -1.3 GPa/XH. In total, the net stress in Y-H films remains comparably small. This could be a reason for the good mechanical stability of such Y-H switchable mirrors during H cycling.
OPTIMIZING MODEL PERFORMANCE: VARIABLE SIZE RESOLUTION IN CLOUD CHEMISTRY MODELING. (R826371C005)
Under many conditions size-resolved aqueous-phase chemistry models predict higher sulfate production rates than comparable bulk aqueous-phase models. However, there are special circumstances under which bulk and size-resolved models offer similar predictions. These special con...
Watanabe, Satoshi; Ohta, Takahisa; Urata, Ryota; Sato, Tetsuya; Takaishi, Kazuto; Uchiyama, Masanobu; Aoyama, Tetsuya; Kunitake, Masashi
2017-09-12
The temperature and concentration dependencies of the crystallization of two small-molecular semiconductors were clarified by constructing quasi-phase diagrams at air/oil interfaces and in bulk oil phases. A quinoidal quaterthiophene derivative with four alkyl chains (QQT(CN)4) in 1,1,2,2-tetrachroloethane (TCE) and a thienoacene derivative with two alkyl chains (C8-BTBT) in o-dichlorobenzene were used. The apparent crystal nucleation temperature (T n ) and dissolution temperature (T d ) of the molecules were determined based on optical microscopy examination in closed glass capillaries and open dishes during slow cooling and heating processes, respectively. T n and T d were considered estimates of the critical temperatures for nuclear formation and crystal growth, respectively. The T n values of QQT(CN)4 and C8-BTBT at the air/oil interfaces were higher than those in the bulk oil phases, whereas the T d values at the air/oil interfaces were almost the same as those in the bulk oil phases. These Gibbs adsorption phenomena were attributed to the solvophobic effect of the alkyl chain moieties. The temperature range between T n and T d corresponds to suitable supercooling conditions for ideal crystal growth based on the suppression of nucleation. The T n values at the water/oil and oil/glass interfaces did not shift compared with those of the bulk phases, indicating that adsorption did not occur at the hydrophilic interfaces. Promotion and inhibition of nuclear formation for crystal growth of the semiconductors were achieved at the air/oil and hydrophilic interfaces, respectively.
Zou, Liang; Sun, Lili; Zhang, Hui; Hui, Wenkai; Zou, Qiaogen; Zhu, Zheying
2017-07-01
The characterization of process-related impurities and degradation products of safinamide mesilate (SAFM) in bulk drug and a stability-indicating HPLC method for the separation and quantification of all the impurities were investigated. Four process-related impurities (Imp-B, Imp-C, Imp-D, and Imp-E) were found in the SAFM bulk drug. Five degradation products (Imp-A, Imp-C, Imp-D, Imp-E, and Imp-F) were observed in SAFM under oxidative conditions. Imp-C, Imp-D, and Imp-E were also degradation products and process-related impurities. Remarkably, one new compound, identified as (S)-2-[4-(3-fluoro-benzyloxy) benzamido] propanamide (i.e., Imp-D), is being reported here as an impurity for the first time. Furthermore, the structures of the aforementioned impurities were characterized and confirmed via IR, NMR, and MS techniques, and the most probable formation mechanisms of all impurities proposed according to the synthesis route. Optimum separation was achieved on an Inertsil ODS-3 column (250 × 4.6 mm, 5 μm), using 0.1% formic acid in water (pH adjusted to 5.0) and acetonitrile as the mobile phase in gradient mode. The proposed method was found to be stability-indicating, precise, linear, accurate, sensitive, and robust for the quantitation of SAFM and its process-related substances, including its degradation products.
Lv, Kai; Yang, Chu-Ting; Liu, Yi; Hu, Sheng; Wang, Xiao-Lin
2018-01-01
To aid the design of a hierarchically porous unconventional metal-phosphonate framework (HP-UMPF) for practical radioanalytical separation, a systematic investigation of the hydrolytic stability of bulk phase against acidic corrosion has been carried out for an archetypical HP-UMPF. Bulk dissolution results suggest that aqueous acidity has a more paramount effect on incongruent leaching than the temperature, and the kinetic stability reaches equilibrium by way of an accumulation of a partial leached species on the corrosion conduits. A variation of particle morphology, hierarchical porosity and backbone composition upon corrosion reveals that they are hydrolytically resilient without suffering any great degradation of porous texture, although large aggregates crack into sporadic fractures while the nucleophilic attack of inorganic layers cause the leaching of tin and phosphorus. The remaining selectivity of these HP-UMPFs is dictated by a balance between the elimination of free phosphonate and the exposure of confined phosphonates, thus allowing a real-time tailor of radionuclide sequestration. Moreover, a plausible degradation mechanism has been proposed for the triple progressive dissolution of three-level hierarchical porous structures to elucidate resultant reactivity. These HP-UMPFs are compared with benchmark metal-organic frameworks (MOFs) to obtain a rough grading of hydrolytic stability and two feasible approaches are suggested for enhancing their hydrolytic stability that are intended for real-life separation protocols. PMID:29538348
Molina, L; Cabes, M; Díaz-Ferrero, J; Coll, M; Martí, R; Broto-Puig, F; Comellas, L; Rodríguez-Larena, M C
2000-01-01
The analysis of planar (non-ortho) polychlorinated biphenyls (PCB) by HRGC-ECD or HRGC-HRMS requires a fractionation step to avoid the interferences of the bulk of PCB, usually in much higher concentration than the planar ones. In this paper, a new method, based on the fractionation of PCB on SPE commercial tubes pre-packed with Carbopack B, has been developed. After the extract has been applied on the stationary phase, the bulk of PCD are eluted with 15 ml of hexane (fraction I), mono-ortho PCB with 20 ml of hexane/toluene 99:1 (fraction II) and planar PCB with 20 ml of toluene (fraction III) in a station under vacuum. The method has been validated: accuracy (expressed as recovery in %) is >70% and precision (expressed as % RSD) is <20% considering changes of day, analyst and batch of tubes. The method is linear in the range studied. Other advantages are that the method is simple, rapid and it can be easily automated. The application of this separation to the determination of planar PCB in fly-ash extracts from an intercalibration exercise and to sewage sludge, sediment and soil samples has been successful. In addition, this method removes hydrocarbons from the planar PCB fraction and allows its concentration to very small volumes.
Tailoring nanoscale morphology of polymer: Fullerene blends using electrostatic field
Elshobaki, Moneim; Gebhardt, Ryan; Carr, John; ...
2016-12-05
In this paper, to tailor the nanoscale phase separation in polymer/fullerene blends, we study the effect of electrostatic field (E-field) on the solidification of poly(3-hexylthiophene-2, 5-diyl) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC 60BM) bulk heterojunction (BHJ). In addition to untreated sample (control); wet P3HT:PC 60BM thin films were exposed to E-field of Van de Graaff (VDG) generator at three different directions – horizontal (H), tilted (T) and vertical (V) – relative to the plane of the substrate. Surface and bulk characterizations of field-treated BHJs affirm that fullerene molecules can easily penetrate the spaghetti-like P3HT and move up and down following themore » E-field. E-field treatment yields thin films with large P3HT- and PCBM-rich domains acting as continuous pathways for efficient charge separation, transport, and collection. We improve; (1) the hole mobility values up to 19.4 × 10 -4 ± 1.6 × 10 -4 cm 2 V -1 s -1 (117% higher than the control), and (2) power conversion efficient (PCE) of conventional and inverted OPVs recording 2.58 ± 0.02% and 4.1 ± 0.4%. This E-field approach can serve as a new morphology-tuning technique, which is generally applicable to other polymer-fullerene systems.« less
Wade, James H; Bailey, Ryan C
2014-01-07
Refractive index-based sensors offer attractive characteristics as nondestructive and universal detectors for liquid chromatographic separations, but a small dynamic range and sensitivity to minor thermal perturbations limit the utility of commercial RI detectors for many potential applications, especially those requiring the use of gradient elutions. As such, RI detectors find use almost exclusively in sample abundant, isocratic separations when interfaced with high-performance liquid chromatography. Silicon photonic microring resonators are refractive index-sensitive optical devices that feature good sensitivity and tremendous dynamic range. The large dynamic range of microring resonators allows the sensors to function across a wide spectrum of refractive indices, such as that encountered when moving from an aqueous to organic mobile phase during a gradient elution, a key analytical advantage not supported in commercial RI detectors. Microrings are easily configured into sensor arrays, and chip-integrated control microrings enable real-time corrections of thermal drift. Thermal controls allow for analyses at any temperature and, in the absence of rigorous temperature control, obviates extended detector equilibration wait times. Herein, proof of concept isocratic and gradient elution separations were performed using well-characterized model analytes (e.g., caffeine, ibuprofen) in both neat buffer and more complex sample matrices. These experiments demonstrate the ability of microring arrays to perform isocratic and gradient elutions under ambient conditions, avoiding two major limitations of commercial RI-based detectors and maintaining comparable bulk RI sensitivity. Further benefit may be realized in the future through selective surface functionalization to impart degrees of postcolumn (bio)molecular specificity at the detection phase of a separation. The chip-based and microscale nature of microring resonators also make it an attractive potential detection technology that could be integrated within lab-on-a-chip and microfluidic separation devices.
NASA Astrophysics Data System (ADS)
Park, Hyo Jin; Hong, Sung Hwan; Park, Hae Jin; Kim, Young Seok; Kim, Jeong Tae; Na, Young Sang; Lim, Ka Ram; Wang, Wei-Min; Kim, Ki Buem
2018-03-01
In the present study, the influence of atomic ratio of Zr to Ti on the microstructure and mechanical properties of Ni-Cu-Zr-Ti-Si-Sn alloys is investigated. The alloys were designed by fine replacement of Ti for Zr from Ni39Cu20Zr36-xTixSi2Sn3. The increase of Ti content enhances glass forming ability of the alloy by suppression of formation of (Ni, Cu)10(Zr, Ti)7 phase during solidification. With further increasing Ti content up to 24 at.%, the B2 phase is introduced in the amorphous matrix with a small amount of B19' phase from alloy melt. The bulk metallic glass composite containing B2 phase with a volume fraction of 10 vol% exhibits higher fracture strength ( 2.5 GPa) than that of monolithic bulk metallic glass ( 2.3 GPa). This improvement is associated to the individual mechanical characteristics of the B2 phase and amorphous matrix. The B2 phase exhibits higher hardness and modulus than those of amorphous matrix as well as effective stress accommodation up to the higher stress level than the yield strength of amorphous matrix. The large stress accommodation capacity of the hard B2 phase plays an important factor to improve the mechanical properties of in situ Ni-based bulk metallic glass composites.
Validation of a Stability-Indicating Method for Methylseleno-L-Cysteine (L-SeMC).
Canady, Kristin; Cobb, Johnathan; Deardorff, Peter; Larson, Jami; White, Jonathan M; Boring, Dan
2016-01-01
Methylseleno-L-cysteine (L-SeMC) is a naturally occurring amino acid analogue used as a general dietary supplement and is being explored as a chemopreventive agent. As a known dietary supplement, L-SeMC is not regulated as a pharmaceutical and there is a paucity of analytical methods available. To address the lack of methodology, a stability-indicating method was developed and validated to evaluate L-SeMC as both the bulk drug and formulated drug product (400 µg Se/capsule). The analytical approach presented is a simple, nonderivatization method that utilizes HPLC with ultraviolet detection at 220 nm. A C18 column with a volatile ion-pair agent and methanol mobile phase was used for the separation. The method accuracy was 99-100% from 0.05 to 0.15 mg/mL L-SeMC for the bulk drug, and 98-99% from 0.075 to 0.15 mg/mL L-SeMC for the drug product. Method precision was <1% for the bulk drug and was 3% for the drug product. The LOQ was 0.1 µg/mL L-SeMC or 0.002 µg L-SeMC on column. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Parafermionic zero modes in gapless edge states
NASA Astrophysics Data System (ADS)
Clarke, David
It has been recently demonstrated1 that Majorana zero modes may occur in the gapless edge of Abelian quantum Hall states at a boundary between different edge phases bordering the same bulk. Such a zero mode is guaranteed to occur when an edge phase that supports fermionic excitations borders one that does not. Here we generalize to the non-charge conserving case such as may occur when a superconductor abuts the quantum Hall edge. We find that not only Majorana zero modes, but their ℤN generalizations (known as parafermionic zero modes) may occur at boundaries between edge phases in a fractional quantum Hall state. In particular, we find thst the ν = 1 / 3 fractional quantum Hall state supports topologically distinct edge phases separated by ℤ3 parafermionic zero modes when charge conservation is broken. Paradoxically, an arrangement of phases can be made such that only an odd number of localized parafermionic zero modes occur around the edge of a quantum Hall droplet. Such an arrangement is not allowed in a gapped system, but here the paradox is resolved due to an extended zero mode in the edge spectrum. LPS-MPO-CMTC, JQI-NSF-PFC, Microsoft Station Q.
Mixed ionic and electronic conducting membranes for hydrogen generation and separation
NASA Astrophysics Data System (ADS)
Cui, Hengdong
Dense mixed ionic and electronic conducting (MIEC) membranes are receiving increasing attention due to their potential for application as gas separation membranes to separate oxygen from air. The objective of this work is to study a novel, chemically-assisted separation process that utilizes oxygen-ion and electron-conducting MIECs for generating and separating hydrogen from steam. This research aims at exploring new routes and materials for high-purity hydrogen production for use in fuel cells and hydrogen-based internal combustion (IC) engines. In this approach, hydrocarbon fuel such as methane is fed to one side of the membrane, while steam is fed to the other side. The MIEC membrane separation process involves steam dissociation and oxidation of the fuel. The oxygen ions formed as a result of steam dissociation are transported across the membrane in a coupled transport process with electrons being transported in the opposite direction. Upon reaching the fuel side of the membrane, the oxygen ions oxidize the hydrocarbon. This process results in hydrogen production on the steam side of the membrane. The oxygen partial pressure gradient across the membrane is the driving force for this process. In this work, a novel, dual-phase composite MIEC membrane system comprising of rare-earth doped ceria with high oxygen ion conductivity and donor-doped strontium titanate with high electronic conductivity were investigated. The chemical diffusion coefficient and surface exchange coefficient have been measured using the electrical conductivity relaxation (ECR) technique. These two parameters control the rate of oxygen permeation across the membrane. The permeation data have been fit with a kinetic model that incorporates oxygen surface exchange on two sides of the membrane and bulk transport of oxygen through the membrane. This material has higher bulk diffusion coefficient and surface exchange reaction rate compared to other known MIEC conductors under the process conditions of interest. Over 10 mumol·cm-2·s-1 (micromoles per square cm per second) of area specific hydrogen flux has been achieved employing a membrane of this material with thickness of 0.2 mm. This flux is several orders of magnitude higher than the hydrogen generation rates reported using other MIEC materials under similar operating conditions.
Metal-Catalyzed Aqueous Oxidation Processes in Merged Microdroplets
NASA Astrophysics Data System (ADS)
Davis, R. D.; Wilson, K. R.
2017-12-01
Iron-catalyzed production of reactive oxygen species (ROS) from hydrogen peroxide (Fenton's reaction) is a fundamental process throughout nature, from groundwater to cloud droplets. In recent years, Fenton's chemistry has gained further interest in atmospheric science as a potentially important process in the oxidation of aqueous secondary organic aerosol (e.g., Chu et al., Sci. Rep., 2017), with some observations indicating that Fenton's reaction proceeds at a higher rate at aerosol interfaces compared to in the bulk (Enami et al., PNAS, 2014). However, a fundamental-level mechanistic understanding of this process remains elusive and the relative importance of interfacial versus bulk chemistry for aqueous organic processing via Fenton's has yet to be fully established. Here, we present a microreactor experimental approach to studying aqueous-phase Fenton's chemistry in microdroplets by rapidly mixing droplets of different composition. Utilizing two on-demand droplet generators, a stream of microdroplets containing aqueous iron chloride were merged with a separate stream of microdroplets containing aqueous hydrogen peroxide and a range of aromatic organic compounds, initiating ROS production and subsequent aqueous-phase oxidation reactions. Upon merging, mixing of the microdroplets occurred in submillisecond timescales, thus allowing the reaction progress to be monitored with high spatial and temporal resolution. For relatively large microreactor (droplet) sizes (50 µm diameter post-merging), the Fenton-initiated aqueous oxidation of aromatic organic compounds in merged microdroplets was consistent with bulk predictions with hydroxyl radicals as the ROS. The microdroplet-size dependence of this observation, along with the role of other ROS species produced from Fenton and Fenton-like processes, will be discussed in the context of relative importance to aqueous organic processing of atmospheric particles.
Liu, Jun; Kobayashi, Takayoshi
2010-01-01
We have reviewed the generation and amplification of wavelength-tunable multicolored femtosecond laser pulses using cascaded four-wave mixing (CFWM) in transparent bulk media, mainly concentrating on our recent work. Theoretical analysis and calculations based on the phase-matching condition could explain well the process semi-quantitatively. The experimental studies showed: (1) as many as fifteen spectral up-shifted and two spectral down-shifted sidebands were obtained simultaneously with spectral bandwidth broader than 1.8 octaves from near ultraviolet (360 nm) to near infrared (1.2 μm); (2) the obtained sidebands were spatially separated well and had extremely high beam quality with M2 factor better than 1.1; (3) the wavelengths of the generated multicolor sidebands could be conveniently tuned by changing the crossing angle or simply replacing with different media; (4) as short as 15-fs negatively chirped or nearly transform limited 20-fs multicolored femtosecond pulses were obtained when one of the two input beams was negatively chirped and the other was positively chirped; (5) the pulse energy of the sideband can reach a μJ level with power stability better than 1% RMS; (6) broadband two-dimensional (2-D) multicolored arrays with more than ten periodic columns and more than ten rows were generated in a sapphire plate; (7) the obtained sidebands could be simultaneously spectra broadened and power amplified in another bulk medium by using cross-phase modulation (XPM) in conjunction with four-wave optical parametric amplification (FOPA). The characterization showed that this is interesting and the CFWM sidebands generated by this novel method have good enough qualities in terms of power stability, beam quality, and temporal features suited to various experiments such as ultrafast multicolor time-resolved spectroscopy and multicolor-excitation nonlinear microscopy. PMID:22399882
Fan, Haijun; Zhang, Maojie; Guo, Xia; Li, Yongfang; Zhan, Xiaowei
2011-09-01
Understanding effect of morphology on charge carrier transport within polymer/fullerene bulk heterojunction is necessary to develop high-performance polymer solar cells. In this work, we synthesized a new benzodithiophene-based polymer with good self-organization behavior as well as favorable morphology evolution of its blend films with PC(71)BM under improved processing conditions. Charge carrier transport behavior of blend films was characterized by space charge limited current method. Evolved blend film morphology by controlling blend composition and additive content gradually reaches an optimized state, featured with nanoscale fibrilla polymer phase in moderate size and balanced mobility ratio close to 1:1 for hole and electron. This optimized morphology toward more balanced charge carrier transport accounts for the best power conversion efficiency of 3.2%, measured under simulated AM 1.5 solar irradiation 100 mW/cm(2), through enhancing short circuit current and reducing geminate recombination loss.
Designing novel bulk metallic glass composites with a high aluminum content
Chen, Z. P.; Gao, J. E.; Wu, Y.; Wang, H.; Liu, X. J.; Lu, Z. P.
2013-01-01
The long-standing challenge for forming Al-based BMGs and their matrix composites with a critical size larger than 1 mm have not been answered over the past three decades. In this paper, we reported formation of a series of BMG matrix composites which contain a high Al content up to 55 at.%. These composites can be cast at extraordinarily low cooling rates, compatible with maximum rod diameters of over a centimetre in copper mold casting. Our results indicate that proper additions of transition element Fe which have a positive heat of mixing with the main constituents La and Ce can appreciably improve the formability of the BMG matrix composites by suppressing the precipitation of Al(La,Ce) phase resulted from occurrence of the phase separation. However, the optimum content of Fe addition is strongly dependant on the total amount of the Al content in the Al-(CoCu)-(La,Ce) alloys. PMID:24284800
Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel
Herrmann, Steven Douglas
2014-05-27
Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.
Designing novel bulk metallic glass composites with a high aluminum content.
Chen, Z P; Gao, J E; Wu, Y; Wang, H; Liu, X J; Lu, Z P
2013-11-27
The long-standing challenge for forming Al-based BMGs and their matrix composites with a critical size larger than 1 mm have not been answered over the past three decades. In this paper, we reported formation of a series of BMG matrix composites which contain a high Al content up to 55 at.%. These composites can be cast at extraordinarily low cooling rates, compatible with maximum rod diameters of over a centimetre in copper mold casting. Our results indicate that proper additions of transition element Fe which have a positive heat of mixing with the main constituents La and Ce can appreciably improve the formability of the BMG matrix composites by suppressing the precipitation of Al(La,Ce) phase resulted from occurrence of the phase separation. However, the optimum content of Fe addition is strongly dependant on the total amount of the Al content in the Al-(CoCu)-(La,Ce) alloys.
Bead mediated separation of microparticles in droplets.
Wang, Sida; Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A
2017-01-01
Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead's solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield.
Bead mediated separation of microparticles in droplets
Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A.
2017-01-01
Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead’s solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield. PMID:28282412
Binary particle separation in droplet microfluidics using acoustophoresis
NASA Astrophysics Data System (ADS)
Fornell, Anna; Cushing, Kevin; Nilsson, Johan; Tenje, Maria
2018-02-01
We show a method for separation of two particle species with different acoustic contrasts originally encapsulated in the same droplet in a continuous two-phase system. This was realized by using bulk acoustic standing waves in a 380 μm wide silicon-glass microfluidic channel. Polystyrene particles (positive acoustic contrast particles) and in-house synthesized polydimethylsiloxane (PDMS) particles (negative acoustic contrast particles) were encapsulated inside water-in-oil droplets either individually or in a mixture. At acoustic actuation of the system at the fundamental resonance frequency, the polystyrene particles were moved to the center of the droplet (pressure node), while the PDMS particles were moved to the sides of the droplet (pressure anti-nodes). The acoustic particle manipulation step was combined in series with a trifurcation droplet splitter, and as the original droplet passed through the splitter and was divided into three daughter droplets, the polystyrene particles were directed into the center daughter droplet, while the PDMS particles were directed into the two side daughter droplets. The presented method expands the droplet microfluidics tool-box and offers new possibilities to perform binary particle separation in droplet microfluidic systems.
46 CFR 153.1600 - Equipment required for conducting the stripping quantity test.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... container: (1) A wet vacuum. (2) A positive displacement pump. (3) An eductor with an air/water separator in...
46 CFR 153.1600 - Equipment required for conducting the stripping quantity test.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... container: (1) A wet vacuum. (2) A positive displacement pump. (3) An eductor with an air/water separator in...
46 CFR 153.1600 - Equipment required for conducting the stripping quantity test.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... container: (1) A wet vacuum. (2) A positive displacement pump. (3) An eductor with an air/water separator in...
46 CFR 153.1600 - Equipment required for conducting the stripping quantity test.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS... container: (1) A wet vacuum. (2) A positive displacement pump. (3) An eductor with an air/water separator in...
Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons.
Cardano, Filippo; D'Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro
2017-06-01
Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems.
Radical chiral Floquet phases in a periodically driven Kitaev model and beyond
NASA Astrophysics Data System (ADS)
Po, Hoi Chun; Fidkowski, Lukasz; Vishwanath, Ashvin; Potter, Andrew C.
2017-12-01
We theoretically discover a family of nonequilibrium fractional topological phases in which time-periodic driving of a 2D system produces excitations with fractional statistics, and produces chiral quantum channels that propagate a quantized fractional number of qubits along the sample edge during each driving period. These phases share some common features with fractional quantum Hall states, but are sharply distinct dynamical phenomena. Unlike the integer-valued invariant characterizing the equilibrium quantum Hall conductance, these phases are characterized by a dynamical topological invariant that is a square root of a rational number, inspiring the label: radical chiral Floquet phases. We construct solvable models of driven and interacting spin systems with these properties, and identify an unusual bulk-boundary correspondence between the chiral edge dynamics and bulk "anyon time-crystal" order characterized by dynamical transmutation of electric-charge into magnetic-flux excitations in the bulk.
Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons
Cardano, Filippo; D’Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro
2017-01-01
Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems. PMID:28569741
A flowsheet concept for an Am/Ln separation based on Am{sup VI} solvent extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mincher, B.J.; Law, J.D.
2013-07-01
The separation of Am from the lanthanides and curium is a key step in proposed advanced fuel cycle scenarios. The partitioning and transmutation of Am is desirable to minimize the long-term radiotoxicity of material interred in a future high-level waste repository. However, a separation amenable to process scale-up remains elusive. Higher oxidation states of americium have recently been used to demonstrate solvent extraction-based separations using conventional fuel cycle ligands. Here, the successful partitioning of Am{sup VI} from the bulk of lanthanides and curium using diamyl-amyl-phosphonate (DAAP) extraction is reported. Due to the instability of Am{sup VI} in the organic phasemore » it was readily selectively stripped to a new acidic aqueous phase to provide separation from co-extracted Ce{sup IV}. The use of NaBiO{sub 3} as an oxidant to separate Am from the lanthanides and Cm by solvent extraction has been successfully demonstrated on the bench scale. Based on these results, flowsheet concepts can be designed that result in 96 % Am recovery in the presence of a few percent of the remaining Cm and the lanthanides in two extraction contacts. Preliminary results also indicate that the DAAP extractant is robust toward γ- irradiation under realistic conditions of acidity and dissolved oxygen concentration.« less
NASA Astrophysics Data System (ADS)
James, J. N.; Gross, C. D.; Butman, D. E.; Harrison, R. B.
2016-12-01
Dissolved organic matter (DOM) is a crucial conduit for internal cycling of carbon within soils as well as for the transfer of organic matter out of soil and into aquatic systems. Little is known about how the quantity, quality, lability and chemical characteristics of DOM changes in response to human management of forest soils. To examine the processes that release soil organic matter (SOM) into solution, we gathered samples from adjacent native and industrially managed Eucalyptus grandis plantation forests across Sao Paulo State, Brazil and from adjacent old-growth and Douglas-fir (Pseudotsuga menzisii) plantation forests in the coastal Pacific Northwest. Samples from each soil horizon were taken from soil profiles excavated to at least 1.5 m at each site. Water extractable organic matter (WEOM) was extracted twice from each sample using 0.5 M K2SO4 and Milli-Q water to quantify both dissolved and exchange phase organic matter. These extracts were measured for total organic carbon (TOC), 13C and 14C, and chemical characteristics were assessed by fluorescence spectroscopy (EEMs and SUVA254). At the same time, solid phase characteristics of the soil samples were quantified, including bulk density, pH, total carbon and nitrogen, microbial biomass, and 13C and 14C. Characterization of bulk SOM was undertaken by Fourier Transform Infrared Spectroscopy (FTIR) by subtracting mineral matrix spectra of each sample from the bulk spectra. Organic matter lability was assessed by incubations using difference in TOC for WEOM extracts and repeated measurement of CO2 efflux for bulk SOM. All together, these analyses permit a unique snapshot of the natural separation of organic matter from solid into liquid phase through the entire soil profile. Initial results reveal that small but measureable quantities of WEOM may be released from deep B and C horizons in soil, and that this material is labile to microbial decomposition. By identifying differences in SOM and DOM cycling due to forest management, this study aims to connect human management of terrestrial forest ecosystems to the transport of organic matter from surface and subsurface horizons to freshwater ecosystems, where it forms a major component of aquatic food webs.
Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects.
Titus, Michael S; Rhein, Robert K; Wells, Peter B; Dodge, Philip C; Viswanathan, Gopal Babu; Mills, Michael J; Van der Ven, Anton; Pollock, Tresa M
2016-12-01
It has long been known that solute segregation at crystalline defects can have profound effects on material properties. Nevertheless, quantifying the extent of solute segregation at nanoscale defects has proven challenging due to experimental limitations. A combined experimental and first-principles approach has been used to study solute segregation at extended intermetallic phases ranging from 4 to 35 atomic layers in thickness. Chemical mapping by both atom probe tomography and high-resolution scanning transmission electron microscopy demonstrates a markedly different composition for the 4-atomic-layer-thick phase, where segregation has occurred, compared to the approximately 35-atomic-layer-thick bulk phase of the same crystal structure. First-principles predictions of bulk free energies in conjunction with direct atomistic simulations of the intermetallic structure and chemistry demonstrate the breakdown of bulk thermodynamics at nanometer dimensions and highlight the importance of symmetry breaking due to the proximity of interfaces in determining equilibrium properties.
Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects
Titus, Michael S.; Rhein, Robert K.; Wells, Peter B.; Dodge, Philip C.; Viswanathan, Gopal Babu; Mills, Michael J.; Van der Ven, Anton; Pollock, Tresa M.
2016-01-01
It has long been known that solute segregation at crystalline defects can have profound effects on material properties. Nevertheless, quantifying the extent of solute segregation at nanoscale defects has proven challenging due to experimental limitations. A combined experimental and first-principles approach has been used to study solute segregation at extended intermetallic phases ranging from 4 to 35 atomic layers in thickness. Chemical mapping by both atom probe tomography and high-resolution scanning transmission electron microscopy demonstrates a markedly different composition for the 4–atomic-layer–thick phase, where segregation has occurred, compared to the approximately 35–atomic-layer–thick bulk phase of the same crystal structure. First-principles predictions of bulk free energies in conjunction with direct atomistic simulations of the intermetallic structure and chemistry demonstrate the breakdown of bulk thermodynamics at nanometer dimensions and highlight the importance of symmetry breaking due to the proximity of interfaces in determining equilibrium properties. PMID:28028543
Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage.
Leng, Kai; Chen, Zhongxin; Zhao, Xiaoxu; Tang, Wei; Tian, Bingbing; Nai, Chang Tai; Zhou, Wu; Loh, Kian Ping
2016-09-28
Achieving homogeneous phase transition and uniform charge distribution is essential for good cycle stability and high capacity when phase conversion materials are used as electrodes. Herein, we show that chemical lithiation of bulk 2H-MoS 2 distorts its crystalline domains in three primary directions to produce mosaic-like 1T' nanocrystalline domains, which improve phase and charge uniformity during subsequent electrochemical phase conversion. 1T'-Li x MoS 2 , a macroscopic dense material with interconnected nanoscale grains, shows excellent cycle stability and rate capability in a lithium rechargeable battery compared to bulk or exfoliated-restacked MoS 2 . Transmission electron microscopy studies reveal that the interconnected MoS 2 nanocrystals created during the phase change process are reformable even after multiple cycles of galvanostatic charging/discharging, which allows them to play important roles in the long term cycling performance of the chemically intercalated TMD materials. These studies shed light on how bulk TMDs can be processed into quasi-2D nanophase material for stable energy storage.
High-pressure high-temperature stability of hcp-Ir xOs 1-x (x = 0.50 and 0.55) alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusenko, Kirill V.; Bykova, Elena; Bykov, Maxim
2016-12-23
Hcp-Ir 0.55Os 0.45 and hcp-Ir 0.50Os 0.50 alloys were synthesised by thermal decomposition of single-source precursors in hydrogen atmosphere. Both alloys correspond to a miscibility gap in the Ir–Os binary phase diagram and therefore are metastable at ambient conditions. An in situ powder X-ray diffraction has been used for a monitoring a formation of hcp-Ir0.55Os0.45 alloy from (NH 4) 2[Ir 0.55Os 0.45Cl 6] precursor. A crystalline intermediate compound and nanodimentional metallic particles with a large concentration of defects has been found as key intermediates in the thermal decomposition process in hydrogen flow. High-temperature stability of titled hcp-structured alloys has beenmore » investigated upon compression up to 11 GPa using a multi-anvil press and up to 80 GPa using laser-heated diamond-anvil cells to obtain a phase separation into fcc + hcp mixture. Compressibility curves at room temperature as well as thermal expansion at ambient pressure and under compression up to 80 GPa were collected to obtain thermal expansion coefficients and bulk moduli. hcp-Ir 0.55Os 0.45 alloy shows bulk moduli B0 = 395 GPa. Thermal expansion coefficients were estimated as α = 1.6·10 -5 K -1 at ambient pressure and α = 0.3·10 -5 K -1 at 80 GPa. Obtained high-pressure high-temperature data allowed us to construct the first model for pressure-dependent Ir–Os phase diagram.« less
Predicting Hidden bulk phases in Sr3Ru2O7 from surface phases
NASA Astrophysics Data System (ADS)
Rivero, Pablo; Chen, Chen; Jin, Roying; Meunier, Vincent; Plummer, E. W.; Shelton, William
Double-layered Sr3Ru2O7 has received phenomenal attention as it exhibits an overabundance of exotic phases when perturbed. Recently it has been shown that the surface of this material displays significantly different properties than in the bulk due to the surface induced tilt of the RuO6 octahedra. Here we report detailed first principles calculations of the surface structure, and the structure property relationship. Tilt of the octahedra drive the surface into a much less conducting state than in the bulk due in part to the different electronic properties of the two Ru atoms in the first RuO2 layer of the bilayer. The broken symmetry at the surface causes a tilt and enhanced rotation of the octahedra only present in the first (surface) bilayer. Theoretically the surface is ferromagnetically ordered but the stability with respect to the antiferromagnetic phase is small ( = 11 meV). We have calculated the bulk properties under uniaxial pressure, which induces a tilt and drives the bulk into an antiferromagnetic-insulating state. Support of this project came from DoE contract No. DE-SCOO12432 and the Louisiana Board of Regents. V. M. acknowledges support from New York State under NYSTAR program C080117.
Direction-dependent stability of skyrmion lattice in helimagnets induced by exchange anisotropy
NASA Astrophysics Data System (ADS)
Hu, Yangfan
2018-06-01
Exchange anisotropy provides a direction dependent mechanism for the stability of the skyrmion lattice phase in noncentrosymmetric bulk chiral magnets. Based on the Fourier representation of the skyrmion lattice, we explain the direction dependence of the temperature-magnetic field phase diagram for bulk MnSi through a phenomenological mean-field model incorporating exchange anisotropy. Through quantitative comparison with experimental results, we clarify that the stability of the skyrmion lattice phase in bulk MnSi is determined by a combined effect of negative exchange anisotropy and thermal fluctuation. The effect of exchange anisotropy and the order of Fourier representation on the equilibrium properties of the skyrmion lattice is discussed in detail.
NASA Astrophysics Data System (ADS)
Kwon, Ha-Kyung; Shull, Kenneth R.; Zwanikken, Jos W.; Olvera de La Cruz, Monica
Polyelectrolytes have received much attention as potential candidates for rechargeable batteries, membrane fuel cells, and drug delivery carriers, as they can combine the electrochemical properties of the charged components with the mechanical stability and biocompatibility of the polymer backbone. The role of salt in determining the bulk and interfacial behaviors of polyelectrolytes has been of particular interest, as the miscibility has shown to depend significantly on salt identity and concentration. Recent studies employing the SCFT-LS method have shown that ionic correlations can enhance phase separation in polyelectrolytes and can induce selectivity in neutral solvents. Here, we extend the theory to investigate the role of salt in strongly correlated polyelectrolytes. We find that in lamellae-forming block copolymers, the addition of monovalent, symmetric salt can lead to a decreased lamellar spacing due to increased selectivity of the salt. When multiple electrostatic interactions are introduced via size and valency asymmetry in the salt pair, the bulk phase behavior and salt distribution across interfaces are significantly altered, as size and charge mismatch can transform the charge ordering seen in monovalent, symmetric salts. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).
Magnetic properties of strained multiferroic CoC r2O4 : A soft x-ray study
NASA Astrophysics Data System (ADS)
Windsor, Y. W.; Piamonteze, C.; Ramakrishnan, M.; Scaramucci, A.; Rettig, L.; Huever, J. A.; Bothschafter, E. M.; Bingham, N. S.; Alberca, A.; Avula, S. R. V.; Noheda, B.; Staub, U.
2017-06-01
Using resonant soft x-ray techniques we follow the magnetic behavior of a strained epitaxial film of CoC r2O4 , a type-II multiferroic. The film is [110] oriented, such that both the ferroelectric and ferromagnetic moments can coexist in-plane. X-ray magnetic circular dichroism (XMCD) is used in scattering and in transmission modes to probe the magnetization of Co and Cr separately. The transmission measurements utilized x-ray excited optical luminescence from the substrate. Resonant soft x-ray diffraction (RXD) was used to study the magnetic order of the low temperature phase. The XMCD signals of Co and Cr appear at the same ordering temperature TC≈90 K , and are always opposite in sign. The coercive field of the Co and of Cr moments is the same, and is approximately two orders of magnitude higher than in bulk. Through sum rules analysis an enlarged C o2 + orbital moment (mL) is found, which can explain this hardening. The RXD signal of the (q q 0) reflection appears below TS, the same ordering temperature as the conical magnetic structure in bulk, indicating that this phase remains multiferroic under strain. To describe the azimuthal dependence of this reflection, a slight modification is required to the spin model proposed by the conventional Lyons-Kaplan-Dwight-Menyuk theory for magnetic spinels.
First-principles calculation of the geometric and electronic structure of the Be(0001) surface
NASA Astrophysics Data System (ADS)
Feibelman, Peter J.
1992-07-01
Linearized-augmented-plane-wave calculations for a nine-layer Be(0001) slab agree with the unusual experimental finding of a substantial outer-layer expansion relative to the truncated bulk lattice. They imply that the separation between the outer two layers should be 3.9% larger than in the bulk, while the second- to third-layer separation should be 2.2% larger. The surface expansion is accompanied by demotion of pσ to s electrons on outer-layer Be's. The surface Be's loss of three neighbors makes the energy cost of s- to pσ-electron promotion, which is necessary for the formation of strong bonds to the next layer down, less profitable than in the bulk.
Proton transfer in liquid water confined inside graphene slabs
NASA Astrophysics Data System (ADS)
Tahat, Amani; Martí, Jordi
2015-09-01
The microscopic structure and dynamics of an excess proton in water constrained in narrow graphene slabs between 0.7 and 3.1 nm wide has been studied by means of a series of molecular dynamics simulations. Interaction of water and carbon with the proton species was modeled using a multistate empirical valence bond Hamiltonian model. The analysis of the effects of confinement on proton solvation structure and on its dynamical properties has been considered for varying densities. The system is organized in one interfacial and a bulk-like region, both of variable size. In the widest interplate separations, the lone proton shows a marked tendency to place itself in the bulk phase of the system, due to the repulsive interaction with the carbon atoms. However, as the system is compressed and the proton is forced to move to the vicinity of graphene walls it moves closer to the interface, producing a neat enhancement of the local structure. We found a marked slowdown of proton transfer when the separation of the two graphene plates is reduced. In the case of lowest distances between graphene plates (0.7 and 0.9 nm), only one or two water layers persist and the two-dimensional character of water structure becomes evident. By means of spectroscopical analysis, we observed the persistence of Zundel and Eigen structures in all cases, although at low interplate separations a signature frequency band around 2500 cm-1 suffers a blue shift and moves to characteristic values of asymmetric hydronium ion vibrations, indicating some unstability of the typical Zundel-Eigen moieties and their eventual conversion to a single hydronium species solvated by water.
NASA Astrophysics Data System (ADS)
Li, Huiqin; Sun, Limin; Shen, Guangxia; Liang, Qi
2012-02-01
In this work, we investigated the bulk phase distinguishing of the poly(ɛ-caprolactone)-polybutadiene-poly(ɛ-caprolactone) (PCL-PB-PCL) triblock copolymer blended in epoxy resin by tapping mode atomic force microscopy (TM-AFM). We found that at a set-point amplitude ratio ( r sp) less than or equal to 0.85, a clear phase contrast could be obtained using a probe with a force constant of 40 N/m. When r sp was decreased to 0.1 or less, the measured size of the PB-rich domain relatively shrank; however, the height images of the PB-rich domain would take reverse (translating from the original light to dark) at r sp = 0.85. Force-probe measurements were carried out on the phase-separated regions by TM-AFM. According to the phase shift angle vs. r sp curve, it could be concluded that the different force exerting on the epoxy matrix or on the PB-rich domain might result in the height and phase image reversion. Furthermore, the indentation depth vs. r sp plot showed that with large tapping force (lower r sp), the indentation depth for the PB-rich domain was nearly identical for the epoxy resin matrix.
Piper, D.Z.; Wandless, G.A.
1992-01-01
The extraction of the rare earth elements (REE) from deep-ocean pelagic sediment, using hydroxylamine hydrochloride-acetic acid, leads to the separation of approximately 70% of the bulk REE content into the soluble fraction and 30% into the insoluble fraction. The REE pattern of the soluble fraction, i.e., the content of REE normalized to average shale on an element-by-element basis and plotted against atomic number, resembles the pattern for seawater, whereas the pattern, as well as the absolute concentrations, in the insoluble fraction resembles the North American shale composite. These results preclude significant readsorption of the REE by the insoluble phases during the leaching procedure.
In-situ groundwater remediation by selective colloid mobilization
Seaman, J.C.; Bertch, P.M.
1998-12-08
An in-situ groundwater remediation pump and treat technique is described which is effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, and which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment. 3 figs.
In-situ groundwater remediation by selective colloid mobilization
Seaman, John C.; Bertch, Paul M.
1998-01-01
An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.
Mathioudakis, V L; Aivasidis, A
2009-01-01
Artificial dosage of nitrate in sewer networks is considered as one of the most effective methods for odor and corrosion control. However, there is limited knowledge on the effect of temperature on the transformations that takes place during anoxic conditions. Thus, two groups of batch experiments were conducted to gain insight in the involved processes in bulk phase of a septic municipal wastewater. It can be concluded that sewer denitrification, in bulk phase, can be simplified in three stages. According to the experimental results, nitrate or nitrite is utilized for autotrophic denitrification with sulfide, while heterotrophic utilization is initiated after the completion of anoxic sulfide oxidation. Moreover, temperature is proved to have a significant impact on sewer denitrification kinetic profile, as it determines the extent of temporal nitrite accumulation. The temperature coefficient of each anoxic process, including sulfide oxidation, nitrate utilization and denitrification/nitrite utilization is experimentally calculated and temperature dependent equations are developed, providing the rate of all anoxic processes in bulk phase of sewer wastewater, in any given temperature.
"Self-Shaping" of Multicomponent Drops.
Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K
2017-06-13
In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.
Classical topological paramagnetism
NASA Astrophysics Data System (ADS)
Bondesan, R.; Ringel, Z.
2017-05-01
Topological phases of matter are one of the hallmarks of quantum condensed matter physics. One of their striking features is a bulk-boundary correspondence wherein the topological nature of the bulk manifests itself on boundaries via exotic massless phases. In classical wave phenomena, analogous effects may arise; however, these cannot be viewed as equilibrium phases of matter. Here, we identify a set of rules under which robust equilibrium classical topological phenomena exist. We write simple and analytically tractable classical lattice models of spins and rotors in two and three dimensions which, at suitable parameter ranges, are paramagnetic in the bulk but nonetheless exhibit some unusual long-range or critical order on their boundaries. We point out the role of simplicial cohomology as a means of classifying, writing, and analyzing such models. This opens an experimental route for studying strongly interacting topological phases of spins.
Understanding and Controlling Nanoscale Morphology in Self-Assembled Semiconducting Materials
NASA Astrophysics Data System (ADS)
Kang, Hyeyeon
Self-assembled semiconducting materials have been rapidly developed for a range of applications. This work aims to control the morphology of nanostructured semiconductors to understand how their functions arise from the structural properties. The first part of this dissertation focuses on the formation of a bulk-heterojunction (BHJ) in the active layer of organic photovoltaics (OPV). A BHJ is a bicontinuous interpenetrating network of organic components. The phase separation of the electron donor and the acceptor is required to achieve a BHJ structure in the nanostructured morphology, which promotes an efficient charge transportation. The use of solvent additive is one of the strategies to control the spontaneous phase separation during the film formation. Low vapor pressure solvent additives are introduced to a polymer casting solution in a sequentially processed OPV system, to study the swelling effect on the phase separation. In particular, the change in crystallinity and vertical mixing will be intensively studied upon polymer swelling. As another strategy, we introduce a molecular structure change to fullerene derivatives. A small structural variation leads to a large enough contrast of their surface energy, which is attributed to different vertical phase separation in the active layer. It eventually allows us to examine photovoltaic performance and device physics. In the second part, mesoporous inorganic films are investigated by preparation from a nanocrystal solution or sol-gel precursors for solar energy applications. Mesoporous nanocrystal-based titania is synthesized for inorganic/organic hybrid solar cells. The effect of surface modification is examined by anchoring a fullerene derivative on to titania surface. 3D interconnected mesoporous tantalum nitride films are prepared via sol-gel method as photoanodes in solar water splitting. The simple synthetic method using polymer template enables us to successfully prepare nitride films with excellent pore periodicity. The porous tantalum nitride film is examined with photoelectrochemical measurement to investigate the correlation between nanostructuring and photocatalytic activity. For the final part of this dissertation, porous cobalt ferrite and cadmium sulfide films are studied using ellipsometric porosimetry. Understanding the nature of their pores allows us to tune the intrinsic properties of the materials or prove the newly designed synthetic method.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
NASA Astrophysics Data System (ADS)
Kou, Jisheng; Sun, Shuyu
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.
Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface
NASA Astrophysics Data System (ADS)
He, Xiaoxia; Shen, Yan; Hung, Francisco R.; Santiso, Erik E.
2016-12-01
Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim+][Cl-] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ˜85 kcal/mol to form a critical nucleus of size ˜3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (˜49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (˜3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (˜4.8 × 1011 cm-3 s-1) is about one order of magnitude faster than the homogeneous rate (˜6.6 × 1010 cm-3 s-1). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide glasses).
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Jisheng; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from themore » microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.« less
Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.
He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E
2016-12-07
Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim + ][Cl - ] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ∼85 kcal/mol to form a critical nucleus of size ∼3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (∼49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (∼3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (∼4.8 × 10 11 cm -3 s -1 ) is about one order of magnitude faster than the homogeneous rate (∼6.6 × 10 10 cm -3 s -1 ). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide glasses).
Analytical Applications of Transport Through Bulk Liquid Membranes.
Diaconu, Ioana; Ruse, Elena; Aboul-Enein, Hassan Y; Bunaciu, Andrei A
2016-07-03
This review discusses the results of research in the use of bulk liquid membranes in separation processes and preconcentration for analytical purposes. It includes some theoretical aspects, definitions, types of liquid membranes, and transport mechanism, as well as advantages of using liquid membranes in laboratory studies. These concepts are necessary to understand fundamental principles of liquid membrane transport. Due to the multiple advantages of liquid membranes several studies present analytical applications of the transport through liquid membranes in separation or preconcentration processes of metallic cations and some organic compounds, such as phenol and phenolic derivatives, organic acids, amino acids, carbohydrates, and drugs. This review presents coupled techniques such as separation through the liquid membrane coupled with flow injection analysis.
Stability Indicating HPLC Determination of Risperidone in Bulk Drug and Pharmaceutical Formulations
Dedania, Zarna R.; Dedania, Ronak R.; Sheth, Navin R.; Patel, Jigar B.; Patel, Bhavna
2011-01-01
The objective of the current study was to develop a validated stability-indicating assay method (SIAM) for risperidone after subjecting it to forced decomposition under hydrolysis, oxidation, photolysis, and thermal stress conditions. The liquid chromatographic separation was achieved isocratically on a symmetry C18 column (5 μm size, 250 mm × 4.6 mm i.d.) using a mobile phase containing methanol: acetonitrile (80 : 20, v/v) at a flow rate of 1 mL/min and UV detection at 280 nm. Retention time of risperidone was found to be 3.35 ± 0.01. The method was linear over the concentration range of 10–60 μg/mL(r 2 = 0.998) with a limit of detection and quantitation of 1.79 and 5.44 μg/mL, respectively. The method has the requisite accuracy, specificity, sensitivity, and precision to assay risperidone in bulk form and pharmaceutical dosage forms. Degradation products resulting from the stress studies did not interfere with the detection of Risperidone, and the assay is thus stability indicating. PMID:22007220
NASA Astrophysics Data System (ADS)
Anderson, Carly; Clark, Douglas; Graves, David
2014-10-01
We present evidence for the existence of two distinct processes that contribute to the generation of reactive oxygen and nitrogen species (RONS) in liquids exposed to cold atmospheric plasma (CAP) in air. At the plasma-liquid interface, there exists a fast surface reaction zone where RONS from the gas phase interact with species in the liquid. RONS can also be produced by ``slow'' chemical reactions in the bulk liquid, even long after plasma exposure. To separate the effects of these processes, we used indigo dye as an indicator of ROS production; specifically generation of hydroxyl radical. The rate of indigo decolorization while in direct contact with CAP is compared with the expected rate of hydroxyl radical generation at the liquid surface. When added to aqueous solutions after CAP exposure, indigo dye reacts on a time scale consistent with the production of peroxynitrous acid, ONOOH, which is known to decompose to hydroxyl radical below a pH of 6.8. In this study, the CAP used was a air corona discharge plasma run in a positive streamer mode.
Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva
2017-05-01
We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.
Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva
2017-02-01
We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2017 Elsevier B.V. All rights reserved.
High-intensity sound in air saturated fibrous bulk porous materials
NASA Technical Reports Server (NTRS)
Kuntz, H. L., II
1982-01-01
The interaction high-intensity sound with bulk porous materials in porous materials including Kevlar 29 is reported. The nonlinear behavior of the materials was described by dc flow resistivity tests. Then acoustic propagation and reflection were measured and small signal broadband measurements of phase speed and attenuation were carried out. High-intensity tests were made with 1, 2, and 3 kHz tone bursts to measure harmonic generation and extra attenuation of the fundamental. Small signal standing wave tests measured impedence between 0.1 and 3.5 kHz. High level tests with single cycle tone bursts at 1 to 4 kHz show that impedance increases with intensity. A theoretical analysis is presented for high-porosity, rigid-frame, isothermal materials. One dimensional equations of motion are derived and solved by perturbation. The experiments show that there is excess attenuation of the fundamental component and in some cases a close approach to saturation. A separate theoretical model, developed to explain the excess attenuation, yields predictions that are in good agreement with the measurements. Impedance and attenuation at high intensities are modeled.
Adsorption behaviors of supercritical Lennard-Jones fluid in slit-like pores.
Li, Yingfeng; Cui, Mengqi; Peng, Bo; Qin, Mingde
2018-05-18
Understanding the adsorption behaviors of supercritical fluid in confined space is pivotal for coupling the supercritical technology and the membrane separation technology. Based on grand canonical Monte Carlo simulations, the adsorption behaviors of a Lennard-Jones (LJ) fluid in slit-like pores at reduced temperatures over the critical temperature, T c * = 1.312, are investigated; and impacts of the wall-fluid interactions, the pore width, and the temperature are taken into account. It is found that even if under supercritical conditions, the LJ fluid can undergo a "vapor-liquid phase transition" in confined space, i.e., the adsorption density undergoes a sudden increase with the bulk density. A greater wall-fluid attractive potential, a smaller pore width, and a lower temperature will bring about a stronger confinement effect. Besides, the adsorption pressure reaches a local minimum when the bulk density equals to a certain value, independent of the wall-fluid potential or pore width. The insights in this work have both practical and theoretical significances. Copyright © 2018 Elsevier Inc. All rights reserved.
Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.
Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian
2016-10-06
Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhenhai; Wang, Qinglin; Ma, Yanzhang
Nanoscale materials exhibit properties that are quite distinct from those of bulk materials because of their size restricted nature. Here, we investigated the high-pressure structural stability of cubic (C-type) nano-Eu2O3 using in situ synchrotron X-ray diffraction (XRD), Raman and luminescence spectroscopy, and impedance spectra techniques. Our high-pressure XRD experimental results revealed a pressure-induced structural phase transition in nano-Eu2O3 from the C-type phase (space group: Ia-3) to a hexagonal phase (A-type, space group: P-3m1). Our reported transition pressure (9.3 GPa) in nano-Eu2O3 is higher than that of the corresponding bulk-Eu2O3 (5.0 GPa), which is contrary to the preceding reported experimental result.more » After pressure release, the A-type phase of Eu2O3 transforms into a new monoclinic phase (B-type, space group: C2/m). Compared with bulk-Eu2O3, C-type and A-type nano-Eu2O3 exhibits a larger bulk modulus. Our Raman and luminescence findings and XRD data provide consistent evidence of a pressure-induced structural phase transition in nano-Eu2O3. To our knowledge, we have performed the first high-pressure impedance spectra investigation on nano-Eu2O3 to examine the effect of the structural phase transition on its transport properties. We propose that the resistance inflection exhibited at ~12 GPa results from the phase boundary between the C-type and A-type phases. Besides, we summarized and discussed the structural evolution process by the phase diagram of lanthanide sesquioxides (Ln2O3) under high pressure.« less
Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices
NASA Astrophysics Data System (ADS)
Lee, Yoju; Verstraete, Frank; Gendiar, Andrej
2016-08-01
The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.
Comer, J.; Ortoleva, P.
2007-01-01
Coexistence of twisted and untwisted crystals is explained via a model that accounts for the coupling of the entropic and energetic effects of impurities and a supra-lattice-scale structural order parameter. It is shown that twisted impure crystals can be in equilibrium with untwisted purer ones. The model explains how coexistence can occur in agates and other systems under hydrostatic stress. The model implies that untwisted crystals grown under one set of conditions could undergo a phase separation that, when accompanied by an imposed compositional gradient, leads to commonly observed, alternating bands of twisted and untwisted crystals and, when occurring in the absence of an external gradient, mossy patterns of crystal texture can emerge. This phenomenon is not related to anisotropic applied stress. Rather coexistence is a consequence of a compositional segregation/twist phase transition. Since twist coexistence is a compositional equilibrium, it arises from the exchange between bulk phases; hence, the detailed nature of the atomic structure within an interface between twisted and untwisted zones is not relevant. The approach places crystal-twist phenomena within the theory of order/disorder phase transitions.
New Cu-Free Ti-Based Composites with Residual Amorphous Matrix
Nicoara, Mircea; Locovei, Cosmin; Șerban, Viorel Aurel; Parthiban, R.; Calin, Mariana; Stoica, Mihai
2016-01-01
Titanium-based bulk metallic glasses (BMGs) are considered to have potential for biomedical applications because they combine favorable mechanical properties and good biocompatibility. Copper represents the most common alloying element, which provides high amorphization capacity, but reports emphasizing cytotoxic effects of this element have risen concerns about possible effects on human health. A new copper-free alloy with atomic composition Ti42Zr10Pd14Ag26Sn8, in which Cu is completely replaced by Ag, was formulated based on Morinaga’s d-electron alloy design theory. Following this theory, the actual amount of alloying elements, which defines the values of covalent bond strength Bo and d-orbital energy Md, situates the newly designed alloy inside the BMG domain. By mean of centrifugal casting, cylindrical rods with diameters between 2 and 5 mm were fabricated from this new alloy. Differential scanning calorimetry (DSC) and X-rays diffraction (XRD), as well as microstructural analyses using optical and scanning electron microscopy (OM/SEM) revealed an interesting structure characterized by liquid phase-separated formation of crystalline Ag, as well as metastable intermetallic phases embedded in residual amorphous phases. PMID:28773455
Noble-gas-rich separates from the Allende meteorite
NASA Technical Reports Server (NTRS)
Ott, U.; Mack, R.; Chang, S.
1981-01-01
Predominantly carbonaceous HF/HCl-resistant residues from the Allende meteorite are studied. Samples are characterized by SEM/EDXA, X-ray diffraction, INAA, C, S, H, N, and noble gas analyses. Isotopic data for carbon show variations no greater than 5%, while isotopic data from noble gases confirm previously established systematics. Noble gas abundances correlate with those of C and N, and concomitant partial loss of C and normal trapped gas occur during treatments with oxidizing acids. HF/HCl demineralization of bulk meteorite results in similar fractional losses of C and trapped noble gases, which leads to the conclusion that various macromolecular carbonaceous substances serve as the main host phase for normal trapped noble gases and anomalous gases in acid-resistant residues, and as the carrier of the major part of trapped noble gases lost during HF/HCl demineralization. Limits on the possible abundances of dense mineralic host phases in the residues are obtained, and considerations of the nucleogenetic origin for CCF-XE indicate that carbonaceous host phases and various forms of organic matter in carbonaceous meteorites may have a presolar origin.
The effect of bulk/surface defects ratio change on the photocatalysis of TiO2 nanosheet film
NASA Astrophysics Data System (ADS)
Wang, Fangfang; Ge, Wenna; Shen, Tong; Ye, Bangjiao; Fu, Zhengping; Lu, Yalin
2017-07-01
The photocatalysis behavior of TiO2 nanosheet array films was studied, in which the ratio of bulk/surface defects were adjusted by annealing at different temperature. Combining positron annihilation spectroscopy, EPR and XPS, we concluded that the bulk defects belonged to Ti3+ related vacancy defects. The results show that the separation efficiency of photogenerated electrons and holes could be significantly improved by optimizing the bulk/surface defects ratio of TiO2 nanosheet films, and in turn enhancing the photocatalysis behaviors.
Vibrational contributions to the phase stability of PbS-PbTe alloys
NASA Astrophysics Data System (ADS)
Doak, Jeff W.; Wolverton, C.; OzoliĆš, Vidvuds
2015-11-01
The thermoelectric figure of merit (Z T ) of semiconductors such as PbTe can be improved by forming nanostructures within the bulk of these materials. Alloying PbTe with PbS causes PbS-rich nanostructures to precipitate from the solid solution, scattering phonons and increasing Z T . Understanding the thermodynamics of this process is crucial to optimizing the efficiency gains of this technique. Previous calculations of the thermodynamics of PbS-PbTe alloys [(J. W. Doak and C. Wolverton, Phys. Rev. B 86, 144202 (2012), 10.1103/PhysRevB.86.144202] found that mixing energetics alone were not sufficient to quantitatively explain the thermodynamic driving force for phase separation in these materials: first-principles calculations of the thermodynamics of phase separation overestimate the thermodynamic driving force for precipitation of PbS-rich nanostructures from PbS-PbTe alloys. In this work, we re-examine the thermodynamics of PbS-PbTe, including the effects of vibrational entropy in the free energy through frozen-phonon calculations of special quasirandom structures (SQS) to explain this discrepancy between first-principles and experimental phase stability. We find that vibrational entropy of mixing reduces the calculated maximum miscibility gap temperature TG of PbS-PbTe by 470 K, bringing the error between calculated and experimental TG down from 700 to 230 K. Our calculated vibrational spectra of PbS-PbTe SQS exhibit dynamic instabilities of S ions that corroborate reports of low-T ferroelectriclike phase transitions in solid solutions of PbS and PbTe, which are not present in either of the constituent compounds. We use our calculated vibrational spectra to obtain phase transition temperatures, which are in qualitative agreement with experimental results for PbTe-rich alloys, as well as to predict the existence of a low-T displacive phase transition in PbS-rich PbS-PbTe, which has not yet been experimentally investigated.
Closed System Step Etching of CI chondrite Ivuna reveals primordial noble gases in the HF-solubles
NASA Astrophysics Data System (ADS)
Riebe, My E. I.; Busemann, Henner; Wieler, Rainer; Maden, Colin
2017-05-01
We analyzed all the noble gases in HF-soluble phases in the CI chondrite Ivuna by in-vacuum gas release using the "Closed System Step Etching" (CSSE) technique, which allows for direct noble gas measurements of acid-soluble phases. The main motivation was to investigate if there are primordial noble gases in HF-soluble phases in Ivuna, something that has not been done before in CI chondrites, as most primordial noble gases are known to reside in HF-resistant phases. The first steps under mild etching released He, Ne, and Ar with solar-like elemental and isotopic compositions, confirming that Ivuna contains implanted solar wind (SW) noble gases acquired in the parent body regolith. The SW component released in some etch steps was elementally unfractionated. This is unusual as trapped SW noble gases are elementally fractionated in most meteoritic material. In the intermediate etch steps under slightly harsher etching, cosmogenic noble gases were more prominent than SW noble gases. The HF-soluble portion of Ivuna contained primordial Ne and Xe, that was most visible in the last etch steps after all cosmogenic and most SW gases had been released. The primordial Ne and Xe in the HF-solubles have isotopic and elemental ratios readily explained as a mixture of the two most abundant primordial noble gas components in Ivuna bulk samples: HL and Q. Only small fractions of the total HL and Q in Ivuna were released during CSSE analysis; ∼3% of 20NeHL and ∼4% of 132XeQ. HL is known to reside in nanodiamond-rich separates and Q-gases are most likely carried by a carbonaceous phase known as phase Q. Q-gases were likely released from an HF-soluble portion of phase Q. However, nanodiamonds might not be the source of the HL-gases released upon etching, since nanodiamond-rich separates are very HF-resistant and the less tightly bound nanodiamond component P3 was not detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas
In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less
Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas; ...
2018-06-01
In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less
NASA Astrophysics Data System (ADS)
Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo
2018-04-01
Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.
Lapp, Aliya S; Duan, Zhiyao; Marcella, Nicholas; Luo, Long; Genc, Arda; Ringnalda, Jan; Frenkel, Anatoly I; Henkelman, Graeme; Crooks, Richard M
2018-05-11
In this report, we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2- , a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H atom capping layer prevents deposition of Pt multilayers. We applied this method to ∼1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to the well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).
Makino, Yukiko
2012-03-01
A simple and sensitive HPLC technique was developed for the qualitative determination of ephedrine and pseudoephedrine (ephedrines), used as precursors of clandestine d-methamphetamine hydrochloride of high purity. Good separation of ephedrines from bulk d-methamphetamine was achieved, without any extraction or derivatization procedure on a CAPCELLPACK C18 MGII (250 × 4.6 mm) column. The mobile phase consisted of 50 mM KH2 PO4-acetonitrile (94:6 v/v %) using an isocratic pump system within 20 min for detecting two analytes. One run took about 50 min as it was necessary to wash out overloaded methamphetamine for column conditioning. The analytes were detected by UV absorbance measurement at 210 nm. A sample (20 mg) was simply dissolved in 1 mL of water, and a 50 μL aliquot of the solution was injected into the HPLC. The detection limits for ephedrine and pseudoephedrine in bulk d-methamphetamine were as low as 3 ppm each. This analytical separation technique made it possible to detect ephedrine and/or pseudoephedrine in seven samples of high-purity d-methamphetamine hydrochloride seized in Japan. The presence of trace ephedrines in illicit methamphetamine may strongly indicate a synthetic route via ephedrine in methamphetamine profiling. This method is simple and sensitive, requiring only commonly available equipment, and should be useful for high-purity methamphetamine profiling. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Xue, Chen-Chen; Meador, Mary Ann B.; Eby, R. K.; Cheng, Stephen Z. D.; Ge, Jason J.; Cubon, Valerie A.
2002-01-01
Rod-coil molecules have been introduced as a novel type of block copolymers with unique microstructure due to their ability to self-assemble to various ordered morphologies on a nanometer length scale. These molecules, comprised two homo polymers joined together at one end, microphase separate into ordered, periodic arrays of spheres, cylinders in the bulk state and or solution. To get ordered structure in a reasonable scale, additional force field are applied, such as mechanical shearing, electric field and magnetic field. Recently, progress has made it a possible to develop a new class of polyimides (PI)-Polyethylene oxide (PEO) that are soluble in polar organic solvents. The solvent-soluble PI-PEO has a wide variety of applications in microelectronics, since these PI-PEO films exhibit a high degree of thermal and chemical stability. In this paper, we report the self-assembled ordered structure of PI-PEO molecules formed from concentrate solution.
Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers
Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-01-01
This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898
The puzzling first-order phase transition in water–glycerol mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, Ivan; Greenbaum; Sokolov, Alexei P.
2015-06-05
Over the last decade, discussions on a possible liquid-liquid transition (LLT) have strongly intensified. The LLT proposed by several authors focused mostly on explaining the anomalous properties of water in a deeply supercooled state. However, there have been no direct experimental observations yet of LLT in bulk water in the so-called 'no man's land', where water exists only in the crystalline states. Recently, a novel experimental strategy to detect LLT in water has been employed using water-glycerol (W-G) mixtures, because glycerol can generate a strong hindrance for water crystallization. As a result, the observed first-order phase transition at a concentrationmore » of glycerol around c(g) approximate to 20 mol% was ascribed to the LLT. Here we show unambiguously that the first order phase transition in W-G mixtures is caused by the ice formation. We provide additional dielectric measurements, applying specific annealing temperature protocols in order to reinforce this conclusion. We also provide an explanation, why such a phase transition occurs only in the narrow glycerol concentration range. These results clearly demonstrate the danger of analysis of phase-separating liquids to gain better insights into water dynamics. These liquids have complex phase behavior that is affected by temperature, phase stability and segregation, viscosity and nucleation, and finally by crystallization, that might lead to significant misinterpretations.« less
Structural short-range order of the β-Ti phase in bulk Ti-Fe-(Sn) nanoeutectic composites
NASA Astrophysics Data System (ADS)
Das, J.; Eckert, J.; Theissmann, R.
2006-12-01
The authors report lattice distortion and "ω-like" structural short-range order (SRO) of the β-Ti phase in a Ti-Fe-(Sn) bulk nanoeutectic composite prepared by slow cooling from the melt. The nanoeuetctic phases are chemically homogeneous, but the addition of Sn releases the local lattice strain, modifies the structural SRO, and prevents the formation of stacking faults in the body centered cubic (bcc) β-Ti phase resulting in improved plastic deformability. The elastic properties and the structural SRO of the β-Ti phase are proposed to be important parameters for developing advanced high strength, ductile Ti-base nanocomposite alloys.
Phase restructuring in transition metal dichalcogenides for highly stable energy storage
Leng, Kai; Chen, Zhongxin; Zhao, Xiaoxu; ...
2016-09-16
Achieving homogeneous phase transition and uniform charge distribution is essential for good cycle stability and high capacity when phase conversion materials are used as electrodes. Herein, we show that chemical lithiation of bulk 2H-MoS 2 distorts its crystalline domains in three primary directions to produce mosaic-like 1T' nanocrystalline domains, which improve phase and charge uniformity during subsequent electrochemical phase conversion. 1T'-Li xMoS 2, a macroscopic dense material with interconnected nanoscale grains, shows excellent cycle stability and rate capability in a lithium rechargeable battery compared to bulk or exfoliated-restacked MoS 2. Transmission electron microscopy studies reveal that the interconnected MoS 2more » nanocrystals created during the phase change process are reformable even after multiple cycles of galvanostatic charging/discharging, which allows them to play important roles in the long term cycling performance of the chemically intercalated TMD materials. Finally, these studies shed light on how bulk TMDs can be processed into quasi-2D nanophase material for stable energy storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef, E-mail: ulm@mit.edu
2014-01-15
According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located onmore » a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: •A new method of clinker characterization •Combination of electron probe technique with cluster analysis •Simultaneous assessment of phase abundance, composition and bulk chemistry •Experimental validation performed on industrial clinkers.« less
The detection of brain oedema with frequency-dependent phase shift electromagnetic induction.
González, César A; Rubinsky, Boris
2006-06-01
The spectroscopic distribution of inductive phase shift in the brain as a function of the relative volume of oedema was evaluated with theoretical and experimental methods in the frequency range 1 to 8 MHz. The theoretical study employed a simple mathematical model of electromagnetic induction in tissue and brain tissue data available from the literature to calculate the phase shift as a function of oedema in the bulk of the brain. Experimental data were generated from bulk measurements of ex vivo homogenized pig brain tissue mixed with various volumes of physiological saline in a volume sample typical of the human brain. There is good agreement between the analytical and the experimental results. Detectable changes in phase shift begin from a frequency of about 3 MHz to 4 MHz in the tested compositions and volume. The phase shift increases with frequency and fluid content. The results suggest that measuring phase shift in the bulk of the brain has the potential for becoming a robust means for non-contact detection of oedema in the brain.
Gapless edges of 2d topological orders and enriched monoidal categories
NASA Astrophysics Data System (ADS)
Kong, Liang; Zheng, Hao
2018-02-01
In this work, we give a mathematical description of a chiral gapless edge of a 2d topological order (without symmetry). We show that the observables on the 1+1D world sheet of such an edge consist of a family of topological edge excitations, boundary CFT's and walls between boundary CFT's. These observables can be described by a chiral algebra and an enriched monoidal category. This mathematical description automatically includes that of gapped edges as special cases. Therefore, it gives a unified framework to study both gapped and gapless edges. Moreover, the boundary-bulk duality also holds for gapless edges. More precisely, the unitary modular tensor category that describes the 2d bulk phase is exactly the Drinfeld center of the enriched monoidal category that describes the gapless/gapped edge. We propose a classification of all gapped and chiral gapless edges of a given bulk phase. In the end, we explain how modular-invariant bulk rational conformal field theories naturally emerge on certain gapless walls between two trivial phases.
Carbide derived carbon from MAX-phases and their separation applications
NASA Astrophysics Data System (ADS)
Hoffman, Elizabeth N.
Improved sorbents with increased selectivity and permeability are needed to meet growing energy and environmental needs. New forms of carbon based sorbents have been discovered recently, including carbons produced by etching metals from metal carbides, known as carbide derived carbons (CDCs). A common method for the synthesis of CDC is by chlorination at elevated temperatures. The goal of this work is to synthesize CDC from ternary carbides and to explore the links between the initial carbide chemistry and structure with the resulting CDCs properties, including porosity. CDC was produced from MAX-phase carbides, in particular Ti3SiC 2, Ti3AlC2, Ti2AlC, and Ta2AlC. Additionally, CDC was produced from Ta-based binary carbides, TaC and Ta 2C, and one carbo-nitride Ti2AlC0.5N0.5. The CDC structure was characterized using XRD, Raman microspectroscopy, and HRTEM. Porosity characterization was performed using sorption analysis with both Ar and N2 as adsorbates. It was determined the microporosity of CDC is related to the density of the initial carbide. The layered structure of the MAX-phase carbides lent toward the formation of larger mesopores within the resulting CDCs, while the amount of mesopores was dependent on the chemistry of the carbide. Furthermore, CDC produced from carbides with extremely high theoretical porosity resulted in small specific surface areas due to a collapse of the carbon structure. To expand the potential applications for CDC beyond powder and bulk forms, CDC membranes were produced from a thin film of TiC deposited by magnetron sputtering onto porous ceramic substrates. The TiC thin film was subsequently chlorinated to produce a bilayer membrane with CDC as the active layer. Both gases and liquids are capable of passing the membrane. The membrane separates based on selective adsorption, rather than a size separation molecular sieving effect. Two applications for CDC produced from MAX-phases were investigated: protein adsorption and gas separation. Sorbents capable of adsorbing large protein molecules efficiently are desirable for many medical applications, including the treatment of sepsis. Primarily mesoporous Ti2AlC-CDC and Ti3AlC2-CDC were proven to adsorb a significant amount of proteins compared to two current carbon adsorbents. When tested for gas separation, CDC was capable of selectively adsorbing gases including SF6, CO2, CH4, and H2. However, the gases were not separated based on their size, but rather on their interaction with the CDC surface.
Self-assembled pentacenequinone derivative for trace detection of picric acid.
Bhalla, Vandana; Gupta, Ankush; Kumar, Manoj; Rao, D S Shankar; Prasad, S Krishna
2013-02-01
Pentacenequinone derivative 3 forms luminescent supramolecular aggregates both in bulk as well as in solution phase. In bulk phase at high temperature, long-range stacking of columns leads to formation of stable and ordered columnar mesophase. Further, derivative 3 works as sensitive chemosensor for picric acid (PA) and gel-coated paper strips detect PA at nanomolar level and provide a simple, portable, and low-cost method for detection of PA in aqueous solution, vapor phase, and in contact mode.
Code of Federal Regulations, 2011 CFR
2011-04-01
... container material. (a) The test. Bulk material shall be tested separately from final container material and material from each final container shall be tested in individual test vessels as follows: (1) Using Fluid Thioglycollate Medium—(i) Bulk and final container material. The volume of product, as required by paragraph (d...
Česla, Petr; Vaňková, Nikola; Křenková, Jana; Fischer, Jan
2016-03-18
In this work, we have investigated retention of maltooligosaccharides and their fluorescent derivatives in hydrophilic interaction liquid chromatography using four different stationary phases. The non-derivatized maltooligosaccharides (maltose to maltoheptaose) and their derivatives with 2-aminobenzoic acid, 2-aminobenzamide, 2-aminopyridine and 8-aminonaphthalene-1,3,6-trisulfonic acid were analyzed on silica gel, aminopropyl silica, amide (carbamoyl-bonded silica) and ZIC-HILIC zwitterionic sulfobetain bonded phase. The partitioning of the analytes between the bulk mobile phase and adsorbed water-rich layer, polar and ionic interactions of analytes with stationary phase have been evaluated and compared. The effects of the mobile phase additives (0.1% (v/v) of acetic acid and ammonium acetate in concentration range 5-30 mmol L(-1)) on retention were described. The suitability of different models for prediction of retention was tested including linear solvent strength model, quadratic model, mixed-mode model, and empirical Neue-Kuss model. The mixed-mode model was extended to the parameter describing the contribution of monomeric glucose unit to the retention of non-derivatized and derivatized maltooligosaccharides, which was used for evaluation of contribution of both, oligosaccharide backbone and end-group to retention. Copyright © 2016 Elsevier B.V. All rights reserved.
40 CFR 246.201-5 - Recommended procedures: Methods of separation and collection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... compartmentalized vehicles. (b) For multi-family dwellings, separated materials may be placed in bulk containers... stations may be set up at convenient locations to which residents bring recyclables. These stations should...
NASA Astrophysics Data System (ADS)
Gabriel, C. E.; Kellman, L. M.; Ziegler, S.
2016-12-01
Mineral soil organic matter (SOM) is associated with a suite of secondary minerals that can confer stability, resulting in the potential for long-term storage of carbon (C). Not all interactions impart the same level of stability, however; evidence is suggesting that SOM in certain mineral phases is dynamic and vulnerable to soil disturbance, such as forest harvesting. The objective of this research was to characterize SOM-mineral interactions in horizons of harvested soils of contrasting stand age. Sequential selective dissolutions representing increasingly stable SOM pools from soluble minerals (deionized water (DI)), non-crystalline (Na-pyrophosphate), poorly-crystalline minerals (HCl hydroxylamine), to crystalline secondary minerals (Na-dithionite HCl)) were carried out for Ae, Bf and BC horizons sampled from a young and mature forest site (35 and 110 years post-harvest) in Mooseland, Nova Scotia, Canada. Selective dissolution extracts were analyzed for dissolved organic carbon (DOC), its δ13C, Fe and Al. Initial isotopic analysis indicates that separate operational SOM pools were isolated: δ13C values of pyrophosphate-extracted non-crystalline (NC) phases were -27 to -28‰, similar to δ13C of bulk C and to plant-derived humic acids and fungal biomass, whereas the δ13C of DI extracts were more depleted in 13C (1-2 ‰). These SOM pools retained their isotopic signature through depth despite an enrichment in bulk SOM δ13C. NC dominated the C distribution for all horizons, followed by poorly crystalline (PC) minerals, and the C content of these two phases explained the variation in bulk C, while C in crystalline pools were similar for the two sites through depth. The mature site had twice as much C in the NC pool as the young site in the Bf horizons, supported by higher C/Fe+Al ratios, suggesting a change in loading following harvesting. Despite the destabilizing processes that occur with forest harvesting and evidence for the increased destabilization of NC and PC pools of SOM, those pools associated with crystalline OM remain stable, suggesting that the nature of mineral-SOM binding determines its stability and therefore its potential for long-term storage.
Analysis and Modeling of Boundary Layer Separation Method (BLSM).
Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid
2010-09-01
Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.
Shah, Umang; Patel, Shraddha; Raval, Manan
2018-01-01
High performance liquid chromatography is an integral analytical tool in assessing drug product stability. HPLC methods should be able to separate, detect, and quantify the various drug-related degradants that can form on storage or manufacturing, plus detect any drug-related impurities that may be introduced during synthesis. A simple, economic, selective, precise, and stability-indicating HPLC method has been developed and validated for analysis of Rifampicin (RIFA) and Piperine (PIPE) in bulk drug and in the formulation. Reversed-phase chromatography was performed on a C18 column with Buffer (Potassium Dihydrogen Orthophosphate) pH 6.5 and Acetonitrile, 30:70), (%, v/v), as mobile phase at a flow rate of 1 mL min-1. The detection was performed at 341 nm and sharp peaks were obtained for RIFA and PIPE at retention time of 3.3 ± 0.01 min and 5.9 ± 0.01 min, respectively. The detection limits were found to be 2.385 ng/ml and 0.107 ng/ml and quantification limits were found to be 7.228ng/ml and 0.325ng/ml for RIFA and PIPE, respectively. The method was validated for accuracy, precision, reproducibility, specificity, robustness, and detection and quantification limits, in accordance with ICH guidelines. Stress study was performed on RIFA and PIPE and it was found that these degraded sufficiently in all applied chemical and physical conditions. Thus, the developed RP-HPLC method was found to be suitable for the determination of both the drugs in bulk as well as stability samples of capsule containing various excipients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
46 CFR 153.233 - Separation of tanks from machinery, service and other spaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... spaces. 153.233 Section 153.233 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... other spaces. (a) To prevent leakage through a single weld failure, the following spaces must be...
46 CFR 153.233 - Separation of tanks from machinery, service and other spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... spaces. 153.233 Section 153.233 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... other spaces. (a) To prevent leakage through a single weld failure, the following spaces must be...
46 CFR 153.233 - Separation of tanks from machinery, service and other spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... spaces. 153.233 Section 153.233 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... other spaces. (a) To prevent leakage through a single weld failure, the following spaces must be...
46 CFR 153.233 - Separation of tanks from machinery, service and other spaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... spaces. 153.233 Section 153.233 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... other spaces. (a) To prevent leakage through a single weld failure, the following spaces must be...
46 CFR 153.233 - Separation of tanks from machinery, service and other spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... spaces. 153.233 Section 153.233 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS... other spaces. (a) To prevent leakage through a single weld failure, the following spaces must be...
7 CFR 201.39 - General procedure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... hand into the bulk and withdrawing representative portions. The hand is inserted in an open position and the fingers are held closely together while the hand is being inserted and the portion withdrawn... bag, the handfuls shall be taken from well-separated points. (b) For free-flowing seed in bags or bulk...
7 CFR 201.39 - General procedure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... hand into the bulk and withdrawing representative portions. The hand is inserted in an open position and the fingers are held closely together while the hand is being inserted and the portion withdrawn... bag, the handfuls shall be taken from well-separated points. (b) For free-flowing seed in bags or bulk...
Impact of lattice dynamics on the phase stability of metamagnetic FeRh: Bulk and thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolloch, M.; Gruner, M. E.; Keune, W.
2016-11-01
We present phonon dispersions, element-resolved vibrational density of states (VDOS) and corresponding thermodynamic properties obtained by a combination of density functional theory (DFT) and nuclear resonant inelastic x-ray scattering (NRIXS) across the metamagnetic transition of B2 FeRh in the bulk material and thin epitaxial films. We see distinct differences in the VDOS of the antiferromagnetic (AF) and ferromagnetic (FM) phases, which provide a microscopic proof of strong spin-phonon coupling in FeRh. The FM VDOS exhibits a particular sensitivity to the slight tetragonal distortions present in epitaxial films, which is not encountered in the AF phase. This results in a notablemore » change in lattice entropy, which is important for the comparison between thin film and bulk results. Our calculations confirm the recently reported lattice instability in the AF phase. The imaginary frequencies at the X point depend critically on the Fe magnetic moment and atomic volume. Analyzing these nonvibrational modes leads to the discovery of a stable monoclinic ground-state structure, which is robustly predicted from DFT but not verified in our thin film experiments. Specific heat, entropy, and free energy calculated within the quasiharmonic approximation suggest that the new phase is possibly suppressed because of its relatively smaller lattice entropy. In the bulk phase, lattice vibrations contribute with the same sign and in similar magnitude to the isostructural AF-FM phase transition as excitations of the electronic and magnetic subsystems demonstrating that lattice degrees of freedom need to be included in thermodynamic modeling.« less
Meighan, Michelle M; Vasquez, Jared; Dziubcynski, Luke; Hews, Sarah; Hayes, Mark A
2011-01-01
This work presents a technique termed as "electrophoretic exclusion" that is capable of differentiation and concentration of proteins in bulk solution. In this method, a hydrodynamic flow is countered by the electrophoretic velocity to prevent a species from entering into a channel. The separation can be controlled by changing the flow rate or applied electric potential in order to exclude a certain species selectively while allowing others to pass through the capillary. The exclusion of various proteins is investigated using a flow-injection regime of the method. Concentration of myoglobin of up to 1200 times the background concentration in 60 s was demonstrated. Additionally, negatively charged myoglobin was separated from a solution containing negatively charged allophycocyanin. Cationic cytochrome c was also differentiated from a solution with allophycocyanin. The ability to differentially transport species in bulk solution enables parallel and serial separation modes not available with other separations schemes.
NASA Technical Reports Server (NTRS)
Spiers, G. D.
1981-01-01
Plated silicon wafers with surface roughness ranging from 0.4 to 130 microinches were subjected to tensile pull strength tests. Electroless Ni/electroless Cu/electroplated Cu and electroless Ni/electroplated Cu were the two types of plate contacts tested. It was found that smoother surfaces had higher pull strength than rougher, chemically etched surfaces. The presence of the electroless Cu layer was found to be important to adhesion. The mode of fracture of the contact as it left the silicon was studied, and it was found that in almost all cases separation was due to fracture of the bulk silicon phase. The correlation between surface roughness and mode of contact failure is presented and interpreted.
Tan, Xin; Chai, Jiajue; Zhang, Xiaogang; Chen, Jiawei
2011-12-01
This study focuses on the description of the static forces in CO2-H2O and CO2-H2O-IPA cleaning solutions with a separate fluid phase entrapped between nano-scale copper particles and a silicon surface. Calculations demonstrate that increasing the pressure of the cleaning system decreases net adhesion force (NAF) between the particle and silicon. The NAF of a particle for in CO2-H2O-IPA system is less than that in CO2-H2O system, suggesting that the particles enter into bulk layer more easily as the CO2-H2O cleaning system is added IPA.
Alternative Thieno[3,2-b][1]benzothiophene Isoindigo Polymers for Solar Cell Applications.
Neophytou, Marios; Bryant, Daniel; Lopatin, Sergei; Chen, Hu; Hallani, Rawad K; Cater, Lewis; McCulloch, Iain; Yue, Wan
2018-03-05
This work reports the synthesis, characterization, photophysical, and photovoltaic properties of five new thieno[3,2-b][1]benzothiophene isoindigo (TBTI)-containing low bandgap donor-acceptor conjugated polymers with a series of comonomers and different side chains. When TBTI is combined with different electron-rich moieties, even small structural variations can have significant impact on thin film morphology of the polymer:phenyl C70 butyric acid methyl ester (PCBM) blends. More importantly, high-resolution electron energy loss spectroscopy is used to investigate the phase-separated bulk heterojunction domains, which can be accurately and precisely resolved, enabling an enhanced correlation between polymer chemical structure, photovoltaic device performance, and morphology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Srivastava, Anurag; Tyagi, Neha
2012-10-01
We have analyzed the one-dimensional (1D) ZnO nanocrystals in its wurtzite (B4); zinc-blende (B3) and rocksalt (B1) type phases, by means of density functional theory (DFT) calculations. The energetic stability of nanocrystal has been analyzed using Revised Perdew-Burke-Ernzerhof (revPBE) type parameterized GGA potential. The B3 type phase is most stable amongst other phases of nanocrystals. The computation of ground state properties for all the phases of ZnO nanocrystals finds that the bulk modulus are smaller than their bulk counterpart, in turn softening the material at reduced dimensions. The electronic band structure analysis confirms the semiconducting nature of B4 type phase whereas other two are metallic.
NASA Astrophysics Data System (ADS)
Kaptay, George
2018-05-01
Nano-materials are materials with at least one nano-phase. A nano-phase is a phase with at least one of its dimensions below 100 nm. It is shown here that nano-phases have at least 1% of their atoms along their surface layer. The ratio of surface atoms is proportional to the specific surface area of the phase, defined as the ratio of its surface area to its volume. Each specific/molar property has its bulk value and its surface value for the given phase, being always different, as the energetic states of the atoms in the bulk and in the surface layer of a phase are different. The average specific/molar property of a nano-phase is modeled here as a linear combination of the bulk and surface values of the same property, scaled with the ratio of the surface atoms. That makes the performance of all nano-phases proportional to their specific surface area. As the characteristic size of the nano-phase is inversely proportional to its specific surface area, all specific/molar properties of nano-phases are inversely proportional to the characteristic size of the phase. This is applied to the size dependence of the molar Gibbs energy of the nano-phase, which appears to be in agreement with the thermodynamics of Gibbs. This agreement proves the general validity of the present model on the size dependence of the specific/molar properties of independent nano-phases. It is shown that the properties of nano-phases are different for independent nano-phases (surrounded only by their equilibrium vapor phase) and for nano-phases in multi-phase situations, such as a liquid nano-droplet in the sessile drop configuration.
NASA Technical Reports Server (NTRS)
Roman, Monsi C.; Mittelman, Marc W.
2010-01-01
This slide presentation summarizes the studies performed to assess the bulk phase microbial community during the Space Station Water Recover Tests (WRT) from 1990-1998. These tests show that it is possible to recycle water from different sources including urine, and produce water that can exceed the quality of municpally produced tap water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.
2013-04-01
Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novelmore » analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.« less
Carbon nanotubes grown on bulk materials and methods for fabrication
Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN
2011-11-08
Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.
Effect of water on nanomechanics of bone is different between tension and compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuel, Jitin; Park, Jun-Sang; Almer, Jonathan
Water, an important constituent in bone, resides in different compartments in bone matrix and may impose significant effects on its bulk mechanical properties. However, a clear understanding of the mechanistic role of water in toughening bone is yet to emerge. To address this issue, this study used a progressive loading protocol, coupled with measurements of in situ mineral and collagen fibril deformations using synchrotron X-ray diffraction techniques. Using this unique approach, the contribution of water to the ultrastructural behavior of bone was examined by testing bone specimens in different loading modes (tension and compression) and hydration states (wet and dehydrated).more » The results indicated that the effect of water on the mechanical behavior of mineral and collagen phases at the ultrastructural level was loading mode dependent and correlated with the bulk behavior of bone. Tensile loading elicited a transitional drop followed by an increase in load bearing by the mineral phase at the ultrastructural level, which was correlated with a strain hardening behavior of bone at the bulk level. Compression loading caused a continuous loss of load bearing by the mineral phase, which was reflected at the bulk level as a strain softening behavior. In addition, viscous strain relaxation and pre-strain reduction were observed in the mineral phase in the presence of water. Taken together, the results of this study suggest that water dictates the bulk behavior of bone by altering the interaction between mineral crystals and their surrounding matrix.« less
Solid-liquid critical behavior of water in nanopores.
Mochizuki, Kenji; Koga, Kenichiro
2015-07-07
Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.
Equations of state of anhydrous AlF3 and AlI3: Modeling of extreme condition halide chemistry
NASA Astrophysics Data System (ADS)
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; Crowhurst, Jonathan C.; Goncharov, Alexander F.; Radousky, Harry B.; Armstrong, Michael R.; Roberts, Sarah K.; Plaue, Jonathan W.
2015-06-01
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF3) and separately, aluminum triiodide (AlI3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF3 and AlI3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: applied stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.
Radiation-based near-field thermal rectification with phase transition materials
NASA Astrophysics Data System (ADS)
Yang, Yue; Basu, Soumyadipta; Wang, Liping
2013-10-01
The capability of manipulating heat flow has promising applications in thermal management and thermal circuits. In this Letter, we report strong thermal rectification effect based on the near-field thermal radiation between silicon dioxide (SiO2) and a phase transition material, vanadium dioxide (VO2), separated by nanometer vacuum gaps under the framework of fluctuational electrodynamics. Strong coupling of surface phonon polaritons between SiO2 and insulating VO2 leads to enhanced near-field radiative transfer, which on the other hand is suppressed when VO2 becomes metallic, resulting in thermal rectification. The rectification factor is close to 1 when vacuum gap is at 1 μm and it increases to almost 2 at sub-20-nm gaps when emitter and receiver temperatures are set to 400 and 300 K, respectively. Replacing bulk SiO2 with a thin film of several nanometers, rectification factor of 3 can be achieved when the vacuum gap is around 100 nm.
NASA Astrophysics Data System (ADS)
Kukhtarev, N.; Kukhtareva, T.; Curley, M.; Jaenisch, H. M.; Edwards, M. E.; Gu, M.; Zhou, Z.; Guo, R.
2007-09-01
We have observed nanosecond electrical and optical pulsations from photorefractive lithium-niobate optical fibers using CW green and blue low-power lasers. Fourier spectra of the pulsations have a maximum at ~900 MHz with peaks separated by ~30MHz. We consider free-space and fiber supported illumination of the fiber crystal. Strong nonlinear enhanced backscattering with phase conjugation was observed from bulk crystals and crystal fibers along the C-axis. Model of transformation of CW laser irradiation of ferroelectric crystals into periodic nanosecond electrical and optical pulsations is suggested. This model includes combinations of photorefractive, pyroelectric, piezoelectric, and photogalvanic mechanisms of the holographic grating formation and crystal electrical charging. Possible applications of these short photo-induced electrical pulses for modulation of holographic beam coupling, pulsed electrolysis, electrophoresis, focused electron beams, X-ray and neutron generation, and hand-held micro X-ray devices for localized oncology imaging and treatment based on our advanced sensor work are discussed.
NASA Astrophysics Data System (ADS)
Marathe, D. M.; Tarkas, H. S.; Mahajan, M. S.; Lonkar, G. S.; Tak, S. R.; Sali, J. V.
2016-09-01
We here present a way of preparing the polymer: fullerene BHJ using dual feed method which can lead to formation of pure phases. In this report, we present results of our initial experiments in this direction. The effect of process parameters on the thickness and surface roughness of the active layer has been discussed. The structural and optical properties have been studied using the optical microscope, UV—visible spectroscopy and photoluminescence spectroscopy. Significant PL quenching indicates efficient charge separation in the BHJ formed using this technique. We have also compared the BHJ thin films prepared with this dual feed ultrasonic technique with the single feed spray method. The BHJ formed using this technique has been used as an active layer in OSC. supported by the University Grants Commission, New Delhi, under Faculty Improvement Programme (No. 33-02/12(WRO) Dt.19.03.2013) and the Special Assistance Programme (530/2/DRS/2010(SAP-I)) Phase-II.
Siddiqui, Farhan Ahmed; Sher, Nawab; Shafi, Nighat; Wafa Sial, Alisha; Ahmad, Mansoor; Mehjebeen; Naseem, Huma
2014-01-01
RP-HPLC ultraviolet detection simultaneous quantification of piracetam and levetiracetam has been developed and validated. The chromatography was obtained on a Nucleosil C18 column of 25 cm×0.46 cm, 10 μm, dimension. The mobile phase was a (70:30 v/v) mixture of 0.1 g/L of triethylamine and acetonitrile. Smooth flow of mobile phase at 1 mL/min was set and 205 nm wavelength was selected. Results were evaluated through statistical parameters which qualify the method reproducibility and selectivity for the quantification of piracetam, levetiracetam, and their impurities hence proving stability-indicating properties. The proposed method is significantly important, permitting the separation of the main constituent piracetam from levetiracetam. Linear behavior was observed between 20 ng/mL and 10,000 ng/mL for both drugs. The proposed method was checked in bulk drugs, dosage formulations, physiological condition, and clinical investigations and excellent outcome was witnessed.
NASA Technical Reports Server (NTRS)
Kim, Y.; Marti, K.
1993-01-01
Acapulco metal and silicate show distinct N isotopic signatures. Trapped heavy noble gases are carried by 'magnetic' opx and radiogenic Xe-129 excesses are observed in phosphate and in minor surficial phases on metal grains. N and Xe isotopic signatures in FRO90011 do not agree with those observed in Acapulco. The Acapulco meteorite is unique in having achondritic texture and chondritic composition. Its mineralogical study shows the record of high temperature (1100 C) recrystallization. However, this meteorite shows abundances of volatile elements close to the levels observed in carbonaceous chondrites and concentrations of heavy noble gases comparable to those observed in type 4 ordinary chondrites, not expected for a presumed highly equilibrated object. Nitrogen measurements in bulk Acapulco revealed two different isotopic signatures, in apparent conflict with evidence for a high degree of recrystallization. N and Xe were studied in separated mineral phases to search for the carriers in order to better understand the formation and thermal history of the Acapulco parent body.
Mohr, Wiebke; Vagner, Tomas; Kuypers, Marcel M M; Ackermann, Martin; Laroche, Julie
2013-01-01
Unicellular, diazotrophic cyanobacteria temporally separate dinitrogen (N2) fixation and photosynthesis to prevent inactivation of the nitrogenase by oxygen. This temporal segregation is regulated by a circadian clock with oscillating activities of N2 fixation in the dark and photosynthesis in the light. On the population level, this separation is not always complete, since the two processes can overlap during transitions from dark to light. How do single cells avoid inactivation of nitrogenase during these periods? One possibility is that phenotypic heterogeneity in populations leads to segregation of the two processes. Here, we measured N2 fixation and photosynthesis of individual cells using nanometer-scale secondary ion mass spectrometry (nanoSIMS) to assess both processes in a culture of the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii during a dark-light and a continuous light phase. We compared single-cell rates with bulk rates and gene expression profiles. During the regular dark and light phases, C. watsonii exhibited the temporal segregation of N2 fixation and photosynthesis commonly observed. However, N2 fixation and photosynthesis were concurrently measurable at the population level during the subjective dark phase in which cells were kept in the light rather than returned to the expected dark phase. At the single-cell level, though, cells discriminated against either one of the two processes. Cells that showed high levels of photosynthesis had low nitrogen fixing activities, and vice versa. These results suggest that, under ambiguous environmental signals, single cells discriminate against either photosynthesis or nitrogen fixation, and thereby might reduce costs associated with running incompatible processes in the same cell.
Mohr, Wiebke; Vagner, Tomas; Kuypers, Marcel M. M.; Ackermann, Martin; LaRoche, Julie
2013-01-01
Unicellular, diazotrophic cyanobacteria temporally separate dinitrogen (N2) fixation and photosynthesis to prevent inactivation of the nitrogenase by oxygen. This temporal segregation is regulated by a circadian clock with oscillating activities of N2 fixation in the dark and photosynthesis in the light. On the population level, this separation is not always complete, since the two processes can overlap during transitions from dark to light. How do single cells avoid inactivation of nitrogenase during these periods? One possibility is that phenotypic heterogeneity in populations leads to segregation of the two processes. Here, we measured N2 fixation and photosynthesis of individual cells using nanometer-scale secondary ion mass spectrometry (nanoSIMS) to assess both processes in a culture of the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii during a dark-light and a continuous light phase. We compared single-cell rates with bulk rates and gene expression profiles. During the regular dark and light phases, C. watsonii exhibited the temporal segregation of N2 fixation and photosynthesis commonly observed. However, N2 fixation and photosynthesis were concurrently measurable at the population level during the subjective dark phase in which cells were kept in the light rather than returned to the expected dark phase. At the single-cell level, though, cells discriminated against either one of the two processes. Cells that showed high levels of photosynthesis had low nitrogen fixing activities, and vice versa. These results suggest that, under ambiguous environmental signals, single cells discriminate against either photosynthesis or nitrogen fixation, and thereby might reduce costs associated with running incompatible processes in the same cell. PMID:23805199
MacDougall, Colin J; Razul, M Shajahan; Papp-Szabo, Erzsebet; Peyronel, Fernanda; Hanna, Charles B; Marangoni, Alejandro G; Pink, David A
2012-01-01
Fats are elastoplastic materials with a defined yield stress and flow behavior and the plasticity of a fat is central to its functionality. This plasticity is given by a complex tribological interplay between a crystalline phase structured as crystalline nanoplatelets (CNPs) and nanoplatelet aggregates and the liquid oil phase. Oil can be trapped within microscopic pores within the fat crystal network by capillary action, but it is believed that a significant amount of oil can be trapped by adsorption onto crystalline surfaces. This, however, remains to be proven. Further, the structural basis for the solid-liquid interaction remains a mystery. In this work, we demonstrate that the triglyceride liquid structure plays a key role in oil binding and that this binding could potentially be modulated by judicious engineering of liquid triglyceride structure. The enhancement of oil binding is central to many current developments in this area since an improvement in the health characteristics of fat and fat-structured food products entails a reduction in the amount of crystalline triacylglycerols (TAGs) and a relative increase in the amount of liquid TAGs. Excessive amounts of unbound, free oil, will lead to losses in functionality of this important food component. Engineering fats for enhanced oil binding capacity is thus central to the design of more healthy food products. To begin to address this, we modelled the interaction of triacylglycerol oils, triolein (OOO), 1,2-olein elaidin (OOE) and 1,2-elaidin olein (EEO) with a model crystalline nanoplatelet composed of tristearin in an undefined polymorphic form. The surface of the CNP in contact with the oil was assumed to be planar. We considered pure OOO and mixtures of OOO + OOE and OOO + EEO with 80% OOO. The last two cases were taken as approximations to high oleic sunflower oil (HOSO). The intent was to investigate whether phase separation on a nanoscale took place. We defined an "oil binding capacity" parameter, B(Q,Q'), relating a state Q to a reference state Q'. We used atomic scale molecular dynamics in the NVT ensemble and computed averages over 1-5 ns. We found that the probability of the OOE phase separating into a layer on the surface of the CNP compared to being retained randomly in an OOO + OOE mix were approximately equal. However, we found that it was probable that the EEO component of an OOO + EEO mix would phase separate and coat the surface of the CNP. These results suggest a mechanism whereby many-component oils undergo phase separation on a nanoscale so as to create a transition oil region between the surface of the CNP and the bulk major oil component (OOO in the case considered here) so as to create the appropriate oil binding capacity for the use to which it is put.
NASA Astrophysics Data System (ADS)
Friedman, B.; Link, M.; Farmer, D.
2016-12-01
We use an oxidative flow reactor (OFR) to determine the secondary organic aerosol (SOA) yields of five monoterpenes (alpha-pinene, beta-pinene, limonene, sabinene, and terpinolene) at a range of OH exposures. These OH exposures correspond to aging timescales of a few hours to seven days. We further determine how SOA yields of beta-pinene and alpha-pinene vary as a function of seed particle type (organic vs. inorganic) and seed particle mass concentration. We hypothesize that the monoterpene structure largely accounts for the observed variance in SOA yields for the different monoterpenes. We also use high-resolution time-of-flight chemical ionization mass spectrometry to calculate the bulk gas-phase properties (O:C and H:C) of the monoterpene oxidation systems as a function of oxidant concentrations. Bulk gas-phase properties can be compared to the SOA yields to assess the capability of the precursor gas-phase species to inform the SOA yields of each monoterpene oxidation system. We find that the extent of oxygenated precursor gas-phase species corresponds to SOA yield.
NASA Astrophysics Data System (ADS)
Yang, W. M.; Chen, L. P.; Wang, X. J.
2016-02-01
High quality single domain YBCO bulk superconductors, 20 mm in diameter, have been fabricated using a new top seeded infiltration and growth method (called the RE + 011 TSIG method), with a new solid phase (Y2O3 + xBaCuO2) instead of the conventional Y2BaCuO5 solid phase, x = 0, 0.5, 1.0, 1.2, 1.5, 1.8, 2.0, 2.5, 3.0. The effects of different BaCuO2 contents x on the growth morphology, microstructure, and levitation force have been investigated. The results show that the levitation force of the YBCO bulks first increases and then decreases with increasing x, and reaches maximum levitation forces of about 49.2 N (77 K, 0.5 T, with the traditional liquid phase of YBa2Cu3O y + 3 BaCuO2 + 2 CuO) and 47 N (77.3 K, 0.5 T, with the new liquid phase of Y2O3 + 10 BaCuO2 + 6 CuO) when x = 1.2, which is much higher than that of the samples fabricated with the conventional solid phases (23 N). The average Y2BaCuO5 particle size is about 1 μm, which is much smaller than the 3.4 μm in the samples prepared with the conventional Y2BaCuO5 solid phase; this means that the flux pinning force of the sample can be improved by using the new solid phase. Based on this method, single domain YBCO bulks 40 mm, 59 mm, and 93 mm in diameter have also been fabricated using the TSIG process with the new solid phases (Y2O3 + 1.2BaCuO2). These results indicate that the new TSIG process developed by our lab is a very important and practical method for the fabrication of low cost, large size, and high quality single domain REBCO bulk superconductors.
Bulk Viscosity of Bubbly Magmas and the Amplification of Pressure Waves
NASA Astrophysics Data System (ADS)
Navon, O.; Lensky, N. G.; Neuberg, J. W.; Lyakhovsky, V.
2001-12-01
The bulk viscosity of magma is needed in order to describe the dynamics of a compressible bubbly magma flowing in conduits and to follow the attenuation of pressure waves travelling through a compressible magma. We developed a model for the bulk viscosity of a suspension of gas bubbles in an incompressible Newtonian liquid that exsolves volatiles (e.g. magma). The suspension is modeled as a close pack of spherical cells, consisting of gas bubbles centered in spherical shells of a volatile-bearing liquid. Following a drop in the ambient pressure the resulting dilatational motion and driving pressure are obtained in terms of the two-phase cell parameters, i.e. bubble radius and gas pressure. By definition, the bulk viscosity of a fluid is the relation between changes of the driving pressure with respect to changes in the resulted expansion strain-rate. Thus, we can use the two-phase solution to define the bulk viscosity of a hypothetical cell, composed of a homogeneously compressible, one-phase, continuous fluid. The resulted bulk viscosity is highly non-linear. At the beginning of the expansion process, when gas exsolution is efficient, the expansion rate grows exponentially while the driving pressure decreases slightly. That means that bulk viscosity is formally negative. The negative value reflects the release of the energy stored in the supersaturated liquid (melt) and its conversion to mechanical work during exsolution. Later, when bubbles are large enough and the gas influx decreases significantly, the strain rate decelerates and the bulk viscosity becomes positive as expected in a dissipative system. We demonstrate that amplification of seismic wave travelling through a volcanic conduit filled with a volatile saturated magma may be attributed to the negative bulk viscosity of the compressible magma. Amplification of an expansion wave may, at some level in the conduit, damage the conduit walls and initiate opening of new pathways for magma to erupt.
NASA Astrophysics Data System (ADS)
Takiguchi, S.; Suganuma, Y.; Kataoka, R.; Yamaguchi, K. E.
2017-12-01
Cosmic rays react with substances in the Earth's atmosphere and form cosmogenic nuclides. The flux would abruptly increase with nearby supernova or terrestrial magnetic events such as reversal or excursion of terrestrial magnetism. The Earth must have been exposed to cosmic ray radiation for as long as 10 Ma, if any, by nearby supernova activities (Kataoka et al., 2014). Increased and prolonged activity of cosmic rays would affect Earth's climate through forming greenhouse gases and biosphere through damaging DNA. Therefore, interests have been growing as to whether and how past supernova events have ever left any fingerprints on them. However, detection of nearby supernova is still under debate (e.g., Knie et al., 2004) To detect long-term record of past supernova activities, we utilize cosmogenic nuclide 10Be because of its short residence time (1-2yr) in the atmosphere, simple transport process, and adequate half-life (1.36 kyr) which is nearly equivalent to the duration of present-day deep water circulation. Sediment samples collected from the equatorial western Pacific (706-825 kyr in age) were finely powdered and decomposed by mixed acids (HNO3, HF, and HClO4). Authigenic phase was also separated from bulk powders by leaching with a weak acid. Because quantitative separation of Be from samples is essential toward high-quality 10Be analysis, both Be-bearing fractions were applied to optimized anion exchange chromatography for Be separation, and Be abundance was measured by atomic absorption spectrometry. The 10Be abundance (10Be/9Be ratios) were measured by accelerator mass spectrometry. The authigenic phase showed temporal curve that is similar to that of bulk samples (Suganuma et al., 2012), reflecting the influence of relative paleo-intensity and utility of authigenic method. Increased data set in terms of sampling interval (density) and total age range would allow us to judge whether it could detect past supernova activities and how it appears when compared to the recent results of Wallner et al. (2016) using Fe isotopes. If past supernova activities are not detected, we then establish standard temporal curve, with higher resolution, of relative paleo-intensity of terrestrial magnetism and construct global ionization map as a function of terrestrial magnetism.
Sutter, Eli; Sutter, Peter
2008-02-01
We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.
Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules.
Kim, Soon-Chul; Kim, Eun-Young; Seong, Baek-Seok
2011-04-28
A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.
Synthesis of formamidinium lead iodide perovskite bulk single crystal and its optical properties
NASA Astrophysics Data System (ADS)
Zheng, Hongge; Duan, Junjie; Dai, Jun
2017-07-01
Formamidinium lead iodide (FAPbI3) is a promising hybrid perovskite material for optoelectronic devices. We synthesized bulk single crystal FAPbI3 by a rapid solution crystallization method. X-ray diffraction (XRD) was performed to characterize the crystal structure. Temperature-dependent photoluminescence (PL) spectra of the bulk single crystal FAPbI3 were measured from 10 to 300 K to explain PL recombination mechanism. It shows that near band edge emission blueshifts with the temperature increasing from 10 to 120 K and from 140 K to room temperature, a sudden emission band redshift demonstrates near 140 K because of the phase transition from orthorhombic phase to cubic phase. From the temperature-dependent PL spectra, the temperature coefficients of the bandgap and thermal activation energies of FAPbI3 perovskite are fitted.
Real-time atomistic observation of structural phase transformations in individual hafnia nanorods
Hudak, Bethany M.; Depner, Sean W.; Waetzig, Gregory R.; ...
2017-05-12
High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO 2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO 2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO 2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000°C from bulk. When the nanorod is annealed, we observe with atomic-scale resolutionmore » the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics.« less
Modes of surface premelting in colloidal crystals composed of attractive particles
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, Feng; Zhou, Di; Peng, Yi; Ni, Ran; Han, Yilong
2016-03-01
Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal-vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid-solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid-vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid-solid transitions challenges existing theories of surface premelting and two-dimensional melting.
Electron heating and the Electrical Asymmetry Effect in capacitively coupled RF discharges
NASA Astrophysics Data System (ADS)
Schulze, Julian
2011-10-01
For applications of capacitive radio frequency discharges, the control of particle distribution functions at the substrate surface is essential. Their spatio-temporal shape is the result of complex heating mechanisms of the respective species. Enhanced process control, therefore, requires a detailed understanding of the heating dynamics. There are two known modes of discharge operation: α- and γ-mode. In α-mode, most ionization is caused by electron beams generated by the expanding sheaths and field reversals during sheath collapse, while in γ-mode secondary electrons dominate the ionisation. In strongly electronegative discharges, a third heating mode is observed. Due to the low electron density in the discharge center the bulk conductivity is reduced and a high electric field is generated to drive the RF current through the discharge center. In this field, electrons are accelerated and cause significant ionisation in the bulk. This bulk heating mode is observed experimentally and by PIC simulations in CF4 discharges. The electron dynamics and mode transitions as a function of driving voltage and pressure are discussed. Based on a detailed understanding of the heating dynamics, the concept of separate control of the ion mean energy and flux in classical dual-frequency discharges is demonstrated to fail under process relevant conditions. To overcome these limitations of process control, the Electrical Asymmetry Effect (EAE) is proposed in discharges driven at multiple consecutive harmonics with adjustable phase shifts between the driving frequencies. Its concept and a recipe to optimize the driving voltage waveform are introduced. The functionality of the EAE in different gases and first applications to large area solar cell manufacturing are discussed. Finally, limitations caused by the bulk heating in strongly electronegative discharges are outlined.
NASA Astrophysics Data System (ADS)
Bercovici, David; Ricard, Yanick
2003-03-01
The two-phase theory for compaction and damage proposed by Bercovici et al. (2001a, J. Geophys. Res.,106, 8887-8906) employs a nonequilibrium relation between interfacial surface energy, pressure and viscous deformation, thereby providing a model for damage (void generation and microcracking) and a continuum description of weakening, failure and shear localization. Here we examine further variations of the model which consider (1) how interfacial surface energy, when averaged over the mixture, appears to be partitioned between phases; (2) how variability in deformational-work partitioning greatly facilitates localization; and (3) how damage and localization are manifested in heat output and bulk energy exchange. Microphysical considerations of molecular bonding and activation energy suggest that the apparent partitioning of surface energy between phases goes as the viscosity of the phases. When such partitioning is used in the two-phase theory, it captures the melt-compaction theory of McKenzie (1984, J. Petrol.,25, 713-765) exactly, as well as the void-damage theory proposed in a companion paper (Ricard & Bercovici, submitted). Calculations of 1-D shear localization with this variation of the theory still show at least three possible regimes of damage and localization: at low stress is weak localization with diffuse slowly evolving shear bands; at higher stress strong localization with narrow rapidly growing bands exists; and at yet higher shear stress it is possible for the system to undergo broadly distributed damage and no localization. However, the intensity of localization is strongly controlled by the variability of the deformational-work partitioning with dilation rate, represented by the parameter γ. For γ>> 1, extreme localization is allowed, with sharp profiles in porosity (weak zones), nearly discontinuous separation velocities and effectively singular dilation rates. Finally, the bulk heat output is examined for the 1-D system to discern how much deformational work is effectively stored as surface energy. In the high-stress, distributed-damage cases, heat output is reduced as more interfacial surface energy is created. Yet, in either the weak or strong localizing cases, the system always releases surface energy, regardless of the presence of damage or not, and thus slightly more heat is in fact released than energy is input through external work. Moreover, increased levels of damage (represented by the maximum work-partitioning f*) make the localizing system release surface energy faster as damage enhances phase separation and focusing of the porosity field, thus yielding more rapid loss of net interfacial surface area. However, when cases with different levels of damage are compared at similar stages of development (say, the peak porosity of the localization) it is apparent that increased damage causes smaller relative heat release and retards loss of net interfacial surface energy. The energetics and energy partitioning of this damage and shear-localization model are applied to estimating the energy costs of forming plate boundaries and generating plates from mantle convection.
NASA Astrophysics Data System (ADS)
Song, Juntao; Fine, Carolyn; Prodan, Emil
2014-11-01
The effect of strong disorder on chiral-symmetric three-dimensional lattice models is investigated via analytical and numerical methods. The phase diagrams of the models are computed using the noncommutative winding number, as functions of disorder strength and model's parameters. The localized/delocalized characteristic of the quantum states is probed with level statistics analysis. Our study reconfirms the accurate quantization of the noncommutative winding number in the presence of strong disorder, and its effectiveness as a numerical tool. Extended bulk states are detected above and below the Fermi level, which are observed to undergo the so-called "levitation and pair annihilation" process when the system is driven through a topological transition. This suggests that the bulk invariant is carried by these extended states, in stark contrast with the one-dimensional case where the extended states are completely absent and the bulk invariant is carried by the localized states.
Kong, Ming; Li, Yuanzhi; Chen, Xiong; Tian, Tingting; Fang, Pengfei; Zheng, Feng; Zhao, Xiujian
2011-10-19
TiO(2) nanocrystals with tunable bulk/surface defects were synthesized and characterized with TEM, XRD, BET, positron annihilation, and photocurrent measurements. The effect of defects on photocatalytic activity was studied. It was found for the first time that decreasing the relative concentration ratio of bulk defects to surface defects in TiO(2) nanocrystals could significantly improve the separation efficiency of photogenerated electrons and holes, thus significantly enhancing the photocatalytic efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prusa, P.; Cechak, T.; Mares, J. A.
2008-01-28
Liquid phase epitaxy grown Lu{sub 3}Al{sub 5}O{sub 12}:Ce (LuAG:Ce) 20 {mu}m thick films and plate cut from the bulk Czochralski-grown LuAG:Ce crystal were prepared for comparison of photoelectron yield (PhY) and PhY dependence on shaping time (0.5-10 {mu}s). {sup 241}Am ({alpha} particles) was used for excitation. At the 0.5 {mu}s shaping time, the best film shows comparable PhY with the bulk sample. PhY of bulk material increases noticeably more with shaping time than that of the films. Energy resolution of films is better. Influence of Pb{sup 2+} contamination in the films (from the flux) and antisite Lu{sub Al} defect inmore » bulk material is discussed.« less
Rettenwander, Daniel; Redhammer, Günther J; Guin, Marie; Benisek, Artur; Krüger, Hannes; Guillon, Olivier; Wilkening, Martin; Tietz, Frank; Fleig, Jürgen
2018-03-13
NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σ bulk of sub-mm-sized flux grown Na 3 Sc 2 (PO 4 ) 3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies E a . Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σ bulk turned out to be as high as 3 × 10 -4 S cm -1 at RT ( E a, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals.
2018-01-01
NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σbulk of sub-mm-sized flux grown Na3Sc2(PO4)3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies Ea. Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σbulk turned out to be as high as 3 × 10–4 S cm–1 at RT (Ea, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals. PMID:29606799
Formation of an Anti-Core–Shell Structure in Layered Oxide Cathodes for Li-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hanlei; Omenya, Fredrick; Whittingham, M. Stanley
The layered → rock-salt phase transformation in the layered dioxide cathodes for Li-ion batteries is believed to result in a “core-shell” structure of the primary particles, in which the core region maintains as the layered phase while the surface region undergoes the phase transformation to the rock-salt phase. Using transmission electron microscopy, here we demonstrate the formation of an “anti-core-shell” structure in cycled primary particles with a formula of LiNi0.80Co0.15Al0.05O2, in which the surface and subsurface regions remain as the layered structure while the rock-salt phase forms as domains in the bulk with a thin layer of the spinel phasemore » between the rock-salt core and the skin of the layered phase. Formation of this anti-core-shell structure is attributed to the oxygen loss at the surface that drives the migration of oxygen from the bulk to the surface, thereby resulting in localized areas of significantly reduced oxygen levels in the bulk of the particle, which subsequently undergoes the phase transformation to the rock-salt domains. The formation of the anti-core-shell rock-salt domains is responsible for the reduced capacity, discharge voltage and ionic conductivity in cycled cathode.« less
Rheology and microstructure of filled polymer melts
NASA Astrophysics Data System (ADS)
Anderson, Benjamin John
The states of particle dispersion in polymer nanocomposite melts are studied through rheological characterization of nanocomposite melt mechanical properties and small angle X-ray scattering measurement of the particle microstructure. The particle microstructure probed with scattering is related to bulk flow mechanics to determine the origin of slow dynamics in these complex dispersions: whether a gel or glass transition or a slowing down of dispersing phase dynamics. These studies were conducted to understand polymer mediated particle-particle interactions and potential particle-polymer phase separation. The phase behavior of the dispersion will be governed by enthalpic and entropic contributions. A variety of phases are expected: homogeneous fluid, phase separated, or non-equilibrium gel. The effects of dispersion control parameters, namely particle volume fraction, polymer molecular weight, and polymer-particle surface affinity, on the phase behavior of 44 nm silica dispersions are studied in low molecular weight polyethylene oxide (PEO), polyethylene oxide dimethylether (PEODME), and polytetrahydrofuran (PTHF). Scattering measurements of the particle second virial coefficient in PEO melts indicates repulsive particles by a value slightly greater than unity. In PEO nanocomposites, dispersion dynamics slow down witnessed by a plateau in the elastic modulus as the particle separation approaches the length scale of the polymer radius of gyration. As the polymer molecular weight is increased, the transition shifts to lower particle volume fractions. Below polymer entanglement, the slow dynamics mimics that of a colloidal glass by the appearance of two relaxation times in the viscous modulus that display power law scaling with volume fraction. Above entanglement, the slow dynamics is qualitatively different resembling the behavior of a gelled suspension yet lacking any sign of scattering from particle agglomerates. As polymer molecular weight is increased at a fixed volume fraction, two strain yielding events emerge. Further particle loading leads to the formation of a particle-polymer network and the onset of brittle mechanical behavior. The performance of PEO nanocomposites is contrasted by PEODME and PTHF nanocomposites where a change in the polymer segment-surface activity changes the slow dynamics of the nanocomposite and the microstructure of particles in the melt. Slow dynamics and the particle microstructure indicate a gelled suspension as volume fraction is raised with particles in or near contact and support the turning on of particle attractions in the melt.
NASA Astrophysics Data System (ADS)
Phan, T. T.; Capo, R. C.; Gardiner, J. B.; Stewart, B. W.
2017-12-01
The organic-rich Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, is a major target of natural gas exploration. Constraints on local and regional sediment sources, depositional environments, and post-depositional processes are essential for understanding the evolution of the basin. In this study, multiple proxies, including trace metals, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U and Li isotopes were applied to bulk rocks and authigenic fractions of the Marcellus Shale and adjacent limestone/sandstone units from two locations separated by 400 km. The range of ɛNd values (-7.8 to -6.4 at 390 Ma) is consistent with a clastic sedimentary component derived from a well-mixed source of fluvial and eolian material of the Grenville orogenic belt. The Sm-Nd isotope system and bulk REE distributions appear to have been minimally affected by post-depositional processes, while the Rb-Sr isotope system shows evidence of limited post-depositional redistribution. While REE are primarily associated with silicate minerals (80-95%), REE patterns of sequentially extracted fractions reflect post-depositional alteration at the intergranular scale. Although the chemical index of alteration (CIA = 54 to 60) suggests the sediment source was not heavily weathered, Li isotope data are consistent with progressively increasing weathering of the source region during Marcellus Shale deposition. δ238U values in bulk shale and reduced phases (oxidizable fraction) are higher than those of modern seawater and upper crust. The isotopically heavy U accumulated in these authigenic phases can be explained by the precipitation of insoluble U in anoxic/euxinic bottom water. Unlike carbonate cement within the shale, the similarity between δ238U values and REE patterns of the limestone units and those of modern seawater indicates that the limestone formed under open ocean (oxic) conditions.
Pressure induced phase transition in CdTe nanowire: A DFT study
NASA Astrophysics Data System (ADS)
Bhatia, Manjeet; Khan, Md. Shahzad; Srivastava, Anurag
2018-05-01
We have studied structural phase transition and electronic properties of CdTe nanowires in their wurtzite (B4) to rocksalt (B1) phase by first principles density functional calculations using SIESTA code. Nanowires are derived from wurtzite and rocksalt phase of bulk CdTe with growth direction along 100 planes. We observed structural phase transition from B4→B1 at 4.79 GPa. Wurtzite structure is found to have band gap 2.30 eV while rocksalt is metallic in nature. Our calculated lattice constant (4.55 Å for B4 and 5.84 Å for B1), transition pressure (4.79 GPa) and electronic structure results are in close agreement with the previous calculations on bulk and nanostructures.
Modulation of magnetic interaction in Bismuth ferrite through strain and spin cycloid engineering
NASA Astrophysics Data System (ADS)
Yadav, Rama Shanker; Reshi, Hilal Ahmad; Pillai, Shreeja; Rana, D. S.; Shelke, Vilas
2016-12-01
Bismuth ferrite, a widely studied room temperature multiferroic, provides new horizons of multifunctional behavior in phase transited bulk and thin film forms. Bismuth ferrite thin films were deposited on lattice mismatched LaAlO3 substrate using pulsed laser deposition technique. X-ray diffraction confirmed nearly tetragonal (T-type) phase of thin film involving role of substrate induced strain. The film thickness of 56 nm was determined by X-ray reflectivity measurement. The perfect coherence and epitaxial nature of T- type film was observed through reciprocal space mapping. The room temperature Raman measurement of T-type bismuth ferrite thin film also verified phase transition with appearance of only few modes. In parallel, concomitant La and Al substituted Bi1-xLaxFe0.95Al0.05O3 (x = 0.1, 0.2, 0.3) bulk samples were synthesized using solid state reaction method. A structural phase transition into orthorhombic (Pnma) phase at x = 0.3 was observed. The structural distortion at x = 0.1, 0.2 and phase transition at x = 0.3 substituted samples were also confirmed by changes in Raman active modes. The remnant magnetization moment of 0.199 emu/gm and 0.28 emu/gm were observed for x = 0.2 and 0.3 bulk sample respectively. The T-type bismuth ferrite thin film also showed high remnant magnetization of around 20emu/cc. The parallelism in magnetic behavior between T-type thin film and concomitant La and Al substituted bulk samples is indication of modulation, frustration and break in continuity of spiral spin cycloid.
Phase Competition and Magnetotransport Phenomena in Manganite Films and Mesoscopic Structures
NASA Astrophysics Data System (ADS)
Wu, Tom
2006-03-01
The importance of competition between ferromagnetic metallic (FMM) and charge-ordered insulating (COI) phases in the physics of bulk manganites has been established through a wide variety of techniques. One exotic consequence of this phase competition is step-like features in magnetotransport observed in bulk and single-crystals of Pr0.65(CaySr1-y)0.35MnO3 (PCSMO) with 0.7<=y<=0.8. The length-scale of the phase coexistence is ˜1 micron, motivating a study of structures with dimensions similar to this natural length scale where phenomenology distinct from that of bulk counterparts is expected. Toward that end, we have synthesized films and laterally confined mesoscopic bridges of PCSMO and studied their magnetotransport properties. In particular, we observed: (1) Intrinsic ultrasharp magnetization steps below 5 K in both bulk and film samples and their dependence on the extrinsic measurement protocols; (2) Spontaneous jumps of resistance during both the ramping of magnetic field and the relaxation after the field cycle; (3) I-V curves exhibiting negative differential resistance (NDR) in certain ranges of temperature and magnetic field. All of these phenomena can be explained in the context of interconversion between the COI phase and the FMM phase. As expected, this interconversion can be triggered by external magnetic field, as found in the case of the magnetization and resistance steps. Alternatively, in the mesoscopic structures with dimensions similar to the size of the competing FMM and COI domains, a local Joule heating-induced annihilation of conducting filaments causes the anomalous NDR.
Investigations into polymer and carbon nanomaterial separations
NASA Astrophysics Data System (ADS)
Owens, Cherie Nicole
The work of this thesis follows a common theme of research focused on innovative separation science. Polyhydroxyalkanoates are biodegradable polyesters produced by bacteria that can have a wide distribution in molecular weight and monomer composition. This large distribution often leads to unpredictable physical properties making commercial applications challenging. To improve polymer homogeneity and obtain samples with a clear set of physical characteristics, poly-3-hydroxyvalerate-co-3-hydroxybutyrate copolymers were fractionated using gradient polymer elution chromatography (GPEC) with carefully optimized gradients. The resulting fractions were analyzed using Size Exclusion Chromatography (SEC) and NMR. As the percentage of “good” solvent was increased in the mobile phase, the polymers eluted with decreasing percentage of 3-hydroxyvalerate and increasing molecular weight, which indicates the importance of precipitation/redissolution in the separation. As such, GPEC is an excellent choice to provide polyhydroxyalkanoate samples with a narrower distribution in composition than the original bulk copolymer. Additionally, the critical condition was found for 3-hydroxybutyrate to erase its effects on retention of the copolymer. Copolymer samples were then separated using Liquid Chromatography at the Critical Condition (LCCC) and it was determined that poly(3-hydroxvalerate-co-3-hydroxybutyrate) is a statistically random copolymer. The second project uses ultra-thin layer chromatography (UTLC) to study the performance and behavior of polyhydroxybutyrate (P3HB) as a chromatographic substrate. One specific polyhydroxyalkanoate, polyhydroxybutyrate, is a liquid crystalline polymer that can be electrospun. Electrospinning involves the formation of nanofibers though the application of an electric potential to a polymer solution. Precisely controlled optimization of electrospinning parameters was conducted to achieve the smallest diameter PHA nanofibers to date to utilize as novel UTLC substrates. Additionally, aligned electrospun UTLC (AE-UTLC) substrates were developed to compare to the randomly oriented electrospun (E-UTLC) devices. The PHB plates were compared to commercially available substrates for the separation of biological samples: nucleotides and steroids. The electrospun substrates show lower band broadening and higher reproducibility in a smaller development distance than commercially available TLC plates, conserving both resources and time. The AE-UTLC plates provided further enhancement of reproducibility and development time compared to E-UTLC plates. Thus, the P3HB E-UTLC phases are an excellent sustainable option for TLC as they are biodegradable and perform better than commercial phases. A third topic of interest is the study of ordered carbon nanomaterials. The typical amorphous carbon used as a stationary phase in Hypercarb ® is known to consist of basal- and edge-plane oriented sites. This heterogeneity of the stationary phase can lead to peak broadening that may be improved by using homogeneous carbon throughout. Amorphous, basal-plane, and edge-plane carbons were produced in-house through membrane template synthesis. Amorphous, basal-plane, and edge-plane carbons were then used separately as chromatographic phases in capillary electrochomatography (CEC). Differences in chromatographic performance between these species were assessed by modeling retention data for test solutes to determine Linear Solvation Energy Relationships (LSER). The LSER study for the three carbon phases indicates that the main difference is in the polarizability, and hydrogen bonding character of the surface leading to unique solute interactions. These results highlight the possible usefulness of using these phases independently.
Using the Opposition Effect in Remotely Sensed Data to Assist in the Retrieval of Bulk Density
NASA Astrophysics Data System (ADS)
Ambeau, Brittany L.
Bulk density is an important geophysical property that impacts the mobility of military vehicles and personnel. Accurate retrieval of bulk density from remotely sensed data is, therefore, needed to estimate the mobility on "off-road" terrain. For a particulate surface, the functional form of the opposition effect can provide valuable information about composition and structure. In this research, we examine the relationship between bulk density and angular width of the opposition effect for a controlled set of laboratory experiments. Given a sample with a known bulk density, we collect reflectance measurements on a spherical grid for various illumination and view geometries -- increasing the amount of reflectance measurements collected at small phase angles near the opposition direction. Bulk densities are varied using a custom-made pluviation device, samples are measured using the Goniometer of the Rochester Institute of Technology-Two (GRIT-T), and observations are fit to the Hapke model using a grid-search method. The method that is selected allows for the direct estimation of five parameters: the single-scattering albedo, the amplitude of the opposition effect, the angular width of the opposition effect, and the two parameters that describe the single-particle phase function. As a test of the Hapke model, the retrieved bulk densities are compared to the known bulk densities. Results show that with an increase in the availability of multi-angular reflectance measurements, the prospects for retrieving the spatial distribution of bulk density from satellite and airborne sensors are imminent.
Le Châtelier's conjecture: Measurement of colloidal eigenstresses in chemically reactive materials
NASA Astrophysics Data System (ADS)
Abuhaikal, Muhannad; Ioannidou, Katerina; Petersen, Thomas; Pellenq, Roland J.-M.; Ulm, Franz-Josef
2018-03-01
Volume changes in chemically reactive materials, such as hydrating cement, play a critical role in many engineering applications that require precise estimates of stress and pressure developments. But a means to determine bulk volume changes in the absence of other deformation mechanisms related to thermal, pressure and load variations, is still missing. Herein, we present such a measuring devise, and a hybrid experimental-theoretical technique that permits the determination of colloidal eigenstresses. Applied to cementitious materials, it is found that bulk volume changes in saturated cement pastes at constant pressure and temperature conditions result from a competition of repulsive and attractive phenomena that originate from the relative distance of the solid particles - much as Henry Louis Le Châtelier, the father of modern cement science, had conjectured in the late 19th century. Precipitation of hydration products in confined spaces entails a repulsion, whereas the concurrent reduction in interparticle distance entails activation of attractive forces in charged colloidal particles. This cross-over from repulsion to attraction can be viewed as a phase transition between a liquid state (below the solid percolation) and the limit packing of hard spheres, separated by an energy barrier that defines the temperature-dependent eigenstress magnitude.
Gentil, Paulo; de Lira, Claudio Andre Barbosa; Paoli, Antonio; Dos Santos, José Alexandre Barbosa; da Silva, Roberto Deivide Teixeira; Junior, José Romulo Pereira; da Silva, Edson Pereira; Magosso, Rodrigo Ferro
2017-02-24
The purpose of this study was to report and analyze the practices adopted by bodybuilders in light of scientific evidence and to propose evidence-based alternatives. Six (four male and two female) bodybuilders and their coaches were directly interviewed. According to the reports, the quantity of anabolic steroids used by the men was 500-750 mg/week during the bulking phase and 720-1160 mg during the cutting phase. The values for women were 400 and 740 mg, respectively. The participants also used ephedrine and hydrochlorothiazide during the cutting phase. Resistance training was designed to train each muscle once per week and all participants performed aerobic exercise in the fasted state in order to reduce body fat. During the bulking phase, bodybuilders ingested ~2.5 g of protein/kg of body weight. During the cutting phase, protein ingestion increased to ~3 g/kg and carbohydrate ingestion decreased by 10-20%. During all phases, fat ingestion corresponded to ~15% of the calories ingested. The supplements used were whey protein, chromium picolinate, omega 3 fatty acids, branched chain amino acids, poly-vitamins, glutamine and caffeine. The men also used creatine in the bulking phase. In general, the participants gained large amounts of fat-free mass during the bulking phase; however, much of that fat-free mass was lost during the cutting phase along with fat mass. Based on our analysis, we recommend an evidence-based approach by people involved in bodybuilding, with the adoption of a more balanced and less artificial diet. One important alert should be given for the combined use of anabolic steroids and stimulants, since both are independently associated with serious cardiovascular events. A special focus should be given to revisiting resistance training and avoiding fasted cardio in order to decrease the reliance on drugs and thus preserve bodybuilders' health and integrity.
Gentil, Paulo; de Lira, Claudio Andre Barbosa; Paoli, Antonio; dos Santos, José Alexandre Barbosa; da Silva, Roberto Deivide Teixeira; Junior, José Romulo Pereira; da Silva, Edson Pereira; Magosso, Rodrigo Ferro
2017-01-01
The purpose of this study was to report and analyze the practices adopted by bodybuilders in light of scientific evidence and to propose evidence-based alternatives. Six (four male and two female) bodybuilders and their coaches were directly interviewed. According to the reports, the quantity of anabolic steroids used by the men was 500–750 mg/week during the bulking phase and 720–1160 mg during the cutting phase. The values for women were 400 and 740 mg, respectively. The participants also used ephedrine and hydrochlorothiazide during the cutting phase. Resistance training was designed to train each muscle once per week and all participants performed aerobic exercise in the fasted state in order to reduce body fat. During the bulking phase, bodybuilders ingested ~2.5 g of protein/kg of body weight. During the cutting phase, protein ingestion increased to ~3 g/kg and carbohydrate ingestion decreased by 10–20%. During all phases, fat ingestion corresponded to ~15% of the calories ingested. The supplements used were whey protein, chromium picolinate, omega 3 fatty acids, branched chain amino acids, poly-vitamins, glutamine and caffeine. The men also used creatine in the bulking phase. In general, the participants gained large amounts of fat-free mass during the bulking phase; however, much of that fat-free mass was lost during the cutting phase along with fat mass. Based on our analysis, we recommend an evidence-based approach by people involved in bodybuilding, with the adoption of a more balanced and less artificial diet. One important alert should be given for the combined use of anabolic steroids and stimulants, since both are independently associated with serious cardiovascular events. A special focus should be given to revisiting resistance training and avoiding fasted cardio in order to decrease the reliance on drugs and thus preserve bodybuilders’ health and integrity. PMID:28458804
A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions
NASA Technical Reports Server (NTRS)
Thomas, Evan A.; Graf, John C.; Weislogel, Mark M.
2010-01-01
The invention, a static phase separator (SPS), uses airflow and capillary wetting characteristics to passively separate a two-phase (liquid and air) flow. The device accommodates highly variable liquid wetting characteristics. The resultant design allows for a range of wetting properties from about 0 to over 90 advancing contact angle, with frequent complete separation of liquid from gas observed when using appropriately scaled test conditions. Additionally, the design accommodates a range of air-to-liquid flow-rate ratios from only liquid flow to over 200:1 air-to-liquid flow rate. The SPS uses a helix input section with an ice-cream-cone-shaped constant area cross section (see figure). The wedge portion of the cross section is on the outer edge of the helix, and collects the liquid via centripetal acceleration. The helix then passes into an increasing cross-sectional area vane region. The liquid in the helix wedge is directed into the top of capillary wedges in the liquid containment section. The transition from diffuser to containment section includes a 90 change in capillary pumping direction, while maintaining inertial direction. This serves to impinge the liquid into the two off-center symmetrical vanes by the airflow. Rather than the airflow serving to shear liquid away from the capillary vanes, the design allows for further penetration of the liquid into the vanes by the air shear. This is also assisted by locating the air exit ports downstream of the liquid drain port. Additionally, any droplets not contained in the capillary vanes are re-entrained downstream by a third opposing capillary vane, which directs liquid back toward the liquid drain port. Finally, the dual air exit ports serve to slow the airflow down, and to reduce the likelihood of shear. The ports are stove-piped into the cavity to form an unfriendly capillary surface for a wetting fluid to carryover. The liquid drain port is located at the start of the containment region, allowing for draining the bulk fluid in a continuous circuit. The functional operation of the SPS involves introducing liquid flow (from a human body, a syringe, or other source) to the two-phase inlet while an air fan pulls on the air exit lines. The fan is operated until the liquid is fully introduced. The system is drained by negative pressure on the liquid drain lines when the SPS containment system is full.
The solvent component of macromolecular crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine
2015-04-30
On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less
Zargarzadeh, Leila; Elliott, Janet A W
2013-10-22
The behavior of pure fluid confined in a cone is investigated using thermodynamic stability analysis. Four situations are explained on the basis of the initial confined phase (liquid/vapor) and its pressure (above/below the saturation pressure). Thermodynamic stability analysis (a plot of the free energy of the system versus the size of the new potential phase) reveals whether the phase transition is possible and, if so, the number and type (unstable/metastable/stable) of equilibrium states in each of these situations. Moreover we investigated the effect of the equilibrium contact angle and the cone angle (equivalent to the confinement's surface separation distance) on the free energy (potential equilibrium states). The results are then compared to our previous study of pure fluid confined in the gap between a sphere and a flat plate and the gap between two flat plates.1 Confined fluid behavior of the four possible situations (for these three geometries) can be explained in a unified framework under two categories based on only the meniscus shape (concave/convex). For systems with bulk-phase pressure imposed by a reservoir, the stable coexistence of pure liquid and vapor is possible only when the meniscus is concave.
El-Sherif, Zeinab A; El-Zeany, Badr; El-Houssini, Ola M
2005-01-04
Two reproducible stability indicating methods were developed for the determination of risperidone (RISP) in presence of its degradation products in pure form and in tablets. The first method was based on reversed phase high performance liquid chromatography (HPLC), on Lichrosorb RP C 18 column (250 mm i.d., 4 mm, 10 microm), using methanol:0.05 M potassium dihydrogen phosphate pH 7 (65:35 (v/v)) as the mobile phase at a flow rate of 1 ml min(-1) at ambient temperature. Quantification was achieved with UV detection at 280 nm over a concentration range of 25-500 microg ml(-1) with mean percentage recovery of 99.87 +/- 1.049. The method retained its accuracy in the presence of up to 90% of RISP degradation products. The second method was based on TLC separation of RISP from its degradation products followed by densitometric measurement of the intact drug spot at 280 nm. The separation was carried out on aluminum sheet of silica gel 60F254 using acetonitrile:methanol:propanol:triethanolamine (8.5:1.2:0.6:0.2 (v/v/v/v)), as the mobile phase, over a concentration range of 2-10 microg per spot and mean percentage recovery of 100.1 +/- 1.18. The two methods were simple, precise, sensitive and could be successfully applied for the determination of pure, laboratory prepared mixtures and tablets. The results obtained were compared with the manufacturer's method.
NASA Astrophysics Data System (ADS)
Namburi, Devendra K.; Shi, Yunhua; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2018-04-01
Bulk, single grains of RE-Ba-Cu-O [(RE)BCO] high temperature superconductors have significant potential for a wide range of applications, including trapped field magnets, energy storage flywheels, superconducting mixers and magnetic separators. One of the main challenges in the production of these materials by the so-called top seeded melt growth technique is the reliable seeding of large, single grains, which are required for high field applications. A chemically aggressive liquid phase comprising of BaCuO2 and CuO is generated during the single grain growth process, which comes into direct contact with the seed crystal either instantaneously or via infiltration through a buffer pellet, if employed in the process. This can cause either partial or complete melting of the seed, leading subsequently to growth failure. Here, the underlying mechanisms of seed crystal melting and the role of seed porosity in the single grain growth process are investigated. We identify seed porosity as a key limitation in the reliable and successful fabrication of large grain (RE)BCO bulk superconductors for the first time, and propose the use of Mg-doped NdBCO generic seeds fabricated via the infiltration growth technique to reduce the effects of seed porosity on the melt growth process. Finally, we demonstrate that the use of such seeds leads to better resistance to melting during the single grain growth process, and therefore to a more reliable fabrication technique.
Fullerenes and interplanetary dust at the Permian-Triassic boundary.
Poreda, Robert J; Becker, Luann
2003-01-01
We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).
Sharma, G D; Suresh, P; Sharma, S S; Vijay, Y K; Mikroyannidis, John A
2010-02-01
The morphology of the photoactive layer used in the bulk heterojunction photovoltaic devices is crucial for efficient charge generation and their collection at the electrodes. We investigated the solvent vapor annealing and thermal annealing effect of an alternating phenylenevinylene copolymer P:PCBM blend on its morphology and optical properties. The UV-visible absorption spectroscopy shows that both solvent and thermal annealing can result in self-assembling of copolymer P to form an ordered structure, leading to enhanced absorption in the red region and hole transport enhancement. By combining the solvent and thermal annealing of the devices, the power conversion efficiency is improved. This feature was attributed to the fact that the PCBM molecules begin to diffuse into aggregates and together with the ordered copolymer P phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Furthermore, the measured photocurrent also suggests that the space charges no longer limit the values of the short circuit current (J(sc)) and fill factor (FF) for solvent-treated and thermally annealed devices. These results indicate that the higher J(sc) and PCE for the solvent-treated and thermally annealed devices can be attributed to the phase separation of active layers, which leads to a balanced carrier mobility. The overall PCE of the device based on the combination of solvent annealing and thermal annealing is about 3.7 %.
Iodine-Xenon Dating: Sensitive Chronometer for Reprocessing in the Primitive Solar System
NASA Technical Reports Server (NTRS)
Pravdivtseva, O. V.; Hohenberg, C. M.
1999-01-01
The I-Xe chronometer is based upon decay of I-129 to Xe-129 in the early Solar System. Recent comparison of I-Xe system in individual mineral separates from twelve different meteorites with independent Pb-Pb data has demonstrated that I-Xe clock is a reliable sensitive chronometer when applied to a single mineral system. Since most iodine hosts are secondary minerals, the I-Xe clock generally records post-formational processing, providing the information on early meteorite evolution. Absolute I-Xe ages can be found by normalization using the measured I-Xe and Pb-Pb ages of Acapulco phosphate (4.557 plus or minus 0.002 Ga). Absolute ages for the I-Xe internal standards Shallow water and Bjurbole, 4.566 plus or minus 0.002 Ga and 4.565 plus or minus 0.003 Ga, respectively, provide absolute I-Xe ages for all other samples. The I-Xe age of bulk meteorite is meaningful and interpretable only when the carrier of primordial iodine is a major mineral phase (e. g., enstatite chondrites). Using the "monomineral" approach, separated phases from the Richardton H5 chondrite provide a case history of post-formational alteration in this object. This work applies the I-Xe chronometer to determine the times of reprocessing of selected minerals in single meteorite types. A preliminary account of this work was recently reported. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Ezoe, Yuichiro; DiPirro, Michael; Fujimoto, Ryuichi; Ishikawa, Kumi; Ishisaki, Yoshitaka; Kanao, Kenichi; Kimball, Mark; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Murakami, Masahide; Noda, Hirofumi; Ohashi, Takaya; Okamoto, Atsushi; Satoh, Yohichi; Sato, Kosuke; Shirron, Peter; Tsunematsu, Shoji; Yamaguchi, Hiroya; Yoshida, Seiji
2018-01-01
When using superfluid helium in low-gravity environments, porous plug phase separators are commonly used to vent boil-off gas while confining the bulk liquid to the tank. Invariably, there is a flow of superfluid film from the perimeter of the porous plug down the vent line. For the soft x-ray spectrometer onboard ASTRO-H (Hitomi), its approximately 30-liter helium supply has a lifetime requirement of more than 3 years. A nominal vent rate is estimated as ˜30 μg/s, equivalent to ˜0.7 mW heat load. It is, therefore, critical to suppress any film flow whose evaporation would not provide direct cooling of the remaining liquid helium. That is, the porous plug vent system must be designed to both minimize film flow and to ensure maximum extraction of latent heat from the film. The design goal for Hitomi is to reduce the film flow losses to <2 μg/s, corresponding to a loss of cooling capacity of <40 μW. The design adopts the same general design as implemented for Astro-E and E2, using a vent system composed of a porous plug, combined with an orifice, a heat exchanger, and knife-edge devices. Design, on-ground testing results, and in-orbit performance are described.
Process depending morphology and resulting physical properties of TPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frick, Achim, E-mail: achim.frick@hs-aalen.de; Spadaro, Marcel, E-mail: marcel.spadaro@hs-aalen.de
2015-12-17
Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix ormore » of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.« less
Engineering Surface Critical Behavior of (2 +1 )-Dimensional O(3) Quantum Critical Points
NASA Astrophysics Data System (ADS)
Ding, Chengxiang; Zhang, Long; Guo, Wenan
2018-06-01
Surface critical behavior (SCB) refers to the singularities of physical quantities on the surface at the bulk phase transition. It is closely related to and even richer than the bulk critical behavior. In this work, we show that three types of SCB universality are realized in the dimerized Heisenberg models at the (2 +1 )-dimensional O(3) quantum critical points by engineering the surface configurations. The ordinary transition happens if the surface is gapped in the bulk disordered phase, while the gapless surface state generally leads to the multicritical special transition, even though the latter is precluded in classical phase transitions because the surface is in the lower critical dimension. An extraordinary transition is induced by the ferrimagnetic order on the surface of the staggered Heisenberg model, in which the surface critical exponents violate the results of the scaling theory and thus seriously challenge our current understanding of extraordinary transitions.
Liu, Yonggang; Phiri, Mohau Justice; Ndiripo, Anthony; Pasch, Harald
2017-11-03
A propylene-ethylene random copolymer was fractionated by preparative temperature rising elution fractionation (TREF). The structural heterogeneity of the bulk sample and its TREF fractions was studied by high temperature liquid chromatography with a solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene. HPLC alone cannot resolve those propylene-ethylene copolymers with high ethylene content in the bulk sample, due to their low weight fractions in the bulk sample and a small response factor of these components in the ELSD detector, as well as their broad chemical composition distribution. These components can only be detected after being separated and enriched by TREF followed by HPLC analysis. Chemical composition separations were achieved for TREF fractions with average ethylene contents between 2.1 and 22.0mol%, showing that copolymers with higher ethylene contents were adsorbed stronger in the Hypercarb column and eluted later. All TREF fractions, except the 40°C fraction, were relatively homogeneous in both molar mass and chemical composition. The 40°C fraction was rather broad in both molar mass and chemical composition distributions. 2D HPLC showed that the molar masses of the components containing more ethylene units were getting lower for the 40°C fraction. HPLC revealed and confirmed that co-crystallization influences the separation in TREF of the studied propylene-ethylene copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.
Chan Hwang, Gil; Joo Shin, Tae; Blom, Douglas A.; Vogt, Thomas; Lee, Yongjae
2015-01-01
Systematic studies of pressure-induced amorphization of natrolites (PIA) containing monovalent extra-framework cations (EFC) Li+, Na+, K+, Rb+, Cs+ allow us to assess the role of two different EFC-H2O configurations within the pores of a zeolite: one arrangement has H2O molecules (NATI) and the other the EFC (NATII) in closer proximity to the aluminosilicate framework. We show that NATI materials have a lower onset pressure of PIA than the NATII materials containing Rb and Cs as EFC. The onset pressure of amorphization (PA) of NATII materials increases linearly with the size of the EFC, whereas their initial bulk moduli (P1 phase) decrease linearly. Only Cs- and Rb-NAT reveal a phase separation into a dense form (P2 phase) under pressure. High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) imaging shows that after recovery from pressures near 25 and 20 GPa long-range ordered Rb-Rb and Cs-Cs correlations continue to be present over length scales up to 100 nm while short-range ordering of the aluminosilicate framework is significantly reduced—this opens a new way to form anti-glass structures. PMID:26455345
Chan Hwang, Gil; Joo Shin, Tae; Blom, Douglas A; Vogt, Thomas; Lee, Yongjae
2015-10-12
Systematic studies of pressure-induced amorphization of natrolites (PIA) containing monovalent extra-framework cations (EFC) Li(+), Na(+), K(+), Rb(+), Cs(+) allow us to assess the role of two different EFC-H2O configurations within the pores of a zeolite: one arrangement has H2O molecules (NATI) and the other the EFC (NATII) in closer proximity to the aluminosilicate framework. We show that NATI materials have a lower onset pressure of PIA than the NATII materials containing Rb and Cs as EFC. The onset pressure of amorphization (PA) of NATII materials increases linearly with the size of the EFC, whereas their initial bulk moduli (P1 phase) decrease linearly. Only Cs- and Rb-NAT reveal a phase separation into a dense form (P2 phase) under pressure. High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) imaging shows that after recovery from pressures near 25 and 20 GPa long-range ordered Rb-Rb and Cs-Cs correlations continue to be present over length scales up to 100 nm while short-range ordering of the aluminosilicate framework is significantly reduced-this opens a new way to form anti-glass structures.
Interplay between Reaction and Phase Behaviour in Carbon Dioxide Hydrogenation to Methanol.
Reymond, Helena; Amado-Blanco, Victor; Lauper, Andreas; Rudolf von Rohr, Philipp
2017-03-22
Condensation promotes CO 2 hydrogenation to CH 3 OH beyond equilibrium through in situ product separation. Although primordial for catalyst and reactor design, triggering conditions as well as the impact on sub-equilibrium reaction behaviour remain unclear. Herein we used an in-house designed micro-view-cell to gain chemical and physical insights into reaction and phase behaviour under high-pressure conditions over a commercial Cu/ZnO/Al 2 O 3 catalyst. Raman microscopy and video monitoring, combined with online gas chromatography analysis, allowed the complete characterisation of the reaction bulk up to 450 bar (1 bar=0.1 MPa) and 350 °C. Dew points of typical effluent streams related to a parametric study suggest that the improving reaction performance and reverting selectivities observed from 230 °C strongly correlate with (i) a regime transition from kinetic to thermodynamic, and (ii) a phase transition from a single supercritical to a biphasic reaction mixture. Our results advance a rationale behind transitioning CH 3 OH selectivities for an improved understanding of CO 2 hydrogenation under high pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional La2/3Sr4/3MnO4 Manganite Films Probed by Epitaxial Strain and Cation Ordering
NASA Astrophysics Data System (ADS)
Nelson-Cheeseman, Brittany; Santos, Tiffany; Bhattacharya, Anand
2010-03-01
Dimensionality is known to play a central role in the properties of strongly correlated systems. Here we investigate magnetism and transport in thin films of the Ruddlesden-Popper n=1 phase, La1-xSr1+xMnO4. Within this material, the MnO6-octahedra form two-dimensional perovskite sheets separated by an extra rocksalt layer. By fabricating high quality thin films with ozone-assisted molecular beam epitaxy, we study how the effects of epitaxial strain and intentional cation ordering, known as digital synthesis, influence the properties of this 2-dimensional manganite. For example, at the same Mn^3+:Mn^4+ ratio (2:1) as its fully spin-polarized 3D manganite counterpart, this two dimensional analog at x=1/3 only displays a spin glass phase below 20K in bulk. This is believed to result from a competition between superexchange and double exchange, as well as disordered Jahn-Teller distortions. However, in our films we find weak ferromagnetic order up to much higher temperatures in addition to a low temperature spin glass phase. We will discuss how strain and cation order effect the presence of this weak ferromagnetism.
Weijun, Yao
2007-10-12
A method has been developed for the detection of low-nL/L-level impurities in bulk gases such as H(2), O(2), Ar, N(2), He, methane, ethylene and propylene, respectively. The solution presented here is based upon gas chromatography-pulsed discharge helium ionization detection (GC-PDHID) coupled with three two-position valves, one two-way solenoid valve and four packed columns. During the operation, the moisture and heavy compounds are first back-flushed via a pre-column. Then the trace impurities (except CO(2) which is diverted to a separate analytical column for separation and detection) together with the matrix enter onto a main column, followed by the heart-cut of the impurities onto a longer analytical column for complete separation. Finally the detection is performed by PDHID. This method has been applied to different bulk gases and the applicability of detecting impurities in H(2), Ar, and N(2) are herewith demonstrated. As an example, the resulting detection limit of 100 nL/L and a dynamic range of 100-1000 nL/L have been obtained using an Ar sample containing methane.
A multiscale SPH particle model of the near-wall dynamics of leukocytes in flow.
Gholami, Babak; Comerford, Andrew; Ellero, Marco
2014-01-01
A novel multiscale Lagrangian particle solver based on SPH is developed with the intended application of leukocyte transport in large arteries. In such arteries, the transport of leukocytes and red blood cells can be divided into two distinct regions: the bulk flow and the near-wall region. In the bulk flow, the transport can be modeled on a continuum basis as the transport of passive scalar concentrations. Whereas in the near-wall region, specific particle tracking of the leukocytes is required and lubrication forces need to be separately taken into account. Because of large separation of spatio-temporal scales involved in the problem, simulations of red blood cells and leukocytes are handled separately. In order to take the exchange of leukocytes between the bulk fluid and the near-wall region into account, solutions are communicated through coupling of conserved quantities at the interface between these regions. Because the particle tracking is limited to those leukocytes lying in the near-wall region only, our approach brings considerable speedup to the simulation of leukocyte circulation in a test geometry of a backward-facing step, which encompasses many flow features observed in vivo. Copyright © 2013 John Wiley & Sons, Ltd.
Exploration of phase transition in ThS under pressure: An ab-initio investigation
NASA Astrophysics Data System (ADS)
Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.
2018-04-01
The ab-initio total energy calculations have been performed in thorium sulphide (ThS) to explore its high pressure phase stability. Our calculations predict a phase transformation from ambient rocksalt type structure (B1 phase) to a rhombohedral structure (R-3m phase) at ˜ 15 GPa and subsequently R-3m phase transforms to CsCl type structure (B2 phase) at ˜ 45 GPa. The first phase transition has been identified as second order type; whereas, the second transition is of first order type with volume discontinuity of 6.5%. The predicted high pressure R-3m phase is analogous to the experimentally observed hexagonal (distorted fcc) phase (Benedict et al., J. Less-Common Met., 1984) above 20 GPa. Further, using these calculations we have derived the equation of state which has been utilized to determine various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus at ambient conditions.
Second-order topological insulators and superconductors with an order-two crystalline symmetry
NASA Astrophysics Data System (ADS)
Geier, Max; Trifunovic, Luka; Hoskam, Max; Brouwer, Piet W.
2018-05-01
Second-order topological insulators and superconductors have a gapped excitation spectrum in bulk and along boundaries, but protected zero modes at corners of a two-dimensional crystal or protected gapless modes at hinges of a three-dimensional crystal. A second-order topological phase can be induced by the presence of a bulk crystalline symmetry. Building on Shiozaki and Sato's complete classification of bulk crystalline phases with an order-two crystalline symmetry [Phys. Rev. B 90, 165114 (2014), 10.1103/PhysRevB.90.165114], such as mirror reflection, twofold rotation, or inversion symmetry, we classify all corresponding second-order topological insulators and superconductors. The classification also includes antiunitary symmetries and antisymmetries.
Non-analyticity of holographic Rényi entropy in Lovelock gravity
NASA Astrophysics Data System (ADS)
Puletti, V. Giangreco M.; Pourhasan, Razieh
2017-08-01
We compute holographic Rényi entropies for spherical entangling surfaces on the boundary while considering third order Lovelock gravity with negative cosmological constant in the bulk. Our study shows that third order Lovelock black holes with hyperbolic event horizon are unstable, and at low temperatures those with smaller mass are favoured, giving rise to first order phase transitions in the bulk. We determine regions in the Lovelock parameter space in arbitrary dimensions, where bulk phase transitions happen and where boundary causality constraints are met. We show that each of these points corresponds to a dual boundary conformal field theory whose Rényi entropy exhibits a kink at a certain critical index n.
A Mechanism for Bulk Energization in the Impulsive Phase of Solar Flares: MHD Turbulent Cascade
NASA Technical Reports Server (NTRS)
LaRosa, T. N.; Moore, R. L.
1993-01-01
We propose that the large production rate (approximately 10(exp 36)/s) of energetic electrons (greater than or approximately equal to 25 keV) required to account for the impulsive-phase hard X-ray burst in large flares is achieved through MHD turbulent cascade of the bulk kinetic energy of the outflows from many separate reconnection events. Focusing on large two- ribbon eruptive flares as representative of most large flares, we envision the reconnection events to be the driven reconnection of oppositely directed elementary flux tubes pressing into the flare-length current-sheet interface that forms in the wake of the eruption of the sheared core of the preflare bipolar field configuration. We point out that, because the outflows from these driven reconnection events have speeds of order the Alfven speed and because the magnetic field reduces the shear viscosity of the plasma, it is reasonable that the outflows are unstable and turbulent, so that the kinetic energy of an outflow is rapidly dissipated through turbulent cascade. If the largest eddies in the turbulence have diameters of order the expected widths of the outflows (10(exp 7)-10(exp 8)cm), then the cascade dissipation of each of these eddies could produce approximately 10(exp 26) erg burst of energized electrons (approximately 3 x (10(exp 33) 25 keV electrons) in approximately 0.3 s, which agrees well with hard X-ray and radio sub-bursts commonly observed during the impulsive phase. Of order 10(exp 2) simultaneous reconnection events with turbulent outflow would produce the observed rate of impulsive-phase plasma energization in the most powerful flares (approximately 10(exp 36) 25 keV electrons/ s); this number of reconnection sites can easily fit within the estimated 3 x 10(exp 9) cm span of the overall current-sheet dissipation region formed in these large flares. We therefore conclude that MHD turbulent cascade is a promising mechanism for the plasma energization observed in the impulsive phase of solar flares.
Gormley-Gallagher, Aine Marie; Douglas, Richard William; Rippey, Brian
2015-01-01
Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, K D. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic) lake sediment, transient variations in K D were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the K D (n = 15 for each metal, p > 0.05) for Mn (r 2 = 0.0063), Cu (r 2 = 0.0002, Cr (r 2 = 0.021), Ni (r 2 = 0.0023), Cd (r 2 = 0.00001), Co (r 2 = 0.096), Hg (r 2 = 0.116) or Pb (r 2 = 0.164). The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing) fraction, which inhibited the spurious lowering of K D. The findings conform to the increasingly documented theory that the use of K D in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water. PMID:26200885
Localization Counteracts Decoherence in Noisy Floquet Topological Chains
NASA Astrophysics Data System (ADS)
Rieder, M.-T.; Sieberer, L. M.; Fischer, M. H.; Fulga, I. C.
2018-05-01
The topological phases of periodically driven, or Floquet systems, rely on a perfectly periodic modulation of system parameters in time. Even the smallest deviation from periodicity leads to decoherence, causing the boundary (end) states to leak into the system's bulk. Here, we show that in one dimension this decay of topologically protected end states depends fundamentally on the nature of the bulk states: a dispersive bulk results in an exponential decay, while a localized bulk slows the decay down to a diffusive process. The localization can be due to disorder, which remarkably counteracts decoherence even when it breaks the symmetry responsible for the topological protection. We derive this result analytically, using a novel, discrete-time Floquet-Lindblad formalism and confirm our findings with the help of numerical simulations. Our results are particularly relevant for experiments, where disorder can be tailored to protect Floquet topological phases from decoherence.
Observation of a new superfluid phase for 3He embedded in nematically ordered aerogel
Zhelev, N.; Reichl, M.; Abhilash, T. S.; Smith, E. N.; Nguyen, K. X.; Mueller, E. J.; Parpia, J. M.
2016-01-01
In bulk superfluid 3He at zero magnetic field, two phases emerge with the B-phase stable everywhere except at high pressures and temperatures, where the A-phase is favoured. Aerogels with nanostructure smaller than the superfluid coherence length are the only means to introduce disorder into the superfluid. Here we use a torsion pendulum to study 3He confined in an extremely anisotropic, nematically ordered aerogel consisting of ∼10 nm-thick alumina strands, spaced by ∼100 nm, and aligned parallel to the pendulum axis. Kinks in the development of the superfluid fraction (at various pressures) as the temperature is varied correspond to phase transitions. Two such transitions are seen in the superfluid state, and we identify the superfluid phase closest to Tc at low pressure as the polar state, a phase that is not seen in bulk 3He. PMID:27669660
Piezoelectric coefficients of bulk 3R transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Konabe, Satoru; Yamamoto, Takahiro
2017-09-01
The piezoelectric properties of bulk transition metal dichalcogenides (TMDCs) with a 3R structure were investigated using first-principles calculations based on density functional theory combined with the Berry phase treatment. Values for the elastic constant Cijkl , the piezoelectric coefficient eijk , and the piezoelectric coefficient dijk are given for bulk 3R-TMDCs (MoS2, MoSe2, WS2, and WSe2). The piezoelectric coefficients of bulk 3R-TMDCs are shown to be sufficiently large or comparable to those of conventional bulk piezoelectric materials such as α-quartz, wurtzite GaN, and wurtzite AlN.
Observation of acoustic valley vortex states and valley-chirality locked beam splitting
NASA Astrophysics Data System (ADS)
Ye, Liping; Qiu, Chunyin; Lu, Jiuyang; Wen, Xinhua; Shen, Yuanyuan; Ke, Manzhu; Zhang, Fan; Liu, Zhengyou
2017-05-01
We report an experimental observation of the classical version of valley polarized states in a two-dimensional hexagonal sonic crystal. The acoustic valley states, which carry specific linear momenta and orbital angular momenta, were selectively excited by external Gaussian beams and conveniently confirmed by the pressure distribution outside the crystal, according to the criterion of momentum conservation. The vortex nature of such intriguing bulk crystal states was directly characterized by scanning the phase profile inside the crystal. In addition, we observed a peculiar beam-splitting phenomenon, in which the separated beams are constructed by different valleys and locked to the opposite vortex chirality. The exceptional sound transport, encoded with valley-chirality locked information, may serve as the basis of designing conceptually interesting acoustic devices with unconventional functions.
NASA Astrophysics Data System (ADS)
Heping, Wang; Xiaoguang, Li; Duyang, Zang; Rui, Hu; Xingguo, Geng
2017-11-01
This paper presents an exploration for phase separation in a magnetic field using a coupled lattice Boltzmann method (LBM) with magnetohydrodynamics (MHD). The left vertical wall was kept at a constant magnetic field. Simulations were conducted by the strong magnetic field to enhance phase separation and increase the size of separated phases. The focus was on the effect of magnetic intensity by defining the Hartmann number (Ha) on the phase separation properties. The numerical investigation was carried out for different governing parameters, namely Ha and the component ratio of the mixed liquid. The effective morphological evolutions of phase separation in different magnetic fields were demonstrated. The patterns showed that the slant elliptical phases were created by increasing Ha, due to the formation and increase of magnetic torque and force. The dataset was rearranged for growth kinetics of magnetic phase separation in a plot by spherically averaged structure factor and the ratio of separated phases and total system. The results indicate that the increase in Ha can increase the average size of separated phases and accelerate the spinodal decomposition and domain growth stages. Specially for the larger component ratio of mixed phases, the separation degree was also significantly improved by increasing magnetic intensity. These numerical results provide guidance for setting the optimum condition for the phase separation induced by magnetic field.
Ionic liquid technology to recover volatile organic compounds (VOCs).
Salar-García, M J; Ortiz-Martínez, V M; Hernández-Fernández, F J; de Los Ríos, A P; Quesada-Medina, J
2017-01-05
Volatile organic compounds (VOCs) comprise a wide variety of carbon-based materials which are volatile at relatively low temperatures. Most of VOCs pose a hazard to both human health and the environment. For this reason, in the last years, big efforts have been made to develop efficient techniques for the recovery of VOCs produced from industry. The use of ionic liquids (ILs) is among the most promising separation technologies in this field. This article offers a critical overview on the use of ionic liquids for the separation of VOCs both in bulk and in immobilized form. It covers the most relevant works within this field and provides a global outlook on the limitations and future prospects of this technology. The extraction processes of VOCs by using different IL-based assemblies are described in detail and compared with conventional methods This review also underlines the advantages and limitations posed by ionic liquids according to the nature of the cation and the anions present in their structure and the stability of the membrane configurations in which ILs are used as liquid phase. Copyright © 2016 Elsevier B.V. All rights reserved.
Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.; King, W.; Hay, M.
Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less
Nanotechnology, resources, and pollution control
NASA Astrophysics Data System (ADS)
Gillett, Stephen L.
1996-09-01
The separation of different kinds of atoms or molecules from each other is a fundamental technological problem. Current techniques of resource extraction, which use the ancient paradigm of the differential partitioning of elements into coexisting phases, are simple but extremely wasteful and require feedstocks (`ores') that are already anomalously enriched. This is impractical for pollution control and desalination, which require extraction of low concentrations; instead, atomistic separation, typically by differential motion through semipermeable membranes, is used. The present application of such membranes is seriously limited, however, mostly because of limitations in their fabrication by conventional bulk techniques. The capabilities of biological systems, such as vertebrate kidneys, are vastly better, largely because they are intrinsically structured at a molecular scale. Nanofabrication of semipermeable membranes promises capabilities on the order of those of biological systems, and this in turn could provide much financial incentive for the development of molecular assemblers, as well established markets exist already. Continued incentives would exist, moreover, as markets expanded with decreasing costs, leading to such further applications as remediation of polluted sites, cheap desalination, and resource extraction from very low-grade sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misichronis, Konstantinos; Chen, Jihua; Imel, Adam
A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined in this paper by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (T ODT), for the first time formore » PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χ eff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. Finally, these copolymers exhibit well-ordered structures even at high temperatures (~260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.« less
Thomas, Laura L; Tirado-Rives, Julian; Jorgensen, William L
2010-03-10
Quantum and molecular mechanics calculations for the Diels-Alder reactions of cyclopentadiene with 1,4-naphthoquinone, methyl vinyl ketone, and acrylonitrile have been carried out at the vacuum-water interface and in the gas phase. In conjunction with previous studies of these cycloadditions in dilute solution, a more complete picture of aqueous environmental effects emerges with implications for the origin of observed rate accelerations using heterogeneous aqueous suspensions, "on water" conditions. The pure TIP4P water slab maintains the bulk density and hydrogen-bonding properties in central water layers. The bulk region merges to vacuum over a ca. 5 A band with progressive diminution of the density and hydrogen bonding. The relative free energies of activation and transition structures for the reactions at the interface are found to be intermediate between those calculated in the gas phase and in bulk water; i.e., for the reaction with 1,4-naphthoquinone, the DeltaDeltaG(++) values relative to the gas phase are -3.6 and -7.3 kcal/mol at the interface and in bulk water, respectively. Thus, the results do not support the notion that a water surface is more effective than bulk water for catalysis of such pericyclic reactions. The trend is in qualitative agreement with expectations based on density considerations and estimates of experimental rate constants for the gas phase, a heterogeneous aqueous suspension, and a dilute aqueous solution for the reaction of cyclopentadiene with methyl vinyl ketone. Computed energy pair distributions reveal a uniform loss of 0.5-1.0 hydrogen bond for the reactants and transition states in progressing from bulk water to the vacuum-water interface. Orientational effects are apparent at the surface; e.g., the carbonyl group in the methyl vinyl ketone transition structure is preferentially oriented into the surface. Also, the transition structure for the 1,4-naphthoquinone case is buried more in the surface, and the free energy of activation for this reaction is most similar to the result in bulk water.
Reentrant topological phase transition in a bridging model between Kitaev and Haldane chains
NASA Astrophysics Data System (ADS)
Sugimoto, Takanori; Ohtsu, Mitsuyoshi; Tohyama, Takami
2017-12-01
We present a reentrant phase transition in a bridging model between two different topological models: Kitaev and Haldane chains. This model is activated by introducing a bond alternation into the Kitaev chain [A. Y. Kitaev, Phys. Usp. 44, 131 (2001), 10.1070/1063-7869/44/10S/S29]. Without the bond alternation, the finite pairing potential induces a topological state defined by the zero-energy Majorana edge mode, while finite bond alternation without the pairing potential makes a different topological state similar to the Haldane state, which is defined by the local Berry phase in the bulk. The topologically ordered state corresponds to the Su-Schrieffer-Heeger state, which is classified as the same symmetry class. We thus find a phase transition between the two topological phases with a reentrant phenomenon, and extend the phase diagram in the plane of the pairing potential and the bond alternation by using three techniques: recursive equation, fidelity, and Pfaffian. In addition, we find that the phase transition is characterized by both the change of the position of Majorana zero-energy modes from one edge to the other edge and the emergence of a string order in the bulk, and that the reentrance is based on a sublattice U(1) rotation. Consequently, our paper and model not only open a direct way to discuss the bulk and edge topologies but demonstrate an example of the reentrant topologies.
Towards First Principles-Based Prediction of Highly Accurate Electrochemical Pourbaix Diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Zhenhua; Chan, Maria K. Y.; Zhao, Zhi-Jian
2015-08-13
Electrochemical potential/pH (Pourbaix) diagrams underpin many aqueous electrochemical processes and are central to the identification of stable phases of metals for processes ranging from electrocatalysis to corrosion. Even though standard DFT calculations are potentially powerful tools for the prediction of such diagrams, inherent errors in the description of transition metal (hydroxy)oxides, together with neglect of van der Waals interactions, have limited the reliability of such predictions for even the simplest pure metal bulk compounds, and corresponding predictions for more complex alloy or surface structures are even more challenging. In the present work, through synergistic use of a Hubbard U correction,more » a state-of-the-art dispersion correction, and a water-based bulk reference state for the calculations, these errors are systematically corrected. The approach describes the weak binding that occurs between hydroxyl-containing functional groups in certain compounds in Pourbaix diagrams, corrects for self-interaction errors in transition metal compounds, and reduces residual errors on oxygen atoms by preserving a consistent oxidation state between the reference state, water, and the relevant bulk phases. The strong performance is illustrated on a series of bulk transition metal (Mn, Fe, Co and Ni) hydroxides, oxyhydroxides, binary, and ternary oxides, where the corresponding thermodynamics of redox and (de)hydration are described with standard errors of 0.04 eV per (reaction) formula unit. The approach further preserves accurate descriptions of the overall thermodynamics of electrochemically-relevant bulk reactions, such as water formation, which is an essential condition for facilitating accurate analysis of reaction energies for electrochemical processes on surfaces. The overall generality and transferability of the scheme suggests that it may find useful application in the construction of a broad array of electrochemical phase diagrams, including both bulk Pourbaix diagrams and surface phase diagrams of interest for corrosion and electrocatalysis.« less
Laboratory studies of aqueous-phase oxidation of polyols in submicron particles
NASA Astrophysics Data System (ADS)
Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.
2013-12-01
Aqueous-phase oxidation has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. However most aqueous oxidation studies are performed in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation is carried out within submicron particles, allowing for gas-particle partitioning of reactants, intermediates, and products. Using Fenton chemistry as a source of hydroxyl radicals, and a high-resolution aerosol mass spectrometer (AMS) for online characterization of particle composition, we find that aqueous oxidation can be quite rapid. The formation of high concentrations of oxalic acid is observed in the particle phase with some loss of carbon to the gas phase, indicating the formation of volatile products. We see a rapid degradation of condensed-phase oxidation products upon exposure to ultraviolet lights (centered at 350 nm) suggesting that these products may exist as iron(III)-oxalate complexes. Similar results are also seen when oxidation is carried out in bulk solution (with AMS analysis of the atomized solution); however in some cases the mass loss is less than is observed for submicron particles, likely due to differences in partitioning of early-generation products. Such products can partition out of the aqueous phase at the low liquid water contents in the chamber but remain in solution for further aqueous processing in bulk oxidation experiments. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different than those in bulk oxidation, pointing to the need to carry out aqueous oxidation studies under atmospherically relevant partitioning conditions (with liquid water contents mimicking those of cloud droplets or wet aerosol).
NASA Astrophysics Data System (ADS)
Poulsen, H. F.; Andersen, N. H.; Lebech, B.
1991-02-01
We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+ x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes and 250 and 350Å, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J=J 0 exp( {-t}/{τ}) despite a rather broad particle size distribution. At higher temperatures, τ is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective bulk oxygen in-diffusion. All our results may be interpreted in terms of the 2D ASYNNNI model description of the oxygen basal plane ordering, and they suggest that recent first principles interaction parameters should be modified.
Bulk viscous quintessential inflation
NASA Astrophysics Data System (ADS)
Haro, Jaume; Pan, Supriya
In a spatially-flat Friedmann-Lemaître-Robertson-Walker universe, the incorporation of bulk viscous process in general relativity leads to an appearance of a nonsingular background of the universe that both at early and late times depicts an accelerated universe. These early and late scenarios of the universe can be analytically calculated and mimicked, in the context of general relativity, by a single scalar field whose potential could also be obtained analytically where the early inflationary phase is described by a one-dimensional Higgs potential and the current acceleration is realized by an exponential potential. We show that the early inflationary universe leads to a power spectrum of the cosmological perturbations which match with current observational data, and after leaving the inflationary phase, the universe suffers a phase transition needed to explain the reheating of the universe via gravitational particle production. Furthermore, we find that at late times, the universe enters into the de Sitter phase that can explain the current cosmic acceleration. Finally, we also find that such bulk viscous-dominated universe attains the thermodynamical equilibrium, but in an asymptotic manner.
Steenbergen, Krista G; Gaston, Nicola
2016-01-13
Melting in finite-sized materials differs in two ways from the solid-liquid phase transition in bulk systems. First, there is an inherent scaling of the melting temperature below that of the bulk, known as melting point depression. Second, at small sizes changes in melting temperature become nonmonotonic and show a size-dependence that is sensitive to the structure of the particle. Melting temperatures that exceed those of the bulk material have been shown to occur for a very limited range of nanoclusters, including gallium, but have still never been ascribed a convincing physical explanation. Here, we analyze the structure of the liquid phase in gallium clusters based on molecular dynamics simulations that reproduce the greater-than-bulk melting behavior observed in experiments. We observe persistent nonspherical shape distortion indicating a stabilization of the surface, which invalidates the paradigm of melting point depression. This shape distortion suggests that the surface acts as a constraint on the liquid state that lowers its entropy relative to that of the bulk liquid and thus raises the melting temperature.
Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces
Hanke, Torben; Singh, Udai Raj; Cornils, Lasse; ...
2017-01-06
Here, establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe 1+yTe, the parent compound of Fe 1+ySe 1$-x$Tex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe 1+yTe and thin films grown on the topological insulator Bi 2Te 3 is canted out of the high-symmetry directionsmore » of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.« less
Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanke, Torben; Singh, Udai Raj; Cornils, Lasse
Here, establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe 1+yTe, the parent compound of Fe 1+ySe 1$-x$Tex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe 1+yTe and thin films grown on the topological insulator Bi 2Te 3 is canted out of the high-symmetry directionsmore » of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.« less
Multiple fuel supply system for an internal combustion engine
Crothers, William T.
1977-01-01
A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.
Phase-separation induced extraordinary toughening of magnetic hydrogels
NASA Astrophysics Data System (ADS)
Tang, Jingda; Li, Chenghai; Li, Haomin; Lv, Zengyao; Sheng, Hao; Lu, Tongqing; Wang, T. J.
2018-05-01
Phase separation markedly influences the physical properties of hydrogels. Here, we find that poly (N, N-dimethylacrylamide) (PDMA) hydrogels suffer from phase separation in aqueous sodium hydroxide solutions when the concentration is higher than 2 M. The polymer volume fraction and mechanical properties show an abrupt change around the transition point. We utilize this phase separation mechanism to synthesize tough magnetic PDMA hydrogels with the in-situ precipitation method. For comparison, we also prepared magnetic poly (2-acrylamido-2-methyl-propane sulfonic acid sodium) (PNaAMPS) magnetic hydrogels, where no phase separation occurs. The phase-separated magnetic PDMA hydrogels exhibit an extraordinarily high toughness of ˜1000 J m-2; while non-phase-separated magnetic PNaAMPS hydrogels only show a toughness of ˜1 J m-2, three orders of magnitude lower than that of PDMA hydrogels. This phase separation mechanism may become a new approach to prepare tough magnetic hydrogels and inspire more applications.
Mechanism for detecting NAPL using electrical resistivity imaging.
Halihan, Todd; Sefa, Valina; Sale, Tom; Lyverse, Mark
2017-10-01
The detection of non-aqueous phase liquid (NAPL) related impacts in freshwater environments by electrical resistivity imaging (ERI) has been clearly demonstrated in field conditions, but the mechanism generating the resistive signature is poorly understood. An electrical barrier mechanism which allows for detecting NAPLs with ERI is tested by developing a theoretical basis for the mechanism, testing the mechanism in a two-dimensional sand tank with ERI, and performing forward modeling of the laboratory experiment. The NAPL barrier theory assumes at low bulk soil NAPL concentrations, thin saturated NAPL barriers can block pore throats and generate a detectable electrically resistive signal. The sand tank experiment utilized a photographic technique to quantify petroleum saturation, and to help determine whether ERI can detect and quantify NAPL across the water table. This experiment demonstrates electrical imaging methods can detect small quantities of NAPL of sufficient thickness in formations. The bulk volume of NAPL is not the controlling variable for the amount of resistivity signal generated. The resistivity signal is primarily due to a zone of high resistivity separate phase liquid blocking current flow through the fully NAPL saturated pores spaces. For the conditions in this tank experiment, NAPL thicknesses of 3.3cm and higher in the formation was the threshold for detectable changes in resistivity of 3% and greater. The maximum change in resistivity due to the presence of NAPL was an increase of 37%. Forward resistivity models of the experiment confirm the barrier mechanism theory for the tank experiment. Copyright © 2017 Elsevier B.V. All rights reserved.
Jawor-Baczynska, Anna; Moore, Barry D; Lee, Han Seung; McCormick, Alon V; Sefcik, Jan
2013-01-01
Aqueous solutions of highly soluble substances such as small amino acids are usually assumed to be essentially homogenous systems with some degree of short range local structuring due to specific interactions on the sub-nanometre scale (e.g. molecular clusters, hydration shells), usually not exceeding several solute molecules. However, recent theoretical and experimental studies have indicated the presence of much larger supramolecular assemblies or mesospecies in solutions of small organic and inorganic molecules as well as proteins. We investigated both supersaturated and undersaturated aqueous solutions of two simple amino acids (glycine and DL-alanine) using Dynamic Light Scattering (DLS), Brownian Microscopy/Nanoparticles Tracking Analysis (NTA) and Cryogenic Transmission Electron Microscopy (Cryo-TEM). Colloidal scale mesospecies (nanodroplets) were previously reported in supersaturated solutions of these amino acids and were implicated as intermediate species on non-classical crystallization pathways. Surprisingly, we have found that the mesospecies are also present in significant numbers in undersaturated solutions even when the solute concentration is well below the solid-liquid equilibrium concentration (saturation limit). Thus, mesopecies can be observed with mean diameters ranging from 100 to 300 nm and a size distribution that broadens towards larger size with increasing solute concentration. We note that the mesospecies are not a separate phase and the system is better described as a thermodynamically stable mesostructured liquid containing solute-rich domains dispersed within bulk solute solution. At a given temperature, solute molecules in such a mesostructured liquid phase are subject to equilibrium distribution between solute-rich mesospecies and the surrounding bulk solution.
Computer simulation of liquid-vapor coexistence of confined quantum fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trejos, Víctor M.; Gil-Villegas, Alejandro, E-mail: gil@fisica.ugto.mx; Martinez, Alejandro
2013-11-14
The liquid-vapor coexistence (LV) of bulk and confined quantum fluids has been studied by Monte Carlo computer simulation for particles interacting via a semiclassical effective pair potential V{sub eff}(r) = V{sub LJ} + V{sub Q}, where V{sub LJ} is the Lennard-Jones 12-6 potential (LJ) and V{sub Q} is the first-order Wigner-Kirkwood (WK-1) quantum potential, that depends on β = 1/kT and de Boer's quantumness parameter Λ=h/σ√(mε), where k and h are the Boltzmann's and Planck's constants, respectively, m is the particle's mass, T is the temperature of the system, and σ and ε are the LJ potential parameters. The non-conformalmore » properties of the system of particles interacting via the effective pair potential V{sub eff}(r) are due to Λ, since the LV phase diagram is modified by varying Λ. We found that the WK-1 system gives an accurate description of the LV coexistence for bulk phases of several quantum fluids, obtained by the Gibbs Ensemble Monte Carlo method (GEMC). Confinement effects were introduced using the Canonical Ensemble (NVT) to simulate quantum fluids contained within parallel hard walls separated by a distance L{sub p}, within the range 2σ ⩽ L{sub p} ⩽ 6σ. The critical temperature of the system is reduced by decreasing L{sub p} and increasing Λ, and the liquid-vapor transition is not longer observed for L{sub p}/σ < 2, in contrast to what has been observed for the classical system.« less
Novel solid-state synthesis of α-Fe and Fe3O4 nanoparticles embedded in a MgO matrix
NASA Astrophysics Data System (ADS)
Schneeweiss, O.; Zboril, R.; Pizurova, N.; Mashlan, M.; Petrovsky, E.; Tucek, J.
2006-01-01
Thermally induced reduction of amorphous Fe2O3 nanopowder (2-3 nm) with nanocrystalline Mg (~20 nm) under a hydrogen atmosphere is presented as a novel route to obtain α-Fe and Fe3O4 magnetic nanoparticles dispersed in a MgO matrix. The phase composition, structural and magnetic properties, size and morphology of the nanoparticles were monitored by x-ray diffraction, 57Fe Mössbauer spectroscopy at temperatures of 24-300 K, transmission electron microscopy and magnetic measurements. Spherical magnetite nanoparticles prepared at a reaction temperature of 300 °C revealed a well-defined structure, with a ratio of tetrahedral to octahedral Fe sites of 1/2 being common for the bulk material. A narrow particle size distribution (20-30 nm) and high saturation magnetization (95 ± 5 A m2 kg-1) predispose the magnetite nanoparticles to various applications, including magnetic separation processes. The Verwey transition of Fe3O4 nanocrystals was found to be decreased to about 80 K. The deeper reduction of amorphous ferric oxide at 600 °C allows α-Fe (40-50 nm) nanoparticles to be synthesized with a coercive force of about 30 mT. They have a saturation magnetization 2.2 times higher than that of synthesized magnetite nanoparticles, which corresponds well with the ratio usually found for the pure bulk phases. The magnetic properties of α-Fe nanocrystals combined with the high chemical and thermal stability of the MgO matrix makes the prepared nanocomposite useful for various magnetic applications.
NASA Astrophysics Data System (ADS)
Mengali, Sandro; Liberatore, Nicola; Luciani, Domenico; Viola, Roberto; Cardinali, Gian Carlo; Elmi, Ivan; Poggi, Antonella; Zampolli, Stefano; Biavardi, Elisa; Dalcanale, Enrico; Bonadio, Federica; Delemont, Olivier; Esseiva, Pierre; Romolo, Francesco S.
2013-01-01
Analytical instruments based on InfraRed Absorption Spectroscopy (IRAS) and Gas Chromatography (GC) are today available only as bench-top instrumentation for forensic labs and bulk analysis. Within the 'DIRAC' project funded by the European Commission, we are developing an advanced portable sensor, that combines miniaturized GC as its key chemical separation tool, and IRAS in a Hollow Fiber (HF) as its key analytical tool, to detect and recognize illicit drugs and key precursors, as bulk and as traces. The HF-IRAS module essentially consists of a broadly tunable External Cavity (EC) Quantum Cascade Laser (QCL), thermo-electrically cooled MCT detectors, and an infrared hollow fiber at controlled temperature. The hollow fiber works as a miniaturized gas cell, that can be connected to the output of the GC column with minimal dead volumes. Indeed, the module has been coupled to GC columns of different internal diameter and stationary phase, and with a Vapour Phase Pre-concentrator (VPC) that selectively traps target chemicals from the air. The presentation will report the results of tests made with amphetamines and precursors, as pure substances, mixtures, and solutions. It will show that the sensor is capable of analyzing all the chemicals of interest, with limits of detection ranging from a few nanograms to about 100-200 ng. Furthermore, it is suitable to deal with vapours directly trapped from the headspace of a vessel, and with salts treated in a basic solution. When coupled to FAST GC columns, the module can analyze multi-components mixes in less than 5 minutes.
NASA Astrophysics Data System (ADS)
Gogova, D.; Kasic, A.; Larsson, H.; Hemmingsson, C.; Monemar, B.; Tuomisto, F.; Saarinen, K.; Dobos, L.; Pécz, B.; Gibart, P.; Beaumont, B.
2004-07-01
Crack-free bulk-like GaN with high crystalline quality has been obtained by hydride-vapor-phase-epitaxy (HVPE) growth on a two-step epitaxial lateral overgrown GaN template on sapphire. During the cooling down stage, the as-grown 270-μm-thick GaN layer was self-separated from the sapphire substrate. Plan-view transmission electron microscopy images show the dislocation density of the free-standing HVPE-GaN to be ˜2.5×107 cm-2 on the Ga-polar face. A low Ga vacancy related defect concentration of about 8×1015 cm-3 is extracted from positron annihilation spectroscopy data. The residual stress and the crystalline quality of the material are studied by two complementary techniques. Low-temperature photoluminescence spectra show the main neutral donor bound exciton line to be composed of a doublet structure at 3.4715 (3.4712) eV and 3.4721 (3.4718) eV for the Ga- (N-) polar face with the higher-energy component dominating. These line positions suggest virtually strain-free material on both surfaces with high crystalline quality as indicated by the small full width at half maximum values of the donor bound exciton lines. The E1(TO) phonon mode position measured at 558.52 cm-1 (Ga face) by infrared spectroscopic ellipsometry confirms the small residual stress in the material, which is hence well suited to act as a lattice-constant and thermal-expansion-coefficient matched substrate for further homoepitaxy, as needed for high-quality III-nitride device applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de
The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less
NASA Technical Reports Server (NTRS)
Lauretta, D. S.; Klaue, B.; Blum, J. D.; Buseck, P. R.
2001-01-01
The abundance and isotopic composition of Hg was determined in bulk samples of both the Murchison (CM) and Allende (CV) carbonaceous chondrites using single- and multi-collector inductively coupled plasma mass spectrometry (ICP-MS). The bulk abundances of Hg are 294 6 15 ng/g in Murchison and 30.0 6 1.5 ng/g in Allende. These values are within the range of previous measurements of bulk Hg abundances by neutron activation analysis (NAA). Prior studies suggested that both meteorites contain isotopically anomalous Hg, with d l 96/202Hg values for the anomalous, thermal-release components from bulk samples ranging from 2260 %o to 1440 9/00 in Murchison and from 2620 9/00 to 1540 9/00 in Allende (Jovanovic and Reed, 1976a; 1976b; Kumar and Goel, 1992). Our multi-collector ICP-MS measurements suggest that the relative abundances of all seven stable Hg isotopes in both meteorites are identical to terrestrial values within 0.2 to 0.5 9/00m. On-line thermal-release experiments were performed by coupling a programmable oven with the singlecollector ICP-MS. Powdered aliquots of each meteorite were linearly heated from room temperature to 900 C over twenty-five minutes under an Ar atmosphere to measure the isotopic composition of Hg released fiom the meteorites as a h c t i o n of temperature. In separate experiments, the release profiles of S and Se were determined simultaneously with Hg to constrain the Hg distribution within the meteorites and to evaluate the possibility of Se interferences in previous NAA studies. The Hg-release patterns differ between Allende and Murchison. The Hg-release profile for Allende contains two distinct peaks, at 225" and 343"C, whereas the profile for Murchison has only one peak, at 344 C. No isotopically anomalous Hg was detected in the thermal-release experiments at a precision level of 5 to 30 9/00, depending on the isotope ratio. In both meteorites the Hg peak at ;340"C correlates with a peak in the S-release profile. This correlation suggests that Hg is associated with S-bearing phases and, thus, that HgS is a major Hg-bearing phase in both meteorites. The Hg peak at 225 C for Allende is similar to release patterns of physically adsorbed Hg on silicate and metal grains.
Shameli, Seyed Mostafa; Glawdel, Tomasz; Ren, Carolyn L
2015-03-01
Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient. Developing an effective separation system based on the scanning counter-flow nonlinear gradient electrofocusing technique usually requires extensive experimental and numerical efforts, which can be reduced significantly with the help of analytical models for design optimization and guiding experimental studies. Therefore, this study focuses on developing an analytical model to evaluate the separation performance of scanning counter-flow bilinear gradient electrofocusing methods. In particular, this model allows a bilinear gradient and a scanning rate to be optimized for the desired separation performance. The results based on this model indicate that any bilinear gradient provides a higher separation resolution (up to 100%) compared to the linear case. This model is validated by numerical studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aytug, Tolga [Knoxville, TN; Paranthaman, Mariappan Parans [Knoxville, TN; Polat, Ozgur [Knoxville, TN
2012-07-17
An electronic component that includes a substrate and a phase-separated layer supported on the substrate and a method of forming the same are disclosed. The phase-separated layer includes a first phase comprising lanthanum manganate (LMO) and a second phase selected from a metal oxide (MO), metal nitride (MN), a metal (Me), and combinations thereof. The phase-separated material can be an epitaxial layer and an upper surface of the phase-separated layer can include interfaces between the first phase and the second phase. The phase-separated layer can be supported on a buffer layer comprising a composition selected from the group consisting of IBAD MgO, LMO/IBAD-MgO, homoepi-IBAD MgO and LMO/homoepi-MgO. The electronic component can also include an electronically active layer supported on the phase-separated layer. The electronically active layer can be a superconducting material, a ferroelectric material, a multiferroic material, a magnetic material, a photovoltaic material, an electrical storage material, and a semiconductor material.
Kissinger, L D; Robins, R H
1985-03-15
A silver-modified, normal-phase, high-performance liquid chromatographic system has been developed for prostaglanding bulk drugs and triacetin solutions. Silver nitrate present in the mobile phase results in high selectivity for cis/trans isomers with conventional silica columns. Prostaglandins were esterified with alpha-bromo-2'-acetonaphthone prior to chromatography to provide high detectability at 254 nm. For dilute triacetin solutions, a sample preparation scheme based on gravity-flow chromatography with silica columns was developed to isolate the prostaglandin from triacetin prior to derivatization. The analytical technique was applied to triacetin solutions containing as little as 10 micrograms/ml arbaprostil [15-(R)-methyl-PGE2].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodadi, M., E-mail: M.Khodadi@sbu.ac.ir; Sepangi, H.R., E-mail: hr-sepangi@sbu.ac.ir
We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigatemore » the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.« less
Formation and magnetic properties of the L10 phase in bulk, powder and hot compacted Mn-Ga alloys
NASA Astrophysics Data System (ADS)
Mix, T.; Müller, K.-H.; Schultz, L.; Woodcock, T. G.
2015-10-01
The formation and stability of the L10 phase in Mn-Ga binary alloys with compositions in the range 50-75 at% Mn (in steps of 5 at%) has been studied. Of these, single-phase L10 structure was successfully produced in the 55, 60 and 65 at% Mn alloys by annealing the high temperature phases, which had been retained to room temperature following arc melting. Further annealing and thermal analysis were used to determine the phase transformation temperatures in the alloys and the results were used to guide further processing. The saturation magnetisation, Ms, and the anisotropy field, Ha, were determined in applied fields up to 14 T. For Mn55Ga45, μ0Ms=0.807 T and μ0Ha=4.4 T were observed. Mechanically milled Mn55Ga45 powder had coercivity of μ0Hc=0.393 T, which was a twentyfold increase compared to the bulk material but the magnetisation was reduced (cf. powder: μ0M5 T=0.576 T, bulk: μ0M5 T=0.780 T). Annealing the powder at 400 °C led to recovery of the magnetisation but reduced the coercivity, which was still 10 times as high as the bulk value. A degree of texture of 0.45 was achieved by magnetic alignment of the powder particles, leading to a remanence of 0.526 T. Furthermore, isotropic hot compacts of powders were produced with packing density from 83% to 99%, in which the improved coercivity of the powders was partially retained.
Bulk water phase and biofilm growth in drinking water at low nutrient conditions.
Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik; Jørgensen, Claus
2002-11-01
In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used to quantify the effect of retention times at hydraulic conditions similar to those in drinking water distribution networks. Water and pipe wall samples were taken and examined during the experiment. The pipes had been exposed to drinking water at approximately 13 degrees C, for at least 385 days to allow the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day(-1). The bulk water phase bacteria exhibited a higher activity than the biofilm bacteria in terms of culturability, cell-specific ATP content, and cell-specific leucine incorporation rate. Bacteria in the bulk water phase incubated without the presence of biofilm exhibited a bacterial growth rate of 0.30 day(-1). The biofilm was radioactively labelled by the addition of 14C-benzoic acid. Subsequently, a biofilm detachment rate of 0.013 day(-1) was determined by measuring the release of 14C-labelled bacteria of the biofilm. For the quasi-stationary phase biofilm, the detachment rate was equivalent to the net growth rate. The growth rates determined in this study by different independent experimental approaches were comparable and within the range of values reported in the literature.
Peterman, Paul H.; Orazio, Carl E.; Echols, Kathy R.
2006-01-01
Comprising nearly 100 congeners in environmental samples, PCBs are often still prevalent in concentrations exceeding 1 μg/g. To effectively measure PCBs, they are isolated as a group from other persistent organic pollutants using silica gel, Florisil, or alumina column chromatography for analysis by GC/MS or dual capillary column GC/ECD. When organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) are also targeted, PCBs are often split into two chromatographic eluates. In contrast to the major ortho-substituted PCB congeners, much lower concentrations occur for congeners of polychlorinated- dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), dibenzothiophenes (PCDTs), naphthalenes (PCNs), and dioxin-like non-ortho-PCBs1 . Such co-planar compounds are usually separated from the bulk PCBs using a carbon LC2 or reusable porous graphitic carbon HPLC column3 eluted forward (o-PCBs, mono-o-PCBs, then non-o-PCBs) before reversal with toluene (PCDFs and PCDDs) and additional separation with basic alumina to remove PCNs, polychlorinated diphenyl ethers (PCDEs), and residual lipid for PCDF/PCDD GC/HRMS analysis. Recently, smaller particle-size normal phase adsorbents including active basic alumina have become available along with custom-made glass columns for use in low pressure flash chromatography. With low gas pressure (< 1-2 bar) and particles 32-63 μm, flash chromatography is a rapid, inexpensive technique with enhanced resolution compared to gravity column chromatography4 . However, few environmental researchers use the technique, but basic alumina is in the automated PowerPrep LC system for PCDFs, PCDDs, PCBs and PBDEs5 . A flash LC column is quickly dry-packed, gives improved flow performance, and has sufficient resistance to gravity flow without a shutoff valve. Contamination from lab air, dust, and sample carryover is minimized by using high purity nitrogen, much smaller eluate volumes and blown down in tubes with high purity nitrogen. The disposable adsorbent is used only once with an inert, nonleachable, reusable and cleanable glass column with glass joints and disposable glass fiber. We evaluated basic alumina flash chromatography initially for PCBs, because Loos et al.6 had separated 13 selected o-PCB congeners from three non-o-PCBs (77, 126, and 169) and then from PCDFs and PCDDs with eluants of 150- 200 mL each from a large 25-g basic alumina (Super 1 active) column. Because the elution properties of other PCB congeners were unknown in addition to some PBDEs, PCDTs, and other compounds, we chose to evaluate basic alumina flash chromatography comprehensively. We optimized the separation of all bulk o-PCBs from all non-o-PCBs, tested other pollutants (PBDEs, PCDTs, PCDFs and PCDDs) under similar elution conditions, and finally applied the chromatographic technique to samples known or suspected to contain complex mixtures of these.
Exploration of phase transition in Th2C under pressure: An Ab-initio investigation
NASA Astrophysics Data System (ADS)
Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.
2018-05-01
With the motivation of searching for new compounds in the Th-C system, we have performed ab initio evolutionary searches for all the stable compounds in this binary system in the pressure range of 0-100 GPa. We have found previously unknown, thermodynamically stable, composition Th2C along with experimentally known ThC, ThC2 and Th2C3 phases at 0 GPa. Interestingly at pressure of 13 GPa the predicted ground state orthorhombic (SG no. 59, Pmmn) phase of Th2C transforms to trigonal (SG no. 164, P-3m1) phase. We also find the mechanical and dynamical stability of both the phases. Further, the theoretically determined equation of state has been utilized to derive various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus of Pmmn phase at ambient conditions.
Elemental Topological Dirac Semimetal: α -Sn on InSb(111)
Xu, Cai-Zhi; Chan, Yang-Hao; Chen, Yige; ...
2017-04-04
Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated with bulk electronic states near the Fermi level. We have observed such bulk Dirac cones in epitaxially grown α-Sn films on InSb(111), the first such TDS system realized in an elemental form, using angle-resolved photoemission spectroscopy. First-principles calculations confirm that epitaxial strain is key to the formation of the TDS phase. A phase diagram is established that connects the 3D TDS phase through a singular point ofmore » a zero-gap semimetal phase to a topological insulator phase. The nature of the Dirac cone crosses over from 3D to 2D as the film thickness is reduced.« less
NASA Astrophysics Data System (ADS)
Davis, Peter Kennedy
Mass transport and thermodynamics in polymer-solvent systems are two key areas of importance to the polymer industry. Numerous processes including polymerization reactors, membrane separations, foam production, devolatilization processes, film and coating drying, supercritical extractions, drug delivery, and even nano-technology require fundamental phase equilibria and diffusion information. Although such information is vital in equipment design and optimization, acquisition and modeling of these data are still in the research and development stages. This thesis is rather diverse as it addresses many realms of this broad research area. From high pressure to low pressure, experimental to theoretical, and infinite dilution to finite concentration, the thesis covers a wide range of topics that are of current importance to the industrial and academic polymer community. Chapter 1 discusses advances in the development of a new volumetric sorption pressure decay technique to make phase equilibrium and diffusion measurements in severe temperature-pressure environments. Chapter 2 provides the derivations and results of a new completely predictive Group Contribution Lattice Fluid Equation of State for multi-component polymer-solvent systems. The remaining four chapters demonstrate advances in the modeling of inverse gas chromatography (IGC) experiments. IGC has been used extensively of the last 50 years to make low pressure sorption and diffusion measurements at infinitely dilute and finite solvent concentrations. Chapter 3 proposes a new IGC experiment capable of obtaining ternary vapor-liquid equilibria in polymer-solvent-solvent systems. Also in that chapter, an extensive derivation is provided for a continuum model capable of describing the results of such an experiment. Chapter 4 presents new data collected on a packed column IGC experiment and a new model that can be used with those experimental data to obtain diffusion and partition coefficients. Chapter 5 addresses a rather controversial topic about IGC experiments near the polymer glass transition temperature. Using a new IGC model capable of describing both bulk absorption and surface adsorption, IGC behavior around the glass transition was able to be better understood. Finally, Chapter 6 presents an IGC model that can be used to separate bulk effects from surface effects in capillary column IGC experiments.
Non-noble electrocatalysts for alkaline fuel cells
NASA Technical Reports Server (NTRS)
Sarangapani, S.; Lessner, P.; Manoukian, M.; Giner, J.
1989-01-01
Carbons activated with macrocyclics have attracted increasing attention as alternative electrocatalysts for oxygen reduction. Initial activity of these catalysts is good, but performance declines rapidly. Pyrolyzing the macrocyclic on the carbon support leads to enhanced stability and the catalysts retain good activity. The approach described is designed to develop bulk doped catalysts with similar structures to pyrolyzed macrocyclic catalysts. The transition metal and coordinated ligands are dispersed throughout the bulk of the conductive carbon skeleton. Two approaches to realizing this concept are being pursued, both involving the doping of carbon precursors. In one approach, the precursor is a solid phase carbon-containing ion-exchange resin. The precursor is doped with a transition metal and/or nitrogen, and the resulting mixture is pyrolyzed. In the other approach, the precursor is a gas-phase hydrocarbon. This is introduced with a transition metal species and nitrogen species into a reactor and pyrolyzed. Several studies have been conducted to determine if there is a synergistic effect between the transition metal and nitrogen and the effect of different methods of introducing the metal-nitrogen (M-N) coordination on performance. One approach was to introduce the metal and nitrogen separately, for example, by sequentially doping FeCl3 and NH4OH into the resin. Catalysts were prepared from an undoped ion-exchange resin, a resin doped only with N, a resin doped only with Fe, and a resin doped with both Fe and N. Introduction of nitrogen alone has no beneficial effect on the performance of the catalysts. The introduction of the Fe alone significantly improves the performance in both the high and low current density regions. When both Fe and N are introduced, the performance at lower current densities (catalytic activity) is increased beyond that of the Fe-doped carbon, but the performance at higher current densities is similar to the carbon containing only Fe. Catalysts prepared from resins-Fe(bipy)3SO4 precursors have performance that is only slightly less then CoTMPP adsorbed and pyroloyzed on Vulcan XC-72. Their performance is much better than carbons which have had the N and Fe introduced separately.
He, Zhongjin; Linga, Praveen; Jiang, Jianwen
2017-10-31
Microsecond simulations have been performed to investigate CH 4 hydrate formation from gas/water two-phase systems between silica and graphite surfaces, respectively. The hydrophilic silica and hydrophobic graphite surfaces exhibit substantially different effects on CH 4 hydrate formation. The graphite surface adsorbs CH 4 molecules to form a nanobubble with a flat or negative curvature, resulting in a low aqueous CH 4 concentration, and hydrate nucleation does not occur during 2.5 μs simulation. Moreover, an ordered interfacial water bilayer forms between the nanobubble and graphite surface thus preventing their direct contact. In contrast, the hydroxylated-silica surface prefers to be hydrated by water, with a cylindrical nanobubble formed in the solution, leading to a high aqueous CH 4 concentration and hydrate nucleation in the bulk region; during hydrate growth, the nanobubble is gradually covered by hydrate solid and separated from the water phase, hence slowing growth. The silanol groups on the silica surface can form strong hydrogen bonds with water, and hydrate cages need to match the arrangements of silanols to form more hydrogen bonds. At the end of the simulation, the hydrate solid is separated from the silica surface by liquid water, with only several cages forming hydrogen bonds with the silica surface, mainly due to the low CH 4 aqueous concentrations near the surface. To further explore hydrate formation between graphite surfaces, CH 4 /water homogeneous solution systems are also simulated. CH 4 molecules in the solution are adsorbed onto graphite and hydrate nucleation occurs in the bulk region. During hydrate growth, the adsorbed CH 4 molecules are gradually converted into hydrate solid. It is found that the hydrate-like ordering of interfacial water induced by graphite promotes the contact between hydrate solid and graphite. We reveal that the ability of silanol groups on silica to form strong hydrogen bonds to stabilize incipient hydrate solid, as well as the ability of graphite to adsorb CH 4 molecules and induce hydrate-like ordering of the interfacial water, are the key factors to affect CH 4 hydrate formation between silica and graphite surfaces.
Rotary adsorbers for continuous bulk separations
Baker, Frederick S [Oak Ridge, TN
2011-11-08
A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.
Method for separating disparate components in a fluid stream
Meikrantz, David H.
1990-01-01
The invention provides a method of separating a mixed component waste stream in a centrifugal separator. The mixed component waste stream is introduced into the separator and is centrifugally separated within a spinning rotor. A dual vortex separation occurs due to the phase density differences, with the phases exiting the rotor distinct from one another. In a preferred embodiment, aqueous solutions of organics can be separated with up to 100% efficiency. The relatively more dense water phase is centrifugally separated through a radially outer aperture in the separator, while the relatively less dense organic phase is separated through a radially inner aperture.
Phase behavior and reactive transport of partial melt in heterogeneous mantle model
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2013-12-01
The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation front that followes a stationary melting front which creates low porosity intermediate states. Therefore, localization of the melt flow is not observed because the precipitation front is stable and the melting front is always stationary under these conditions. This analysis illustrates the counterintuitive behavior that can arise when the phase behavior is taken into account and is a first step to understanding reactive melt transport and the reactive constraints on channelization in partial melts. ¬¬
Reaction-mediated entropic effect on phase separation in a binary polymer system
NASA Astrophysics Data System (ADS)
Sun, Shujun; Guo, Miaocai; Yi, Xiaosu; Zhang, Zuoguang
2017-10-01
We present a computer simulation to study the phase separation behavior induced by polymerization in a binary system comprising polymer chains and reactive monomers. We examined the influence of interaction parameter between components and monomer concentration on the reaction-induced phase separation. The simulation results demonstrate that increasing interaction parameter (enthalpic effect) would accelerate phase separation, while entropic effect plays a key role in the process of phase separation. Furthermore, scanning electron microscopy observations illustrate identical morphologies as found in theoretical simulation. This study may enrich our comprehension of phase separation in polymer mixture.
Orphan Spins in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.
Stock, C; Rodriguez, E E; Lee, N; Demmel, F; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Green, M A; Rodriguez-Rivera, J A; Kim, J W; Zhang, L; Cheong, S-W
2017-12-22
CaFe_{2}O_{4} is an anisotropic S=5/2 antiferromagnet with two competing A (↑↑↓↓) and B (↑↓↑↓) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin waves and resemble the spectra from isolated spin clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe_{2}O_{4}.
Orphan Spins in the S =5/2 Antiferromagnet CaFe2O4
NASA Astrophysics Data System (ADS)
Stock, C.; Rodriguez, E. E.; Lee, N.; Demmel, F.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Green, M. A.; Rodriguez-Rivera, J. A.; Kim, J. W.; Zhang, L.; Cheong, S.-W.
2017-12-01
CaFe2O4 is an anisotropic S =5/2 antiferromagnet with two competing A (↑↑↓↓) and B (↑↓↑↓) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin waves and resemble the spectra from isolated spin clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe2 O4 .
NASA Astrophysics Data System (ADS)
Knight, Kevin S.; Marshall, William G.; Hawkins, Philip M.
2014-06-01
The fluoroperovskite phase RbCaF3 has been investigated using high-pressure neutron powder diffraction in the pressure range ~0-7.9 GPa at room temperature. It has been found to undergo a first-order high-pressure structural phase transition at ~2.8 GPa from the cubic aristotype phase to a hettotype phase in the tetragonal space group I4/ mcm. This transition, which also occurs at ~200 K at ambient pressure, is characterised by a linear phase boundary and a Clapeyron slope of 2.96 × 10-5 GPa K-1, which is in excellent agreement with earlier, low-pressure EPR investigations. The bulk modulus of the high-pressure phase (49.1 GPa) is very close to that determined for the low-pressure phase (50.0 GPa), and both are comparable with those determined for the aristotype phases of CsCdF3, TlCdF3, RbCdF3, and KCaF3. The evolution of the order parameter with pressure is consistent with recent modifications to Landau theory and, in conjunction with polynomial approximations to the pressure dependence of the lattice parameters, permits the pressure variation of the bond lengths and angles to be predicted. On entering the high-pressure phase, the Rb-F bond lengths decrease from their extrapolated values based on a third-order Birch-Murnaghan fit to the aristotype equation of state. By contrast, the Ca-F bond lengths behave atypically by exhibiting an increase from their extrapolated magnitudes, resulting in the volume and the effective bulk modulus of the CaF6 octahedron being larger than the cubic phase. The bulk moduli for the two component polyhedra in the tetragonal phase are comparable with those determined for the constituent binary fluorides, RbF and CaF2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jing; Hu, Enyuan; Nordlund, Dennis
The phase transition, charge compensation, and local chemical environment of Ni in LiNiO 2 were investigated to understand the degradation mechanism. The electrode was subjected to a variety of bulk and surface-sensitive characterization techniques under different charge–discharge cycling conditions. We observed the phase transition from the original hexagonal H1 phase to another two hexagonal phases (H2 and H3) upon Li deintercalation. Moreover, the gradual loss of H3-phase features was revealed during the repeated charges. The reduction in Ni redox activity occurred at both the charge and the discharge states, and it appeared both in the bulk and at the surfacemore » over the extended cycles. In conclusion, the degradation of crystal structure significantly contributes to the reduction of Ni redox activity, which in turn causes the cycling performance decay of LiNiO 2.« less
Meteoritic Sulfur Isotopic Analysis
NASA Technical Reports Server (NTRS)
Thiemens, Mark H.
1996-01-01
Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.
The composition of secondary amorphous phases under different environmental conditions
NASA Astrophysics Data System (ADS)
Smith, R.; Rampe, E. B.; Horgan, B. H. N.; Dehouck, E.; Morris, R. V.
2017-12-01
X-ray diffraction (XRD) patterns measured by the CheMin instrument on the Mars Science Laboratory Curiosity rover demonstrate that amorphous phases are major components ( 15-60 wt%) of all rock and soil samples in Gale Crater. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., silica, ferrihydrite) phases. Secondary amorphous phases are frequently found as weathering products in soils on Earth, but these materials remain poorly characterized. Here we study a diverse suite of terrestrial samples including: sediments from recently de-glaciated volcanoes (Oregon), modern volcanic soils (Hawaii), and volcanic paleosols (Oregon) in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of amorphous phases. We combine bulk XRD mineralogy with bulk chemical compositions (XRF) to calculate the abundance and bulk composition of the amorphous materials in our samples. We then utilize scanning transmission electron microscopy (STEM) and energy dispersive x-ray spectroscopy (EDS) to study the composition of individual amorphous phases at the micrometer scale. XRD analyses of 8 samples thus far indicate that the abundance of amorphous phases are: modern soils (20-80 %) > paleosols (15-40 %) > glacial samples (15-30 %). Initial calculations suggest that the amorphous components consist primarily of SiO2, Al2O3, TiO2, FeO and Fe2O3, with minor amounts of other oxides (e.g., MgO, CaO, Na2O). Compared to their respective crystalline counterparts, calculations indicate bulk amorphous components enriched in SiO2 for the glacial sample, and depleted in SiO2 for the modern soil and paleosol samples. STEM analyses reveal that the amorphous components consist of a number of different phases. Of the two samples analyzed using STEM thus far, the secondary amorphous phases have compositions with varying ratios of SiO2, Al2O3, TiO2, and Fe-oxides, consistent with mass balance calculation results, but inconsistent with well-known amorphous phase compositions (e.g., allophane, ferrihydrite). These results show that a number of secondary amorphous phases can form within a single soil environment. Continued analysis can help determine whether compositional trends can be linked to environmental factors.
Separation of aqueous two-phase polymer systems in microgravity
NASA Technical Reports Server (NTRS)
Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.
1984-01-01
Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw
2014-01-01
Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less
Rao, Kareti Srinivasa; Kumar, Keshar Nargesh; Joydeep, Datta
2011-01-01
A simple stability indicating reversed-phase HPLC method was developed and subsequently validated for estimation of Cefpirome sulphate (CPS) present in pharmaceutical dosage forms. The proposed RP-HPLC method utilizes a LiChroCART-Lichrosphere100, C18 RP column (250 mm × 4mm × 5 μm) in an isocratic separation mode with mobile phase consisting of methanol and water in the proportion of 50:50 % (v/v), at a flow rate 1ml/min, and the effluent was monitored at 270 nm. The retention time of CPS was 2.733 min and its formulation was exposed to acidic, alkaline, photolytic, thermal and oxidative stress conditions, and the stressed samples were analyzed by the proposed method. The described method was linear over a range of 0.5-200μg/ml. The percentage recovery was 99.46. F-test and t-test at 95% confidence level were used to check the intermediate precision data obtained under different experimental setups; the calculated value was found to be less than the critical value.
Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses
Launey, Maximilien E.; Hofmann, Douglas C.; Johnson, William L.; Ritchie, Robert O.
2009-01-01
The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combination of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage, and previous attempts to solve this problem have been largely disappointing. Here, we propose and demonstrate a microstructural design strategy to overcome this limitation by matching the microstructural length scales (of the second phase) to mechanical crack-length scales. Specifically, semisolid processing is used to optimize the volume fraction, morphology, and size of second-phase dendrites to confine any initial deformation (shear banding) to the glassy regions separating dendrite arms having length scales of ≈2 μm, i.e., to less than the critical crack size for failure. Confinement of the damage to such interdendritic regions results in enhancement of fatigue lifetimes and increases the fatigue limit by an order of magnitude, making these “designed” composites as resistant to fatigue damage as high-strength steels and aluminum alloys. These design strategies can be universally applied to any other metallic glass systems. PMID:19289820
Equations of state of anhydrous AlF 3 and AlI 3 : Modeling of extreme condition halide chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF 3) and separately, aluminum triiodide (AlI 3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF 3 and AlI 3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. In conclusion, results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrou, Elissaios, E-mail: stavrou1@llnl.gov; Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, P.O. Box 808 L-350, Livermore, California 94550; Zaug, Joseph M., E-mail: zaug1@llnl.gov
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF{sub 3}) and separately, aluminum triiodide (AlI{sub 3}) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF{sub 3} and AlI{sub 3} were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less
Siddiqui, Farhan Ahmed; Sher, Nawab; Shafi, Nighat; Wafa Sial, Alisha; Ahmad, Mansoor; Mehjebeen
2014-01-01
RP-HPLC ultraviolet detection simultaneous quantification of piracetam and levetiracetam has been developed and validated. The chromatography was obtained on a Nucleosil C18 column of 25 cm × 0.46 cm, 10 μm, dimension. The mobile phase was a (70 : 30 v/v) mixture of 0.1 g/L of triethylamine and acetonitrile. Smooth flow of mobile phase at 1 mL/min was set and 205 nm wavelength was selected. Results were evaluated through statistical parameters which qualify the method reproducibility and selectivity for the quantification of piracetam, levetiracetam, and their impurities hence proving stability-indicating properties. The proposed method is significantly important, permitting the separation of the main constituent piracetam from levetiracetam. Linear behavior was observed between 20 ng/mL and 10000 ng/mL for both drugs. The proposed method was checked in bulk drugs, dosage formulations, physiological condition, and clinical investigations and excellent outcome was witnessed. PMID:25114921
NASA Astrophysics Data System (ADS)
Yabunaka, Shunsuke; Onuki, Akira
2017-09-01
We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.
Equations of state of anhydrous AlF 3 and AlI 3 : Modeling of extreme condition halide chemistry
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...
2015-06-04
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF 3) and separately, aluminum triiodide (AlI 3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF 3 and AlI 3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. In conclusion, results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less
Fabrication, phase, microstructure and electrical properties of BNT-doped (Sr,La)TiO3 ceramics
NASA Astrophysics Data System (ADS)
Eaksuwanchai, Preeyakarn; Promsawat, Methee; Jiansirisomboon, Sukanda; Watcharapasorn, Anucha
2014-08-01
This research studied the effects of Bi0.5Na0.5TiO3 (BNT) doping on the phase, density, microstructure and electrical properties of (Sr,La)TiO3 (SLTO) ceramics. Separately calcined SLTO and BNT powders were mixed together to form (1-x)SLTO-xBNT (where x = 0, 0.01, 0.03, 0.05 and 0.07 mol fraction) compounds that were pressed into pellets and then sintered at 1500 °C for 3 h under ambient atmosphere. The relative bulk densities of all the ceramics were greater than 95% their theoretical values which were confirmed by their nearly zero-porosity microstructure. X-ray diffraction patterns indicated complete solid solutions with a cubic structure and a slight lattice contraction when BNT was added. The electrical conductivity was found to decrease with BNT addition, suggesting a reduced number of mobile charges. The dielectric constant also showed limited polarization due to defect dipoles formed by aliovalent ionic substitution of BNT. Further optimization in terms of composition and defect chemistry could lead to a compound suitable for thermoelectric applications.
Structure and bulk modulus of Ln-doped UO2 (Ln = La, Nd) at high pressure
NASA Astrophysics Data System (ADS)
Rittman, Dylan R.; Park, Sulgiye; Tracy, Cameron L.; Zhang, Lei; Palomares, Raul I.; Lang, Maik; Navrotsky, Alexandra; Mao, Wendy L.; Ewing, Rodney C.
2017-07-01
The structure of lanthanide-doped uranium dioxide, LnxU1-xO2-0.5x+y (Ln = La, Nd), was investigated at pressures up to ∼50-55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ∼ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ∼ 0.25-0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both the ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. This trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO2, such as Young's modulus.
Structure and bulk modulus of Ln-doped UO 2 (Ln = La, Nd) at high pressure
Rittman, Dylan R.; Park, Sulgiye; Tracy, Cameron L.; ...
2017-04-10
The structure of lanthanide-doped uranium dioxide, Ln xU 1-xO 2-0.5x+y (Ln = La, Nd), was investigated at pressures up to ~50–55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ~ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ~ 0.25–0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both themore » ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. As a result, this trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO 2, such as Young's modulus.« less
NASA Astrophysics Data System (ADS)
Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan
2005-05-01
In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.
Intrinsic nanostructure in Zr2-xFe4Si16-y(x = 0.81, y = 6.06)
NASA Astrophysics Data System (ADS)
Smith, G. J.; Simonson, J. W.; Orvis, T.; Marques, C.; Grose, J. E.; Kistner-Morris, J. J.; Wu, L.; Cho, K.; Kim, H.; Tanatar, M. A.; Garlea, V. O.; Prozorov, R.; Zhu, Y.; Aronson, M. C.
2014-09-01
We present a study of the crystal structure and physical properties of single crystals of a new Fe-based ternary compound, Zr2-xFe4Si16-y(x = 0.81, y = 6.06). Zr1.19Fe4Si9.94 is a layered compound, where stoichiometric β-FeSi2-derived slabs are separated by Zr-Si planes with substantial numbers of vacancies. High resolution transmission electron microscopy (HRTEM) experiments show that these Zr-Si layers consist of 3.5 nm domains where the Zr and Si vacancies are ordered within a supercell sixteen times the volume of the stoichiometric cell. Within these domains, the occupancies of the Zr and Si sites obey symmetry rules that permit only certain compositions, none of which by themselves reproduce the average composition found in x-ray diffraction experiments. Magnetic susceptibility and magnetization measurements reveal a small but appreciable number of magnetic moments that remain freely fluctuating to 1.8 K, while neutron diffraction confirms the absence of bulk magnetic order with a moment of 0.2μB or larger down to 1.5 K. Electrical resistivity measurements find that Zr1.19Fe4Si9.94 is metallic, and the modest value of the Sommerfeld coefficient of the specific heat γ = C/T suggests that quasi-particle masses are not particularly strongly enhanced. The onset of superconductivity at Tc ≃ 6 K results in a partial resistive transition and a small Meissner signal, although a bulk-like transition is found in the specific heat. Sharp peaks in the ac susceptibility signal the interplay of the normal skin depth and the London penetration depth, typical of a system in which nano-sized superconducting grains are separated by a non-superconducting host. Ultra low field differential magnetic susceptibility measurements reveal the presence of a surprisingly large number of trace magnetic and superconducting phases, suggesting that the Zr-Fe-Si ternary system could be a potentially rich source of new bulk superconductors.
Temperature dependent infrared nano-imaging of La0.67Sr0.33MnO3 thin film
NASA Astrophysics Data System (ADS)
Xu, Peng; Huffman, T. J.; Hae Kwak, In; Biswas, Amlan; Qazilbash, M. M.
2018-01-01
We investigate the temperature dependence of infrared properties at nanometer length scales in La0.67Sr0.33MnO3 (LSMO) thin film with a thickness of 47 unit cells grown on SrTiO3 substrate. The infrared nano-imaging experiments were performed using a near-field optical microscope in conjunction with a variable temperature heating stage. The near-field infrared data is consistent with the bulk of the LSMO film undergoing the thermally-driven non-percolative second-order transition from a metallic, ferromagnetic phase to an insulating, paramagnetic phase. We find persistent infrared contrast on the nanoscale that is independent of temperature and which we attribute to two novel phases with different conductivities coexisting in the vicinity of the film-substrate interface. These two coexisting phases at the film-substrate interface do not undergo the metal-insulator transition (MIT) and hence are different from the metallic, ferromagnetic and insulating, paramagnetic phases in the bulk of the film. At temperatures approaching the nominal MIT temperature, repeated scans of the same microscopic area at constant temperature reveal bimodal fluctuation of the near-field infrared amplitude. We interpret this phenomenon as slow, critical fluctuations of the conductivity in the bulk of the LSMO film.
Modeling of Bulk Evaporation and Condensation
NASA Technical Reports Server (NTRS)
Anghaie, S.; Ding, Z.
1996-01-01
This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.
Lummen, Tom T. A.; Leung, J.; Kumar, Amit; ...
2017-06-19
The design of new or enhanced functionality in materials is traditionally viewed as requiring the discovery of new chemical compositions through synthesis. Large property enhancements may however also be hidden within already well-known materials, when their structural symmetry is deviated from equilibrium through a small local strain or field. Here, the discovery of enhanced material properties associated with a new metastable phase of monoclinic symmetry within bulk KNbO 3 is reported. This phase is found to coexist with the nominal orthorhombic phase at room temperature, and is both induced by and stabilized with local strains generated by a network ofmore » ferroelectric domain walls. While the local microstructural shear strain involved is only ≈0.017%, the concurrent symmetry reduction results in an optical second harmonic generation response that is over 550% higher at room temperature. Moreover, the meandering walls of the low-symmetry domains also exhibit enhanced electrical conductivity on the order of 1 S m -1. In conclusion, this discovery reveals a potential new route to local engineering of significant property enhancements and conductivity through symmetry lowering in ferroelectric crystals.« less
Akhtar, Juber; Fareed, Sheeba; Aqil, Mohd
2013-07-01
A sensitive, selective, precise and stability-indicating high-performance thin-layer chromatographic (HPTLC) method for analysis of repaglinide both as a bulk drug and in nanoemulsion formulation was developed and validated. The method employed TLC aluminum plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of chloroform/methanol/ammonia/glacial acetic acid (7.5:1.5:0.9:0.1, v/v/v/v). This system was found to give compact spots for repaglinide (R f value of 0.38 ± 0.02). Repaglinide was subjected to acid and alkali hydrolysis, oxidation, photodegradation and dry heat treatment. Also, the degraded products were well separated from the pure drug. Densitometric analysis of repaglinide was carried out in the absorbance mode at 240 nm. The linear regression data for the calibration plots showed good linear relationship with r (2)= 0.998 ± 0.032 in the concentration range of 50-800 ng. The method was validated for precision, accuracy as recovery, robustness and specificity. The limits of detection and quantitation were 0.023 and 0.069 ng per spot, respectively. The drug undergoes degradation under acidic and basic conditions, oxidation and dry heat treatment. All the peaks of the degraded product were resolved from the standard drug with significantly different R f values. Statistical analysis proves that the method is reproducible and selective for the estimation of the said drug. As the method could effectively separate the drug from its degradation products, it can be employed as a stability-indicating one. Moreover, the proposed HPTLC method was utilized to investigate the degradation kinetics in 1M NaOH.
Surface tension prevails over solute effect in organic-influenced cloud droplet activation.
Ovadnevaite, Jurgita; Zuend, Andreas; Laaksonen, Ari; Sanchez, Kevin J; Roberts, Greg; Ceburnis, Darius; Decesari, Stefano; Rinaldi, Matteo; Hodas, Natasha; Facchini, Maria Cristina; Seinfeld, John H; O' Dowd, Colin
2017-06-29
The spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface. Here we present observational and theoretical evidence illustrating that, in ambient air, surface tension lowering can prevail over the reduction in the Raoult effect, leading to substantial increases in cloud droplet concentrations. We suggest that consideration of liquid-liquid phase separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, can explain the lack of concomitant reduction of the Raoult effect, while maintaining substantial lowering of surface tension, even for partial surface coverage. Apart from the importance of particle size and composition in droplet activation, we show by observation and modelling that incorporation of phase-separation effects into activation thermodynamics can lead to a CCN number concentration that is up to ten times what is predicted by climate models, changing the properties of clouds. An adequate representation of the CCN activation process is essential to the prediction of clouds in climate models, and given the effect of clouds on the Earth's energy balance, improved prediction of aerosol-cloud-climate interactions is likely to result in improved assessments of future climate change.
Plössl, Florian; Giera, Martin; Bracher, Franz
2006-11-24
A convenient analytical method for the simultaneous determination of more than 40 pharmaceuticals belonging to various therapeutic categories in whole blood has been developed. Exemplarily, the method was fully validated for eight different pharmaceuticals. The procedure entails addition of acetonitrile, magnesium sulfate and sodium chloride to a small amount of blood, then the mixture is shaken intensively and centrifuged for phase separation. An aliquot of the organic layer is cleaned up by dispersive solid-phase extraction employing bulk sorbents as well as magnesium sulfate for the removal of residual water. This method was based on the QuEChERS approach developed for pesticide residue analysis in food. Gas chromatography/ion trap mass spectrometry (GC/MS) with electron (EI) and chemical (CI) ionisation was then used for qualitative and quantitative determination of the pharmaceuticals. The dispersive SPE with PSA (sorbent functionalized with primary and secondary amines) was found more suitable than aminopropyl and a styrene-divinylbenzene sorbent for sample clean-up before drug level determination in whole blood and plasma, as it was found that most of endogenous matrix components were removed and the analytes were isolated from spiked samples with recoveries above 80%. Variation coefficients of the repeatability typically smaller than 10% have been achieved for a wide range of the investigated substances. The used analytical conditions allowed to separate successively a variety of drugs and poisons with the typical limit of detection at <20 ng mL(-1) levels using 1 microL injection of equivalent blood sample in whole blood. The method is simple, rapid, cheap and very effective for therapeutic drug monitoring and forensic chemistry.
Classical impurities and boundary Majorana zero modes in quantum chains
NASA Astrophysics Data System (ADS)
Müller, Markus; Nersesyan, Alexander A.
2016-09-01
We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.
Chemical potential in active systems: predicting phase equilibrium from bulk equations of state?
NASA Astrophysics Data System (ADS)
Paliwal, Siddharth; Rodenburg, Jeroen; van Roij, René; Dijkstra, Marjolein
2018-01-01
We derive a microscopic expression for a quantity μ that plays the role of chemical potential of active Brownian particles (ABPs) in a steady state in the absence of vortices. We show that μ consists of (i) an intrinsic chemical potential similar to passive systems, which depends on density and self-propulsion speed, but not on the external potential, (ii) the external potential, and (iii) a newly derived one-body swim potential due to the activity of the particles. Our simulations on ABPs show good agreement with our Fokker-Planck calculations, and confirm that μ (z) is spatially constant for several inhomogeneous active fluids in their steady states in a planar geometry. Finally, we show that phase coexistence of ABPs with a planar interface satisfies not only mechanical but also diffusive equilibrium. The coexistence can be well-described by equating the bulk chemical potential and bulk pressure obtained from bulk simulations for systems with low activity but requires explicit evaluation of the interfacial contributions at high activity.
NASA Astrophysics Data System (ADS)
Sedlmayr, Nicholas; Kaladzhyan, Vardan; Dutreix, Clément; Bena, Cristina
2017-11-01
The bulk-boundary correspondence establishes a connection between the bulk topological index of an insulator or superconductor, and the number of topologically protected edge bands or states. For topological superconductors in two dimensions, the first Chern number is related to the number of protected bands within the bulk energy gap, and is therefore assumed to give the number of Majorana band states in the system. Here we show that this is not necessarily the case. As an example, we consider a hexagonal-lattice topological superconductor based on a model of graphene with Rashba spin-orbit coupling, proximity-induced s -wave superconductivity, and a Zeeman magnetic field. We explore the full Chern number phase diagram of this model, extending what is already known about its parity. We then demonstrate that, despite the high Chern numbers that can be seen in some phases, these do not strictly always contain Majorana bound states.
Effects of microstructures on the performance of rare-earth-free MnBi magnetic materials and magnets
NASA Astrophysics Data System (ADS)
Nguyen, Vuong Van; Nguyen, Truong Xuan
2018-03-01
Since the solidification of MnBi alloys is peritectic, their microstructures always consist of the starting phases of Mn and Bi and the productive phase MnBi. The high performance of MnBi bulk magnets requires appropriate routes of preparing MnBi powders of high spontaneous magnetization Ms and large coercivity iHc as well a route of producing bulk magnets thereof. In these routes, the microstructures of arc-melted alloys, annealed alloys and magnets strongly related to the quality of powders and the performance of magnets. The paper proves that: i) The microstructure of fine Mn-inclusions embedded in the matrix of Bi is preferred for arc-melted alloys to realize the rapid evolution of the ferromagnetic phase inside them during their sequent annealing process; ii) The time-controlled annealing process plays a key role in controlling the microstructure with the main ferromagnetic phase matrix, in which the rest of Mn and the Bi accumulations are embedded; iii) The cold (in-liquid-nitrogen) ball milling annealed alloys is required for preparing a high quality powders with the preferred sub-micrometer microstructure without a Bi-decomposition; iv) The short-time warm compaction is crucial to fabricate dense, highly textured bulk magnets with the micrometer microstructure. The realization and control of these preferred microstructures figured in these routes enhance the chance of preparing MnBi bulk magnets with the energy product (BH)max larger than 8 MGOe.
Film thickness dependence of phase separation and dewetting behaviors in PMMA/SAN blend films.
You, Jichun; Liao, Yonggui; Men, Yongfeng; Shi, Tongfei; An, Lijia
2010-09-21
Film thickness dependence of complex behaviors coupled by phase separation and dewetting in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on silicon oxide substrate at 175 °C was investigated by grazing incidence ultrasmall-angle X-ray scattering (GIUSAX) and in situ atomic force microscopy (AFM). It was found that the dewetting pathway was under the control of the parameter U(q0)/E, which described the initial amplitude of the surface undulation and original thickness of film, respectively. Furthermore, our results showed that interplay between phase separation and dewetting depended crucially on film thickness. Three mechanisms including dewetting-phase separation/wetting, dewetting/wetting-phase separation, and phase separation/wetting-pseudodewetting were discussed in detail. In conclusion, it is relative rates of phase separation and dewetting that dominate the interplay between them.
Souri, Effat; Zargarpoor, Mohammad; Mottaghi, Siavash; Ahmadkhaniha, Reza; Kebriaeezadeh, Abbas
2015-01-01
Fingolimod is an immunosuppressive agent which is used for the prophylaxis of organ transplantation rejection or multiple sclerosis treatment. In this study, systematic forced degradation studies on fingolimod bulk powder were performed to develop a stability-indicating HPLC method. Separation of fingolimod and its degradation products was achieved on a Nova-Pak C8 column. The mobile phase was a mixture of potassium dihydrogenphosphate 50 mM (pH 3.0) and acetonitrile (45:55, v/v) at a flow rate of 1 ml/min. The proposed method was linear in the range of 0.125-20 μg mL(-1). The within-day and between-day coefficients of variation were in the range of 0.6-1.2%. The developed method was successfully applied for the determination of the fingolimod amount in pharmaceutical dosage forms.
Thermoelectric Properties in the TiO2/SnO2 System
NASA Technical Reports Server (NTRS)
Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.
2009-01-01
Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.
Marze, Sébastien
2013-01-01
Many food systems are dispersed systems, that is, they possess at least two immiscible phases. This is generally due to the coexistence of domains with different physicochemical properties separated by many interfaces which control the apparent thermodynamic equilibrium. This feature was and is still largely studied to design pharmaceutical delivery systems. In food science, the recent intensification of in vitro digestion tests to complement the in vivo ones holds promises in the identification of the key parameters controlling the bioaccessibility of nutrients and micronutrients. In this review, we present the developments of in vitro digestion tests for dispersed food systems (mainly emulsions, dispersions and gels). We especially highlight the evidences detailing the roles of the constituting multiscale structures. In a perspective section, we show the potential of structured interfaces to allow controlled bioaccessibility.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, Johannes J.; Thomas, Gareth; Huetten, Andreas R.
1999-01-01
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, J.J.; Thomas, G.; Huetten, A.R.
1999-03-16
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by (a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and (b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties. 7 figs.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, Johannes J.; Thomas, Gareth; Huetten, Andreas R.
1998-01-01
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, J.J.; Thomas, G.; Huetten, A.R.
1998-10-20
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by (a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and (b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties. 7 figs.
Performance Modeling of Network-Attached Storage Device Based Hierarchical Mass Storage Systems
NASA Technical Reports Server (NTRS)
Menasce, Daniel A.; Pentakalos, Odysseas I.
1995-01-01
Network attached storage devices improve I/O performance by separating control and data paths and eliminating host intervention during the data transfer phase. Devices are attached to both a high speed network for data transfer and to a slower network for control messages. Hierarchical mass storage systems use disks to cache the most recently used files and a combination of robotic and manually mounted tapes to store the bulk of the files in the file system. This paper shows how queuing network models can be used to assess the performance of hierarchical mass storage systems that use network attached storage devices as opposed to host attached storage devices. Simulation was used to validate the model. The analytic model presented here can be used, among other things, to evaluate the protocols involved in 1/0 over network attached devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, D. M.; Chen, Yan; Mu, Juan
Micro-mechanical behaviors of a Cu 46.5Zr 46.5Al 7 bulk metallic glass composite in the plastic regime were investigated by continuous in situ neutron diffraction during compression. Three stages of the plastic deformation were observed according to the work-hardening rate. Here, the underlying natures of the work hardening, correlating with the lattice/microscopic strain evolution, are revealed for the three stages: (1) the initiation of shear bands, (2) the phase load transferring from the amorphous phase to the B2 phase and (3) the accelerated martensitic transformation and the work hardening of the polycrystalline phases promoted by the rapid propagation of the shearmore » bands.« less
NASA Astrophysics Data System (ADS)
Vanderbemden, P.; Rivas-Murias, B.; Lovchinov, V.; Vertruyen, B.
2010-11-01
In this paper, we report low temperature dielectric measurements of bulk composite electroceramic samples containing a colossal magnetoresistive (CMR) manganite phase (La0.7Ca0.3MnO3 [abbreviated LCMO]) and an insulating phase (Mn3O4). Details of the experimental system are given and possible experimental artefacts due to moisture are outlined. For a LCMO volume fraction of ~ 16%, the permittivity of the LCMO/ Mn3O4 composite at T = 50 K is found to be much higher than that of pure Mn3O4 and magnetic field dependent. This effect is related to an extrinsic space charge polarization mechanism between the insulating phase (Mn3O4) and the conducting magnetoresistive phase (LCMO).
Wang, D. M.; Chen, Yan; Mu, Juan; ...
2018-05-21
Micro-mechanical behaviors of a Cu 46.5Zr 46.5Al 7 bulk metallic glass composite in the plastic regime were investigated by continuous in situ neutron diffraction during compression. Three stages of the plastic deformation were observed according to the work-hardening rate. Here, the underlying natures of the work hardening, correlating with the lattice/microscopic strain evolution, are revealed for the three stages: (1) the initiation of shear bands, (2) the phase load transferring from the amorphous phase to the B2 phase and (3) the accelerated martensitic transformation and the work hardening of the polycrystalline phases promoted by the rapid propagation of the shearmore » bands.« less
The Human Resource Management in Dry-Bulk Shipping
NASA Astrophysics Data System (ADS)
Konstantopoulos, Nikolaos; Alexopoulos, Aristotelis B.
2007-12-01
This article investigates some positions and human resource management practices in dry-bulk shipping. The particularity of the human resource management field, as well as the crews' nationality change that has occurred over the last years, underpin the configuration of the hypothesis of this present research. The results demonstrate that the Greek dry-bulk shipping is going through a transition phase regarding the sector of the ships' human resource management by the captains.
Nanocomposite Nd-Y-Fe-B-Mo bulk magnets prepared by injection casting technique
NASA Astrophysics Data System (ADS)
Tao, Shan; Ahmad, Zubair; Zhang, Pengyue; Yan, Mi; Zheng, Xiaomei
2017-09-01
The phase composition, magnetic and microstructural properties of Nd2Fe14B/(α-Fe, Fe3B) nanocomposite magnets produced by injection casting technique have been studied. Magnetic hysteresis loop of the Nd7Y6Fe61B22Mo4 permanent magnet demonstrates the coercivity as high as 1289 kA/m. Electron microscopy elucidates a microstructure composed of magnetically soft α-Fe, Fe3B and hard Nd2Fe14B/Y2Fe14B nanograins (20-50 nm) separated by ultra-thin grain boundary layer. The Henkel plot curve of the Nd7Y6Fe61B22Mo4 magnet yields the existence of exchange coupling interactions between soft and hard phases. Macroscopically large size sheet magnet is obtained due to high glass forming ability of the Nd7Y6Fe61B22Mo4 alloy derived from large atomic radius mismatch and negative enthalpy of alloy constituent elements. The high coercivity of the magnet is attributed to the magnetically hard phase increment, nucleation of reverse domains and the presence of thin grain boundary phase. Good magnetic properties such as remanence of 0.51 T, coercivity of 1289 kA/m and maximum energy product of 46.2 kJ/m3 are obtained in directly casted Nd7Y6Fe61B22Mo4 sheet magnets.
NASA Astrophysics Data System (ADS)
Supasai, Thidarat; Amornkitbamrung, Vittaya; Thanachayanont, Chanchana; Tang, I.-Ming; Sutthibutpong, Thana; Rujisamphan, Nopporn
2017-11-01
Visualizing and controlling the phase separation of the donor and acceptor domains in organic bulk-hetero-junction (BHJ) solar devices made with poly([4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethyl-hexyl)carbon-yl]thieno[3,4-bthiophenediyl]) (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) are needed to achieve high power conversion efficiency (PCE). Traditional bright-field (BF) imaging, especially of polymeric materials, produces images of poor contrast when done at the nanoscale level. Clear nanoscale morphologies of the PTB7:PC71BM blends prepared with different 1,8-diiodooctane (DIO) concentrations were seen when using the energy-filtered transmission electron microscopy (EFTEM). The electron energy loss (EELS) spectra of the pure PTB7 and PC71BM samples are centered at 22.7 eV and 24.5 eV, respectively. Using the electrons whose energy losses are in the range of 16-30 eV, detail information of the phase morphology at the nanoscale was obtained. Correlations between the improvement in the photovoltaic performances and the increased electron mobility were seen. These correlations are discussed in terms of the changes (at the nanoscale level) in blending phase morphology when different DIO concentrations are added.
Confinement Effects on Carbon Dioxide Methanation: A Novel Mechanism for Abiotic Methane Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Thu; Striolo, Alberto; Turner, C. Heath
An important scientific debate focuses on the possibility of abiotic synthesis of hydrocarbons during oceanic crust-seawater interactions. While on-site measurements near hydrothermal vents support this possibility, laboratory studies have provided data that are in some cases contradictory. At conditions relevant for sub-surface environments it has been shown that classic thermodynamics favour the production of CO 2 from CH 4, while abiotic methane synthesis would require the opposite. However, confinement effects are known to alter reaction equilibria. This report shows that indeed thermodynamic equilibrium can be shifted towards methane production, suggesting that thermal hydrocarbon synthesis near hydrothermal vents and deeper inmore » the magma-hydrothermal system is possible. We report reactive ensemble Monte Carlo simulations for the CO 2 methanation reaction. We compare the predicted equilibrium composition in the bulk gaseous phase to that expected in the presence of confinement. In the bulk phase we obtain excellent agreement with classic thermodynamic expectations. When the reactants can exchange between bulk and a confined phase our results show strong dependency of the reaction equilibrium conversions, X CO2, on nanopore size, nanopore chemistry, and nanopore morphology. Some physical conditions that could shift significantly the equilibrium composition of the reactive system with respect to bulk observations are discussed.« less
Confinement Effects on Carbon Dioxide Methanation: A Novel Mechanism for Abiotic Methane Formation
Le, Thu; Striolo, Alberto; Turner, C. Heath; ...
2017-08-21
An important scientific debate focuses on the possibility of abiotic synthesis of hydrocarbons during oceanic crust-seawater interactions. While on-site measurements near hydrothermal vents support this possibility, laboratory studies have provided data that are in some cases contradictory. At conditions relevant for sub-surface environments it has been shown that classic thermodynamics favour the production of CO 2 from CH 4, while abiotic methane synthesis would require the opposite. However, confinement effects are known to alter reaction equilibria. This report shows that indeed thermodynamic equilibrium can be shifted towards methane production, suggesting that thermal hydrocarbon synthesis near hydrothermal vents and deeper inmore » the magma-hydrothermal system is possible. We report reactive ensemble Monte Carlo simulations for the CO 2 methanation reaction. We compare the predicted equilibrium composition in the bulk gaseous phase to that expected in the presence of confinement. In the bulk phase we obtain excellent agreement with classic thermodynamic expectations. When the reactants can exchange between bulk and a confined phase our results show strong dependency of the reaction equilibrium conversions, X CO2, on nanopore size, nanopore chemistry, and nanopore morphology. Some physical conditions that could shift significantly the equilibrium composition of the reactive system with respect to bulk observations are discussed.« less