Sample records for bulk powder samples

  1. An efficient and cost-effective method for preparing transmission electron microscopy samples from powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Haiming; Lin, Yaojun; Seidman, David N.

    The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder–epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpledmore » discs to electron transparency. Compared with the well established and robust grinding–dimpling–ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Furthermore, our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.« less

  2. An efficient and cost-effective method for preparing transmission electron microscopy samples from powders

    DOE PAGES

    Wen, Haiming; Lin, Yaojun; Seidman, David N.; ...

    2015-09-09

    The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder–epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpledmore » discs to electron transparency. Compared with the well established and robust grinding–dimpling–ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Furthermore, our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.« less

  3. Spore populations among bulk tank raw milk and dairy powders are significantly different.

    PubMed

    Miller, Rachel A; Kent, David J; Watterson, Matthew J; Boor, Kathryn J; Martin, Nicole H; Wiedmann, Martin

    2015-12-01

    To accommodate stringent spore limits mandated for the export of dairy powders, a more thorough understanding of the spore species present will be necessary to develop prospective strategies to identify and reduce sources (i.e., raw materials or in-plant) of contamination. We characterized 1,523 spore isolates obtained from bulk tank raw milk (n=33 farms) and samples collected from 4 different dairy powder-processing plants producing acid whey, nonfat dry milk, sweet whey, or whey protein concentrate 80. The spores isolated comprised 12 genera, at least 44 species, and 216 rpoB allelic types. Bacillus and Geobacillus represented the most commonly isolated spore genera (approximately 68.9 and 12.1%, respectively, of all spore isolates). Whereas Bacillus licheniformis was isolated from samples collected from all plants and farms, Geobacillus spp. were isolated from samples from 3 out of 4 plants and just 1 out of 33 farms. We found significant differences between the spore population isolated from bulk tank raw milk and those isolated from dairy powder plant samples, except samples from the plant producing acid whey. A comparison of spore species isolated from raw materials and finished powders showed that although certain species, such as B. licheniformis, were found in both raw and finished product samples, other species, such as Geobacillus spp. and Anoxybacillus spp., were more frequently isolated from finished powders. Importantly, we found that 8 out of 12 genera were isolated from at least 2 different spore count methods, suggesting that some spore count methods may provide redundant information if used in parallel. Together, our results suggest that (1) Bacillus and Geobacillus are the predominant spore contaminants in a variety of dairy powders, implying that future research efforts targeted at elucidating approaches to reduce levels of spores in dairy powders should focus on controlling levels of spore isolates from these genera; and (2) the spore populations isolated from bulk tank raw milk and some dairy powder products are significantly different, suggesting that targeting in-plant sources of contamination may be important for achieving low spore counts in the finished product. These data provide important insight regarding the diversity of spore populations isolated from dairy powders and bulk tank raw milk, and demonstrate that several spore genera are detected by multiple spore count methods. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Microstructure and thermoelectric properties of CuInSe2/In2Se3 compound

    NASA Astrophysics Data System (ADS)

    Wang, Kang; Feng, Jing; Ge, Zhen-Hua; Qin, Peng; Yu, Jie

    2018-01-01

    CuInSe2 powders were synthesized by solvothermal method, and then the CuInSe2/In2Se3 bulk samples were fabricated by spark plasma sintering (SPS) technique. To investigate the phase composition, the powders were determined by X-ray diffraction (XRD). The microstructures of the powders and bulk samples were observed by scanning electron microscopy (SEM). The transportation of the electronic properties and thermal conductivity were measured at room temperature to 700 K. According to the results, the CuInSe2 powders appeared in flower-like patterns which ranged from 3 μm to 6 μm. CuInSe2 powders were synthesized at 180∘C with a chalcopyrite structure. The Seebeck coefficient increased significantly in composite thermoelectric materials up to 200μVṡK-1 at 623 K. The thermal conductivity of the sample significantly decreases from the room temperature to 700 K. The CuInSe2 bulk composite by solvothermal method achieves the highest ZT value of 0.187 at 700 K.

  5. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    PubMed

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  6. Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density.

    PubMed

    Rausch, Alexander M; Küng, Vera E; Pobel, Christoph; Markl, Matthias; Körner, Carolin

    2017-09-22

    The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts.

  7. Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density

    PubMed Central

    Rausch, Alexander M.; Küng, Vera E.; Pobel, Christoph; Körner, Carolin

    2017-01-01

    The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts. PMID:28937633

  8. Physical evaluation of a maize-based extruded snack with curry powder.

    PubMed

    Christofides, Vassilis; Ainsworth, Paul; Ibanoğlu, Senol; Gomes, Frances

    2004-02-01

    Response surface methodology was used to analyze the effect of screw speed (200-280 rpm), feed moisture (13.0-17.0%, wet basis), and curry powder (6.0-9.0%) on the bulk density, lateral expansion, and firmness of maize-based extruded snack with curry powder. Regression equations describing the effect of each variable on the responses were obtained. Responses were most affected by changes in feed moisture followed by screw speed and curry powder (p < 0.05). Lateral expansion increased linearly as the amount of curry powder added was increased whereas a quadratic increase was obtained in lateral expansion with decreasing feed moisture. The firmness of samples was increased with an increase in feed moisture. The bulk density of samples was increased with increasing feed moisture and screw speeds. Radial expansion was found to be a better index to measure the physical properties of the extruded product indicated by a higher correlation coefficient.

  9. The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique.

    PubMed

    Durejko, Tomasz; Aniszewska, Justyna; Ziętala, Michał; Antolak-Dudka, Anna; Czujko, Tomasz; Varin, Robert A; Paserin, Vlad

    2018-05-18

    The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the ATOMET 28 powder was characterized by a strong inhomogeneity of particle size and irregular polyhedral shape of powder particles with sharp edges. The powders were pre-sieved to a size distribution from 40 to 150 µm before LENS processing. One particular sample-LENS-fabricated from the ATOMET 28 powder-was characterized by the largest cross-sectional (2D) porosity of 4.2% and bulk porosity of 3.9%, the latter determined by microtomography measurements. In contrast, the cross-sectional porosities of bulk, solid, nearly cubic LENS-fabricated samples from the other ATOMET powders exhibited very low porosities within the range 0.03⁻0.1%. Unexpectedly, the solid sample-LENS-fabricated from the reference, a purely spherical Fe 99.8 powder-exhibited a porosity of 1.1%, the second largest after that of the pre-sieved, nonspherical ATOMET 28 powder. Vibrations incorporated mechanically into the LENS powder feeding system substantially improved the flow rate vs. feeding rate dependence, making it completely linear with an excellent coefficient of fit, R² = 0.99. In comparison, the reference powder Fe 99.8 always exhibited a linear dependence of the powder flow rate vs. feeding rate, regardless of vibrations.

  10. Production and Characterization of Bulk MgB2 Material made by the Combination of Crystalline and Carbon Coated Amorphous Boron Powders

    NASA Astrophysics Data System (ADS)

    Hiroki, K.; Muralidhar, M.; Koblischka, M. R.; Murakami, M.

    2017-07-01

    The object of this investigation is to reduce the cost of bulk production and in the same time to increase the critical current performance of bulk MgB2 material. High-purity commercial powders of Mg metal (99.9% purity) and two types of crystalline (99% purity) and 16.5 wt% carbon-coated, nanometer-sized amorphous boron powders (98.5% purity) were mixed in a nominal composition of MgB2 to reduce the boron cost and to see the effect on the superconducting and magnetic properties. Several samples were produced mixing the crystalline boron and carbon-coated, nanometer-sized amorphous boron powders in varying ratios (50:50, 60:40, 70:30, 80:20, 90:10) and synthesized using a single-step process using the solid state reaction around 800 °C for 3 h in pure argon atmosphere. The magnetization measurements exhibited a sharp superconducting transition temperature with T c, onset around 38.6 K to 37.2 K for the bulk samples prepared utilizing the mixture of crystalline boron and 16.5% carbon-coated amorphous boron. The critical current density at higher magnetic field was improved with addition of carbon-coated boron to crystalline boron in a ratio of 80:20. The highest self-field Jc around 215,000 A/cm2 and 37,000 A/cm2 were recorded at 20 K, self-field and 2 T for the sample with a ratio of 80:10. The present results clearly demonstrate that the bulk MgB2 performance can be improved by adding carbon-coated nano boron to crystalline boron, which will be attractive to reduce the cost of bulk MgB2 material for several industrial applications.

  11. Raman and dielectric studies of GdMnO3 bulk ceramics synthesized from nano powders

    NASA Astrophysics Data System (ADS)

    Samantaray, S.; Mishra, D. K.; Roul, B. K.

    2017-05-01

    Nanocrystalline GdMnO3 (GMO) powders has been synthesized by a simple chemical route i. e. pyrophoric reaction technique and then sintered in the form of bulk pellet at 850°C for 24 hours by adopting slow step sintering schedule. It is observed that by reducing the particles size, chemical route enhances the mixing process as well as decreasing the sintering temperature to get single phase material system in compared to the polycrystalline sample prepared directly from the micron sized commercial powder. Raman spectroscopic studies confirm that the sample is in single phase without any detectable impurity. Frequency dependent dielectric properties i.e., dielectric constant (K) and dielectric loss (tanδ) of GMO ceramics sintered at 850°C for 24 hours were studied at room temperature. The sample showed high K value (˜2736) in the frequency of 100 Hz at room temperature.

  12. Evidence for Electromagnetic Granularity in the Polycrystalline Iron-Based Superconductor LaO(0.89)F(0.11)FeAs

    DTIC Science & Technology

    2008-01-01

    oriented grain-boundaries. In this work we show considerable evidence for such weak-coupling by study of the dependence of magnetization in bulk and...powdered samples. Bulk sample magnetization curves show very little hysteresis while remanent magnetization shows almost no sample size dependence...K Fig. 2 (Color online) Magnetization hysteresis loops at 5 and 20 K for the bulk LaO0.89F0.11FeAs. Inset shows the temperature dependence of

  13. Effect of charcoal doping on the superconducting properties of MgB 2 bulk

    NASA Astrophysics Data System (ADS)

    Kim, N. K.; Tan, K. S.; Jun, B.-H.; Park, H. W.; Joo, J.; Kim, C.-J.

    2008-09-01

    The effect of charcoal doping on the superconducting properties of in situ processed MgB 2 bulk samples was investigated. To understand the size effect of the dopant the charcoal powder was attrition milled for 1 h, 3 h and 6 h using ZrO 2 balls. The milled charcoal powders were mixed with magnesium and boron powders to a nominal composition of Mg(B 0.975C 0.025) 2. The Mg(B 0.975C 0.025) 2 compacts were heat-treated at 900 °C for 0.5 h in flowing Ar atmosphere. Magnetic susceptibility for the samples showed that the superconducting transition temperature ( Tc) decreased as the size of the charcoal powder decreased. The critical current density ( Jc) of Mg(B 0.975C 0.025) 2 prepared using large size charcoal powder was lower than that of the undoped MgB 2. However, a crossover of Jc value was observed at high magnetic fields of about 4 T in Mg(B 0.975C 0.025) 2 prepared using small size charcoal powder. Carbon diffusion into the boron site was easier and gave the Jc increase effect when the small size charcoal was used as a dopant.

  14. Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering.

    PubMed

    Dutel, Guy-Daniel; Langlois, Patrick; Tingaud, David; Vrel, Dominique; Dirras, Guy

    2017-04-01

    Data regarding bulk polycrystalline nickel samples obtained by powder metallurgy using Spark Plasma Sintering (SPS) are presented, with a special emphasis on the influence of a cold isostatic pre-compaction on the resulting morphologies and subsequent mechanical properties. Three types of initial powders are used, nanometric powders, micrometric powders and a mixture of the formers. For each type of powder, the SPS cycle has been optimized for the powders without pre-compaction and the same cycle has been used to also sinter pre-compacted powders.

  15. Dust generation in powders: Effect of particle size distribution

    NASA Astrophysics Data System (ADS)

    Chakravarty, Somik; Le Bihan, Olivier; Fischer, Marc; Morgeneyer, Martin

    2017-06-01

    This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  16. The Influence of Sintering Temperature on the Microstructure and Thermoelectric Properties of n-Type Bi2Te3- x Se x Nanomaterials

    NASA Astrophysics Data System (ADS)

    Du, Y.; Cai, K. F.; Li, H.; An, B. J.

    2011-05-01

    Pure Bi2Te3 and Bi2Se3 nanopowders were hydrothermally synthesized, and n-type Bi2Te3- x Se x bulk samples were prepared by hot pressing a mixture of Bi2Te3 and Bi2Se3 nanopowders at 623 K, 648 K or 673 K and 80 MPa in vacuum. The phase composition of the powders and bulk samples were characterized by x-ray diffraction. The morphology of the powders was examined by transmission electron microscopy. The microstructure and composition of the bulk samples were characterized by field-emission scanning electron microscopy and energy-dispersive x-ray spectroscopy, respectively. The density of the samples increased with sintering temperature. The samples were somewhat oxidized, and the amount of oxide (Bi2TeO5) present increased with sintering temperature. The samples consisted of sheet-like grains with a thickness less than 100 nm. Seebeck coefficient, electrical conductivity, and thermal conductivity of the samples were measured from room temperature up to 573 K. Throughout the temperature range investigated, the sample sintered at 623 K had a higher power factor than the samples sintered at 648 K or 673 K.

  17. The Fabrication of (bismuth, LEAD)(2) STRONTIUM(2) CALCIUM(2) COPPER(3) Oxygen(x) Superconductor in Bulk and Tape Forms

    NASA Astrophysics Data System (ADS)

    Lim, Hanjin

    High-T_{rm c}<=ad doped rm Bi_2Sr_2Ca_2Cu _2Cu_3O_{x} (BSCCO 2223) superconductor bulk materials were prepared using conventional powder metallurgy techniques, which were made from precursors having different histories. The ease of formation of superconducting phases was highly dependent on the processing of primitive powder. With the three -powder process that combines three kinds of calcined precursor powders, the formation of the BSCCO superconductor was accelerated and the amount of the secondary phase (e.g., Ca_2CuO_3) was reduced. The critical transition temperature (T _{rm c}) of the superconductor from the three-powder process is higher than that from the one-powder process. In lead-doped BSCCO 2223, positron trapping and annihilation evidently occur in the open BiO double layers rather than in the superconducting CuO_2 layers of the structure. Both positron annihilation parameters (tau_1, tau _2, overlinetau) and Doppler parameters (P, W, P/W) were insensitive to the superconducting transition in this material. This is quite opposite to the case of YBCO and Dy doped YBCO where positron annihilation is sensitive to the superconducting transition. High-T_{rm c} BSCCO superconducting tapes were fabricated using the powder -in-tube (PIT) method that includes heat treatments as well as mechanical processing such as drawing, rolling, and pressing. The highest critical current densities (J _{rm c}) at 5 and 77 K were 5.12 times 10^5 A/cm^2 and 1.77 times 10^4 A/cm^2 , respectively, for the tape sample which was solid state processed at 840^circC with three short sintering steps. J_{ rm c} values at 5 and 77 K of tape samples were 1 and 2 orders of magnitude higher than those of bulk samples, respectively. The preferred orientations of the BSCCO 2212 phase in the tape samples were basal and (1 1 13) textures; for the BSCCO 2223 phase preferred orientations were also basal and (1 1 19) textures. By taking the ratios of the texture coefficients (TCs) for (0 0 1) and (1 1 0) reflections, one can describe the strength of the basal texture for each superconducting phase in both bulk and tape. From these ratios one can say that the best basal texture for the tape BSCCO 2212 was produced by the procedure which included partial melting at 850^circ C for 0.3 h. The best treatment for BSCCO 2223 was the tape sample with solid state processing at 840 ^circC in 10% oxygen.

  18. Reactive Ball Milling to Fabricate Nanocrystalline Titanium Nitride Powders and Their Subsequent Consolidation Using SPS

    NASA Astrophysics Data System (ADS)

    El-Eskandarany, M. Sherif

    2017-05-01

    The room-temperature reactive ball milling (RBM) approach was employed to synthesize nanostructured fcc-titanium nitride (TiN) powders, starting from milling hcp-titanium (Ti) powders under 10 bar of a nitrogen gas atmosphere, using a roller mill. During the first and intermediate stage of milling, the agglomerated Ti powders were continuously disintegrated into smaller particles with fresh surfaces. Increasing the RBM time led to an increase in the active-fresh surfaces of Ti, resulting increasing of the mole fraction of TiN against unreacted hcp-Ti. Toward the end of the RBM time (20 h), ultrafine spherical powder (with particles 0.5 μm in diameter) of the fcc-TiN phase was obtained, composed of nanocrystalline grains with an average diameter of 8 nm. The samples obtained after different stages of RBM time were consolidated under vacuum at 1600 °C into cylindrical bulk compacts of 20 mm diameter, using spark plasma sintering technique. These compacts that maintained their nanocrystalline characteristics with an average grain size of 56 nm in diameter, possessed high relative density (above 99% of the theoretical density). The Vickers hardness of the as-consolidated TiN was measured and found to be 22.9 GPa. The modulus of elasticity and shear modulus of bulk TiN were measured by a nondestructive test and found to be 384 and 189 GPa, respectively. In addition, the coefficient of friction of the end-product TiN bulk sample was measured and found to be 0.35.

  19. Synthesis and characterization of Mn-Bi alloy

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Patil, Harsha; Jain, G.; Mishra, N.

    2012-06-01

    High purity MnBi low temperature phase has been prepared and analyzed using X-ray diffraction, Lorentz-Polarization Factor and Fourier transforms infrared measurement. After synthesis of samples structural characterization has done on samples by X-ray diffraction, which shows that after making the bulk sample is in no single phase MnBi has been prepared by sintering Mn and Bi powders. By Lorentz-Polarization Factor is affecting the relative intensity of diffraction lines on a powder form. And by FTIR which shows absorption peaks of MnBi alloys.

  20. Crystallization Kinetics of Barium and Strontium Aluminosilicate Glasses of Feldspar Composition

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Bansal, Narottam P.

    1994-01-01

    Crystallization kinetics of BaO.Al2O3.2SiO2 (BAS) and SrO.Al2O3.2SiO2 (SAS) glasses in bulk and powder forms have been studied by non-isothermal differential scanning calorimetry (DSC). The crystal growth activation energies were evaluated to be 473 and 451 kJ/mol for bulk samples and 560 and 534 kJ/mol for powder specimens in BAS and SAS glasses, respectively. Development of crystalline phases on thermal treatments of glasses at various temperatures has been followed by powder x-ray diffraction. Powder samples crystallized at lower temperatures than the bulk and the crystallization temperature was lower for SAS glass than BAS. Crystallization in both glasses appeared to be surface nucleated. The high temperature phase hexacelsian, MAl2Si2O8 (M = Ba or Sr), crystallized first by nucleating preferentially on the glass surface. Also, monoclinic celsian does not nucleate directly in the glass, but is formed at higher temperatures from the transformation of the metastable hexagonal phase. In SAS the transformation to monoclinic celsian occurred rapidly after 1 h at 1100 C. In contrast, in BAS this transformation is sluggish and difficult and did not go to completion even after 10 h heat treatment at 1400 C. The crystal growth morphologies in the glasses have been observed by optical microscopy. Some of the physical properties of the two glasses are also reported.

  1. Phase composition and microstructure of WC-Co alloys obtained by selective laser melting

    NASA Astrophysics Data System (ADS)

    Khmyrov, Roman S.; Shevchukov, Alexandr P.; Gusarov, Andrey V.; Tarasova, Tatyana V.

    2018-03-01

    Phase composition and microstructure of initial WC, BK8 (powder alloy 92 wt.% WC-8 wt.% Co), Co powders, ball-milled powders with four different compositions (1) 25 wt.% WC-75 wt.% Co, (2) 30 wt.% BK8-70 wt.% Co, (3) 50 wt.% WC-50 wt.% Co, (4) 94 wt.% WC-6 wt.% Co, and bulk alloys obtained by selective laser melting (SLM) from as-milled powders in as-melted state and after heat treatment were investigated by scanning electron microscopy and X-ray diffraction analysis. Initial and ball-milled powders consist of WC, hexagonal α-Co and face-centered cubic β-Co. The SLM leads to the formation of major new phases W3Co3C, W4Co2C and face-centered cubic β-Co-based solid solution. During the heat treatment, there occurs partial decomposition of the face-centered cubic β-Co-based solid solution with the formation of W2C and hexagonal α-Co solid solution. The microstructure of obtained bulk samples, in general, corresponds to the observed phase composition.

  2. X-Ray Photoelectron Spectroscopy and Tribology Studies of Annealed Fullerene-like WS2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kopnov, F.; Tenne, R.; Späth, B.; Jägermann, W.; Cohen, H.; Feldman, Y.; Zak, A.; Moshkovich, A.; Rapoport, L.

    The temporal chemical changes occurring at the surface of fullerene-like (IF) nanoparticles of WS2 were investigated using X-ray photo-electron spectroscopy (XPS) and compared to those of bulk powder (2H) of the same material. It is possible to follow the long term (surface oxidation and carbonization) occurring at defects on the outermost surface (0001) layer of the fullerene-like nanoparticles. Similar but perhaps more distinctive changes are observed on the prismatic (hk0) surfaces of the 2H powder. Vacuum annealing is shown to remove most of these changes and bring the surface close to its stoichiometric composition. In accordance with previous measurements, further evidence is obtained for the existence of water molecules which are entrapped in the hollow core and interstitial defects of the fullerene-like nanoparticles during the synthesis. They are also shown to be removed by the vacuum annealing process. Chemically resolved electrical measurements (CREM) in the XPS show that the vacuum annealed IF samples become more intrinsic. Finally, tribological measurements show that the vacuum annealed IF samples perform better as an additive to oil than the non-annealed IF samples and the bulk (2H) platelets powder.

  3. The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique

    PubMed Central

    Ziętala, Michał; Antolak-Dudka, Anna; Paserin, Vlad

    2018-01-01

    The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the ATOMET 28 powder was characterized by a strong inhomogeneity of particle size and irregular polyhedral shape of powder particles with sharp edges. The powders were pre-sieved to a size distribution from 40 to 150 µm before LENS processing. One particular sample—LENS-fabricated from the ATOMET 28 powder—was characterized by the largest cross-sectional (2D) porosity of 4.2% and bulk porosity of 3.9%, the latter determined by microtomography measurements. In contrast, the cross-sectional porosities of bulk, solid, nearly cubic LENS-fabricated samples from the other ATOMET powders exhibited very low porosities within the range 0.03–0.1%. Unexpectedly, the solid sample—LENS-fabricated from the reference, a purely spherical Fe 99.8 powder—exhibited a porosity of 1.1%, the second largest after that of the pre-sieved, nonspherical ATOMET 28 powder. Vibrations incorporated mechanically into the LENS powder feeding system substantially improved the flow rate vs. feeding rate dependence, making it completely linear with an excellent coefficient of fit, R2 = 0.99. In comparison, the reference powder Fe 99.8 always exhibited a linear dependence of the powder flow rate vs. feeding rate, regardless of vibrations. PMID:29783704

  4. A novel pre-sintering technique for the growth of Y-Ba-Cu-O superconducting single grains from raw metal oxides

    NASA Astrophysics Data System (ADS)

    Li, Jiawei; Shi, Yun-Hua; Dennis, Anthony R.; Namburi, Devendra Kumar; Durrell, John H.; Yang, Wanmin; Cardwell, David A.

    2017-09-01

    Most established top seeded melt growth (TSMG) processes of bulk, single grain Y-Ba-Cu-O (YBCO) superconductors are performed using a mixture of pre-reacted precursor powders. Here we report the successful growth of large, single grain YBCO samples by TSMG with good superconducting properties from a simple precursor composition consisting of a sintered mixture of the raw oxides. The elimination of the requirement to synthesize precursor powders in a separate process prior to melt processing has the potential to reduce significantly the cost of bulk superconductors, which is essential for their commercial exploitation. The growth morphology, microstructure, trapped magnetic field and critical current density, J c, at different positions within the sample and maximum levitation force of the YBCO single grains fabricated by this process are reported. Measurements of the superconducting properties show that the trapped filed can reach 0.45 T and that a zero field J c of 2.5 × 104 A cm-2 can be achieved in these samples. These values are comparable to those observed in samples fabricated using pre-reacted, high purity commercial oxide precursor powders. The experimental results are discussed and the possibility of further improving the melt process using raw oxides is outlined.

  5. Near surface bulk density estimates of NEAs from radar observations and permittivity measurements of powdered geologic material

    NASA Astrophysics Data System (ADS)

    Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An

    2018-05-01

    The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.

  6. 21 CFR 610.53 - Dating periods for licensed biological products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ......do ......do 1 year. Meningococcal Polysaccharide Vaccine Group A: 1. Final bulk powder ......do 2... years. Meningococcal Polysaccharide Vaccine Group C: 1. Final bulk powder ......do 2 years (−20 °C or... Polysaccharide Vaccine Groups A and C combined: 1. Final bulk powder ......do 2 years (−20 °C or colder) Not...

  7. 21 CFR 610.53 - Dating periods for licensed biological products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ......do ......do 1 year. Meningococcal Polysaccharide Vaccine Group A: 1. Final bulk powder ......do 2... years. Meningococcal Polysaccharide Vaccine Group C: 1. Final bulk powder ......do 2 years (−20 °C or... Polysaccharide Vaccine Groups A and C combined: 1. Final bulk powder ......do 2 years (−20 °C or colder) Not...

  8. 21 CFR 610.53 - Dating periods for licensed biological products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ......do ......do 1 year. Meningococcal Polysaccharide Vaccine Group A: 1. Final bulk powder ......do 2... years. Meningococcal Polysaccharide Vaccine Group C: 1. Final bulk powder ......do 2 years (−20 °C or... Polysaccharide Vaccine Groups A and C combined: 1. Final bulk powder ......do 2 years (−20 °C or colder) Not...

  9. 21 CFR 610.53 - Dating periods for licensed biological products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ......do ......do 1 year. Meningococcal Polysaccharide Vaccine Group A: 1. Final bulk powder ......do 2... years. Meningococcal Polysaccharide Vaccine Group C: 1. Final bulk powder ......do 2 years (−20 °C or... Polysaccharide Vaccine Groups A and C combined: 1. Final bulk powder ......do 2 years (−20 °C or colder) Not...

  10. Nanocomposite bulk of mechanically milled Al-Pb samples consolidated pore-free by the high-energy rate forming technique.

    PubMed

    Csanády, Agnes; Sajó, István; Lábár, János L; Szalay, András; Papp, Katalin; Balaton, Géza; Kálmán, Erika

    2005-06-01

    It is shown that pore-free bulk samples were produced by the high-energy rate forming axis-symmetrical powder compaction method for different application purposes in case of the very different, immiscible Al and Pb metal pair. The starting Al-Pb nanocomposites were made by mechanical milling of atomized Al and Pb powders either in a SPEX 9000 or a Fritsch Pulverisette 4 mill. Due to the conditions that milling was carried out in air, the PbO layer, originally existing at the surface of the atomized Pb powder, ruptured and was also dispersed in the composite. The presence of the nano PbO particles was proven by XRD and TEM (BF, DF, SAED). When the energy of milling was high, the PbO crystallites became so small that they could hardly be seen by XRD technique. Local distribution of the PbO nanoparticles was still visible in a TEM, using the process diffraction method. Both XRD and SAED proved to be useful for the evaluation of the results of the milling process and compaction.

  11. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  12. Fabrication of single domain GdBCO bulk superconductors by a new modified TSIG technique

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Zhi, X.; Chen, S. L.; Wang, M.; Li, J. W.; Ma, J.; Chao, X. X.

    2014-01-01

    Single domain GdBCO bulk superconductors have been fabricated with new and traditional solid phases by a top seeded infiltration and growth (TSIG) process technique. In the conventional TSIG process, three types of powders, such as Gd2BaCuO5, GdBa2Cu3O7-x and Ba3Cu5O8, must be prepared, but in our new modified TSIG technique, only BaCuO2 powders are required during the fabrication of the single domain GdBCO bulk superconductors. The solid phase used in the conventional process is Gd2BaCuO5 instead of the solid phase (Gd2O3 + BaCuO2) utilized in the new process. The liquid phase used in the conventional process is a mixture of (GdBa2Cu3O7-x + Ba3Cu5O8), and the liquid phase in the new process is a mixture of (Gd2O3 + 10BaCuO2 + 6CuO). Single domain GdBCO bulk superconductors have been fabricated with the new solid and liquid phases. The levitation force of the GdBCO bulk samples fabricated by the new solid phase is 28 N, which is slightly higher than that of the samples fabricated using the conventional solid phases (26 N). The microstructure and the levitation force of the samples indicate that this new method can greatly simplify the fabrication process, introduce nanometer-sized flux centers, improve the levitation force and working efficiency, and greatly reduce the cost of fabrication of single domain GdBCO bulk superconductors by the TSIG process.

  13. Constraining Bulk Densities of Near-Earth Asteroid Surfaces from Radar Observations Using Laboratory Measurements of Permittivity

    NASA Astrophysics Data System (ADS)

    Hickson, D. C.; Boivin, A.; Daly, M. G.; Ghent, R. R.; Nolan, M. C.; Tait, K.; Cunje, A.; Tsai, C. A.

    2017-12-01

    Planetary radar is widely used to survey the Near-Earth Asteroid (NEA) population and can provide insight into target shapes, sizes, and spin states. The dual-polarization reflectivity is sensitive to surface roughness as well as material properties, specifically the real part of the complex permittivity, or dielectric constant. Knowledge of the behavior of the dielectric constant of asteroid regolith analogue material with environmental parameters can be used to inversely solve for such parameters, such as bulk density, from radar observations. In this study laboratory measurements of the complex permittivity of powdered aluminum oxide and dunite samples are performed in a low-pressure environment chamber using a coaxial transmission line from roughly 1 GHz to 8.5 GHz. The bulk densities of the samples are varied across the measurements by incrementally adding silica aerogel, a low-density material with a very low dielectric constant. This allows the alteration of the proportions of void space to solid particle grains to achieve microgravity-relevant porosities without significantly altering the dielectric properties of the powder sample. The data are then modeled using various electromagnetic mixing equations to characterize the change in dielectric constant with increasing volume fractions of void space (decreasing bulk density). Using spectral analogues as constraints on the composition of NEAs allows us to calculate the range in bulk densities in the near surface of NEAs that have been observed by planetary radar. Utilizing existing radar data from Arecibo Observatory we calculate the bulk density in the near-surface on (101955) Bennu, the target of NASA's OSIRIS-Rex mission, to be ρ = 1.27 ± 0.33 g cm-3 based on an average of the likely range in particle density and dielectric constant of the regolith material.

  14. Bulk combinatorial synthesis and high throughput characterization for rapid assessment of magnetic materials: Application of laser engineered net shaping (LENS)

    DOE PAGES

    Geng, J.; Nlebedim, I. C.; Besser, M. F.; ...

    2016-04-15

    A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. Furthermore, the Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.

  15. [Study on nano-CaCO3 applicated in Xin Yue Shu Capsules preliminarily].

    PubMed

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Cui, Li; He, Jun-Jie; Hu, Shao-Ying; Jia, Xiao-Bin

    2012-11-01

    To investigate the characteristics of nano-CaCO3 applicated in Xin Yue Shu Capsules. Studied the effect of different dosages of aerosil or nano-CaCO3 on fluidity, bulk density, moisture absorption of Xin Yue Shu capsules spray drying powder. In vitro dissolution and ferulic acid stability of Xin Yue Shu capsules was observed. It significantly improved powder fluidity and bulk density of Xin Yue Shu spray drying powder when aerosil or nano-CaCO3 was added. But there was no significant effect on powder moisture absorption, ferulic acid in vitro dissolution and ferulic acid stability. The effect of Nano-CaCO3 on improving powder fluidity and bulk density applicated in the spray drying powder of traditional Chinese medicine deserves studying further.

  16. Processing of Mn-Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Vinod, V. T. P.; Černík, Miroslav; Selvapriya, A.; Chakravarty, Dibyendu; Kamat, S. V.

    2015-01-01

    The potential of spark plasma sintering (SPS) in combination with rapid thermal annealing (RTA) for the processing of Mn-Al nanostructured magnets is explored in this study. Ferromagnetic α-Mn alloy powders were processed by high-energy ball milling using Mn (56 at%) and Al (44 at%) as constituent metal elements. The alloying action between Mn and Al due to intensive milling was studied by X-ray diffraction and field-emission scanning electron microscope; while the phase transformation kinetics was investigated using differential scanning calorimetry. The evolution of ferromagnetic properties in the as-milled powders was studied by superconducting quantum interference device (SQUID). Among the Mn-Al alloy powders collected at various milling intervals, the 25 h milled Mn-Al powders showed a good combination of coercivity, Hc (11.3 kA/m) and saturation magnetization, Ms (5.0 A/m2/kg); accordingly, these powders were chosen for SPS. The SPS experiments were conducted at different temperatures: 773, 873 and 973 K and its effect on the density, phase composition and magnetic properties of the Mn-Al bulk samples were investigated. Upon increasing the SPS temperature from 773 to 973 K, the bulk density was found to increase from 3.6 to 4.0 g/cm3. The occurrence of equilibrium β-phase with significant amount of γ2-phase was obvious at all the SPS temperatures; however, crystallization of some amount of τ-phase was evident at 973 K. Irrespective of the SPS temperatures, all the samples demonstrated soft magnetic behavior with Hc and Ms values similar to those obtained for the 25 h milled powders. The magnetic properties of the SPSed samples were significantly improved upon subjecting them to RTA at 1100 K. Through the RTA process, Hc values of 75, 174 and 194 kA/m and Ms values of 19, 21 and 28 A/m2/kg were achieved for the samples SPSed at 773, 873 and 973 K, respectively. The possible reasons for the observed improvement in the magnetic properties of the SPSed samples due to RTA in correlation with their phase composition and microstructure were analyzed and discussed.

  17. O the Determination of the Complex Refractive Index of Powdered Materials in the 9 TO 11 Micrometer Spectral Region Utilizing AN Attenuated Total Reflectance Technique.

    NASA Astrophysics Data System (ADS)

    Gillespie, James Bryce

    1982-03-01

    A specific method of determining the complex refractive index of powdered materials using attenuated total reflectance (ATR) spectroscopy was investigated. A very precise laser/goniometric ATR system was assembled and applied to powdered samples of carbon blacks, graphite, kaolin clay, quartz, calcite, and sodalime glass beads. The reflectivity data fell into two categories: (1) data representative of a medium having a unique effective refractive index and (2) data representative of a scattering medium having no unique refractive index. Data of the first kind were obtained from all the carbon black, graphite, and kaolin clay samples. The Fahrenfort-Visser solution of the Fresnel equations was applied to the goniometric reflectivity data for these samples to obtain the complex refractive index of these effective media. The complex refractive index obtained in this manner is not that of the bulk material but is instead a value which may be related to the bulk material value through some refractive index mixing rule. A systematic experiment using carbon black of particle size 0.0106 mm diameter was conducted to determine the applicability of several mixture rules for the volume packing fraction range of .2 to .6 which is most often encountered. The Bruggemann effective medium theory produced credible results while the Lorentz-Lorenz rule and the empirical Biot-Arago rule were invalid in this volume packing region. The Bruggemann rule was applied to lampblack, Mogul-L carbon black, graphite, and kaolin clay to obtain the complex refractive indices of these materials from the ATR spectroscopy data. Goniometric reflectivity data representative of an inhomogeneous scattering medium were obtained from all the powdered quartz, powdered calcite, and sodalime glass beads samples. These samples all contained particles with diameters nearly as large as the wavelength. These data demonstrate that the ATR technique, coupled with an effective medium analysis, may be used to obtain optical constants of powdered materials only when the particles are small compared to the wavelength.

  18. Variability of the health effects of crystalline silica: Fe speciation in industrial quartz reagents and suspended dusts—insights from XAS spectroscopy

    NASA Astrophysics Data System (ADS)

    Di Benedetto, Francesco; D'Acapito, Francesco; Capacci, Fabio; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Oberhauser, Werner; Pardi, Luca A.; Romanelli, Maurizio

    2014-03-01

    We investigated the speciation of Fe in bulk and in suspended respirable quartz dusts coming from ceramic and iron-casting industrial processes via X-ray absorption spectroscopy, with the aim of contributing to a better understanding of the variability of crystalline silica toxicity. Four different bulk industrial quartz powders, nominally pure quartz samples with Fe contents below 200 ppm, and three respirable dusts filters were selected. Fe speciation was determined in all samples through a coupled study of the X-ray absorption near-edge structure and extended X-ray absorption fine structure regions, operating at the Fe-K edge. Fe speciation revealed common features at the beginning of the different production processes, whereas significant differences were observed on both respirable dusts and bulk dusts exiting from the production process. Namely, a common pollution of the raw quartz dusts by elemental Fe was evidenced and attributed to residuals of the industrial production of quartz materials. Moreover, the respirable samples indicated that reactivity occurs after the suspension of the powders in air. The gravitational selection during the particle suspension consistently allowed us to clearly discriminate between suspended and bulk dusts. On the basis of the obtained results, we provide an apparent spectroscopic discrimination between the raw materials used in the considered industrial processes, and those that are effectively inhaled by workers. In particular, an amorphous FeIII oxide, with an unsaturated coordination sphere, can be related to silica reactivity (and health consequences).

  19. Physico-chemical properties of instant ogbono (Irvingia gabonensis) mix powder

    PubMed Central

    Bamidele, Oluwaseun P; Ojedokun, Omotayo S; Fasogbon, Beatrice M

    2015-01-01

    The main objective of the research is to develop a recipe of instant dry soup mix for easy preparation of ogbono soup. Instant ogbono mix powder was processed using common locally ingredients. Dika kernel powder, dried ugwu leaf, crayfish, stock fish, and a mixture of locust bean, onion, seasoning and Cameroon powder were formulated at different ratios to find the best acceptable ogbono mix powder. The samples were subjected to proximate, functional, vitamin, mineral, and sensory analyses. The formulated sample D with the highest ratio of crayfish and stock fish had the highest value of protein and carbohydrate (24.13 and 35.61%, respectively). The control sample (100% dika kernel powder) was low in moisture content (6.20%) but high in crude fat, other samples followed in this order (control > A > B > C > D) for crude fat. Ash, crude fiber, and carbohydrate showed a significant difference (P < 0.05) in all the samples. The functional properties of the sample showed a significant difference (P < 0.05) in all the samples with the control having the highest value for the water absorption, swelling capacity, and bulk density which may be due to the high crude fiber and low moisture content recorded for the control sample in the proximate analysis. The mineral content of all the samples were higher than the control with phosphorous having the highest value and iron the least value. Vitamin C was the main dominating vitamin in the sample followed by vitamin B2, vitamin A, and vitamin B3. The sensory evaluation revealed that 100% dika kernel powder gave a good attribute of the soup but with less nutritional composition, while some formulated samples showed a similar attribute with higher nutritional value. Sample A with the highest overall acceptability had the best attribute of ogbono soup. Instant ogbono mix powder has higher nutritional value and easy to cook. PMID:26288723

  20. Effect of Cu addition on the martensitic transformation of powder metallurgy processed Ti–Ni alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeon-wook, E-mail: ywk@gw.kmu.ac.kr; Choi, Eunsoo

    2014-10-15

    Highlights: • M{sub s} of Ti{sub 50}Ni{sub 50} powders is 22 °C, while M{sub s} of SPS-sintered porous bulk increases up to 50 °C. • M{sub s} of Ti{sub 50}Ni{sub 40}Cu{sub 20} porous bulk is only 2 °C higher than that of the powders. • Recovered stain of porous TiNi and TiNiCu alloy is more than 1.5%. - Abstract: Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} powders were prepared by gas atomization and their transformation behaviors were examined by means of differential scanning calorimetry and X-ray diffraction. One-step B2–B19’ transformation occurred in Ti{sub 50}Ni{sub 50} powders, while Ti{sub 50}Ni{submore » 30}Cu{sub 20} powders showed B2–B19 transformation behavior. Porous bulks with 24% porosity were fabricated by spark plasma sintering. The martensitic transformation start temperature (50 °C) of Ti{sub 50}Ni{sub 50} porous bulk is much higher than that (22 °C) of the as-solidified powders. However, the martensitic transformation start temperature (35 °C) of Ti{sub 50}Ni{sub 30}Cu{sub 20} porous bulk is almost the same as that (33 °C) of the powders. When the specimens were compressed to the strain of 8% and then unloaded, the residual strains of Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} alloy bulks were 3.95 and 3.7%, respectively. However, these residual strains were recovered up to 1.7% after heating by the shape memory phenomenon.« less

  1. Magnetic enhancement and coding in mechanosynthesized Ni{sub 0.3}Zn{sub 0.7}Fe{sub 2}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, S.; Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064; Dey, S.

    2015-06-24

    The nanosized Ni{sub 0.3}Zn{sub 0.7}Fe{sub 2}O{sub 4} (∼ 15 nm) has been synthesized by high energy ball milling of the bulk powder sample. The sample has been characterized by powder x-ray diffraction, field emission and transmission electron microscopic and dc magnetic measurement techniques. The dc magnetic measurement on the sample indicates that the sample exhibit enhancement of magnetization compared to its counterparts synthesized by chemical methods. Moreover, the system stores the memory of either decrease or increase of magnetic field enabling a magnetic coding of “0” and “1” which can be profitably used in magnetic storage and sensing devices.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, J.; Nlebedim, I. C.; Besser, M. F.

    A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. Furthermore, the Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.

  3. Effect of precipitation, geographical location and biosynthesis on New Zealand milk powder bulk and fatty acids D/H ratios

    NASA Astrophysics Data System (ADS)

    Frew, R.; Emad Ehtesham, R.; Van Hale, R.; Hayman, A.; Baisden, T.

    2012-04-01

    D/H ratio measurements provide useful information for the investigation of biogeochemical influences on natural and agricultural produce, particularly with application to food traceability and authentication. Numerous studies have shown that variation of a product's D/H ratio is influenced by both environmental factors and biological processes. This study investigates the D/H ratio of New Zealand milk powder and individual fatty acids, and causal determinants of isotopic variation. One of the key environmental factors is precipitation, and the D/H ratio "isoscaping" of NZ has been undertaken. New Zealand provides a unique geography for these kinds of study in terms of proximity to the ocean and natural geographical variability from sea level to elevations as high as 3700 m. Milk powder samples were collected from different geographical regions from milk processing units, which were supplied by producers in the immediate region. H/D ratios of bulk milk powder and of individual fatty acids were determined. Initial comparison of the precipitation and milk powder bulk D/H data show a very good differentiation from north to southernmost parts of New Zealand and a relation between rain and milk bulk D/H abundance ratio. Almost 98% of milk FAs are in the form of triglycerides that have been extracted and hydrolysed to free FAs. Free FAs were esterified and analyzed with GC-IRMS. Individual FAs show variation in D/H ratio, and all values are depleted relative to the precipitation data. The difference in D/H ratio amongst individual FAs reflects the geographical environment and biological processes i.e. micro-organisms activity in the rumen of the cow. Short chain FAs (less than 8 carbons), particularly C4 (Butyric acid), appear to be key determinants. The variation in the data can be rationalized using statistical multivariate analysis.

  4. Application of powder X-ray diffraction in studying the compaction behavior of bulk pharmaceutical powders.

    PubMed

    Bandyopadhyay, Rebanta; Selbo, Jon; Amidon, Gregory E; Hawley, Michael

    2005-11-01

    This study investigates the effects of crystal lattice deformation on the powder X-ray diffraction (PXRD) patterns of compressed polycrystalline specimen (compacts/tablets) made from molecular, crystalline powders. The displacement of molecules and the corresponding adjustment of interplanar distances (d-spacings) between diffracting planes of PNU-288034 and PNU-177553, which have crystal habits with a high aspect ratio favoring preferred orientation during tableting, are demonstrated by shifts in the diffracted peak positions. The direction of shift in diffracted peak positions suggests a reduction of interplanar d-spacing in the crystals of PNU-288034 and PNU-177553 following compaction. There is also a general reduction of peak intensities following compression at the different compressive loads. The lattice strain representing the reduction in d-spacing is proportional to the original d-spacing of the uncompressed sample suggesting that, as with systems that obey a simple Hooke's law relationship, the further apart the planes of atoms/molecules within the lattice are, the easier it is for them to approach each other under compressive stresses. For a third model compound comprising more equant-shaped crystals of PNU-141659, the shift in diffracted peak positions are consistent with an expansion of lattice spacing after compression. This apparent anomaly is supported by the PXRD studies of the bulk powder consisting of fractured crystals where also, the shift in peak position suggests expansion of the lattice planes. Thus the crystals of PNU-141659 may be fracturing under the compressive loads used to produce the compacts. Additional studies are underway to relate the PXRD observations with the bulk tableting properties of these model compounds.

  5. Effect of oxide particles on the stabilization and final microstructure in aluminium

    PubMed Central

    Bachmaier, Andrea; Pippan, Reinhard

    2011-01-01

    Bulk aluminium samples containing alumina particles have been produced by different severe plastic deformation methods. Aluminium foils with different initial foil thicknesses were cold rolled to different amounts of strain and aluminium powders were consolidated and deformed by high pressure torsion (HPT). During processing, alumina particles from the foil or particle surface are easily incorporated and dispersed in the bulk material. The influence of these alumina particles on the developing microstructures and the mechanical properties has been studied. PMID:21976787

  6. Fabrication, characterization, and irradiation of an austenitic oxide dispersion strengthened steel suited for next generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Brooks, Adam J.

    As nuclear energy systems become more advanced, the materials encompassing them need to perform at higher temperatures for longer periods of time. In this Master's thesis we experiment with an oxide dispersion strengthened (ODS) austenitic steel that has been recently developed. ODS materials have a small concentration of nano oxide particles dispersed in their matrix, and typically have higher strength and better extreme temperature creep resistance characteristics than ordinary steels. However, no ODS materials have ever been installed in a commercial power reactor to date. Being a newer research material, there are many unanswered phenomena that need to be addressed regarding the performance under irradiation. Furthermore, due to the ODS material traditionally needing to follow a powder metallurgy fabrication route, there are many processing parameters that need to be optimized before achieving a nuclear grade material specification. In this Master's thesis we explore the development of a novel ODS processing technology conducted in Beijing, China, to produce solutionized bulk ODS samples with 97% theoretical density. This is done using relatively low temperatures and ultra high pressure (UHP) equipment, to compact the mechanically alloyed (MA) steel powder into bulk samples without any thermal phase change influence or oxide precipitation. By having solutionized bulk ODS samples, transmission electron microscopy (TEM) observation of nano oxide precipitation within the steel material can be studied by applying post heat treatments. These types of samples will be very useful to the science and engineering community, to answer questions regarding material powder compacting, oxide synthesis, and performance. Subsequent analysis performed at Queen's University included X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additional TEM in-situ 1MeV Kr2+ irradiation experiments coupled with energy dispersive X-ray (EDX) techniques, were also performed on large (200nm+) non-stoichiometric oxides embedded within the austenite steel grains, in an attempt to quantify the elemental compositional changes during high temperature (520°C) heavy ion irradiation.

  7. Experimental Study of Structure/Behavior Relationship for a Metallized Explosive

    NASA Astrophysics Data System (ADS)

    Bukovsky, Eric; Reeves, Robert; Gash, Alexander; Glumac, Nick

    2017-06-01

    Metal powders are commonly added to explosive formulations to modify the blast behavior. Although detonation velocity is typically reduced compared to the neat explosive, the metal provides other benefits. Aluminum is a common additive to increase the overall energy output and high-density metals can be useful for enhancing momentum transfer to a target. Typically, metal powder is homogeneously distributed throughout the material; in this study, controlled distributions of metal powder in explosive formulations were investigated. The powder structures were printed using powder bed printing and the porous structures were filled with explosives to create bulk explosive composites. In all cases, the overall ratio between metal and explosive was maintained, but the powder distribution was varied. Samples utilizing uniform distributions to represent typical materials, discrete pockets of metal powder, and controlled, graded powder distributions were created. Detonation experiments were performed to evaluate the influence of metal powder design on the output pressure/time and the overall impulse. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Improvement of flow and bulk density of pharmaceutical powders using surface modification.

    PubMed

    Jallo, Laila J; Ghoroi, Chinmay; Gurumurthy, Lakxmi; Patel, Utsav; Davé, Rajesh N

    2012-02-28

    Improvement in flow and bulk density, the two most important properties that determine the ease with which pharmaceutical powders can be handled, stored and processed, is done through surface modification. A limited design of experiment was conducted to establish a standardized dry coating procedure that limits the extent of powder attrition, while providing the most consistent improvement in angle of repose (AOR). The magnetically assisted impaction coating (MAIC) was considered as a model dry-coater for pharmaceutical powders; ibuprofen, acetaminophen, and ascorbic acid. Dry coated drug powders were characterized by AOR, particle size as a function of dispersion pressure, particle size distribution, conditioned bulk density (CBD), Carr index (CI), flow function coefficient (FFC), cohesion coefficient using different instruments, including a shear cell in the Freeman FT4 powder rheometer, and Hansen flowability index. Substantial improvement was observed in all the measured properties after dry coating relative to the uncoated powders, such that each powder moved from a poorer to a better flow classification and showed improved dispersion. The material intrinsic property such as cohesion, plotted as a function of particle size, gave a trend similar to those of bulk flow properties, AOR and CI. Property improvement is also illustrated in a phase map of inverse cohesion (or FFC) as a function of bulk density, which also indicated a significant positive shift due to dry coating. It is hoped that such phase maps are useful in manufacturing decisions regarding the need for dry coating, which will allow moving from wet granulation to roller compaction or to direct compression based formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Electrical stress and strain in lunar regolith simulants

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Richard, D.; Davis, S.

    2011-11-01

    Experiments to entrain dust with electrostatic and fluid-dynamic forces result in particulate clouds of aggregates rather than individual dust grains. This is explained within the framework of Griffith-flaw theory regarding the comminution/breakage of weak solids. Physical and electrical inhomogeneities in powders are equivalent to microcracks in solids insofar as they facilitate failure at stress risers. Electrical charging of powders induces bulk sample stresses similar to mechanical stresses experienced by strong solids, depending on the nature of the charging. A powder mass therefore "breaks" into clumps rather than separating into individual dust particles. This contrasts with the expectation that electrical forces on the Moon will eject a submicron population of dust from the regolith into the exosphere. A lunar regolith will contain physical and electrostatic inhomogeneities similar to those in most charged powders.

  10. Natural occurrence of ochratoxin A contamination in commercial black and white pepper products.

    PubMed

    Jalili, M; Jinap, S; Radu, S

    2010-10-01

    The concentration of ochratoxin A (OTA) in 120 commercial pepper (84 pre-packed and 36 bulk samples), which consist of local and imported white and black pepper in powder and seed form in Malaysia were determined. The objective of the study was to investigate and compare OTA concentration in black pepper and white pepper being commercialized in Malaysia. Determination method was based on HPLC with fluorescence detection coupled with immunoaffinity column clean-up step. Mobile phase consisted of acetonitrile-water-acetic acid (49.5:49.5:1.0, v/v/v), and flow rate was 1 ml/min. The LOD was 0.02 ng/g, and the average recovery values of OTA ranged from 79.5 to 92.0% in black pepper and 81.2-90.3% in white pepper. A total of 57 samples (47.5%) were contaminated with OTA ranging from 0.15 to 13.58 ng/g. The results showed that there was a significant difference between type of pepper and brands. OTA concentration in black pepper was significantly higher than white pepper (p < 0.05). The highest concentration of ochratoxin, 13.58 ng/g, was detected in a sample of black pepper seed followed by 12.64 ng/g in a sample of black pepper powder, both were bulk samples purchased from open market.

  11. Bulk Al-Al3Zr composite prepared by mechanical alloying and hot extrusion for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Pourkhorshid, E.; Enayati, M. H.; Sabooni, S.; Karimzadeh, F.; Paydar, M. H.

    2017-08-01

    Bulk Al/Al3Zr composite was prepared by a combination of mechanical alloying (MA) and hot extrusion processes. Elemental Al and Zr powders were milled for up to 10 h and heat treated at 600°C for 1 h to form stable Al3Zr. The prepared Al3Zr powder was then mixed with the pure Al powder to produce an Al-Al3Zr composite. The composite powder was finally consolidated by hot extrusion at 550°C. The mechanical properties of consolidated samples were evaluated by hardness and tension tests at room and elevated temperatures. The results show that annealing of the 10-h-milled powder at 600°C for 1 h led to the formation of a stable Al3Zr phase. Differential scanning calorimetry (DSC) results confirmed that the formation of Al3Zr began with the nucleation of a metastable phase, which subsequently transformed to the stable tetragonal Al3Zr structure. The tension yield strength of the Al-10wt%Al3Zr composite was determined to be 103 MPa, which is approximately twice that for pure Al (53 MPa). The yield stress of the Al/Al3Zr composite at 300°C is just 10% lower than that at room temperature, which demonstrates the strong potential for the prepared composite to be used in high-temperature structural applications.

  12. Influence of deposition and spray pattern of nasal powders on insulin bioavailability.

    PubMed

    Pringels, E; Callens, C; Vervaet, C; Dumont, F; Slegers, G; Foreman, P; Remon, J P

    2006-03-09

    The influence of the deposition pattern and spray characteristics of nasal powder formulations on the insulin bioavailability was investigated in rabbits. The formulations were prepared by freeze drying a dispersion containing a physical mixture of drum dried waxy maize starch (DDWM)/Carbopol 974P (90/10, w/w) or a spray-dried mixture of Amioca starch/Carbopol 974P (25/75, w/w). The deposition in the nasal cavity of rabbits and in a silicone human nose model after actuation of three nasal delivery devices (Monopowder, Pfeiffer and experimental system) was compared and related to the insulin bioavailability. Posterior deposition of the powder formulation in the nasal cavity lowered the insulin bioavailability. To study the spray pattern, the shape and cross-section of the emitted powder cloud were analysed. It was concluded that the powder bulk density of the formulation influenced the spray pattern. Consequently, powders of different bulk density were prepared by changing the solid fraction of the freeze dried dispersion and by changing the freezing rate during freeze drying. After nasal delivery of these powder formulations no influence of the powder bulk density and of the spray pattern on the insulin bioavailability was observed.

  13. Energy research with neutrons (ErwiN) and installation of a fast neutron powder diffraction option at the MLZ, Germany1

    PubMed Central

    Mühlbauer, Martin J.

    2018-01-01

    The need for rapid data collection and studies of small sample volumes in the range of cubic millimetres are the main driving forces for the concept of a new high-throughput monochromatic diffraction instrument at the Heinz Maier-Leibnitz Zentrum (MLZ), Germany. A large region of reciprocal space will be accessed by a detector with sufficient dynamic range and microsecond time resolution, while allowing for a variety of complementary sample environments. The medium-resolution neutron powder diffraction option for ‘energy research with neutrons’ (ErwiN) at the high-flux FRM II neutron source at the MLZ is foreseen to meet future demand. ErwiN will address studies of energy-related systems and materials with respect to their structure and uniformity by means of bulk and spatially resolved neutron powder diffraction. A set of experimental options will be implemented, enabling time-resolved studies, rapid parametric measurements as a function of external parameters and studies of small samples using an adapted radial collimator. The proposed powder diffraction option ErwiN will bridge the gap in functionality between the high-resolution powder diffractometer SPODI and the time-of-flight diffractometers POWTEX and SAPHiR at the MLZ. PMID:29896055

  14. Partical Melting of bulk Bi-2212

    NASA Technical Reports Server (NTRS)

    Heeb, B.; Gauckler, L. J.

    1995-01-01

    Dense and textured Bi-2212 bulk samples have been produced by the partial melting process. The appropriate amount of liquid phase necessary for complete densification has been adjusted by controlling the maximum processing temperature. The maximum temperature itself has to be adapted to several parameters as powder stoichiometry, silver addition and oxygen partial pressure. Prolonged annealing at 850 and 820 C and cooling in N2 atmosphere led to nearly single phase material with T(sub c) = 92 K. Critical current densities j(sub c) of 2'200 A/sq cm at 77 K/0 T have been achieved in samples of more than 1 mm thickness. Reducing the thickness below 0.4 mm enhances j(sub c) considerably to values is greater than 4'000 A/sq cm. The addition of 2 wt% Ag decreases the solidus temperature of the Bi-2212 powder by 21 C. Therefore, the maximum heat treatment temperature of Ag containing samples can be markedly lowered leading to a reduction of the amount of secondary phases. In addition, Ag enhances slightly the texture over the entire cross section and as a result j(sub c) at 77 K/0 T.

  15. Highly Enhanced Thermoelectric Properties of Bi/Bi2S3 Nanocomposites.

    PubMed

    Ge, Zhen-Hua; Qin, Peng; He, DongSheng; Chong, Xiaoyu; Feng, Dan; Ji, Yi-Hong; Feng, Jing; He, Jiaqing

    2017-02-08

    Bismuth sulfide (Bi 2 S 3 ) has been of high interest for thermoelectric applications due to the high abundance of sulfur on Earth. However, the low electrical conductivity of pristine Bi 2 S 3 results in a low figure of merit (ZT). In this work, Bi 2 S 3 @Bi core-shell nanowires with different Bi shell thicknesses were prepared by a hydrothermal method. The core-shell nanowires were densified to Bi/Bi 2 S 3 nanocomposite by spark plasma sintering (SPS), and the structure of the nanowire was maintained as the nanocomposite due to rapid SPS processing and low sintering temperature. The thermoelectric properties of bulk samples were investigated. The electrical conductivity of a bulk sample after sintering at 673 K for 5 min using Bi 2 S 3 @Bi nanowire powders prepared by treating Bi 2 S 3 nanowires in a hydrazine solution for 3 h is 3 orders of magnitude greater than that of a pristine Bi 2 S 3 sample. The nanocomposite possessed the highest ZT value of 0.36 at 623 K. This represents a new strategy for densifying core-shell powders to enhance their thermoelectric properties.

  16. Detection of plant-based adulterants in turmeric powder using DNA barcoding.

    PubMed

    Parvathy, V A; Swetha, V P; Sheeja, T E; Sasikumar, B

    2015-01-01

    In its powdered form, turmeric [Curcuma longa L. (Zingiberaceae)], a spice of medical importance, is often adulterated lowering its quality. The study sought to detect plant-based adulterants in traded turmeric powder using DNA barcoding. Accessions of Curcuma longa L., Curcuma zedoaria Rosc. (Zingiberaceae), and cassava starch served as reference samples. Three barcoding loci, namely ITS, rbcL, and matK, were used for PCR amplification of the reference samples and commercial samples representing 10 different companies. PCR success rate, sequencing efficiency, occurrence of SNPs, and BLAST analysis were used to assess the potential of the barcoding loci in authenticating the traded samples of turmeric. The PCR and sequencing success of the loci rbcL and ITS were found to be 100%, whereas matK showed no amplification. ITS proved to be the ideal locus because it showed greater variability than rbcL in discriminating the Curcuma species. The presence of C. zedoaria could be detected in one of the samples whereas cassava starch, wheat, barley, and rye in other two samples although the label claimed nothing other than turmeric powder in the samples. Unlabeled materials in turmeric powder are considered as adulterants or fillers, added to increase the bulk weight and starch content of the commodity for economic gains. These adulterants pose potential health hazards to consumers who are allergic to these plants, lowering the product's medicinal value and belying the claim that the product is gluten free. The study proved DNA barcoding as an efficient tool for testing the integrity and the authenticity of commercial products of turmeric.

  17. Optimizing spray drying conditions of sour cherry juice based on physicochemical properties, using response surface methodology (RSM).

    PubMed

    Moghaddam, Arasb Dabbagh; Pero, Milad; Askari, Gholam Reza

    2017-01-01

    In this study, the effects of main spray drying conditions such as inlet air temperature (100-140 °C), maltodextrin concentration (MDC: 30-60%), and aspiration rate (AR) (30-50%) on the physicochemical properties of sour cherry powder such as moisture content (MC), hygroscopicity, water solubility index (WSI), and bulk density were investigated. This investigation was carried out by employing response surface methodology and the process conditions were optimized by using this technique. The MC of the powder was negatively related to the linear effect of the MDC and inlet air temperature (IT) and directly related to the AR. Hygroscopicity of the powder was significantly influenced by the MDC. By increasing MDC in the juice, the hygroscopicity of the powder was decreased. MDC and inlet temperature had a positive effect, but the AR had a negative effect on the WSI of powder. MDC and inlet temperature negatively affected the bulk density of powder. By increasing these two variables, the bulk density of powder was decreased. The optimization procedure revealed that the following conditions resulted in a powder with the maximum solubility and minimum hygroscopicity: MDC = 60%, IT = 134 °C, and AR = 30% with a desirability of 0.875.

  18. Aging effects in bulk and fiber TlBr-TlI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, J.A.; Wilson, R.G.; Standlee, A.G.

    1988-05-01

    A study of optical aging in bulk and extruded fibers of thallium bromo-iodide (TlBr-TlI) is presented. A variety of techniques including secondary ion mass spectrometry (SIMS), powder neutron and x-ray diffraction, infrared spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy are used to probe the chemical and structural properties of both pristine and aged material. High concentration levels of a hydrogen bearing impurity have been detected by SIMS and neutron scattering in aged TlBr-TlI, and have been shown to be localized in the surface layers of fibers as well as bulk samples. We present EPR evidence which indicates that the hydrogenmore » bearing impurity is water.« less

  19. Mechanically induced self-propagating reaction and consequent consolidation for the production of fully dense nanocrystalline Ti{sub 55}C{sub 45} bulk material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherif El-Eskandarany, M., E-mail: msherif@kisr.edu.kw; Al-Hazza, Abdulsalam

    2014-11-15

    We employed a high-energy ball mill for the synthesis of nanograined Ti{sub 55}C{sub 45} powders starting from elemental Ti and C powders. The mechanically induced self-propagating reaction that occurred between the reactant materials was monitored via a gas atmosphere gas-temperature-monitoring system. A single phase of NaCl-type TiC was obtained after 5 h of ball milling. To decrease the powder and grain sizes, the material was subjected to further ball milling time. The powders obtained after 200 h of milling possessed spherical-like morphology with average particle and grain sizes of 45 μm and 4.2 nm, respectively. The end-products obtained after 200more » h of ball milling time, were then consolidated into full dense compacts, using hot pressing and spark plasma sintering at 1500 and 34.5 MPa, with heating rates of 20 °C/min and 500 °C/min, respectively. Whereas hot pressing of the powders led to severe grain growth (∼ 436 nm in diameter), the as-spark plasma sintered powders maintained their nanograined characteristics (∼ 28 nm in diameter). The as-synthesized and as-consolidated powders were characterized, using X-ray diffraction, high-resolution electron microscopy, and scanning electron microscopy. The mechanical properties of the consolidated samples obtained via the hot pressing and spark plasma sintering techniques were characterized, using Vickers microhardness and non-destructive testing techniques. The Vickers hardness, Young's modulus, shear modulus and fracture toughness of as-spark plasma sintered samples were 32 GPa, 358 GPa, 151 GPa and 6.4 MPa·m{sup 1/2}, respectively. The effects of the consolidation approach on the grain size and mechanical properties were investigated and are discussed. - Highlights: • Room-temperature synthesizing of NaCl-type TiC • Dependence on the grain size on the ball milling time • Fabrication of equiaxed nanocrystalline grains with a diameter of 4.2 nm • Fabrication of nanocrystalline bulk TiC material by SPS with minimal grain growth • Dependence of improved mechanical properties on the consolidation techniques.« less

  20. Analysis of Minor Component Segregation in Ternary Powder Mixtures

    NASA Astrophysics Data System (ADS)

    Asachi, Maryam; Hassanpour, Ali; Ghadiri, Mojtaba; Bayly, Andrew

    2017-06-01

    In many powder handling operations, inhomogeneity in powder mixtures caused by segregation could have significant adverse impact on the quality as well as economics of the production. Segregation of a minor component of a highly active substance could have serious deleterious effects, an example is the segregation of enzyme granules in detergent powders. In this study, the effects of particle properties and bulk cohesion on the segregation tendency of minor component are analysed. The minor component is made sticky while not adversely affecting the flowability of samples. The segregation extent is evaluated using image processing of the photographic records taken from the front face of the heap after the pouring process. The optimum average sieve cut size of components for which segregation could be reduced is reported. It is also shown that the extent of segregation is significantly reduced by applying a thin layer of liquid to the surfaces of minor component, promoting an ordered mixture.

  1. Influence of increasing amount of recycled concrete powder on mechanical properties of cement paste

    NASA Astrophysics Data System (ADS)

    Topič, Jaroslav; Prošek, Zdeněk; Plachý, Tomáš

    2017-09-01

    This paper deals with using fine recycled concrete powder in cement composites as micro-filler and partial cement replacement. Binder properties of recycled concrete powder are given by exposed non-hydrated cement grains, which can hydrate again and in small amount replace cement or improve some mechanical properties. Concrete powder used in the experiments was obtained from old railway sleepers. Infrastructure offer more sources of old concrete and they can be recycled directly on building site and used again. Experimental part of this paper focuses on influence of increasing amount of concrete powder on mechanical properties of cement paste. Bulk density, shrinkage, dynamic Young’s modulus, compression and flexural strength are observed during research. This will help to determine limiting amount of concrete powder when decrease of mechanical properties outweighs the benefits of cement replacement. The shrinkage, dynamic Young’s modulus and flexural strength of samples with 20 to 30 wt. % of concrete powder are comparable with reference cement paste or even better. Negative effect of concrete powder mainly influenced the compression strength. Only a 10 % cement replacement reduced compression strength by about 25 % and further decrease was almost linear.

  2. Successful Treatment of Cerebral Toxoplasmosis Using Pyrimethamine Oral Solution Compounded From Inexpensive Bulk Powder.

    PubMed

    Hodgson, Hayley A; Sim, Taeyong; Gonzalez, Hemil; Aziz, Mariam; Rhee, Yoona; Lewis, Paul O; Jhobalia, Neel; Shields, Beth; Wang, Sheila K

    2018-04-01

    A price increase of pyrimethamine tablets in the United States has made the life-saving drug difficult to acquire for hospitalized patients who need it most. We report the successful use of a pyrimethamine oral suspension compounded from an economical bulk powder in a patient with acute toxoplasmic encephalitis.

  3. Effects of densification of precursor pellets on microstructures and critical current properties of YBCO melt-textured bulks

    NASA Astrophysics Data System (ADS)

    Setoyama, Yui; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Awaji, Satoshi; Kon, Koichi; Ichikawa, Naoki; Inamori, Satoshi; Naito, Kyogo

    2016-12-01

    Effects of densification of precursor disks on the density of residual voids and critical current properties for YBCO melt-textured bulk superconductors were systematically investigated. Six YBCO bulks were prepared from precursor pellets with different initial particle sizes of YBa2Cu3Oy (Y123) powder and applied pressures for pelletization. It was revealed that use of finer Y123 powder and consolidation using cold-isostatic-pressing (CIP) with higher pressures result in reduction of residual voids at inner regions of bulks and enhance Jc especially under low fields below the second peak.

  4. Formation and magnetic properties of the L10 phase in bulk, powder and hot compacted Mn-Ga alloys

    NASA Astrophysics Data System (ADS)

    Mix, T.; Müller, K.-H.; Schultz, L.; Woodcock, T. G.

    2015-10-01

    The formation and stability of the L10 phase in Mn-Ga binary alloys with compositions in the range 50-75 at% Mn (in steps of 5 at%) has been studied. Of these, single-phase L10 structure was successfully produced in the 55, 60 and 65 at% Mn alloys by annealing the high temperature phases, which had been retained to room temperature following arc melting. Further annealing and thermal analysis were used to determine the phase transformation temperatures in the alloys and the results were used to guide further processing. The saturation magnetisation, Ms, and the anisotropy field, Ha, were determined in applied fields up to 14 T. For Mn55Ga45, μ0Ms=0.807 T and μ0Ha=4.4 T were observed. Mechanically milled Mn55Ga45 powder had coercivity of μ0Hc=0.393 T, which was a twentyfold increase compared to the bulk material but the magnetisation was reduced (cf. powder: μ0M5 T=0.576 T, bulk: μ0M5 T=0.780 T). Annealing the powder at 400 °C led to recovery of the magnetisation but reduced the coercivity, which was still 10 times as high as the bulk value. A degree of texture of 0.45 was achieved by magnetic alignment of the powder particles, leading to a remanence of 0.526 T. Furthermore, isotropic hot compacts of powders were produced with packing density from 83% to 99%, in which the improved coercivity of the powders was partially retained.

  5. Effect of composition on physical properties of food powders

    NASA Astrophysics Data System (ADS)

    Szulc, Karolina; Lenart, Andrzej

    2016-04-01

    The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.

  6. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farbaniec, L., E-mail: lfarban1@jhu.edu; Dirras, G., E-mail: dirras@univ-paris13.fr; Krawczynska, A.

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ∼ 135 μm) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ∼ 1.5 μm) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ∼ 470 MPa that was accompanied by limited ductility (∼ 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim weremore » observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.« less

  7. Method development and validation for measuring the particle size distribution of pentaerythritol tetranitrate (PETN) powders.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Sharissa Gay

    2005-09-01

    Currently, the critical particle properties of pentaerythritol tetranitrate (PETN) that influence deflagration-to-detonation time in exploding bridge wire detonators (EBW) are not known in sufficient detail to allow development of a predictive failure model. The specific surface area (SSA) of many PETN powders has been measured using both permeametry and gas absorption methods and has been found to have a critical effect on EBW detonator performance. The permeametry measure of SSA is a function of particle shape, packed bed pore geometry, and particle size distribution (PSD). Yet there is a general lack of agreement in PSD measurements between laboratories, raising concernsmore » regarding collaboration and complicating efforts to understand changes in EBW performance related to powder properties. Benchmarking of data between laboratories that routinely perform detailed PSD characterization of powder samples and the determination of the most appropriate method to measure each PETN powder are necessary to discern correlations between performance and powder properties and to collaborate with partnering laboratories. To this end, a comparison was made of the PSD measured by three laboratories using their own standard procedures for light scattering instruments. Three PETN powder samples with different surface areas and particle morphologies were characterized. Differences in bulk PSD data generated by each laboratory were found to result from variations in sonication of the samples during preparation. The effect of this sonication was found to depend on particle morphology of the PETN samples, being deleterious to some PETN samples and advantageous for others in moderation. Discrepancies in the submicron-sized particle characterization data were related to an instrument-specific artifact particular to one laboratory. The type of carrier fluid used by each laboratory to suspend the PETN particles for the light scattering measurement had no consistent effect on the resulting PSD data. Finally, the SSA of the three powders was measured using both permeametry and gas absorption methods, enabling the PSD to be linked to the SSA for these PETN powders. Consistent characterization of other PETN powders can be performed using the appropriate sample-specific preparation method, so that future studies can accurately identify the effect of changes in the PSD on the SSA and ultimately model EBW performance.« less

  8. Defect ordering in YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6: Synthesis and characterization by neutron and electron diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Y. P.; Greedan, J. E.; O'Reilly, A. H.; Reimers, J. N.; Stager, C. V.; Post, M. L.

    1990-02-01

    Polycrystalline samples of YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6 were prepared by oxygen titration of YBa 2 Cu 3O 6.0 at 450°C followed by slow cooling to room temperature. Both samples showed evidence for the a' = 2a supercell in individual grains by electron diffraction as reported previously. In addition the superlattice was observed in neutron powder diffraction indicating that the bulk material is also well ordered. In this study the YBa 2Cu 3O 6.6 phase showed longer correlation lengths for ordering along both a* and b* than YBa 2Cu 3O 6.5. For the former compound the powder-averaged, sample-averaged a* correlation distance is 26A˚from neutron diffraction. Analysis of electron diffraction profiles on selected single crystals give correlation lengths along a*, b*, and c* of 100, 200, and 50A˚, respectively. Dark field imaging discloses the presence of striped, ordered domains elongated along b* with a distribution of sizes. Both neutron diffraction and dark field imaging indicate that the volume fraction of the ordered domains is about 50%. A correlation is noted between the Meissner Effect and the extent of defect ordering in the bulk samples of the two phases.

  9. Study on dielectric properties of fresh vegetables and jamun

    NASA Astrophysics Data System (ADS)

    Usha, P.; Kumar, Sanjeev

    2017-08-01

    The Present work is concerned with the measurement of the complex dielectric permittivity, conductivity, and loss tangent and penetration depth of some vegetables and jamun frouit.. The measurement makes use of the “Von-Hipple method” for bulk sample. If the sample is not available with the dimension of the wave guide then reflectrometry technique is used for the pulverized (Powder) form of the sample and computed all the above parameters and relaxation time for the sample Jamun Seed (Scientific Name of Jamun is Syzygium cumini Lin). The measurement were performed for different packing densities at 9.85 GHz. at different temperature (20°c, 35°c and 50°c). The result was correlated with Landau-Lifshitz-Looyenga and Bottcher. There is fair agreement between the calculated values of dielectric parameters and the values obtained experimentally for solid bulk and pulverized one.

  10. The Bulk Nanocrystalline zn Produced by Mechanical Attrition

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Zhao, K. Y.; Li, C. J.; Tao, J. M.; Chan, T. L.; Koch, C. C.

    The purpose of experiment was to produce bulk nanocrystalline Zn by mechanical attrition. The bulk nanocrystalline Zn produced by mechanical attrition was studied. The microstructural evolution during cryomilling and subsequent room temperature milling was characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). In this paper, Nanocrystalline Zn was produced by insitu consolidation of Zn elemental powder using mechanical attrition at liquid nitrogen and room temperature. For the samples studied, the longest elongation of 65% and highest stress of 200 MPa is obtained in nanocrystalline Zn during tensile testing at the condition of strain rate (10-3 sec-1) and 20°C which is equal to 0.43 Tm (Tm is the melting temperature of pure Zn).

  11. Methodology for Producing a Uniform Distribution of UO2 in a Tungsten Matrix

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; O'Conner, Andrew; Hickman, Rickman; Broadway, Jeramie; Belancik, Grace

    2015-01-01

    Current work at NASA's Marshall Space Flight Center (MSFC) is focused on the development CERMET fuel materials for Nuclear Thermal Propulsion (NTP). The CERMETs consist of uranium dioxide (UO2) fuel particles embedded in a tungsten (W) metal matrix. Initial testing of W-UO2 samples fabricated from fine angular powders performed reasonably well, but suffered from significant fuel loss during repeated thermal cycling due to agglomeration of the UO2 (1). The blended powder mixtures resulted in a non-uniform dispersion of the UO2 particles in the tungsten matrix, which allows rapid vaporization of the interconnected UO2 from the sample edges into the bulk material. Also, the angular powders create areas of stress concentrations due to thermal expansion mismatch, which eventually cracks the tungsten matrix. Evenly coating spherical UO2 particles with chemical vapor deposited (CVD) tungsten prior to consolidation was previously demonstrated to provide improved performance. However, the CVD processing technology is expensive and not currently available. In order to reduce cost and enhance performance, a powder coating process has been developed at MSFC to produce a uniform distribution of the spherical UO2 particles in a tungsten matrix. The method involves utilization of a polyethylene binder during mixing which leads to fine tungsten powders clinging to the larger UO2 spherical particles. This process was developed using HfO2 as a surrogate for UO2. Enough powder was mixed to make 8 discs (2cm diameter x 8mm thickness) using spark plasma sintering. A uniaxial pressure of 50 MPa was used at four different temperatures (2 samples at each temperature). The first two samples were heated to 1400C and 1500C respectively for 5 minutes. Densities for these samples were less than 85% of theoretical, so the time at temperature was increased to 20 minutes for the remaining samples. The highest densities were achieved for the two samples sintered at 1700C (approx. 92% of theoretical). Scanning electron microscopy (SEM) of the mixed powders and the sintered samples along with energy dispersive x-ray analysis was obtained. The SEM of the powders clearly show the fine W powder adhered to the larger HfO2 particles and a uniform distribution of HfO2 particles in a tungsten matrix upon densification. Vicker's Microhardness testing was also performed on all samples using 0.5, 1.0 and 2.0 kg loads. Five indents were made at each load level. All indents were placed in the tungsten matrix to assist as a proxy in measuring densification. The highest hardness value was obtained for the 1700C specimens. The hardness average for these samples was 312.14 MPa. This powder processing method has been applied to W/UO2 powders with the SEM of the powders appearing similar to the W/HfO2 powder images.

  12. Developing New Methods for Microsampling and Sm/Nd Dating of Zoned Garnet

    NASA Astrophysics Data System (ADS)

    Pollington, A. D.; Baxter, E. F.

    2007-12-01

    Garnets provide one of the Earth Science community's most useful tools for studying rates, duration and timing of crustal processes. In this study we describe new techniques for fine sampling of multiple growth zones of garnet and Sm/Nd dating of each individual zone. We test these techniques on large (>5cm) garnets from a shear zone in the Tauern Window of Austria where we seek to quantify the growth history of garnet in a manner similar to dating tree rings. Microsampling permits a more precise quantification of duration, episodicity and kinetics of metamorphic reactions. Past studies of garnet growth duration - based on core and rim garnet ages - have been limited by sampling methods for extracting discrete, and accurate, growth zones. Modeling of radial growth symmetry in garnet shows that previous studies may underestimate garnet growth duration by as much as 50%. We are able to dramatically improve microsampling by using microdrilling guided by chemical maps of the garnet composition. This provides much improved precision and accuracy in sampling. By using chemical mapping of the garnet we can be sure that we are correctly sampling narrow (~500 micron wide) growth (i.e. age) zones rather than smearing and averaging multiple growth zones together. In principle, tens of growth zones (and ages) spanning the entire interval of garnet growth may be sampled and resolved. Microdrilled domains, the results of which are an ultrafine powder, are drilled and collected in water. Due to the adverse geochronological effect of unavoidable micro-inclusions in garnet, we have tested several partial dissolution techniques to cleanse the garnet of inclusions and yield higher 147Sm/144Nd and hence, more precise ages. Analysis of a finely crushed bulk Tauern Window garnet sample after HF/HClO3 cleansing indicates that 147Sm/144Nd at least as high as 0.89 is attainable in this particular sample, but cleansing efforts on microdrilled powders have thus far failed to yield such high ratios suggesting that the powders respond in unexpectedly different ways to our standard garnet cleansing procedures. Preliminary Sm/Nd age analysis of bulk garnet confirms a ~25Ma age for garnet growth. Progress in our inclusion cleansing procedures on microdrilled powders will be reported.

  13. In situ neutron diffraction study of micromechanical interactions and phase transformation in Ni-Mn-Ga alloy under uniaxial and hydrostatic stress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, R. L.; Wang, Y. D.; Nie, Z. H.

    2008-01-01

    This paper deals with the experimental study of stress-induced phase transformation in a polycrystalline Ni-Mn-Ga alloy under uniaxial compression and its powder under hydrostatic compression. In situ neutron diffraction experiments were employed to follow changes in the structure and lattice strains caused by the applied stresses. Large lattice strains that are dependent on the lattice planes or grain orientations were observed in the parent Heusler phase for both the bulk material and the powder sample. The development of such anisotropic strains and the influence of external load conditions are discussed in the paper.

  14. Diagenetic Mineralogy at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Vaniman, David; Blake, David; Bristow, Thomas F.; Chipera, Steve; Gellert, Ralf; Ming, Douglas; Morris, Richard; Rampe, E. B.; Rapin, William

    2015-01-01

    Three years into exploration of sediments in Gale crater on Mars, the Mars Science Laboratory rover Curiosity has provided data on several modes and episodes of diagenetic mineral formation. Curiosity determines mineralogy principally by X-ray diffraction (XRD), but with supporting data from thermal-release profiles of volatiles, bulk chemistry, passive spectroscopy, and laser-induced breakdown spectra of targeted spots. Mudstones at Yellowknife Bay, within the landing ellipse, contain approximately 20% phyllosilicate that we interpret as authigenic smectite formed by basalt weathering in relatively dilute water, with associated formation of authigenic magnetite as in experiments by Tosca and Hurowitz [Goldschmidt 2014]. Varied interlayer spacing of the smectite, collapsed at approximately 10 A or expanded at approximately 13.2 A, is evidence of localized diagenesis that may include partial intercalation of metal-hydroxyl groups in the approximately 13.2 A material. Subsequent sampling of stratigraphically higher Windjana sandstone revealed sediment with multiple sources, possible concentration of detrital magnetite, and minimal abundance of diagenetic minerals. Most recent sampling has been of lower strata at Mount Sharp, where diagenesis is widespread and varied. Here XRD shows that hematite first becomes abundant and products of diagenesis include jarosite and cristobalite. In addition, bulk chemistry identifies Mg-sulfate concretions that may be amorphous or crystalline. Throughout Curiosity's traverse, later diagenetic fractures (and rarer nodules) of mm to dm scale are common and surprisingly constant and simple in Ca-sulfate composition. Other sulfates (Mg,Fe) appear to be absent in this later diagenetic cycle, and circumneutral solutions are indicated. Equally surprising is the rarity of gypsum and common occurrence of bassanite and anhydrite. Bassanite, rare on Earth, plays a major role at this location on Mars. Dehydration of gypsum to bassanite in the dry atmosphere of Mars has been proposed but considered unlikely based on lab studies of dehydration kinetics in powdered samples. Dehydration is even less likely for bulk vein samples, as lab data show dehydration rates one to two orders of magnitude slower in bulk samples than in powders. On Mars, exposure ages of 100 Ma or more may be a significant factor in dehydration of hydrous phases.

  15. Fast surface crystallization of amorphous griseofulvin below T g.

    PubMed

    Zhu, Lei; Jona, Janan; Nagapudi, Karthik; Wu, Tian

    2010-08-01

    To study crystal growth rates of amorphous griseofulvin (GSF) below its glass transition temperature (T (g)) and the effect of surface crystallization on the overall crystallization kinetics of amorphous GSF. Amorphous GSF was generated by melt quenching. Surface and bulk crystal growth rates were determined using polarized light microscope. X-ray powder diffraction (XRPD) and Raman microscopy were used to identify the polymorph of the crystals. Crystallization kinetics of amorphous GSF powder stored at 40 degrees C (T (g)-48 degrees C) and room temperature (T (g)-66 degrees C) was monitored using XRPD. Crystal growth at the surface of amorphous GSF is 10- to 100-fold faster than that in the bulk. The surface crystal growth can be suppressed by an ultrathin gold coating. Below T (g), the crystallization of amorphous GSF powder was biphasic with a rapid initial crystallization stage dominated by the surface crystallization and a slow or suspended late stage controlled by the bulk crystallization. GSF exhibits the fastest surface crystallization kinetics among the known amorphous pharmaceutical solids. Well below T (g), surface crystallization dominated the overall crystallization kinetics of amorphous GSF powder. Thus, surface crystallization should be distinguished from bulk crystallization in studying, modeling and controlling the crystallization of amorphous solids.

  16. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen

    2011-12-01

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphitemore » content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present« less

  17. Fabrication and characterization of fine ceramic based on alumina, bentonite, and glass bead

    NASA Astrophysics Data System (ADS)

    Sebayang, P.; Nurdina; Simbolon, S.; Kurniawan, C.; Yunus, M.; Setiadi, E. A.; Sitorus, Z.

    2018-03-01

    Fabrication of fine ceramics based on alumina, bentonite and glass bead has been carried out by powder metallurgy. The preparation of powder has been performed using High Energy Milling (HEM) with wet milling process and using toluene as medium for 2 hours. The powder milling result was dried in oven at 100 °C for 24 hours. After that, the powder was compacted into pellet by using hydraulic press with 80 kgf/cm2 pressure at room temperature. Then, the pellet was sintered at 900 °C for 4 hours. Materials characterization such as physical properties (true density, bulk density, porosity, and water absorption), average particle diameter, hardness, microstructure and phase were measured by Archimedes method, Particle Size Analyzer (PSA), Hardness Vickers (HV), Scanning Electron Microscope (SEM-EDX) and X-Ray Diffraction (XRD). From the result, the optimum condition is sample D (with addition of 30 wt.% γ-Al2O3) with sintering temperature of 900 °C for 4 hours. At this condition, these properties were measured: average particle diameter of 4.27 μm, true density of 2.32 g/cm3, porosity of 5.57%, water absorption of 2.46%, bulk density of 2.39 g/cm3, and hardness of 632 HV. The fine ceramic has four phases with albite (Al2NaO8Si3) and quartz (SiO2) as dominant phases and corundum (Al2O3) and nepheline (AlNaO4Si) as minor phases.

  18. Real time monitoring of powder blend bulk density for coupled feed-forward/feed-back control of a continuous direct compaction tablet manufacturing process.

    PubMed

    Singh, Ravendra; Román-Ospino, Andrés D; Romañach, Rodolfo J; Ierapetritou, Marianthi; Ramachandran, Rohit

    2015-11-10

    The pharmaceutical industry is strictly regulated, where precise and accurate control of the end product quality is necessary to ensure the effectiveness of the drug products. For such control, the process and raw materials variability ideally need to be fed-forward in real time into an automatic control system so that a proactive action can be taken before it can affect the end product quality. Variations in raw material properties (e.g., particle size), feeder hopper level, amount of lubrication, milling and blending action, applied shear in different processing stages can affect the blend density significantly and thereby tablet weight, hardness and dissolution. Therefore, real time monitoring of powder bulk density variability and its incorporation into the automatic control system so that its effect can be mitigated proactively and efficiently is highly desired. However, real time monitoring of powder bulk density is still a challenging task because of different level of complexities. In this work, powder bulk density which has a significant effect on the critical quality attributes (CQA's) has been monitored in real time in a pilot-plant facility, using a NIR sensor. The sensitivity of the powder bulk density on critical process parameters (CPP's) and CQA's has been analyzed and thereby feed-forward controller has been designed. The measured signal can be used for feed-forward control so that the corrective actions on the density variations can be taken before they can influence the product quality. The coupled feed-forward/feed-back control system demonstrates improved control performance and improvements in the final product quality in the presence of process and raw material variations. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The miniaturized Raman system and detection of traces of life in halite from the Atacama Desert: some considerations for the search for life signatures on Mars.

    PubMed

    Vítek, Petr; Jehlička, Jan; Edwards, Howell G M; Hutchinson, Ian; Ascaso, Carmen; Wierzchos, Jacek

    2012-12-01

    Raman spectroscopy is being adopted as a nondestructive instrumentation for the robotic exploration of Mars to search for traces of life in the geological record. Here, miniaturized Raman spectrometers of two different types equipped with 532 and 785 nm lasers for excitation, respectively, were compared for the detection of microbial biomarkers in natural halite from the hyperarid region of the Atacama Desert. Measurements were performed directly on the rock as well as on the homogenized, powdered samples prepared from this material-the effects of this sample preparation and the excitation wavelength employed in the analysis are compared and discussed. From these results, 532 nm excitation was found to be superior for the analysis of powdered specimens due to its high sensitivity toward carotenoids and hence a higher capability for their detection at relatively low concentration in bulk powdered specimens. For the same reason, this wavelength was a better choice for the detection of carotenoids in direct measurements made on the rock samples. The 785 nm excitation wavelength, in contrast, proved to be more sensitive toward the detection of scytonemin.

  20. Semisolid Microstructural Evolution during Partial Remelting of a Bulk Alloy Prepared by Cold Pressing of the Ti-Al-2024Al Powder Mixture

    PubMed Central

    Qin, Yahong; Chen, Tijun; Wang, Yingjun; Zhang, Xuezheng; Li, Pubo

    2016-01-01

    A new method, powder thixoforming, has been proposed to fabricate an in situ Al3Tip/2024Al composite. During partial remelting, the microstructural evolution of the bulk alloy prepared by cold pressing of the Ti, Al, 2024Al powder mixture was investigated, and the formation mechanism of the Al3Ti particles produced by the reaction between the Ti powder and the Al alloy melt is also discussed in detail. The results indicate that the microstructural evolution of the 2024 alloy matrix can be divided into three stages: a rapid coarsening of the powder grains; a formation of primary α-Al particles surrounded with a continuous liquid film; and a slight coarsening of the primary α-Al particles. Simultaneously, a reaction layer of Al3Ti can be formed on the Ti powder surface when the bulk is heated for 10 min at 640 °C The thickness (X) of the reaction layer increases with the time according to the parabolic law of X=−0.43t2+4.21t+0.17. The stress generated in the reaction layer due to the volume dilatation can be calculated by using the equation σAl3Ti=−EAl3Ti6(1−υAl3Ti)t2Al3TitTi(1R−1R0). Comparing the obtained data with the results of the drip experiment, the reaction rate for the Ti powder and Al powder mixture is greater than that for the Ti plate and Al alloy mixture, respectively.

  1. Improved compaction of dried tannery wastewater sludge.

    PubMed

    Della Zassa, M; Zerlottin, M; Refosco, D; Santomaso, A C; Canu, P

    2015-12-01

    We quantitatively studied the advantages of improving the compaction of a powder waste by several techniques, including its pelletization. The goal is increasing the mass storage capacity in a given storage volume, and reducing the permeability of air and moisture, that may trigger exothermic spontaneous reactions in organic waste, particularly as powders. The study is based on dried sludges from a wastewater treatment, mainly from tanneries, but the indications are valid and useful for any waste in the form of powder, suitable to pelletization. Measurements of bulk density have been carried out at the industrial and laboratory scale, using different packing procedures, amenable to industrial processes. Waste as powder, pellets and their mixtures have been considered. The bulk density of waste as powder increases from 0.64 t/m(3) (simply poured) to 0.74 t/m(3) (tapped) and finally to 0.82 t/m(3) by a suitable, yet simple, packing procedure that we called dispersion filling, with a net gain of 28% in the compaction by simply modifying the collection procedure. Pelletization increases compaction by definition, but the packing of pellets is relatively coarse. Some increase in bulk density of pellets can be achieved by tapping; vibration and dispersion filling are not efficient with pellets. Mixtures of powder and pellets is the optimal packing policy. The best compaction result was achieved by controlled vibration of a 30/70 wt% mixture of powders and pellets, leading to a final bulk density of 1t/m(3), i.e. an improvement of compaction by more than 54% with respect to simply poured powders, but also larger than 35% compared to just pellets. That means increasing the mass storage capacity by a factor of 1.56. Interestingly, vibration can be the most or the least effective procedure to improve compaction of mixtures, depending on characteristics of vibration. The optimal packing (30/70 wt% powders/pellets) proved to effectively mitigate the onset of smouldering, leading to self-heating, according to standard tests, whereas the pure pelletization totally removes the self-heating hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Associating gunpowder and residues from commercial ammunition using compositional analysis.

    PubMed

    MacCrehan, William A; Reardon, Michelle R; Duewer, David L

    2002-03-01

    Qualitatively identifying and quantitatively determining the additives in smokeless gunpowder to calculate a numerical propellant to stabilizer (P/S) ratio is a new approach to associate handgun-fired organic gunshot residues (OGSR) with unfired powder. In past work, the P/S values of handgun OGSR and cartridges loaded with known gunpowders were evaluated. In this study, gunpowder and residue samples were obtained from seven boxes of commercial 38 caliber ammunition with the goals of associating cartridges within a box and matching residues to unfired powders, based on the P/S value and the qualitative identity of the additives. Gunpowder samples from four of the seven boxes of ammunition could be easily differentiated. When visual comparisons of the cartridge powders were considered in addition to composition, powder samples from all seven boxes of ammunition could be reliably differentiated. Handgun OGSR was also collected and evaluated in bulk as well as for individual particles. In some cases, residues could be reliably differentiated based on P/S and additive identity. It was instructive to evaluate the composition of individual unfired gunpowder and OGSR particles. We determined that both the numerical centroid and dispersity of the P/S measurements provide information for associations and exclusions. Associating measurements from residue particles with those of residue samples collected from a test firing of the same weapon and ammunition appears to be a useful approach to account for any changes in composition that occur during the firing process.

  3. Pharmaceutical production of tableting granules in an ultra-small-scale high-shear granulator as a pre-formulation study.

    PubMed

    Ogawa, Tatsuya; Uchino, Tomohiro; Takahashi, Daisuke; Izumi, Tsuyoshi; Otsuka, Makoto

    2012-11-01

    In some of drug developments, the amount of bulk drug powder to use in early stages is limited and it is not easy to supply a sufficient drug amount for conventional preparation methods. Therefore, an ultra-small-scale high-shear granulator (less than 5 g) (USG) was developed and applied to small-scale granulation as a pre-formulation. The sample powder consisted of 66.5% lactose, 28.5% microcrystalline cellulose and 5.0% hydroxypropylcellulose. The granules were obtained to agitate 5 g of the sample powder with 1.0 mL of water at 300 rpm for 5 min after pre-powder mixing for 3 min by the USG and the manual hand (HM) methods. The granules were evaluated by the 10% and 90% accumulated particle size and the recoveries of the granules and the powder solid. Median particle size for the USG and the HM methods was 159.2 ± 2.3 and 270.9 ± 14.9 µm, respectively. The USG method had a narrower particle size distribution than those by the HM method. The recovery of the granules by USG was significantly larger than that by the HM method. Characteristics of all of the granules indicated that the USG method could produce higher quality granules within a shorter time than the HM methods.

  4. Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped ? powders studied using spectral hole burning

    NASA Astrophysics Data System (ADS)

    Lutz, Thomas; Veissier, Lucile; Thiel, Charles W.; Woodburn, Philip J. T.; Cone, Rufus L.; Barclay, Paul E.; Tittel, Wolfgang

    2016-01-01

    High-quality rare-earth-ion (REI) doped materials are a prerequisite for many applications such as quantum memories, ultra-high-resolution optical spectrum analyzers and information processing. Compared to bulk materials, REI doped powders offer low-cost fabrication and a greater range of accessible material systems. Here we show that crystal properties, such as nuclear spin lifetime, are strongly affected by mechanical treatment, and that spectral hole burning can serve as a sensitive method to characterize the quality of REI doped powders. We focus on the specific case of thulium doped ? (Tm:YAG). Different methods for obtaining the powders are compared and the influence of annealing on the spectroscopic quality of powders is investigated on a few examples. We conclude that annealing can reverse some detrimental effects of powder fabrication and, in certain cases, the properties of the bulk material can be reached. Our results may be applicable to other impurities and other crystals, including color centers in nano-structured diamond.

  5. Processing and characterization of Zr-based metallic glass by laser direct deposition

    NASA Astrophysics Data System (ADS)

    Bae, Heehun

    Bulk Metallic Glass has become famous for its exceptional mechanical and corrosion properties. Especially, Zirconium has been the prominent constituent in Bulk Metallic Glass due to its superior glass forming ability, the ability to form amorphous phase with low cooling rate, thereby giving advantages in structural applications. In this study, Zirconium powder was alloyed with Aluminum, Nickel and Copper powder at an atomic ratio of 65:10:10:15, respectively. Using the ball milling process to mix the powders, Zr65Al10Ni 10Cu15 amorphous structure was manufactured by laser direct deposition. Laser power and laser scanning speed were optimized to increase the fraction of amorphous phase. X-ray Diffraction confirmed the existence of both amorphous and crystalline phase by having a wide halo peak and sharp intense peak in the spectrum. Differential Scanning Calorimetry proved the presence of amorphous phase and glass transition was observed to be around 655 K. Scanning electron microscopy showed the microstructure of the deposited sample to have repetitive amorphous and crystalline phase as XRD examined. Crystalline phase resulted from the laser reheating and remelting process due to subsequent laser scan. Laser direct deposited amorphous/crystalline composite showed Vickers Hardness of 670 Hv and exhibited improved corrosion resistance in comparison to fully-crystallized sample. The compression test showed that, due to the existence of crystalline phase, fracture strain of Zr65Al10Ni10Cu 15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass.

  6. Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties.

    PubMed

    Darniadi, Sandi; Ho, Peter; Murray, Brent S

    2018-03-01

    Blueberry juice powder was developed via foam-mat freeze-drying (FMFD) and spray-drying (SD) via addition of maltodextrin (MD) and whey protein isolate (WPI) at weight ratios of MD/WPI = 0.4 to 3.2 (with a fixed solids content of 5 wt% for FMFD and 10 wt% for SD). Feed rates of 180 and 360 mL h -1 were tested in SD. The objective was to evaluate the effect of the drying methods and carrier agents on the physical properties of the corresponding blueberry powders and reconstituted products. Ratios of MD/WPI = 0.4, 1.0 and 1.6 produced highly stable foams most suitable for FMFD. FMFD gave high yields and low bulk density powders with flake-like particles of large size that were also dark purple with high red values. SD gave low powder recoveries. The powders had higher bulk density and faster rehydration times, consisting of smooth, spherical and smaller particles than in FMFD powders. The SD powders were bright purple but less red than FMFD powders. Solubility was greater than 95% for both FMFD and SD powders. The FMFD method is a feasible method of producing blueberry juice powder and gives products retaining more characteristics of the original juice than SD. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. New chemistry of transition metal oxyhydrides

    PubMed Central

    Kobayashi, Yoji; Hernandez, Olivier; Tassel, Cédric; Kageyama, Hiroshi

    2017-01-01

    Abstract In this review we describe recent advances in transition metal oxyhydride chemistry obtained by topochemical routes, such as low temperature reduction with metal hydrides, or high-pressure solid-state reactions. Besides the crystal chemistry, magnetic and transport properties of the bulk powder and epitaxial thin film samples, the remarkable lability of the hydride anion is particularly highlighted as a new strategy to discover unprecedented mixed anion materials. PMID:29383042

  8. Nano-Forging of Bulk Metallic Glasses

    DTIC Science & Technology

    2006-09-13

    zirconia powder . Arrows indicate the width of ridges on the BMG surface. Fig. 3.3 Imprinted BMG using die made with 250 nm zirconia powder . 9...Fig. 3.4 Imprinted BMG using die made with 50 nm zirconia powder . On each of the imprinted BMG surfaces, linear features

  9. Preparation of extrusions of bulk mixed oxide compounds with high macroporosity and mechanical strength

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Jothimurugesan, Kandaswami

    1990-01-01

    A simple and effective method for producing bulk single and mixed oxide absorbents and catalysts is disclosed. The method yields bulk single oxide and mixed oxide absorbent and catalyst materials which combine a high macroporosity with relatively high surface area and good mechanical strength. The materials are prepared in a pellet form using as starting compounds, calcined powders of the desired composition and physical properties these powders are crushed to broad particle size distribution, and, optionally may be combined with an inorganic clay binder. The necessary amount of water is added to form a paste which is extruded, dried and heat treated to yield and desired extrudate strength. The physical properties of the extruded materials (density, macroporosity and surface area) are substantially the same as the constituent powder is the temperature of the heat treatment of the extrudates is approximately the same as the calcination temperature of the powder. If the former is substantially higher than the latter, the surface area decreases, but the macroporosity of the extrusions remains essentially constant.

  10. Linking flowability and granulometry of lactose powders.

    PubMed

    Boschini, F; Delaval, V; Traina, K; Vandewalle, N; Lumay, G

    2015-10-15

    The flowing properties of 10 lactose powders commonly used in pharmaceutical industries have been analyzed with three recently improved measurement methods. The first method is based on the heap shape measurement. This straightforward measurement method provides two physical parameters (angle of repose αr and static cohesive index σr) allowing to make a first screening of the powder properties. The second method allows to estimate the rheological properties of a powder by analyzing the powder flow in a rotating drum. This more advanced method gives a large set of physical parameters (flowing angle αf, dynamic cohesive index σf, angle of first avalanche αa and powder aeration %ae) leading to deeper interpretations. The third method is an improvement of the classical bulk and tapped density measurements. In addition to the improvement of the measurement precision, the densification dynamics of the powder bulk submitted to taps is analyzed. The link between the macroscopic physical parameters obtained with these methods and the powder granulometry is analyzed. Moreover, the correlations between the different flowability indexes are discussed. Finally, the link between grain shape and flowability is discussed qualitatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Evaluation, development, and characterization of superconducting materials for space application

    NASA Technical Reports Server (NTRS)

    Thorpe, A. N.

    1989-01-01

    Results are reported of low magnetic field studies of dc magnetic susceptibility and ac magnetic susceptibility of bulk samples and powders. These data are analyzed and compared with the microstructures and compositions of the samples as determined by scanning electron microscopic micrographs, X-ray and chemical analysis. Particular emphasis is given to the interpretation of the ac magnetic susceptibility data which were obtained as function of the magnitude and frequency of the ac measuring field, and low values of an applied dc magnetic field. Two general conclusions are given and briefly discussed.

  12. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiya, T., E-mail: akiya.takahiro@nims.go.jp; Sepehri-Amin, H.; Ohkubo, T.

    2014-05-07

    The low temperature grain boundary diffusion process using RE{sub 70}Cu{sub 30} (RE = Pr, Nd) eutectic alloy powders was applied to sintered and hot-deformed Nd-Fe-B bulk magnets. Although only marginal coercivity increase was observed in sintered magnets, a substantial enhancement in coercivity was observed when the process was applied to hot-deformed anisotropic bulk magnets. Using Pr{sub 70}Cu{sub 30} eutectic alloy as a diffusion source, the coercivity was enhanced from 1.65 T to 2.56 T. The hot-deformed sample expanded along c-axis direction only after the diffusion process as RE rich intergranular layers parallel to the broad surface of the Nd{sub 2}Fe{sub 14}B are thickened inmore » the c-axis direction.« less

  13. Synthesis and Explosive Consolidation of Titanium, Aluminium, Boron and Carbon Containing Powders

    NASA Astrophysics Data System (ADS)

    Chikhradze, Mikheil; Oniashvili, George; Chikhradze, Nikoloz; D. S Marquis, Fernand

    2016-10-01

    The development of modern technologies in the field of materials science has increased the interest towards the bulk materials with improved physical, chemical and mechanical properties. Composites, fabricated in Ti-Al-B-C systems are characterized by unique physical and mechanical properties. They are attractive for aerospace, power engineering, machine and chemical applications. The technologies to fabricate ultrafine grained powder and bulk materials in Ti-Al-B-C system are described in the paper. It includes results of theoretical and experimental investigation for selection of powders composition and determination of thermodynamic conditions for bland preparation, as well as optimal technological parameters for mechanical alloying and adiabatic compaction. The crystalline coarse Ti, Al, C powders and amorphous B were used as precursors and blends with different compositions of Ti-Al, Ti-Al-C, Ti-B-C and Ti-Al-B were prepared. Preliminary determination/selection of blend compositions was made on the basis of phase diagrams. The powders were mixed according to the selected ratios of components to produce the blend. Blends were processed in “Fritsch” Planetary premium line ball mill for mechanical alloying, syntheses of new phases, amorphization and ultrafine powder production. The blends processing time was variable: 1 to 20 hours. The optimal technological regimes of nano blend preparation were determined experimentally. Ball milled nano blends were placed in metallic tube and loaded by shock waves for realization of consolidation in adiabatic regime. The structure and properties of the obtained ultrafine grained materials depending on the processing parameters are investigated and discussed. For consolidation of the mixture, explosive compaction technology is applied at room temperatures. The prepared mixtures were located in low carbon steel tube and blast energies were used for explosive consolidation compositions. The relationship of ball milling technological parameters and explosive consolidation conditions on the structure/properties of the obtained samples are described in the paper.

  14. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.

    PubMed

    Qu, Li; Morton, David A V; Zhou, Qi Tony

    2015-01-01

    Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.

  15. [Impact of directly compressed auxiliary materials on powder property of fermented cordyceps powder].

    PubMed

    Chen, Li-Hua; Yue, Guo-Chao; Guan, Yong-Mei; Yang, Ming; Zhu, Wei-Feng

    2014-01-01

    To investigate such physical indexes as hygroscopicity, angle of repose, bulk density, fillibility of compression of mixed powder of directly compressed auxiliary materials and fermented cordyceps powder by using micromeritic study methods. The results showed that spray-dried lactose Flowlac100 and microcrystalline cellulose Avicel PH102 had better effect in liquidity and compressibility on fermented cordyceps powder than pregelatinized starch. The study on the impact of directly compressed auxiliary materials on the powder property of fermented cordyceps powder had guiding significant to the research of fermented cordyceps powder tablets, and could provide basis for the development of fermented cordyceps powder tablets.

  16. On the synthesis and microstructure analysis of high performance MnBi

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chun; Sawatzki, Simon; Ener, Semih; Sepehri-Amin, Hossein; Leineweber, Andreas; Gregori, Giuliano; Qu, Fei; Muralidhar, Shreyas; Ohkubo, Tadakatsu; Hono, Kazuhiro; Gutfleisch, Oliver; Kronmüller, Helmut; Schütz, Gisela; Goering, Eberhard

    2016-12-01

    Highly anisotropic MnBi powder with over 90 wt% low-temperature phase can be prepared using conventional arc-melting and 2 hour-low energy ball milling (BM) followed by magnetic separation. After proper alignment, the purified Mn55Bi45(Mn45Bi55) powder show remarkable magnetic properties: mass remanence of 71(65) Am2/kg and coercivity of 1.23(1.18) T at 300 K. The nominal maximum energy product of 120 kJ/m3 is achieved in the purified 2h-BM Mn55Bi45 powder, close to theoretical value of 140.8 kJ/m3. The Mn55Bi45(Mn45Bi55) bulk magnets show the highest volume remanence of 0.68(0.57) T at 300 K, while they were consolidated at 573(523) K by a pressure of 200 MPa for 5 minutes using hot-compaction method. In addition to the observed grain size, the coercivity of the hot-compacted samples at 300 K was found to be strongly related to the amount of metallic Mn and Bi residue at the grain-boundary. Our study proves that the magnetic properties of the Mn45Bi55 bulk magnets are stable up to 500 K, and the nominal (BH)max values are still above 40 kJ/m3 at 500 K showing the potential ability for high-temperature applications.

  17. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1992-01-01

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  18. Diacetyl emissions and airborne dust from butter flavorings used in microwave popcorn production.

    PubMed

    Boylstein, Randy; Piacitelli, Chris; Grote, Ardith; Kanwal, Richard; Kullman, Greg; Kreiss, Kathleen

    2006-10-01

    In microwave popcorn workers, exposure to butter flavorings has been associated with fixed obstructive lung disease resembling bronchiolitis obliterans. Inhalation toxicology studies have shown severe respiratory effects in rats exposed to vapors from a paste butter flavoring, and to diacetyl, a diketone found in most butter flavorings. To gain a better understanding of worker exposures, we assessed diacetyl emissions and airborne dust levels from butter flavorings used by several microwave popcorn manufacturing companies. We heated bulk samples of 40 different butter flavorings (liquids, pastes, and powders) to approximately 50 degrees C and used gas chromatography, with a mass selective detector, to measure the relative abundance of volatile organic compounds emitted. Air sampling was conducted for diacetyl and for total and respirable dust during the mixing of powder, liquid, or paste flavorings with heated soybean oil at a microwave popcorn plant. To further examine the potential for respiratory exposures to powders, we measured dust generated during different simulated methods of manual handling of several powder butter flavorings. Powder flavorings were found to give off much lower diacetyl emissions than pastes or liquids. The mean diacetyl emissions from liquids and pastes were 64 and 26 times larger, respectively, than the mean of diacetyl emissions from powders. The median diacetyl emissions from liquids and pastes were 364 and 72 times larger, respectively, than the median of diacetyl emissions from powders. Fourteen of 16 powders had diacetyl emissions that were lower than the diacetyl emissions from any liquid flavoring and from most paste flavorings. However, simulated handling of powder flavorings showed that a substantial amount of the airborne dust generated was of respirable size and could thus pose its own respiratory hazard. Companies that use butter flavorings should consider substituting flavorings with lower diacetyl emissions and the use of ventilation and enclosure engineering controls to minimize exposures. Until controls are fully implemented, companies should institute mandatory respiratory protection for all exposed workers.

  19. Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Peters, Daniel; Pettke, Thomas

    2016-04-01

    An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g-1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, UB-N, BCR-2, GSP-2, OKUM, and MUH-1). Calibration based on external standardization using SRM 610, SRM 612, BCR-2G, and GSD-1G glasses allows for evaluation of possible matrix effects during LA-ICP-MS analysis. The data accuracy of the PPP LA-ICP-MS analytical procedure compares well to that achieved for liquid ICP-MS and LA-ICP-MS glass analysis, except for element concentrations below ˜30 ng g-1, where liquid ICP-MS offers more precise data and in part lower limits of detection. Uncertainties on the external reproducibility of LA-ICP-MS PPP element concentrations are of the order of 0.5 to 2 % (1σ standard deviation) for concentrations exceeding ˜1 μg g-1. For lower element concentrations these uncertainties increase to 5-10% or higher when analyte-depending limits of detection (LOD) are approached, and LODs do not significantly differ from glass analysis. Sample homogeneity is demonstrated by the high analytical precision, except for very few elements where grain size effects can rarely still be resolved analytically. Matrix effects are demonstrated for PPP analysis of diverse rock compositions and basalt glass analysis when externally calibrated based on SRM 610 and SRM 612 glasses; employing basalt glass GSD-1G or BCR-2G for external standardisation basically eliminates these problems. Perhaps the most prominent progress of the LA-ICP-MS PPP analytical procedure presented here is the fact that trace elements not commonly analysed, i.e. new, unconventional geochemical tracers, can be measured straightforwardly, including volatile elements, the flux elements Li and B, the chalcophile elements As, Sb, Tl, Bi, and elements that alloy with metal containers employed in conventional glass production approaches. The method presented here thus overcomes many common problems and limitations in analytical geochemistry and is shown to be an efficient alternative for bulk rock trace elements analysis.

  20. Refinement of atomic and magnetic structures using neutron diffraction for synthesized bulk and nano-nickel zinc gallate ferrite

    NASA Astrophysics Data System (ADS)

    Ata-Allah, S. S.; Balagurov, A. M.; Hashhash, A.; Bobrikov, I. A.; Hamdy, Sh.

    2016-01-01

    The parent NiFe2O4 and Zn/Ga substituted spinel ferrite powders have been prepared by solid state reaction technique. As a typical example, the Ni0.7Zn0.3Fe1.5Ga0.5O4 sample has been prepared by sol-gel auto combustion method with the nano-scale crystallites size. X-ray and Mössbauer studies were carried out for the prepared samples. Structure and microstructure properties were investigated using the time-of-flight HRFD instrument at the IBR-2 pulsed reactor, at a temperatures range 15-473 K. The Rietveld refinement of the neutron diffraction data revealed that all samples possess cubic symmetry corresponding to the space group Fd3m. Cations distribution show that Ni2+ is a complete inverse spinel ion, while Ga3+ equally distributed between the two A and B-sublattices. The level of microstrains in bulk samples was estimated as very small while the size of coherently scattered domains is quite large. For nano-structured sample the domain size is around 120 Å.

  1. The Miniaturized Raman System and Detection of Traces of Life in Halite from the Atacama Desert: Some Considerations for the Search for Life Signatures on Mars

    PubMed Central

    Jehlička, Jan; Edwards, Howell G.M.; Hutchinson, Ian; Ascaso, Carmen; Wierzchos, Jacek

    2012-01-01

    Abstract Raman spectroscopy is being adopted as a nondestructive instrumentation for the robotic exploration of Mars to search for traces of life in the geological record. Here, miniaturized Raman spectrometers of two different types equipped with 532 and 785 nm lasers for excitation, respectively, were compared for the detection of microbial biomarkers in natural halite from the hyperarid region of the Atacama Desert. Measurements were performed directly on the rock as well as on the homogenized, powdered samples prepared from this material—the effects of this sample preparation and the excitation wavelength employed in the analysis are compared and discussed. From these results, 532 nm excitation was found to be superior for the analysis of powdered specimens due to its high sensitivity toward carotenoids and hence a higher capability for their detection at relatively low concentration in bulk powdered specimens. For the same reason, this wavelength was a better choice for the detection of carotenoids in direct measurements made on the rock samples. The 785 nm excitation wavelength, in contrast, proved to be more sensitive toward the detection of scytonemin. Key Words: Miniaturized portable Raman—Atacama—Mars—Biomarker detection. Astrobiology 12, 1095–1099. PMID:23151300

  2. Mechanical Properties of β-Ti-35Nb-2.5Sn Alloy Synthesized by Mechanical Alloying and Pulsed Current Activated Sintering

    NASA Astrophysics Data System (ADS)

    Omran, Abdel-Nasser; Woo, Kee-Do; Lee, Hyun Bom

    2012-12-01

    A developed Ti-35 pct Nb-2.5 pct Sn (wt pct) alloy was synthesized by mechanical alloying using high-energy ball-milled powders, and the powder consolidation was done by pulsed current activated sintering (PCAS). The starting powder materials were mixed for 24 hours and then milled by high-energy ball milling (HEBM) for 1, 4, and 12 hours. The bulk solid samples were fabricated by PCAS at 1073 K to 1373 K (800 °C to 1100 °C) for a short time, followed by rapid cooling to 773 K (500 °C). The relative density of the sintered samples was about 93 pct. The Ti was completely transformed from α to β-Ti phase after milling for 12 hours in powder state, and the specimen sintered at 1546 K (1273 °C) was almost transformed to β-Ti phase. The homogeneity of the sintered specimen increased with increasing milling time and sintering temperature, as did its hardness, reaching 400 HV after 12 hours of milling. The Young's modulus was almost constant for all sintered Ti-35 pct Nb-2.5 pct Sn specimens at different milling times. The Young's modulus was low (63.55 to 65.3 GPa) compared to that of the standard alloy of Ti-6Al-4V (100 GPa). The wear resistance of the sintered specimen increased with increasing milling time. The 12-hour milled powder exhibited the best wear resistance.

  3. The Application of Modern Powder Characterisation Methods in Product and Process Development of Solid Dosage Forms.

    PubMed

    Freeman, Tim; Brockbank, Katrina; Armstrong, Brian

    2015-01-01

    The pharmaceutical industry still produces the vast majority of their products, from powdered ingredients, in the form of solid doses. Despite their ubiquity, powders are difficult materials to characterise and understand, as evidenced by the frequent problems encountered during manufacture. The reason for this is their complex rheological behaviour coupled with numerous environmental variations, such as humidity. Equally, the range of processes used to manipulate powders subject them to extremes of stress from high compaction loads seen in compactors to the dispersed state seen in fluidised bed dryers. Thus, it is evident that ensuring that the powders characteristics are compatible with the way they are to be processed is a clear prerequisite for today's Quality by Design driven manufacturing. Modern, computer controlled instrumental techniques, including the dynamic, bulk and shear property measurements have enabled direct measurements of a powders response to aeration, consolidation and flow rate - all at low stresses - as well as quantifying shear and bulk properties (such as density, compressibility and permeability). In order to demonstrate how fully characterising a powder can be used in the design, operation and troubleshooting of processes, this paper will present examples of common pharmaceutical unit operations and the different powder characteristics that most influence the performance of each.

  4. Preparation by Poly(Acrylic Acid) Sol-Gel Method and Thermoelectric Properties of γ-Na x CoO2 Bulk Materials

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Zhang, Li; Tang, Xinfeng

    2017-11-01

    γ-Na x CoO2 single-phase powders have been synthesized by a poly(acrylic acid) (PAA) sol-gel (SG) method, and γ-Na x CoO2 bulk ceramic fabricated using spark plasma sintering. The effects of the PAA concentration on the sample phase composition and morphology were investigated. The thermoelectric properties of the γ-Na x CoO2 bulk ceramic were also studied. The results show that the PAA concentration did not significantly affect the crystalline phase of the product. However, agglomeration of γ-Na x CoO2 crystals was suppressed by the steric effect of PAA. The Na x CoO2 bulk ceramic obtained using the PAA SG method had higher crystallographic anisotropy, better chemical homogeneity, and higher density than the sample obtained by solid-state reaction (SSR), leading to improved thermoelectric performance. The PAA SG sample had power factor (in-plane PF = σS 2) of 0.61 mW m-1 K-2 and dimensionless figure of merit ( ZT) along the in-plane direction of 0.19 at 900 K, higher than for the SSR sample (in-plane PF = 0.51 mW m-1 K-2, in-plane ZT = 0.17). These results demonstrate that a simple and feasible PAA SG method can be used for synthesis of Na x CoO2 ceramics with improved thermoelectric properties.

  5. SOLID-STATE SYNTHESIS AND SOME PROPERTIES OF MAGNESIUM-DOPED COPPER ALUMINUM OXIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Ren, Fei; Wang, Hsin

    2010-01-01

    Copper aluminum oxide (CuAlO2) with delafossite structure is a promising candidate for high temperature thermoelectric applications because of its modest band gap, high stability and low cost. We investigate magnesium doping on the aluminum site as a means of producing higher electrical conductivity and optimized Seebeck coefficient. Powder samples were synthesized using solid-state reaction and bulk samples were prepared using both cold-pressing and hot-pressing techniques. Composition analysis, microstructural examination and transport property measurements were performed, and the results suggest that while hot-pressing can achieve high density samples, secondary phases tend to form and lower the performance of the materials.

  6. Rock property measurements and analysis of selected igneous, sedimentary, and metamorphic rocks from worldwide localities

    USGS Publications Warehouse

    Johnson, Gordon R.

    1983-01-01

    Dry bulk density and grain density measurements were made on 182 samples of igneous, sedimentary, and metamorphic rocks from various world-wide localities. Total porosity values and both water-accessible and helium-accessible porosities were calculated from the density data. Magnetic susceptibility measurements were made on the solid samples and permeability and streaming potentials were concurrently measured on most samples. Dry bulk densities obtained using two methods of volume determination, namely direct measurement and Archlmedes principle, were nearly equivalent for most samples. Grain densities obtained on powdered samples were typically greater than grain densities obtained on solid samples, but differences were usually small. Sedimentary rocks had the highest percentage of occluded porosity per rock volume whereas metamorphic rocks had the highest percentage of occluded porosity per total porosity. There was no apparent direct relationship between permeability and streaming potential for most samples, although there were indications of such a relationship in the rock group consisting of granites, aplites, and syenites. Most rock types or groups of similar rock types of low permeability had, when averaged, comparable levels of streaming potential per unit of permeability. Three calcite samples had negative streaming potentials.

  7. Surpassing the Theoretical Limit of Porosity in Conventional Solid-State Foaming: Microstructure Characterization of Length Scales in a Copper Metal Foam

    DTIC Science & Technology

    2014-11-01

    powder metallurgy processes (e.g., using a polymer foam as a fugitive template7) can exceed 85% porosity, it is more common for powder metallurgy ...for the 0.5 GPa compact is a remarkable result from a powder metallurgy process, especially because the pore structure is not dominated by necks...strengths in bulk engineering structures produced via powder metallurgy . Completely unique to this process is the ability to create foamed powder . This

  8. Influence of Sm2O3 microalloying and Yb contamination on Y211 particles coarsening and superconducting properties of IG YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Vojtkova, L.; Diko, P.; Kovac, J.; Vojtko, M.

    2018-06-01

    Single grain YBa2Cu3O7‑x (YBCO or Y123) bulk superconductors were produced by an infiltration growth process. The solid phase precursor was prepared by solid state synthesis from Y2O3 + BaCuO2 powders. The influence of the addition of Sm2O3 and YB contamination from the substrate on the microstructure and superconducting properties was analyzed. The dependences of Yb concentration on the distance from the bottom of the samples measured by energy dispersive spectroscopy microanalysis used in conjunction with scanning electron microscopy confirmed the contamination of the samples during the melting stage of the sample preparation. It is shown that the addition of Sm in low concentration and its combination with Yb from the substrate modify the coarsening of the Y211 particles as well as lead to the appearance of a secondary peak effect in the field dependences of the critical current density.

  9. Evidence of the hydrogen release mechanism in bulk MgH2

    PubMed Central

    Nogita, Kazuhiro; Tran, Xuan Q.; Yamamoto, Tomokazu; Tanaka, Eishi; McDonald, Stuart D.; Gourlay, Christopher M.; Yasuda, Kazuhiro; Matsumura, Syo

    2015-01-01

    Hydrogen has the potential to power much of the modern world with only water as a by-product, but storing hydrogen safely and efficiently in solid form such as magnesium hydride remains a major obstacle. A significant challenge has been the difficulty of proving the hydriding/dehydriding mechanisms and, therefore, the mechanisms have long been the subject of debate. Here we use in situ ultra-high voltage transmission electron microscopy (TEM) to directly verify the mechanisms of the hydride decomposition of bulk MgH2 in Mg-Ni alloys. We find that the hydrogen release mechanism from bulk (2 μm) MgH2 particles is based on the growth of multiple pre-existing Mg crystallites within the MgH2 matrix, present due to the difficulty of fully transforming all Mg during a hydrogenation cycle whereas, in thin samples analogous to nano-powders, dehydriding occurs by a ‘shrinking core' mechanism. PMID:25677421

  10. Fabrication of Fe1.1Se0.5Te0.5 bulk by a high energy ball milling technique

    NASA Astrophysics Data System (ADS)

    Liu, Jixing; Li, Chengshan; Zhang, Shengnan; Feng, Jianqing; Zhang, Pingxiang; Zhou, Lian

    2017-11-01

    Fe1.1Se0.5Te0.5 superconducting bulks were successfully synthesized by a high energy ball milling (HEBM) aided sintering technique. Two advantages of this new technique have been revealed compared with traditional solid state sintering method. One is greatly increased the density of sintered bulks. It is because the precursor powders with β-Fe(Se, Te) and δ-Fe(Se, Te) were obtained directly by the HEBM process and without formation of liquid Se (and Te), which could avoid the huge volume expansion. The other is the obvious decrease of sintering temperature and dwell time due to the effective shortened length of diffusion paths. The superconducting critical temperature Tc of 14.2 K in our sample is comparable with those in previous reports, and further optimization of chemical composition is on the way.

  11. Processing and properties of carbon nanofibers reinforced epoxy powder composites

    NASA Astrophysics Data System (ADS)

    Palencia, C.; Mazo, M. A.; Nistal, A.; Rubio, F.; Rubio, J.; Oteo, J. L.

    2011-11-01

    Commercially available CNFs (diameter 30-300 nm) have been used to develop both bulk and coating epoxy nanocomposites by using a solvent-free epoxy matrix powder. Processing of both types of materials has been carried out by a double-step process consisting in an initial physical premix of all components followed by three consecutive extrusions. The extruded pellets were grinded into powder and sieved. Carbon nanofibers powder coatings were obtained by electrostatic painting of the extruded powder followed by a curing process based in a thermal treatment at 200 °C for 25 min. On the other hand, for obtaining bulk carbon nanofibers epoxy composites, a thermal curing process involving several steps was needed. Gloss and mechanical properties of both nanocomposite coatings and bulk nanocomposites were improved as a result of the processing process. FE-SEM fracture surface microphotographs corroborate these results. It has been assessed the key role played by the dispersion of CNFs in the matrix, and the highly important step that is the processing and curing of the nanocomposites. A processing stage consisted in three consecutive extrusions has reached to nanocomposites free of entanglements neither agglomerates. This process leads to nanocomposite coatings of enhanced properties, as it has been evidenced through gloss and mechanical properties. A dispersion limit of 1% has been determined for the studied system in which a given dispersion has been achieved, as the bending mechanical properties have been increased around 25% compared with the pristine epoxy resin. It has been also demonstrated the importance of the thickness in the nanocomposite, as it involves the curing stage. The complex curing treatment carried out in the case of bulk nanocomposites has reached to reagglomeration of CNFs.

  12. Production of a Powder Metallurgical Hot Work Tool Steel with Harmonic Structure by Mechanical Milling and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Deirmina, Faraz; Pellizzari, Massimo; Federici, Matteo

    2017-04-01

    Commercial AISI-H13 gas atomized powders (AT) were mechanically milled (MM) to refine both the particle size and the microstructure. Different volume fractions of coarser grained (CG) AT powders were mixed with the ultra-fine grained (UFG) MM and consolidated by spark plasma sintering to obtain bulks showing a harmonic structure ( i.e. a 3D interconnected network of UFG areas surrounding the CG atomized particles). The low sintering temperature, 1373.15 K (1100 °C) and the short sintering time (30 minutes) made it possible to obtain near full density samples while preserving the refined microstructure induced by MM. A combination of high hardness and significantly improved fracture toughness is achieved by the samples containing 50 to 80 vol pct MM, essentially showing harmonic structure. The design allows to easily achieve specific application oriented properties by varying the MM volume fraction in the initial mixture. Hardness is governed by the fine-grained MM matrix and improved toughening is due to (1) deviatory effect of AT particles and (2) energy dissipation as a result of the decohesion in MM regions or AT and MM interface.

  13. Symposium U: Thermoelectric Power Generation. Held in Boston, Massachusetts on November 26-29, 2007

    DTIC Science & Technology

    2008-04-01

    including X - ray /electron diffraction, TGA analysis, Raman / Fourier Transform Infrared Spectroscopy, electron microscopy, Rutherford back-scattering and...Energy dispersive X - ray analysis were performed on the treated sample. The results revealed that a surface layer (from 10 nm to up to micron in...nanoparticles into a matrix of bulk Bi2Te 3 material via a hot pressing process. These nanocomposites have been examined by SEM and X - ray powder

  14. Effect of Sintering Temperature to Physical, Magnetic Properties and Crystal Structure on Permanent Magnet BaFe12O19 Prepared From Mill Scale

    NASA Astrophysics Data System (ADS)

    Ramlan; Muljadi; Sardjono, Priyo; Gulo, Fakhili; Setiabudidaya, Dedi

    2017-07-01

    Permanent magnet of Barium hexa Ferrite with formula BaFe12O19 has been made by metallurgy powder method from raw materials : Barium carbonate (BaCO3 E-merck) and Iron Oxide (Fe2O3 from mill scale). Both of raw materials have been mixed with stoichiometry composition by using a ball mill for 24 hours. The fine powder obtained from milling process was formed by using a hydraulic press at pressure 50 MPa and continued with sintering process. The sintering temperature was varied : 1150°C, 1200°C, 1250°C and 1300°C with holding time for 1 hour. The sintered samples were characterized such as : physical properties (bulk density, porosity and shrinkage), magnetic properties (flux density, remanence, coercivity and magnetic saturation) by using VSM and crystal structure by using XRD. According characterization results show that the crystal structure of BaFe12O19 does not change after sintering process, but the grain size tends to increase. The optimum condition is achieved at temperature 1250°C, and at this condition, the sample has characterization such as : bulk density = 4.35 g/cm3, porosity = 1.03% and firing shrinkage = 11.63%, flux density = 681.1 Gauss, remanence (σr) = 20.78 emu/g, coercivity (Hc) = 2058 Oe and magnetic saturation (σs) 45.16 emu/g.

  15. Fabrication of Thermoelectric Mg2Si by Mechanofusion and Pulsed Electric Current Sintering

    NASA Astrophysics Data System (ADS)

    Nanko, M.; Abe, H.; Takeda, M.; Homma, T.; Abe, H.; Kondo, A.; Naito, M.

    2011-03-01

    Mg2Si is a promising thermoelectric material because it is composed of non-toxic and "ubiquitous" elements, and development of an efficient production process for bulk Mg2Si is important for the fabrication of thermoelectric devices. The mechanofusion (MF) process, which is an attrition type milling process, is attractive in terms of ease of use and collection of powder materials, in addition to a reduced risk of contamination since it requires no milling medium. In the present study, the MF process was applied to produce Mg2Si powder, and pulsed electric current sintering (PECS) was then used to densify the powder. The density, microstructure and thermoelectric properties of the final bulk product were evaluated.

  16. Optimization of Sour Cherry Juice Spray Drying as
Affected by Carrier Material and Temperature

    PubMed Central

    Zorić, Zoran; Pedisić, Sandra; Dragović-Uzelac, Verica

    2016-01-01

    Summary Response surface methodology was applied for optimization of the sour cherry Marasca juice spray drying process with 20, 30 and 40% of carriers maltodextrin with dextrose equivalent (DE) value of 4–7 and 13–17 and gum arabic, at three drying temperatures: 150, 175 and 200 °C. Increase in carrier mass per volume ratio resulted in lower moisture content and powder hygroscopicity, higher bulk density, solubility and product yield. Higher temperatures decreased the moisture content and bulk density of powders. Temperature of 200 °C and 27% of maltodextrin with 4–7 DE were found to be the most suitable for production of sour cherry Marasca powder. PMID:28115901

  17. An Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering

    DTIC Science & Technology

    2007-06-12

    Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering GaN powder decomposition - I 2GaN(s) = 2Ga(s) + N2(g) Ga2O3 (s)+Ga = 3GaO(g) GaO(g...Ga(g) = Ga2O(g) Ga(l) = Ga(g) 2GaN(s) = 2Ga(s) + N2(g) Ga(l) = Ga(g) Heterogeneous chemistry GaN(s) Ga2O3 , Ga(l)GaN(s), Ga(l)Condensed phases N2, Ga(g...400ppm; • The commercial GaN powder is converted from Ga2O3 . The powder purity is less than 91% with more than 3% oxygen concentration. • The very

  18. Comparative evaluation of bioactivity of crystalline trypsin for drying by Fourier-transformed infrared spectroscopy.

    PubMed

    Otsuka, Makoto; Fukui, Yuya; Ozaki, Yukihiro

    2009-03-01

    The purpose of this study was to evaluate the enzymatic stability of colloidal trypsin powder during heating in a solid-state by using Fourier transform infrared (FT-IR) spectra with chemoinformatics and generalized two-dimensional (2D) correlation spectroscopy. Colloidal crystalline trypsin powders were heated using differential scanning calorimetry. The enzymatic activity of trypsin was assayed by the kinetic degradation method. Spectra of 10 calibration sample sets were recorded three times with a FT-IR spectrometer. The maximum intensity at 1634cm(-1) of FT-IR spectra and enzymatic activity of trypsin decreased as the temperature increased. The FT-IR spectra of trypsin samples were analyzed by a principal component regression analysis (PCR). A plot of the calibration data obtained was made between the actual and predicted trypsin activity based on a two-component model with gamma(2)=0.962. On the other hand, a 2D method was applied to FT-IR spectra of heat-treated trypsin. The result was consistent with that of the chemoinformetrical method. The results for deactivation of colloidal trypsin powder by heat-treatment indicated that nano-structure of crystalline trypsin changed by heating reflecting that the beta-sheet was mainly transformed, since the peak at 1634cm(-1) decreased with dehydration. The FT-IR chemoinformetrical method allows for a solid-state quantitative analysis of the bioactivity of the bulk powder of trypsin during drying.

  19. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy

    PubMed Central

    Málek, Přemysl; Minárik, Peter; Novák, Pavel; Průša, Filip

    2018-01-01

    The compact samples of an Al7075 alloy were prepared by a combination of gas atomization, high energy milling, and spark plasma sintering. The predominantly cellular morphology observed in gas atomized powder particles was completely changed by mechanical milling. The continuous-like intermetallic phases present along intercellular boundaries were destroyed; nevertheless, a small amount of Mg(Zn,Cu,Al)2 phase was observed also in the milled powder. Milling resulted in a severe plastic deformation of the material and led to a reduction of grain size from several µm into the nanocrystalline region. The combination of these microstructural characteristics resulted in abnormally high microhardness values exceeding 300 HV. Consolidation through spark plasma sintering (SPS) resulted in bulk samples with negligible porosity. The heat exposition during SPS led to precipitation of intermetallic phases from the non-equilibrium microstructure of both gas atomized and milled powders. SPS of the milled powder resulted in a recrystallization of the severely deformed structure. An ultra-fine grained structure (grain size close to 500 nm) with grains divided primarily by high-angle boundaries was formed. A simultaneous release of stored deformation energy and an increase in the grain size caused a drop of microhardness to values close to 150 HV. This value was retained even after annealing at 425 °C. PMID:29614046

  20. Studies of doped LaMnO3 samples prepared by citrate combustion process

    NASA Astrophysics Data System (ADS)

    Dimri, M. Chandra; Khanduri, H.; Mere, A.; Stern, R.

    2018-04-01

    La0.95A0.05MnO3 (where A=Na, Sr, Er, Dy and Ce) powder samples were synthesized by chemical solution route and the magnetic and structural properties are reported in this paper. The pervoskite structure was confirmed from X-ray diffraction patterns and Raman spectra at room temperature in all of these doped samples. Curie transition temperatures in doped LaMnO3 bulk samples were around 250K, which are much higher than the ideal value (˜140 K) in undoped samples. The increase in the magnetic transition temperatures can be related to non-stoichiometry and cation vacancies created due to higher valence substitutions for the univalent La1+ ions.

  1. Green and Fast Laser Fusion Technique for Bulk Silicate Rock Analysis by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong

    2016-10-18

    Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.

  2. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1994-01-01

    During the past three months, significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: textile composites from powder-coated towpreg - role of surface coating in braiding; prepregger hot sled operation in making tape from powder coated tow; ribbonizing powder-impregnated towpreg; textile composites from powder-coated towpreg - role of bulk factor in consolidation; powder curtain prepreg process improvements in doctoring of powder; and hot/cold shoe for ATP open-section part warpage control.

  3. Effect of the conditions of sintering of sodium-reduced tantalum powders on their characteristics

    NASA Astrophysics Data System (ADS)

    Prokhorova, T. Yu.; Orlov, V. M.; Miroshnichenko, M. N.; Kolosov, V. N.

    2014-07-01

    The effect of the granulation and heat treatment of sodium-reduced tantalum powders with a specific surface area of 2.5-3.6 m2/g on the bulk density, the powder flow time, and the specific surface area of the powders and the specific capacitance of the anodes made of them is studied. It is shown that heat treatment of a granulated powder in vacuum at 1100°C or in a mixture with magnesium at 800°C makes it possible to achieve the required powder flow time.

  4. Injection molded plastic helical gear filled with carbon powder made from rice hull

    NASA Astrophysics Data System (ADS)

    Chen, Yen Chu; Itagaki, Takayoshi; Takahashi, Hideo; Takahashi, Mikio

    2017-07-01

    Natural materials are focused on the ecological responsibility, all over the world. The rice-hull contains natural silica about 20 wt.%. Therefore, a carbonized rice-hull; Rice-Hull-Silica-Carbon (RHSC) is focused as effective utilization of the discarded rice hull. In this study, test plastic helical gears were made form polyacetal copolymer filled with RHSC powder by injection molding. Test helical gears were operated on endurance test. The bulk temperature and noise of test gears were measured during gears operation. Then, the tooth damage of test gears were investigated by using optical microscope. It is clarified that difference of tooth damage by kind of test gears. Moreover, the transition of gear bulk temperature and noise during operation are investigated. Based on these results, the effect of RHSC powder is discussed. From the discussions, it seems reasonable to conclude : (1) The heat resistance of plastic gear is improved by adding the RHSC powder. (2) The fatigue life of plastic gear is improved by adding suitable amount of the RHSC powder. (3) The sound pressure level of plastic gear is reduced by adding the smaller median grain diameter of RHSC powder.

  5. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance.

    PubMed

    Bosquillon, C; Lombry, C; Préat, V; Vanbever, R

    2001-02-23

    The objective of this study was to determine the effects of formulation excipients and physical characteristics of inhalation particles on their in vitro aerosolization performance, and thereby to maximize their respirable fraction. Dry powders were produced by spray-drying using excipients that are FDA-approved for inhalation as lactose, materials that are endogenous to the lungs as albumin and dipalmitoylphosphatidylcholine (DPPC); and/or protein stabilizers as trehalose or mannitol. Dry powders suitable for deep lung deposition, i.e. with an aerodynamic diameter of individual particles <3 microm, were prepared. They presented 0.04--0.25 g/cm(3) bulk tap densities, 3--5 microm geometric particle sizes, up to 90% emitted doses and 50% respirable fractions in the Andersen cascade impactor using a Spinhaler inhaler device. The incorporation of lactose, albumin and DPPC in the formulation all improved the aerosolization properties, in contrast to trehalose and the mannitol which decreased powder flowability. The relative proportion of the excipients affected aerosol performance as well. The lower the bulk powder tap density, the higher the respirable fraction. Optimization of in vitro aerosolization properties of inhalation dry powders can be achieved by appropriately selecting composition and physical characteristics of the particles.

  6. The effects of shock wave compaction on the transition temperatures of A15 structure superconductors

    NASA Technical Reports Server (NTRS)

    Otto, G. H.

    1974-01-01

    Several superconductors with the A15 structure exhibit a positive pressure coefficient, indicating that their transition temperatures increase with applied pressure. Powders of the composition Nb3Al, Nb3Ge, Nb3(Al0.75Ge0.25), and V3Si were compacted by explosive shock waves. The superconducting properties of these materials were measured before and after compaction and it was found that regardless of the sign of the pressure coefficient, the transition temperature is always lowered. The decrease in transition temperature is associated with a decrease in the particle diameter. The shock wave passage through a 3Nb:1Ge powder mixture leads to the formation of at least one compound (probably Nb5Ge3). However, the formation of the A15 compound Nb3Ge is not observed. Elemental niobium powder can be compacted by converging shock waves close to the expected value of the bulk density. Under special circumstances a partial remelting in the center of the sample is observed.

  7. In Situ Neutron Diffraction of Rare-Earth Phosphate Proton Conductors Sr/Ca-doped LaPO4 at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Al-Wahish, Amal; Al-Binni, Usama; Bridges, C. A.; Huq, A.; Bi, Z.; Paranthaman, M. P.; Tang, S.; Kaiser, H.; Mandrus, D.

    Acceptor-doped lanthanum orthophosphates are potential candidate electrolytes for proton ceramic fuel cells. We combined neutron powder diffraction (NPD) at elevated temperatures up to 800° C , X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) to investigate the crystal structure, defect structure, thermal stability and surface topography. NPD shows an average bond length distortion in the hydrated samples. We employed Quasi-Elastic Neutron Scattering (QENS) and electrochemical impedance spectroscopy (EIS) to study the proton dynamics of the rare-earth phosphate proton conductors 4.2% Sr/Ca-doped LaPO4. We determined the bulk diffusion and the self-diffusion coefficients. Our results show that QENS and EIS are probing fundamentally different proton diffusion processes. Supported by the U.S. Department of Energy.

  8. Studies on copper-yttria nanocomposites: high-energy ball milling versus chemical reduction method.

    PubMed

    Joshi, P B; Rehani, Bharati; Naik, Palak; Patel, Swati; Khanna, P K

    2012-03-01

    Oxide dispersion-strengthened copper-base composites are widely used for applications demanding high tensile strength, high hardness along with good electrical and thermal conductivity. Oxides of metals like aluminium, cerium, yttrium and zirconium are often used for this purpose as fine and uniformly distributed dispersoid particles in soft and ductile copper matrix. Such composites find applications as electrical contacts, resistance-welding tips, lead wires, continuous casting moulds, etc. In this investigation an attempt has been made to produce copper-yttria nanocomposites using two different morphologies of copper powder and two different processing routes namely, high-energy milling and in-situ chemical reduction. The synthesized powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) for their phase identification and morphological study. The nanocomposite powders in each case were subsequently processed to obtain bulk solids by classical powder metallurgy route of press-sinter-repress. The resultant bulk solid compacts were subjected to property evaluation. The study revealed that the properties of Cu-Y2O3 nanocomposites depend on the processing route used and in turn on the resultant powder morphology.

  9. Effect of magnetic powder on membrane fouling mitigation and microbial community/composition in membrane bioreactors (MBRs) for municipal wastewater treatment.

    PubMed

    Liu, Yi; Liu, Qiang; Li, Jixiang; Ngo, Huu Hao; Guo, Wenshan; Hu, Jiajun; Gao, Min-Tian; Wang, Qiyuan; Hou, Yuansheng

    2018-02-01

    This study aims to investigate the usefulness of magnetic powder addition in membrane bioreactors (MBRs) for membrane fouling mitigation and its effect on microbial community and composition. The comparison between the two MBRs (one with magnetic powder (MAS-MBR) and one without magnetic powder (C-MBR)) was carried out to treat synthetic municipal wastewater. Results showed that bioflocculation and adsorption of magnetic powder contributed only minimally to membrane fouling mitigation while the slower fouling rate might be ascribed to magnetic bio-effect. The macromolecules (larger than 500 kDa and 300-500 kDa) of soluble microbial product from the MAS-MBR were reduced by 24.06% and 11.11%, respectively. High-throughput sequencing demonstrated the most abundant genera of biofilm sludge indicated lower abundance in bulk sludge from the MAS-MBR compared to the C-MBR. It is possible that less membrane fouling is connected to reductions in large molecules and pioneer bacteria from bulk sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Explosively driven low-density foams and powders

    DOEpatents

    Viecelli, James A [Orinda, CA; Wood, Lowell L [Simi Valley, CA; Ishikawa, Muriel Y [Livermore, CA; Nuckolls, John H [Danville, CA; Pagoria, Phillip F [Livermore, CA

    2010-05-04

    Hollow RX-08HD cylindrical charges were loaded with boron and PTFE, in the form of low-bulk density powders or powders dispersed in a rigid foam matrix. Each charge was initiated by a Comp B booster at one end, producing a detonation wave propagating down the length of the cylinder, crushing the foam or bulk powder and collapsing the void spaces. The PdV work done in crushing the material heated it to high temperatures, expelling it in a high velocity fluid jet. In the case of boron particles supported in foam, framing camera photos, temperature measurements, and aluminum witness plates suggest that the boron was completely vaporized by the crush wave and that the boron vapor turbulently mixed with and burned in the surrounding air. In the case of PTFE powder, X-ray photoelectron spectroscopy of residues recovered from fragments of a granite target slab suggest that heating was sufficient to dissociate the PTFE to carbon vapor and molecular fluorine which reacted with the quartz and aluminum silicates in the granite to form aluminum oxide and mineral fluoride compounds.

  11. THERMAL INSULATION SYSTEMS

    NASA Technical Reports Server (NTRS)

    Augustynowicz, Stanislaw D. (Inventor); Fesmire, James E. (Inventor)

    2005-01-01

    Thermal insulation systems and with methods of their production. The thermal insulation systems incorporate at least one reflection layer and at least one spacer layer in an alternating pattern. Each spacer layer includes a fill layer and a carrier layer. The fill layer may be separate from the carrier layer, or it may be a part of the carrier layer, i.e., mechanically injected into the carrier layer or chemically formed in the carrier layer. Fill layers contain a powder having a high surface area and low bulk density. Movement of powder within a fill layer is restricted by electrostatic effects with the reflection layer combined with the presence of a carrier layer, or by containing the powder in the carrier layer. The powder in the spacer layer may be compressed from its bulk density. The thermal insulation systems may further contain an outer casing. Thermal insulation systems may further include strips and seams to form a matrix of sections. Such sections serve to limit loss of powder from a fill layer to a single section and reduce heat losses along the reflection layer.

  12. Influence of the powder mixture composition on the deposition coefficient and the properties of NI+B4C CGDS coatings

    NASA Astrophysics Data System (ADS)

    Kosarev, V. F.; Polukhin, A. A.; Ryashin, N. S.; Fomin, V. M.; Shikalov, V. S.

    2017-07-01

    The cold gas dynamic spray (CGDS) method used to form composite Ni+B4C coatings from mechanical powder mixture with various content of abrasive components is investigated, and the surface and microstructure of these coatings are considered. An experimental dependence of the deposition coefficient on the abrasive content in the mechanical powder mixture is obtained. The coatings are studied by interference profilometry, optical microscopy, and microindentation methods. The dependence of the bulk and mass B4C content in the sprayed material on the abrasive content in the sprayed powder mixture is obtained. The bulk B4C content in the coating c V ≈ 0.27 is attained. The dependence of the microhardness of composite CGDS coatings on the boron carbide content in them is investigated. The results of this paper demonstrate that the powder mixture composition significantly affects the CGDS coating growth and the properties of these coatings and can be used to control the properties of the CGDS cermet materials.

  13. Si

    NASA Astrophysics Data System (ADS)

    Fiameni, S.; Famengo, A.; Agresti, F.; Boldrini, S.; Battiston, S.; Saleemi, M.; Johnsson, M.; Toprak, M. S.; Fabrizio, M.

    2014-06-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion in the middle-high temperature range. The detrimental effect of the presence of MgO on the TE properties of Mg2Si based materials is widely known. For this reason, the conditions used for synthesis and sintering were optimized to limit oxygen contamination. The effect of Bi doping on the TE performance of dense Mg2Si materials was also investigated. Synthesis was performed by ball milling in an inert atmosphere starting from commercial Mg2Si powder and Bi powder. The samples were consolidated, by spark plasma sintering, to a density >95%. The morphology, and the composition and crystal structure of samples were characterized by field-emission scanning electronic microscopy and x-ray diffraction, respectively. Moreover, determination of Seebeck coefficients and measurement of electrical and thermal conductivity were performed for all the samples. Mg2Si with 0.1 mol% Bi doping had a ZT value of 0.81, indicative of the potential of this method for fabrication of n-type bulk material with good TE performance.

  14. Relationships between surface coverage ratio and powder mechanics of binary adhesive mixtures for dry powder inhalers.

    PubMed

    Rudén, Jonas; Frenning, Göran; Bramer, Tobias; Thalberg, Kyrre; Alderborn, Göran

    2018-04-25

    The aim of this paper was to study relationships between the content of fine particles and the powder mechanics of binary adhesive mixtures and link these relationships to the blend state. Mixtures with increasing amounts of fine particles (increasing surface coverage ratios (SCR)) were prepared using Lactopress SD as carrier and micro particles of lactose as fines (2.7 µm). Indicators of unsettled bulk density, compressibility and flowability were derived and the blend state was visually examined by imaging. The powder properties studied showed relationships to the SCR characterised by stages. At low SCR, the fine particles predominantly gathered in cavities of the carriers, giving increased bulk density and unchanged or improved flow. Thereafter, increased SCR gave a deposition of particles at the enveloped carrier surface with a gradually more irregular adhesion layer leading to a reduced bulk density and a step-wise reduced flowability. The mechanics of the mixtures at a certain stage were dependent on the structure and the dynamics of the adhesion layer and transitions between the stages were controlled by the evolution of the adhesion layer. It is advisable to use techniques based on different types of flow in order to comprehensively study the mechanics of adhesive mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Cryomilled and spark plasma sintered titanium: the evolution of microstructure

    NASA Astrophysics Data System (ADS)

    Kozlík, Jiří; Becker, Hanka; Harcuba, Petr; Stráský, Josef; Janeček, Milos

    2017-05-01

    Bulk ultra-fine grained (UFG) commercially pure Ti was prepared by cryogenic milling in liquid argon and subsequent spark plasma sintering (SPS). During cryogenic milling, individual powder particles are repetitively severely deformed by attrition forces. Powder particles were not significantly refined, but due to severe repetitive plastic deformation, ultra-fine grained microstructure emerges within each powder particle. Cryogenic milling can be therefore considered as a specific severe plastic deformation (SPD) method. Compactization of cryomilled powder by SPS technique (also referred to as field assisted sintering technique - FAST) requires significantly lower sintering temperatures and shorter sintering times for successful compaction when compared to any other sintering technique. This is crucial for maintaining the UFG microstructure due to its limited thermal stability. Several specimens were prepared by varying processing parameters, in particular the sintering temperature. The microstructure of powders and compacted samples was observed by scanning electron microscopy (SEM). Increased sintering temperature results in recrystallization and grain growth. A trade-off relationship between the density of compacted material and grain size was identified. Microhardness of the material was found to depend on residual porosity rather than grain size. This contribution presents cryogenic milling and spark plasma sintering as a viable alternative for achieving UFG microstructure in commercially pure Ti.

  16. Bulk synthesis of monodisperse magnetic FeNi3 nanopowders by flow levitation method.

    PubMed

    Chen, Shanjun; Chen, Yan; Kang, Xiaoli; Li, Song; Tian, Yonghong; Wu, Weidong; Tang, Yongjian

    2013-10-01

    In this work, a novel bulk synthesis method for monodisperse FeNi3 nanoparticles was developed by flow levitation method (FL). The Fe and Ni vapours ascending from the high temperature levitated droplet was condensed by cryogenic Ar gas under atmospheric pressure. X-ray diffraction was used to identify and characterize the crystal phase of prepared powders exhibiting a FeNi3 phase. The morphology and size of nanopowders were observed by transmission electron microscopy (TEM). The chemical composition of the nanoparticles was determined with energy dispersive spectrometer (EDS). The results indicated that the FeNi3 permalloy powders are nearly spherical-shaped with diameter about 50-200 nm. Measurement of the magnetic property of nanopowders by a superconducting quantum interference device (SQUID, Quantum Design MPMS-7) showed a symmetric hysteresis loop of ferromagnetic behavior with coercivity of 220 Oe and saturation magnetization of 107.17 emu/g, at 293 K. At 5 K, the obtained saturation magnetization of the sample was 102.16 emu/g. The production rate of FeNi3 nanoparticles was estimated to be about 6 g/h. This method has great potential in mass production of FeNi3 nannoparticles.

  17. Synthesis optimisation and characterisation of the organic-inorganic layered materials ZnS(m-xylylenediamine){sub 1/2} and ZnS(p-xylylenediamine){sub 1/2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luberda-Durnaś, K.; Guillén, A. González; Łasocha, W., E-mail: lasocha@chemia.uj.edu.pl

    2016-06-15

    Hybrid organic-inorganic layered materials of the type ZnS(amine){sub 1/2}, where amine=m-xylylenediamine (MXDA) or p-xylylenediamine (PXDA), were synthesised using a simple solvothermal method. Since the samples crystallised in the form of very fine powder, X-ray powder diffraction techniques were used for structural characterisation. The crystal structure studies, involving direct methods, show that both compounds crystallised in the orthorhombic crystal system, but in different space groups: ZnS(MXDA){sub 1/2} in non-centrosymmetric Ccm2{sub 1}, ZnS(PXDA){sub 1/2} in centrosymmetric Pcab. The obtained materials are built according to similar orders: semiconducting monolayers with the formula ZnS, parallel to the (010) plane, are separated by diamines. Themore » organic and inorganic fragments are connected by covalent bonds between metal atoms of the layers and nitrogen atoms of the amino groups. The optical properties of the hybrid materials differ from those of their bulk counterpart. In both compounds a blue-shift of about 0.8 or 0.9 eV was observed with reference to the bulk phase of ZnS. - Highlights: • New hybrid compounds: ZnS(MXDA){sub 1/2} and ZnS(PXDA){sub 1/2} were obtained. • Hybrids were studied using XRD, TG/DSC, XRK, SEM, UV–vis spectroscopy. • Structures of both materials were solved by powder diffraction methods.« less

  18. Physical and chemical stability of tagatose powder.

    PubMed

    Grant, Lenese D; Bell, Leonard N

    2012-03-01

    Tagatose is a reduced-calorie monosaccharide that displays prebiotic properties. Water can interact with powdered tagatose to varying extents, depending upon the storage environment. Adsorbed water can impact the stability of tagatose, altering its functionality and usability as an ingredient. The objective of this study was to evaluate the physical and chemical stability of bulk tagatose powder as a function of relative humidity (RH) and temperature. Powdered tagatose was stored in desiccators at 20, 30, and 40 °C and 33% to 85% RH. Moisture contents (MC), physical characteristics, tagatose degradation profiles, and browning kinetics were monitored for 12 mo. The critical RH associated with deliquescence (RH0) was approximately 85% at 20 °C. MC values below RH0 were all less than 2% (wb). The MC at 85% RH ranged from 55% to 80% (wb), increasing as temperature decreased. At 33% RH and 20 °C tagatose remained a free flowing powder. As either temperature or RH increased, varying degrees of physical caking occurred. At 85% RH, tagatose deliquesced at all temperatures. Browning occurred in all samples at 40 °C. Despite physical caking and browning, measurable tagatose degradation was only observed in the deliquesced sample at 85% RH and 40 °C, where 20% loss occurred in 6 mo. Although extreme RHs and temperatures are required for tagatose degradation to occur, intermediate RHs and temperatures promote physical caking and deliquescence, which create handling problems during product formulation. The exposure of tagatose to elevated relative humidities and temperatures should be avoided to maintain its physical and chemical quality. © 2012 Institute of Food Technologists®

  19. Control of Y-211 content in bulk YBCO superconductors fabricated by a buffer-aided, top seeded infiltration and growth melt process

    NASA Astrophysics Data System (ADS)

    Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2016-03-01

    Bulk (RE)-Ba-Cu-O ((RE)BCO, where RE stands for rare-earth), single grain superconductors can trap magnetic fields of several tesla at low temperatures and therefore can function potentially as high field magnets. Although top seeded melt growth (TSMG) is an established process for fabricating relatively high quality single grains of (RE)BCO for high field applications, this technique suffers from inherent problems such as sample shrinkage, a large intrinsic porosity and the presence of (RE)2BaCuO5 (RE-211)-free regions in the single grain microstructure. Seeded infiltration and growth (SIG), therefore, has emerged as a practical alternative to TSMG that overcomes many of these problems. Until now, however, the superconducting properties of bulk materials processed by SIG have been inferior to those fabricated using the TSMG technique. In this study, we identify that the inferior properties of SIG processed bulk superconductors are related to the presence of a relatively large Y-211 content (˜41.8%) in the single grain microstructure. Controlling the RE-211 content in SIG bulk samples is particularly challenging because it is difficult to regulate the entry of the liquid phase into the solid RE-211 preform during the infiltration process. In an attempt to solve this issue, we have investigated the effect of careful control of both the infiltration temperature and the quantity of liquid phase powder present in the sample preforms prior to processing. We conclude that careful control of the infiltration temperature is the most promising of these two process variables. Using this knowledge, we have fabricated successfully a YBCO bulk single grain using the SIG process of diameter 25 mm that exhibits a trapped field of 0.69 T at 77 K, which is the largest value reported to date for a sample fabricated by the SIG technique.

  20. Suberin Fatty Acids from Outer Birch Bark: Isolation and Physical Material Characterization.

    PubMed

    Heinämäki, Jyrki; Pirttimaa, Minni M; Alakurtti, Sami; Pitkänen, H Pauliina; Kanerva, Heimo; Hulkko, Janne; Paaver, Urve; Aruväli, Jaan; Yliruusi, Jouko; Kogermann, Karin

    2017-04-28

    The isolation and physical material properties of suberin fatty acids (SFAs) were investigated with special reference to their potential applications as novel pharmaceutical excipients. SFAs were isolated from outer birch bark (OBB) with a new extractive hydrolysis method. The present simplified isolation process resulted in a moderate batch yield and chemical purity of SFAs, but further development is needed for establishing batch-to-batch variation. Cryogenic milling was the method of choice for the particle size reduction of SFAs powder. The cryogenically milled SFAs powder exhibited a semicrystalline structure with apparent microcrystalline domains within an amorphous fatty acids matrix. The thermogravimetric analysis (TGA) of SFAs samples showed a good thermal stability up to 200 °C, followed by a progressive weight loss, reaching a plateau at about 95% volatilization at about 470 °C. The binary blends of SFAs and microcrystalline cellulose (MCC; Avicel PH 101) in a ratio of 25:75 (w/w) displayed good powder flow and tablet compression properties. The corresponding theophylline-containing tablets showed sustained or prolonged-release characteristics. The physicochemical and bulk powder properties of SFAs isolated from OBB are auspicious in terms of potential pharmaceutical excipient applications.

  1. The effect of growth temperature on the irreversibility line of MPMG YBCO bulk with Y2O3 layer

    NASA Astrophysics Data System (ADS)

    Kurnaz, Sedat; Çakır, Bakiye; Aydıner, Alev

    2017-07-01

    In this study, three kinds of YBCO samples which are named Y1040, Y1050 and Y1060 were fabricated by Melt-Powder-Melt-Growth (MPMG) method without a seed crystal. Samples seem to be single crystal. The compacted powders were located on a crucible with a buffer layer of Y2O3 to avoid liquid to spread on the furnace plate and also to support crystal growth. YBCO samples were investigated by magnetoresistivity (ρ-T) and magnetization (M-T) measurements in dc magnetic fields (parallel to c-axis) up to 5 T. Irreversibility fields (Hirr) and upper critical fields (Hc2) were obtained using 10% and 90% criteria of the normal state resistivity value from ρ-T curves. M-T measurements were carried out using the zero field cooling (ZFC) and field cooling (FC) processes to get irreversible temperature (Tirr). Fitting of the irreversibility line results to giant flux creep and vortex glass models were discussed. The results were found to be consistent with the results of the samples fabricated using a seed crystal. At the fabrication of MPMG YBCO, optimized temperature for crystal growth was determined to be around 1050-1060 °C.

  2. The evaluation of polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soil amended with organic fertilizers and bulking agents.

    PubMed

    Włóka, Dariusz; Placek, Agnieszka; Rorat, Agnieszka; Smol, Marzena; Kacprzak, Małgorzata

    2017-11-01

    The aim of this study was to investigate the polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soils fertilized with organic amendments (sewage sludge, compost), bulking agents (mineral sorbent, silicon dioxide in form of nano powder), and novel compositions of those materials. The scope of conducted works includes a cyclic CO 2 production measurements and the determinations of PAHs content in soil samples, before and after 3-months of incubation. Obtained results show that the use of both type of organic fertilizers have a positive effect on the PAHs removal from soil. However, the CO 2 emission remains higher only in the first stage of the process. The best acquired means in terms of PAHs removal as well as most sustained CO 2 production were noted in samples treated with the mixtures of organic fertilizers and bulking agents. In conclusion the addition of structural forming materials to the organic fertilizers was critical for the soil bioremediation efficiency. Therefore, the practical implementation of collected data could find a wide range of applications during the design of new, more effective solutions for the soil bioremediation purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of milk somatic cell counts on some physicochemical and functional characteristics of skim and whole milk powders.

    PubMed

    Sert, Durmuş; Mercan, Emin; Aydemir, Serdar; Civelek, Mustafa

    2016-07-01

    The aim of this work was to study the influence of milk somatic cell count (SCC) levels on spray-dried milk powders. For this reason, 3 cow milks with different SCC (<300,000, 300,000-700,000, >700,000 SCC/mL) were processed into skim (SMP) and whole milk powder (WMP). The effect of SCC on the physicochemical and functional characteristics of the milk powders and textural properties of set-type yogurts produced from reconstituted milk powders with different SCC was evaluated. A crucial difference was noted between milk powders depending on different SCC. Protein values and ash content of powder samples decreased correlatively with increasing SCC. The hydroxymethylfurfural content of SMP was higher than WMP. We noted an increase in hydroxymethylfurfural content of both SMP and WMP depending on elevated SCC. Solubility index of SMP and WMP was 1.280 to 1.632 and 0.940 to 1.208mL, respectively; with increasing SCC, solubility index was affected adversely. The highest foam stability was determined in SMP containing >700,000 SCC. Bulk density of SMP and WMP was between 0.682 and 0.708 and 0.660 to 0.685g/cm(3), respectively. An increase was observed in scorched particle of both SMP and WMP depending on increasing SCC. We found significant differences in particle size distribution of milk powders produced from milk with SCC at different levels. Although WMP had more uniform and big particle structure, SMP had more specific area. A negative correlation was noted between yogurt texture and SCC. Results indicate that milk SCC has negative influences on milk powder quality. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders

    NASA Astrophysics Data System (ADS)

    Annie, D.; Chandramouli, V.; Anthonysamy, S.; Ghosh, Chanchal; Divakar, R.

    2017-02-01

    Thoria powders were synthesized by oxalate precipitation from an aqueous solution of the nitrate. The filtered precipitates were freeze dried or microwave dried before being calcined at 1073 K. The thoria powders obtained were characterized for crystallite size, specific surface area, bulk density, particle size distribution and residual carbon. Microstructure of the product was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sinterability of the synthesized powders was studied by measuring the density of the sintered compacts. Powders that can be consolidated and sintered to densities ∼96% theoretical density (TD) at 1773 K were obtained.

  5. Compaction of AWBA fuel pellets without binders (AWBA Development Program)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.G.R.

    1982-08-01

    Highly active oxide fuel powders, composed of UO/sub 2/, UO/sub 2/-ThO/sub 2/, or ThO/sub 2/, were compacted into ultra-high density pellets without the use of binders. The objective of the study was to select the optimum die lubricant for compacting these powders into pellets in preparation for sintering to densities in excess of 97% Theoretical Density. The results showed that sintered density was a function of both the lubricant bulk density and concentration with the lowest bulk density lubricant giving the highest sintered densities with a lubricant concentration of 0.1 weight percent. Five calcium and zinc stearates were evaluated withmore » a calcium stearate with a 15 lb/ft/sup 3/ bulk density being the best lubricant.« less

  6. Citrate gel-combustion synthesis and sintering of nanocrystalline ThO2 powders

    NASA Astrophysics Data System (ADS)

    Sanjay Kumar, D.; Ananthasivan, K.; Amirthapandian, S.; Dasgupta, Arup; Jogeswara Rao, G.

    2017-12-01

    A systematic study of the influence of citric acid to nitrate mole (R) ratio (R = 0 to 0.50) on the citrate gel-combustion synthesis of nanocrystalline (nc) ThO2 in bulk quantities (30 g) by using citrate gel-combustion was carried out. The nc-ThO2 powders were characterized for their bulk density, size distribution of particles, specific surface area, carbon residue and X-ray crystallite size. All these powders were compacted at pressures varying from 60 to 353 MPa and sintered by using the "two-step sintering" method. Powders prepared from a mixture with an "R" value of 0.125 compacted at 243 MPa yielded a maximum sintered density of 98.8 ± 0.3% T.D. For nc-ThO2, this is the highest sintered density reported so far. The microstructural investigations on nc-ThO2 powders were carried out by using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM images of the sintered thoria monoliths revealed faceted grains with well defined grain boundaries. Shrinkage anisotropy factor (α) revealed that the compacts prepared from the powders obtained from starting mixtures with R values of 0.125-0.50 had undergone uniform sintering (near isotropic shrinkage).

  7. Hexaferrite multiferroics: from bulk to thick films

    NASA Astrophysics Data System (ADS)

    Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.

    2018-03-01

    We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.

  8. Mechanical and thermal properties of bulk ZrB2

    NASA Astrophysics Data System (ADS)

    Nakamori, Fumihiro; Ohishi, Yuji; Muta, Hiroaki; Kurosaki, Ken; Fukumoto, Ken-ichi; Yamanaka, Shinsuke

    2015-12-01

    ZrB2 appears to have formed in the fuel debris at the Fukushima Daiichi nuclear disaster site, through the reaction between Zircaloy cladding materials and the control rod material B4C. Since ZrB2 has a high melting point of 3518 K, the ceramic has been widely studied as a heat-resistant material. Although various studies on the thermochemical and thermophysical properties have been performed for ZrB2, significant differences exist in the data, possibly due to impurities or the porosity within the studied samples. In the present study, we have prepared a ZrB2 bulk sample with 93.1% theoretical density by sintering ZrB2 powder. On this sample, we have comprehensively examined the thermal and mechanical properties of ZrB2 by the measurement of specific heat, ultrasonic sound velocities, thermal diffusivity, and thermal expansion. Vickers hardness and fracture toughness were also measured and found to be 13-23 GPa and 1.8-2.8 MPa m0.5, respectively. The relationships between these properties were carefully examined in the present study.

  9. Properties of the exotic metastable ST12 germanium allotrope

    PubMed Central

    Zhao, Zhisheng; Zhang, Haidong; Kim, Duck Young; Hu, Wentao; Bullock, Emma S.; Strobel, Timothy A.

    2017-01-01

    The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other ‘exotic' forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P43212) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verified using powder X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations. PMID:28045027

  10. Properties of the exotic metastable ST12 germanium allotrope

    DOE PAGES

    Zhao, Zhisheng; Zhang, Haidong; Kim, Duck Young; ...

    2017-01-03

    The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other ‘exotic’ forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P4 32 12) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verifiedmore » using powder X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Lastly, optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations.« less

  11. Influence of the ultrasound-assisted synthesis of Cu-BTC metal-organic frameworks nanoparticles on uptake and release properties of rifampicin.

    PubMed

    Abbasi, Amir Reza; Rizvandi, Maryam

    2018-01-01

    In this work, we study uptake and release properties of rifampicin (denoted henceforth as Rif) from ultrasound-assisted synthesis Cu-BTC nanoparticles in comparison with bulk Cu-BTC and activated carbon. To explore the absorption ability of the Cu-BTC to Rif, fresh sample of Cu-BTC was immersed in an aqueous solution of Rif and were monitored in real time with UV/vis spectroscopy. Results show that the adsorbed quantity of Rif over nano Cu-BTC (denoted henceforth as I) is much higher than those over a bulk Cu-BTC (denoted henceforth as II) and activated carbon. In compound I and all of the nano-MOFs the channel length is decreased so that the amount of adsorption is increased a little. The samples were characterized with X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and UV/vis spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Spheroidization of glass powders for glass ionomer cements.

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  13. Structural and AC loss study for pure and doped MgB{sub 2} superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansdah, J. S.; Sarun, P. M., E-mail: sarun.res@gmail.com

    2015-06-24

    Superconducting polycrystalline bulk MgB{sub 2} samples doped with n-C, n-Y{sub 2}O{sub 3} and n-Ho{sub 2}O{sub 3} were prepared by powder-in-sealed (PIST) method. XRD measurement shows the influence of dopants on phase and lattice parameters of samples. The ac susceptibility measurement reveals ac loss and activation energy of the samples. Nano-C doped sample shows less ac loss in all frequency (208 Hz – 999 Hz) among the doped samples; whereas n-Ho{sub 2}O{sub 3} doped sample shows highest ac loss. The activation energy is high for rare earth (n-Y{sub 2}O{sub 3} and n-Ho{sub 2}O{sub 3}) doped samples as compare to n-C doped samples whichmore » reveals the enhancement in flux-pinning properties of these materials.« less

  14. Correlation between processing conditions, microstructure and charge transport in half-Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makongo, Julien P.A.; Zhou, Xiaoyuan; Misra, Dinesh K.

    2013-05-01

    Five bulk samples of n-type Zr₀.₂₅Hf₀.₇₅NiSn₀.₉₇₅Sb₀.₀₂₅ half-Heusler (HH) alloy were fabricated by reacting elemental powders via (1) high temperature solid state (SS) reaction and (2) mechanical alloying (MA), followed by densification using spark plasma sintering (SPS) and/or hot pressing (HP). A portion of the sample obtained by SS reaction was mechanically alloyed before consolidation by hot pressing (SS–MA–HP). X-ray powder diffraction and transmission electron microscopy studies revealed that all SS specimen (SS–SPS, SS–HP, SS–MA–HP) are single phase HH alloys, whereas the MA sample (MA–SPS) contains metallic nanoprecipitates. Electronic and thermal transport measurements showed that the embedded nanoprecipitates induce a drasticmore » increase in the carrier concentration (n), a large decrease in the Seebeck coefficient (S) and a marginal decrease in the lattice thermal conductivity (κ l) of the MA–SPS sample leading to lower ZT values when compared to the SS–HP samples. Constant values of S are observed for the SS series regardless of the processing method. However, a strong dependence of the carrier mobility (μ), electrical conductivity (σ) and κ l on the processing and consolidation method is observed. For instance, mechanical alloying introduces additional structural defects which enhance electron and phonon scattering leading to moderately low values of μ and large reduction in κ l. This results in a net 20% enhancement in the figure of merit (ZT=0.6 at 775 K). HH specimen of the same nominal composition with higher ZT is anticipated from a combination of SS reaction, MA and SPS (SS–MA–SPS). - Graphical abstract: In half-Heusler alloys, thermopower values are insensitive to processing method, whereas carrier mobility (μ), electrical conductivity (σ), and κ l strongly dependent on the microstructure which in turn is altered by the synthesis, processing and consolidation method. Highlights: • Phase composition of HH alloy strongly depends on the synthesis technique. • Mechanical alloying of elements yields bulk HH alloy with metallic impurity phases. • Thermopower, carrier density, and effective mass of HHs are insensitive to processing conditions. • Mechanical alloying decreases the carrier mobility and lattice thermal conductivity of bulk HH.« less

  15. Consolidation of commercial pure aluminum particles by hot ECAP

    NASA Astrophysics Data System (ADS)

    Gudimetla, Kondaiah; Kumar, S. Ramesh; Ravisankar, B.; Prasad Prathipati, R.; Kumaran, S.

    2018-03-01

    In the current study undertaken, aluminum particles of commercial purity grade were compacted using hot ECAP. Investigation of the structural evolution and mechanical properties was done. Measurements of the densities of the samples was done for the purpose of evaluation the performance of the consolidation process. A tensile strength (UTS) of 98 MPa (after first pass) was obtained under tensile loads and the percent elongation to fracture was found to be 5.5%, which indicated good tensile strength and ductility as compared to the commercial pure Al powders consolidated by ambient temperature ECAP and other techniques. The relative density and Rockwell hardness (HRB) of compacts (after first pass) was 99% and 42 respectively. This is indisputable proof for establishing the compatibility of ECAP in the matter of producing bulk materials. Characterization of the material microstructure and fracture behavior was done through use of optical and scanning electron microscopy (SEM). The Al powders consolidated at 400°C through ECAP process, exhibited the best combination of yield strength and ductility and hence hot ECAP is suitable method for consolidation of micro powders.

  16. Physicochemical and Thermal Properties of Extruded Instant Functional Rice Porridge Powder as Affected by the Addition of Soybean or Mung Bean.

    PubMed

    Mayachiew, Pornpimon; Charunuch, Chulaluck; Devahastin, Sakamon

    2015-12-01

    Legumes contain protein, micronutrients, and bioactive compounds, which provide various health benefits. In this study, soybean or mung bean was mixed in rice flour to produce by extrusion instant functional legume-rice porridge powder. The effects of the type and percentage (10%, 20%, or 30%, w/w) of legumes on the expansion ratio of the extrudates were first evaluated. Amino acid composition, color, and selected physicochemical (bulk density, water absorption index, and water solubility index), thermal (onset temperature, peak temperature, and transition enthalpy), and pasting (peak viscosity, trough viscosity, and final viscosity) properties of the powder were determined. The crystalline structure and formation of amylose-lipid complexes and the total phenolics content (TPC) and antioxidant activity of the powder were also measured. Soybean-blended porridge powder exhibited higher TPC, 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity, ferric reducing antioxidant power, amino acid, and fat contents than the mung bean-blended porridge powder. Incorporating either legume affected the product properties by decreasing the lightness and bulk density, while increasing the greenness and yellowness and the peak temperature and transition enthalpy. Expansion capacity of the extrudates increased with percentage of mung bean in the mixture but decreased as the percentage of soybean increased. Amylose-lipid complexes formation was confirmed by X-ray diffraction analysis results. Addition of soybean or mung bean resulted in significant pasting property changes of the porridge powder. © 2015 Institute of Food Technologists®

  17. Photocatalytic degradation of methyl orange, methylene blue and rhodamine B with AgCl nanocatalyst synthesised from its bulk material in the ionic liquid [P6 6 6 14]Cl.

    PubMed

    Rodríguez-Cabo, Borja; Rodríguez-Palmeiro, Iago; Corchero, Raquel; Rodil, Rosario; Rodil, Eva; Arce, Alberto; Soto, Ana

    2017-01-01

    The photocatalytic degradation of wastewater containing three industrial dyes belonging to different families, methyl orange (MO), methylene blue (MB) and Rhodamine B (RhB), was studied under UV-Vis irradiation using synthesised silver chloride nanoparticles. The nanocatalyst was prepared by a dissolution/reprecipitation method starting from the bulk powder and the ionic liquid trihexyl(tetradecyl)phosphonium chloride, [P 6 6 6 14 ]Cl, without addition of other solvents. The obtained catalyst was characterised by UV-Vis absorbance, X-ray powder diffraction, transmission electron microscopy and scanning electron microscopy. The decolourisation of the samples was studied by UV-Vis absorbance at the corresponding wavelength. Starting from 10 ppm dye solutions and 1 g L -1 of the synthesised AgCl nanoparticles, degradation efficiencies of 98.4% for MO, 98.6% for MB and 99.9% for RhB, were achieved in 1 h. The degradation mechanisms for the different dyes were studied. Comparison with other frequently used nanocatalysts, namely P-25 Degussa, TiO 2 anatase, Ag and ZnO, highlights the strong catalytic activity of AgCl nanoparticles. Under the same experimental conditions, these nanoparticles led to higher (more than 10%) and faster degradations.

  18. Mesostructural investigation of micron-sized glass particles during shear deformation - An experimental approach vs. DEM simulation

    NASA Astrophysics Data System (ADS)

    Torbahn, Lutz; Weuster, Alexander; Handl, Lisa; Schmidt, Volker; Kwade, Arno; Wolf, Dietrich E.

    2017-06-01

    The interdependency of structure and mechanical features of a cohesive powder packing is on current scientific focus and far from being well understood. Although the Discrete Element Method provides a well applicable and widely used tool to model powder behavior, non-trivial contact mechanics of micron-sized particles demand a sophisticated contact model. Here, a direct comparison between experiment and simulation on a particle level offers a proper approach for model validation. However, the simulation of a full scale shear-tester experiment with micron-sized particles, and hence, validating this simulation remains a challenge. We address this task by down scaling the experimental setup: A fully functional micro shear-tester was developed and implemented into an X-ray tomography device in order to visualize the sample on a bulk and particle level within small bulk volumes of the order of a few micro liter under well-defined consolidation. Using spherical micron-sized particles (30 μm), shear tests with a particle number accessible for simulations can be performed. Moreover, particle level analysis allows for a direct comparison of experimental and numerical results, e.g., regarding structural evolution. In this talk, we focus on density inhomogeneity and shear induced heterogeneity during compaction and shear deformation.

  19. Method to synthesize bulk iron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monson, Todd; Lavernia, Enrique J.; Zheng, Baolong

    Bulk iron nitride can be synthesized from iron nitride powder by spark plasma sintering. The iron nitride can be spark plasma sintered at a temperature of less than 600°C. and a pressure of less than 600 MPa, with 400 MPa or less most often being sufficient. High pressure SPS can consolidate dense iron nitrides at a lower temperature to avoid decomposition. The higher pressure and lower temperature of spark discharge sintering avoids decomposition and limits grain growth, enabling enhanced magnetic properties. The method can further comprise synthesis of nanocrystalline iron nitride powders using two-step reactive milling prior to high-pressure sparkmore » discharge sintering.« less

  20. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, C.L.

    1993-08-31

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  1. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1993-01-01

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  2. Cytotoxicity of titanium and titanium alloying elements.

    PubMed

    Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C

    2010-05-01

    It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.

  3. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  4. Equation of state of rhenium and application for ultra high pressure calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anzellini, Simone; Dewaele, Agnès; Occelli, Florent

    2014-01-28

    The isothermal equation of state of rhenium has been measured by powder X-ray diffraction experiments up to 144 GPa at room temperature in a diamond anvil cell. A helium pressure transmitting medium was used to minimize the non-hydrostatic stress on the sample. The fit of pressure-volume data yields a bulk modulus K{sub 0} = 352.6 GPa and a pressure derivative of the bulk modulus K′{sub 0}=4.56. This equation of state differs significantly from a recent determination [Dubrovinsky et al., Nat. Commun. 3, 1163 (2012)], giving here a lower pressure at a given volume. The possibility of using rhenium gasket X-ray diffraction signal, with themore » present equation of state, to evaluate multi-Mbar pressures in the chamber of diamond anvil cells is discussed.« less

  5. NRL Review - 2009

    DTIC Science & Technology

    2009-01-01

    for a fundamental physical understanding of electronic properties . The Materials Processing Facility includes appa- ratuses for powder production by...situ. Facilities to process powder into bulk specimens by hot and cold isostatic pressing permit a variety of consolidation possibilities. The iso...Synthesis/ Property Measurement Facility has special emphasis on polymers, surface-film processing , and directed self-assembly. The Chemical Vapor

  6. Effect of Pressing Parameters on the Structure of Porous Materials Based on Cobalt and Nickel Powders

    NASA Astrophysics Data System (ADS)

    Shustov, V. S.; Rubtsov, N. M.; Alymov, M. I.; Ankudinov, A. B.; Evstratov, E. V.; Zelensky, V. A.

    2018-03-01

    Porous materials with a bulk porosity of more than 68% were synthesized by powder metallurgy methods from a cobalt-nickel mixture. The effect of the ratio of nickel and cobalt powders used in the synthesis of this porous material (including cases when either nickel or cobalt alone was applied) and the conditions of their compaction on structural parameters, such as open and closed porosities and pose size, was established.

  7. Modified Silicone-Rubber Tooling For Molding Composite Parts

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Weiser, Erik S.

    1995-01-01

    Reduced-thermal-expansion, reduced-bulk-modulus silicone rubber for use in mold tooling made by incorporating silica powder into silicone rubber. Pressure exerted by thermal expansion reduced even further by allowing air bubbles to remain in silicone rubber instead of deaerating it. Bubbles reduce bulk modulus of material.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    This study provides an account of the bulk preparation of TlBa 2Ca 2Cu 3O 9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher T c = 125 K after annealing the polycrystalline material in either flowing Ar+4% H 2, or N 2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Duemore » to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less

  9. Influence of particle size on physical and sensory attributes of mango pulp powder

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Kadam, D. M.; Chadha, S.; Wilson, R. A.; Gupta, R. K.

    2013-09-01

    The present investigation was aimed to observe the effect of particle size on physical, sensory and thermal properties of foam-mat dried mango pulp powder. Mango pulp of Dussehri variety was foam-mat dried using 3% egg white at 65ºC. Dried foam-mats were pulverized and passed through a sieve shaker for obtaining three grades of powder with 50, 60, and 85 mesh size sieves. The particle size of these samples measured using laser diffraction particle size analyzer ranged from 191.26 to 296.19 μm. The data was analysed statistically using ANOVA of SAS. There was a linear increase in lightness (`L' value) with a decrease in particle size, however, `a' value decreased with a decrease in particle size, indicating the decrease in redness. An increase in bulk density and decrease in water solubility index and water absorption index % were observed with a decrease in particle size. Particle size had a significant effect on sensory parameters. Particle size in the range of 258.01 to 264.60μmwas found most acceptable with respect to sensory characteristics. This finding can be exploited for various commercial applicationswhere powder quality is dependent on the particle size and has foremost priority for end users.

  10. In situ analysis of phase transformation in sol-gel cogelified nanopowder mixture of Al 2O 3 and TiO 2 using synchrotron X-ray radiation diffraction experiments

    NASA Astrophysics Data System (ADS)

    Jianu, A.; Stanciu, L.; Groza, J. R.; Lathe, Ch.; Burkel, E.

    2003-01-01

    Aluminium titanate (Al 2TiO 5) has been selected for study due to its high melting point and thermal shock resistance. In situ analysis of phase transformation and of transformation kinetics of sol-gel powder mixture of alumina and titania cogelified samples was performed using high-temperature synchrotron radiation X-ray diffraction experiments. The high reactivity and molecular mixing of sol-gel cogelified precursor powders contributed to the evolution of the reaction. The stability of the TiO 2-tetragonal structure (anatase) increases due to Al 2O 3 presence. The temperature of the aluminium titanate endothermic reaction decreases when heating rate increases. The results obtained by in situ analysis have been used to establish the sintering parameters in order to obtain fully transformed, dense aluminium titanate bulk ceramics.

  11. Ferroelectric properties of substituted barium titanate ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.

    2009-06-01

    Barium titanate (BT) is among the most studied ferroelectric material which has been used in various forms, e.g. bulk, thin and thick film, powder, in a number of applications. In order to achieve a material with desired properties, it is modified with a variety of substituents. Most common substituents have been strontium, calcium and zirconium. Here we report studies on lead and zirconium substituted BT. The material series with compositional formula Ba 0.80Pb 0.20Ti 1-xZr xO 3 with, 0< x<0.1 was chosen for investigations. The material was synthesized by solid state reaction method. Reacted powder compacted in form of circular discs were sintered in the range of 1300 °C. All the samples were subjected to X-ray analysis and found to be single phase. Ferroelectric properties were studied as a function of composition and temperature. Pr/ Ps ratio was determined. It was found to decrease with increase in x.

  12. Probing hydrogen positions in hydrous compounds: information from parametric neutron powder diffraction studies.

    PubMed

    Ting, Valeska P; Henry, Paul F; Schmidtmann, Marc; Wilson, Chick C; Weller, Mark T

    2012-05-21

    We demonstrate the extent to which modern detector technology, coupled with a high flux constant wavelength neutron source, can be used to obtain high quality diffraction data from short data collections, allowing the refinement of the full structures (including hydrogen positions) of hydrous compounds from in situ neutron powder diffraction measurements. The in situ thermodiffractometry and controlled humidity studies reported here reveal that important information on the reorientations of structural water molecules with changing conditions can be easily extracted, providing insight into the effects of hydrogen bonding on bulk physical properties. Using crystalline BaCl2·2H2O as an example system, we analyse the structural changes in the compound and its dehydration intermediates with changing temperature and humidity levels to demonstrate the quality of the dynamic structural information on the hydrogen atoms and associated hydrogen bonding that can be obtained without resorting to sample deuteration.

  13. Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties

    NASA Astrophysics Data System (ADS)

    Merzliakov, M. A.; Kouhar, V. V.; Malashkevich, G. E.; Pestryakov, E. V.

    2018-01-01

    Glasses of the TeO2-WO3-Yb2O3 system are synthesized for wide range of Yb3+ concentrations of up to 6.0 × 1021 ions/cm3. The spectral-luminescent properties of lightly doped samples are investigated at room temperature and at the boiling point of liquid nitrogen. The energies of the Stark levels of the ground and excited states of Yb3+ ions incorporated into tungsten-tellurite glass are determined by analyzing the low-temperature spectra. The absorption, emission, and gain cross section spectra are obtained. The excess of the measured fluorescence decay time over the radiative lifetime ∼0.3 ms derived from the absorption spectra is attributed to the reabsorption effect in bulk samples. Measurements of lightly doped glass powder in the immersion liquid are made to reduce the effect of reabsorption. The fluorescence decay time of the powder is very close to the calculated radiative lifetime. Compared with phosphate, silicate, and other Yb3+-doped glasses, the tungsten-tellurite glass has a promising potential as a gain medium for lasers and amplifiers.

  14. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    DOE PAGES

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; ...

    2015-04-13

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivitymore » was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.« less

  15. Room temperature ferromagnetic gadolinium silicide nanoparticles

    DOEpatents

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  16. Accelerated sintering in phase-separating nanostructured alloys

    PubMed Central

    Park, Mansoo; Schuh, Christopher A.

    2015-01-01

    Sintering of powders is a common means of producing bulk materials when melt casting is impossible or does not achieve a desired microstructure, and has long been pursued for nanocrystalline materials in particular. Acceleration of sintering is desirable to lower processing temperatures and times, and thus to limit undesirable microstructure evolution. Here we show that markedly enhanced sintering is possible in some nanocrystalline alloys. In a nanostructured W–Cr alloy, sintering sets on at a very low temperature that is commensurate with phase separation to form a Cr-rich phase with a nanoscale arrangement that supports rapid diffusional transport. The method permits bulk full density specimens with nanoscale grains, produced during a sintering cycle involving no applied stress. We further show that such accelerated sintering can be evoked by design in other nanocrystalline alloys, opening the door to a variety of nanostructured bulk materials processed in arbitrary shapes from powder inputs. PMID:25901420

  17. Using HEM surveys to evaluate disposal of by-product water from CBNG development in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Lipinski, B.A.; Sams, J.I.; Smith, B.D.; Harbert, W.

    2008-01-01

    Production of methane from thick, extensive coal beds in the Powder River Basin of Wyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occam's inversion algorithms to determine the aquifer bulk conductivity, which was then correlated towater salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin. ?? 2008 2008 Society of ExplorationGeophysicists. All rights reserved.

  18. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading.

    PubMed

    Han, Xi; Ghoroi, Chinmay; Davé, Rajesh

    2013-02-14

    Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Characterization of Plastic Flow Pertinent to the Evolution of Bulk Residual Stress in Powder-Metallurgy, Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Fagin, P. N.; Goetz, R. L.; Furrer, D. U.; Dutton, R. E.

    2015-09-01

    The plastic-flow behavior which controls the formation of bulk residual stresses during final heat treatment of powder-metallurgy (PM), nickel-base superalloys was quantified using conventional (isothermal) stress-relaxation (SR) tests and a novel approach which simulates concurrent temperature and strain transients during cooling following solution treatment. The concurrent cooling/straining test involves characterization of the thermal compliance of the test sample. In turn, this information is used to program the ram-displacement- vs-time profile to impose a constant plastic strain rate during cooling. To demonstrate the efficacy of the new approach, SR tests (in both tension and compression) and concurrent cooling/tension-straining experiments were performed on two PM superalloys, LSHR and IN-100. The isothermal SR experiments were conducted at a series of temperatures between 1144 K and 1436 K (871 °C and 1163 °C) on samples that had been supersolvus solution treated and cooled slowly or rapidly to produce starting microstructures comprising coarse gamma grains and coarse or fine secondary gamma-prime precipitates, respectively. The concurrent cooling/straining tests comprised supersolvus solution treatment and various combinations of subsequent cooling rate and plastic strain rate. Comparison of flow-stress data from the SR and concurrent cooling/straining tests showed some similarities and some differences which were explained in the context of the size of the gamma-prime precipitates and the evolution of dislocation substructure. The magnitude of the effect of concurrent deformation during cooling on gamma-prime precipitation was also quantified experimentally and theoretically.

  20. 46 CFR 148.10 - Permitted materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... following requirements apply to combinations of bulk solids carried at the same time and in the same... Nitrate UN1438 5.1 4 Colorless or white crystals 140 Aluminum Silicon Powder, Uncoated UN1398 4.3 2, 3 135... Fluorospar Calcium Nitrate UN1454 5.1 4 White crystals or powder 140, 227 Calcium Oxide See Lime, Unslaked...

  1. 46 CFR 148.10 - Permitted materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... following requirements apply to combinations of bulk solids carried at the same time and in the same... Nitrate UN1438 5.1 4 Colorless or white crystals 140 Aluminum Silicon Powder, Uncoated UN1398 4.3 2, 3 135... Fluorospar Calcium Nitrate UN1454 5.1 4 White crystals or powder 140, 227 Calcium Oxide See Lime, Unslaked...

  2. 46 CFR 148.10 - Permitted materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... following requirements apply to combinations of bulk solids carried at the same time and in the same... Nitrate UN1438 5.1 4 Colorless or white crystals 140 Aluminum Silicon Powder, Uncoated UN1398 4.3 2, 3 135... Fluorospar Calcium Nitrate UN1454 5.1 4 White crystals or powder 140, 227 Calcium Oxide See Lime, Unslaked...

  3. 46 CFR 148.10 - Permitted materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... following requirements apply to combinations of bulk solids carried at the same time and in the same... Nitrate UN1438 5.1 4 Colorless or white crystals 140 Aluminum Silicon Powder, Uncoated UN1398 4.3 2, 3 135... Fluorospar Calcium Nitrate UN1454 5.1 4 White crystals or powder 140, 227 Calcium Oxide See Lime, Unslaked...

  4. Levitation of superconducting composites

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Turchinskaya, M.; Swartzendruber, L. J.; Shull, R. D.; Bennett, L. H.

    1991-01-01

    The inverse levitation of a high temperature superconductor polymer composite consisting of powdered quench melt growth Ba2YCu3O(7-delta) and cyanoacrylate is reported. Magnetic hysteresis loop measurements for the composite are compared to those measured for the bulk material prior to powdering. Differences in the flux pining capability between the two material forms are small but significant.

  5. Effects of microstructures on the performance of rare-earth-free MnBi magnetic materials and magnets

    NASA Astrophysics Data System (ADS)

    Nguyen, Vuong Van; Nguyen, Truong Xuan

    2018-03-01

    Since the solidification of MnBi alloys is peritectic, their microstructures always consist of the starting phases of Mn and Bi and the productive phase MnBi. The high performance of MnBi bulk magnets requires appropriate routes of preparing MnBi powders of high spontaneous magnetization Ms and large coercivity iHc as well a route of producing bulk magnets thereof. In these routes, the microstructures of arc-melted alloys, annealed alloys and magnets strongly related to the quality of powders and the performance of magnets. The paper proves that: i) The microstructure of fine Mn-inclusions embedded in the matrix of Bi is preferred for arc-melted alloys to realize the rapid evolution of the ferromagnetic phase inside them during their sequent annealing process; ii) The time-controlled annealing process plays a key role in controlling the microstructure with the main ferromagnetic phase matrix, in which the rest of Mn and the Bi accumulations are embedded; iii) The cold (in-liquid-nitrogen) ball milling annealed alloys is required for preparing a high quality powders with the preferred sub-micrometer microstructure without a Bi-decomposition; iv) The short-time warm compaction is crucial to fabricate dense, highly textured bulk magnets with the micrometer microstructure. The realization and control of these preferred microstructures figured in these routes enhance the chance of preparing MnBi bulk magnets with the energy product (BH)max larger than 8 MGOe.

  6. New bulk and in situ isotopic and elemental geochemistry of shallow drill core from Atlantis Massif: insights into the sources and paths of fluids and clasts

    NASA Astrophysics Data System (ADS)

    Bilenker, L.; Weis, D.; Scoates, J. S.

    2017-12-01

    We present stable Fe and radiogenic isotope and complementary trace element data for samples from Atlantis Massif. This oceanic core complex is located at 30°N where the Atlantis Transform Fault intersects the Mid-Atlantic Ridge (MAR) and is associated with the Lost City Hydrothermal Field (LCHF). It is a unique place to investigate the abiotic and biotic geochemical processes that play a role in the alteration of both crustal and mantle seafloor rocks. The samples analyzed represent a shallow (<15 m) survey of five drill sites (IODP Expedition 357) within Atlantis Massif, varying in distance from the LCHF and MAR. Analyses were performed on a sample set spanning a wide range in degree of alteration and lithology. Bulk measurements involved dissolving whole rock powders, whereas in situ analyses were performed on digested microdrilled samples or by laser ablation. Bulk rock Fe isotope values (n = 34) are correlated with loss-on-ignition (LOI) by sample lithology and location relative to LCHF. Using LOI as a proxy for degree of alteration, this observation indicates that the Fe isotope systematics of seafloor crustal and mantle rocks preserve indicators of fluid flow and source. The Hf and Nd isotope compositions for various lithologies form all analyzed sites are homogeneous, indicating minimal alteration of these isotopic systems. Bulk Sr values provide insight into elemental exchange between seawater and the surface of Atlantis Massif and bulk Pb isotopes allow for fingerprinting of the source of basalt breccias through comparison with published Pb isotope values of MAR basalts. The new results cluster around the Pb, Hf, Nd isotopic composition of mid-ocean ridge basalt from 30.68°N and do not match samples north or south of that location. In situ Fe isotope data within three altered samples reflect varying degrees of hydrothermal and seawater interaction, where the Fe isotope ratios within each sample are likely correlated with extent of exchange or redox. Laser trace element and Pb isotope data in progress will allow us to investigate this further. This study contributes to our understanding of element mobility and mass transfer during chemical reactions within the seafloor, provides insight into the source of the lithological units and fluid flow, and allows for quantification of alteration processes.

  7. A preferred method for the determination of bulk compositions of coarse-grained refractory inclusions and some implications of the results

    NASA Astrophysics Data System (ADS)

    Simon, S. B.; Grossman, L.

    2004-10-01

    Analyses of coarse-grained refractory inclusions typically do not have the solar CaO/Al 2O 3 ratio, probably reflecting nonrepresentative sampling of them in the laboratory. Many previous studies, especially those done by instrumental neutron activation analysis (INAA), were based on very small amounts of material removed from those restricted portions of inclusions that happened to be exposed on surfaces of bulk meteorite samples. Here, we address the sampling problem by studying thin sections of large inclusions, and by analyzing much larger aliquots of powders of these inclusions by INAA than has typically been done in the past. These results do show convergence toward the solar CaO/Al 2O 3 ratio of 0.792. The bulk compositions of 15 coarse-grained inclusions determined by INAA of samples >2 mg have an average CaO/Al 2O 3 ratio of 0.80 ± 0.18. When bulk compositions are obtained by modal recombination based on analysis of thin sections with cross-sections of entire, large, unbroken inclusions, the average of 11 samples (0.79 ± 0.15) also matches the solar value. Among those analyzed by INAA and by modal recombination, there were no inclusions for which both techniques agreed on a CaO/Al 2O 3 ratio deviating by >˜15% from the solar value. These results suggest that: individual inclusions may have the solar CaO/Al 2O 3 ratio; departures from this value are due to sample heterogeneity and nonrepresentative sampling in the laboratory; and it is therefore valid to correct compositions to this value. We present a method for doing so by mathematical addition or subtraction of melilite, spinel, or pyroxene. This yields a set of multiple, usually slightly different, corrected compositions for each inclusion. The best estimate of the bulk composition of an inclusion is the average of these corrected compositions, which simultaneously accounts for errors in sampling of all major phases. Results show that Type B2 inclusions tend to be more SiO 2-rich and have higher normative Anorthite/Gehlenite component ratios than Type B1s. The inclusion bulk compositions lie in a field that can result from evaporation at 1700-2000K of CMAS liquids with solar CaO/Al 2O 3, but with a wide range of initial MgO (30-60 wt%) and SiO 2 (15-50 wt%) contents.

  8. Polymer Infiltration Studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1993-01-01

    Significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins during the past three months. Current and ongoing research activities reported herein include: (1) Prepregger Hot Sled Operation; (2) Ribbonizing Powder-Impregnated Towpreg; (3) Textile Composites from Powder-Coated Towpreg: Role of Bulk Factor; and (4) Powder Curtain Prepreg Process. During the coming months research will be directed toward further development of the new powder curtain prepregging method and on ways to customize dry powder towpreg for textile and robotic applications in aircraft part fabrication. Studies of multi-tow powder prepregging and ribbon preparation will be conducted in conjunction with continued development of prepegging technology and the various aspects of composite part fabrication using customized towpreg. Also, work will continue on the analysis of the new solution prepegger.

  9. Laser surface processing on sintered PM alloys

    NASA Astrophysics Data System (ADS)

    Reiter, Wilfred; Daurelio, Giuseppe; Ludovico, Antonio D.

    1997-08-01

    Usually the P.M. alloys are heat treated like case hardening, gas nitriding or plasma nitriding for a better wear resistance of the product surface. There is an additional method for gaining better tribological properties and this is the surface hardening (or remelting or alloying) of the P.M. alloy by laser treatment on a localized part of the product without heating the whole sample. This work gives a cured experimentation about the proper sintering powder alloys for laser surface processing from the point of view of wear, fatigue life and surface quality. As concerns the materials three different basic alloy groups with graduated carbon contents were prepared. Regarding these sintered powder alloys one group holds Fe, Mo and C and other group holds Fe, Ni, Mo and C and the last one holds Fe, Ni, Cu, Mo and C contents. Obviously each group has a different surface hardness, different porosity distribution, different density and diverse metallurgical structures (pearlite or ferrite-pearlite, etc.). ON the sample surfaces a colloidal graphite coating, in different thicknesses, has been sprayed to increase laser energy surface absorption. On some other samples a Mo coating, in different thicknesses, has been produced (on the bulk alloy) by diverse deposition techniques (D.C. Sputtering, P.V.D. and Flame Spraying). Only a few samples have a Mo coating and also an absorber coating, that is a bulk material- Mo and a colloidal graphite coating. All these sintered alloys have been tested by laser technology; so that, many laser working parameters (covering gas, work-speed, focussed and defocussed spot, rastered and integrated beam spots, square and rectangular beam shapes and so on) have been experimented for two different processes at constant laser power and at constant surface temperature (by using a temperature surface sensor and a closed controlled link). For all experiments a transverse fast axial flow CO2 2.5 kW c.w. laser source has been employed.

  10. Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun, E-mail: j-zhang@126.com; Wang, Xiucai; Li, Lili

    2013-10-15

    Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulkmore » Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.« less

  11. Calcium aluminate in alumina

    NASA Astrophysics Data System (ADS)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to complement the studies carried out on the calcium aluminate phases, energy-loss near-edge structure (ELNES) fingerprints of CA2 and CA6 were obtained. It was shown that it is possible to distinguish these phases from each other by comparing the ELNES fingerprints. Theoretical calculations of ELNES were used to assign spectral features to certain symmetry environments that can later be used to understand the structures of unknown materials.

  12. Size effect on the structural, magnetic, and magnetotransport properties of electron doped manganite La0.15Ca0.85MnO3

    NASA Astrophysics Data System (ADS)

    Thomas, Rini; Das, Gangadhar; Mondal, Rajib; Pradheesh, R.; Mahato, R. N.; Geetha Kumary, T.; Nirmala, R.; Morozkin, A. V.; Lamsal, J.; Yelon, W. B.; Nigam, A. K.; Malik, S. K.

    2012-04-01

    Nanocrystalline La0.15Ca0.85MnO3 samples of various grain sizes ranging from ˜17 to 42 nm have been prepared by sol-gel technique. Phase purity and composition were verified by room temperature x-ray diffraction and SEM-EDAX analysis. The bulk La0.15Ca0.85MnO3 is known to order antiferromagnetically around 170 K and to undergo a simultaneous crystal structural transition. DC magnetization measurements on 17 nm size La0.15Ca0.85MnO3 show a peak at ˜130 K (TN) in zero-field-cooled (ZFC) state. Field-cooled magnetization bifurcates from ZFC data around 200 K hinting a weak ferromagnetic component near room temperature due to surface moments of the nanoparticle sample. Low temperature powder neutron diffraction experiments reveal that the incomplete structural transition from room temperature orthorhombic to low temperature orthorhombic-monoclinic state also occurs in the nanoparticle sample as in the bulk. Magnetization in the ordered state decreases as particle size increases, thus indicating the reduction of the competing ferromagnetic surface moments.

  13. Elastic, magnetic and electronic properties of iridium phosphide Ir 2P

    DOE PAGES

    Wang, Pei; Wang, Yonggang; Wang, Liping; ...

    2016-02-24

    Cubic (space group: Fm3¯m) iridium phosphide, Ir 2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir 2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B 0 = 306(6) GPa and its pressure derivative B 0'= 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP 4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively lowmore » shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir 2P with metallic, ionic, and covalent characteristics. Additionally, a spin glass behavior is indicated by magnetic susceptibility measurements.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pei; Wang, Yonggang; Wang, Liping

    Cubic (space group: Fm3¯m) iridium phosphide, Ir 2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir 2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B 0 = 306(6) GPa and its pressure derivative B 0'= 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP 4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively lowmore » shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir 2P with metallic, ionic, and covalent characteristics. Additionally, a spin glass behavior is indicated by magnetic susceptibility measurements.« less

  15. Crystallization Kinetics of Calcium-magnesium Aluminosilicate (CMAS) Glass

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    The crystallization kinetics of a calcium-magnesium aluminosilicate (CMAS) glass with composition relevant for aerospace applications, like air-breathing engines, were evaluated using differential thermal analysis (DTA) in powder and bulk forms. Activation energy and frequency factor values for crystallization of the glass were evaluated. X-ray diffraction (XRD) was used to investigate the onset of crystallization and the phases that developed after heat treating bulk glass at temperatures ranging from 690 to 960 deg for various times. Samples annealed at temperatures below 900 deg remained amorphous, while specimens heat treated at and above 900 deg exhibited crystallinity originating at the surface. The crystalline phases were identified as wollastonite (CaSiO3) and aluminum diopside (Ca(Mg,Al) (Si,Al)2O6). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to examine the microstructure and chemical compositions of crystalline phases formed after heat treatment.

  16. Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials.

    PubMed

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2015-01-01

    Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Thermoplastic deformation of ferromagnetic CoFe-based bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Wu, Chenguang; Hu, Renchao; Man, Qikui; Chang, Chuntao; Wang, Xinmin

    2017-12-01

    The superplastic deformation behavior of the ferromagnetic Co31Fe31Nb8B30 bulk metallic glass (BMG) in the supercooled liquid region was investigated. At a given temperature, the BMG exhibits a Newtonian behavior at low strain rates but a non-Newtonian behavior at high strain rates. The high thermal stability of this glassy alloy system offers an enough processing window to thermoplastic forming (TPF), and the strong processing ability was examined by simple micro-replication experiments. It is demonstrated that the TPF formability on length scales ranging down to nanometers can be achieved in the selected experimental condition. Based on the analysis of deformation behavior, the nearly full density sample (i.e. nearly 100%), was produced from water-atomized glassy powders and consolidated by the hot-pressing technique. The sample exhibits good soft-magnetic and mechanical properties, i.e., low coercive force of 0.43 Oe, high initial permeability of 4100 and high Vickers hardness 1398. These results suggest that the hot-pressing process opens up possibilities for the commercial exploitation of BMGs in engineering applications.

  18. Synthesis of Cu-W nanocomposite by high-energy ball milling.

    PubMed

    Venugopal, T; Rao, K Prasad; Murty, B S

    2007-07-01

    The Cu-W bulk nanocomposites of different compositions were successfully synthesized by high-energy ball milling of elemental powders. The nanocrystalline nature of the Cu-W composite powder is confirmed by X-ray diffraction analysis, transmission electron microscopy, and atomic force microscopy. The Cu-W nanocomposite powder could be sintered at 300-400 degrees C below the sintering temperature of the un-milled Cu-W powders. The Cu-W nanocomposites showed superior densification and hardness than that of un-milled Cu-W composites. The nanocomposites also have three times higher hardness to resistivity ratio in comparison to Oxygen free high conductivity copper.

  19. Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion

    NASA Astrophysics Data System (ADS)

    Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup

    2018-04-01

    Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.

  20. Meso-scale investigation of anaerobic chemical reactivity of Ti-Al-B powder mixtures under impact loading

    NASA Astrophysics Data System (ADS)

    Gonzales, Manny; Gurumurthy, Ashok; Gokhale, Arun; Thadhani, Naresh N.

    2011-06-01

    Impact-initiated anaerobic chemical reactions in Ti-Al-B reactive powder mixtures under uniaxial stress conditions are investigated using a coupled experimental/computational approach. In particular, we characterize the effects of bulk composition on the threshold impact energy to initiate reaction using rod-on-anvil type tests performed on Ti-Al-B powder compacts. Statistical volume elements (SVEs) of different bulk compositions of the powder mixtures are analyzed using the continuum hydrocode CTH to quantify the effects of strain confinement and load configuration on the overall energy of the structure. These SVEs are also validated using one-point correlation functions to characterize the volume fraction and surface area of the constituents. Based on the deformation profiles from the continuum simulations, we investigate the effect of particle size distribution and clustering of Ti and B on the threshold energy required for observed reactivity. The deformation and threshold kinetic energy of the simulated system is compared with published values of the activation energy for Ti+B reactions and Al combustion in air to assess the extent of their impact-initiated reactivity. Funded by DTRA grant No. HDTRA1-10-1-0038

  1. Shock-induced mechanochemistry in heterogeneous reactive powder mixtures

    NASA Astrophysics Data System (ADS)

    Gonzales, Manny; Gurumurthy, Ashok; Kennedy, Gregory; Neel, Christopher; Gokhale, Arun; Thadhani, Naresh

    The bulk response of compacted powder mixtures subjected to high-strain-rate loading conditions in various configurations is manifested from behavior at the meso-scale. Simulations at the meso-scale can provide an additional confirmation of the possible origins of the observed response. This work investigates the bulk dynamic response of Ti +B +Al reactive powder mixtures under two extreme loading configurations - uniaxial stress and strain loading - leveraging highly-resolved in-situ measurements and meso-scale simulations. Modified rod-on-anvil impact tests on a reactive pellet demonstrate an optimized stoichiometry promoting reaction in Ti +B +Al. Encapsulated powders subjected to shock compression via flyer plate tests provide possible evidence of a shock-induced reaction at high pressures. Meso-scale simulations of the direct experimental configurations employing highly-resolved microstructural features of the Ti +B compacted mixture show complex inhomogeneous deformation responses and reveal the importance of meso-scale features such as particle size and morphology and their effects on the measured response. Funding is generously provided by DTRA through Grant No. HDTRA1-10-1-0038 (Dr. Su Peiris - Program Manager) and by the SMART (AFRL Wright Patterson AFB) and NDSEG fellowships (High Performance Computing and Modernization Office).

  2. Assessment of physical and structural characteristics of almond gum.

    PubMed

    Bashir, Mudasir; Haripriya, Sundaramoorthy

    2016-12-01

    Almond gum was investigated for its physical and structural characteristics in comparison to gum arabic. Among physical properties, bulk density was found to be 0.600±0.12g/mL and 0.502±0.20g/mL for almond and gum arabic respectively. Almond gum (0.820±0.13g/mL) displayed the maximum value for tapped density. Compressibility index of exudate gum powders varied from 26.79±1.47 to 37.46±0.50% and follow the order gum arabic>almond gum. Almond gum demonstrated good flow characteristics when compared to gum arabic. True density showed significant difference (p<0.05) among the exudate samples and it was recorded higher for gum arabic. The maximum value of porosity recorded in case of gum arabic indicates the presence of large number of interstitial spaces among its particles. Almond gum had fair flow character while good for the other exudate gum powder. Almond gum had relatively higher mineral content than gum arabic. The oil holding capacity of exudate gums varied from 0.87±0.05 to 0.92±0.02g/g. Exudate powder samples were found to lie in the first quadrant of the hue angle (0-90°) corresponding to the range of reddish-purple to yellow. The absence of peaks in the X-ray diffractograms of exudate samples reflects their amorphous nature. SEM micrographs revealed a lot of variability in shape and size of the exudate particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid.

    PubMed

    Rogers, True L; Nelsen, Andrew C; Hu, Jiahui; Brown, Judith N; Sarkari, Marazban; Young, Timothy J; Johnston, Keith P; Williams, Robert O

    2002-11-01

    A novel cryogenic spray-freezing into liquid (SFL) process was developed to produce microparticulate powders consisting of an active pharmaceutical ingredient (API) molecularly embedded within a pharmaceutical excipient matrix. In the SFL process, a feed solution containing the API was atomized beneath the surface of a cryogenic liquid such that the liquid-liquid impingement between the feed and cryogenic liquids resulted in intense atomization into microdroplets, which were frozen instantaneously into microparticles. The SFL micronized powder was obtained following lyophilization of the frozen microparticles. The objective of this study was to develop a particle engineering technology to produce micronized powders of the hydrophobic drug, danazol, complexed with hydroxypropyl-beta-cyclodextrin (HPbetaCD) and to compare these SFL micronized powders to inclusion complex powders produced from other techniques, such as co-grinding of dry powder mixtures and lyophilization of bulk solutions. Danazol and HPbetaCD were dissolved in a water/tetrahydrofuran cosolvent mixture prior to SFL processing or slow freezing. Identical quantities of the API and HPbetaCD used in the solutions were co-ground in a mortar and pestle and blended to produce a co-ground physical mixture for comparison. The powder samples were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy, surface area analysis, and dissolution testing. The results provided by DSC, XRD, and FTIR suggested the formation of inclusion complexes by both slow-freezing and SFL. However, the specific surface area was significantly higher for the latter. Dissolution results suggested that equilibration of the danazol/HPbetaCD solution prior to SFL processing was required to produce the most soluble conformation of the resulting inclusion complex following SFL. SFL micronized powders exhibited better dissolution profiles than the slowly frozen aggregate powder. Results indicated that micronized SFL inclusion complex powders dissolved faster in aqueous dissolution media than inclusion complexes formed by conventional techniques due to higher surface areas and stabilized inclusion complexes obtained by ultra-rapid freezing.

  4. Toxicity of boehmite nanoparticles: impact of the ultrafine fraction and of the agglomerates size on cytotoxicity and pro-inflammatory response.

    PubMed

    Forest, Valérie; Pailleux, Mélanie; Pourchez, Jérémie; Boudard, Delphine; Tomatis, Maura; Fubini, Bice; Sennour, Mohamed; Hochepied, Jean-François; Grosseau, Philippe; Cottier, Michèle

    2014-08-01

    Boehmite (γ-AlOOH) nanoparticles (NPs) are used in a wide range of industrial applications. However, little is known about their potential toxicity. This study aimed at a better understanding of the relationship between the physico-chemical properties of these NPs and their in vitro biological activity. After an extensive physico-chemical characterization, the cytotoxicity, pro-inflammatory response and oxidative stress induced by a bulk industrial powder and its ultrafine fraction were assessed using RAW264.7 macrophages. Although the bulk powder did not trigger a significant biological activity, pro-inflammatory response was highly enhanced with the ultrafine fraction. This observation was confirmed with boehmite NPs synthesized at the laboratory scale, with well-defined and tightly controlled physico-chemical features: toxicity was increased when NPs were dispersed. In conclusion, the agglomerates size of boehmite NPs has a major impact on their toxicity, highlighting the need to study not only raw industrial powders containing NPs but also the ultrafine fractions representative of respirable particles.

  5. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectancemore » spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.« less

  6. Infrared reflectance spectra: effects of particle size, provenance and preparation

    NASA Astrophysics Data System (ADS)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, J. E.; Johnson, Timothy J.

    2014-10-01

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 - 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  7. Structural differences existing in bulk and nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}: Investigated by experimental and theoretical methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigam, Sandeep, E-mail: snigam@barc.gov.in; Sudarsan, V., E-mail: vsudar@barc.gov.in; Majumder, C.

    Present manuscript deals with the structural changes associated with transformation of bulk Y{sub 2}Sn{sub 2}O{sub 7} into nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}. Nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7} both undoped and Eu{sup 3+} doped, were prepared at a relatively low temperature (700 °C) and investigated for their structural and luminescence properties and compared them with that of bulk Y{sub 2}Sn{sub 2}O{sub 7} sample prepared by the solid-state method at 1300 °C. Significant distortion in geometry and electron density distribution around Y{sup 3+}/Eu{sup 3+} ions in nanoparticles are confirmed from the Rietveld refinement of the powder X-ray diffraction patterns andmore » theoretical calculations based on the density functional theory (DFT). The SnO{sub 6} octahedron in Y{sub 2}Sn{sub 2}O{sub 7} is more expanded in nanoparticles compared to bulk. Iso-surface density distribution reveals that while bulk sample shows typical ionic feature in Y/Eu--O bonds, nanoparticle sample shows sharing of electron density along bond axis pertaining to covalent character. These inferences are further supported by the doped Eu{sup 3+} luminescence and calculated Ω{sub 2} and Ω{sub 4} parameters. - Graphical abstract: YO{sub 8} scalenohedron present in bulk and nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}.Variation of the electron density around Y{sup 3+} ions in YO{sub 8} polyhedron is also shown in bulk and nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}. The difference in the extent of ionic/covalent nature of the Y--O bond is clearly seen the contour plot of electron density. Highlights: ► YO{sub 8} scalenohedron is axially and equatorially distorted in Y{sub 2}Sn{sub 2}O{sub 7} nanoparticles. ► Enlargement of SnO{sub 6} octahedron in nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7} compared to bulk. ► Less symmetric charge distribution around Y{sup 3+} ions in Y{sub 2}Sn{sub 2}O{sub 7} nanoparticles.« less

  8. Preparation of glass-ceramics from molten steel slag using liquid-liquid mixing method.

    PubMed

    Zhang, Kai; Liu, Jianwen; Liu, Wanchao; Yang, Jiakuan

    2011-10-01

    A novel approach to prepare glass-ceramics from molten steel slag (MSS) was proposed. In laboratory, the water-quenched steel slag was melted at 1350 °C to simulate the MSS. A mixture of additive powders in wt.% (55 quartz powder, 5 Na2O, 16 emery powder, 15 CaO, 8 MgO, 1 TiO2) were melted into liquid at 1350 °C separately. Then the MSS and the molten additives were mixed homogeneously in order to obtain parent glass melt. The proportion of MSS in the melt was 50 wt.%. The melt was subsequently cast, annealed, heat-treated and transformed into glass-ceramics. Their microstructure and crystallization behavior were analyzed. The samples exhibited excellent properties and displayed bulk crystallization. The major crystallized phase was diopside ((Fe0.35Al0.20Mg0.44)Ca0.96(Fe0.08Si0.70Al0.20)2O6.12), which was uniformly distributed in the microstructure. The novel approach may help iron and steel industry achieve zero disposal of steel slag with utilization of the heat energy of the MSS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Detonation models of fast combustion waves in nanoscale Al-MoO3 bulk powder media

    NASA Astrophysics Data System (ADS)

    Shaw, Benjamin D.; Pantoya, Michelle L.; Dikici, Birce

    2013-02-01

    The combustion of nanometric aluminum (Al) powder with an oxidiser such as molybdenum trioxide (MoO3) is studied analytically. This study focuses on detonation wave models and a Chapman-Jouget detonation model provides reasonable agreement with experimentally-observed wave speeds provided that multiphase equilibrium sound speeds are applied at the downstream edge of the detonation wave. The results indicate that equilibrium sound speeds of multiphase mixtures can play a critical role in determining speeds of fast combustion waves in nanoscale Al-MoO3 powder mixtures.

  10. Microstructure and Shape Memory Characteristics of Powder-Metallurgical-Processed Ti-Ni-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yeon-Wook; Chung, Young-Soo; Choi, Eunsoo; Nam, Tae-Hyun

    2012-08-01

    Even though Ti-Ni-Cu alloys have attracted a lot of attention because of their high performance in shape memory effect and decrease in thermal and stress hysteresis compared with Ti-Ni binary alloys, their poor workability restrains the practical applications of Ti-Ni-Cu shape memory alloys. Consolidation of Ti-Ni-Cu alloy powders is useful for the fabrication of bulk near-net-shape shape memory alloy. Ti50Ni30Cu20 shape memory alloy powders were prepared by gas atomization, and the sieved powders with the specific size range of 25 to 150 μm were chosen for this study. The evaluation of powder microstructures was based on a scanning electron microscope (SEM) examination of the surface and the polished and etched powder cross sections. The typical images showed cellular/dendrite morphology and high population of small shrinkage cavities at intercellular regions. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis showed that a B2-B19 one-step martensitic transformation occurred in the as-atomized powders. The martensitic transformation start temperature (Ms) of powders ranging between 25 and 50 μm was 304.5 K (31.5 °C). The Ms increased with increasing powder size. However, the difference of Ms in the as-atomized powders ranging between 25 and 150 μm was only 274 K (1 °C). A dense cylindrical specimen of 10 mm diameter and 15 mm length were fabricated by spark plasma sintering (SPS) at 1073 K (800 °C) and 10 MPa for 20 minutes. Then, this bulk specimen was heat treated for 60 minutes at 1123 K (850 °C) and quenched in ice water. The Ms of the SPS specimen was 310.5 K (37.5 °C) whereas the Ms of conventionally cast ingot is found to be as high as 352.7 K (79.7 °C). It is considered that the depression of the Ms in rapidly solidified powders is ascribed to the density of dislocations and the stored energy produced by rapid solidification.

  11. Efficiency and Accuracy in Thermal Simulation of Powder Bed Fusion of Bulk Metallic Glass

    NASA Astrophysics Data System (ADS)

    Lindwall, J.; Malmelöv, A.; Lundbäck, A.; Lindgren, L.-E.

    2018-05-01

    Additive manufacturing by powder bed fusion processes can be utilized to create bulk metallic glass as the process yields considerably high cooling rates. However, there is a risk that reheated material set in layers may become devitrified, i.e., crystallize. Therefore, it is advantageous to simulate the process to fully comprehend it and design it to avoid the aforementioned risk. However, a detailed simulation is computationally demanding. It is necessary to increase the computational speed while maintaining accuracy of the computed temperature field in critical regions. The current study evaluates a few approaches based on temporal reduction to achieve this. It is found that the evaluated approaches save a lot of time and accurately predict the temperature history.

  12. Unusual phonon density of states and response to superconducting transition in In-doped topological crystalline insulator Pb 0.5Sn 0.5Te

    DOE PAGES

    Ran, Keijing; Tranquada, John M.; Zhong, Ruidan; ...

    2018-06-30

    Here, we present inelastic neutron scattering results of phonons in (Pb 0.5Sn 0.5) 1–xIn xTe powders, with x = 0, and 0.3.The x = 0 sample is a topological crystalline insulator, and the x = 0 . 3 sample is a superconductor with a bulk superconducting transition temperature T c of 4.7 K. In both samples, we observe unexpected van Hove singularities in the phonon density of states at energies of 1– 2.5 meV, suggestive of local modes. On cooling the superconducting sample through T c, there is an enhancement of these features for energies below twice the superconducting-gap energy.more » We further note that the superconductivity in (Pb 0.5Sn 0.5) 1–xIn xTe occurs in samples with normal-state resistivities of order 10 mΩ cm, indicative of bad-metal behavior. Calculations based on density functional theory suggest that the superconductivity is easily explainable in terms of electron-phonon coupling; however, they completely miss the low-frequency modes and do not explain the large resistivity. While the bulk superconducting state of (Pb 0.5Sn 0.5) 0.7In 0.3Te appears to be driven by phonons, a proper understanding will require ideas beyond simple BCS theor« less

  13. Unusual phonon density of states and response to superconducting transition in In-doped topological crystalline insulator Pb 0.5Sn 0.5Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ran, Keijing; Tranquada, John M.; Zhong, Ruidan

    Here, we present inelastic neutron scattering results of phonons in (Pb 0.5Sn 0.5) 1–xIn xTe powders, with x = 0, and 0.3.The x = 0 sample is a topological crystalline insulator, and the x = 0 . 3 sample is a superconductor with a bulk superconducting transition temperature T c of 4.7 K. In both samples, we observe unexpected van Hove singularities in the phonon density of states at energies of 1– 2.5 meV, suggestive of local modes. On cooling the superconducting sample through T c, there is an enhancement of these features for energies below twice the superconducting-gap energy.more » We further note that the superconductivity in (Pb 0.5Sn 0.5) 1–xIn xTe occurs in samples with normal-state resistivities of order 10 mΩ cm, indicative of bad-metal behavior. Calculations based on density functional theory suggest that the superconductivity is easily explainable in terms of electron-phonon coupling; however, they completely miss the low-frequency modes and do not explain the large resistivity. While the bulk superconducting state of (Pb 0.5Sn 0.5) 0.7In 0.3Te appears to be driven by phonons, a proper understanding will require ideas beyond simple BCS theor« less

  14. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    DOE PAGES

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa 2Ca 2Cu 3O 9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher T c = 125 K after annealing the polycrystalline material in either flowing Ar+4% H 2, or N 2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Duemore » to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less

  15. Fabrication of thermoelectric modules with Mg2Si and SrRuO3 by the spark plasma sintering method

    NASA Astrophysics Data System (ADS)

    Nishio, Keishi; Sawada, Yukie; Arai, Koya; Sakamoto, Tatsuya; Kogo, Yasuo; Iida, Tsutomu

    2012-06-01

    Thermoelectric (TE) modules with a π structure were fabricated by the spark plasma sintering method. The modules were composed of SrRuO3 for the p-type semiconductor, Mg2Si for the n-type semiconductor, and Ni for the electrodes. The SrRuO3 powder was synthesized using the metal-citric-acid complex decomposition method. Mg2Si bulk prepared by meltquenching was ground into powder and sieved to a particle size of 75 μm or less. To obtain the sintered body of SrRuO3, the powder was sintered using spark plasma sintering (SPS). For SPS, the precursor powder was placed in a graphite die and kept at that temperature under a uni-axial pressure of 50 MPa and in vacuum conditions (less than 7 Pa). After sintering by SPS, the ceramic sample was annealed at 1573K in air because the SrRuO3 was slightly reduced during the SPS process in the graphite die. These TE sintered bodies were cut and polished. The dimensions of the samples used for fabrication of the p-type parts of the TE modules were 4.50×9.50×7.45 mm3 and those for the n-type parts were 5.50×11.45×7.45 mm3. Pressed Ni powder was put between these TE materials and the Ni electrodes in order to connect them together, and electrical power was passed through the electrodes from the SPS equipment. The output power under temperature differences ΔT ranging from 100 to 500 K was measured. The open-circuit voltage, maximum output current and maximum output power increased with increasing temperature difference ΔT. The open-circuit voltage of the single module was 91.0 mV, and the maximum output current and maximum output power were 5000 mA and 110 mW at ΔT=500 K, respectively.

  16. Development of high T(sub c) (greater than 110 K) Bi, Tl, and Y-based materials as superconducting circuit elements

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.; Grabert, Gregory; Gilmour, Phillip

    1992-01-01

    Experimental work has continued on the development and characterization of bulk and hot pressed powders and tapecast materials in the Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O systems. A process for producing warp-free, sintered, superconducting tapes of Bi composition Bi2Sr2Ca2Cu3O(x) with a mixed oxide process was established. This procedure required a triple calcination at 830 C for 24 hours and sintering at 845 C from 20 to 200 hours. Hot pressing the triple calcined powder at 845 C for 6 hours at 5000 psi yielded a dense material which on further heat treatment at 845 C for 24 hours exhibited a Tc of 108.2 K. A further improvement in the processing of the bismuth materials was achieved via a chemical coprecipitation process wherein the starting nitrate materials were coprecipitated with oxalic acid, thus yielding a more chemically homogeneous, more reactive powder. With the coprecipitated powders, only one calcine at 830 C for 12 hours and a final sinter at 845 C for 30 hours was sufficient to produce a bulk superconducting material with a Tc of 108.4 K. SAFIRE-type grounding links were successfully fabricated from sintered, tapecast, coprecipitated BSCCO 2223 powders. Compositional and processing investigations were continued on the Tl-based superconductors. Manganese and lithium additions and sintering temperature and time were examined to determine their influence on superconducting properties. It was found that lithium substitutions for copper enhance the transition temperatures while manganese additions produced deleterious effects on the superconducting properties. A suitable procedure for producing reproducible bulk and tapecast material of Tl composition Tl2Ba2Ca2Cu3O(x) was developed and used in fabricating uniform superconducting tapes. The highest transition temperature for Tl-based tapes was measured at 110.2 K. Thallium superconducting SAFIRE-type grounding links were fabricated from the tapes.

  17. Densification behavior, nanocrystallization, and mechanical properties of spark plasma sintered Fe-based bulk amorphous alloys

    NASA Astrophysics Data System (ADS)

    Singh, Ashish Kumar

    Fe-based amorphous alloys are gaining increasing attention due to their exceptional wear and corrosion resistance for potential structural applications. Two major challenges that are hindering the commercialization of these amorphous alloys are difficulty in processing of bulk shapes (diameter > 10 mm) and lack of ductility. Spark plasma sintering (SPS) is evolving as a promising technique for processing bulk shapes of amorphous and nanocrystalline materials. The objective of this work is to investigate densification behavior, nanocrystallization, and mechanical properties of SPS sintered Fe-based amorphous alloys of composition Fe48Cr15Mo14Y2C15B6. SPS processing was performed in three distinct temperature ranges of amorphous alloys: (a) below glass transition temperature (Tg), (b) between Tg and crystallization temperature (Tx), and (c) above Tx. Punch displacement data obtained during SPS sintering was correlated with the SPS processing parameters such as temperature, pressure, and sintering time. Powder rearrangement, plastic deformation below T g, and viscous flow of the material between Tg and Tx were observed as the main densification stages during SPS sintering. Micro-scale temperature distributions at the point of contact and macro-scale temperature distribution throughout the sample during SPS of amorphous alloys were modeled. The bulk amorphous alloys are expected to undergo structural relaxation and nanocrystallization during SPS sintering. X-ray diffraction (XRD), small angle neutron scattering (SANS), and transmission electron microscopy (TEM) was performed to investigate the evolution of nanocrystallites in SPS sintered Fe-based bulk amorphous alloys. The SANS analysis showed significant scattering for the samples sintered in the supercooled region indicating local structural and compositional changes with the profuse nucleation of nano-clusters (~4 nm). Compression tests and microhardness were performed on the samples sintered at different temperatures ranging from 570 °C to 800 °C. Maximum compression strength (1.1+/-0.2 MPa) was obtained for the samples sintered in the supercooled region. Effects of crystallization on tribological behavior of sintered samples were also investigated where crystallization resulted in increase in wear resistance. Laser surface hardening of SPS sintered amorphous samples were performed. Depending on the processing parameters, the laser surface irradiation causes structural relaxation and nanocrystallization, resulting in surface hardening.

  18. Influence of Ag, Cd or Pb Addition on Electrical and Dielectric Properties of Bulk Glassy Se-Ge

    NASA Astrophysics Data System (ADS)

    El-Metwally, E. G.; Shakra, A. M.

    2018-05-01

    Bulk glassy samples of Se0.7Ge0.3 and Se0.7Ge0.25 X 0.05 (X = Ag, Cd or Pb) chalcogenide glass have been prepared by melt-quenching method. The studied compositions were examined in powder form by x-ray diffraction analysis. The direct-current (dc) conductivity σ_{{dc}} was measured for bulk samples in the temperature range from 303 K to 433 K, revealing enhancement with temperature for all samples. The results indicate two values of activation energy ( Δ E_{{σ1 }} and Δ E_{{σ2 }} ) due to two conduction mechanisms. Measurements of the alternating-current (ac) conductivity σ_{{ac}} ( ω ) and dielectric properties for bulk samples were carried out in the temperature range from 303 K to 433 K and frequency range from 1 kHz to 1 MHz. The ac conductivity σ_{{ac}} ( ω ) was temperature dependent and proportional to ωS , where S is the frequency exponent, which reduced with rising temperature, and ω is the angular frequency. These results are discussed based on a correlated barrier hopping model. The calculated values of the maximum height of the barrier W_{{M}} for each composition are consistent with carrier hopping over a potential barrier. The density of localized states N( {E_{{F}} } ) at the Fermi level lay in the range from 1019 eV-1 cm-3 to 1020 eV-1 cm-3, and increased with temperature. The dielectric constant ɛ1 ( ω ) and loss ɛ2 ( ω ) increased with temperature but decreased with frequency. The values of σ_{{dc}} , σ_{{ac}} ( ω ) , ɛ1 ( ω ) , and ɛ2 ( ω ) increased with temperature and with addition of Ag, Cd or Pb. The observed increase was greater for Se0.7Ge0.25Pb0.05 than for Se0.7Ge0.25Cd0.05, which was greater than for Se0.7Ge0.25Ag0.05.

  19. Low Young's modulus Ti-based porous bulk glassy alloy without cytotoxic elements.

    PubMed

    Nicoara, M; Raduta, A; Parthiban, R; Locovei, C; Eckert, J; Stoica, M

    2016-05-01

    A new a biocompatible Ti42Zr40Ta3Si15 (atomic %) porous bulk glassy alloy was produced by combination of rapid solidification and powder metallurgy techniques. Amorphous alloy ribbons were fabricated by melt spinning, i.e. extremely fast quenching the molten alloy with 10(6)K/s from T=1973K down to room temperature. The ribbons were then cryo-milled at liquid nitrogen temperature in order to produce powder, which was subsequently hot pressed. The resulting thick pellets have a porosity of about 14vol%, a high compression strength of 337MPa and a Young's modulus of about E=52GPa, values very close to those characteristic of cortical bone. Moreover, the morphology of the samples is very similar to that of cortical bone. The biocompatibility, which is due to the absence of any toxic element in the chemical composition, together with the suitable mechanical behavior, make these samples promising for orthopedic and dentistry applications. Ti-based alloys are nowadays the standard solution for biomedical implants. However, both the conventional crystalline and amorphous alloys have higher rigidity as the human bone, leading to the damage of the bone at the interface, and contains harmful elements like vanadium, aluminum, nickel or beryllium. The hierarchical porous structures based on glassy alloys with biocompatible elements is a much better alternative. This work presents for the first time the manufacturing of such porous bodies starting from Ti-based amorphous alloy ribbons, which contains only non-harmful elements. The morphology and the compressive mechanical properties of these new products are analyzed in regard with those characteristic to the cortical bone. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. 75 FR 40843 - International Conference on Harmonisation; Draft Guidance on Q4B Evaluation and Recommendation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... Texts for Use in the International Conference on Harmonisation Regions; Annex 13 on Bulk Density and... guidance entitled ``Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the ICH Regions... evaluation of the Bulk Density and Tapped Density of Powders General Chapter harmonized text from each of the...

  1. Twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+x studied by neutron powder diffraction and gas volumetry

    NASA Astrophysics Data System (ADS)

    Poulsen, H. F.; Andersen, N. H.; Lebech, B.

    1991-02-01

    We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+ x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes and 250 and 350Å, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J=J 0 exp( {-t}/{τ}) despite a rather broad particle size distribution. At higher temperatures, τ is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective bulk oxygen in-diffusion. All our results may be interpreted in terms of the 2D ASYNNNI model description of the oxygen basal plane ordering, and they suggest that recent first principles interaction parameters should be modified.

  2. Developing Characterization Procedures for Qualifying both Novel Selective Laser Sintering Polymer Powders and Recycled Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajric, Sendin

    Selective laser sintering (SLS) is an additive technique which is showing great promise over conventional manufacturing techniques. SLS requires certain key material properties for a polymer powder to be successfully processed into an end-use part, and therefore limited selection of materials are available. Furthermore, there has been evidence of a powder’s quality deteriorating following each SLS processing cycle. The current investigation serves to build a path forward in identifying new SLS powder materials by developing characterization procedures for identifying key material properties as well as for detecting changes in a powder’s quality. Thermogravimetric analyses, differential scanning calorimetry, and bulk densitymore » measurements were investigated.« less

  3. Magnetic properties of Mn0.1Mg0.2TM0.7Fe2O4 (TM = Zn, Co, or Ni) prepared by hydrothermal processes: The effects of crystal size and chemical composition

    NASA Astrophysics Data System (ADS)

    Nhlapo, T. A.; Msomi, J. Z.; Moyo, T.

    2018-02-01

    Nano-crystalline Zn-, Co-, and Ni-substituted Mn-Mg ferrites were prepared by hydrothermal process and annealed at 1100 °C. Annealing conditions are critical on the crystalline phase. TEM and XRD data reveal particle sizes between 8 nm and 15 nm for the as-prepared fine powders, which increase to about 73 nm after sintering at 1100 °C. Mӧssbauer spectra show well resolved magnetic splitting in bulk samples. The as-prepared fine powders show weak hyperfine splitting and broad central doublets associated with fine particles. Magnetization data reveal a high coercive field at about 300 K of about 945 Oe in the Co-based nanosized oxide, which reduces to about 360 Oe after thermal annealing at 1100 °C. The magnetization curves of Zn- and Ni-based samples show much lower coercive fields indicative of superparamagnetic nanoparticles. The crystallite size and chemical composition have significant effects on the properties of Mn0.1Mg0.2(Zn,Co,Ni)0.7Fe2O4 investigated.

  4. Fabrication and study of double sintered TiNi-based porous alloys

    NASA Astrophysics Data System (ADS)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  5. The Canadian space agency planetary analogue materials suite

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher

    2015-12-01

    The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the definition, development and testing of new analytical instruments for use in planetary missions, as well as possible calibration and ground-truthing of remote sensing data sets. These materials may also be useful as reference materials for cross-calibration between different instruments and laboratories. Comparison of the analytical data for selected samples is useful for highlighting the relative strengths, weaknesses and synergies of different analytical techniques.

  6. Evolution of thermoelectric performance for (Bi,Sb){sub 2}Te{sub 3} alloys from cutting waste powders to bulks with high figure of merit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Xi'an, E-mail: groupfxa@163.com; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081; School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081

    Bi{sub 2}Te{sub 3} based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi{sub 2}Te{sub 3} based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb){sub 2}Te{sub 3} alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb){sub 2}Te{sub 3} alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used inmore » this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi{sub 0.36}Sb{sub 1.64}Te{sub 3} and Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi{sub 2}Te{sub 3} based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi{sub 2}Te{sub 3} based wastes were directly selected as raw materials for TE alloys. • Contaminants from cutting fluid and oxides could be effectively removed. • Bulk Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} with ZT of 1.16 was obtained from Bi{sub 2}Te{sub 3} based wastes. • Different from hydrometallurgy, the recycling method introduced here was green. • Directly recycling Bi{sub 2}Te{sub 3} wastes can lower raw material costs of manufacturers.« less

  7. Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grenier, Antonin; Liu, Hao; Wiaderek, Kamila M.

    2017-08-15

    Through operando synchrotron powder X-ray diffraction (XRD) analysis of layered transition metal oxide electrodes of composition LiNi0.8Co0.15Al0.05O2 (NCA), we decouple the intrinsic bulk reaction mechanism from surface-induced effects. For identically prepared and cycled electrodes stored in different environments, we demonstrate that the intrinsic bulk reaction for pristine NCA follows solid-solution mechanism, not a two-phase as suggested previously. By combining high resolution powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and surface sensitive X-ray photoelectron spectroscopy (XPS), we demonstrate that adventitious Li2CO3 forms on the electrode particle surface during exposure to air, through reaction with atmospheric CO2. This surfacemore » impedes ionic and electronic transport to the underlying electrode, with progressive erosion of this layer during cycling giving rise to different reaction states in particles with an intact vs an eroded Li2CO3 surface-coating. This reaction heterogeneity, with a bimodal distribution of reaction states, has previously been interpreted as a “two-phase” reaction mechanism for NCA, as an activation step that only occurs during the first cycle. Similar surface layers may impact the reaction mechanism observed in other electrode materials using bulk probes such as operando powder XRD.« less

  8. Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arjunan, S.; Department of Physics, Presidency College, Chennai 600005; Mohan Kumar, R.

    2008-08-04

    L-arginine trifluoroacetate, an organic nonlinear optical material, has been synthesized from aqueous solution. Bulk single crystal of dimension 57 mm x 5 mm x 3 mm has been grown by temperature lowering technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown L-arginine trifluoroacetate crystal. Linear optical property of the grown crystal has been studied by UV-vis spectrum. Dielectric response of the L-arginine trifluoroacetate crystal was analysed for different frequencies and temperatures in detail. Microhardness study on the sample reveals that the crystal possesses relatively higher hardness compared to many organic crystals. Thermal analyses confirmed that the L-argininemore » trifluoroacetate material is thermally stable upto 212 deg. C. The etching studies have been performed to assess the perfection of the L-arginine trifluoroacetate crystal. Kurtz powder second harmonic generation test confirms the nonlinear optical properties of the as-grown L-arginine trifluoroacetate crystal.« less

  9. Surface modification of titania powder P25 with phosphate and phosphonic acids--effect on thermal stability and photocatalytic activity.

    PubMed

    Djafer, Lahcène; Ayral, André; Boury, Bruno; Laine, Richard M

    2013-03-01

    Phosphorus is frequently reported as a doping element for TiO(2) as photocatalyst; however, the previously reported methods used to prepare P-doped TiO(2) do not allow control over the location of the phosphorus either in the bulk or at the surface or both. In this study, we report on the surface modification of Evonik P25 with phosphonic (H(3)PO(3)) and octylphosphonic acid [C(8)H(17)-PO(OH)(2)], done to limit the introduction of phosphorus only to the photocatalyst surface. The effect of this element on the thermal behavior and photocatalytic properties is reported through characterization using elemental analyses, solid state (31)P NMR, X-ray powder diffraction, N(2) porosimetry, dilatometry, etc. Thus, the objective of the work reported here is to focus on the role(s) that phosphorus plays only at TiO(2) crystallite surfaces. For comparison, other samples were treated with phosphoric acid. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Pyrolysis of tyre powder using microwave thermogravimetric analysis: Effect of microwave power.

    PubMed

    Song, Zhanlong; Yang, Yaqing; Zhou, Long; Zhao, Xiqiang; Wang, Wenlong; Mao, Yanpeng; Ma, Chunyuan

    2017-02-01

    The pyrolytic characteristics of tyre powder treated under different microwave powers (300, 500, and 700 W) were studied via microwave thermogravimetric analysis. The product yields at different power levels were studied, along with comparative analysis of microwave pyrolysis and conventional pyrolysis. The feedstock underwent preheating, intense pyrolysis, and final pyrolysis in sequence. The main and secondary weight loss peaks observed during the intense pyrolysis stage were attributed to the decomposition of natural rubbers and synthetic rubbers, respectively. The total mass loss rates, bulk temperatures, and maximum temperatures were distinctively higher at higher powers. However, the maximum mass loss rate (0.005 s -1 ), the highest yields of liquid product (53%), and the minimum yields of residual solid samples (43.83%) were obtained at 500 W. Compared with conventional pyrolysis, microwave pyrolysis exhibited significantly different behaviour with faster reaction rates, which can decrease the decomposition temperatures of both natural and synthetic rubber by approximately 110 °C-140 °C.

  11. 27 CFR 555.201 - General.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks and articles pyrotechnic. (e) The provisions of § 555.202(a) classifying flash powder and bulk salutes as high explosives...

  12. 27 CFR 555.201 - General.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks and articles pyrotechnic. (e) The provisions of § 555.202(a) classifying flash powder and bulk salutes as high explosives...

  13. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1993-01-01

    During the past three months, significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: textile composites from powder-coated towpreg; role of surface coating in braiding; prepregger hot sled operation; ribbonizing powder-impregenated towpreg; textile composites from powder-coated towpreg; role of bulk factor powder curtain prepreg process advanced tow placement (ATP) open-section part warpage control. During the coming months research will be directed toward further development of the new powder curtain prepregging method and on ways to customize dry powder towpreg for textile and robotic applications in aircraft part fabrication. Studies of multi-tow powder prepregging and ribbon preparation will be conducted in conjunction with continued development of prepregging technology and the various aspects of composite part fabrication using customized towpreg. Also, during the period ahead work will continue on the analysis of the performance of the new solution prepregger.

  14. Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping

    NASA Astrophysics Data System (ADS)

    Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M.; Hossain, Al; Acar, S.; Kim, Jung Ho; Xue Dou, Shi

    2015-05-01

    High performance MgB2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB2 grains with a high level of homogeneous carbon doping were formed in these MgB2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (Jc) in the as-prepared samples. In particular, the value of Jc for the carbon-coated (Mg1.1B2)Cu0.05 sample prepared here is even above 1 × 105 A cm-2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB2 bulks or wires with excellent Jc, as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive.

  15. Mechanical Properties of Mg2Si/Mg Composites via Powder Metallurgy Process

    NASA Astrophysics Data System (ADS)

    Muramatsu, Hiroshi; Kondoh, Katsuyoshi; Yuasa, Eiji; Aizawa, Tatsuhiko

    The mechanical properties of the Mg2Si/Mg composites solid-state synthesized from the mixed Mg-Si powders have been investigated. The macro-hardness (HRE) and the tensile strength of the composites increase with increasing the Si content and decreasing the Si size. The particle size of the synthesized Mg2Si depends on the initial Si size; the mechanical properties of the Mg2Si/Mg composite are remarkably improved by using fine Si particles or by decreasing the grain size of Mg matrix grains when the powder mixture was prepared via bulk mechanical alloying process.

  16. SI-Traceable Water Content Measurements in Solids, Bulks, and Powders

    NASA Astrophysics Data System (ADS)

    Østergaard, Peter; Nielsen, Jan

    2018-01-01

    Methods such as Karl Fischer titration and Loss-on-Drying, commonly used for estimating moisture content in samples, have been in existence for many years, but have difficulties obtaining a direct calibration chain toward water content. In recognition of this challenge, the joint research project, METefnet, was funded by the European Metrology Research Programme in 2012. The goal of METefnet is to establish a European metrology infrastructure for water content measurement and to develop primary standards for unambiguous determination of water mass fraction in materials. Here, we describe the primary standard developed by Danish Technological Institute in METefnet. This standard establishes traceability of the water content of a sample to dewpoint temperature. The standard only measures water, and the measurement result is not affected by other components.

  17. SM-ND Age and REE Systematics of Larkman Nunatek 06319: Closed System Fractional Crystallization of a Shergottite Magma

    NASA Technical Reports Server (NTRS)

    Shafer, J. T.; Brandon, A. D.; Lapen T. J.; Righter, M.; Peslier, A. H.

    2010-01-01

    Sm-Nd isotopic data were collected on mineral separates and bulk rock powders of LAR 06319, yielding an age of 180+/-13 Ma (2(sigma)). This age is concordant with the Lu-Hf age (197+/-29 Ma, [1]) determined in conjunction with these data and the Sm-Nd age (190+/-26 Ma) of Shih et al., 2009 [2]. The Sm-Nd data form at statistically significant isochron (Fig. 1) that is controlled largely by leachate-residue pairs (samples with the R suffix are residues after leaching in cold 2N HCl for 10 minutes).

  18. Spin-liquid ground state in the frustrated J 1 - J 2 zigzag chain system BaTb 2 O 4

    DOE PAGES

    Aczel, A. A.; Li, L.; Garlea, V. O.; ...

    2015-07-13

    We have investigated polycrystalline samples of the zigzag chain system BaTb 2O 4 with magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation measurements. No magnetic transitions are observed in the bulk measurements, while neutron diffraction reveals low-temperature, short-range, intrachain magnetic correlations between Tb 3+ ions. Muon spin relaxation measurements indicate that these correlations are dynamic, as the technique detects no signatures of static magnetism down to 0.095 K. Altogether these findings provide strong evidence for a spin liquid ground state in BaTb 2O 4.

  19. Micro-feeding and dosing of powders via a small-scale powder pump.

    PubMed

    Besenhard, M O; Fathollahi, S; Siegmann, E; Slama, E; Faulhammer, E; Khinast, J G

    2017-03-15

    Robust and accurate powder micro-feeding (<100mg/s) and micro-dosing (<5 mg) are major challenges, especially with regard to regulatory limitations applicable to pharmaceutical development and production. Since known micro-feeders that yield feed rates below 5mg/s use gravimetric feeding principles, feed rates depend primarily on powder properties. In contrast, volumetric powder feeders do not require regular calibration because their feed rates are primarily determined by the feeder's characteristic volume replacement. In this paper, we present a volumetric micro-feeder based on a cylinder piston system (i.e., a powder pump), which allows accurate micro-feeding and feed rates of a few grams per hours even for very fine powders. Our experimental studies addressed the influence of cylinder geometries, the initial conditions of bulk powder, and the piston speeds. Additional computational studies via Discrete Element Method simulations offered a better understanding of the feeding process, its possible limitations and ways to overcome them. The powder pump is a simple yet valuable tool for accurate powder feeding at feed rates of several orders of magnitude. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Preparation, Characterization and Performances of Powdered Polycarboxylate Superplasticizer with Bulk Polymerization.

    PubMed

    Liu, Xiao; Wang, Ziming; Zheng, Yunsheng; Cui, Suping; Lan, Mingzhang; Li, Huiqun; Zhu, Jie; Liang, Xu

    2014-08-29

    A polycarboxylate superplasticizer (PCE) was synthesized in a non-solvent system with bulk polymerization and then was pulverized into powdered form to achieve a rapid transportation and convenient preparation. PCE synthesized by using isopentenyl polyethylene glycol (TPEG) or isobutenyl polyethylene glycol (IPEG) as a macromonomer exhibited the best fluidities and retaining properties at 80 °C and 75 °C, respectively. Besides, azobisisobutyronitrile (AIBN) was suitable as an initiator, and the fumaric acid was suitable as the third monomer. The test results of ¹H nuclear magnetic resonance (¹H NMR) confirmed the occurrences of polymerization, and the measurement results of molecular weight and distribution showed that PCE molecular weight characteristics were in accordance with their fluidity properties in cement paste. The application performances in cement showed that PCEs with the best paste fluidity retentions had the longest final setting time and the shortest setting time interval, and the PCEs with good fluidity properties can obviously delay the hydration process and lower the hydration heat. Accordingly, this is a novel, energy-saving and economical method to prepare powdered PCE in the field of concrete admixtures.

  1. Preparation, Characterization and Performances of Powdered Polycarboxylate Superplasticizer with Bulk Polymerization

    PubMed Central

    Liu, Xiao; Wang, Ziming; Zheng, Yunsheng; Cui, Suping; Lan, Mingzhang; Li, Huiqun; Zhu, Jie; Liang, Xu

    2014-01-01

    A polycarboxylate superplasticizer (PCE) was synthesized in a non-solvent system with bulk polymerization and then was pulverized into powdered form to achieve a rapid transportation and convenient preparation. PCE synthesized by using isopentenyl polyethylene glycol (TPEG) or isobutenyl polyethylene glycol (IPEG) as a macromonomer exhibited the best fluidities and retaining properties at 80 °C and 75 °C, respectively. Besides, azobisisobutyronitrile (AIBN) was suitable as an initiator, and the fumaric acid was suitable as the third monomer. The test results of 1H nuclear magnetic resonance (1H NMR) confirmed the occurrences of polymerization, and the measurement results of molecular weight and distribution showed that PCE molecular weight characteristics were in accordance with their fluidity properties in cement paste. The application performances in cement showed that PCEs with the best paste fluidity retentions had the longest final setting time and the shortest setting time interval, and the PCEs with good fluidity properties can obviously delay the hydration process and lower the hydration heat. Accordingly, this is a novel, energy-saving and economical method to prepare powdered PCE in the field of concrete admixtures. PMID:28788184

  2. [Studies on the brand traceability of milk powder based on NIR spectroscopy technology].

    PubMed

    Guan, Xiao; Gu, Fang-Qing; Liu, Jing; Yang, Yong-Jian

    2013-10-01

    Brand traceability of several different kinds of milk powder was studied by combining near infrared spectroscopy diffuse reflectance mode with soft independent modeling of class analogy (SIMCA) in the present paper. The near infrared spectrum of 138 samples, including 54 Guangming milk powder samples, 43 Netherlands samples, and 33 Nestle samples and 8 Yili samples, were collected. After pretreatment of full spectrum data variables in training set, principal component analysis was performed, and the contribution rate of the cumulative variance of the first three principal components was about 99.07%. Milk powder principal component regression model based on SIMCA was established, and used to classify the milk powder samples in prediction sets. The results showed that the recognition rate of Guangming milk powder, Netherlands milk powder and Nestle milk powder was 78%, 75% and 100%, the rejection rate was 100%, 87%, and 88%, respectively. Therefore, the near infrared spectroscopy combined with SIMCA model can classify milk powder with high accuracy, and is a promising identification method of milk powder variety.

  3. SYNTHESIS AND Zn2+ ION CONDUCTION OF A PEROVSKITE (La, Zn)TiO3

    NASA Astrophysics Data System (ADS)

    Mashiko, W.; Katsumata, T.; Inaguma, Y.

    (La,Zn)TiO3 was synthesized by an ion exchange method using ZnCl2 molten salt. By a powder X-ray diffraction, it was confirmed that perovskite structure was retained after ion exchange. The composition of ion exchanged sample was determined to be La0.55(6)Li0.064(4)Zn0.13(1)Ti1.0(1)O2.97 by ICP analysis, and the homogeneous distribution of Zn in this sample was confirmed by the scanning electron microscope (SEM). The bulk and total conductivity of the sample at the room temperature was measured to be 6.9 × 10-7 S·cm-1, 1.7 × 10-7 S·cm-1, respectively. The mobile species was confirmed to be Zn2+ by the electrolysis at 500°C.

  4. Application of GeO2 nanoparticle as electrically erasable memory and its photo catalytic behaviour

    NASA Astrophysics Data System (ADS)

    Seal, M.; Bose, N.; Mukherjee, S.

    2018-06-01

    Germanium oxide nanoparticle is synthesized from bulk GeO2 powder through hydrothermal technique. The structural characterization of the prepared sample is performed with x-ray Diffraction and Transmission Electron Microscope. From the PL emission spectra and x-ray photoelectron spectra, the existence of oxygen defects inside the sample is confirmed. Thermogravimetric (TG) analysis of the sample shows that there is no weight loss with increase in temperature instead of a very little weight gain. An estimation of Oxygen vacancy concentration is made from the amount of weight gain as measured during TG analysis. The sample is also characterized with PE loop tracer, which indicates that GeO2 nanoparticle is able to show hysteresis loop regarding variation of Polarization with electric field. Such phenomenon implies that the sample can be used as electrically erasable memory device. Further, GeO2 nanoparticle is also exploited as photo catalyst to degrade Methylene Blue (MB) solution in the presence of ultraviolet ray. This phenomenon is also explained with oxygen vacancy.

  5. Preparation, consolidation, and crystallization of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Holland, Troy

    Bulk metallic glasses (BMGs) have been widely researched over the last decade. Research has primarily focused on BMGs of differing compositions and conditions within 3 main subject areas: preparation, consolidation, and crystallization. This work endeavors to show the interrelationships among each area across several types of BMG. Two compositions of zirconium(Zr)-type BMGs were prepared by mechanical attrition using a high-energy ball mill. The thermal and x-ray diffraction show that by milling elemental powders it is possible to obtain metallic powders with a glassy nature. These powders were then consolidated using a novel, high current density hot press. Hot pressing by using a spark plasma sintering (SPS) device has shown itself to be very useful in consolidating hard to produce intermetallics and ceramics. By utilizing high current densities and extremely rapid heating rates, the consolidation of the Zr-type ball milled powders and a gas atomized iron(Fe)-type powder was achieved. Utilizing the Kissinger relationship between reaction temperatures and their heating rates allowed for higher peak consolidation temperatures without fully- or partially-devitrifying the powders. The current densities applied aid in the diffusion and thermodynamics of the devitrification reaction. This affect has had little to no previous research so it was necessary to determine the specific effects of applied currents upon the devitrification of BMGs. To determine the role of applied currents on crystallization, or devitrification, of BMGs required the application of differing currents at fixed annealing temperatures. Once this was achieved it was possible with small-angle neutron scattering (SANS), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM) to show that both the kinetics and thermodynamics of the devitrification reaction were affected.

  6. NRL Review, 2008

    DTIC Science & Technology

    2008-01-01

    submicron powders in situ. Facilities to process powder into bulk specimens by hot and cold isostatic pressing permit a variety of consolidation...two types of nanoparticles, (YxHo1–x)2O3 and Cu - Ba-Ho-Y (exact stoichiometry yet to be determined), are formed during the deposition process ... Properties by Tailor- ing Nanoparticles in Holmium-doped YBa 2 Cu 3 O 7-d Superconductors 187 Molecular Memory Circuits Using a Virus as a Template 189

  7. Synthesis and oxidation catalysis of [tris(oxazolinyl)borato]cobalt(II) scorpionates

    DOE PAGES

    Reinig, Regina R.; Mukherjee, Debabrata; Weinstein, Zachary B.; ...

    2016-04-28

    The reaction of CoCl 2·THF and thallium tris(4,4-dimethyl-2-oxazolinyl)phenylborate (TlTo M) in tetrahydrofuran (THF) provides To MCoCl (1) in 95 % yield; however, appropriate solvents and starting materials are required to favor 1 over two other readily formed side-products, (To M) 2Co (2) and {HTo M}CoCl 2 (3). ESR, NMR, FTIR, and UV/Vis spectroscopies were used to distinguish these cobalt(II) products and probe their electronic and structural properties. Even after the structures indicated by these methods were confirmed by X-ray crystallography, the spectroscopic identification of trace contaminants in the material was challenging. The recognition of possible contaminants in the synthesis ofmore » To MCoCl in combination with the paramagnetic nature of these complexes provided impetus for the utilization of X-ray powder diffraction to measure the purity of the To MCoCl bulk sample. Furthermore, the X-ray powder diffraction results provide support for the bulk-phase purity of To MCoCl in preparations that avoid 2 and 3. Thus, 1 is a precursor for new [tris(oxazolinyl)borato]cobalt chemistry, as exemplified by its reactions with KOtBu and NaOAc to give To MCoOtBu (4) and To MCoOAc (5), respectively. Compound 5 is a catalyst for the oxidation of cyclohexane with meta-chloroperoxybenzoic acid (mCPBA), and the rate constants and selectivity for cyclohexanol versus cyclohexanone and ϵ-caprolactone were assessed.« less

  8. Water dynamics of Ser-His-Glu-Cys-Asn powder and effects of moisture absorption on its chemical properties.

    PubMed

    Lin, Songyi; Xue, Peiyu; Yang, Shuailing; Li, Xingfang; Dong, Xiuping; Chen, Feng

    2017-08-01

    This study has elucidated moisture dynamics in the soybean peptide, Ser-His-Glu-Cys-Asn (SHECN) powder by using dynamic vapor sorption (DVS) and nuclear magnetic resonance (NMR). We also tried to investigate the effects of moisture absorption on the biological activity and chemical properties of SHECN with some effective methods such as mid-infrared (MIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). DVS results showed that the moisture absorption of SHECN could reach a maximum of 33%, and the SHECN powder after synthesis actually existed in a trihydrate state of SHECN.3H 2 O. Low-field NMR revealed that three water proportions including strong combined water, binding water and bulk water were involved in SHECN moisture absorption and absored water dominantly existed in the form of combined water. Magnetic resonance imaging (MRI) and MIR spectroscopy results indicated that moisture absorption could change the morphology and structure of SHECN. After moisture absorption at 50% and 75% relative humidity, 19 volatiles were identified by GC-MS analysis. Additionally, this study showed that a part of reductive groups in SHECN was oxidized and its antioxidant ability declined significantly (P < 0.05) after moisture absorption. Water absorbed into SHECN powder can significantly change its microstructure and cause its activity to decrease. We must prevent SHECN from absorbing moisture during storage because the water can accelerate the oxidation of samples and promote microbial reactions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Radioluminescence studies of colloidal oleate-capped β-Na(Gd,Lu)F4:Ln3+ nanoparticles (Ln = Ce, Eu, Tb).

    PubMed

    Cooper, Daniel R; Capobianco, John A; Seuntjens, Jan

    2018-04-26

    We report on the synthesis, characterization, and radioluminescence quantification of several new varieties of nanoparticles with the general composition β-NaLnF4, incorporating known luminescent activator/sensitizer pairs. Using Monte Carlo modeling to complement luminescence measurements, we have calculated the radioluminescence yields and intrinsic conversion efficiencies of colloidally-dispersed nanoparticles by comparison to an organic liquid scintillator. While five of the compositions had low to modest radioluminescence yields relative to bulk materials, colloidal β-Na(Lu0.65Gd0.2Tb0.15)F4 displayed a strong output of 39 460 photons per MeV absorbed, comparable to some of the best non-hygroscopic bulk crystal scintillators and X-ray phosphors such as Gd2O2S:Tb. Measurements of β-Na(Lu0.65Gd0.2Tb0.15)F4 powder samples revealed persistent luminescence as well as stable charge trapping, warranting further investigation.

  10. Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor

    NASA Astrophysics Data System (ADS)

    Artíñano, B.; Gómez-Moreno, F. J.; Pujadas, M.; Moreno, N.; Alastuey, A.; Querol, X.; Martín, F.; Guerra, A.; Luaces, J. A.; Basora, J.

    Bulk material handling can be a significant source of particles in harbor areas. The atmospheric impact of a number of loading/unloading activities of diverse raw materials has been assessed from continuous measurements of ambient particle concentrations recorded close to the emission sources. Two experimental campaigns have been carried out in the Tarragona port to document the impact of specific handling operations and bulk materials. Dusty bulk materials such as silica-manganese powder, tapioca, coal, clinker and lucerne were dealt with during the experiments. The highest impacts on ambient particle concentrations were recorded during handling of clinker. For this material and silica-manganese powder, high concentrations were recorded in the fine grain size (<2.5 μm). The lowest impacts on particulate matter concentrations were recorded during handling of tapioca and lucerne, mainly in the coarse grain size (2-5-10 μm). The effectiveness of several emission abatement measures, such as ground watering to diminish coal particle resuspension, was demonstrated to reduce ambient concentrations by up to two orders of magnitude. The importance of other good practices in specific handling operations, such as controlling the height of the shovel discharge, was also evidenced by these experiments. The results obtained can be further utilized as a useful experimental database for emission factor estimations.

  11. The structure and transformation of the nanomineral schwertmannite: a synthetic analog representative of field samples

    NASA Astrophysics Data System (ADS)

    French, Rebecca A.; Monsegue, Niven; Murayama, Mitsuhiro; Hochella, Michael F.

    2014-04-01

    The phase transformation of schwertmannite, an iron oxyhydroxide sulfate nanomineral synthesized at room temperature and at 75 °C using H2O2 to drive the precipitation of schwertmannite from ferrous sulfate (Regenspurg et al. in Geochim Cosmochim Acta 68:1185-1197, 2004), was studied using high-resolution transmission electron microscopy. The results of this study suggest that schwertmannite synthesized using this method should not be described as a single phase with a repeating unit cell, but as a polyphasic nanomineral with crystalline areas spanning less than a few nanometers in diameter, within a characteristic `pin-cushion'-like amorphous matrix. The difference in synthesis temperature affected the density of the needles on the schwertmannite surface. The needles on the higher-temperature schwertmannite displayed a dendritic morphology, whereas the needles on the room-temperature schwertmannite were more closely packed. Visible lattice fringes in the schwertmannite samples are consistent with the powder X-ray diffraction (XRD) pattern taken on the bulk schwertmannite and also matched d-spacings for goethite, indicating a close structural relationship between schwertmannite and goethite. The incomplete transformation from schwertmannite to goethite over 24 h at 75 °C was tracked using XRD and TEM. TEM images suggest that the sample collected after 24 h consists of aggregates of goethite nanocrystals. Comparing the synthetic schwertmannite in this study to a study on schwertmannite produced at 85 °C, which used ferric sulfate, reveals that synthesis conditions can result in significant differences in needle crystal structure. The bulk powder XRD patterns for the schwertmannite produced using these two samples were indistinguishable from one another. Future studies using synthetic schwertmannite should account for these differences when determining schwertmannite's structure, reactivity, and capacity to take up elements like arsenic. The schwertmannite synthesized by the Regenspurg et al. method produces a mineral that is consistent with the structure and morphology of natural schwertmannite observed in our previous study using XRD and TEM, making this an ideal synthetic method for laboratory-based mineralogical and geochemical studies that intend to be environmentally relevant.

  12. Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Melting

    PubMed Central

    Palousek, David; Pantelejev, Libor; Hoeller, Christian; Pichler, Rudolf; Tesicky, Lukas; Kaiser, Jozef

    2018-01-01

    This paper deals with various selective laser melting (SLM) processing strategies for aluminum 2618 powder in order to get material densities and properties close to conventionally-produced, high-strength 2618 alloy. To evaluate the influence of laser scanning strategies on the resulting porosity and mechanical properties a row of experiments was done. Three types of samples were used: single-track welds, bulk samples and samples for tensile testing. Single-track welds were used to find the appropriate processing parameters for achieving continuous and well-shaped welds. The bulk samples were built with different scanning strategies with the aim of reaching a low relative porosity of the material. The combination of the chessboard strategy with a 2 × 2 mm field size fabricated with an out-in spiral order was found to eliminate a major lack of fusion defects. However, small cracks in the material structure were found over the complete range of tested parameters. The decisive criteria was the elimination of small cracks that drastically reduced mechanical properties. Reduction of the thermal gradient using support structures or fabrication under elevated temperatures shows a promising approach to eliminating the cracks. Mechanical properties of samples produced by SLM were compared with the properties of extruded material. The results showed that the SLM-processed 2618 alloy could only reach one half of the yield strength and tensile strength of extruded material. This is mainly due to the occurrence of small cracks in the structure of the built material. PMID:29443912

  13. The effects of annealing temperature on the in-field Jc and surface pinning in silicone oil doped MgB2 bulks and wires

    NASA Astrophysics Data System (ADS)

    Hossain, M. S. A.; Motaman, A.; Çiçek, Ö.; Ağıl, H.; Ertekin, E.; Gencer, A.; Wang, X. L.; Dou, S. X.

    2012-12-01

    The effects of sintering temperature on the lattice parameters, full width at half maximum (FWHM), strain, critical temperature (Tc), critical current density (Jc), irreversibility field (Hirr), upper critical field (Hc2), and resistivity (ρ) of 10 wt.% silicone oil doped MgB2 bulk and wire samples are investigated in state of the art by this article. The a-lattice parameter of the silicone oil doped samples which were sintered at different temperatures was drastically reduced from 3.0864 Å to 3.0745 Å, compared to the un-doped samples, which indicates the substitution of the carbon (C) into the boron sites. It was found that sintered samples at the low temperature of 600 °C shows more lattice distortion by more C-substitution and higher strain, lower Tc, higher impurity scattering, and enhancement of both magnetic Jc and Hc2, compared to those sintered samples at high temperatures. The flux pinning mechanism has been analyzed based on the extended normalized pinning force density fp = Fp/Fp,max scaled with b = B/Bmax. Results show that surface pinning is the dominant pinning mechanism for the doped sample sintered at the low temperature of 600 °C, while point pinning is dominant for the un-doped sample. The powder in tube (PIT) MgB2 wire was also fabricated by using of this liquid doping and found that both transport Jc and n-factor increased which proves this cheap and abundant silicone oil doping can be a good candidate for industrial application.

  14. Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.

    PubMed

    Shareef, M Y; Messer, P F; van Noort, R

    1993-01-01

    In this study the preparation of a machinable hydroxyapatite from mixtures of a fine, submicrometer powder and either a coarse powder composed of porous aggregates up to 50 microns or a medium powder composed of dense particles of 3 microns median size is described. These were characterized using X-ray diffraction, transmission and scanning electron microscopy and infra-red spectroscopy. Test-pieces were formed by powder pressing and slip casting mixtures of various combinations of the fine, medium and coarse powders. The fired test-pieces were subjected to measurements of firing shrinkage, porosity, bulk density, tensile strength and fracture toughness. The microstructure and composition were examined using scanning electron microscopy and X-ray diffraction. For both processing methods, a uniform interconnected microporous structure was produced of a high-purity hydroxyapatite. The maximum tensile strength and fracture toughness that could be attained while retaining machinability were 37 MPa and 0.8 MPa m1/2 respectively.

  15. Sintered magnetic cores of high Bs Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy with a lamellar microstructure

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Sharma, Parmanand; Makino, Akihiro

    2014-05-01

    Fabrication of bulk cores of nano-crystalline Fe84.3Si4B8P3Cu0.7 alloy with a lamellar type of microstructure is reported. Amorphous ribbon flakes of size ˜1.0-2.0 mm were compacted in the bulk form by spark plasma sintering technique at different sintering temperatures. High density (˜96.4%) cores with a uniform nano-granular structure made from α-Fe (˜31 nm) were obtained. These cores show excellent mechanical and soft magnetic properties. The lamellar micro-structure is shown to be important in achieving significantly lower magnetic core loss than the non-oriented silicon steel sheets, commercial powder cores and even the core made of the same alloy with finer and randomly oriented powder particles.

  16. Nano powders, components and coatings by plasma technique

    DOEpatents

    McKechnie, Timothy N [Brownsboro, AL; Antony, Leo V. M. [Huntsville, AL; O'Dell, Scott [Arab, AL; Power, Chris [Guntersville, AL; Tabor, Terry [Huntsville, AL

    2009-11-10

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  17. Nano powders, components and coatings by plasma technique

    NASA Technical Reports Server (NTRS)

    McKechnie, Timothy N. (Inventor); Antony, Leo V. M. (Inventor); O'Dell, Scott (Inventor); Power, Chris (Inventor); Tabor, Terry (Inventor)

    2009-01-01

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  18. Effect of pH adjustment, homogenization and diafiltration on physicochemical, reconstitution, functional and rheological properties of medium protein milk protein concentrates (MPC70).

    PubMed

    Meena, Ganga Sahay; Singh, Ashish Kumar; Gupta, Vijay Kumar; Borad, Sanket; Arora, Sumit; Tomar, Sudhir Kumar

    2018-04-01

    Poor solubility is the major limiting factor in commercial applications of milk protein concentrates (MPC) powders. Retentate treatments such as pH adjustment using disodium phosphate (Na 2 HPO 4 ), also responsible for calcium chelation with homogenization and; its diafiltration with 150 mM NaCl solution were hypothesized to improve the functional properties of treated MPC70 powders. These treatments significantly improved the solubility, heat stability, water binding, dispersibility, bulk density, flowability, buffer index, foaming and emulsifying capacity of treated powders over control. Rheological behaviour of reconstituted MPC solutions was best explained by Herschel Bulkley model. Compared to rough, large globular structures with dents in control; majorly intact, separate, smaller particles of smooth surface, without any aggregation were observed in SEM micrograph of treated powders. Applied treatments are easy, cost-effective and capable to improve functional properties of treated powders that could replace control MPC70 powder in various food applications where protein functionality is of prime importance.

  19. Optimisation of powders for pulmonary delivery using supercritical fluid technology.

    PubMed

    Rehman, Mahboob; Shekunov, Boris Y; York, Peter; Lechuga-Ballesteros, David; Miller, Danforth P; Tan, Trixie; Colthorpe, Paul

    2004-05-01

    Supercritical fluid technology exploited in this work afforded single-step production of respirable particles of terbutaline sulphate (TBS). Different crystal forms of TBS were produced consistently, including two polymorphs, a stoichiometric monohydrate and amorphous material as well as particles with different degrees of crystallinity, size, and morphology. Different solid-state and surface characterisation techniques were applied in conjunction with measurements of powder flow properties using AeroFlow device and aerosol performance by Andersen Cascade Impactor tests. Improved fine particle fraction (FPF) was demonstrated for some powders produced by the SCF process when compared to the micronised material. Such enhanced flow properties and dispersion correlated well with the reduced surface energy parameters demonstrated by these powders. It is shown that semi-crystalline particles exhibited lower specific surface energy leading to a better performance in the powder flow and aerosol tests than crystalline materials. This difference of the surface and bulk crystal structure for selected powder batches is explained by the mechanism of precipitation in SCF which can lead to surface conditioning of particles produced.

  20. Development of Bulk Nanocrystalline Tungsten Alloys for Fusion Reactor Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhigang Zak

    This project developed a technology for manufacturing bulk ultrafine tungsten materials that are at or near full density for fusion reactor structural applications, aiming to improve ductility and toughness of tungsten before and after irradiation. The project involved the development of fabrication processes for making bulk ultrafine grained W, the development of new alloys of ultrafine grained W and evaluations of properties of these specific materials. The goal of this fabrication process is to produce fully dense bulk W with ultrafine grain sizes, with uniform distributions of grain size and additives. To date there is no known process that couldmore » be used to make ultrafine grained tungsten in a fully dense state and in a cost-acceptable fashion. The specific technology described in this proposal for making ultrafine grained tungsten involves a suite of nano-particle processing and sintering techniques. The program also developed new alloys of ultrafine grained W, e.g. W-(Ta,V,Ti)-TiC alloys to improve ductility and toughness before and after irradiation. By completing this project, we achieved the following objectives: • Demonstrated experimentally the feasibility of producing bulk ultrafine grained tungsten alloys (at or near 100% dense, <1000 nm grain size) using the proposed process • Demonstrated the proposed ultrafine grained W alloys, namely, W-(Ta, V, Ti)-TiC, can indeed be made using the proposed process • Demonstrated that the properties of nano tungsten alloys meet the requirements for fusion reactor applications. The overall goal was to harness the potential of ultrafine grained W produced using the proposed processes as the core structural materials for future fusion reactors. The project was very successful overall, meeting all milestones and surpassing project goals in terms of process development and material’s blistering resistance properties. A novel process similar to the conventional press-and-sinter powder metallurgy method was developed for producing ultrafine grain tungsten from nanosize tungsten powders. Grain growth was significantly controlled during sintering by certain alloy compositions, particularly Ti, and most compositions sintered to maximum densification. To optimize this process, the effect of processing parameters on the densification and grain growth of nano-W powders was investigated. Near-fully densified tungsten was obtained at sintering temperatures between 1100 and 1300 °C, and both Ar and H2 sintering atmospheres were investigated. The Ar sintering atmosphere was determined to more favorably promote densification and minimize grain growth. The nanosized tungsten powder compacts were subjected to reduction in H2 as a part of the sintering cycle. The reduction temperature was found to have significant effects on the sintering of nano-W powder, primarily as a result of grain coarsening, which was seen at temperatures as low as 700 °C. In an effort to inhibit grain growth, the effect of Ti-based additives on the densification and grain growth of nano-W powders was investigated in this project. The addition of 1 wt.% Ti into tungsten led to more than a 63% decrease in average grain size of sintered samples at comparable density levels. Compared to conventional high temperature sintering, a lower temperature sintering cycle for a longer hold time resulted in both near-full density and fine grain size. The roles of the Ti additives include not only the inhibition of grain growth, but also the potential absorption of oxygen from W particles. The project has resulted in the publication; thus far, of six peer reviewed journal articles and seven conference presentations, as well as a master’s thesis. Two additional journal articles are currently in preparation. Presentations and articles were a particular focus of the second half of the project, once significant experimentation had been performed and analyzed. As part of our efforts to disseminate information of our results, the W research teams with Prof. Fang had a strong presence at multiple international conferences during 2015 and 2016. Several research groups in the US are now performing experiments using the ultrafine grained W materials.« less

  1. Effect of synthesis process on the microstructure and electrical conductivity of nickel/yttria-stabilized zirconia powders prepared by urea hydrolysis

    NASA Astrophysics Data System (ADS)

    Lin, Jyung-Dong; Wu, Zhao-Lun

    In this study, NiO/YSZ composite powders were synthesized using hydrolysis on two solutions, one contains YSZ particles and Ni 2+ ion, and the other contains NiO particles, Zr 4+, and Y 3+ ions, with the aid of urea. The microstructure of the powders and sintered bulks was further characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicated that various synthesis processes yielded NiO/YSZ powders with different morphologies. The NiO precursors would deposit onto the surface of YSZ particles, and NiO-deposited YSZ composite powders were obtained. Alternatively, it was not observed that YSZ precursors deposited onto the surface of NiO particles, thus, a uniform powder mixture of fine NiO and fine YSZ particles was produced. After sintering and subsequent reduction, these powders would lead to the variations of Ni distribution in the YSZ matrix and conductivity of cermets. Owing to the core-shell structure of the powders and the higher size ratio of YSZ and NiO particles, the conductivity of cermet with NiO-deposited YSZ powders containing 23 wt% NiO is comparable to those with a NiO/YSZ powder mixture containing 50 wt% NiO.

  2. Spheroidization by Plasma Processing and Characterization of Stainless Steel Powder for 3D Printing

    NASA Astrophysics Data System (ADS)

    Ji, Lina; Wang, Changzhen; Wu, Wenjie; Tan, Chao; Wang, Guoyu; Duan, Xuan-Ming

    2017-10-01

    Stainless steel 316L (SS 316L) powder was spheroidized by plasma processing to improve its suitability for powder 3D printing. The obtained spheroidized (sphero) powder was characterized in terms of its crystalline phases, elemental composition, morphology, particle size and distribution, light absorption, and flow properties. The elemental composition of the sphero powder met the Chinese standard for SS 316L except for its Si content. The volume fraction of ferrite increased after plasma processing. Furthermore, plasma processing was shown to not only reduce the mean size of the particles in the size range of 10 to 100 μm but also generate particles in the size range of 0.1 to 10 μm. The smaller particles filled the voids among larger particles, increasing the powder density. The light absorption was also increased owing to enhanced internal reflection. Although the basic flow energy decreased after plasma processing, the flow function (FF) value was smaller for the sphero powder, indicating a lower flowability of the sphero powder. However, the density of SS 316L pieces printed with commercial and sphero powders was 98.76 pct and 98.16 pct of the SS 316L bulk density, respectively, indicating the suitability of the sphero powder for 3D printing despite an FF below 10.

  3. Quantitative analysis of major and trace elements in NH4HF2-modified silicate rock powders by laser ablation - inductively coupled plasma mass spectrometry.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Liu, Yongsheng; Yang, Wenwu; Chen, Haihong; Hu, Shenghong; Xiao, Hongyan

    2017-08-29

    In this paper, we described a NH 4 HF 2 digestion method as sample preparation for the rapid determination of major and trace elements in silicate rocks using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Sample powders digested by NH 4 HF 2 at 230 °C for 3 h form ultrafine powders with a typical grain size d 80  < 8.5 μm, and various silicate rocks have a consistent grain morphology and size, allowing us to produce pressed powder pellets that have excellent cohesion and homogeneity suitable for laser ablation micro-analysis without the addition of binder. The influences of the digestion parameters were investigated and optimized, including the evaporation stage of removing residual NH 4 HF 2 , sample homogenization, selection of the digestion vessel and calibration strategy of quantitative analysis. The optimized NH 4 HF 2 digestion method was applied to dissolve six silicate rock reference materials (BCR-2, BHVO-2, AGV-2, RGM-2, GSP-2, GSR-1) covering a wide range of rock types. Ten major elements and thirty-five trace elements were simultaneously analyzed by LA-ICP-MS. The analytical results of the six reference materials generally agreed with the recommended values, with discrepancies of less than 10% for most elements. The analytical precision is within 5% for most major elements and within 10% for most trace elements. Compared with previous methods of LA-ICP-MS bulk analysis, our method enables the complete dissolution of refractory minerals, such as zircon, in intermediate-acidic intrusive rocks and limits contamination as well as the loss of volatile elements. Moreover, there are many advantages for the new technique, including reducing matrix effects between reference materials and samples, spiking the internal standard simply and feasibly and sample batch processing. The applicability filed of the new technique in this study was focused on the whole-rock analysis of igneous rock samples, which are from basic rocks to acid rocks (45% < SiO 2  < 73%). However, we thought that the NH 4 HF 2 digestion method can be used as a new alternative in LA-ICP-MS for a wider range of geological samples, and will significantly accelerate the application of LA-ICP-MS for the whole-rock analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  5. Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling

    NASA Astrophysics Data System (ADS)

    Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.

    2012-01-01

    We have studied the microstructure and the magnetoresistivity of polycrystalline YBa2Cu3Oy (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y2O3, Ba2CO3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, Tco, is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.

  6. The magnetic ground state and relationship to Kitaev physics in α-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab

    The 2D Kitaev candidate alpha-RuCl3 consists of stacked honeycomb layers weakly coupled by Van der Waals interactions. Here we report the measurements of bulk properties and neutron diffraction in both powder and single crystal samples. Our results show that the full three dimensional magnetic ground state is highly pliable with at least two dominant phases corresponding to two different out-of-plane magnetic orders. They have different Neel temperatures dependent on the stacking of the 2D layers, such as a broad magnetic transition at TN = 14 K as observed in phase-pure powder samples, or a sharp magnetic transition at a lower TN = 7 K as observed in homogeneous single crystals with no evidence for stacking faults. The magnetic refinements of the neutron scattering data will be discussed, which in all cases shows the in-plane magnetic ground state is the zigzag phase common in Kitaev related materials including the honeycomb lattice Iridates. Inelastic neutron scattering in all cases shows that this material consistently exhibit strong two-dimensional magnetic fluctuations leading to a break-down of the classical spin-wave picture. Work performed at ORNL is supported by U.S. Dept. of Energy, Office of Basic Energy Sciences and Office of User Facilities Division.

  7. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes.

    PubMed

    Calta, Nicholas P; Wang, Jenny; Kiss, Andrew M; Martin, Aiden A; Depond, Philip J; Guss, Gabriel M; Thampy, Vivek; Fong, Anthony Y; Weker, Johanna Nelson; Stone, Kevin H; Tassone, Christopher J; Kramer, Matthew J; Toney, Michael F; Van Buuren, Anthony; Matthews, Manyalibo J

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ∼1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ∼50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  8. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less

  9. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    DOE PAGES

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; ...

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less

  10. Microbial contamination of cosmetics and personal care items in Egypt--body lotions and talcum powders.

    PubMed

    Ashour, M S; Abdelaziz, A A; Hefni, H; el-Tayeb, O M

    1989-06-01

    We examined a total of 54 samples, including 18 body lotions and 36 talcum powders, for their total aerobic bacterial, coliform and fungal counts. We also carried out anaerobic bacterial counts for talcum powder as well as tests to detect some potentially hazardous bacteria in all tested samples. Talcum powders were more heavily contaminated with bacteria and fungi than body lotions. More than 40% of the tested body lotions contained no viable bacteria or less than 100 c.f.u./g. while all the talcum powders tested contained more than 100 c.f.u./g. Thirty per cent of the talcum powders were contaminated with 10(4) c.f.u./g. and none of the body lotions were contaminated to that extent. No coliforms were recovered from any of the body lotions, while 17% of the talcum powder examined contained coliforms in the range of 230-500 c.f.u./g. Staphylococcus spp. were detected in 18 samples of both talcum powders and body lotions, three of these Staphylococci were of the aureus type. Three samples of talcum powder contained E. coli, two samples contained Enterobacter agglomerans and one sample contained Citrobacter freundii. Seventy per cent of the body lotions showed no fungal counts, while 83% of the talcum powders examined were contaminated with fungi and most of the contaminated talcum powders contained more than 100 fungal cells/g. With regard to the anaerobic bacterial counts for talcum powders, 50% of the samples showed no counts while the other 50% contained less than 100 c.f.u./g. Four samples were contaminated with Clostridium perfringens, although C. tetani was not recovered from any of the samples.

  11. Pressure-induced transition in the grain boundary of diamond

    NASA Astrophysics Data System (ADS)

    Chen, J.; Tang, L.; Ma, C.; Fan, D.; Yang, B.; Chu, Q.; Yang, W.

    2017-12-01

    Equation of state of diamond powder with different average grain sizes was investigated using in situ synchrotron x-ray diffraction and a diamond anvil cell (DAC). Comparison of compression curves was made for two samples with average grain size of 50nm and 100nm. The two specimens were pre-pressed into pellets and loaded in the sample pressure chamber of the DAC separately to minimized differences of possible systematic errors for the two samples. Neon gas was used as pressure medium and ruby spheres as pressure calibrant. Experiments were conducted at room temperature and high pressures up to 50 GPa. Fitting the compression data in the full pressure range into the third order Birch-Murnaghan equation of state yields bulk modulus (K) and its pressure derivative (K') of 392 GPa and 5.3 for 50nm sample and 398GPa and 4.5 for 100nm sample respectively. Using a simplified core-shell grain model, this result indicates that the grain boundary has an effective bulk modulus of 54 GPa. This value is similar to that observed for carbon nanotube[1] validating the recent theoretical diamond surface modeling[2]. Differential analysis of the compression cures demonstrates clear relative compressibility change at the pressure about 20 GPa. When fit the compression data below and above this pressure separately, the effect of grain size on bulk modulus reverses in the pressure range above 20 GPa. This observation indicates a possible transition of grain boundary structure, likely from sp2 hybridization at the surface[2] towards sp3like orbital structure which behaves alike the inner crystal. [1] Jie Tang, Lu-Chang Qin, Taizo Sasaki, Masako Yudasaka, Akiyuki Matsushita, and Sumio Iijima, Compressibility and Polygonization of Single-Walled Carbon Nanotubes under Hydrostatic Pressure, Physical Review Letters, 85(9), 1187-1198, 2000. [2] Shaohua Lu, Yanchao Wang, Hanyu Liu, Mao-sheng Miao, and Yanming Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nature Communications, DOI: 10.1038/ncomms4666, 2014

  12. Frictional Behavior of Altered Basement Approaching the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Saffer, D. M.; Ikari, M.; Rooney, T. O.; Marone, C.

    2017-12-01

    The frictional behavior of basement rocks plays an important role in subduction zone faulting and seismicity. This includes earthquakes seaward of the trench, large megathrust earthquakes where seamounts are subducting, or where the plate interface steps down to basement. In exhumed subduction zone rocks such as the Shimanto complex in Japan, slivers of basalt are entrained in mélange which is evidence of basement involvement in the fault system. Scientific drilling during the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) recovered basement rock from two reference sites (C0011 and C0012) located seaward of the trench offshore the Kii Peninsula during Integrated Ocean Discovery Program (IODP) Expeditions 322 and 333. The basement rocks are pillow basalts that appear to be heterogeneously altered, resulting in contrasting dense blue material and more vesicular gray material. Major element geochemistry shows differences in silica, calcium oxides and loss-on-ignition between the two types of samples. Minor element geochemistry reveals significant differences in vanadium, chromium, and barium. X-ray diffraction on a bulk sample powder representing an average composition shows a phyllosilicate content of 20%, most of which is expandable clays. We performed laboratory friction experiments in a biaxial testing apparatus as either intact sample blocks, or as gouge powders. We combine these experiments with measurements of Pennsylvania slate for comparison, including a mixed-lithology intact block experiment. Intact Nankai basement blocks exhibit a coefficient of sliding friction of 0.73; for Nankai basement powder, slate powder, slate blocks and slate-on-basement blocks the coefficient of sliding friction ranges from 0.44 to 0.57. At slip rates ranging from 3x10-8 to 3x10-4 m/s we observe predominantly velocity-strengthening frictional behavior, indicating a tendency for stable slip. At rates of < 1x10-6 m/s some velocity-weakening was observed, specifically in intact rock-on-rock experiments. Our results show that basement alteration tends to reduce the tendency for unstable slip, but that the altered Nankai basement may still exhibit seismogenic behavior in the case of localized slip in competent rock.

  13. Milling induced amorphisation and recrystallization of α-lactose monohydrate.

    PubMed

    Badal Tejedor, Maria; Pazesh, Samaneh; Nordgren, Niklas; Schuleit, Michael; Rutland, Mark W; Alderborn, Göran; Millqvist-Fureby, Anna

    2018-02-15

    Preprocessing of pharmaceutical powders is a common procedure to condition the materials for a better manufacturing performance. However, such operations may induce undesired material properties modifications when conditioning particle size through milling, for example. Modification of both surface and bulk material structure will change the material properties, thus affecting the processability of the powder. Hence it is essential to control the material transformations that occur during milling. Topographical and mechanical changes in surface properties can be a preliminary indication of further material transformations. Therefore a surface evaluation of the α-lactose monohydrate after short and prolonged milling times has been performed. Unprocessed α-lactose monohydrate and spray dried lactose were evaluated in parallel to the milled samples as reference examples of the crystalline and amorphous lactose structure. Morphological differences between unprocessed α-lactose, 1 h and 20 h milled lactose and spray dried lactose were detected from SEM and AFM images. Additionally, AFM was used to simultaneously characterize particle surface amorphicity by measuring energy dissipation. Extensive surface amorphicity was detected after 1 h of milling while prolonged milling times showed only a moderate particle surface amorphisation. Bulk material characterization performed with DSC indicated a partial amorphicity for the 1 h milled lactose and a fully amorphous thermal profile for the 20 h milled lactose. The temperature profiles however, were shifted somewhat in the comparison to the amorphous reference, particularly after extended milling, suggesting a different amorphous state compared to the spray-dried material. Water loss during milling was measured with TGA, showing lower water content for the lactose amorphized through milling compared to spray dried amorphous lactose. The combined results suggest a surface-bulk propagation of the amorphicity during milling in combination with a different amorphous structural conformation to that of the amorphous spray dried lactose. The hardened surface may be due to either surface crystallization of lactose or to formation of a low-water glass transition. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Single column comprehensive analysis of pharmaceutical preparations using dual-injection mixed-mode (ion-exchange and reversed-phase) and hydrophilic interaction liquid chromatography.

    PubMed

    Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett

    2013-12-01

    The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. SHMUTZ & PROTON-DIAMANT H + Irradiated/Written-Hyper/Super-conductivity(HC/SC) Precognizance/Early Experiments Connections: Wet-Graphite Room-Tc & Actualized MgB2 High-Tc: Connection to Mechanical Bulk-Moduli/Hardness: Diamond Hydrocarbon-Filaments, Disorder, Nano-Powders:C,Bi,TiB2,TiC

    NASA Astrophysics Data System (ADS)

    Wunderman, Irwin; Siegel, Edward Carl-Ludwig; Lewis, Thomas; Young, Frederic; Smith, Adolph; Dresschhoff-Zeller, Gieselle

    2013-03-01

    SHMUTZ: ``wet-graphite''Scheike-....[Adv.Mtls.(7/16/12)]hyper/super-SCHMUTZ-conductor(S!!!) = ``wet''(?)-``graphite''(?) = ``graphene''(?) = water(?) = hydrogen(?) =ultra-heavy proton-bands(???) = ...(???) claimed room/high-Tc/high-Jc superconductOR ``p''-``wave''/ BAND(!!!) superconductIVITY and actualized/ instantiated MgB2 high-Tc superconductors and their BCS- superconductivity: Tc Siegel[ICMAO(77);JMMM 7,190(78)] connection to SiegelJ.Nonxline-Sol.40,453(80)] disorder/amorphous-superconductivity in nano-powders mechanical bulk/shear(?)-moduli/hardness: proton-irradiated diamond, powders TiB2, TiC,{Siegel[Semis. & Insuls.5:39,47, 62 (79)])-...``VS''/concommitance with Siegel[Phys.Stat.Sol.(a)11,45(72)]-Dempsey [Phil.Mag. 8,86,285(63)]-Overhauser-(Little!!!)-Seitz-Smith-Zeller-Dreschoff-Antonoff-Young-...proton-``irradiated''/ implanted/ thermalized-in-(optimal: BOTH heat-capacity/heat-sink & insulator/maximal dielectric-constant) diamond: ``VS'' ``hambergite-borate-mineral transformable to Overhauser optimal-high-Tc-LiBD2 in Overhauser-(NW-periodic-table)-Land: CO2/CH4-ETERNAL-sequestration by-product: WATER!!!: physics lessons from

  16. Determination of the effective sample thickness via radiative capture

    DOE PAGES

    Hurst, A. M.; Summers, N. C.; Szentmiklosi, L.; ...

    2015-09-14

    Our procedure for determining the effective thickness of non-uniform irregular-shaped samples via radiative capture is described. In this technique, partial γ-ray production cross sections of a compound nucleus produced in a neutron-capture reaction are measured using Prompt Gamma Activation Analysis and compared to their corresponding standardized absolute values. For the low-energy transitions, the measured cross sections are lower than their standard values due to significant photoelectric absorption of the γ rays within the bulk-sample volume itself. Using standard theoretical techniques, the amount of γ-ray self absorption and neutron self shielding can then be calculated by iteratively varying the sample thicknessmore » until the observed cross sections converge with the known standards. The overall attenuation provides a measure of the effective sample thickness illuminated by the neutron beam. This procedure is illustrated through radiative neutron capture using powdered oxide samples comprising enriched 186W and 182W from which their tungsten-equivalent effective thicknesses are deduced to be 0.077(3) mm and 0.042(8) mm, respectively.« less

  17. Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Herbold, Eric B.

    New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed powder samples in simulated drop-weight tests. The calculations indicate that the dynamic formation of mesoscale force chains increase the strength of the sample. This is also apparent in three-dimensional finite element calculations of drop-weight test simulations using LS-Dyna despite a higher granular bulk coordination number, and an increased mobility of individual grains.

  18. Bulk synthesis of nanoporous palladium and platinum powders

    DOEpatents

    Robinson, David B [Fremont, CA; Fares, Stephen J [Pleasanton, CA; Tran, Kim L [Livermore, CA; Langham, Mary E [Pleasanton, CA

    2012-04-17

    Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

  19. Thallium 2223 high T(sub c) superconductor in a silver matrix and its magnetic shielding, hermalcycle and time aging properties

    NASA Technical Reports Server (NTRS)

    Fei, X.; He, W. S.; Havenhill, A.; Ying, Z. Q.; Xin, Y.; Alzayed, N.; Wong, K. K.; Guo, Y.; Reichle, D.; Lucas, M. S. P.

    1995-01-01

    Superconducting Tl2Ba2Ca2Cu3O10 (Tl2223) was ground to powder. Mixture with silver powder (0-80% weight) and press to desired shape. After proper annealing, one can get good silver-content Tl2223 bulk superconductor. It is time-stable and has good superconducting property as same as pure Tl2223. It also has better mechanical property and far better thermal cycle property than pure Tl2223.

  20. Mitigation of Corrosion in 5 Series Al-Mg Alloys in Marine Environments: Grain Boundary Engineering and Cold Spray Coating Approaches

    DTIC Science & Technology

    2014-03-26

    powders for cold spray are nominally ductile materials such as Cu and Al or Al alloys with particles in the 5-45|am size range. It is for...wavelength) as the x-ray source. Since cold spray is a solid state deposition process , the composition and microstructure of the feedstock powder ...surface of the recently deposited coating build up and a thick coating with theoretical bulk properties can be achieved [27]. The cold

  1. Bulk synthesis of nanoporous palladium and platinum powders

    DOEpatents

    Robinson, David B; Fares, Stephen J; Tran, Kim L; Langham, Mary E

    2014-04-15

    Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

  2. Pulsed Laser Deposition of BaCe(sub 0.85)Y(sub 0.15)0(sub 3) FILMS

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.; Sayir, A.

    2006-01-01

    Pulsed laser deposition has been used to grow nanostructured BaCe(sub 0.85)Y(sub 0.15)0(sub 3) films. The objective is to enhance protonic conduction by reduction of membrane thickness. Sintered samples and laser targets were prepared by sintering BaCe(sub 0.85)Y(sub 0.15)O(sub 3) powders derived by solid state synthesis. Films 2 to 6 m thick were deposited by KrF excimer laser on Si and porous Al2O3 substrates. Nanocrystalline films were fabricated at deposition temperatures of 600-800 C deg at O2 pressure of 30 mTorr and laser fluence of 1.2 J/cm square. Films were characterized by x-ray diffraction, scanning electron microscopy and electrical impedance spectroscopy. Dense single phase BaCe(sub 0.85)Y((sub 0.15) 0(sub 3) films with a columnar growth morphology is observed, preferred crystal growth was found to be dependent upon deposition temperature and substrate type. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C deg to 900 C deg in moist argon. Electrical conduction of the fabricated films was 1 to 4 orders of magnitude lower than the sintered bulk samples. With respect to the film growth direction, activation energy for electrical conduction is 3 times higher in the perpendicular direction than the parallel direction.

  3. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOEpatents

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  4. Comparison of mechanical and friction properties of composite materials based on AlMg2 containing nano-dimensional particles of crystalline graphite and nanofibers of gamma oxide of aluminum

    NASA Astrophysics Data System (ADS)

    Aborkin, A. V.; Babin, D. M.; Soboĺkov, A. V.

    2018-04-01

    The method of mechanical synthesis in a planetary ball mill was used for production of composite powders based on the AlMg2 alloy containing 1 wt. % of nanosized particles of crystalline graphite or γ-Al2O3. The resulting powders are consolidated by the sintering under pressure. Using the methods of X-ray diffraction analysis, scanning and transmission electron microscopy, the structural-phase composition of bulk composite materials was studied. Comparative analysis of the microhardness, the conditional yield stress at compression, and the friction coefficient of bulk composite materials is carried out. It has been found out that the mechanical properties of composites reinforced with γ-Al2O3 nanofibers are higher than when reinforcing with nanoscale particles of crystalline graphite.

  5. New Phases of YBaCuGeO Superconductors Identified from X-ray Diffraction and Infra-red Absorption Measurements

    NASA Astrophysics Data System (ADS)

    Abo-Arais, Ahmed; Dawoud, Mohamad Ahmad Taher

    2005-01-01

    X-ray powder diffraction patterns and infra-red absorption spectra have been evaluated and analysed for the Y1 Ba2 Cu3 O7-d - Gex compound samples prepared by the solid state reaction with x values ranging from 0.0 to 1.13. All samples show bulk superconductivity above liquid nitrogen temperature using the levitation test (Meissner effect). Samples with Ge content up to x = 0.2 have offset Tc between 83K and 92K while the sample with x = 1.13 shows semiconducting behavior above 100K. As a result of the solid state interaction between YBCO and Ge, new phases are observed and determined, mainly three phases are concluded from X-ray powder diffraction analysis: (i) Ba2GeO4 (ii) Y2BaCuO5 (iii) BaCO3. The unit cell parameters a, b and c of the orthorhombic superconducting phase are calculated for all the prepared samples. The anisotropy factor is evaluated and related to the new structural phases in YBCO-Ge composite system. The I-R absorption spectra for the samples with orthorhombic symmetry have been determined. The phonon modes between ~ 400 cm-1 and 630 cm-1 are attributed to the Cu - O octahedron and pyramid vibrations for the CuO2 -planes and CuO-chains, while the peaks in the range from ~ 700 cm-1 to ~ 860 cm-1 may be due to defects such as the new phase Ba2GeO4 and the green phase Y2BaCuO5. The obtained results are discussed according to the superconductor - semi-conductor composite model and with the phonon-mediated charge transfer between CuO2 -planes and CuO- chains through apex oxygen (BaO).

  6. Surface functionalized Zr(0.75)Sn(0.25)O4 by SrO2 thick films as H2S gas sensors

    NASA Astrophysics Data System (ADS)

    Shelke, G. B.; Patil, D. R.

    2018-05-01

    Thick films of bulk tin oxide powder were observed to be less sensitive to polluting, hazardous and inflammable gases. So, nanostructured ZrxSn1-xO4 powder was synthesized by disc type ultrasonicated microwave assisted centrifuge technique. Thick films of nanostructured pure Zr(0.75)Sn(0.25)O4 powder were fabricated by screen printing technique. These films were surface functionalized by SrO2 for different intervals of time followed by firing at 450°C for 30 min. The surface morphology, chemical composition, crystal structure, electrical and gas sensing performance of the unmodified and surface functionalized nanostructured Zr(0.75)Sn(0.25)O4 powder by SrO2 have been investigated by FESEM, E-DAX, XRD, etc.

  7. Ray tracing method for simulation of laser beam interaction with random packings of powders

    NASA Astrophysics Data System (ADS)

    Kovalev, O. B.; Kovaleva, I. O.; Belyaev, V. V.

    2018-03-01

    Selective laser sintering is a technology of rapid manufacturing of a free form that is created as a solid object by selectively fusing successive layers of powder using a laser. The motivation of this study is due to the currently insufficient understanding of the processes and phenomena of selective laser melting of powders whose time scales differ by orders of magnitude. To construct random packings from mono- and polydispersed solid spheres, the algorithm of their generation based on the discrete element method is used. A numerical method of ray tracing is proposed that is used to simulate the interaction of laser radiation with a random bulk packing of spherical particles and to predict the optical properties of the granular layer, the extinction and absorption coefficients, depending on the optical properties of a powder material.

  8. Preparation and characterization of novel foamed porous glass-ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasmal, Nibedita; Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2015-05-15

    Foamed glass-ceramics without using foaming agent have been synthesized in a novel glass system of SrO-CaO-Al{sub 2}O{sub 3}-TiO{sub 2}-B{sub 2}O{sub 3}-SiO{sub 2}-P{sub 2}O{sub 5}-M{sub x}O{sub y} (where M = Ba, Mg, La, Ce and Ni) by a simple process of powder sintering. The glass and glass-ceramics are characterized by dilatometry, differential scanning calorimetry (DSC), heating stage microscopy (HSM), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), optical microscopy and Fourier transformed infrared spectroscopy (FTIR). All the glasses formed are amorphous and the glass transition temperature and dilatometric softening temperature of these glasses are found to be in the rangemore » 673–678 °C and 706–728 °C respectively. The glasses are highly stable as indicated by the DSC evaluated glass stability parameters of the range 195–240 °C. Quantitative sintering study of glass powder compacts revealed swelling in the samples with NiO and CeO{sub 2} corresponding to a geometry change of 75 and 108% around 900 °C respectively. With reference to this finding the glass powder compacts are heated to 900 °C and the foamed glass-ceramics are obtained. Characteristic crystalline silicate phases have been identified in the XRD studies and their microstructures are recorded by FESEM. Optical microscope study of the foamed samples revealed formation of bigger foamed cavity with residual pores in samples with NiO and CeO{sub 2} in comparison to samples with BaO, MgO and La{sub 2}O{sub 3}. The mean pore diameters of the samples with NiO and CeO{sub 2} are determined to be 43 and 32 μm, and their respective porosities are 2.34 and 1.82 cm{sup 3}/g respectively. Thus NiO and CeO{sub 2} are found to be very effective to obtain foamed glass-ceramics without using foaming agent by the viscous flow sintering of fine glass powder compacts along with the reduction of the respective polyvalent ions. - Highlights: • Synthesis of foamed porous glass-ceramics without foaming agent by sintering method • Only powder compact yielded foamed porous glass-ceramics but bulk glass did not. • Glasses containing NiO and CeO{sub 2} exhibited significant foaming efficiency. • Bloating of entrapped gas during viscous flow sintering is the origin of foaming. • Residual void created pores in the sintered glass-ceramics as evidenced in FESEM.« less

  9. Statistical analysis and optimization of direct metal laser deposition of 227-F Colmonoy nickel alloy

    NASA Astrophysics Data System (ADS)

    Angelastro, A.; Campanelli, S. L.; Casalino, G.

    2017-09-01

    This paper presents a study on process parameters and building strategy for the deposition of Colmonoy 227-F powder by CO2 laser with a focal spot diameter of 0.3 mm. Colmonoy 227-F is a nickel alloy especially designed for mold manufacturing. The substrate material is a 10 mm thick plate of AISI 304 steel. A commercial CO2 laser welding machine was equipped with a low-cost powder feeding system. In this work, following another one in which laser power, scanning speed and powder flow rate had been studied, the effects of two important process parameters, i.e. hatch spacing and step height, on the properties of the built parts were analysed. The explored ranges of hatch spacing and step height were respectively 150-300 μm and 100-200 μm, whose dimensions were comparable with that of the laser spot. The roughness, adhesion, microstructure, microhardness and density of the manufactured specimens were studied for multi-layer samples, which were made of 30 layers. The statistical significance of the studied process parameters was assessed by the analysis of the variance. The process parameters used allowed to obtain both first layer-to-substrate and layer-to-layer good adhesions. The microstructure was fine and almost defect-free. The microhardness of the deposited material was about 100 HV higher than that of the starting powder. The density as high as 98% of that of the same bulk alloy was more than satisfactory. Finally, simultaneous optimization of density and roughness was performed using the contour plots.

  10. POWTEX - A new High-Intensity Powder and Texture Diffractometer at FRM II, Garching Germany

    NASA Astrophysics Data System (ADS)

    Walter, J. M.; Brückel, T.; Dronskowski, R.; Hansen, B. T.; Houben, A.; Klein, H.; Leiss, B.; Vollbrecht, A.; Sowa, H.

    2009-05-01

    In recent years, neutron diffraction has become a routine tool in Geoscience for experimental high-field (HP/HT/HH) powder diffraction and for the quantitative analysis of the crystallographic preferred orientation (CPO). Quantitative texture analysis is e.g. involved in the research fields of fabric development in mono- and polyphase rocks, deformation histories and kinematics during mountain building processes and the characterization of flow kinematics in lava flows. Secondly the quantitative characterization of anisotropic physical properties of both rock and analogue materials is conducted by bulk texture measurements of sometimes larger sample volumes. This is easily achievable by neutron diffraction due to the high penetration capabilities of the neutrons. The resulting geoscientific need for increased measuring time at neutron diffraction facilities with the corresponding technical characteristics and equipment will in future be satisfied by this high-intensity diffractometer at the neutron research reactor FRM II in Garching, Germany. It will be built by a consortium of groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen, who will also operate the instrument. The diffractometer will be optimized to high intensities (flux) with an equivalent sufficient resolution for polyphase rocks. Furthermore a broad range of d-values (0.5 to 15 Å) will be measurable. The uniqueness of this instrument is the geoscientific focus on different sample environments for in situ-static and deformation experiments (stress, strain and annealing/recrystallisation) and (U)HP/(U)HT experiments. A LP/LT or atmospheric-P deformation rig for in situ-deformation experiments on ice, halite or rock analogue materials is planned, to allow in situ-measurements of the texture development during deformation and annealing. Additionally a uniaxial HT/MP deformation apparatus for salt deformation experiments and an adapted Griggs- type deformation rig are also designated. Furthermore an uniaxial stress frame for in situ stress investigations is planned to conduct simultaneous measurements of stress, elastic or plastic deformation and texture. Other sample environments for geoscientific application will be HP/HT furnaces and pressure cells for powder diffraction investigations. Furthermore the diffractometer will be built in combination with a high-pressure multi anvil up to 25 GPa and 2500 K built by the University of Bayreuth at the same beam line. The detector concept allows single shot texture measurements and therefore the measurement of larger geological sample series as necessary for the investigations of complete geological structures. This concept is complementary to the geoscience neutron texture diffractometer in Dubna, Russia and the stress diffractometer STRESS-SPEC located also at the Garching research reactor. For powder diffraction the diffractometer will be complementary to the existing high-resolution powder diffractometer SPODI at the FRM-II. It will offer the possibility of short, high-intensity parametric powder diffraction measurements in dependency of temperature, electrical, magnetic and stress fields due to the higher flux at the sample. The optimization to high-intensities and therefore short measuring times will also allow time-resolved measurements of kinetic reactions even of small sample volumes.

  11. Enhanced ionic conductivity in planar sodium-β"-alumina electrolyte for electrochemical energy storage applications.

    PubMed

    La Rosa, Daniela; Monforte, Giuseppe; D'Urso, Claudia; Baglio, Vincenzo; Antonucci, Vincenzo; Aricò, Antonino S

    2010-12-17

    Solid Na-β"-Al₂O₃ electrolyte is prepared by a simple chemical route involving a pseudo-boehmite precursor and thermal treatment. Boehmite powder is used for manufacturing the planar electrolyte with appropriate bulk density after firing at 1500 °C. The structure, morphology, and surface properties of precursor powders and sintered electrolytes are investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). As shown by XRD and TEM analyses, nanometer-sized particles are obtained for the boehmite precursor and a pure crystallographic phase is achieved for the sintered electrolyte. SEM analysis of the cross-section indicates good sintering characteristics. XPS shows a higher Na/Al atomic ratio on the surface for the planar electrolyte compared to a commercial tubular electrolyte (0.57 vs. 0.46). Energy-dispersive X-ray microanalysis (EDX) shows an Na/Al ratio in the bulk of 0.16, similar in the two samples. The ionic conductivity of the planar electrolyte is larger than that measured on a commercial tube of sodium-β"-alumina in a wide temperature range. At 350 °C, conductivity values of 0.5 S cm⁻¹ and 0.26 S cm⁻¹ are obtained for the planar electrolyte and the commercial tube, respectively. AC-impedance spectra show smaller grain boundary effects in the planar electrolyte than in the tubular electrolyte. These favorable properties may increase the perspectives for applying planar Na-β"-Al₂O₃ electrolytes in high-temperature batteries.

  12. Nondestructive prediction of the drug content of an aspirin suppository by near-infrared spectroscopy.

    PubMed

    Otsuka, Eri; Abe, Hiroyuki; Aburada, Masaki; Otsuka, Makoto

    2010-07-01

    A suppository dosage form has a rapid effect on therapeutics, because it dissolves in the rectum, is absorbed in the bloodstream, and passes the hepatic metabolism. However, the dosage form is unstable, because a suppository is made in a semisolid form, and so it is not easy to mix the bulk drug powder in the base. This article describes a nondestructive method of determining the drug content of suppositories using near-infrared spectrometry (NIR) combined with chemometrics. Suppositories (aspirin content: 1.8, 2.7, 4.5, 7.3, and 9.1%, w/w) were produced by mixing an aspirin bulk powder with hard fat at 50 degrees C and pouring the melt mixture into a plastic mold (2.25 mL). NIR spectra of 12 calibration and 12 validation sample sets were recorded 5 times. A total of 60 spectral data were used as a calibration set to establish a calibration model to predict drug content with a partial least-squares (PLS) regression analysis. NIR data of the suppository samples were divided into two wave number ranges, 4000-12500 cm(-1) (LR), and 5900-6300 cm(-1) (SR). Calibration models for the aspirin content of the suppositories were calculated based on LR and SR ranges of second-derivative NIR spectra using PLS. The models for LR and SR consisted of five and one principal components (PC), respectively. The plots of predicted values against actual values gave a straight line with regression coefficient constants of 0.9531 and 0.9749, respectively. The mean bias and mean accuracy of the calibration models were calculated based on the SR of variation data sets, and were lower than those of LR, respectively. Limiting the wave number of spectral data sets is useful to help understand the calibration model because of noise cancellation and to measure objective functions.

  13. Practical soil analysis by laser induced breakdown spectroscopy employing subtarget supported micro mesh as a powder sample holder

    NASA Astrophysics Data System (ADS)

    Suyanto, Hery; Lie, Tjung Jie; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2017-11-01

    A practical alternative of sample preparation technique is proposed for direct powder analysis using laser-induced breakdown spectroscopy (LIBS) instead of the commonly adopted treatment of pelletizing the powder. The resulted pellet is known to suffer from reduced sensitivity of emission. Besides, it may also give rise to interfering effect from the binder emission. We introduce in this report a more practical technique of using a subtarget supported micro mesh (SSMM) powder sample holder. The LIBS spectrum of standard soil powder measured with 13 mJ 1064 nm Nd:YAG laser in 0.65 kPa ambient air is shown to exhibit the sharp emission lines of all the major elements in the sample. A comparison with the emission spectra measured from the pelletized powder, the spectrum obtained using the SSMM sample holder shows distinctly superior spectral quality marked by the absence of matrix effect found in pelletized powder samples, and the much stronger intensity due to the more effective shock wave plasma induced thermal excitation process produced by the hard subtarget in the sample holder. Repeating the measurement on a number of the standard soil samples of various Pb contents is shown to yield a linear calibration line with practically zero intercept and a detection limit of less than 10 ppm. We have thus demonstrated the viability of the proposed powder sample holder for the development of practical and quantitative powder analysis in the field.

  14. Low-temperature conducting state in two candidate topological Kondo insulators: SmB 6 and Ce 3 Bi 4 Pt 3

    DOE PAGES

    Wakeham, N.; Rosa, P. F. S.; Wang, Y. Q.; ...

    2016-07-12

    We have investigated the low temperature conducting state of two Kondo insulators, SmB 6 and Ce 3Bi 4Pt 3, which have been theoretically predicted to host topological surface states. Through comparison of the speci c heat of as-grown and powdered single crystals of SmB 6, we show that the residual term that is linear in temperature is not dominated by any surface state contribution, but rather is a bulk property. In Ce 3Bi 4Pt 3, we find that the Hall coefficient is independent of sample thickness, which indicates that conduction at low temperatures is dominated by the bulk of themore » sample, and not by a surface state. The low temperature resistivity of Ce 3Bi 4Pt 3 is found to monotonically decrease with low concentrations of disorder introduced through ion-irradiation. This is in contrast to SmB 6, which is again indicative of the contrasting origins of the low temperature conduction. In SmB 6, we also show that the effect of low concentrations of irradiation damage of the surface with Fe + ions is qualitatively consistent with damage with non-magnetic ions.« less

  15. Enrichment of rice-based extrudates with Cactus Opuntia dillenii seed powder: a novel source of fiber and antioxidants.

    PubMed

    Rayan, Ahmed M; Morsy, Noha E; Youssef, Khaled M

    2018-02-01

    The present study investigated the effects of adding the powder of cactus Opuntia dillenii ( O. dillenii ) seeds on the functional properties, fiber, antioxidants and acceptability of rice-based extrudates. The control blend consisting basically of rice flour was replaced with O. dillenii seed powder at 2, 4, 6, 8, 10, 15 and 20% then extruded at the optimum processing conditions. The extruded products were evaluated for their chemical composition, functional properties, color attributes, antioxidant activity and sensory characteristics. The results revealed that adding O. dillenii seeds powder enhanced the fiber, phenolics, flavonoid contents and antioxidant activity of extrudates. Expansion, bulk density and breaking strength were significantly decreased, while water absorption index, water solubility index and oil absorption index were significantly increased compared to the control. Furthermore, the mean scores of sensory evaluation indicated clear improvements in all tested sensory attributes, which significantly increased by increasing the level of O. dillenii seed powder up to 15%. The results confirmed that O. dillenii seed powder could be incorporated in rice to develop snack products of acceptable functional, nutritional and sensory properties.

  16. Emission of diacetyl (2,3 butanedione) from natural butter, microwave popcorn butter flavor powder, paste, and liquid products.

    PubMed

    Rigler, Mark W; Longo, William E

    2010-01-01

    Diacetyl (2,3 butanedione), a butter-flavored diketone, has been linked to a severe lung disease, bronchiolitis obliterans. We tested a total of three natural butters and artificial microwave popcorn butter flavorings (three powders, two pastes, and one liquid) for bulk diacetyl concentration and diacetyl emissions when heated. Pastes and liquid butter flavors contained the highest amount (6% to 10.6%) while natural butter possessed up to 7500 times less diacetyl. All artificial butter flavors studied emitted diacetyl. Dry powders emitted up to 1.62 ppm diacetyl; wetted powders up to 54.7 ppm diacetyl; and pastes emitted up to 34.9 ppm diacetyl. The liquid butter flavor emitted up to 17.2 ppm diacetyl. Microwave popcorn flavoring mixtures emitted up to 11.4 ppm diacetyl. At least 93% of the dry powder particles were inhalable. These studies show that microwave butter flavoring products generate concentrations of diacetyl in the air great enough to endanger those exposed.

  17. Physicochemical properties of whole fruit plum powders obtained using different drying technologies.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Lech, Krzysztof; Łysiak, Grzegorz P; Figiel, Adam

    2016-09-15

    Physicochemical quality parameters of plum powders obtained by applying conventional drying methods and their combination devised to process plums were evaluated. The effect of freeze-drying (FD), vacuum drying (VD), convective drying (CD), microwave-vacuum drying (MVD) and combination of convective pre-drying and microwave finish-drying (CPD-MVFD) affected physical (bulk density, porosity, colour, solubility) and chemical (polyphenolic compounds determined by UPLC and antioxidant capacity by TEAC ABTS and FRAP methods) properties of plum powders. The MVD at 1.2 W g(-1) and a novel combination for plum powders production - CPD-MVFD at 70 °C/1.2 W g(-1) allowed the best preservation of phenolic compounds and increased the efficiency of production. Results obtained support the use of MVD and its combination for better quality of dried plum products. The study proved that the determination of the browning index and HMF level (formed via Maillard reaction) might be good tool for monitoring the thermal processing of plum powders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Ferromagnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Mazaleyrat, F.; Varga, L. K.

    2000-06-01

    A survey of magnetic nanocomposites applicable in high-frequency signal and power electronics is given. First, the preparation and properties of ribbon and powder cores from the nanocrystalline "bulk" alloys (Finemet and Nanoperm) is reviewed. A technology is presented to apply continuously a large stress during the annealing and winding of the rapidly quenched ribbons in order to induce uniaxial anisotropy in it. The obtained toroidal cores with flat hysteresis curve are applicable up to 1 MHz with considerable permeability (˜250). The powder cores prepared from ground Finemet with powder size of 30-400 μm are applicable up to 1 MHz and in some cases up to 10 MHz for smaller powder sizes with low permeability (˜10). Finally, the most common methods used for the preparation of metallic nano-particle s are presented. Presently, the compacts prepared from nano-size (40-80 nm) iron powders do not show the expected behavior. It is anticipated that the iron-based ferromagnetic nanocomposites should replace partly the ferrite-type materials in the forthcoming years.

  19. Aerosolization properties, surface composition and physical state of spray-dried protein powders.

    PubMed

    Bosquillon, Cynthia; Rouxhet, Paul G; Ahimou, François; Simon, Denis; Culot, Christine; Préat, Véronique; Vanbever, Rita

    2004-10-19

    Powder aerosols made of albumin, dipalmitoylphosphatidylcholine (DPPC) and a protein stabilizer (lactose, trehalose or mannitol) were prepared by spray-drying and analyzed for aerodynamic behavior, surface composition and physical state. The powders exited a Spinhaler inhaler as particle aggregates, the size of which depending on composition, spray-drying parameters and airflow rate. However, due to low bulk powder tap density (<0.15 g/cm3), the aerodynamic size of a large fraction of aggregates remained respirable (<5 microm). Fine particle fractions ranged between 21% and 41% in an Andersen cascade impactor operated at 28.3 l/min, with mannitol and lactose providing the most cohesive and free-flowing powders, respectively. Particle surface analysis by X-ray photoelectron spectroscopy (XPS) revealed a surface enrichment with DPPC relative to albumin for powders prepared under certain spray-drying conditions. DPPC self-organized in a gel phase in the particle and no sugar or mannitol crystals were detected by X-ray diffraction. Water sorption isotherms showed that albumin protected lactose from moisture-induced crystallization. In conclusion, a proper combination of composition and spray-drying parameters allowed to obtain dry powders with elevated fine particle fractions (FPFs) and a physical environment favorable to protein stability.

  20. In-situ high-pressure powder X-ray diffraction study of α-zirconium phosphate.

    PubMed

    Readman, Jennifer E; Lennie, Alistair; Hriljac, Joseph A

    2014-06-01

    The high-pressure structural chemistry of α-zirconium phosphate, α-Zr(HPO4)2·H2O, was studied using in-situ high-pressure diffraction and synchrotron radiation. The layered phosphate was studied under both hydrostatic and non-hydrostatic conditions and Rietveld refinement carried out on the resulting diffraction patterns. It was found that under hydrostatic conditions no uptake of additional water molecules from the pressure-transmitting medium occurred, contrary to what had previously been observed with some zeolite materials and a layered titanium phosphate. Under hydrostatic conditions the sample remained crystalline up to 10 GPa, but under non-hydrostatic conditions the sample amorphized between 7.3 and 9.5 GPa. The calculated bulk modulus, K0 = 15.2 GPa, showed the material to be very compressible with the weak linkages in the structure of the type Zr-O-P.

  1. Effect of synthesis methods with different annealing temperatures on micro structure, cations distribution and magnetic properties of nano-nickel ferrite

    NASA Astrophysics Data System (ADS)

    El-Sayed, Karimat; Mohamed, Mohamed Bakr; Hamdy, Sh.; Ata-Allah, S. S.

    2017-02-01

    Nano-crystalline NiFe2O4 was synthesized by citrate and sol-gel methods at different annealing temperatures and the results were compared with a bulk sample prepared by ceramic method. The effect of methods of preparation and different annealing temperatures on the crystallize size, strain, bond lengths, bond angles, cations distribution and degree of inversions were investigated by X-ray powder diffraction, high resolution transmission electron microscope, Mössbauer effect spectrometer and vibrating sample magnetometer. The cations distributions were determined at both octahedral and tetrahedral sites using both Mössbauer effect spectroscopy and a modified Bertaut method using Rietveld method. The Mössbauer effect spectra showed a regular decrease in the hyperfine field with decreasing particle size. Saturation magnetization and coercivity are found to be affected by the particle size and the cations distribution.

  2. Backward optical gain originating from weak localization strengthened three-photon process in Er/Yb co-doped (Pb,La)(Zr,Ti)O3 ceramics.

    PubMed

    Xu, Caixia; Zhang, Jingwen; Zou, Yingyin K; Zhao, Hua

    2016-03-21

    The enhancement of green upconverted emission from the Er3+/Yb3+ co-doped (Pb,La)(Zr,Ti)O3 ceramic powder under a pumping light with a wavelength of 1480 nm was observed to be greater than 30 times that from the bulk of the same sample. Weak localization of light supported by the spatial profile of scattered light facilitated the three-photon process contributing to stronger green upconverted emission. Significant backward light amplification was also observed and studied in detail. Additionally, the distribution of the localization zones in the sample was investigated using a probing laser beam with a wavelength of 532 nm. The findings in this work could be used in improving the solar cell efficiency, modulating color, and designing smart devices.

  3. Nonlinear optical imaging for sensitive detection of crystals in bulk amorphous powders.

    PubMed

    Kestur, Umesh S; Wanapun, Duangporn; Toth, Scott J; Wegiel, Lindsay A; Simpson, Garth J; Taylor, Lynne S

    2012-11-01

    The primary aim of this study was to evaluate the utility of second-order nonlinear imaging of chiral crystals (SONICC) to quantify crystallinity in drug-polymer blends, including solid dispersions. Second harmonic generation (SHG) can potentially exhibit scaling with crystallinity between linear and quadratic depending on the nature of the source, and thus, it is important to determine the response of pharmaceutical powders. Physical mixtures containing different proportions of crystalline naproxen and hydroxyl propyl methyl cellulose acetate succinate (HPMCAS) were prepared by blending and a dispersion was produced by solvent evaporation. A custom-built SONICC instrument was used to characterize the SHG intensity as a function of the crystalline drug fraction in the various samples. Powder X-ray diffraction (PXRD) and Raman spectroscopy were used as complementary methods known to exhibit linear scaling. SONICC was able to detect crystalline drug even in the presence of 99.9 wt % HPMCAS in the binary mixtures. The calibration curve revealed a linear dynamic range with a R(2) value of 0.99 spanning the range from 0.1 to 100 wt % naproxen with a root mean square error of prediction of 2.7%. Using the calibration curve, the errors in the validation samples were in the range of 5%-10%. Analysis of a 75 wt % HPMCAS-naproxen solid dispersion with SONICC revealed the presence of crystallites at an earlier time point than could be detected with PXRD and Raman spectroscopy. In addition, results from the crystallization kinetics experiment using SONICC were in good agreement with Raman spectroscopy and PXRD. In conclusion, SONICC has been found to be a sensitive technique for detecting low levels (0.1% or lower) of crystallinity, even in the presence of large quantities of a polymer. Copyright © 2012 Wiley-Liss, Inc.

  4. Analysis of soft magnetic materials by electron backscatter diffraction as a powerful tool

    NASA Astrophysics Data System (ADS)

    Schuller, David; Hohs, Dominic; Loeffler, Ralf; Bernthaler, Timo; Goll, Dagmar; Schneider, Gerhard

    2018-04-01

    The current work demonstrates that electron backscatter diffraction (EBSD) is a powerful and versatile characterization technique for investigating soft magnetic materials. The properties of soft magnets, e.g., magnetic losses strongly depend on the materials chemical composition and microstructure, including grain size and shape, texture, degree of plastic deformation and elastic strain. In electrical sheet stacks for e-motor applications, the quality of the machined edges/surfaces of each individual sheet is of special interest. Using EBSD, the influence of the punching process on the microstructure at the cutting edge is quantitatively assessed by evaluating the crystallographic misorientation distribution of the deformed grains. Using an industrial punching process, the maximum affected deformation depth is determined to be 200 - 300 μm. In the case of laser cutting, the affected deformation depth is determined to be approximately zero. Reliability and detection limits of the developed EBSD approach are evaluated on non-affected sample regions and model samples containing different indentation test bodies. A second application case is the investigation of the recrystallization process during the annealing step of soft magnetic composites (SMC) toroids produced by powder metallurgy as a function of compaction pressure, annealing parameters and powder particle size. With increasing pressure and temperature, the recrystallized area fraction (e.g., grains with crystallographic misorientations < 3°) increases from 71 % (200 MPa, 800°C) to 90% (800 MPa, 800°C). Recrystallization of the compacted powder material starts at the particle boundaries or areas with existing plastic deformation. The progress of recrystallization is visualized as a function of time and of different particle to grain size distributions. Here, large particles with coarse internal grain structures show a favorable recrystallization behavior which results in large bulk permeability of up to 600 - 700 and lower amount of residual misorientations (>3°).

  5. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  6. DEVELOPMENT OF LiCo0.90Mg0.05Al0.05O2 THIN FILMS BY PULSED LASER DEPOSITION TECHNIQUE

    NASA Astrophysics Data System (ADS)

    Vasanthi, R.; Ruthmangani, I.; Manoravi, P.; Joseph, M.; Kesavamoorthy, R.; Sundar, C.; Selladurai, S.

    LiCo0.90Mg0.05Al0.05O2 bulk powders are synthesized using combustion process and made into a thin film by depositing on silicon wafer using a pulsed laser ablation technique. A comparative study by SEM (Scanning Electron Microscope) XRD (X-ray diffraction), Infrared spectroscopy and Raman Spectroscopy is performed on both bulk and PLD thin films.

  7. To Study Capping or Lamination Tendency of Tablets Through Evaluation of Powder Rheological Properties and Tablet Mechanical Properties of Directly Compressible Blends.

    PubMed

    Dudhat, Siddhi M; Kettler, Charles N; Dave, Rutesh H

    2017-05-01

    Air entrapment efficiency of the powders is one of the main factors leading to occurrence of capping or lamination tendency of tablets manufactured from the directly compressible powder blends. The purpose of the current research was to study this underlying cause leading to occurrence of capping or lamination of tablets through evaluation of powder rheological properties. Powder blends were prepared by addition of 0% w/w to 100% w/w of individual active pharmaceutical ingredient (API) [two model API: acetaminophen (APAP) and ibuprofen (IBU)] with microcrystalline cellulose without and with 0.5% w/w Magnesium Stearate as lubricant. Powder rheological properties were analyzed using FT4 Powder Rheometer for dynamic, bulk, and shear properties. Tablet mechanical properties of the respective blends were studied by determining the ability of the material to form tablet of specific strength under applied compaction pressure through tabletability profile. The results showed that powder rheometer distinguished the powder blends based on their ability to relieve entrapped air along with the distinctive flow characteristics. Powder blend prepared with increasing addition of APAP displayed low powder permeability as compared to IBU blends with better powder permeability, compressibility and flow characteristics. Also, lubrication of the APAP blends did not ease their ability to relieve air. Tabletability profiles revealed the potential occurrence of capping or lamination in tablets prepared from the powder blends with high APAP content. This study can help scientist to understand tableting performance at the early-developmental stages and can avoid occurrence capping and lamination of tablets.

  8. The role of silver in the processing and properties of Bi-2212

    NASA Technical Reports Server (NTRS)

    Lang, TH.; Heeb, B.; Buhl, D.; Gauckler, L. J.

    1995-01-01

    The influence of the silver content and the oxygen partial pressure on the solidus temperature and the weight loss during melting of Bi2Sr2Ca1Cu2O(x) has been examined by means of DTA and TGA. By decreasing the oxygen partial pressure the solidus is lowered (e.g. del T = 59 C by decreasing pO2 from 1 atm to 0.001 atm) and the weight loss is increased. The addition of silver causes two effects: (1) the solidus is further decreased (e.g. 2 wt% Ag lower T (solidus) by up to 25 C, depending on the oxygen partial pressure); and (2) the weight loss during melting is reduced. Thick films (10-20 micron in thickness) with 0 and 5 wt% silver and bulk samples with) and 2.7 wt% silver were melt processed in flowing oxygen on a silver substrate in the DTA, allowing the observation of the melting process and a good temperature control. The critical current densities are vigorously dependent on the maximum processing temperature. The highest j(sub c) in thick films (8000 A/sq cm at 77 K, O T) was reached by melting 7 C above the solidus temperature. The silver addition shows no significant effect on the processing parameters or the superconducting properties. The highest j(sub c) for bulk samples (1 mm in thickness) was obtained by partial melting at 900 C or 880 C, depending on the silver content of the powder (0 or 2.7 wt%). The j(sub c) of the samples is slightly enhanced from 1800 A/sq cm (at 77 K, O T) to 2000 A/sq cm by the silver addition. To be able to reach at least 80% of the maximum critical current density, the temperature has to be controlled in a window of 5 C for thick films and 17 C for bulk samples.

  9. Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

    NASA Astrophysics Data System (ADS)

    Meng, F.; Chaudhary, R. P.; Gandha, K.; Nlebedim, I. C.; Palasyuk, A.; Simsek, E.; Kramer, M. J.; Ott, R. T.

    2018-06-01

    This work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu)5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5-20 at.%) and Co (60-45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity ( H c > 10 kOe) can be achieved without any microstructural refinement.

  10. Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver(I) coordination polymer precursor

    NASA Astrophysics Data System (ADS)

    Moradi, Zhaleh; Akhbari, Kamran; Phuruangrat, Anukorn; Costantino, Ferdinando

    2017-04-01

    Micro and nano-structures of [Ag2(μ2-dcpa)2]n (1), [Hdcpa = 2,4-dichlorophenoxyacetic acid] which is a one-dimensional coordination polymer with corrugated tape chains, were synthesized as the bulk sample (1B), by sonochemical process (1S) and from mechanochemical reaction (1M). These three samples have been used as new precursors for fabricating silver nanoparticles via direct calcination at 300 °C and also thermal decomposition in oleic acid (OA) as a surfactant at 180 °C. In the presence of OA less agglomerated nanostructures were formed. It seems that the size, dispersion, morphology and agglomeration of initial precursor have direct influence on size, dispersion, morphology and agglomeration of metallic silver. This coordination polymer with various micro and nano morphologies were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Thermal stability of these samples were studied and compared with each other, too.

  11. Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

    NASA Astrophysics Data System (ADS)

    Meng, F.; Chaudhary, R. P.; Gandha, K.; Nlebedim, I. C.; Palasyuk, A.; Simsek, E.; Kramer, M. J.; Ott, R. T.

    2018-04-01

    This work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu)5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5-20 at.%) and Co (60-45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity (H c > 10 kOe) can be achieved without any microstructural refinement.

  12. An acetate precursor process for BSCCO (2223) thin films and coprecipitated powders

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.

    1992-01-01

    Since the discovery of high temperature superconducting oxides much attention has been paid to finding better and useful ways to take advantage of the special properties exhibited by these materials. One such process is the development of thin films for engineering applications. Another such process is the coprecipitation route to producing superconducting powders. An acetate precursor process for use in thin film fabrication and a chemical coprecipitation route to Bismuth based superconducting materials has been developed. Data obtained from the thin film process were inconclusive to date and require more study. The chemical coprecipitation method of producing bulk material is a viable method, and is preferred over the previously used solid state route. This method of powder production appears to be an excellent route to producing thin section tape cast material and screen printed devices, as it requires less calcines than the oxide route to produce quality powders.

  13. Spectrochemical analysis of powder using 355 nm Nd-YAG laser-induced low-pressure plasma.

    PubMed

    Lie, Zener S; Pardede, M; Hedwig, R; Suliyanti, M M; Kurniawan, Koo Hendrik; Munadi; Lee, Yong-Inn; Kagawa, Kiichiro; Hattori, Isamu; Tjia, May On

    2008-04-01

    The applicability of spectrochemical analysis of minute amounts of powder samples was investigated using an ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A large variety of chemical powder samples of different composition were employed in the experiment. These included a mixture of copper(II) sulfate pentahydrate, zinc sulfide, and chromium(III) sulfate n-hydrate powders, baby powder, cosmetic powders, gold films, zinc supplement tablet, and muds and soils from different areas. The powder samples were prepared by pulverizing the original samples to an average size of around 30 microm in order to trap them in the tiny micro holes created on the surface of the quartz subtarget. It was demonstrated that in all cases studied, good quality spectra were obtained with low background, free from undesirable contamination by the subtarget elements and featuring ppm sensitivity. A further measurement revealed a linear calibration curve with zero intercept. These results clearly show the potential application of this technique for practical qualitative and quantitative spectrochemical analysis of powder samples in various fields of study and investigation.

  14. High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors.

    PubMed

    Kim, Song-Yi; Lee, Gwang-Yeob; Park, Gyu-Hyeon; Kim, Hyeon-Ah; Lee, A-Young; Scudino, Sergio; Prashanth, Konda Gokuldoss; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2018-01-18

    We report the methods increasing both strength and ductility of aluminum alloys transformed from amorphous precursor. The mechanical properties of bulk samples produced by spark-plasma sintering (SPS) of amorphous Al-Ni-Co-Dy powders at temperatures above 673 K are significantly enhanced by in-situ crystallization of nano-scale intermetallic compounds during the SPS process. The spark plasma sintered Al 84 Ni 7 Co 3 Dy 6 bulk specimens exhibit 1433 MPa compressive yield strength and 1773 MPa maximum strength together with 5.6% plastic strain, respectively. The addition of Dy enhances the thermal stability of primary fcc Al in the amorphous Al-TM -RE alloy. The precipitation of intermetallic phases by crystallization of the remaining amorphous matrix plays important role to restrict the growth of the fcc Al phase and contributes to the improvement of the mechanical properties. Such fully crystalline nano- or ultrafine-scale Al-Ni-Co-Dy systems are considered promising for industrial application because their superior mechanical properties in terms of a combination of very high room temperature strength combined with good ductility.

  15. High performance liquid chromatography for simultaneous determination of xipamide, triamterene and hydrochlorothiazide in bulk drug samples and dosage forms.

    PubMed

    Abd El-Hay, Soad S; Hashem, Hisham; Gouda, Ayman A

    2016-03-01

    A novel, simple and robust high-performance liquid chromatography (HPLC) method was developed and validated for simultaneous determination of xipamide (XIP), triamterene (TRI) and hydrochlorothiazide (HCT) in their bulk powders and dosage forms. Chromatographic separation was carried out in less than two minutes. The separation was performed on a RP C-18 stationary phase with an isocratic elution system consisting of 0.03 mol L(-1) orthophosphoric acid (pH 2.3) and acetonitrile (ACN) as the mobile phase in the ratio of 50:50, at 2.0 mL min(-1) flow rate at room temperature. Detection was performed at 220 nm. Validation was performed concerning system suitability, limits of detection and quantitation, accuracy, precision, linearity and robustness. Calibration curves were rectilinear over the range of 0.195-100 μg mL(-1) for all the drugs studied. Recovery values were 99.9, 99.6 and 99.0 % for XIP, TRI and HCT, respectively. The method was applied to simultaneous determination of the studied analytes in their pharmaceutical dosage forms.

  16. Direct write of copper-graphene composite using micro-cold spray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dardona, Sameh, E-mail: dardona@utrc.utc.com; She, Ying; Schmidt, Wayde R.

    Direct write of a new class of composite materials containing copper and graphene in the powder phase is described. The composite was synthesized using batch electroless plating of copper for various times onto Nano Graphene Platelets (NGP) to control the amount of copper deposited within the loosely aggregated graphene powder. Copper deposition was confirmed by both Focused Ion Beam (FIB) and Auger electron spectroscopic analysis. A micro-cold spray technique was used to deposit traces that are ∼230 μm wide and ∼5 μm thick of the formulated copper/graphene powder onto a glass substrate. The deposited traces were found to have goodmore » adhesion to the substrate with ∼65x the copper bulk resistivity.« less

  17. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products

    PubMed Central

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (−) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed (p<0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar (p>0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher (p<0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities. PMID:28943770

  18. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products.

    PubMed

    Cho, Min Guk; Bae, Su Min; Jeong, Jong Youn

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed ( p <0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar ( p >0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher ( p <0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.

  19. Evaluation the pozzolanic reactivity of sonochemically fabricated nano natural pozzolan.

    PubMed

    Askarinejad, Azadeh; Pourkhorshidi, Ali Reza; Parhizkar, Tayebeh

    2012-01-01

    Natural pozzolans are appropriate supplementary cementitious materials in cement and concrete industry. A simple sonochemical method was developed to synthesize nanostructures of natural pozzolan. Chemical composition, crystallinity, morphology and reactivity of the natural pozzolan samples were compared before and after the sonochemical process, by using powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Thermal Gravimetry and Differential Thermal Analysis (TG/DTA). Compressive strength tests were performed to evaluate the properties of blended cements incorporating nano natural pozzolan. Under optimized conditions, the nano natural pozzolans showed a superior reactivity as compared with the bulk natural pozzolan. Also higher compressive strength was obtained for the cement specimen incorporating nano natural pozzolan. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Thallium 2223 high Tc superconductor in a silver matrix and its magnetic shielding, hermal cycle and time aging properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, X.; He, W.S.; Havenhill, A.

    1994-12-31

    Superconducting Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Tl2223) was ground to powder. Mixture with silver powder (0--80% weight) and press to desired shape. After proper annealing, one can get good silver-content Tl2223 bulk superconductor. It is time-stable and has good superconducting property as same as pure Tl2223. It also has better mechanical property and far better thermal cycle property than pure Tl2223.

  1. Characterization of bulk and shear properties of basmati and non-basmati rice flour.

    PubMed

    Jan, Shumaila; Ghoroi, Chinmay; Saxena, Dharmesh Chandra

    2018-01-01

    Flours are often unstable in relation to their flow performance, which is evident when a free-flowing material ceases to flow and the processing, handling, and production parameters depend on the inherent powder characteristics and their bulk behaviour. The present study was conducted to compare the flowability of basmati and non-basmati rice flour affecting bulk handling, which could be related to its particle size, shape and surface roughness (measured by atomic force microscopy) as well as bulk and shear properties, depending upon the processing conditions. Particle size (171.1-171.9 μm) of both samples was not significantly different. However, the flowability of the non-basmati rice flour was significantly affected by its particle shape (circularity 0.487), surface roughness (124.23 nm) and compressibility (25.32%) in comparison to basmati rice flour (circularity 0.653, surface roughness 113.59 nm and compressibility 21.09%), making it more cohesive than basmati rice flour. Also, basic flow energy was significantly higher in non-basmati flour, thus requiring more energy (147.54 mJ) to flow than basmati rice flour (130.15 mJ). Overall, flowability was analysed by applying three different pressures (3, 6 and 9 kPa), among which non-basmati rice flour was found to be less flowable (flow function coefficient (FFC) 2.33 at 9 kPa) in comparison to basmati (FFC 3.35 at 9 kPa), making bulk handling difficult. This study could be useful in designing processing equipment, hoppers and silos for rice flour handling. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Cold Spraying of Cu-Al-Bronze for Cavitation Protection in Marine Environments

    NASA Astrophysics Data System (ADS)

    Krebs, S.; Gärtner, F.; Klassen, T.

    2015-01-01

    Traveling at high speeds, ships have to face the problem of rudder cavitation-erosion. At present, the problem is countered by fluid dynamically optimized rudders, synthetic, and weld-cladded coatings on steel basis. Nevertheless, docking and repair is required after certain intervals. Bulk Cu-Al-bronzes are in use at ships propellers to withstand corrosion and cavitation. Deposited as coatings with bulk-like properties, such bronzes could also enhance rudder life times. The present study investigates the coating formation by cold spraying CuAl10Fe5Ni5 bronze powders. By calculations of the impact conditions, the range of optimum spray parameters was preselected in terms of the coating quality parameter η on steel substrates with different temperatures. As-atomized and annealed powders were compared to optimize cavitation resistance of the coatings. Results provide insights about the interplay between the mechanical properties of powder and substrate for coating formation. Single particle impact morphologies visualize the deformation behavior. Coating performance was assessed by analyzing microstructures, bond strength, and cavitation resistance. These first results demonstrate that cold-sprayed bronze coatings have a high potential for ensuring a good performances in rudder protection. With further optimization, such coatings could evolve towards a competitive alternative to existing anti-cavitation procedures.

  3. Toward detection of supernova event near the earth based on high-resolution analysis of cosmogenic nuclide 10Be in marine sediments

    NASA Astrophysics Data System (ADS)

    Takiguchi, S.; Suganuma, Y.; Kataoka, R.; Yamaguchi, K. E.

    2017-12-01

    Cosmic rays react with substances in the Earth's atmosphere and form cosmogenic nuclides. The flux would abruptly increase with nearby supernova or terrestrial magnetic events such as reversal or excursion of terrestrial magnetism. The Earth must have been exposed to cosmic ray radiation for as long as 10 Ma, if any, by nearby supernova activities (Kataoka et al., 2014). Increased and prolonged activity of cosmic rays would affect Earth's climate through forming greenhouse gases and biosphere through damaging DNA. Therefore, interests have been growing as to whether and how past supernova events have ever left any fingerprints on them. However, detection of nearby supernova is still under debate (e.g., Knie et al., 2004) To detect long-term record of past supernova activities, we utilize cosmogenic nuclide 10Be because of its short residence time (1-2yr) in the atmosphere, simple transport process, and adequate half-life (1.36 kyr) which is nearly equivalent to the duration of present-day deep water circulation. Sediment samples collected from the equatorial western Pacific (706-825 kyr in age) were finely powdered and decomposed by mixed acids (HNO3, HF, and HClO4). Authigenic phase was also separated from bulk powders by leaching with a weak acid. Because quantitative separation of Be from samples is essential toward high-quality 10Be analysis, both Be-bearing fractions were applied to optimized anion exchange chromatography for Be separation, and Be abundance was measured by atomic absorption spectrometry. The 10Be abundance (10Be/9Be ratios) were measured by accelerator mass spectrometry. The authigenic phase showed temporal curve that is similar to that of bulk samples (Suganuma et al., 2012), reflecting the influence of relative paleo-intensity and utility of authigenic method. Increased data set in terms of sampling interval (density) and total age range would allow us to judge whether it could detect past supernova activities and how it appears when compared to the recent results of Wallner et al. (2016) using Fe isotopes. If past supernova activities are not detected, we then establish standard temporal curve, with higher resolution, of relative paleo-intensity of terrestrial magnetism and construct global ionization map as a function of terrestrial magnetism.

  4. Orientation-dependent hydration structures at yttria-stabilized cubic zirconia surfaces

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-11-30

    Water interaction with surfaces is very important and plays key roles in many natural and technological processes. Because the experimental challenges that arise when studying the interaction water with specific crystalline surfaces, most studies on metal oxides have focused on powder samples, which averaged the interaction over different crystalline surfaces. As a result, studies on the crystal orientation-dependent interaction of water with metal oxides are rarely available in the literature. In this work, water adsorption at 8 mol % yttria-stabilized cubic single crystal zirconia (100) and (111) surfaces was studied in terms of interfacial hydration structures using high resolution X-raymore » reflectivity measurements. The interfacial electron density profiles derived from the structure factor analysis of the measured data show the existence of multiple layers of adsorbed water with additional peculiar metal adsorption near the oxide surfaces.Surface relaxation, depletion, and interaction between the adsorbed layers and bulk water are found to vary greatly between the two surfaces and are also different when compared to the previously studied (110) surface. The fractional ratio between chemisorbed and physisorbed water species were also quantitatively estimated, which turned out to vary dramatically from surface to surface. Finally, the result gives us a unique opportunity to reconsider the simplified 2:1 relation between chemisorption and physisorption, originally proposed by Morimoto et al. based on the adsorption isotherms of water on powder metal oxide samples.« less

  5. Effect of ball milling and dynamic compaction on magnetic properties of Al2O3/Co(P) composite particles

    NASA Astrophysics Data System (ADS)

    Denisova, E. A.; Kuzovnikova, L. A.; Iskhakov, R. S.; Bukaemskiy, A. A.; Eremin, E. V.; Nemtsev, I. V.

    2014-05-01

    The evolution of the magnetic properties of composite Al2O3/Co(P) particles during ball milling and dynamic compaction is investigated. To prepare starting composite particles, the Al2O3 granules were coated with a Co95P5 shell by electroless plating. The magnetic and structural properties of the composite particles are characterized by scanning electron microscopy, X-ray diffraction, and the use of the Physical Property Measurement System. The use of composite core-shell particles as starting powder for mechanoactivation allows to decrease treatment duration to 1 h and to produce a more homogeneous bulk sample than in the case of the mixture of Co and Al2O3 powders. The magnetic properties of the milled composite particles are correlated with changes in the microstructure. Reduction in grain size of Co during milling leads to an increase of the volume fraction of superparamagnetic particles and to a decrease of the saturation magnetization. The local magnetic anisotropy field depends on the amount of hcp-Co phase in sample. The anisotropy field value decreases from 8.4 kOe to 3.8 kOe with an increase in milling duration up to 75 min. The regimes of dynamic compaction were selected so that the magnetic characteristics—saturation magnetization and coercive field—remained unchanged.

  6. A validated spectrofluorimetric method for the determination of citalopram in bulk and pharmaceutical preparations based on the measurement of the silver nanoparticles-enhanced fluorescence of citalopram/terbium complexes.

    PubMed

    Khan, Muhammad Naeem; Shah, Jasmin; Jan, Muhammad Rasul; Lee, Sang Hak

    2013-01-01

    A simple, sensitive, and accurate spectrofluorimetric method was developed for the determination of citalopram in bulk and pharmaceutical preparations. The method is based on the enhancement of the weak fluorescence signal (FL) of the Tb (III)-citalopram system in the presence of silver nanoparticles. Fluorescence intensities were measured at 555 nm after excitation at 281 nm. Prepared silver nanoparticles (AgNPs) were characterized by UV-Visible spectra and transmission electron microscopy (TEM). Various factors affecting the formation of citalopram-Tb (III)-AgNPs complexes were studied and optimized. The fluorescence intensity versus concentration plot was linear over the range 0.02-14 μg mL(-1), with an excellent correlation coefficient of 0.9978. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 7.15 × 10(-6) μg mL(-1) and 2.38 × 10(-5) μg mL(-1) respectively. The proposed method was found to have good reproducibility with a relative standard deviation of 3.66% (n = 6). The interference effects of common excipients found in pharmaceutical preparations were studied. The developed method was validated statistically by performing recoveries studies and successfully applied for the assay of citalopram in bulk powder and pharmaceutical preparations. Percent recoveries were found to range from 98.98% to 100.97% for bulk powder and from 96.57% to 101.77% for pharmaceutical preparations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkyu; Park, Hun; Paik, Ungyu

    We have discovered a methodology to realize the fabrication of flexible metal oxide film using two-dimensional (2D) nanosheets. Atomic scale titanium oxide (TiO{sub x}) nanosheets were exfoliated from bulk TiO{sub x} powder that had a layered structure via the modified Sasaki’s method. The vacuum-assisted filtration generates films with laterally aligned TiO{sub x} nanosheets. The 2D sheet-like structure and hydrophilic nature of TiO{sub x} nanosheets enables the film consisting of TiO{sub x} nanosheets to be bendable. Also, we demonstrate the fabrication of electrochemical capacitors using this film. The mechanically flexible metal oxide film is expected to open up the possibility ofmore » fabricating flexible energy storage devices from 2D metal oxide nanosheets. - Graphical abstract: The modified Sasaki’s method, combined process of hydrothermal reaction and bulky ion exchange, enables to obtain TiO{sub x} monolayer nanosheets. The vacuum-assisted filtration generates bendable films with laterally aligned TiO{sub x} nanosheets. Also, we demonstrate the fabrication of electrochemical capacitors using this film. - Highlights: • TiO{sub x} single sheets, a novel 2-dimensional material, were exfoliated from bulk powders via the modified Sasaki’s method. • In our method, the acid treatment of TiO{sub x} bulk powders was simply modified by applying the hydrothermal reaction. • Then, the delamination procedures of large cation exchange were conducted following the method proposed by Sasaki et al. • Reassembly of TiO{sub x} sheets into flexible free-standing films was simply achieved via vacuum assisted filtration method. • TiO{sub x} films were used as a flexible supercapaictor electrode material.« less

  8. Dry powder inhalers: physicochemical and aerosolization properties of several size-fractions of a promising alterative carrier, freeze-dried mannitol.

    PubMed

    Kaialy, Waseem; Nokhodchi, Ali

    2015-02-20

    The purpose of this work was to evaluate the physicochemical and inhalation characteristics of different size fractions of a promising carrier, i.e., freeze-dried mannitol (FDM). FDM was prepared and sieved into four size fractions. FDMs were then characterized in terms of micromeritic, solid-state and bulk properties. Dry powder inhaler (DPI) formulations were prepared using salbutamol sulphate (SS) and then evaluated in terms of drug content homogeneity and in vitro aerosolization performance. The results showed that the crystalline state of mannitol was maintained following freeze-drying for all size fractions of FDM. All FDM particles showed elongated morphology and contained mixtures of α-, β- and δ-mannitol. In comparison to small FDM particles, FDMs with larger particle sizes demonstrated narrower size distributions, higher bulk and tap densities, lower porosities and better flowability. Regardless of particle size, all FDMs generated a significantly higher (2.2-2.9-fold increase) fine particle fraction (FPF, 37.5 ± 0.9%-48.6 ± 2.8%) of SS in comparison to commercial mannitol. The FPFs of SS were related to the shape descriptors of FDM particles; however, FPFs did not prove quantitative apparent relationships with either particle size or powder bulk descriptors. Large FDM particles were more favourable than smaller particles because they produced DPI formulations with better flowability, better drug content homogeneity, lower amounts of the drug depositing on the throat and contained lower fine-particle-mannitol. Optimized stable DPI formulations with superior physicochemical and pharmaceutical properties can be achieved using larger particles of freeze-dried mannitol (FDM). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Compositional data for Bengal delta sediment collected from boreholes at Srirampur, Kachua, Bangladesh

    USGS Publications Warehouse

    Breit, George N.; Yount, James C.; Uddin, Md. Nehal; Muneem, Ad. Atual; Lowers, Heather; Driscoll, Rhonda L.; Whitney, John W.

    2006-01-01

    Processes active within sediment of the Bengal delta have attracted world concern because of the locally high content of arsenic dissolved in ground water drawn from that sediment. Sediment samples were collected from two boreholes in Srirampur village, Kachua upazila, Chandphur district, Bangladesh, to investigate the processes contributing to arsenic contamination. The samples were mineralogically and chemically analyzed to determine compositional variations related to the arsenic content of the sediment. Mineralogy of the sediments was determined using powder X-ray diffraction. Bulk chemical composition was measured by Combustion, Inductively Coupled Plasma Atomic Emission Spectroscopy, Energy Dispersive X-ray Fluorescence, and Hydride Generation Atomic Absorption Spectrophotometry. Solutions produced by four chemical extractions-0.1 molar strontium chloride, 0.5 normal hydrochloric acid, titanium(III)-EDTA, and a solution of hydrogen peroxide and hydrochloric acid-were analyzed to evaluate the chemical reactivity of the sediment with an emphasis on arsenic residence. Acid-volatile sulfide, acid-soluble sulfate, and reducible sulfide were also measured. Sediment sampled at Srirampur is typically unlithified, gray, micaceous, feldspathic, arenaceous silt and sand. Arsenic content of the sediment ranges from <1 to 210 ppm, with the highest contents measured in sediment collected at a depth of 320 meters. Samples with high arsenic contents typically contain high concentrations of sulfur. The greatest amount of arsenic was extracted using the oxidative hydrogen peroxide and hydrochloric acid extraction solution. The extraction results are consistent with the apparent association of arsenic in sulfur in the bulk chemical analyses. Pyrite is typically the most abundant form of sulfur in the sediment and is dissolved by the oxidative extraction.

  10. Compositional Data for Bengal Delta Sediment Collected from a Borehole at Rajoir, Bangladesh

    USGS Publications Warehouse

    Breit, George N.; Yount, James C.; Uddin, Md. Nehal; Muneem, Ad. Atual; Lowers, Heather; Berry, Cyrus J.; Whitney, John W.

    2007-01-01

    Processes active within sediment of the Bengal basin have attracted world concern because of the locally high content of arsenic dissolved in ground water drawn from that sediment. Sediment samples were collected from a borehole in the town of Rajoir, Rajoir upazila, Madaripur district, Bangladesh, to investigate the processes contributing to arsenic contamination. The samples were mineralogically and chemically analyzed to determine compositional variations related to the arsenic content of the sediment. Mineralogy of the sediment was determined using powder X-ray diffraction. Bulk chemical composition was measured by Combustion; Inductively Coupled Plasma Atomic Emission Spectroscopy; Energy Dispersive X-ray Fluorescence; and Hydride Generation Atomic Absorption Spectrophotometry. Sediment was treated with 0.5 N HCl and resulting solutions were analyzed, primarily to evaluate the abundance and oxidation state of acid-soluble iron. Acid-volatile sulfide, acid-soluble sulfate, and reducible sulfide were also measured on a few samples. Sediment sampled at Rajoir is typically unlithified, gray, micaceous, feldspathic arenaceous sand with a few silt and clay layers. Arsenic content of the sediment ranges from 0.6 to 21 ppm with a median of 1.2 ppm.

  11. Effect of colloidal silica on rheological properties of common pharmaceutical excipients.

    PubMed

    Majerová, Diana; Kulaviak, Lukáš; Růžička, Marek; Štěpánek, František; Zámostný, Petr

    2016-09-01

    In pharmaceutical industry, the use of lubricants is mostly based on historical experiences or trial and error methods even these days. It may be demanding in terms of the material consumption and may result in sub-optimal drug composition. Powder rheology enables more accurate monitoring of the flow properties and because the measurements need only a small sample it is perfectly suitable for the rare or expensive substances. In this work, rheological properties of four common excipients (pregelatinized maize starch, microcrystalline cellulose, croscarmellose sodium and magnesium stearate) were studied by the FT4 Powder Rheometer, which was used for measuring the compressibility index by a piston and flow properties of the powders by a rotational shear cell. After an initial set of measurements, two excipients (pregelatinized maize starch and microcrystalline cellulose) were chosen and mixed, in varying amounts, with anhydrous colloidal silicon dioxide (Aerosil 200) used as a glidant. The bulk (conditioned and compressed densities, compressibility index), dynamic (basic flowability energy) and shear (friction coefficient, flow factor) properties were determined to find an optimum ratio of the glidant. Simultaneously, the particle size data were obtained using a low-angle laser light scattering (LALLS) system and scanning electron microscopy was performed in order to examine the relationship between the rheological properties and the inner structure of the materials. The optimum of flowability for the mixture composition was found, to correspond to empirical findings known from general literature. In addition the mechanism of colloidal silicone dioxide action to improve flowability was suggested and the hypothesis was confirmed by independent test. New findings represent a progress towards future application of determining the optimum concentration of glidant from the basic characteristics of the powder in the pharmaceutical research and development. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  13. Synchrotron powder X-ray diffraction and structural analysis of Eu0.5La0.5FBiS2-x Se x

    NASA Astrophysics Data System (ADS)

    Nagasaka, K.; Jinno, G.; Miura, O.; Miura, A.; Moriyoshi, C.; Kuroiwa, Y.; Mizuguchi, Y.

    2017-07-01

    Eu0.5La0.5FBiS2-x Se x is a new BiS2-based superconductor system. In Eu0.5La0.5FBiS2-x Se x , electron carriers are doped to the BiS2 layer by the substitution of Eu by La. Bulk superconductivity in this system is induced by increasing the in-plane chemical pressure, which is controlled by the Se concentration (x). In this study, we have analysed the crystal structure of Eu0.5La0.5FBiS2-x Se x using synchrotron powder diffraction and the Rietveld refinement. The precise determination of the structural parameters and thermal factors suggest that the emergence of bulk superconductivity in Eu0.5La0.5FBiS2-x Se x is achieved by the enhanced in-plane chemical pressure and the decrease in in-plane disorder.

  14. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  15. Vision system and three-dimensional modeling techniques for quantification of the morphology of irregular particles

    NASA Astrophysics Data System (ADS)

    Smith, Lyndon N.; Smith, Melvyn L.

    2000-10-01

    Particulate materials undergo processing in many industries, and therefore there are significant commercial motivators for attaining improvements in the flow and packing behavior of powders. This can be achieved by modeling the effects of particle size, friction, and most importantly, particle shape or morphology. The method presented here for simulating powders employs a random number generator to construct a model of a random particle by combining a sphere with a number of smaller spheres. The resulting 3D model particle has a nodular type of morphology, which is similar to that exhibited by the atomized powders that are used in the bulk of powder metallurgy (PM) manufacture. The irregularity of the model particles is dependent upon vision system data gathered from microscopic analysis of real powder particles. A methodology is proposed whereby randomly generated model particles of various sized and irregularities can be combined in a random packing simulation. The proposed Monte Carlo technique would allow incorporation of the effects of gravity, wall friction, and inter-particle friction. The improvements in simulation realism that this method is expected to provide would prove useful for controlling powder production, and for predicting die fill behavior during the production of PM parts.

  16. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering

    NASA Astrophysics Data System (ADS)

    Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.

    2017-12-01

    The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.

  17. Magnetic properties of mechanically alloyed Mn-Al-C powders

    NASA Astrophysics Data System (ADS)

    Kohmoto, O.; Kageyama, N.; Kageyama, Y.; Haji, H.; Uchida, M.; Matsushima, Y.

    2011-01-01

    We have prepared supersaturated-solution Mn-Al-C alloy powders by mechanical alloying using a planetary high-energy mill. The starting materials were pure Mn, Al and C powers. The mechanically-alloyed powders were subjected to a two-step heating. Although starting particles are Al and Mn with additive C, the Al peak disappears with MA time. With increasing MA time, transition from α-Mn to β-Mn does not occur; the α-Mn structure maintains. At 100 h, a single phase of supersaturated-solution α-Mn is obtained. The lattice constant of α-Mn decreases with increasing MA time. From the Scherrer formula, the crystallite size at 500 h is obtained as 200Å, which does not mean amorphous state. By two-step heating, high magnetization (66 emu/g) was obtained from short-time-milled powders (t=10 h). The precursor of the as-milled powder is not a single phase α-Mn but contains small amount of fcc Al. After two-step heating, the powder changes to τ-phase. Although the saturation magnetization increases, the value is less than that by conventional bulk MnAl (88 emu/g). Meanwhile, long-time-milled powder of single α-Mn phase results in low magnetization (5.2 emu/g) after two-step heating.

  18. Following the surface response of caffeine cocrystals to controlled humidity storage by atomic force microscopy.

    PubMed

    Cassidy, A M C; Gardner, C E; Jones, W

    2009-09-08

    Active pharmaceutical ingredient (API) stability in solid state tablet formulation is frequently a function of the relative humidity (RH) environment in which the drug is stored. Caffeine is one such problematic API. Previously reported caffeine cocrystals, however, were found to offer increased resistance to caffeine hydrate formation. Here we report on the use of atomic force microscopy (AFM) to image the surface of two caffeine cocrystal systems to look for differences between the surface and bulk response of the cocrystal to storage in controlled humidity environments. Bulk responses have previously been assessed by powder X-ray diffraction. With AFM, pinning sites were identified at step edges on caffeine/oxalic acid, with these sites leading to non-uniform step movement on going from ambient to 0% RH. At RH >75%, areas of fresh crystal growth were seen on the cocrystal surface. In the case of caffeine/malonic acid the cocrystals were observed to absorb water anisotropically after storage at 75% RH for 2 days, affecting the surface topography of the cocrystal. These results show that AFM expands on the data gathered by bulk analytical techniques, such as powder X-ray diffraction, by providing localised surface information. This surface information may be important for better predicting API stability in isolation and at a solid state API-excipient interface.

  19. Preparation, chemical composition and storage studies of quamachil (Pithecellobium dulce L.) aril powder.

    PubMed

    Rao, Galla Narsing; Nagender, Allani; Satyanarayana, Akula; Rao, Dubasi Govardhana

    2011-02-01

    Quamachil aril powder samples were prepared and evaluated for chemical composition and sensory quality by packing in two packaging systems during storage for six months. The protein contents were 12.4 and 15.0% in white and pink aril powders respectively. The titrable acidity of white and pink aril powders were 2.4 and 4.8% respectively. Ca and Fe contents in white aril powder samples were 60 and 12 mg/100 g where as in pink aril powder 62 and 16 mg/100 g, respectively. The anthocyanin content in pink powder decreased from 50.5 to 11.2 and 14.1 mg/100 g in samples packed in polyethylene (PE) and metalised polyester polyethylene laminated pouches respectively. Total polyphenol amount increased in both the powders irrespective of packaging material. Sorption isotherms indicated that both white and pink aril powders were hygroscopic and equilibrated at low relative humidity of 28 and 32%, respectively.

  20. 35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsh, David A.; Rossini, Aaron J.; Emsley, Lyndon

    In this paper, we show how to obtain efficient dynamic nuclear polarization (DNP) enhanced 35Cl solid-state NMR (SSNMR) spectra at 9.4 T and demonstrate how they can be used to characterize the molecular-level structure of hydrochloride salts of active pharmaceutical ingredients (APIs) in both bulk and low wt% API dosage forms. 35Cl SSNMR central-transition powder patterns of chloride ions are typically tens to hundreds of kHz in breadth, and most cannot be excited uniformly with high-power rectangular pulses or acquired under conditions of magic-angle spinning (MAS). Herein, we demonstrate the combination of DNP and 1H– 35Cl broadband adiabatic inversion crossmore » polarization (BRAIN-CP) experiments for the acquisition of high quality wideline spectra of APIs under static sample conditions, and obtain signals up to 50 times greater than in spectra acquired without the use of DNP at 100 K. We report a new protocol, called spinning-on spinning-off (SOSO) acquisition, where MAS is applied during part of the polarization delay to increase the DNP enhancements and then the MAS rotation is stopped so that a wideline 35Cl NMR powder pattern free from the effects of spinning sidebands can be acquired under static conditions. This method provides an additional two-fold signal enhancement compared to DNP-enhanced SSNMR spectra acquired under purely static conditions. DNP-enhanced 35Cl experiments are used to characterize APIs in bulk and dosage forms with Cl contents as low as 0.45 wt%. These results are compared to DNP-enhanced 1H– 13C CP/MAS spectra of APIs in dosage forms, which are often hindered by interfering signals arising from the binders, fillers and other excipient materials.« less

  1. 35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients

    DOE PAGES

    Hirsh, David A.; Rossini, Aaron J.; Emsley, Lyndon; ...

    2016-08-24

    In this paper, we show how to obtain efficient dynamic nuclear polarization (DNP) enhanced 35Cl solid-state NMR (SSNMR) spectra at 9.4 T and demonstrate how they can be used to characterize the molecular-level structure of hydrochloride salts of active pharmaceutical ingredients (APIs) in both bulk and low wt% API dosage forms. 35Cl SSNMR central-transition powder patterns of chloride ions are typically tens to hundreds of kHz in breadth, and most cannot be excited uniformly with high-power rectangular pulses or acquired under conditions of magic-angle spinning (MAS). Herein, we demonstrate the combination of DNP and 1H– 35Cl broadband adiabatic inversion crossmore » polarization (BRAIN-CP) experiments for the acquisition of high quality wideline spectra of APIs under static sample conditions, and obtain signals up to 50 times greater than in spectra acquired without the use of DNP at 100 K. We report a new protocol, called spinning-on spinning-off (SOSO) acquisition, where MAS is applied during part of the polarization delay to increase the DNP enhancements and then the MAS rotation is stopped so that a wideline 35Cl NMR powder pattern free from the effects of spinning sidebands can be acquired under static conditions. This method provides an additional two-fold signal enhancement compared to DNP-enhanced SSNMR spectra acquired under purely static conditions. DNP-enhanced 35Cl experiments are used to characterize APIs in bulk and dosage forms with Cl contents as low as 0.45 wt%. These results are compared to DNP-enhanced 1H– 13C CP/MAS spectra of APIs in dosage forms, which are often hindered by interfering signals arising from the binders, fillers and other excipient materials.« less

  2. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications.

    PubMed

    Edris, Amr E; Kalemba, Danuta; Adamiec, Janusz; Piątkowski, Marcin

    2016-08-01

    Oleoresin of Nigella sativa L. (Black cumin) was obtained from the seeds using hexane extraction at room temperature. The oleoresin was emulsified in an aqueous solution containing gum Arabic/maltodextrin (1:1 w/w) and then encapsulated in powder form by spray drying. The characteristics of the obtained powder including moisture content, bulk density, wettability, morphology, encapsulation efficiency were evaluated. The effect of the spray drying on the chemical composition of the volatile oil fraction of N. sativa oleoresin was also evaluated using gas chromatographic-mass spectroscopic analysis. Results indicated that the encapsulation efficiency of the whole oleoresin in the powder can range from 84.2±1.5% to 96.2±0.2% depending on the conditions of extracting the surface oil from the powder. On the other hand the encapsulation efficiency of the volatile oil fraction was 86.2% ±4.7. The formulated N. sativa L. oleoresin powder can be used in the fortification of processed food and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Optimum carrageenan concentration improved the physical properties of cabinet-dried yoghurt powder

    NASA Astrophysics Data System (ADS)

    Pratama, Y.; Abduh, S. B. M.; Legowo, A. M.; Pramono, Y. B.; Albaarri, AN

    2018-01-01

    Carrageenan is a hydrocolloid which able to improve the characteristic of dried powder. The purpose of this study was to produce and evaluate the characteristics of yoghurt powder which incorporated carrageenan as stabilizer and dried in a cabinet dryer. Carrageenan of 1 %, 2 % and 3 % (w/v) concentration were added to yoghurt prior to cabinet drying process. Physical properties of the yoghurt powder and the reconstituted one were evaluated. The best result was shown in carrageenan concentration of 2 % where it showed the highest bulk density (0.62 g/ml), and best particle size distribution (65.49 % in the range of 250-500 μm). Moisture and water activity (aw) were 8.02% and 0.37, respectively. The value is lower than what spoilage microorganisms require to grow (aw > 0.6) thus ensuring its long shelf life when combined with proper packaging. Reconstitution at 50°C showed that 2 % carrageenan resulted in a stable yoghurt product with no visible syneresis even after 3 hours. The proposed method shows promising application in the production of long shelf-life yoghurt powder production.

  4. Ceramic Technology for Advanced Heat Engines Project Semiannual Progress Report for Period October 1985 Through March 1986

    DTIC Science & Technology

    1986-08-01

    materials (2.2 w/o and 3.0 w/o MgO). The other two batches (2.8 w/o and 3.1 w/o MgO), of higher purity, were made using E-10 zirconia powder from...CID) powders Two methods have been used for the coprecipitation of doped zirconia powders from solutions of chemical precursors. (4) Method I, for...of powder, approximate sample size 3.2 Kg (6.4 Kg for zirconia powder ); 342 3. Random selection of sample; 4. Partial drying of sample to reduce caking

  5. Analysis of ultrasonic effect on powder and application to radioactive sample compaction

    NASA Astrophysics Data System (ADS)

    Kim, Jungsoon; Sim, Minseop; Kim, Jihyang; Kim, Moojoon

    2018-07-01

    The effect of ultrasound on powder compaction was analyzed. The decreasing in the friction coefficient of the powder sample is derived theoretically. The compaction rate was improved by the ultrasound. We applied the effect to the compaction of environmental radioactive soil samples. From γ-ray spectroscopy analysis, more radionuclides could be detectable in the sample compacted with ultrasound.

  6. Storage stability of cauliflower soup powder: The effect of lipid oxidation and protein degradation reactions.

    PubMed

    Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H

    2011-09-15

    Soups based on cauliflower soup powders, prepared by dry mixing of ingredients and rapeseed oil, showed a decrease in quality, as evaluated by a sensory panel, during the storage of the soup powder in the dark for up to 12weeks under mildly accelerated conditions of 40°C and 75% relative humidity. Antioxidant, shown to be effective in protecting the rapeseed bulk oil, used for the powder preparation, had no effect on storage stability of the soup powder. The freshly prepared soup powder had a relatively high concentration of free radicals, as measured by electron spin resonance spectroscopy, which decreased during storage, and most remarkably during the first two weeks of storage, with only marginal increase in lipid hydroperoxides as primary lipid oxidation products, and without any increase in secondary lipid oxidation products. Analyses of volatiles by SPME-GC-MS revealed a significant increase in concentrations of 2-methyl- and 3-methyl butanals, related to Maillard reactions, together with an increase in 2-acetylpyrrole concentration. The soup powders became more brown during storage, as indicated by a decreasing Hunter L-value, in accord with non-enzymatic browning reactions. A significant increase in the concentrations of dimethyl disulfide in soup powder headspace indicated free radical-initiated protein oxidation. Protein degradation, including Maillard reactions and protein oxidation, is concluded to be more important than lipid oxidation in determining the shelf-life of dry cauliflower soup powder. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Structural, microstructural and electrical characterization of BaSnO3 and Ba0.90Y0.10SnO3 synthesized by solution combustion method

    NASA Astrophysics Data System (ADS)

    Kumar, Upendra; Yadav, Dharmendra; Upadhyay, Shail; Thakur, Anukul K.

    2018-04-01

    Powder of perovskite oxides BaSnO3 and Ba0.90Y0.10SnO3 have been synthesized by solution combustion method. Rietveld profile analysis shows that the phases crystallize with cubic unit cell in the space group pm3m. Further purity of the synthesized powders was checked by Fourier transform of infrared (FTIR) spectroscopy. The average grain size of the sintered samples was obtained using Scanning electron microscopy (SEM) and found to be 4.9 and 2.8 1m for BaSnO3 and Ba0.90Y0.10SnO3, respectively. The AC conductivity (σac) of synthesized samples was measured in the frequency range from 24Hz-1MHz and temperature range 100 - 600°C. Conductivity spectra of both the samples followed universal Johnscher's power law at different temperatures. The value of bulk or dc conductivity (σdc) at different temperatures has been extracted by fitting the Johnscher's power law to AC conductivity spectra. The activation energy for σc has been obtained from the least square linear fit of data points and found to be 0.53 eV and 0.43 eV, respectively for BaSnO3 and Ba0.90Y0.10SnO3. Based on the value of activation energy it is proposed that conduction in these samples is govern via hopping of (OH)•. The value of conductivity at temperature 550°C of Ba0.90Y0.10SnO3 is 0.00406 S-cm-1 higher than BaSnO3 (0.00173 S-cm-1) at the same temperature.

  8. Ferromagnetism in LaCo O3

    NASA Astrophysics Data System (ADS)

    Yan, J.-Q.; Zhou, J.-S.; Goodenough, J. B.

    2004-07-01

    A systematic investigation of the low-temperature magnetic properties of LaCoO3 has demonstrated a ferromagnetism with Tc≈85K from surface cobalt atoms. The experimental investigation involved comparison of the magnetic susceptibility of (1) a single crystal, (2) a powder ground from the same crystal, and (3) a cold-pressed pellet from the ground powder that was unannealed and annealed at 400°C followed by a later anneal at 1000°C . The low-temperature magnetic susceptibility was found to have three contributions: a Curie-Weiss paramagnetism, a thermally driven spin-state transition, and a surface-related ferromagnetism with Tc≈85K . The ferromagnetic component has a remanence and coercivity at 5K that increases dramatically with increasing surface/volume ratio of the different samples. The presence of the surface ferromagnetism explains the discrepancies of the low-temperature magnetic susceptibility reported by different groups. An anion coordination at surface Co(III) ions that differs from that of the bulk cobalt is shown to be capable of stabilizing higher spin states. A Tc≈85K is argued to be too low for ferromagnetic coupling by oxidized clusters, and possible mechanisms for a ferromagnetic coupling between higher-spin Co(III) ions are discussed.

  9. Laboratory synthesis of silicate glass spherules: Application to impact ejecta

    NASA Astrophysics Data System (ADS)

    Stoddard, P. S.; Pahlevan, K.; Tumber, S.; Weber, R.; Lee, K. K.

    2012-12-01

    To investigate the process by which molten droplets of impact ejecta solidify into glassy spherule tektites, we employed laser levitation experiments to recreate the hot temperatures of falling molten rock. Following models for Earth composition based on enstatite chondrites, we levitated mixtures of oxide powders in a stream of gas and melted them with a laser, producing silicate glass beads. After quenching, we polished the ~1 mm diameter samples in cross-section and analyzed with electron probe microanalysis (EPMA). Fine and coarsely-spaced EPMA transects across each bead displayed diffusion profiles at their edges, particularly in their SiO2 and MgO content. Heating altered the beads' bulk composition as well; all of the glassy spherules were compositionally different from the initial combination of powders. By comparing these changes to the environmental factors acting on the bead (e.g., temperature, type of levitation gas, duration of heating and amount of rotation), we produced a model for how molten ejecta change chemically and physically as they solidify into a glass. We find that high temperatures likely generated on impact have a strong effect on the composition of tektites; therefore, attempts to correlate tektites to their parent rocks should correct for this effect.

  10. Enhanced thermoelectric figure-of-merit in Bi-Sb-Te nanocomposites with homogenously dispersed oxide ceramic ZrO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Madavali, B.; Kim, H. S.; Lee, K. H.; Hong, S. J.

    2017-06-01

    In this research, p-type BiSbTe/ZrO2 nanocomposite powders were fabricated by high-energy ball milling. Different weight percentages of ZrO2 (2, 4, and 6 wt. %) nanoparticles were incorporated into the bulk (BiSbTe) matrix by consolidation of as-synthesized nanocomposites (NCs) powder by spark plasma sintering at 673 K. The phase and existence of ZrO2 nano-inclusions was confirmed by X-ray diffraction and transmission electron microscopy-selected area electron diffraction analysis. The Seebeck coefficient of the BiSbTe/ZrO2 NCs was significantly improved (˜36% for 4 wt. % added NCs) by a decrease in the carrier concentration and energy filtering effect, whereas the thermal conductivity was much reduced via strong scattering of carriers/phonons. The peak thermoelectric figure-of-merit (1.34 ± 0.06) was obtained for BiSbTe into which 2 wt. % ZrO2 was dispersed, which was approximately 20% greater than that of the undispersed sample. The hardness of the nanocomposites was significantly improved (˜27%) due to grain-boundary hardening and a dispersion strengthening mechanism.

  11. Effect of surface modification on hydration kinetics of carbamazepine anhydrate using isothermal microcalorimetry.

    PubMed

    Otsuka, Makoto; Ishii, Mika; Matsuda, Yoshihisa

    2003-01-01

    The purpose of this research was to improve the stability of carbamazepine (CBZ) bulk powder under high humidity by surface modification. The surface-modified anhydrates of CBZ were obtained in a specially designed surface modification apparatus at 60 degrees C via the adsorption of n-butanol, and powder x-ray diffraction, Fourier-Transformed Infrared spectra, and differential scanning calorimetry were used to determine the crystalline characteristics of the samples. The hydration process of intact and surface-modified CBZ anhydrate at 97% relative humidity (RH) and 40 +/-C 1 degrees C was automatically monitored by using isothermal microcalorimetry (IMC). The dissolution test for surface-modified samples (20 mg) was performed in 900 mL of distilled water at 37 +/-C 0.5 degrees C with stirring by a paddle at 100 rpm as in the Japanese Pharmacopoeia XIII. The heat flow profiles of hydration of intact and surface-modified CBZ anhydrates at 97% RH by using IMC profiles showed a maximum peak at around 10 hours and 45 hours after 0 and 10 hours of induction, respectively. The result indicated that hydration of CBZ anhydrate was completely inhibited at the initial stage by surface modification of n-butanol and thereafter transformed into dihydrate. The hydration of surface-modified samples followed a 2-dimensional phase boundary process with an induction period (IP). The IP of intact and surface-modified samples decreased with increase of the reaction temperature, and the hydration rate constant (k) increased with increase of the temperature. The crystal growth rate constants of nuclei of the intact sample were significantly larger than the surface-modified sample's at each temperature. The activation energy (E) of nuclei formation and crystal growth process for hydration of surface-modified CBZ anhydrate were evaluated to be 20.1 and 32.5 kJ/mol, respectively, from Arrhenius plots, but the Es of intact anhydrate were 56.3 and 26.8 kJ/mol, respectively. The dissolution profiles showed that the surface-modified sample dissolved faster than the intact sample at the initial stage. The dissolution kinetics were analyzed based on the Hixon-Crowell equation, and the dissolution rate constants for intact and surface-modified anhydrates were found to be 0.0102 +/-C 0.008 mg(1/3) x min(-1) and 0.1442 +/-C 0.0482 mg(1/3) x min(-1). The surface-modified anhydrate powders were more stable than the nonmodified samples under high humidity and showed resistance against moisture. However, surface modification induced rapid dissolution in water compared to the control.

  12. The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Roemer, Timothy John; Hirschfeld, Deidre A.

    2004-11-01

    Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10; Valimet H-20; and Brodmann Flomaster. ASTM E8 tensile specimens were machinedmore » from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300 C, 22 h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulk-forming process.« less

  13. Note: Progress on the use of MgB2 superconducting joint technique for the development of MgB2 magnets for magnetic resonance imaging (MRI).

    PubMed

    Kim, Y G; Song, J B; Kim, J C; Kim, J M; Yoo, B H; Yun, S B; Hwang, D Y; Lee, H G

    2017-08-01

    This note presents a superconducting joint technique for the development of MgB 2 magnetic resonance imaging (MRI) magnets. The MgB 2 superconducting joint was fabricated by a powder processing method using Mg and B powders to establish a wire-bulk-wire connection. The joint resistance measured using a field-decay method was <10 -14 Ω, demonstrating that the proposed joint technique could be employed for developing "next-generation" MgB 2 MRI magnets operating in the persistent current mode.

  14. Analysis of Forensic Casework Utilizing Infrared Spectroscopic Imaging.

    PubMed

    Lanzarotta, Adam

    2016-02-24

    A search of the current scientific literature yields a limited number of studies that describe the use of Fourier transform infrared (FT-IR) spectroscopic imaging for the analysis of forensic casework, which is likely due to the fact that these instruments are fairly new commodities to the field of analytical chemistry and are therefore not yet commonplace in forensic laboratories. This report describes recent forensic case studies that have used the technique for determining the composition of a wide variety of multi-component sample types, including animal tissue sections for toxic inclusions, drugs/dietary supplements, an antibiotic with an active pharmaceutical ingredient (API) present as several different salt forms, an adulterated bulk API, unknown trace powders for illicit drugs and an ophthalmic solution suspected of being adulterated with bleach.

  15. Analysis of Forensic Casework Utilizing Infrared Spectroscopic Imaging †

    PubMed Central

    Lanzarotta, Adam

    2016-01-01

    A search of the current scientific literature yields a limited number of studies that describe the use of Fourier transform infrared (FT-IR) spectroscopic imaging for the analysis of forensic casework, which is likely due to the fact that these instruments are fairly new commodities to the field of analytical chemistry and are therefore not yet commonplace in forensic laboratories. This report describes recent forensic case studies that have used the technique for determining the composition of a wide variety of multi-component sample types, including animal tissue sections for toxic inclusions, drugs/dietary supplements, an antibiotic with an active pharmaceutical ingredient (API) present as several different salt forms, an adulterated bulk API, unknown trace powders for illicit drugs and an ophthalmic solution suspected of being adulterated with bleach. PMID:26927101

  16. Polarization-Dependent Ti 2p-Resonant X-ray Raman Scattering from Ti2O3

    NASA Astrophysics Data System (ADS)

    Tezuka, Yasuhisa; Nakajima, Nobuo; Adachi, Jun-ichi; Morimoto, Osamu; Sato, Hitoshi; Uozumi, Takayuki

    2017-12-01

    Detailed resonant X-ray emission spectra (XES) and these polarization dependences of Ti2O3 were obtained by excitation at the Ti 2p absorption edge. About 100 XES spectra were observed in different polarization configurations. X-ray Raman scattering spectra showed two types of crystal field (dd) excitations as well as charge-transfer (CT) excitations. Bulk states of the powder sample were obtained by the XES measurement, which is the photon-in/photon-out method. Partial photon yields (PPYs) of some elementary excitations were extracted from the XES spectra. The CT excitations were hidden in total electron yield spectra, but these were revealed by PPY measurements. Symmetry information of these excitations was acquired on the basis of polarization dependences.

  17. Shockwave Consolidation of Nanostructured Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Patrick; Nemir, David

    2014-01-01

    Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonating. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nano-structured bismuth telluride alloy powders by using the shockwave technique. Using these consolidated materials, several types of thermoelectric power generating devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.

  18. FT-Raman and chemometric tools for rapid determination of quality parameters in milk powder: Classification of samples for the presence of lactose and fraud detection by addition of maltodextrin.

    PubMed

    Rodrigues Júnior, Paulo Henrique; de Sá Oliveira, Kamila; de Almeida, Carlos Eduardo Rocha; De Oliveira, Luiz Fernando Cappa; Stephani, Rodrigo; Pinto, Michele da Silva; de Carvalho, Antônio Fernandes; Perrone, Ítalo Tuler

    2016-04-01

    FT-Raman spectroscopy has been explored as a quick screening method to evaluate the presence of lactose and identify milk powder samples adulterated with maltodextrin (2.5-50% w/w). Raman measurements can easily differentiate samples of milk powder, without the need for sample preparation, while traditional quality control methods, including high performance liquid chromatography, are cumbersome and slow. FT-Raman spectra were obtained from samples of whole lactose and low-lactose milk powder, both without and with addition of maltodextrin. Differences were observed between the spectra involved in identifying samples with low lactose content, as well as adulterated samples. Exploratory data analysis using Raman spectroscopy and multivariate analysis was also developed to classify samples with PCA and PLS-DA. The PLS-DA models obtained allowed to correctly classify all samples. These results demonstrate the utility of FT-Raman spectroscopy in combination with chemometrics to infer about the quality of milk powder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Mineralogical Characterization of the Miocene Olcese Formation, Southern San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Lopez, K. A.; Baron, D.; Guo, J.; Woolford, J. M.

    2016-12-01

    The early to middle Miocene Olcese Formation in the southern San Joaquin Valley of California consists of shallow marine shelf sands in its lower and upper parts, and non-marine, frequently pumiceous sands in its middle part, and varies in thickness up to 1800 ft. There is little known as to the origin, nature, quantity, and distribution of clay minerals throughout the formation. This study examined 95 sidewall core samples from three wells, as well as 388 cutting samples from four wells and 12 samples from 3 outcrops. Well samples were from depths between 1,800 and 4,000 ft. Qualitative and quantitative mineralogy including clay minerals of the sidewall samples and selected cutting samples was determined by powder X-ray diffraction (XRD). XRD analyses were supplemented by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) and petrographic microscopy of selected samples. The main minerals of bulk samples include composite clay, quartz, potassium feldspar/plagioclase, calcite, and clinoptilolite. Content of composite clay varies between 17% and 51%. The clay-size fraction is predominantly composed of smectite, illite, kaolinite and chlorite with smectite being the most abundant. Smectite and clinoptilolite may be the alteration products of deeper burial of volcanic materials. The formation permeability could be significantly lowered by these authigenic minerals.

  20. Managing Ammonia Emissions From Screwworm Larval Rearing Media.

    PubMed

    Sagel, Agustin; Phillips, Pamela; Chaudhury, Muhammad; Skoda, Steven

    2016-02-01

    Mass production, sterilization, and release of screwworms (Cochliomyia hominivorax (Coquerel)) that were competitive in the field significantly contributed to the successful application of the sterile insect technique for eradication of screwworms from continental North America. Metabolic byproducts resulting from protein-rich diets required for larval screwworms lead to ammonia liberation, sometimes at high levels, within the mass rearing facility. Until recently a sodium polyacrylate gel bulking agent was used for the larval media and adsorbed much of the ammonia. A need to replace the gel with an environmentally "friendly" bulking agent, while not increasing ammonia levels in the rearing facility, led to a series of experiments with the objective of developing procedures to reduce ammonia emissions from the larval media bulked with cellulose fiber. Additives of ammonia-converting bacteria, potassium permanganate, and Yucca schidigera Roezl ex Otrgies powder extract, previously reported to reduce ammonia levels in organic environments, were evaluated. Ammonia-converting bacteria did not have a positive effect. Addition of Y. schidigera powder extract (∼1% of total volume), potassium permanganate (∼250 ppm), and a combination of these two additives (at these same concentrations) kept ammonia at equivalent levels as when larval media was bulked with gel. Potassium permanganate also had sufficient antimicrobial properties that the use of formaldehyde in the diet was not necessary. Further testing is needed, at a mass rearing level, before full implementation into the screwworm eradication program. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  1. Device for preparing combinatorial libraries in powder metallurgy.

    PubMed

    Yang, Shoufeng; Evans, Julian R G

    2004-01-01

    This paper describes a powder-metering, -mixing, and -dispensing mechanism that can be used as a method for producing large numbers of samples for metallurgical evaluation or electrical or mechanical testing from multicomponent metal and cermet powder systems. It is designed to make use of the same commercial powders that are used in powder metallurgy and, therefore, to produce samples that are faithful to the microstructure of finished products. The particle assemblies produced by the device could be consolidated by die pressing, isostatic pressing, laser sintering, or direct melting. The powder metering valve provides both on/off and flow rate control of dry powders in open capillaries using acoustic vibration. The valve is simple and involves no relative movement, avoiding seizure with fine powders. An orchestra of such valves can be arranged on a building platform to prepare multicomponent combinatorial libraries. As with many combinatorial devices, identification and evaluation of sources of mixing error as a function of sample size is mandatory. Such an analysis is presented.

  2. Direct compression of chitosan: process and formulation factors to improve powder flow and tablet performance.

    PubMed

    Buys, Gerhard M; du Plessis, Lissinda H; Marais, Andries F; Kotze, Awie F; Hamman, Josias H

    2013-06-01

    Chitosan is a polymer derived from chitin that is widely available at relatively low cost, but due to compression challenges it has limited application for the production of direct compression tablets. The aim of this study was to use certain process and formulation variables to improve manufacturing of tablets containing chitosan as bulking agent. Chitosan particle size and flow properties were determined, which included bulk density, tapped density, compressibility and moisture uptake. The effect of process variables (i.e. compression force, punch depth, percentage compaction in a novel double fill compression process) and formulation variables (i.e. type of glidant, citric acid, pectin, coating with Eudragit S®) on chitosan tablet performance (i.e. mass variation, tensile strength, dissolution) was investigated. Moisture content of the chitosan powder, particle size and the inclusion of glidants had a pronounced effect on its flow ability. Varying the percentage compaction during the first cycle of a double fill compression process produced chitosan tablets with more acceptable tensile strength and dissolution rate properties. The inclusion of citric acid and pectin into the formulation significantly decreased the dissolution rate of isoniazid from the tablets due to gel formation. Direct compression of chitosan powder into tablets can be significantly improved by the investigated process and formulation variables as well as applying a double fill compression process.

  3. Thermoelectric properties of cobalt antimonide>-based skutterudites

    NASA Astrophysics Data System (ADS)

    Yang, Jian

    Solid state cooling and power generation based on thermoelectric principles are regarded as one of the technologies with the potential of solving the current energy crisis. Thermoelectric devices could be widely used in waste heat recovery, small scale power generation and refrigeration. It has no moving parts and is environmental friendly. The limitation to its application is due to its low efficiency. Most of the current commercialized thermoelectric materials have figure of merit (ZT) around 1. To be comparable with kitchen refrigerator, ZT≃ 3 is required at room temperature. Skutterudites have emerged as member of the novel materials, which potentially have a higher ZT. In the dissertation, my investigation will be focused on the optimization of CoSb3-based skutterudites. Starting with Co and Sb elements, CoSb3 will form through a high energy ball mill. Unfortunately, even after 20 hours, only a small percentage of the powders have transformed in into CoSb3. Then the powders will be compacted into bulk samples by DC-controlled hot press. CoSb3 single phase will form after press. Characterization of the structure and thermoelectric properties will be presented with details. The effects of synthesis conditions on thermoelectric properties of skutterudites were studied and discussed. Several possible methods of improving the ZT of N type skutterudites were applied. The highest obtained ZT thus far is ˜1.2 from Yb doped CoSb3. For a group of samples with nominal composition YbxCo4Sb12, the increased Yb concentration in our samples not only enhanced the power factor due to electron doping effect but also decreased the thermal conductivity due to a stronger rattling effect. In addition, the increased grain boundary density per unit volume due to the small grains in our bulk skutterudite materials may have also helped to enhance the phonon scattering and thus to reduce the thermal conductivity. Single and double doping methods with different combinations were also tried. So far, none of them have surpassed ZT=1.2. Mixing different materials with Yb 0.35Co4Sb12 so far to increase the phonon scattering was also performed. No dramatic thermal conductivity reduction was observed. Small amounts of Fe/Mn substitution on Co sites will decrease the power factor to undesired degrees. Some results with Nd filled P type sample will be briefly introduced. P type samples are also obtained through substitution on Sb site. Preliminary work on preparing the electrode for CoSb3 will be presented in the dissertation. CoSi2 has low resistivity, and a similar coefficient of thermal expansion (CTE) as of doped CoSb3. It is good electrode candidate. DC-controlled hot press is used to make the contact. Thermal stability of the contact was tested. Small cracks will form in the contact area, further improvement is necessary. Finally, my previous work on ZnO nanowire growth is briefly introduced. Large throughput of ZnO nanowire could be obtained with NaCl as the support to promote the conversion of Zn powder to ZnO.

  4. Time resolved fluorescence of cow and goat milk powder

    NASA Astrophysics Data System (ADS)

    Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.

    2017-01-01

    Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.

  5. Pods: a Powder Delivery System for Mars In-situ Organic, Mineralogic and Isotopic Analysis Instruments

    NASA Technical Reports Server (NTRS)

    Saha, C. P.; Bryson, C. E.; Sarrazin, P.; Blake, D. F.

    2005-01-01

    Many Mars in situ instruments require fine-grained high-fidelity samples of rocks or soil. Included are instruments for the determination of mineralogy as well as organic and isotopic chemistry. Powder can be obtained as a primary objective of a sample collection system (e.g., by collecting powder as a surface is abraded by a rotary abrasion tool (RAT)), or as a secondary objective (e.g, by collecting drill powder as a core is drilled). In the latter case, a properly designed system could be used to monitor drilling in real time as well as to deliver powder to analytical instruments which would perform complementary analyses to those later performed on the intact core. In addition, once a core or other sample is collected, a system that could transfer intelligently collected subsamples of power from the intact core to a suite of analytical instruments would be highly desirable. We have conceptualized, developed and tested a breadboard Powder Delivery System (PoDS) intended to satisfy the collection, processing and distribution requirements of powder samples for Mars in-situ mineralogic, organic and isotopic measurement instruments.

  6. New technique for the direct analysis of food powders confined in a small hole using transversely excited atmospheric CO(2) laser-induced gas plasma.

    PubMed

    Khumaeni, Ali; Ramli, Muliadi; Deguchi, Yoji; Lee, Yong Inn; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro

    2008-12-01

    Taking advantage of the differences between the interactions of transversely excited atmospheric (TEA) CO(2) lasers with metal and with organic powder, a new technique for the direct analysis of food powder samples has been developed. In this technique, the powder samples were placed into a small hole with a diameter of 2 mm and a depth of 3 mm and covered by a metal mesh. The TEA CO(2) laser (1500 mJ, 200 ns) was focused on the powder sample surfaces, passing through the metal mesh, at atmospheric pressure in nitrogen gas. It is hypothesized that the small hole functions to confine the powder particles and suppresses the blowing-off of sample, while the metal mesh works as the source of electrons to initiate the strong gas breakdown plasma. The confined powder particles are then ablated by laser irradiation and the ablated particles move into the strong gas breakdown plasma region to be atomized and excited; this method cannot be applied for the case of Nd:YAG lasers because in such case the metal mesh itself was ablated by the laser irradiation. A quantitative analysis of a milk powder sample containing different concentrations of Ca was successfully demonstrated, resulting in a good linear calibration curve with high precision.

  7. Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections.

    PubMed

    Vandenheuvel, Dieter; Singh, Abhishek; Vandersteegen, Katrien; Klumpp, Jochen; Lavigne, Rob; Van den Mooter, Guy

    2013-08-01

    The use of bacterial viruses for antibacterial treatment (bacteriophage therapy) is currently being reevaluated. In this study, we analyze the potential of processing bacteriophages in a dry powder formulation, using a laboratory spray dryer. The phages were dried in the presence of lactose, trehalose or dextran 35, serving as an excipient to give the resulting powder the necessary bulk mass and offer protection to the delicate phage structure. Out of the three excipients tested, trehalose was found to be the most efficient in protecting the phages from temperature and shear stress throughout the spray drying process. A low inlet air temperature and atomizing force appeared to be the best parameter conditions for phage survival. Pseudomonas podovirus LUZ19 was remarkably stable, suffering less than 1 logarithmic unit reduction in phage titer. The phage titer of Staphyloccus phage Romulus-containing powders, a member of the Myoviridae family, showed more than 2.5 logarithmic units reduction. On the other hand, Romulus-containing powders showed more favorable characteristics for pulmonary delivery, with a high percentage of dry powder particles in the pulmonary deposition fraction (1-5 μm particle diameter). Even though the parameters were not optimized for spray drying all phages, it was demonstrated that spray drying phages with this industrial relevant and scalable set up was possible. The resulting powders had desirable size ranges for pulmonary delivery of phages with dry powder inhalers (DPIs). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Densification of oxide superconductors by hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Tien, J. K.; Borofka, J. C.; Hendrix, B. C.; Caulfield, T.; Reichman, S. H.

    1988-07-01

    Currently, consolidation of high Tc superconductor powders is done by sintering, which is not effective in the reduction of porosity. This work assesses the feasibility of hot isostatic pressing (HIP) to obtain fully dense bulk superconductor using HIP modeling and experimental verification. It is concluded that fully dense YBa2Cu3O7 can be obtained in reasonable times at temperatures down to around 650 °C. The trade-offs between temperature, time, and pressure are examined as well as the effects of powder particle size, powder grain size, and trapped gas pressure. The model has. been verified by experiment under three conditions: 100 MPa HIP at 900 °C for 2 hours, 100 MPa HIP at 750 °C for 2 hours, and sintering at 950 °C for 16 hours. The additional advantages of HIPing oxide superconductors are also discussed.

  9. Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

    DOE PAGES

    Meng, F.; Chaudhary, R. P.; Gandha, K.; ...

    2018-04-23

    Here, this work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu) 5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5–20 at.%) and Co (60–45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure andmore » phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu) 5 microstructure in which high coercivity ( H c > 10 kOe) can be achieved without any microstructural refinement.« less

  10. Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, F.; Chaudhary, R. P.; Gandha, K.

    Here, this work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu) 5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5–20 at.%) and Co (60–45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure andmore » phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu) 5 microstructure in which high coercivity ( H c > 10 kOe) can be achieved without any microstructural refinement.« less

  11. Variations in the Infrared Spectra of Wüstite with Defects and Disorder

    NASA Astrophysics Data System (ADS)

    Koike, C.; Matsuno, J.; Chihara, H.

    2017-08-01

    The presence of FeO particles in circumstellar space has been suggested based on the observation of a mysterious 21 μm emission band. However, the complete infrared spectra of FeO have not been obtained so far; hence, data of the infrared (IR) spectra of FeO need to be investigated. We prepared synthetic and commercial samples of FeO, which were obtained by crushing bulk samples, annealing iron oxalate dihydrate ({{FeC}}2{{{O}}}4\\cdot 2{{{H}}}2{{O}}), and mechanical milling of a powder mixture comprising (Fe and {{Fe}}2{{{O}}}3) particles with different milling times. We present a new study on the IR spectra of these samples, and show that these spectra changed according to defects and disorders. Furthermore, FeO particles are very sensitive to oxygen fugacity and temperature. The spectra of FeO particles were compared with the unidentified observed feature. It may be difficult for FeO particles to exist alone in the ISM and circumstellar space. This may be connected to the problem of missing iron in the ISM.

  12. Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys.

    PubMed

    Kadam, R H; Alone, Suresh T; Gaikwad, Anil S; Birajdar, A P; Shirsath, Sagar E

    2014-06-01

    Ferrite samples with a chemical formula Co0.5Ni0.5Al(x)Fe(2-x)O4 (where x = 0.0, 0.25, 0.5, 0.75 and 1.0) were synthesized by sol-gel auto-combustion method. The synthesized samples were annealed at 600 degrees C for 4 h. An analysis of X-ray diffraction (XRD) patterns reveals the formation of single phase cubic spinel structure. The lattice parameter decreased linearly with the increasing Al content x. Nano size of the powders were confirmed by the transmission electron micrographs (TEM). Particle size, bulk density decreased whereas specific surface area and porosity of the samples increased with the Al substitution. Cation distribution of constituent ions shows linear dependence of Al substitution. Based on the cation distribution obtained from XRD data, structural parameters such as lattice parameters, ionic radii of available sites and the oxygen parameter 'u' is calculated. Saturation magnetization (M(s)), magneton number (n(B)) and coercivity (H(c)) decreased with the Al substitution. Possible explanation for the observed structural and magnetic behavior with various Al content are discussed.

  13. X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Ersching, K.; Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Souza, S. M.; da Silva, D. L.; Pizani, P. S.

    2009-06-01

    Nanocrystalline ZnTe was prepared by mechanical alloying. X-ray diffraction (XRD), energy dispersive spectroscopy, Raman spectroscopy, and photoacoustic absorption spectroscopy techniques were used to study the structural, chemical, optical, and thermal properties of the as-milled powder. An annealing of the mechanical alloyed sample at 590 °C for 6 h was done to investigate the optical properties in a defect-free sample (close to bulk form). The main crystalline phase formed was the zinc-blende ZnTe, but residual trigonal tellurium and hexagonal ZnO phases were also observed for both as-milled and annealed samples. The structural parameters, phase fractions, average crystallite sizes, and microstrains of all crystalline phases were obtained from Rietveld analyses of the X-ray patterns. Raman results corroborate the XRD results, showing the longitudinal optical phonons of ZnTe (even at third order) and those modes of trigonal Te. Nonradiative surface recombination and thermal bending heat transfer mechanisms were proposed from photoacoustic analysis. An increase in effective thermal diffusivity coefficient was observed after annealing and the carrier diffusion coefficient, the surface recombination velocity, and the recombination time parameters remained the same.

  14. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    PubMed

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate.

    PubMed

    Simon, Alice; Amaro, Maria Inês; Cabral, Lucio Mendes; Healy, Anne Marie; de Sousa, Valeria Pereira

    2016-03-30

    The purpose of this study was to prepare engineered particles of rivastigmine hydrogen tartrate (RHT) and to characterize the physicochemical and aerodynamic properties, in comparison to a lactose carrier formulation (LCF). Microparticles were prepared from ethanol/water solutions containing RHT with and without the incorporation of L-leucine (Leu), using a spray dryer. Dry powder inhaler formulations prepared were characterized by scanning electron microscopy, powder X-ray diffraction, laser diffraction particle sizing, ATR-FTIR, differential scanning calorimetry, bulk and tapped density, dynamic vapour sorption and in vitro aerosol deposition behaviour using a next generation impactor. The smooth-surfaced spherical morphology of the spray dried microparticles was altered by adding Leu, resulting in particles becoming increasingly wrinkled with increasing Leu. Powders presented low densities. The glass transition temperature was sufficiently high (>90 °C) to suggest good stability at room temperature. As Leu content increased, spray dried powders presented lower residual solvent content, lower particle size, higher fine particle fraction (FPF<5 μm), and lower mass median aerodynamic diameter (MMAD). The LCF showed a lower FPF and higher MMAD, relative to the spray dried formulations containing more than 10% Leu. Spray dried RHT powders presented better aerodynamic properties, constituting a potential drug delivery system for oral inhalation. Copyright © 2016. Published by Elsevier B.V.

  16. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  17. Xylan from corn cobs, a promising polymer for drug delivery: production and characterization.

    PubMed

    Oliveira, Elquio Eleamen; Silva, Acarília Eduardo; Júnior, Toshiyuki Nagashima; Gomes, Monique Christine Salgado; Aguiar, Larissa Muratori; Marcelino, Henrique Rodrigues; Araújo, Ivonete Batista; Bayer, Marc P; Ricardo, Nágila M P S; Oliveira, Anselmo Gomes; Egito, Eryvaldo Sócrates Tabosa

    2010-07-01

    Although many authors have reported several beneficial effects ascribed to xylan, such as inhibitory action on mutagenicity activity, antiphlogistic effects, and mitogenic and comitogenic activities, few papers have investigated a systematic study on the technological properties of this polymer. The aim of the present work was to evaluate xylan as a promise raw material for the pharmaceutical industry. The water-insoluble xylan samples were extracted from corn cobs following several steps. The obtained powered sample was analyzed by infrared and RMN spectroscopy, and characterized regarding their particle size, bulk and tap densities, compressibility index, compactability, Hausner ratio, and angle of repose. According to the results, infrared and RMN spectroscopy were shown to be able to evaluate the xylan structural conformation and composition, respectively. In addition, rheological data demonstrated that xylan powder obtained from corn cobs may be characterized as a material with low density and very cohesive flow properties. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Gelatinized wheat starch influences crystallization behaviour and structure of roll-in shortenings in laminated bakery products.

    PubMed

    Mattice, Kristin D; Marangoni, Alejandro G

    2018-03-15

    One hydrogenated and one non-hydrogenated shortening were baked with isolated components of a croissant matrix, including crystalline wheat starch, gelatinized wheat starch, gluten, and formed gluten network. The impact of the matrix components on fat crystallization was analyzed for polymorphism using powder X-ray diffraction, solid fat content by pulsed nuclear magnetic resonance and thermal behaviour by differential scanning calorimetry. When compared to results obtained from croissants prepared with the respective shortenings, samples containing gelatinized wheat starch displayed notably similar results: polymorphic conversion, from the β' to β form over storage, and visually broader peaks in the melting endotherms indicating a greater temperature was required to completely melt all of the fat. All other component mixtures behaved similar to the respective fats in bulk. The measured rate of crystallization was greater in samples containing gelatinized wheat starch, indicating that the gelatinized starch could act as a nucleation site to speed crystallization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chemical systematics of the Shergotty meteorite and the composition of its parent body (Mars)

    NASA Technical Reports Server (NTRS)

    Laul, J. C.; Smith, M. R.; Waenke, H.; Jagoutz, E.; Dreibus, G.

    1986-01-01

    Sixty elements in two bulk samples of Shergotty meteorite and 30 elements in various mineral separates of Shergotty were identified, using mainly INAA and RNAA techniques. In addition, elements leached out from powdered samples of Shergotty and EETA 79001 meteorites by 0.1 N HCl, as well as the elements of their residues, were analyzed. The results have indicated that Shergotty meteorite is homogeneous in its major element composition, but heterogeneous with respect to large-ion lithophile elements, such as K, Ba, Sr, Zr, Hf, Ta, Th, and rare-earth elements (REEs). It is even more heterogeneous with respect to volatile elements, such as Cd, Te, Tl, and Bi, and the siderophiles Au and Ag. The REE patterns of the Shergotty and EETA 79001 residues are identical, indicating that the parent magmas of both meteorites are compositionally similar. However, their leachate (phosphate) patterns are different, suggesting two components for the Shergotty, one of which is similar to the EETA 79001 leachate.

  20. Vapor-phase photo-oxidation of methanol over nanosize titanium dioxide clusters dispersed in MCM-41 host material part 1: synthesis and characterization.

    PubMed

    Bhattacharya, K; Tripathi, A K; Dey, G K; Gupta, N M

    2005-05-01

    Nanosize clusters of titania were dispersed in mesoporous MCM-41 silica matrix with the help of the incipient wet-impregnation route, using an isopropanol solution of titanium isopropoxide as precursor. The clusters thus formed were of pure anatase phase and their size depended upon the titania loading. In the case of low (< 15 wt %) loadings, the TiO2 particles were X-ray and laser-Raman amorphous, confirming very high dispersion. These particles were mostly of < or = 2 nm size. On the other hand, larger size clusters (2-15 nm) were present in a sample with a higher loading of approximately 21 wt %. These particles of titania, irrespective of their size, exhibited an absorbance behavior similar to that of bulk TiO2. Powder X-ray diffraction, N2-adsorption and transmission electron microscopy results showed that while smaller size particles were confined mostly inside the pore system, the larger size particles occupied the external surface of the host matrix. At the same time, the structural integrity of the host was maintained even though some deformation in the pore system was noticed in the case of the sample having highest loading. The core level X-ray photoelectron spectroscopy results revealed a + 4 valence state of Ti in all the samples. A positive binding energy shift and the increase of the width of Ti 2p peaks were observed, however, with the decrease in the particle size of supported titania crystallites, indicative of a microenvironment for surface sites that is different from that of the bulk.

  1. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield

    NASA Astrophysics Data System (ADS)

    Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Dosovitskiy, A.; Korjik, M.; Sandu, R.

    2018-04-01

    This work reports on a process of preparation of garnet phosphor powders and a technique for light yield evaluation of strongly light scattering samples. Powders of scintillation compounds could be used as individual materials or as samples for express tests of scintillation properties. However, estimation of their light yield (LY) is complicated by strong light scattering of this kind of materials. Ce3+-activated yttrium-aluminum and gallium-gadolinium-aluminum garnet phosphor powders, Y3Al5O12 (YAG:Ce) and Gd3Ga3Al2O12 (GGAG:Ce), were obtained using a modified coprecipitation technique. Ga tends to residue in mother liquor in ammonia media, but the modification allows to avoid the loss of components. We propose an approach for sample preparation and LY measurement setup with alpha particles excitation, allowing to decrease light scattering influence and to estimate a light yield of powder samples. This approach is used to evaluate the obtained powders.

  2. Properties of zirconia-toughened-alumina prepared via powder processing and colloidal processing routes.

    PubMed

    Rafferty, A; Alsebaie, A M; Olabi, A G; Prescott, T

    2009-01-15

    Alumina-zirconia composites were prepared by two routes: powder processing, and colloidal processing. Unstabilised zirconia powder was added to alumina in 5 wt%, 10 wt% and 20 wt% quantities. For the colloidal method, zirconium(IV) propoxide solution was added to alumina powder, also in 5 wt%, 10 wt% and 20 wt% quantities. Additions of glacial acetic acid were needed to form stable suspensions. Suspension stability was verified by pH measurements and sedimentation testing. For the powder processed samples Vickers hardness decreased indefinitely with increasing ZrO(2) additions, but for colloidal samples the hardness at first decreased but then increased again above >10 wt% ZrO(2). Elastic modulus (E) values decreased with ZrO(2) additions. However, samples containing 20 wt% zirconia prepared via a colloidal method exhibited a much higher modulus than the powder processed equivalent. This was due to the homogeneous dispersion of zirconia yielding a sample which was less prone to microcracking.

  3. Method for measuring recovery of catalytic elements from fuel cells

    DOEpatents

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley, NJ

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  4. The role of silver in the processing and properties of Bi-2212

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, T.; Heeb, B.; Buhl, D.

    1994-12-31

    The influence of the silver content and the oxygen partial pressure on the solidus temperature and the weight loss during melting of Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub x} has been examined by means of DTA and TGA. By decreasing the oxygen partial pressure the solidus is lowered (e.g. {triangle}T=59{degrees}C by decreasing pO{sub 2} from 1 atm to 0.001 atm) and the weight loss is increased. The addition of silver causes two effects: (a) the solidus is further decreased (e.g. 2wt% Ag lower T{sub solidus} by up to 25{degrees}C, depending on the oxygen partial pressure), (b) the weight loss during meltingmore » is reduced. Thick films (10-20 {mu}m in thickness) with 0 and 5 wt% silver and bulk samples with 0 and 2.7 wt% silver were melt processed in flowing oxygen on a silver substrate in the DTA, allowing the observation of the melting process and a good temperature control. The critical current densities are vigorously dependent on the maximum processing temperature. The highest j{sub c} in thick films (8000 A/cm{sup 2} at 77 K, O T) was reached by melting 7{degrees}C above the solidus temperature. The silver addition shows no significant effect on the processing parameters or the superconducting properties. The highest j{sub c} for bulk samples (1 mm in thickness) was obtained by partial melting at 900{degrees}C or 880{degrees}C, depending on the silver content of the powder (0 or 2.7 wt%). The j{sub c} of the samples is slightly enhanced from 1800 A/cm{sup 2} (at 77 K, O T) to 2000 A/cm{sup 2} by the silver addition. To be able to reach at least 80% of the maximum critical current density, the temperature has to be controlled in a window of 5{degrees}C for thick films and 17{degrees}C for bulk samples.« less

  5. Rotary bulk solids divider

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  6. ROTARY BULK SOLIDS DIVIDER

    DOEpatents

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  7. Analytical characterization of three cathinone derivatives, 4-MPD, 4F-PHP and bk-EPDP, purchased as bulk powder from online vendors.

    PubMed

    Apirakkan, Orapan; Frinculescu, Anca; Shine, Trevor; Parkin, Mark C; Cilibrizzi, Agostino; Frascione, Nunzianda; Abbate, Vincenzo

    2018-02-01

    Novel emerging drugs of abuse, also referred as new psychoactive substances, constitute an ever-changing mixture of chemical compounds designed to circumvent legislative controls by means of chemical modifications of previously banned recreational drugs. One such class, synthetic cathinones, namely β-keto derivatives of amphetamines, has been largely abused over the past decade. A number of new synthetic cathinones are detected each year, either in bulk powders/crystals or in biological matrices. It is therefore important to continuously monitor the supply of new synthetic derivatives and promptly report them. By using complementary analytical techniques (i.e. one- and two-dimensional NMR, FT-IR, GC-MS, HRMS and HPLC-UV), this study investigates the detection, identification and full characterization of 1-(4-methylphenyl)-2-(methylamino)pentanone (4-methylpentedrone, 4-MPD), 1-(4-fluorophenyl)-2-(pyrrolidin-1-yl)hexanone (4F-PHP) and 1-(1,3-benzodioxol-5-yl)-2-(ethylamino)-1-pentanone (bk-EPDP), three emerging cathinone derivatives. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Improved camera for better X-ray powder photographs

    NASA Technical Reports Server (NTRS)

    Parrish, W.; Vajda, I. E.

    1969-01-01

    Camera obtains powder-type photographs of single crystals or polycrystalline powder specimens. X-ray diffraction photographs of a powder specimen are characterized by improved resolution and greater intensity. A reasonably good powder pattern of small samples can be produced for identification purposes.

  9. Characterization of fine and carbonaceous particles emissions from pelletized biomass-coal blends combustion: Implications on residential crop residue utilization in China

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Wang, Yan; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Li, Jun; Zhang, Gan

    2016-09-01

    Bulk biofuel, biomass pellets and pelletized biomass-coal blends were combusted in a typical rural conventional household stove and a high-efficiency stove. Reductions in PM2.5, organic carbon (OC) and elemental carbon (EC) emissions were evaluated by comparing emission factors (EFs) among 19 combinations of biofuel/residential stove types measured using a dilution sampling system. In the low-efficiency stove, the average EFs of PM2.5, OC, and EC of biomass pellets were 2.64 ± 1.56, 0.42 ± 0.36, and 0.30 ± 0.11 g/kg, respectively, significantly lower than those burned in bulk form. EFPM2.5 and EFOC of pelletized biomass combustion in the high-efficiency stove were lower than those of the same biofuel burned in the low-efficiency stove. Furthermore, pelletized corn residue and coal blends burned in the high-efficiency stove could significantly decrease emissions. Compared with the bulk material burned in the low-efficiency stove, the reduction rates of PM2.5, OC and EC from pelletized blends in the high-efficiency stove can reach 84%, 96% and 93%, respectively. If the annually produced corn residues in 2010 had been blended with 10% anthracite coal powder and burnt as pellets, it would have reduced about 82% of PM2.5, 90-96% of OC and 81-92% of EC emission in comparison with burning raw materials in conventional household stoves. Given the low cost, high health benefit and reduction effect on atmospheric pollutants, pelletized blends could be a promising alternative to fossil fuel resources or traditional bulk biofuel.

  10. Synthesis of Self-Assembled rGO-Co3O4 Nanoparticles in Nanorods Structure for Supercapacitor Application

    NASA Astrophysics Data System (ADS)

    Jana, Soumita; Singh, Neha; Bhattacharyya, Arnab Sankar; Singh, Gajendra Prasad

    2018-04-01

    A simple hydrothermal process was used to design self-assembled Co3O4 nanoparticles in nanorod structure in the presence of graphene oxide as a template. The as-prepared Co3O4 sample in a loose powder form was calcined at 450 °C to get the well-crystalline phase of the same compound. The obtained Co3O4 powder sample was characterized by using the powder XRD and SEM. The XRD pattern shows totally nine distinct reflection peaks of (111), (220), (311), (222), (400), (422), (511), (440), and (533) planes. The most intense peaks were chosen to evaluate the structural parameters. The lattice parameters (a), volume (V), and density (ρ) of the samples are 8.09 Å, 529.47 Å3, 6.06 g/cc, which are comparable to the value of lattice parameter (a = 8.056 Å), volume (V = 528.30 Å3), and density (ρ = 6.055 gm/cc) for bulk Co3O4. The average size of the Co3O4 nanoparticles is 14 nm which is smaller than the SEM size of 50 nm corresponding to the agglomeration of tiny particles. Further, the formation of Co3O4 nanoparticles were also confirmed by obtaining the band at 569, 1334,1337, 1566, and 3397 cm-1 in FTIR spectrum. Totally five characteristics peaks from Co3O4 at 182.57, 456.49, 505.84, 605.80, and 618.02 cm-1 and peaks from GO-Co3O4 at 182.57, 483.44, 505.84, 605.80, and 618.02 cm-1 corresponding to F2g, Eg, F2g, F2g, and Ag modes of the crystalline Co3O4, respectively, in the Raman spectra. In the case of GO-Co3O4 composite, low-intensity peaks of D and G bands are observed. The specific capacitance in rGO-Co3O4 nanocomposite is about 65.15 Fg-1.

  11. Preparing rock powder specimens of controlled size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P.

    1968-01-01

    Apparatus produces rock powder specimens of the size distribution needed in geological sampling. By cutting grooves in the surface of the rock sample and then by milling these shallow, parallel ridges, the powder specimen is produced. Particle size distribution is controlled by changing the height and width of ridges.

  12. Optical Properties of Natural Minerals in the Far-Infrared

    NASA Astrophysics Data System (ADS)

    Long, Larry Lavern

    The reflectivity of natural mineral powders were measured in the far infrared. The complex indices of refraction were then determined by Kramers-Kronig analysis or dispersive analysis. The samples were constructed by pressing the powdered sample into a 13 mm diameter pellet. A few of the samples that were measured were kaolin, illite, and montmorillonite, clay samples that could not be obtained in large single crystals. For calcite and gypsum crystals a comparison between the single crystal measurements and powder measurements was done to determine the effect of sample preparation on the measured spectra.

  13. Spore test parameters matter: Mesophilic and thermophilic spore counts detected in raw milk and dairy powders differ significantly by test method.

    PubMed

    Kent, D J; Chauhan, K; Boor, K J; Wiedmann, M; Martin, N H

    2016-07-01

    United States dairy industry exports have steadily risen in importance over the last 10yr, with dairy powders playing a particularly critical role. Currently, approximately half of US-produced nonfat dry milk and skim milk powder is exported. Reaching new and expanding existing export markets relies in part on the control of endospore-forming bacteria in dairy powders. This study reports baseline mesophilic and thermophilic spore counts and spore populations from 55 raw material samples (primarily raw milk) and 33 dairy powder samples from dairy powder processors across the United States. Samples were evaluated using various spore testing methodologies and included initial heat treatments of (1) 80°C for 12 min; (2) 100°C for 30 min; and (3) 106°C for 30 min. Results indicate that significant differences in both the level and population of spores were found for both raw milk and dairy powders with the various testing methods. Additionally, on average, spore counts were not found to increase significantly from the beginning to the end of dairy powder processing, most likely related to the absence of biofilm formation by processing plant-associated sporeformers (e.g., Anoxybacillus sp.) in the facilities sampled. Finally, in agreement with other studies, Bacillus licheniformis was found to be the most prevalent sporeformer in both raw materials and dairy powders, highlighting the importance of this organism in developing strategies for control and reduction of spore counts in dairy powders. Overall, this study emphasizes the need for standardization of spore enumeration methodologies in the dairy powder industry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Assessment of phosphate binding by sevelamer carbonate powder for oral suspension mixed in foods.

    PubMed

    Hanus, Martin; Zhorov, Eugene; Brommage, Deborah; Plone, Melissa; Holmes-Farley, Stephen Randall

    2012-01-01

    This study investigated mixing sevelamer carbonate powder with foods and beverages other than water. Food samples, including applesauce, oatmeal, chicken, protein powder, scrambled eggs, ginger ale, and diet ginger ale, were subjected to an in vitro assay, and the difference in the amount of phosphate bound between samples pre-exposed to foods and samples where the drug was exposed to foods concurrently was determined Under these assay conditions, pre-exposure to sevelamer carbonate powder had no effect on the ability to bind phosphate. Clinical testing is needed to further evaluate this finding.

  15. Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy.

    PubMed

    Bilge, Gonca; Sezer, Banu; Eseller, Kemal Efe; Berberoglu, Halil; Topcu, Ali; Boyaci, Ismail Hakki

    2016-12-01

    A rapid and in situ method has been developed to detect and quantify adulterated milk powder through adding whey powder by using laser induced breakdown spectroscopy (LIBS). The methodology is based on elemental composition differences between milk and whey products. Milk powder, sweet and acid whey powders were produced as standard samples, and milk powder was adulterated with whey powders. Based on LIBS spectra of standard samples and commercial products, species was identified using principle component analysis (PCA) method, and discrimination rate of milk and whey powders was found as 80.5%. Calibration curves were obtained with partial least squares regression (PLS). Correlation coefficient (R(2)) and limit of detection (LOD) values were 0.981 and 1.55% for adulteration with sweet whey powder, and 0.985 and 0.55% for adulteration with acid whey powder, respectively. The results were found to be consistent with the data from inductively coupled plasma - mass spectrometer (ICP-MS) method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Antioxidant Potential of Fruit Juice with Added Chokeberry Powder (Aronia melanocarpa).

    PubMed

    Šic Žlabur, Jana; Dobričević, Nadica; Pliestić, Stjepan; Galić, Ante; Bilić, Daniela Patricia; Voća, Sandra

    2017-12-05

    The purpose of this study was to determine the possibility of using chokeberry powder as a supplement in apple juice to increase the nutritional value of the final product with the aim of developing a new functional food product. Also, to determine the influence of ultrasound assisted extraction on the bioactive compounds content, nutritional composition and antioxidant potential of apple juice with added chokeberry powder. The juice samples with added chokeberry powder had higher antioxidant capacity, irrespective of the extraction technique used. Apple juice samples with added chokeberry powder treated with high intensity ultrasound had significantly higher content of all analyzed bioactive compounds. The application of high intensity ultrasound significantly reduced the extraction time of the plant material. A positive correlation between vitamin C content, total phenols, flavonoids and anthocyanins content and antioxidant capacity was determined in juice samples with added chokeberry powder treated with high intensity ultrasound.

  17. The effect of dipole-dipole interactions on coercivity, anisotropy constant, and blocking temperature of MnFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslibeiki, B.; Kameli, P.; Salamati, H.

    2016-02-01

    Superparamagnetic manganese ferrite nanoparticles with mean size of = 6.5(±1.5) nm were synthesized through a solvothermal method using Tri-ethylene glycol as a solvent. The peak temperature of zero field cooled measurements of magnetization and AC magnetic susceptibility curves shifted toward higher temperatures by applying different pressures from 0 to 1 kbar and increasing the powders compaction. The frequency dependence of AC susceptibility measurements indicated the presence of weak dipole-dipole interactions between nanoparticles. By increasing the powders compaction and interactions strength, the coercive field (Hc) increased and squareness (Mr/Ms) decreased. The obtained effective anisotropy constant (Keff), by susceptibility measurements, was from 1.72 × 106 to 2.36 × 106 ergs/cm3 for pressure of 0 to 1 kbar. These values are larger than those obtained from hysteresis loops at 5 K (0.14 × 106 to 0.34 × 106 erg/cm3). Also, the Keff was two orders of magnitude greater than that of bulk MnFe2O4. Size, surface effects, and total energy barrier between equilibrium states were reported as the main causes of large anisotropy. Below 75 K, a signature of weak surface spin glass was observed. However, memory effect experiment indicated that there is no collective superspin glass state in the samples. This study suggests the role of powders compaction on properties of a magnetic nanoparticles system. Furthermore, the coercivity, the anisotropy constant, and the blocking temperature are affected by changing nanoparticles compaction.

  18. Fermented probiotic beverages based on acid whey.

    PubMed

    Skryplonek, Katarzyna; Jasińska, Małgorzata

    2015-01-01

    Production of fermented probiotic beverages can be a good method for acid whey usage. The obtained products combine a high nutritional value of whey with health benefits claimed for probiotic bacteria. The aim of the study was to define quality properties of beverages based on fresh acid whey and milk with addition of buttermilk powder or sweet whey powder. Samples were inoculated with two strains of commercial probiotic cultures: Lactobacillus acidophilus La-5 or Bifidobacterium animalis Bb-12. After fermentation, samples were stored at refrigerated conditions. After 1, 4, 7, 14 and 21 days sensory characteristics, hardness, acetaldehyde content, titratable acidity, pH acidity and count of bacteria cells were evaluated. Throughout all storage period, the number of bacteria was higher than 8 log cfu/ml in the all samples. Beverages with La-5 strain had higher hardness and acidity, whilst samples with Bb-12 contained more acetaldehyde. Samples with buttermilk powder had better sensory properties than with sweet whey powder. Obtained products made of acid whey combined with milk and fortified with buttermilk powder or sweet whey powder, are good medium for growth and survival of examined probiotic bacteria strains. The level of bacteria was sufficient to provide health benefits to consumers.

  19. Design and characterization of a mapping device optimized to collect XRD patterns from highly inhomogeneous and low density powder samples

    NASA Astrophysics Data System (ADS)

    D'Elia, A.; Cibin, G.; Robbins, P. E.; Maggi, V.; Marcelli, A.

    2017-11-01

    We report on the development of a device designed to improve X-ray Powder Diffraction data acquisition through mapping coupled to a rotational motion of the sample. The device and procedures developed aim at overcoming the experimental issues that accompany the analysis of inhomogeneous samples, such as powders, dust or aerosols deposited on a flat substrate. Introducing the mapping of the substrate on which powders are deposited and at the same time the rotation, we may overcome drawbacks associated to inhomogeneous distributions such as ring-like patterns due to the coffee stain effect generated by the evaporation of a solution. Experimental data have been collected from powders of a NIST standard soil sample (11 μg) and from an airborne dust extracted from deep ice cores in Antarctica (9.6 μg). Both particulate samples have been deposited on polycarbonate membranes from ultra-dilute solutions. Data show that this approach makes possible to collect XRD patterns useful to identify mineral fractions present in these low density samples.

  20. Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles

    NASA Astrophysics Data System (ADS)

    Maidaniuc, Andreea; Miculescu, Florin; Voicu, Stefan Ioan; Andronescu, Corina; Miculescu, Marian; Matei, Ecaterina; Mocanu, Aura Catalina; Pencea, Ion; Csaki, Ioana; Machedon-Pisu, Teodor; Ciocan, Lucian Toma

    2018-04-01

    Hydroxyapatite powders characteristics need to be determined both for quality control purposes and for a proper control of microstructural features of bone reconstruction products. This study combines bulk morphological and compositional analysis methods (XRF, SEM-EDS, FT-IR) with surface-related methods (XPS, contact angle measurements) in order to correlate the characteristics of hydroxyapatite powders derived from bovine bone for its use in medical applications. An experimental approach for correlating the surface and volume composition was designed based on the analysis depth of each spectral method involved in the study. Next, the influences of powder particle size and forming method on the contact angle between water drops and ceramic surface were evaluated for identifying suitable strategies of tuning hydroxyapatite's wettability. The results revealed a preferential arrangement of chemical elements at the surface of hydroxyapatite particles which could induce a favourable material behaviour in terms of sinterability and biological performance.

  1. Analysis of Pelletizing of Granulometric Separation Powder from Cork Industries

    PubMed Central

    Montero, Irene; Miranda, Teresa; Sepúlveda, Francisco José; Arranz, José Ignacio; Nogales, Sergio

    2014-01-01

    Cork industries generate a considerable amount of solid waste during their processing. Its management implies a problem for companies that should reconsider its reuse for other purposes. In this work, an analysis of pelletizing of granulometric separation powder, which is one of the major wastes in cork industries and which presents suitable properties (as an raw material) for its thermal use, is studied. However, its characteristic heterogeneity, along with its low bulk density (which makes its storage and transportation difficult) are restrictive factors for its energy use. Therefore, its densified form is a real alternative in order to make the product uniform and guarantee its proper use in boiler systems. Thus, the cork pellets (from granulometric separation powder) in the study met, except for ash content specification, the specifications in standard European Norm EN-Plus (B) for its application as fuel for domestic use. PMID:28788207

  2. Analysis of Pelletizing of Granulometric Separation Powder from Cork Industries.

    PubMed

    Montero, Irene; Miranda, Teresa; Sepúlveda, Francisco José; Arranz, José Ignacio; Nogales, Sergio

    2014-09-18

    Cork industries generate a considerable amount of solid waste during their processing. Its management implies a problem for companies that should reconsider its reuse for other purposes. In this work, an analysis of pelletizing of granulometric separation powder, which is one of the major wastes in cork industries and which presents suitable properties (as an raw material) for its thermal use, is studied. However, its characteristic heterogeneity, along with its low bulk density (which makes its storage and transportation difficult) are restrictive factors for its energy use. Therefore, its densified form is a real alternative in order to make the product uniform and guarantee its proper use in boiler systems. Thus, the cork pellets (from granulometric separation powder) in the study met, except for ash content specification, the specifications in standard European Norm EN-Plus (B) for its application as fuel for domestic use.

  3. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W; Kersten, Gideon F A; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn's disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab.

  4. Direct laser sintered WC-10Co/Cu nanocomposites

    NASA Astrophysics Data System (ADS)

    Gu, Dongdong; Shen, Yifu

    2008-04-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  5. Equations of state and anisotropy of Fe-Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Morrison, R. A.; Jackson, J. M.; Sturhahn, W.; Zhang, D.; Greenberg, E.

    2017-12-01

    Seismic observations provide constraints on the density, bulk sound speed, and bulk modulus of Earth's inner core, and x-ray diffraction (XRD) experiments can experimentally constrain such properties of iron alloys. The deviation of these seismically-inferred values from the properties of iron suggests the presence of light elements (e.g. Si, O, S, C, H) inside the core. While cosmochemical studies suggest Earth's core is composed primarily of iron alloyed with 5 wt% nickel, existing experimental XRD studies constraining pressure-density relations have predominantly focused on iron and iron alloyed with light elements, while neglecting the effect of nickel. In this study, we present high-precision equations of state for bcc- and hcp-structured Fe0.91Ni0.09 and Fe0.80Ni0.10Si0.10 using powder XRD at room temperature up to 167 GPa and 175 GPa, respectively. By using tungsten powder as a pressure calibrant and helium as a pressure transmitting medium, we minimize error due to pressure calibration and non-hydrostatic stresses. The results are high fidelity equations of state (EOS). By systematically comparing our findings to an established EOS of hcp-Fe [Dewaele et al. 2006], we constrain the effect of nickel and silicon on the density, bulk sound speed, and bulk modulus of iron alloys, which is a critical step towards constraining the inner core's composition. We find that for iron alloys, high quality ambient temperature EOSs can dramatically improve the extrapolated high temperature equations of state to inner core conditions. By combining seismic observations and their associated uncertainties with our data and existing Fe light-element-alloy EOSs, we estimate their densities, bulk moduli, and bulk sound speeds at inner core conditions and propose an experimentally and seismologically consistent range of inner core compositions. Additionally, we obtain an unprecedented constraint on the effect of nickel and silicon on the axial ratio of iron alloys. Nickel has a measurably distinct effect on the c/a axial ratio of iron, as does alloying iron-nickel with silicon. We investigate the relationship between the c/a axial ratio and elastic anisotropy of iron alloys and discuss the implications for inner core seismic anisotropy.

  6. Balanced mechanical resonator for powder handling device

    NASA Technical Reports Server (NTRS)

    Sarrazin, Philippe C. (Inventor); Brunner, Will M. (Inventor)

    2012-01-01

    A system incorporating a balanced mechanical resonator and a method for vibration of a sample composed of granular material to generate motion of a powder sample inside the sample holder for obtaining improved analysis statistics, without imparting vibration to the sample holder support.

  7. Reverse micelle synthesis of nanoscale metal containing catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  8. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trapp, Johannes; Rubenchik, Alexander M.; Guss, Gabe

    Here, the effective absorptivity of continuous wave 1070 nm laser light has been studied for bare and metal powder-coated discs of 316L stainless steel as well as for aluminum alloy 1100 and tungsten by use of direct calorimetric measurements. After carefully validating the applicability of the method, the effective absorptivity is plotted as a function of incident laser power from 30 up to ≈540 W for scanning speeds of 100, 500 and 1500 mm s –1. The effective absorptivity versus power curves of the bulk materials typically show a slight change in effective absorptivity from 30 W until the onsetmore » of the formation of a recoil pressure-induced surface depression. As observed using high-speed video, this change in surface morphology leads to an increase in absorption of the laser light. At the higher powers beyond the keyhole transition, a saturation value is reached for both bare discs and powder-coated disks. For ≈100 μm thick powder layers, the measured absorptivity was found to be two times that of the bare polished discs for low-laser power. There is a sharp decrease when full melting of the powder tracks is achieved, followed by a keyhole-driven increase at higher powers, similar to the bare disc case. It is shown that, under conditions associated with laser powder-bed fusion additive manufacturing, absorptivity values can vary greatly, and differ from both powder-layer measurements and liquid metal estimates from the literature.« less

  9. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing

    DOE PAGES

    Trapp, Johannes; Rubenchik, Alexander M.; Guss, Gabe; ...

    2017-09-17

    Here, the effective absorptivity of continuous wave 1070 nm laser light has been studied for bare and metal powder-coated discs of 316L stainless steel as well as for aluminum alloy 1100 and tungsten by use of direct calorimetric measurements. After carefully validating the applicability of the method, the effective absorptivity is plotted as a function of incident laser power from 30 up to ≈540 W for scanning speeds of 100, 500 and 1500 mm s –1. The effective absorptivity versus power curves of the bulk materials typically show a slight change in effective absorptivity from 30 W until the onsetmore » of the formation of a recoil pressure-induced surface depression. As observed using high-speed video, this change in surface morphology leads to an increase in absorption of the laser light. At the higher powers beyond the keyhole transition, a saturation value is reached for both bare discs and powder-coated disks. For ≈100 μm thick powder layers, the measured absorptivity was found to be two times that of the bare polished discs for low-laser power. There is a sharp decrease when full melting of the powder tracks is achieved, followed by a keyhole-driven increase at higher powers, similar to the bare disc case. It is shown that, under conditions associated with laser powder-bed fusion additive manufacturing, absorptivity values can vary greatly, and differ from both powder-layer measurements and liquid metal estimates from the literature.« less

  10. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  11. Laser-induced particle size tuning and structural transformations in germanium nanoparticles prepared by stain etching and colloidal synthesis route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karatutlu, Ali, E-mail: a.karatutlu@qmul.ac.uk, E-mail: ali.karatutlu@bou.edu.tr; Electrical and Electronics Engineering, Bursa Orhangazi University, 16310 Yıldırım/Bursa; Little, William

    In this study, with the aid of Raman measurements, we have observed transformations in small (∼3 nm and ∼10 nm) free-standing Ge nanoparticles under laser light exposure. The nanoparticles were obtained by the chemical stain etching of a monocrystalline Ge wafer and of Ge powder and by colloidal synthesis route. We found that the transformation path depends on laser power and exposure time. At relatively low values of the laser power (2 mW) over a period of 100 min, the Raman signal indicates transformation of the sample from a nanocrystaline to bulk-like state, followed by partial oxidation and finally a conversion of themore » entire sample into alpha-quartz type GeO{sub 2}. However, when the laser power is set at 60 mW, we observed a heat release during an explosive crystallization of the nanocrystalline material into bulk Ge without noticeable signs of oxidation. Together with the transmission electron microscopy measurements, these results suggest that the chemical stain etching method for the preparation of porous Ge may not be a top-down process as has been widely considered, but a bottom up one. Systematic studies of the laser exposure on Ge nanoparticles prepared by colloidal synthesis results in the fact that the explosive crystallisation is common for H-terminated and partially disordered Ge nanoparticles regardless of its particle size. We suggest possible bio-medical applications for the observed phenomena.« less

  12. Photocatalytic activity of SnO{sub 2} nanoparticles in methylene blue degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Phil; Choi, Myong Yong, E-mail: mychoi@gnu.ac.kr; Choi, Hyun Chul, E-mail: chc12@chonnam.ac.kr

    2016-02-15

    Highlights: • Nanosized SnO{sub 2} photocatalysts were prepared with a precipitation method. • SnO{sub 2} nanoparticles displayed high photocatalytic activities for the MB degradation. • OH radicals are the main active species in photocatalysis on the SnO{sub 2} nanoparticles. - Abstract: Nanosized SnO{sub 2} photocatalysts were prepared with a precipitation method and were characterized by performing transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The powder XRD results revealed that the SnO{sub 2} nanoparticles have a typical tetragonal rutile (cassiterite) structure and the average crystallite size was found to be approximately 4.5 nm by usingmore » the Debye–Scherrer equation. The prepared SnO{sub 2} nanoparticles consist of agglomerated particles with a mean diameter of around 4–5 nm according to the analysis of TEM images. The XAS data confirmed that the prepared samples have cassiterite structures with tin oxidation state of +4. The prepared SnO{sub 2} nanoparticles were found to exhibit approximately 3.8 times higher activity than bulk SnO{sub 2} in the photodegradation of methylene blue. On the basis of a trapping experiment, we developed a possible mechanism for the photodegradation on SnO{sub 2} nanoparticles.« less

  13. The study of ultrasonic irradiation effects on solid state powders of HTc superconductor YBa2Cu3O7-x

    NASA Astrophysics Data System (ADS)

    Kargar, Mahboubeh; Khoshnevisan, Bahram

    2016-03-01

    In this paper, an ultrasound assisted solid state synthesis method for high-temperature (HTc) YBa2Cu3O7-x (YBCO) superconductor nanostructures with different morphologies is presented. Here, the routine heat treatment of the powder mixture of as-prepared precursors is followed by the ultrasound irradiation inside various alcoholic solutions. Not only the influence of the ultrasound irradiation intensity and duration but also the influence of different solvents such as ethanol, methanol and 1-butanol with various vapor pressures and so various destruction powers were also studied on the morphology and particle size of the products. The various morphologies were studied by scanning electron microscope (SEM) which not only have been affected by intensity and type of alcoholic solvent but also sonication time and ultrasound power have significant role as well. Formation of the YBCO superconducting phase was examined by using Rietveld refinement of X-ray diffraction (XRD) which indicates the crystalline preferred growth in c-axis orientation in crystal. Magnetic susceptibility measurements showed the ultrasound waves had no important effect on the onset critical temperature of the prepared nanorods (about 91.64 K) which is compared with the bulk samples (Tc ˜ 92K).

  14. Production of spray-dried honey jackfruit (Artocarpus heterophyllus) powder from enzymatic liquefied puree.

    PubMed

    Wong, Chen Wai; Tan, Hong Hock

    2017-02-01

    This paper presents the enzymatic liquefaction process for honey jackfruit optimized with Pectinex ® Ultra SP-L and Celluclast ® 1.5 L individually or in combinations at different concentrations (0-2.5% v/w) and incubation time (0-2.5 h). Treatment with combinations of enzymes showed a greater effect in the reduction of viscosity (83.9-98.8%) as compared to single enzyme treatment (64.8-87.3%). The best parameter for enzymatic liquefaction was obtained with 1.0% (v/w) Pectinex ® Ultra SP-L and 0.5% (v/w) Celluclast ® 1.5 L for 1.5 h. Spray drying process was carried out using different inlet temperatures (140-180 °C) and maltodextrin concentrations (10-30% w/w). Results indicated that the spray-dried honey jackfruit powder produced at 160 °C with 30% w/w maltodextrin gave the highest product yield (66.90%) with good powder qualities in terms of water activity, solubility, moisture content, hygroscopicity, color and bulk density. The spray-dried honey jackfruit powder could potentially be incorporated into various food products.

  15. Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters.

    PubMed

    Batonneau, Yann; Bremard, Claude; Gengembre, Leon; Laureyns, Jacky; Le Maguer, Agnes; Le Maguer, Didier; Perdrix, Esperanza; Sobanska, Sophie

    2004-10-15

    The purpose of this study was to estimate the speciation of PM10 sources of airborne Pb, Zn, and Cd metals (PM10 is an aerosol standard of aerodynamic diameter less than 10 microm.) in the atmosphere of a 3 km zone surrounding lead/zinc facilities in operation for a century. Many powdered samples were collected in stacks of working units (grilling, furnace, and refinery), outdoor storages (ores, recycled materials), surrounding waste slag (4 Mt), and polluted topsoils (3 km). PM10 samples were generated from the raw powders by using artificial resuspension and collection devices. The bulk PM10 multielemental analyses were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The proportions in mass of Pb (50%), Zn (40%), and Cd (1%) contents and associated metals (traces) reach the proportions of corresponding raw powdered samples of ores, recycled materials, and fumesize emissions of plants without specific enrichment. In contrast, Pb (8%) and Zn (15%) contents of PM10 of slag deposit were found to be markedly higher than those of raw dust, Pb (4%), and Zn (9%), respectively. In the same way, Pb (0.18%), Zn (0.20%), and Cd (0.004%) were enriched by 1.7, 2.1, and 2.3 times, respectively, in PM10 as compared with raw top-soil corresponding values. X-ray wavelength dispersive electron-microprobe (EM-WDS) microanalysis did not indicate well-defined phases or simple stoichiometries of all the PM10 samples atthe level of the spatial resolution (1 microm3). X-ray photoelectron spectroscopy (XPS) indicated that minor elements such as Cd, Hg, and C are more concentrated on the particle surface than in the bulk of PM10 generated by the smelting processes. (XPS) provided also the average speciation of the surface of PM10; Pb is mainly represented as PbSO4, Zn as ZnS, and Cd as CdS or CdSO4, and small amounts of coke were also detected. The speciation of bulk PM10 crystallized compounds was deduced from XRD diffractograms with a raw estimation of the relative quantities. PbS and ZnS were found to be the major phases in PM10 generated by the smelting facilities with PbSO4, PbSO4 x PbO, PbSO4 x 4PbO, Pb metal, and ZnO as minor phases. The slag waste PM10 was found to contain some amounts of PbCO3, PbSO4 x PbO, and ZnFe2O4 phases. The large heterogeneity at the level of the individual particle generates severe overlap of chemical information even at the microm scale using electron microprobe (WDS) and Raman microprobe techniques. Fortunately, scanning Raman microspectrometry combined with SIMPle-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) performed the PM10 speciation at the level of individual particles. The speciation of major Pb, Zn, and Cd compounds of PM10 stack emissions and wind blown dust of ores and recycled materials were found to be PbSO4, PbSO4 x PbO, PbSO4 x 4PbO, PbO, metallic Pb, ZnS, ZnO, and CdS. The PM10 dust of slag waste was found to contain PbCO3, Pb(OH)2 x 2PbCO3, PbSO4 x PbO, and ZnS, while PM10-bound Pb, Zn of the top-soils contain Pb5(PO4)3Cl, ZnFe2O4 as well as Pb(II) and Zn(II) compounds adsorbed on Fe(III) oxides and in association with clays.

  16. Rocket Research at Georgia Tech.

    DTIC Science & Technology

    1981-11-01

    samples were prepared by dry pressing 30% Valley Met H- 30 aluminum, 7% carnauba wax , and 63% 100 P AP. One sample was prepared using as received H-30, a...Al, and Carnauba wax powders. Sandwiches with aluminum in the binder lamina. Both pre-oxidation and pre-stretching treatments of aluminum particles...two different processes. 1. Dry-pressing powder mixtures in which polymeric binder is replaced by carnauba wax powder. 2. Hand mixing small samples of

  17. L-Leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders.

    PubMed

    Li, Liang; Sun, Siping; Parumasivam, Thaigarajan; Denman, John A; Gengenbach, Thomas; Tang, Patricia; Mao, Shirui; Chan, Hak-Kim

    2016-05-01

    L-Leucine (LL) has been widely used to enhance the dispersion performance of powders for inhalation. LL can also protect powders against moisture, but this effect is much less studied. The aim of this study was to investigate whether LL could prevent moisture-induced deterioration in in vitro aerosolization performances of highly hygroscopic spray-dried powders. Disodium cromoglycate (DSCG) was chosen as a model drug and different amounts of LL (2-40% w/w) were added to the formulation, with the aim to explore the relationship between powder dispersion, moisture protection and physicochemical properties of the powders. The powder formulations were prepared by spray drying of aqueous solutions containing known concentrations of DSCG and LL. The particle sizes were measured by laser diffraction. The physicochemical properties of fine particles were characterized by X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic vapor sorption (DVS). The surface morphology and chemistry of fine particles were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performances were evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH), and 25°C for 24h. Spray-dried (SD) DSCG powders were amorphous and absorbed 30-45% (w/w) water at 70-80% RH, resulting in deterioration in the aerosolization performance of the powders. LL did not decrease the water uptake of DSCG powders, but it could significantly reduce the effect of moisture on aerosolization performances. This is due to enrichment of crystalline LL on the surface of the composite particles. The effect was directly related to the percentage of LL coverage on the surface of particles. Formulations having 61-73% (molar percent) of LL on the particle surface (which correspond to 10-20% (w/w) of LL in the bulk powders) could minimize moisture-induced deterioration in the aerosol performance. In conclusion, particle surface coverage of LL can offer short-term protection against moisture on dispersion of hygroscopic powders. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. 78 FR 31944 - International Conference on Harmonisation; Guidance on Q4B Evaluation and Recommendation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ...] International Conference on Harmonisation; Guidance on Q4B Evaluation and Recommendation of Pharmacopoeial Texts... ``Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the International Conference on... evaluation of the Bulk Density and Tapped Density of Powders General Chapter harmonized text from each of the...

  19. Gels as battery separators for soluble electrode cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gahn, R. F. (Inventor)

    1977-01-01

    Gels are formed from silica powders and hydrochloric acid. The gels are then impregnated into a polymeric foam and the resultant sheet material is then used in applications where the transport of chloride ions is desired. Specifically disclosed is the utilization of the sheet in electrically rechargeable redox flow cells which find application in bulk power storage systems.

  20. Low temperature reduction of free-standing graphene oxide papers with metal iodides for ultrahigh bulk conductivity.

    PubMed

    Liu, Chenyang; Hao, Feng; Zhao, Xiaochong; Zhao, Qiancheng; Luo, Songping; Lin, Hong

    2014-02-05

    Here we report a green and facile route for highly efficient reduction of free-standing graphene oxide (GO) papers with metal iodide aqueous solutions at low cost. The metal iodides (MgI2, AlI3, ZnI2, FeI2) were synthesized directly from metal and iodine powder with water as a catalyzer. An extremely high bulk conductivity of 55088 S/m for reduced graphene oxide (rGO) papers were obtained with FeI2 solution of which pH = 0 at 95°C for 6 hours. The catalytic effect of strong Lewis acid for the promotion of the nucleophilic substitution reaction is responsible for the greatly improved bulk conductivity. Furthermore, it was found that the layer-to-layer distance (dL) and the crystallinity of the rGO papers are regarded as two main factors affecting the bulk conductivity rather than C/O ratio and defect concentration.

  1. A novel approach to determine the thermal transition of gum powder/hydro-gels using dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Nagamadhu, M.; Jeyaraj, P.; Kumar, G. C. Mohan

    2018-04-01

    The dynamic characterization of materials plays a major role in the present area. The many researchers are worked on solid materials and its characterization, it can be tested using dynamic mechanical analyzer (DMA), however, no such work on powder a semiliquid samples. The powder and liquid samples can also easily characterization as like solid samples using DMA. These powder samples are analyzed with a material pocket method which can be used to accurately determine very low levels of variation in powder properties, due to the high sensitivity of DMA to glass transitions. No such DMA studies on hydrogel and Gum powders. The gum powders are used in various applications start from food industries, pharmacy, natural gums paste, biomedical applications etc. among all this applications gum Ghatti is one of the powders using for varies applications. Around 50 milligrams of Ghatti powders are placed inside material pocket and analyzed storage modulus (G'), loss modulus (G″) and tan delta (δ). Also, understand the curing and glass transition effect using water, glycerin and superplastic from room temperature to 200°C. The result shows that storage modulus decreases with increase in temperature in pure Ghatti powder. The surprising improvement in storage modulus was found with an increase in temperature with addition of water, glycerin, and superplastic. However, loss modulus and tan delta are also having very significant influence and also shows a clear peak of the tan delta. The loss modulus results were found to be improved by adding solidifying agents, along with this water and superplastic better influence. But glycerine found to be hydrogel in nature and thermodynamic properties are much influenced by frequency.

  2. Physical characterization of whole and skim dried milk powders.

    PubMed

    Pugliese, Alessandro; Cabassi, Giovanni; Chiavaro, Emma; Paciulli, Maria; Carini, Eleonora; Mucchetti, Germano

    2017-10-01

    The lack of updated knowledge about the physical properties of milk powders aimed us to evaluate selected physical properties (water activity, particle size, density, flowability, solubility and colour) of eleven skim and whole milk powders produced in Europe. These physical properties are crucial both for the management of milk powder during the final steps of the drying process, and for their use as food ingredients. In general, except for the values of water activity, the physical properties of skim and whole milk powders are very different. Particle sizes of the spray-dried skim milk powders, measured as volume and surface mean diameter were significantly lower than that of the whole milk powders, while the roller dried sample showed the largest particle size. For all the samples the size distribution was quite narrow, with a span value less than 2. The loose density of skim milk powders was significantly higher than whole milk powders (541.36 vs 449.75 kg/m 3 ). Flowability, measured by Hausner ratio and Carr's index indicators, ranged from passable to poor when evaluated according to pharmaceutical criteria. The insolubility index of the spray-dried skim and whole milk powders, measured as weight of the sediment (from 0.5 to 34.8 mg), allowed a good discrimination of the samples. Colour analysis underlined the relevant contribution of fat content and particle size, resulted in higher lightness ( L *) for skim milk powder than whole milk powder, which, on the other hand, showed higher yellowness ( b *) and lower greenness (- a *). In conclusion a detailed knowledge of functional properties of milk powders may allow the dairy to tailor the products to the user and help the food processor to perform a targeted choice according to the intended use.

  3. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.

    PubMed

    Gikanga, Benson; Turok, Robert; Hui, Ada; Bowen, Mayumi; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Spray-dried monoclonal antibody (mAb) powders may offer applications more versatile than the freeze-dried cake, including preparing high-concentration formulations for subcutaneous administration. Published studies on this topic, however, are generally scarce. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple mAbs in consideration of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. Under similar conditions, both dryers produced powders of similar properties-for example, water content, particle size and morphology, and mAb stability profile-despite a 4-fold faster output by the pilot-scale unit. All formulations containing arginine salt or a combination of arginine salt and trehalose were able to be spray-dried with high powder collection efficiency (>95%), but yield was adversely affected in formulations with high trehalose content due to powder sticking to the drying chamber. Spray-drying production output was dictated by the size of the dryer operated at an optimal liquid feed rate. Spray-dried powders could be reconstituted to high-viscosity liquids, >300 cP, substantially beyond what an ultrafiltration process can achieve. The molar ratio of trehalose to mAb needed to be reduced to 50:1 in consideration of isotonicity of the formulation with mAb concentration at 250 mg/mL. Even with this low level of sugar protection, long-term stability of spray-dried formulations remained superior to their liquid counterparts based on size variant and potency data. This study offers a commercially viable spray-drying process for biological bulk storage and an option for high-concentration mAb manufacturing. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple monoclonal antibodies (mAbs) from the perspective of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. The data demonstrated that there is no process limitation in solution viscosity when high-concentration mAb formulations are prepared from spray-dried powder reconstitution compared with concentration via the conventional ultrafiltration process. This study offers a commercially viable spray-drying process for biological bulk storage and a high-concentration mAb manufacturing option for subcutaneous administration. The outcomes of this study will benefit scientists and engineers who develop high-concentration mAb products by providing a viable manufacturing alternative. © PDA, Inc. 2015.

  4. Laser ablation ICP-MS analysis on nano-powder pellets and applications to granite bulk rock analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shitou; Karius, Volker; Wörner, Gerhard

    2017-04-01

    Granites are a ubiquitous component of the continental crust and knowing their precise trace element signatures is essential in understanding the origins and evolution of the continental crust. ICP-MS bulk analysis of granite is generally conducted on solution after acid-digestion. However this technique has several deficiencies related to the difficulty of completely dissolving accessary minerals such as zircon and the instability/adsorption of high valence trace elements (Nb, Ta et al.) in acid solutions. The development of a nano-powder pellet technique by using wet milling procedure, and its combination with laser ablation ICP-MS has been proposed to overcome these problems. In this study, we produced nano-powders from a series of granite rock standards by wet milling in agate using a high power planetary ball mill instrument. The procedure was tested and optimized by modifying parameters (ball to powder ratio, water to powder ratio, milling power etc.). Characterization of nano-powders was conducted by various techniques including electron microprobe (EMP), secondary electron imaging, polarizing microscope, and laser particle size analyzer (LPSA) and laser scanning confocal microscope (LSCM). Particle sizes range from a few nm to 5 μm with a small secondary mode at around 10 to 20 μm that probably represent particle aggregates rather than remaining crystal grains after milling. Pellets of 5 mm in diameter were pressed into molds of cellulose at 1.75 *103 N/cm2. Surface roughness of the pellets was measured by LSCM and gave a Ra of 0.494 μm, which is an order higher than the surface of polished ATGH-G reference glass surface (Ra: 0.048 μm), but sufficient for laser ablation. Sources of contamination either from abrading agate balls or from ultrapure water were evaluated and quantified. The homogeneity of powder pellets down to less than 5 μm size was documented based on EMPA element mapping and statistical analyses of LA-ICP-MS in discrete spot and line scanning analytical mode. We report data from major to trace element (to < 0.1 ppm) of currently available international granite reference materials (JG-2, JG-3, GWB07103, GEB07111, GSP-2 and G-3) to evaluate analytical precision and accuracy of LA-ICP-MS measurements. Our results illustrate the potential of this method for high precision analysis of trace elements and e.g. Zr/Hf and Nb/Ta ratios in granites.

  5. Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites

    NASA Astrophysics Data System (ADS)

    Youness, Rasha A.; Taha, Mohammed A.; Ibrahim, Medhat A.

    2017-12-01

    Titanium-containing carbonated hydroxyapatite (Ti-CHA) nanocomposite powders, with different CHA contents, have been prepared using high-energy ball milling method. The effect of sintering temperatures, 900, 1100 and 1300 °C on molecular structure and microstructure of these samples were examined by XRD; Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. Furthermore, their mechanical properties including hardness, longitudinal modulus, Young's modulus, shear modulus, bulk modulus and Poisson's ratio were measured by ultrasonic non-destructive technique. Moreover, bioactivity of sintered samples at different firing temperatures was assessed by immersing them in simulated body fluid at 37 ± 0.5 °C for 7 days and then, analyzed by FTIR spectroscopy. The results pointed out that increasing sintering temperature up to 1100 °C caused significant increases in densities and mechanical properties of these nanocomposite samples. However, further increase of firing temperature to 1300 °C was responsible for complete CHA decomposition and the resultant α-tricalcium (α-TCP) phase greatly affected these properties. On the contrary, better bioactivity was observed for sintered samples at 900 °C only. However, increase of sintering temperature of these samples up to 1300 °C led to severe decrease in their bioactivity due to the formation of highly soluble α-TCP phase.

  6. Tailoring Magnetic Properties in Bulk Nanostructured Solids

    NASA Astrophysics Data System (ADS)

    Morales, Jason Rolando

    Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally applied magnetic field to the sample. Third, a dense magneto-optical material (rare earth oxide) was produced that rotates transmitted polarized light under an externally applied magnetic field, called the Faraday Effect. The magnitude of the rare earth oxide Faraday Effect surpasses that of the current market leader (terbium gallium garnet) in Faraday isolators by ˜2.24x.

  7. Enhanced thermoelectric performance of Bi2Te3 through uniform dispersion of single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ahmad, Kaleem; Wan, Chunlei

    2017-10-01

    The advancement in nanostructured powder processing has attracted great interest as a cost effective and scalable strategy for high performance thermoelectric bulk materials. However, the level of technical breakthrough realized in quantum dot supperlattices/wires has not yet been demonstrated in these materials. Here, we report the first ever study on the uniform dispersion of single wall carbon nanotubes (SWCNTs) in nanostructured Bi2Te3 bulk, and their effect on thermoelectric parameters above room temperature. The Bi2Te3 based SWCNT composites were prepared through controlled powder processing, and their thermoelectric properties were finely tuned at the nanoscale by regulating various (0.5, 0.75, 1.0 and 1.5) vol% of SWCNTs in the matrix. The flexible ropes of SWCNT, making an interconnected network through the inter/trans granular positions of Bi2Te3, thus substantially change the transport properties of the composites. The perfect one-dimensional (1D) conducting structure of SWCNTs acts as a source of electrical transport through a percolating network, with significantly suppressed lattice thermal conductivity, via intensified boundary scattering. The remarkable increase in power factor is ascribed to energy filtering effects and excellent electrical transport of 1D SWCNTs in the composites. Consequently, with a considerable reduction in thermal conductivity, the figure of merit culminates in a several-fold improvement, at 0.5 vol% of SWCNTs, over pristine bulk Bi2Te3.

  8. Enhanced thermoelectric performance of Bi2Te3 through uniform dispersion of single wall carbon nanotubes.

    PubMed

    Ahmad, Kaleem; Wan, Chunlei

    2017-10-13

    The advancement in nanostructured powder processing has attracted great interest as a cost effective and scalable strategy for high performance thermoelectric bulk materials. However, the level of technical breakthrough realized in quantum dot supperlattices/wires has not yet been demonstrated in these materials. Here, we report the first ever study on the uniform dispersion of single wall carbon nanotubes (SWCNTs) in nanostructured Bi 2 Te 3 bulk, and their effect on thermoelectric parameters above room temperature. The Bi 2 Te 3 based SWCNT composites were prepared through controlled powder processing, and their thermoelectric properties were finely tuned at the nanoscale by regulating various (0.5, 0.75, 1.0 and 1.5) vol% of SWCNTs in the matrix. The flexible ropes of SWCNT, making an interconnected network through the inter/trans granular positions of Bi 2 Te 3 , thus substantially change the transport properties of the composites. The perfect one-dimensional (1D) conducting structure of SWCNTs acts as a source of electrical transport through a percolating network, with significantly suppressed lattice thermal conductivity, via intensified boundary scattering. The remarkable increase in power factor is ascribed to energy filtering effects and excellent electrical transport of 1D SWCNTs in the composites. Consequently, with a considerable reduction in thermal conductivity, the figure of merit culminates in a several-fold improvement, at 0.5 vol% of SWCNTs, over pristine bulk Bi 2 Te 3 .

  9. Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing.

    PubMed

    Holt, Katherine B

    2007-12-15

    Although nanocrystalline diamond powders have been produced in industrial quantities, mainly by detonation synthesis, for many decades their use in applications other than traditional polishing and grinding have been limited, until recently. This paper presents the wide-ranging applications of nanodiamond particles to date and discusses future research directions in this field. Owing to the recent commercial availability of these powders and the present interest in nanotechnology, one can predict a huge increase in research with these materials in the very near future. However, to fully exploit these materials, fundamental as well as applied research is required to understand the transition between bulk and surface properties as the size of particles decreases.

  10. Isotropic rare earth based hard magnets through non-equilibrium processing

    NASA Astrophysics Data System (ADS)

    Sultana, Dilara

    The aim of this thesis was to understand better the relationship of hard magnetic properties to the microstructure and use this knowledge to design a better magnet. The first project was focused on the development of isotropic Pr 9Fe85B6 ribbons with enhanced remanence, high coercivity and high (BH)max. The optimization was achieved by adjusting the composition, controlling the microstructure and processing parameters. The crystal structure in all the samples studied was found to consist of a fine mixture of hard phase 2:14:1 and soft alpha-Fe phase. In all the samples the optimum (BH)max obtained was in the optimally quenched ribbons. Annealing did improve the magnetic properties but did not exceed the highest (BH)max value obtained in the optimally quenched ribbons. Small additions of Tb and Co were found to improve the magnetic properties. The properties were optimized by first adjusting the wheel speed and then the ejection temperature of melt. A maximum (BH)max 21 MGOe and a remanence of 117 emu/g were obtained in the ribbons spun at 18 m/s and ejected at a temperature of 1360°C with a average grain size of 20 nm. This investigation suggests that a proper combination of composition and processing parameters is essential for the optimum (BH)max value for the Pr-Fe-B magnets. The second project was focused on the development of a single phase nanocrystalline Sm2(Co, Fe)17 magnets. The magnetic properties such as coercivity and energy product were optimized via the design of composition, control of melt-spinning parameters and heat treatment. The effect of non magnetic elements like Si, B, addition on the Sm(Co, Fe, M)z alloys were investigated. The effect of C addition on the Smx(Co 1-yMy)100-x-zCz series alloys where, M= Fe or Fe+Mn , X=10-15, Y= 0-0.375, Z= 0-6 were studied thoroughly. It is observed that the crystal structure of Sm(Co0.75Fe0.25) 7, Sm(Co0.65Fe0.25Si0.1)7 and Sm(Co0.65Fe0.25Si0.05B0.05 )8 alloy ribbons spun at low wheel speed shows the presence of 1:5 and 2:17 phase and the metastable 1:7 phase for high wheel speed. It is observed that C suppressed the formation of the stable 2:17 structure in favor of the disordered 1:7 phase. Addition of Si and B, C leads to the development of equiaxed finer grains. C may have act as grain growth inhibitor in the Sm-(Co-Fe)- C ribbons Microstructure refinement with the precipitation of RCoC2 carbides was observed in the C added ribbons. The carbon addition enhances the overall magnetic properties. The 3rd project was focused on the investigation of giant intrinsic magnetic hardness in Sm(Co0.45,Fe0.15,Cu0.4) 5 alloys and determine its dependence on grain / particle size. Melt-spinning and high energy ball milling was used to prepare sample with different grain size (6-500 nm). A single phase 1:5 structure was observed in both the ribbons and milled powders of the Sm(Co0.45,Fe0.15,Cu0.4 )5 alloy. The maximum coercivity obtained was 21 kOe for ribbons spun at 50 m/s (70 nm) and 15 kOe for the powders milled for 15 min (15 nm). Low temperature annealing of ribbons with large grain size > 500 nm for 133 h increases the coercivity to 44 kOe similar like bulk. The effect of low temperature annealing of ribbons with the coarse grain structure (> 70 nm) was the increasing of coercivity, it also increased the Curie temperature of 1: 5 phase and resistivity. The effect of low temperature annealing on the coercivity of high energy milled powders with a smaller grain size (< 70 nm) was different from the ribbons. The maximum coercivity of 21 kOe was obtained for 3h milled powders annealed at 400°C for 1 h. However, after longer annealing the coercivity decreases and this is different behavior from bulk. The effect of annealing on the homogenized crushed powders (>140nm) was more like bulk, even after annealing for 50 h at 400°C coercivity obtained was 38.48 kOe and increasing. (Abstract shortened by UMI.)

  11. Processing, properties and applications of composites using powder-coated epoxy towpreg technology

    NASA Technical Reports Server (NTRS)

    Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.

    1993-01-01

    Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.

  12. The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method

    NASA Astrophysics Data System (ADS)

    Akasaka, Masayasu; Iida, Tsutomu; Matsumoto, Atsunobu; Yamanaka, Kohei; Takanashi, Yoshifumi; Imai, Tomohiro; Hamada, Noriaki

    2008-07-01

    Bulk Mg2Si crystals were grown using the vertical Bridgman melt growth method. The n-type and p-type dopants, bismuth (Bi) and silver (Ag), respectively, were incorporated during the growth. X-ray powder diffraction analysis revealed clear peaks of Mg2Si with no peaks associated with the metallic Mg and Si phases. Residual impurities and process induced contaminants were investigated by using glow discharge mass spectrometry (GDMS). A comparison between the results of GDMS and Hall effect measurements indicated that electrical activation of the Bi doping in the Mg2Si was sufficient, while activation of the Ag doping was relatively smaller. It was shown that an undoped n-type specimen contained a certain amount of aluminum (Al), which was due either to residual impurities in the Mg source or the incorporation of process-induced impurities. Thermoelectric properties such as the Seebeck coefficient and the electrical and thermal conductivities were measured as a function of temperature up to 850 K. The dimensionless figures of merit for Bi-doped and Ag-doped samples were 0.65 at 840 K and 0.1 at 566 K, respectively. Temperature dependence of the observed Seebeck coefficient was fitted well by the two-carrier model. The first-principles calculations were carried out by using the all-electron band-structure calculation package (ABCAP) in which the full-potential linearized augmented-plane-wave method was employed. The ABCAP calculation adequately presents characteristics of the Seebeck coefficients for the undoped and heavily Bi-doped samples over the whole measured temperature range from room temperature to 850 K. The agreement between the theory and the experiment is poorer for the Ag-doped p-type samples.

  13. Why semicarbazide (SEM) is not an appropriate marker for the usage of nitrofurazone on agricultural animals.

    PubMed

    Stadler, Richard H; Verzegnassi, Ludovica; Seefelder, Walburga; Racault, Lucie

    2015-01-01

    A comprehensive global database on semicarbazide (SEM) in foodstuffs and food ingredients is presented, with over 4000 data collected in foods such as seafood (crustaceans, fish powders), meat (beef, chicken powders), dairy products (e.g. raw milk, milk powders, whey, sweet buttermilk powder, caseinate, yoghurt, cheese), honey and other ingredients. The results provide evidence that the presence of SEM in certain dairy ingredients (whey, milk protein concentrates) is a by-product of chemical reactions taking place during the manufacturing process. Of the dairy ingredients tested (c. 2000 samples), 5.3% showed traces of SEM > 0.5 µg/kg. The highest incidence of SEM-positive samples in the dairy category were whey (powders, liquid) and milk protein concentrates (35% positive), with up to 13 µg/kg measured in a whey powder. Sweet buttermilk powder and caseinate followed, with 27% and 9.3% positives, respectively. SEM was not detected in raw milk, or in yoghurt or cheese. Of the crustacean products (shrimp and prawn powders) tested, 44% were positive for SEM, the highest value measured at 284 µg/kg. Fish powders revealed an unexpectedly high incidence of positive samples (25%); in this case, fraudulent addition of shellfish shells or carry-over during processing cannot be excluded. Overall, the data provide new insights into the occurrence of SEM (for dairy products and fish powders), substantially strengthening the arguments that SEM in certain food categories is not a conclusive marker of the use of the illegal antibiotic nitrofurazone.

  14. Detection of melamine in milk powder using MCT-based short-wave infrared hyperspectral imaging system.

    PubMed

    Lee, Hoonsoo; Kim, Moon S; Lohumi, Santosh; Cho, Byoung-Kwan

    2018-06-05

    Extensive research has been conducted on non-destructive and rapid detection of melamine in powdered foods in the last decade. While Raman and near-infrared hyperspectral imaging techniques have been successful in terms of non-destructive and rapid measurement, they have limitations with respect to measurement time and detection capability, respectively. Therefore, the objective of this study was to develop a mercury cadmium telluride (MCT)-based short-wave infrared (SWIR) hyperspectral imaging system and algorithm to detect melamine quantitatively in milk powder. The SWIR hyperspectral imaging system consisted of a custom-designed illumination system, a SWIR hyperspectral camera, a data acquisition module and a sample transfer table. SWIR hyperspectral images were obtained for melamine-milk samples with different melamine concentrations, pure melamine and pure milk powder. Analysis of variance and the partial least squares regression method over the 1000-2500 nm wavelength region were used to develop an optimal model for detection. The results showed that a melamine concentration as low as 50 ppm in melamine-milk powder samples could be detected. Thus, the MCT-based SWIR hyperspectral imaging system has the potential for quantitative and qualitative detection of adulterants in powder samples.

  15. Computational Fluid Dynamics Analysis of the Venturi Dustiness Tester

    PubMed Central

    Dubey, Prahit; Ghia, Urmila; Turkevich, Leonid A.

    2017-01-01

    Dustiness quantifies the propensity of a finely divided solid to be aerosolized by a prescribed mechanical stimulus. Dustiness is relevant wherever powders are mixed, transferred or handled, and is important in the control of hazardous exposures and the prevention of dust explosions and product loss. Limited quantities of active pharmaceutical powders available for testing led to the development (at University of North Carolina) of a Venturi-driven dustiness tester. The powder is turbulently injected at high speed (Re ~ 2 × 104) into a glass chamber; the aerosol is then gently sampled (Re ~ 2 × 103) through two filters located at the top of the chamber; the dustiness index is the ratio of sampled to injected mass of powder. Injection is activated by suction at an Extraction Port at the top of the chamber; loss of powder during injection compromises the sampled dustiness. The present work analyzes the flow inside the Venturi Dustiness Tester, using an Unsteady Reynolds-Averaged Navier-Stokes formulation with the k-ω Shear Stress Transport turbulence model. The simulation considers single-phase flow, valid for small particles (Stokes number Stk <1). Results show that ~ 24% of fluid-tracers escape the tester before the Sampling Phase begins. Dispersion of the powder during the Injection Phase results in a uniform aerosol inside the tester, even for inhomogeneous injections, satisfying a necessary condition for the accurate evaluation of dustiness. Simulations are also performed under the conditions of reduced Extraction-Port flow; results confirm the importance of high Extraction-Port flow rate (standard operation) for uniform distribution of fluid tracers. Simulations are also performed under the conditions of delayed powder injection; results show that a uniform aerosol is still achieved provided 0.5 s elapses between powder injection and sampling. PMID:28638167

  16. Ir-based refractory superalloys by pulse electric current sintering (PECS) process (II prealloyed powder)

    NASA Astrophysics Data System (ADS)

    Huang, C.; Yamabe-Mitarai, Y.; Harada, H.

    2002-02-01

    Five prealloyed powder samples prepared from binary Ir-based refractory superalloys were sintered at 1800 °C for 4 h by Pulse Electric Current Sintering (PECS). No metal loss was observed during sintering. The relative densities of the sintered specimens all exceeded 90% T.D. The best one was Ir-13% Hf with the density of 97.82% T.D. Phases detected in sintered samples were in accordance with the phase diagram as expected. Fractured surfaces were observed in two samples (Ir-13% Hf and Ir-15% Zr). Some improvements obtained by using prealloyed powders instead of elemental powders, which were investigated in the previous studies, were presented.

  17. Metal-Assisted Laser-Induced Gas Plasma for the Direct Analysis of Powder Using Pulse CO2 Laser

    NASA Astrophysics Data System (ADS)

    Khumaeni, A.; Lie, Z. S.; Kurniawan, K. H.; Kagawa, K.

    2017-01-01

    Analysis of powder samples available in small quantities has been carried out using metal-assisted gas plasma by utilizing a transversely excited atmospheric (TEA) CO2 laser. The powder was homogeneously mixed with Si grease, and the mixed powder was painted on a metal subtarget. When a TEA CO2 laser was directly focused on the metal subtarget at atmospheric pressure of He gas, a high-temperature He gas plasma was induced. It is assumed that the powder particles were vaporized to be effectively atomized and excited in the gas plasma region. This method has been employed in the rapid analyses of elements in organic and inorganic powder samples present in small quantities. Detection of trace elements of Cr and Pb has been successfully made by using the supplement powder and loam soil, respectively. The detection limits of Pb in loam soil were approximately 20 mg/kg.

  18. Laboratory Evaluation of Remediation Alternatives for U.S. Coast Guard Small Arms Firing Ranges

    DTIC Science & Technology

    1999-11-01

    S) is an immobilization process that involves the mixing of a contaminated soil with a binder material to enhance the physical and chemical...samples were shipped to WES for laboratory analysis. Phase III: Homogenization of the Bulk Samples. Each of the bulk samples was separately mixed to...produce uniform samples for testing. These mixed bulk soil samples were analyzed for metal content. Phase IV: Characterization of the Bulk Soils

  19. Development of Thermoelectric and Permanent Magnet Nanoparticles for Clean Energy Applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Phi-Khanh

    The global trend towards energy efficiency and environmental sustainability has generated a strong demand for clean energy technologies. Among the many energy solutions, the work in this dissertation contributes to two strategic goals: the reduction of fuel consumption in the transportation sector, and the increase of domestic wind power capacity. The key barriers to achieving these goals are materials challenges. Automobiles can be made more efficient by thermoelectric conversion of waste heat from the engine into electricity that can be used to power electrical components in the vehicle. Vehicles can forego petroleum fuel altogether by using electric or hybrid motors. Unfortunately, the conversion efficiency of current thermoelectric technology is too low to be considered economically feasible, and the permanent magnets used in electric vehicle motors and wind turbine generators require critical rare-earth elements that are economically unstable (often referred to as the "rare-earth crisis"). In order to combat these challenges, a "spark erosion" technique was utilized for producing nanoparticles that improve thermoelectric efficiency and contribute to the development of electromotors that do not require rare-earths. In Chapter 2 of this dissertation, I describe the utilization of spark erosion for producing high-quality thermoelectric nanoparticles at a remarkably high rate and with enhanced thermoelectric properties. The technique was employed to synthesize p-type bismuth-antimony telluride (BST) and n-type skutterudite nanoparticles, using a relatively small laboratory apparatus, with low energy consumption. The compacted BST nanocomposite samples made from these nanoparticles exhibit a well-defined, 20--50 nm size nanograin microstructure, and show an enhanced Figure of merit, ZT, of 1.36 at 360 K due to a reduction in lattice thermal conductivity. The skutterudite nanocomposites also show reduced thermal conductivity but still require enhancement in the thermoelectric power factor. Such a technique is essential for providing inexpensive, oxidation-free nanoparticles required for fabricating high performance thermoelectric devices for power generation from waste heat, and for refrigeration. We have investigated the spark erosion of MnBi, a promising rare-earth-free permanent magnet, and have determined that spark erosion provides the best approach for producing MnBi particles. The low-temperature phase of MnBi (LTP-MnBi) is an attractive rare-earth free permanent magnet material due it its high uniaxial magnetocrystalline anisotropy, which produces an unusually high coercivity at the elevated temperatures required for motor and generators. However, due to the peritectic Mn-Bi phase diagram and the slow interdiffusion of Mn and Bi below the 350°C phase change temperature, bulk samples of LTP-MnBi with high saturation magnetization (MS) have been difficult to achieve. In Chapter 3, we describe the successful formation of high-purity bulk LTP-MnBi ingots and spark erosion of this material to produce single-domain particles of MnBi at an unprecedented rate. The bulk ingots have MS > 90 wt % of LTP-MnBi, and are formed by chill-casting and by vacuum-annealing of arc-melted ingots. The as-prepared powder then consists of amorphous, crystalline, and superparamagnetic particles, mostly as porous aggregates. The major fraction of the powder consists of 20--30 nm particles. A short anneal crystallizes the amorphous particles producing a high moment, albeit with HC of only a few kOe. If lightly milled, the agglomerates are broken up and yield an HC of 1 T and a maximum energy product of 3.0 MGOe. The particles can be further engineered through milling, annealing, and/or solution processing in order to produce unique properties that hold promise to achieving the first bulk permanent magnet that utilizes the exchange-spring principle. In addition, we have found that due to the amorphous component of the spark-eroded powder, a cold compact can be magnetically oriented by crystallizing in a magnetic field. This crystallographic alignment is necessary for further improvement of the magnet energy density.

  20. Particle size distribution: A key factor in estimating powder dustiness.

    PubMed

    López Lilao, Ana; Sanfélix Forner, Vicenta; Mallol Gasch, Gustavo; Monfort Gimeno, Eliseo

    2017-12-01

    A wide variety of raw materials, involving more than 20 samples of quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, were selected and characterised. Dustiness, i.e., a materials' tendency to generate dust on handling, was determined using the continuous drop method. These raw materials were selected to encompass a wide range of particle sizes (1.6-294 µm) and true densities (2650-4680 kg/m 3 ). The dustiness of the raw materials, i.e., their tendency to generate dust on handling, was determined using the continuous drop method. The influence of some key material parameters (particle size distribution, flowability, and specific surface area) on dustiness was assessed. In this regard, dustiness was found to be significantly affected by particle size distribution. Data analysis enabled development of a model for predicting the dustiness of the studied materials, assuming that dustiness depended on the particle fraction susceptible to emission and on the bulk material's susceptibility to release these particles. On the one hand, the developed model allows the dustiness mechanisms to be better understood. In this regard, it may be noted that relative emission increased with mean particle size. However, this did not necessarily imply that dustiness did, because dustiness also depended on the fraction of particles susceptible to be emitted. On the other hand, the developed model enables dustiness to be estimated using just the particle size distribution data. The quality of the fits was quite good and the fact that only particle size distribution data are needed facilitates industrial application, since these data are usually known by raw materials managers, thus making additional tests unnecessary. This model may therefore be deemed a key tool in drawing up efficient preventive and/or corrective measures to reduce dust emissions during bulk powder processing, both inside and outside industrial facilities. It is recommended, however, to use the developed model only if particle size, true density, moisture content, and shape lie within the studied ranges.

  1. Spray‐Dried Sodium Zirconate: A Rapid Absorption Powder for CO2 Capture with Enhanced Cyclic Stability

    PubMed Central

    Bamiduro, Faith; Ji, Guozhao; Brown, Andy P.; Dupont, Valerie A.

    2017-01-01

    Abstract Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption‐enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. Hollow spray‐dried microgranules with a wall thickness of 100–300 nm corresponding to the dimensions of the primary acetate‐derived particles gave about 75 wt % theoretical CO2 conversion after a process‐relevant 5 min exposure to 15 vol % CO2. A conventional powder prepared by solid‐state reaction carbonated more slowly, achieving only 50 % conversion owing to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray‐dried powder was retained postcarbonation but chemical segregation resulted in islands of an amorphous Na‐rich phase (Na2CO3) within a crystalline ZrO2 particle matrix. Despite this phase separation, the reverse reaction to re‐form Na2ZrO3 could be achieved by heating each powder to 900 °C in N2 (no dwell time). This resulted in a very stable multicycle performance in 40 cycle tests using thermogravimetric analysis for both powders. Kinetic analysis of thermogravimetric data showed the carbonation process fits an Avrami–Erofeyev 2 D nucleation and nuclei growth model, consistent with microstructural evidence of a surface‐driven transformation. Thus, we demonstrate that spray drying is a viable processing route to enhance the carbon capture performance of Na2ZrO3 powder. PMID:28371521

  2. Surface characterizations of oxides synthesized by successive ionic layer deposition

    NASA Astrophysics Data System (ADS)

    Gilbert, Thomas I.

    Successive ionic layer deposition (SILD) is an aqueous technique for depositing thin oxide films on a surface in a layer-by-layer fashion through a series of chemical reactions. This dissertation examines empirical aspects of the SILD technique by characterizing thin oxide films synthesized on model planar supports and then extends the SILD technique to synthesize supported oxide nanostructures on three dimensional supports of interest to catalysis. Atomic force microscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy provided insight into the SILD of zirconia, alumina, and barium oxide thin films on silicon wafers. The SILD conditions that most affected the surface morphology of the thin oxide films were the selection of aqueous metal salt precursors comprising the SILD solutions and the total number of SILD cycles. Recent studies suggest that a highly dispersed phase of barium oxide supported on alumina interacts differently with NO2 than a bulk-like phase of barium oxide SILD was used to synthesize disperse nanoislands or rafts of barium oxide on larger rafts of alumina supported on a silicon wafer. The SILD method was then extended to deposit barium oxide on an alumina powder support comprised of dense 150 nm spherical crystallites fused together into 1-2 pm particles. Equally weight loaded samples of barium oxide on the fused alumina powder were prepared by SILD and wet impregnation. The NO2 storage behavior of the barium oxide, evaluated by thermogravimetric analysis during NO2 temperature programmed desorption (TPD) experiments, provided insight into the dispersion of barium oxide that resulted from each of the loading techniques. The highly dispersed barium oxide rafts synthesized by SILD on fused alumina released NO2 at temperatures below 500°C during TPD. By comparison, the barium oxide loaded by wet impregnation showed a higher temperature desorption feature above 500°C indicative of bulk-like barium oxide nanoparticles. The NO2 weight loss curves were also used to calculate the relative percentages of BaO in the dispersed phase and bulk-like phase for each loading technique. The ability of SILD to synthesize highly disperse and uniform, conformal oxide coatings on three dimensional supports provides fundamental insight into the interactions between catalysts and supports.

  3. The feasibility of using explicit method for linear correction of the particle size variation using NIR Spectroscopy combined with PLS2regression method

    NASA Astrophysics Data System (ADS)

    Yulia, M.; Suhandy, D.

    2018-03-01

    NIR spectra obtained from spectral data acquisition system contains both chemical information of samples as well as physical information of the samples, such as particle size and bulk density. Several methods have been established for developing calibration models that can compensate for sample physical information variations. One common approach is to include physical information variation in the calibration model both explicitly and implicitly. The objective of this study was to evaluate the feasibility of using explicit method to compensate the influence of different particle size of coffee powder in NIR calibration model performance. A number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared. Spectral data was acquired using NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement. A discrimination method based on PLS-DA was conducted and the influence of different particle size on the performance of PLS-DA was investigated. In explicit method, we add directly the particle size as predicted variable results in an X block containing only the NIR spectra and a Y block containing the particle size and type of coffee. The explicit inclusion of the particle size into the calibration model is expected to improve the accuracy of type of coffee determination. The result shows that using explicit method the quality of the developed calibration model for type of coffee determination is a little bit superior with coefficient of determination (R2) = 0.99 and root mean square error of cross-validation (RMSECV) = 0.041. The performance of the PLS2 calibration model for type of coffee determination with particle size compensation was quite good and able to predict the type of coffee in two different particle sizes with relatively high R2 pred values. The prediction also resulted in low bias and RMSEP values.

  4. Mechanical and tribological properties of thermally sprayed tungsten carbide-cobalt coatings

    NASA Astrophysics Data System (ADS)

    Qiao, Yunfei

    Since previous work in our laboratory has shown that very fine microstructures increase the hardness and the resistance to sliding and abrasive wear of bulk, sintered, WC/Co composites, it was decided to explore whether similar benefits can be obtained in coatings of this material deposited by the Thermal Spray Method. The research was a collaborative effort in which a number of companies and universities prepared feedstock powders by a number of methods and deposited coatings by Plasma Spray and High Velocity Oxy Fuel spray techniques. Our role was to study the resistance of these coatings to abrasion and to wear in unlubricated sliding, to relate our findings to the microstructure of the coatings and to the properties of the powder and the parameters of deposition. The results were then used by our partners in the program to modify their processes in order to obtain the best possible performance. The thesis consists of four parts. In the first, we review the literature on WC/Co coatings and present the results of our survey of 45 coatings. This shows that the details of the thermal spray technique determine the tribological performance of the coatings much more than the size of the WC grains in the starting powder. It also shows that abrasive and sliding wear respond differently to the material properties. The remainder of the thesis describes a systematic variation of powders and deposition techniques, based on our earlier findings. In the second part, we describe the microstructures, hardness and toughness of nine coatings deposited by A. Dent at SUNY Stony Brook, with three different powders and three different flame chemistries. We find that the hardness is determined mainly by the flame temperature; hardness is decreased by porosity on the 50-nm size range, and this porosity is produced by insufficient melting of the Co binder. High temperatures and certain powder morphologies cause extensive decarburization, and the latter reduces the adhesion between the deposited material splats. In the third and fourth sections, we examine the abrasive wear resistance of these nine samples. Abrasive wear occurs on a small scale and depends mainly on the adhesion between the WC grains and the Co binder phase. Sliding wear, which occurs chiefly by the removal of entire splats by fatigue, is more sensitive to decarburization. The technological result is that WC/Co coatings made of "multimodal" powders that consist of a mixture of micrometer and nanometer-sized WC are to be preferred for abrasion resistance, and coatings made of a very fine powder with an additive that retards grain growth and decarburization is preferred for sliding wear resistance.

  5. Effects of hydrolysis on solid-state relaxation and stickiness behavior of sodium caseinate-lactose powders.

    PubMed

    Mounsey, J S; Hogan, S A; Murray, B A; O'Callaghan, D J

    2012-05-01

    Hydrolyzed or nonhydrolyzed sodium caseinate-lactose dispersions were spray dried, at a protein: lactose ratio of 0.5, to examine the effects of protein hydrolysis on relaxation behavior and stickiness of model powders. Sodium caseinate (NC) used included a nonhydrolyzed control (DH 0) and 2 hydrolyzed variants (DH 8.3 and DH 15), where DH = degree of hydrolysis (%). Prior to spray drying, apparent viscosities of liquid feeds (at 70°C) at a shear rate of 20/s were 37.6, 3.14, and 3.19 mPa·s, respectively, for DH 0, DH 8, and DH 15 dispersions. Powders containing hydrolyzed casein were more susceptible to sticking than those containing intact NC. The former had also lower bulk densities and powder particle sizes. Scanning electron microscopy showed that hydrolyzed powders had thinner particle walls and were more friable than powders containing intact NC. Secondary structure of caseinates, determined by Fourier transform infrared spectroscopy, was affected by the relative humidity of storage and the presence of lactose as co-solvent rather than its physical state. Glass transition temperatures and lactose crystallization temperatures, determined by differential scanning calorimetry were not affected by caseinate hydrolysis, although the effects of protein hydrolysis on glass-rubber transitions (T(gr)) could be determined by thermo-mechanical analysis. Powders containing hydrolyzed NC had lower T(gr) values (~30°C) following storage at a higher subcrystallization relative humidity (33%) compared with powder with nonhydrolyzed NC (T(gr) value of ~40°C), an effect that reflects more extensive plasticization of powder matrices by moisture. Results support that sodium caseinate-lactose interactions were weak but that relaxation behavior, as determined by the susceptibility of powder to sticking, was affected by hydrolysis of sodium caseinate. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. The investigation of die-pressing and sintering behavior of ITP CP-Ti and Ti-6Al-4V powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei; Yamamoto, Yukinori; Peter, William H

    This paper investigated the die-pressing and sintering behavior of the low-cost CP-Ti and Ti-6Al- 4V powders made by the Armstrong Process . The Armstrong powders have an irregular coral like, dendritic morphology, with a dendrite size of approximately 2-5 m. As-received as well as milled powders were uniaxially pressed at designated pressures up to 690 MPa to form disk samples with different aspect ratios. In the studied pressure range, an empirical powder compaction equation was applied to linearize the green density pressure relationship, and powder compaction parameters were obtained. The Armstrong Ti-64 powder exhibited a significantly higher sinterability than themore » CP-Ti powder. This was explained to be due to the higher diffusivity of V at the sintering temperature. The Ti-64 samples with a green density of 71.0% increased to 99.6% after sintering at 1300oC for 1 hour. An ex-situ technique was used to track the powder morphology change before and after sintering.« less

  7. The low temperature synthesis, characterization and properties of ferroelectrics

    NASA Astrophysics Data System (ADS)

    Xu, Jie

    2000-10-01

    PZT 50:50 xerogels prepared by two different sol-gel routes crystallized in a similar fashion to give a mixture of tetragonal and rhombohedral at high temperature (1000°C). Both the diffraction and EXAFS data suggest that the compositional inhomogeneity of the samples prepared by the two routes is similar. The crystallization of CZT gels is complicated. Crystalline CaCO 3 was always detected in the dry gels regardless of the sample composition and preparation methods. At intermediate temperatures a fluorite related phase was always formed and it transformed to perovskite at higher temperatures. The EXAFS data suggest that perovskite CZT samples prepared using alkoxide sol-gel chemistry may not be random solid solutions. All the solution processed ZrTiO4 materials crystallized in the range 600--700°C. The KTN samples prepared using a conventional alkoxide sol-gel route crystallized completely to perovskite at lower temperatures than those prepared using prehydrolyzed precursors. The EXAFS data for the KTN samples prepared using a conventional alkoxide sol-gel route are consistent with a random distribution of tantalum and niobium in the solid solution. However, materials prepared using the inhomogeneous sol-gel route and by the direct reaction of mixed oxides were shown to be compositionally inhomogeneous. The heterogeneity could not be removed by regrinding and heating the mixed oxide samples several times. K2Ta4-xNbxO11 (x = 0, 2, 4) samples were prepared using alkoxide sol-gel chemistry and their crystallization was examined by powder X-ray diffraction. A Rietveld structure analysis of the pyrochlore formed from a gel with bulk composition K2Ta 2Nb2O11 indicated that it was rich in potassium relative to the bulk sample. On heating to high temperatures tetragonal tungsten bronzes were formed. A Rietveld analysis was also performed for K2Ta 2Nb2O11 with tetragonal tungsten bronze structure. The defect pyrochlores "AgTaO3" and GaTaO 3 were synthesized by ion-exchange using pyrochlore KTaO3 as a starting material. The structures of the pyrochlores were examined using the Rietveld method. The pyrochlore-to-perovskite transformations were also explored.

  8. Measurements in Vacuum of the Complex Permittivity of Planetary Regolith Analog Materials in Support of the OSIRIS-REx Mission

    NASA Astrophysics Data System (ADS)

    Boivin, A.; Hickson, D. C.; Cunje, A.; Tsai, C. A.; Ghent, R. R.; Daly, M. G.

    2017-12-01

    In preparation for the OSIRIS-REx sample return mission, ground based radar data have been used to help characterize the carbonaceous asteroid (101955) Bennu as well as to produce a 3-D shape model. Radar data have also been used to derive the near-surface bulk density of the asteroid, a key engineering factor for sample acquisition and return. The relationship between radar albedo and bulk density of the nearsurface depends on the relative permittivity of the material, in this case regolith. The relative permittivity is complex such that ɛ r = ɛ r' + i ɛ r'', where ɛ r' is the dielectric constant and ɛ r'' is the loss factor. Laboratory permittivity measurements have been made in the past on a myriad of samples including Earth materials, lunar Apollo and analog samples, Mars soil analog samples, some meteorites, and cometary analog samples in support of the Rosetta mission. These measurements have been made in different frequency bands and in various conditions; however, no measurements to date have systematically explored the effect of changes in mineralogy on the complex permittivity, and particularly the loss tangent (tanδ , the ratio of ɛ r'' to ɛ r'). The loss tangent controls the absorption of the signal by the material. Continuing our investigation of the effects of mineralogy on these properties, we will present for the first time results of complex permittivity measurements of the UCF/DSI-CI-2 CI asteroid regolith simulant produced by Deep Space Industries Inc. The simulant is mineralogically similar to the CI meteorite Orgueil. CI meteorites are the most spectrally similar meteorites to (101955) Bennu. Since the simulant has been provided to us un-mixed, several sub-samples will be created containing different amounts of carbon, thus allowing us to systematically investigate the effects of carbon content on the permittivity. In order to remove moisture from our samples, powders are baked at 250°C for 48hrs prior to being loaded into a coaxial transmission line and measured under vacuum. Measurements are made using a sweep of frequencies from 300 KHz to 8.5 GHz.

  9. Powder metallurgy technology of NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, J. M.; Maziarz, W.; Czeppe, T.; Lityńska, L.; Nowacki, W. K.; Gadaj, S. P.; Luckner, J.; Pieczyska, E. A.

    2008-05-01

    Powder metallurgy technology was elaborated for consolidation of shape memory NiTi powders. The shape memory alloy was compacted from the prealloyed powder delivered by Memry SA. The powder shows Ms = 10°C and As = -34°C as results from DSC measurements. The samples were hot pressed in the as delivered spherical particle's state. The hot compaction was performed in a specially constructed vacuum press, at temperature of 680°C and pressure of 400 MPa. The alloy powder was encapsulated in copper capsules prior to hot pressing to avoid oxidation or carbides formation. The alloy after hot vacuum compaction at 680°C (i.e. within the B2 NiTi stability range) has shown similar transformation range as the powder. The porosity of samples compacted in the as delivered state was only 1%. The samples tested in compression up to ɛ = 0.06 have shown partial superelastic effect due to martensitic reversible transform- ation which started at the stress above 300 MPa and returned back to ɛ = 0.015 after unloading. They have shown also a high ultimate compression strength of 1600 MPa. Measurements of the samples temperature changes during the process allowed to detect the temperature increase above 12°C for the strain rate 10-2 s-1 accompanied the exothermic martensite transformation during loading and the temperature decrease related to the reverse endothermic transformation during unloading.

  10. Cleaning and Cleanliness Measurement of Additive Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Edwards, Kevin; Fox, Eric; Boothe, Richard

    2017-01-01

    Additive Manufacturing processes allow for the manufacture of complex three dimensional components that otherwise could not be manufactured. Post treatment processes require the removal of any remnant bulk powder that may become entrapped within small cavities and channels within a component. This project focuses on several gross cleaning methods and the verification metrics associated with additive manufactured parts for oxygen propulsion usage.

  11. Physical quality characteristics of the microwave-dried breadfruit powders due to different processing conditions

    NASA Astrophysics Data System (ADS)

    Taruna, I.; Hakim, A. L.; Sutarsi

    2018-03-01

    Production of breadfruit powder has been an option to make easy its uses in various food processing. Accordingly, there is a need recently to apply advanced drying method, i.e. microwave drying, for improving quality since conventional methods produced highly variable product quality and required longer process. The present work was aimed to study the effect of microwave power and grinding time on physical quality of breadfruit powders. The experiment was done initially by drying breadfruit slices in a microwave dryer at power level of 420, 540, and 720 W and then grinding for 3, 5, and 7 min to get powdery product of less than 80 mesh. The physical quality of breadfruit powders were measured in terms of fineness modulus (FM), average particle size (D), whiteness (WI), total color difference (ΔE), water absorption (Wa), oil absorption (La), bulk density (ρb) and consistency gel (Gc). The results showed that physical quality of powders and its ranged-values included the FM (2.08-2.62), D (0.44-0.68 mm), WI (75.2-77.9), ΔE (7.4-10.5), Wa (5.5-6.2 ml/g), La (0.7-0.9 ml/g), ρb (0.62-0.70 g/cm3) and Gc (41.3-46.8 mm). The experiment revealed that variation of microwave power and grinding time affected significantly the quality of the breadfruit powders. However, microwave power was more dominant factor to affect quality of breadfruit powder in comparison to the grinding time.

  12. A novel process for production of spherical PBT powders and their processing behavior during laser beam melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Jochen, E-mail: jochen.schmidt@fau.de; Sachs, Marius; Fanselow, Stephanie

    2016-03-09

    Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles aremore » produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a factor of about 5 is achieved by subsequent rounding of the comminution product and dry-coating as proven by tensile strength measurements of the powders. The produced PBT powders were characterized with respect to their processability. Therefore thermal, rheological, optical and bulk properties were analyzed. Based on these investigations a range of processing parameters was derived. Parameter studies on thin layers, produced in a selective laser melting system, were conducted. Hence appropriate parameters for processing the PBT powders by laser beam melting, like building chamber temperature, scan speed and laser power have been identified.« less

  13. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    PubMed

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%.

  14. Molecular basis of crystal morphology-dependent adhesion behavior of mefenamic acid during tableting.

    PubMed

    Waknis, Vrushali; Chu, Elza; Schlam, Roxana; Sidorenko, Alexander; Badawy, Sherif; Yin, Shawn; Narang, Ajit S

    2014-01-01

    The molecular basis of crystal surface adhesion leading to sticking was investigated by exploring the correlation of crystal adhesion to oxidized iron coated atomic force microscope (AFM) tips and bulk powder sticking behavior during tableting of two morphologically different crystals of a model drug, mefenamic acid (MA), to differences in their surface functional group orientation and energy. MA was recrystallized into two morphologies (plates and needles) of the same crystalline form. Crystal adhesion to oxidized iron coated AFM tips and bulk powder sticking to tablet punches was assessed using a direct compression formulation. Surface functional group orientation and energies on crystal faces were modeled using Accelrys Material Studio software. Needle-shaped morphology showed higher sticking tendency than plates despite similar particle size. This correlated with higher crystal surface adhesion of needle-shaped morphology to oxidized iron coated AFM probe tips, and greater surface energy and exposure of polar functional groups. Higher surface exposure of polar functional groups correlates with higher tendency to stick to metal surfaces and AFM tips, indicating involvement of specific polar interactions in the adhesion behavior. In addition, an AFM method is identified to prospectively assess the risk of sticking during the early stages of drug development.

  15. Investigation of electrostatic behavior of a lactose carrier for dry powder inhalers.

    PubMed

    Chow, Keat Theng; Zhu, Kewu; Tan, Reginald B H; Heng, Paul W S

    2008-12-01

    This study aims to elucidate the electrostatic behavior of a model lactose carrier used in dry powder inhaler formulations by examining the effects of ambient relative humidity (RH), aerosolization air flow rate, repeated inhaler use, gelatin capsule and tapping on the specific charge (nC/g) of bulk and aerosolized lactose. Static and dynamic electrostatic charge measurements were performed using a Faraday cage connected to an electrometer. Experiments were conducted inside a walk-in environmental chamber at 25 degrees C and RHs of 20% to 80%. Aerosolization was achieved using air flow rates of 30, 45, 60 and 75 L/min. The initial charges of the bulk and capsulated lactose were a magnitude lower than the charges of tapped or aerosolized lactose. Dynamic charge increased linearly with aerosolization air flow rate and RH. Greater frictional forces at higher air flow rate induced higher electrostatic charges. Increased RH enhanced charge generation. Repeated inhaler use significantly influenced electrostatic charge due to repeated usage. This study demonstrated the significance of interacting influences by variables commonly encountered in the use DPI such as variation in patient's inspiratory flow rate, ambient RH and repeated inhaler use on the electrostatic behavior of a lactose DPI carrier.

  16. Crystal surface integrity and diffusion measurements on Earth and planetary materials

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Cherniak, D. J.; Thomas, J. B.; Hanchar, J. M.; Wirth, R.

    2016-09-01

    Characterization of diffusion behavior in minerals is key to providing quantitative constraints on the ages and thermal histories of Earth and planetary materials. Laboratory experiments are a vital source of the needed diffusion measurements, but these can pose challenges because the length scales of diffusion achievable in a laboratory time are commonly less than 1 μm. An effective strategy for dealing with this challenge is to conduct experiments involving inward diffusion of the element of interest from a surface source, followed by quantification of the resulting diffusive-uptake profile using a high-resolution depth-profiling technique such as Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), or ion microprobe (SIMS). The value of data from such experiments is crucially dependent on the assumption that diffusion in the near-surface of the sample is representative of diffusion in the bulk material. Historical arguments suggest that the very process of preparing a polished surface for diffusion studies introduces defects-in the form of dislocations and cracks-in the outermost micrometer of the sample that make this region fundamentally different from the bulk crystal in terms of its diffusion properties. Extensive indirect evidence suggests that, in fact, the near-surface region of carefully prepared samples is no different from the bulk crystal in terms of its diffusion properties. A direct confirmation of this conclusion is nevertheless clearly important. Here we use transmission electron microscopy to confirm that the near-surface regions of olivine, quartz and feldspar crystals prepared using careful polishing protocols contain no features that could plausibly affect diffusion. This finding does not preclude damage to the mineral structure from other techniques used in diffusion studies (e.g., ion implantation), but even in this case the role of possible structural damage can be objectively assessed and controlled. While all evidence points to the reliability of diffusivities obtained from in-diffusion experiments, we do not recommend experiments of this type using a powder source as a means of obtaining diffusant solubility or partitioning information for the mineral of interest.

  17. Compression behavior of WC and WC-6%Co up to 50 GPa determined by synchrotron x-ray diffraction and ultrasonic techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amulele, George M.; Manghnani, Murli H.; Marriappan, Sekar

    2008-07-23

    The equations of state (pressure-volume relations) for WC and WC-6%Co have been determined by synchrotron x-ray diffraction measurements on polycrystalline powder samples loaded in a diamond anvil cell as well as by ultrasonic measurements on hot-pressed polycrystalline, cylindrical samples loaded in a multianvil high-pressure apparatus. The third-order Birch-Murnaghan equation of state fitted to the x-ray diffraction pressure-density sets of data, collected up to 50 GPa, yields ambient pressure isothermal bulk moduli of K{sub oT} = 411.8{+-}12.1 GPa and K{sub oT} = 402.4{+-}14.1 GPa, with pressure derivatives of K{sub oT}' = 5.45{+-}0.73 and K{sub oT}' = 7.50{+-}0.86 for WC and WC-6%Co,more » respectively. The ultrasonic measurements, conducted up to 14 GPa, enabled the determination of the pressure dependences of both bulk and shear moduli. Using Eulerian finite strain equations to fit the ultrasonic data, we obtain for WC an ambient pressure adiabatic bulk modulus of K{sub os} = 383.8{+-}0.8 GPa, and K{sub os}' = 2.61{+-}0.07 for its pressure derivative, while values of G{sub os} = 304.0{+-}0.3 GPa and G{sub os}' = 1.50{+-}0.09 were determined for the shear modulus and its pressure derivative, respectively. Meanwhile, for WC-6%Co, we obtain K{sub os} = 357.5{+-}1.0 GPa, K{sub os}' = 5.18{+-}0.14, G{sub os} = 253.5{+-}0.3 GPa, and G{sub os}' = 1.09{+-}0.09. The equations of state derived from the ultrasonic data are in good agreement with extrapolated results reported previously by Day and Ruoff [J. Appl. Phys. 44, 2447 (1973)] and Gerlich and Kennedy [J. Appl. Phys. 50, 3331 (1978)] who carried out measurements up to 0.2 and 1.0 GPa, respectively.« less

  18. Evaluation of dairy powder products implicates thermophilic sporeformers as the primary organisms of interest.

    PubMed

    Watterson, M J; Kent, D J; Boor, K J; Wiedmann, M; Martin, N H

    2014-01-01

    Dairy powder products (e.g., sweet whey, nonfat dry milk, acid whey, and whey protein concentrate-80) are of economic interest to the dairy industry. According to the US Dairy Export Council, customers have set strict tolerances (<500 to <1,000/g) for thermophilic and mesophilic spores in dairy powders; therefore, understanding proliferation and survival of sporeforming organisms within dairy powder processing plants is necessary to control and reduce sporeformer counts. Raw, work-in-process, and finished product samples were collected from 4 dairy powder processing facilities in the northeastern United States over a 1-yr period. Two separate spore treatments: (1) 80°C for 12min (to detect sporeformers) and (2) 100°C for 30min (to detect highly heat resistant sporeformers) were applied to samples before microbiological analyses. Raw material, work-in-process, and finished product samples were analyzed for thermophilic, mesophilic, and psychrotolerant sporeformers, with 77.5, 71.0, and 4.6% of samples being positive for those organisms, respectively. Work-in-process and finished product samples were also analyzed for highly heat resistant thermophilic and mesophilic sporeformers, with 63.7 and 42.6% of samples being positive, respectively. Sporeformer prevalence and counts varied considerably by product and plant; sweet whey and nonfat dry milk showed a higher prevalence of thermophilic and mesophilic sporeformers compared with acid whey and whey protein concentrate-80. Unlike previous reports, we found limited evidence for increased spore counts toward the end of processing runs. Our data provide important insight into spore contamination patterns associated with production of different types of dairy powders and support that thermophilic sporeformers are the primary organism of concern in dairy powders. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. The determination of the energy values and the composition analysis of M-16 rifle black powders

    NASA Astrophysics Data System (ADS)

    Satee, R.; Dararutana, P.; Phutdhawong, W.

    2017-09-01

    The determination of the energy values, specifically the heat of combustion of various M-16 black powders was the important part of the bullet efficiency investigations. The calorimetric bomb is commonly used for these determinations. Four M-16 black powders from the different sources were used as samples for this research. It was found that, after using calorimetric bomb technique, the gross heating value in Joules/g of sample S1-S4 were 10,647, 10,416, 5,281 and 3,878 respectively. The chemical compositions of carbon (C), hydrogen (H), nitrogen (N) and sulfer (S) have also been determined. The results indicated that carbon and nitrogen compositions of sample S1 shown the highest values and provided little differences with sample S2 while sample S3 and S4 shown the lowest carbon and nitrogen percentage composition. The hydrogen composition of all samples was equally valued, however, only sample 3 and 4 displayed sulfur values while no sulfur values were detected from sample 1 and 2. From these results, the heat values and chemical composition of M-16 black powders were characterized their sources and the energy values might be estimated from the amount of carbon and nitrogen in the black powders. Thus, it would be possible to use this determination analysis in the forensic investigation.

  20. Design of spray dried insulin microparticles to bypass deposition in the extrathoracic region and maximize total lung dose.

    PubMed

    Ung, Keith T; Rao, Nagaraja; Weers, Jeffry G; Huang, Daniel; Chan, Hak-Kim

    2016-09-25

    Inhaled drugs all too often deliver only a fraction of the emitted dose to the target lung site due to deposition in the extrathoracic region (i.e., mouth and throat), which can lead to increased variation in lung exposure, and in some instances increases in local and systemic side effects. For aerosol medications, improved targeting to the lungs may be achieved by tailoring the micromeritic properties of the particles (e.g., size, density, rugosity) to minimize deposition in the mouth-throat and maximize the total lung dose. This study evaluated a co-solvent spray drying approach to modulate particle morphology and dose delivery characteristics of engineered powder formulations of insulin microparticles. The binary co-solvent system studied included water as the primary solvent mixed with an organic co-solvent, e.g., ethanol. Factors such as the relative rate of evaporation of each component of a binary co-solvent mixture, and insulin solubility in each component were considered in selecting feedstock compositions. A water-ethanol co-solvent mixture with a composition range considered suitable for modulating particle shell formation during drying was selected for experimental investigation. An Alberta Idealized Throat model was used to evaluate the in vitro total lung dose of a series of spray dried insulin formulations engineered with different bulk powder properties and delivered with two prototype inhalers that fluidize and disperse powder using different principles. The in vitro total lung dose of insulin microparticles was improved and favored for powders with low bulk density and small primary particle size, with reduction of deposition in the extrathoracic region. The results demonstrated that a total lung dose >95% of the delivered dose can be achieved with engineered particles, indicating a high degree of lung targeting, almost completely bypassing deposition in the mouth-throat. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Structural, ac conductivity and dielectric properties of 3-formyl chromone

    NASA Astrophysics Data System (ADS)

    Ali, H. A. M.

    2017-07-01

    The structure for the powder of 3-formyl chromone was examined by X-ray diffraction technique in the 2θ° range ( 4° - 60° . The configuration of Al/3-formyl chromone/Al samples was designed. The electrical and dielectric properties were studied as a function of frequency (42- 5 × 106 Hz) and temperature (298-408K). The ac conductivity data of bulk of 3-formyl chromone varies as a power law with the frequency at different temperatures. The predominant mechanism for ac conduction was deduced. The ac conductivity shows a thermally activated process at different frequencies. The dielectric constant and dielectric loss were determined using the capacitance and dissipation factor measurements at different temperatures. The dielectric loss shows a peak of relaxation time that shifted to higher frequency with an increase in the temperature. The activation energy of the relaxation process was estimated.

  2. A multi-component evaporation model for beam melting processes

    NASA Astrophysics Data System (ADS)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  3. Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Zhan, Guodong; Wang, Qiang; Yan, Xiaozhi; Liu, Fangming; Wang, Pei; Lei, Li; Peng, Fang; Kou, Zili; He, Duanwei

    2018-02-01

    We report an approach to strengthen micro-grained polycrystalline diamond (MPD) compact through work hardening under high pressure and high temperature, in which both hardness and fracture toughness are simultaneously boosted. Micro-sized diamond powders are treated without any additives under a high pressure of 14 GPa and temperatures ranging from 1000 °C to 2000 °C. It was found that the high pressure and high temperature environments could constrain the brittle feature and cause a severe plastic deformation of starting diamond grains to form a mutual bonded diamond network. The relative density is increased with temperature to nearly fully dense at 1600 °C. The Vickers hardness of the well-prepared MPD bulks at 14 GPa and 1900 °C reaches the top limit of the single crystal diamond of 120 GPa, and the near-metallic fracture toughness of the sample is as high as 18.7 MPa m1/2.

  4. Investigation on the adsorption characteristics of sodium benzoate and taurine on gold nanoparticle film by ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Thomas, S.; Tokas, R. B.; Kshirsagar, R. J.

    2014-01-01

    Fourier transform infrared (FTIR) spectroscopic studies of sodium benzoate and taurine adsorbed on gold nanoparticle (AuNp) film on silanised glass slides have been studied by attenuated total reflection technique (ATR). The surface morphology of the AuNp films has been measured by Atomic Force Microscopy. The ATR spectra of sodium benzoate and taurine deposited on AuNp film are compared with ATR spectra of their powdered bulk samples. A new red-shifted band appeared along with the symmetric and asymmetric stretches of carboxylate group of sodium benzoate leading to a broadening of the above peaks. Similar behavior is also seen in the case of symmetric and asymmetric stretches of sulphonate group of taurine. The results indicate presence of both chemisorbed and physisorbed layers of both sodium benzoate and taurine on the AuNp film with bottom layer chemically bound to AuNp through carboxylate and sulphonate groups respectively.

  5. Sulfur in vacuum - Sublimation effects on frozen melts, and applications to Io's surface and torus

    NASA Astrophysics Data System (ADS)

    Nash, D. B.

    1987-10-01

    The author has found from laboratory experiments that vacuum sublimation has a profound effect on the molecular composition, microtexture, bulk density (porosity), and the UV/visible spectral reflectance of the surface of solid sulfur samples, both when the sulfur is in the form of frozen or quenched melts and as laboratory-grade sulfur powder. These sublimation effects produce a unique surface material, the understanding of which may have important implications for deciphering the many enigmatic optical and textural properties of the surface of Jupiter's satellite Io. This planetary body is thought to have a surface greatly enriched in volcanically produced elemental sulfur and sulfur compounds and to have a surface atmospheric pressure with an upper limit of ≡10-7atm, comparable to a good laboratory vacuum, and surface hotspots at temperatures of about 300K covering about 0.3% of its global surface.

  6. Green and Mild Oxidation: An Efficient Strategy toward Water-Dispersible Graphene.

    PubMed

    You, Xiaofei; Yang, Siwei; Li, Jipeng; Deng, Yuan; Dai, Lianqi; Peng, Xiong; Huang, Haoguang; Sun, Jing; Wang, Gang; He, Peng; Ding, Guqiao; Xie, Xiaoming

    2017-01-25

    Scalable fabrication of water-dispersible graphene (W-Gr) is highly desirable yet technically challenging for most practical applications of graphene. Herein, a green and mild oxidation strategy to prepare bulk W-Gr (dispersion, slurry, and powder) with high yield was proposed by fully exploiting structure defects of thermally reduced graphene oxide (TRGO) and oxidizing radicals generated from hydrogen peroxide (H 2 O 2 ). Owing to the increased carboxyl group from the mild oxidation process, the obtained W-Gr can be redispersed in low-boiling solvents with a reasonable concentration. Benefiting from the modified surface chemistry, macroscopic samples processed from the W-Gr show good hydrophilicity (water contact angle of 55.7°) and excellent biocompatibility, which is expected to be an alternative biomaterial for bone, vessel, and skin regeneration. In addition, the green and mild oxidation strategy is also proven to be effective for dispersing other carbon nanomaterials in a water system.

  7. Synchrotron-based Infrared Microspectroscopy as a Useful Tool to Study Hydration States of Meteorite Constituents

    NASA Technical Reports Server (NTRS)

    Moroz, L. V.; Schmidt, M.; Schade, U.; Hiroi, T.; Ivanova, M. A.

    2005-01-01

    The meteorites Dho 225 and Dho 735 were recently found in Oman. Studies of their mineralogical and chemical composition suggest that these unusual meteorites are thermally metamorphosed CM2 chondrites [1,2,3]. Similar to Antarctic metamorphosed carbonaceous chondrites, the Dho 225 and Dho 735 are enriched in heavy oxygen compared to normal CMs [1,2]. However, IR studies indicating dehydration of matrix phyllosilicates are needed to confirm that the two new meteorites from Oman are thermally metamorphosed [4]. Synchrotron-based IR microspectroscopy is a new promising technique which allows the acquisition of IR spectra from extremely small samples. Here we demonstrate that this non-destructive technique is a useful tool to study hydration states of carbonaceous chondrites in situ. In addition, we acquired reflectance spectra of bulk powders of the Dho 225 and Dho 735 in the range of 0.3-50 microns.

  8. Synthesis of lithium superionic conductor by growth of a nanoglass within mesoporous silica SBA-15 template

    NASA Astrophysics Data System (ADS)

    Chatterjee, Soumi; Miah, Milon; Saha, Shyamal Kumar; Chakravorty, Dipankar

    2018-04-01

    Nanodimensional silica based glasses containing alkali ions have recently been grown using suitable templates. These have shown electrical properties drastically different from those of their bulk counterpart. We have synthesized silicophosphate glasses having lithium ions with concentrations of 15-35 mole% Li2O within mesoporous silica SBA-15 (Santa Barbara amorphous-15) comprising of pores of diameter ~5 nm. The nanoglasses are characterized by electrical conductivities 5-6 orders of magnitude higher than those of the corresponding bulk glasses. These properties are attributed to the presence of a larger free volume in the nanoglasses as compared to their bulk states. The nanocomposites with 35 mole% Li2O exhibit an electrical conductivity of ~3 × 10-4 S · cm-1 at around room temperature. The activation energy for Li+ ion migration has been estimated from the conductivity-temperature variation to be 0.078 eV. These nanocomposites are believed to be ideally suited for the fabrication of solid state lithium ion batteries. We have also explored the efficiency of silicophosphate glass powders as possible electrode materials. Glass of composition 70SiO2/30P2O5 was prepared by using Pluronic P-123 tri-block copolymer along with suitable precursor sols. Cyclic voltammetric and galvanostatic charge/discharge measurements were carried out on the samples prepared in combination with suitable conductive fillers using a two-electrode system. These exhibited a high specific capacitance of 356 F g-1 making them ideally suitable as electrode materials for making a lithium ion solid state battery system.

  9. Determination of azathioprine and its related substances by capillary zone electrophoresis and its application to pharmaceutical dosage forms assay.

    PubMed

    Shafaati, A; Clark, B J

    2000-03-01

    The development of a stability-indicating capillary zone electrophoresis (CZE) method for the determination of the drug azathioprine (AZA) and its related substances in bulk and dosage forms is described. Theophylline was used as an internal standard to improve quantitative results. The method was fully validated in terms of repeatability (n = 10, RSD for migration time and peak area ratio were 0.15% and 0.60%, respectively), reproducibility (n = 5, RSD of peak area ratio was 0.84%), linearity at two ranges of the azathioprine concentration, limits of detection (LOD) and quantitation (LOQ), and robustness. The method was applied for determination of the drug in bulk and a commercial tablet dosage form (recovery 98.3-101.3%) and in powder for injection (recovery 98.7-100.6%). The method was fast and reliable for the analysis of AZA and its related substances in bulk and dosage forms.

  10. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    NASA Technical Reports Server (NTRS)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  11. The effect of dipole-dipole interactions on coercivity, anisotropy constant, and blocking temperature of MnFe{sub 2}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslibeiki, B., E-mail: b.aslibeiki@tabrizu.ac.ir; Kameli, P.; Salamati, H.

    2016-02-14

    Superparamagnetic manganese ferrite nanoparticles with mean size of 〈D〉 = 6.5(±1.5) nm were synthesized through a solvothermal method using Tri-ethylene glycol as a solvent. The peak temperature of zero field cooled measurements of magnetization and AC magnetic susceptibility curves shifted toward higher temperatures by applying different pressures from 0 to 1 kbar and increasing the powders compaction. The frequency dependence of AC susceptibility measurements indicated the presence of weak dipole-dipole interactions between nanoparticles. By increasing the powders compaction and interactions strength, the coercive field (H{sub c}) increased and squareness (M{sub r}/M{sub s}) decreased. The obtained effective anisotropy constant (K{sub eff}), by susceptibilitymore » measurements, was from 1.72 × 10{sup 6} to 2.36 × 10{sup 6 }ergs/cm{sup 3} for pressure of 0 to 1 kbar. These values are larger than those obtained from hysteresis loops at 5 K (0.14 × 10{sup 6} to 0.34 × 10{sup 6 }erg/cm{sup 3}). Also, the K{sub eff} was two orders of magnitude greater than that of bulk MnFe{sub 2}O{sub 4}. Size, surface effects, and total energy barrier between equilibrium states were reported as the main causes of large anisotropy. Below 75 K, a signature of weak surface spin glass was observed. However, memory effect experiment indicated that there is no collective superspin glass state in the samples. This study suggests the role of powders compaction on properties of a magnetic nanoparticles system. Furthermore, the coercivity, the anisotropy constant, and the blocking temperature are affected by changing nanoparticles compaction.« less

  12. Raman-spectroscopy-based chemical contaminant detection in milk powder

    NASA Astrophysics Data System (ADS)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon S.

    2015-05-01

    Addition of edible and inedible chemical contaminants in food powders for purposes of economic benefit has become a recurring trend. In recent years, severe health issues have been reported due to consumption of food powders contaminated with chemical substances. This study examines the effect of spatial resolution used during spectral collection to select the optimal spatial resolution for detecting melamine in milk powder. Sample depth of 2mm, laser intensity of 200mw, and exposure time of 0.1s were previously determined as optimal experimental parameters for Raman imaging. Spatial resolution of 0.25mm was determined as the optimal resolution for acquiring spectral signal of melamine particles from a milk-melamine mixture sample. Using the optimal resolution of 0.25mm, sample depth of 2mm and laser intensity of 200mw obtained from previous study, spectral signal from 5 different concentration of milk-melamine mixture (1%, 0.5%, 0.1%, 0.05%, and 0.025%) were acquired to study the relationship between number of detected melamine pixels and corresponding sample concentration. The result shows that melamine concentration has a linear relation with detected number of melamine pixels with correlation coefficient of 0.99. It can be concluded that the quantitative analysis of powder mixture is dependent on many factors including physical characteristics of mixture, experimental parameters, and sample depth. The results obtained in this study are promising. We plan to apply the result obtained from this study to develop quantitative detection model for rapid screening of melamine in milk powder. This methodology can also be used for detection of other chemical contaminants in milk powders.

  13. A novel approach to synthesize, studies of structural and electrical characteristic of Bi(Ni0.30Ti0.30Fe0.40)O3 nanoceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Shukla, Alok

    2018-03-01

    In this study, we report a novel approach to synthesize the Bi(Ni0.30Ti0.30Fe0.40)O3 [arbitration BNTF30/40] nanoceramics by standard ceramic method at an ambient temperature of 1013 K. Carbonates and oxides powder were utilised as a raw materials in an appropriate stoichiometric amounts. X-ray diffraction pattern assigned that the BNTF30/40 sample presents a single phase of orthorhombic symmetry. The crystallite size obtain from X-ray data suggests the formation of BNTF30/40 nanoceramics in the range between 20 to 45 nm. Bulk density of the prepared pallets were measured and found to be more than 94 percent. The basic characterization tools have been used respectively with Field Emission Scanning Electron Microscope and Spectroscopy based techniques to obtain the correlation between surface morphology and electrical characteristic of specimen sample. Electrical characteristic of the as- synthesized material was studied in the experimental temperature range between RT to 623 K at different operated frequency (25 kHz - 500 kHz).

  14. Microwave absorption studies on high-T sub c superconductors and related materials 7--ESR of DPPH coated on a thin BiSrCaCuO film fabricated on MgO(100) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugawara, K.; Sugimoto, T.; Shiohara, Y.

    1992-05-10

    In this paper, ESR of DPPH coated on a Bi-Sr-Ca-Cu-O (BSCCO) film (350 {Angstrom} thick) fabricated on MgO(100) substrate by MOCVD is studied. Temperature dependence of the ESR peak-to-peak linewidth, {Delta}H{sub pp}, and the effect of applied magnetic field on {Delta}H{sub pp} are below about 100 K. The results are compared with those of ESR of DPPH coated on ceramic Y-Ba-Cu-O samples (powder and bulk) made by the MPMG method. The DPPH ESR for the BSCCO film reveals that {Delta}H{sub pp} was independent of applied magnetic field up to about 9 kG. In addition, no similarity between the temperature dependencemore » of the excess ESR linewidth of the DPPH and that of critical current density was found for the BSCCO film. These results for the BSCCO film are different from those for the MPMG YBCO samples.« less

  15. The Use of Tomato Powder Fermented with Pediococcus pentosaceus and Lactobacillus sakei for the Ready-to-Cook Minced Meat Quality Improvement

    PubMed Central

    Juodeikiene, Grazina; Zadeike, Daiva; Viskelis, Pranas; Urbonaviciene, Dalia

    2015-01-01

    Summary In this study, the influence of lactic acid fermentation on the quality of tomato powder was evaluated. The effect of adding fermented tomato powder to ready-to-cook minced pork meat to improve its nutritional value and sensory characteristics was also analysed. The cell growth of Lactobacillus sakei (7.53 log CFU/g) was more intense in the medium containing tomato powder, compared to the growth of Pediococcus pentosaceus (6.35 log CFU/g) during 24 h of fermentation; however, higher acidity (pH=4.1) was observed in the tomato powder samples fermented with Pediococcus pentosaceus. The spontaneous fermentation of tomato powder reduced cell growth by 38% and pH values slightly increased to 4.17, compared to the fermentation with pure LAB. The lactofermentation of tomato powder increased the average β-carotene and lycopene mass fractions by 43.9 and 50.2%, respectively, compared with the nonfermented samples. Lycopene and β-carotene contents in the ready-to-cook minced pork meat were proportional to the added tomato powder (10 and 30%). After cooking, β-carotene and lycopene contents decreased, on average, by 24.2 and 41.2%, respectively. The highest loss (up to 49.2%) of carotenoids was found in samples with 30% nonfermented tomato powder. Tomato powder fermented with 10% Lactobacillus sakei KTU05-6 can be recommended as both a colouring agent and a source of lycopene in the preparation of ready-to-cook minced pork meat. PMID:27904345

  16. [Physical fingerprint for quality control of traditional Chinese medicine extract powders].

    PubMed

    Zhang, Yi; Xu, Bing; Sun, Fei; Wang, Xin; Zhang, Na; Shi, Xin-Yuan; Qiao, Yan-Jiang

    2016-06-01

    The physical properties of both raw materials and excipients are closely correlated with the quality of traditional Chinese medicine preparations in oral solid dosage forms. In this paper, based on the concept of the chemical fingerprint for quality control of traditional Chinese medicine products, the method of physical fingerprint for quality evaluation of traditional Chinese medicine extract powders was proposed. This novel physical fingerprint was built by the radar map, and consisted of five primary indexes (i.e. stackablity, homogeneity, flowability, compressibility and stability) and 12 secondary indexes (i.e. bulk density, tap density, particle size<50 μm percentage, relative homogeneity index, hausner ratio, angle of repose, powder flow time, inter-particle porosity, Carr index, cohesion index, loss on drying, hygroscopicity). Panax notoginseng saponins (PNS) extract was taken for an example. This paper introduced the application of physical fingerprint in the evaluation of source-to-source and batch-to-batch quality consistence of PNS extract powders. Moreover, the physical fingerprint of PNS was built by calculating the index of parameters, the index of parametric profile and the index of good compressibility, in order to successfully predict the compressibility of the PNS extract powder and relevant formulations containing PNS extract powder and conventional pharmaceutical excipients. The results demonstrated that the proposed method could not only provide new insights into the development and process control of traditional Chinese medicine solid dosage forms. Copyright© by the Chinese Pharmaceutical Association.

  17. Method of producing high purity zirconia powder from zircon powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funahashi, T.; Uchimura, R.; Oguchi, Y.

    A method is described of producing a zirconia powder from zirconia containing SiO/sub 2/, comprising the steps of: preparing a raw material mixture comprising the zircon powder containing the SiO/sub 2/ and a powdery carbon-containing material such that the mole ratio of C, which is contained in the carbon-containing material and does not gasify at temperatures below 100/sup 0/C. in a nonoxidizing atmosphere, to SiO/sub 2/ contained in the zircon powder is in the range from 0.4 to 2.0; and subjecting the raw material mixture to a desiliconizing heat treatment in a nonoxidizing atmosphere of which the presence is notmore » higher than 0.6 atm, the desiliconizing heat treatment being a combination of a first-stage heat treatment which is performed at a temperature in the range from 1200/sup 0/ to 1550/sup 0/C. for separating silica from the zircon powder and a second-stage heat treatment which is performed at a higher temperature in the range from above 1550/sup 0/C. to 2000/sup 0/C. for completely converting silica in the mixture under heat treatment into gaseous SiO and dissipating the gaseous SiO, wherein the raw material mixture is subjected to the desiliconizing heat treatment in the form of at least one lump whose bulk density is in the range from 0.7 to 2.0.« less

  18. Thermoelectric Properties of Pulsed Electric Current Sintered Samples of AgPb m SbSe17 ( m = 16 or 17)

    NASA Astrophysics Data System (ADS)

    Wu, Chun-I.; Todorov, Ilyia; Kanatzidis, Mercouri G.; Timm, Edward; Case, Eldon D.; Schock, Harold; Hogan, Timothy P.

    2012-06-01

    Lead chalcogenide materials have drawn attention in recent years because of their outstanding thermoelectric properties. Bulk n-type materials of AgPb m SbTe2+ m have been reported to exhibit high figure of merit, ZT, as high as 1.7 at 700 K. Recent reports have shown p-type lead selenide-based compounds with comparable ZT. The analogous material AgPb m SbSe17 shares a similar cubic rock-salt structure with PbTe-based compounds; however, it exhibits a higher melting point, and selenium is more abundant than tellurium. Using solid solution chemistry, we have fabricated cast AgPb15SbSe17 samples that show a peak power factor of approximately 17 μW/cm K2 at 450 K. Increasing the strength of such materials is commonly achieved through powder processing, which also helps to homogenize the source materials. Pulsed electric current sintering (PECS) is a hot-pressing technique that utilizes electric current through the die and sample for direct Joule heating during pressing. The mechanisms present during PECS processing have captured significant research interest and have led to some notable improvements in sample properties compared with other densification techniques. We report the thermoelectric properties of PECS samples of AgPb m SbSe17 along with sample fabrication and processing details.

  19. Production of crispy bread snacks containing chicken meat and chicken meat powder.

    PubMed

    Cakmak, Hulya; Altinel, Burak; Kumcuoglu, Seher; Kisla, Duygu; Tavman, Sebnem

    2016-01-01

    Chicken meat in two different forms (chicken meat and chicken meat powder) were added into white flour and whole wheat blend baguette bread formulations for protein enrichment and finally developing new and healthy snacks. The chicken meat and powder levels were 10% for white flour baguette, and 15% for whole wheat blend. The dried baguette samples were packaged under 100% N2, and physical, chemical, microbiological and sensorial properties were evaluated during 3 months of storage. Protein content of chicken meat powder added samples were found statistically higher than chicken meat added samples. Hardness of the snacks was significantly affected from type of chicken meat, such as values were higher for chicken meat added samples than chicken meat powder added samples. Lipid oxidation of the snacks was determined by TBA analysis, and TBA value for whole wheat mixture snack with 15% of chicken meat was the highest among all during storage. The highest overall acceptance score was obtained from white flour snack with 10% chicken meat. There was no coliform bacteria detected during storage and the results of yeast-mold count and aerobic plate count of snacks remained between the quantitative ranges.

  20. Investigation of metal ions sorption of brown peat moss powder

    NASA Astrophysics Data System (ADS)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  1. Al2O3/ZrO2/Y3Al5O12 Composites: A High-Temperature Mechanical Characterization

    PubMed Central

    Palmero, Paola; Pulci, Giovanni; Marra, Francesco; Valente, Teodoro; Montanaro, Laura

    2015-01-01

    An Al2O3/5 vol%·ZrO2/5 vol%·Y3Al5O12 (YAG) tri-phase composite was manufactured by surface modification of an alumina powder with inorganic precursors of the second phases. The bulk materials were produced by die-pressing and pressureless sintering at 1500 °C, obtaining fully dense, homogenous samples, with ultra-fine ZrO2 and YAG grains dispersed in a sub-micronic alumina matrix. The high temperature mechanical properties were investigated by four-point bending tests up to 1500 °C, and the grain size stability was assessed by observing the microstructural evolution of the samples heat treated up to 1700 °C. Dynamic indentation measures were performed on as-sintered and heat-treated Al2O3/ZrO2/YAG samples in order to evaluate the micro-hardness and elastic modulus as a function of re-heating temperature. The high temperature bending tests highlighted a transition from brittle to plastic behavior comprised between 1350 and 1400 °C and a considerable flexural strength reduction at temperatures higher than 1400 °C; moreover, the microstructural investigations carried out on the re-heated samples showed a very limited grain growth up to 1650 °C. PMID:28787961

  2. Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development.

    PubMed

    Landi, Elena; Tampieri, Anna; Celotti, Giancarlo; Langenati, Ratih; Sandri, Monica; Sprio, Simone

    2005-06-01

    The effectiveness of synthetic body fluids (SBF) as biomimetic sources to synthesize carbonated hydroxyapatite (CHA) powder similar to the biological inorganic phase, in terms of composition and microstructure, was investigated. CHA apatite powders were prepared following two widely experimented routes: (1) calcium nitrate tetrahydrate and diammonium hydrogen phosphate and (2) calcium hydroxide and ortophosphoric acid, but using SBF as synthesis medium instead of pure water. The characteristics of the as-prepared powders were compared, also with the features of apatite powders synthesized via pure water-based classical methods. The powder thermal resistance and behaviour during densification were studied together with the mechanical properties of the dense samples. The sponge impregnation process was used to prepare porous samples having morphological and mechanical characteristics suitable for bone substitution. Using this novel synthesis was it possible to prepare nanosized (approximately equal to 20 nm), pure, carbonate apatite powder containing Mg, Na, K ions, with morphological and compositional features mimicking natural apatite and with improved thermal properties. After sintering at 1250 degrees C the carbonate-free apatite porous samples showed a surprising, high compressive strength together with a biomimetic morphology.

  3. Microstructure study of direct laser fabricated Ti alloys using powder and wire

    NASA Astrophysics Data System (ADS)

    Wang, Fude; Mei, J.; Wu, Xinhua

    2006-11-01

    A compositionally graded material has been fabricated using direct laser fabrication (DFL). Two types of feedstock were fed simultaneously into the laser focal point, a burn resistant (BurTi) alloy Ti-25V-15Cr-2Al-0.2C powder and a Ti-6Al-4V wire. The local composition of the alloy was changed by altering the ratio of powder to wire by varying the feed rate of the powder whilst maintaining a fixed feed rate of wire-feed. For the range of compositions between about 20% and 100% BurTi only the beta phase was observed and the composition and lattice parameter varied monotonically. The grain size was found to be much finer in these functionally graded samples than in laser fabricated Ti64. Some samples were made using the wire-feed alone, where it was found that the microstructure is different from that found when using powder feed alone. The results are discussed in terms of the power requirements for laser fabrication of powder and wire samples.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane

    The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs andmore » investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but TEM, SANS and APT show that attritor milling for 20 to 40 h sufficiently mixes the Y. TEM, SANS and APT showed that subsequent powder annealing treatments result in the precipitation of a high density of NFs. All the annealed powder variants and HIP consolidated alloys had a bimodal distribution of grain sizes; however, APT and TEM show the presence of NFs in both large and small grains. Alloys extruded at 850°C contain a unimodal distribution of fine grains. The initial milling procedures in this study added a significant quantity of O as well as contaminant N to the powders. An improved milling procedure effectively eliminated the contamination resulting in lower O content that was insufficient to produce Y-Ti-O NFs in the size range below 3 nm. TEM showed that the low O resulted in fewer and larger oxide phases that are more highly enriched in Y, resulting in low Vicker's hardness values 250 kg/mm^2 compared to 443 kg/mm^2 in an alloy consolidated from the preliminary powders with higher O content. In order to overcome the problem of O deficiency, FeO additions during 40 h attritor milling were made to increase the O content to a nominal value of 0.135%. The annealed powder and corresponding 1150°C HIP and 850°C extrusion consolidated alloy showed a very uniform distribution of fine scale NFs. The HIP consolidated alloy had promising high temperature creep strength, but low toughness and a high ductile to brittle transition temperature (DBTT). An extruded and cross-rolled alloy processed at 850ºC, however, exhibited a lower DBTT. Also investigated were the effects of Ti and Y content on the NFs in alloys produced from conventionally milled powders that varied Y2O3 from 0.2 to 0.5 wt.% while maintaining Ti/Y atom ratios of 1.6, 2.4, and 3.1. SANS showed the volume fraction and number density of the NFs increases with Y and to a lesser extent Ti. Notably, the NF size and composition are relatively independent of the alloy Y and Ti content, except at the lowest Y2O3 concentration of 0.2 wt.%. An APT characterization of MA957 joined by friction stir welding (FSW) showed that this solid sate joining procedure had only a modest effect on the NF number density (N) and average diameter () compared to an as extruded sample. FSW appears to rearrange the NFs, which become highly aligned with sub-boundary and dislocation structures to an extent that are not observed in the as extruded case. The aligned NF structures are less apparent, but seem to persist after post weld annealing at 1150ºC for 3 h following which reduces N, consistent with a significant reduction in hardness. Lastly, several NFA materials, including MA957 and various 14YWT alloys, have been included in irradiation experiments performed at the Advanced Test Reactor, the JOYO sodium cooled fast reactor, the High Flux Isotope Reactor, and the SINQ spallation neut« less

  5. Bulk synthesis of polypyrrole nanofibers by a seeding approach.

    PubMed

    Zhang, Xinyu; Manohar, Sanjeev K

    2004-10-13

    The morphology of doped polypyrrole.Cl powder changes dramatically from granular to nanofibrillar when a very small amount (1-4 mg) of V2O5 nanofibers are added to a chemical oxidative polymerization of pyrrole in aq 1.0 M HCl using (NH4)2S2O8 as the oxidant. Unlike the polyaniline system, a key synthetic requirement in the polypyrrole system is for the seed template to be "active", i.e., to be capable of independently oxidizing the pyrrole monomer. Thin, strongly adherent films can be obtained on inert surfaces such as glass, plastics, etc., directly from the polymerization mixture without any bulk product isolation steps, significantly simplifying the processing of these nanofibers.

  6. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOEpatents

    Luo, Ping

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 .mu.m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogenous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided.

  7. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOEpatents

    Luo, P.

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 {micro}m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogeneous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided. 26 figs.

  8. A review on preparation of silver nano-particles

    NASA Astrophysics Data System (ADS)

    Haider, Adawiya J.; Haider, Mohammad J.; Mehde, Mohammad S.

    2018-05-01

    The term "nano particle" (NP) refers to particle diameter in nanometers in size. Nanoparticles contain a small number of constituent atoms or molecules that differ from the properties inherent in their bulk counterparts, found in various forms such as spherical, triangular, cubic, pentagonal, rod-shaped, shells, elliptical and so on. In this chapter, it has been presented the theoretical concepts of the preparation of AgNPS as powders and collide nanoparticles, techniques of preparation with their characterization (morphology, sign charge and potential value, particle distribution ….etc.). Also, included unique properties of AgNPS that are different from those of their bulk materials like: High surface area to volume ratio effects Quantization of electronic and vibration properties.

  9. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. Wemore » demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.« less

  10. Predicting the shock compression response of heterogeneous powder mixtures

    NASA Astrophysics Data System (ADS)

    Fredenburg, D. A.; Thadhani, N. N.

    2013-06-01

    A model framework for predicting the dynamic shock-compression response of heterogeneous powder mixtures using readily obtained measurements from quasi-static tests is presented. Low-strain-rate compression data are first analyzed to determine the region of the bulk response over which particle rearrangement does not contribute to compaction. This region is then fit to determine the densification modulus of the mixture, σD, an newly defined parameter describing the resistance of the mixture to yielding. The measured densification modulus, reflective of the diverse yielding phenomena that occur at the meso-scale, is implemented into a rate-independent formulation of the P-α model, which is combined with an isobaric equation of state to predict the low and high stress dynamic compression response of heterogeneous powder mixtures. The framework is applied to two metal + metal-oxide (thermite) powder mixtures, and good agreement between the model and experiment is obtained for all mixtures at stresses near and above those required to reach full density. At lower stresses, rate-dependencies of the constituents, and specifically those of the matrix constituent, determine the ability of the model to predict the measured response in the incomplete compaction regime.

  11. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen

    2015-05-22

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of themore » polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.« less

  12. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W.; Kersten, Gideon F. A.; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn’s disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab. PMID:27706175

  13. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    NASA Astrophysics Data System (ADS)

    López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.

    2011-12-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  14. Recycling of Aluminum Alloy with Dimox and Rheocasting Functionalize High Performance Structural Foam Composite

    NASA Astrophysics Data System (ADS)

    Rabeeh, Bakr Mohamed

    Great efforts aiming towards the synthesis and the development of structural composite materials. Direct metal oxidation, DIMOX introduced for hybrid composite processing. However, oxidation temperatures around 1100°C lead to the formation of porous ceramic materials. To utilize this porosity intentionally for foam production, a new approach based on synergetic effect of alloying elements, DIMOX and semisolid (rheocsting) processing is developed. A semisolid reaction, rheocasting is introduced to control porosity shape and size. Aluminum alloy 6xxx (automobile scrap pistons) is recycled for this objective and DIMOX at 1100°C for 30 min, then rheocasting, at 750°C for 30 minutes. The effect of α-Fe powder, Mg powder, and Boric acid powder established for the objective of a hybrid structural metal matrix composite in bulk foam matrix. The kinetic of formation of hybrid metal matrix foam composite is introduced. Microstructural and mechanical characterization established for high performance Aluminum foam hybrid composite materials.

  15. Explosive Compations of Intermetallic-Forming Powder Mixtures for Fabricating Structural Energetic Materials

    NASA Astrophysics Data System (ADS)

    Du, S. W.; Aydelotte, B.; Fondse, D.; Wei, C.-T.; Jiang, F.; Herbold, E.; Vecchio, K.; Meyers, M. A.; Thadhani, N. N.

    2009-12-01

    A double-tube implosion geometry is used to explosively shock consolidate intermetallic-forming Ni-Al, Ta-Al, Nb-Al, Mo-Al and W-Al powder mixtures for fabricating bulk structural energetic materials, with mechanical strength and ability to undergo impact-initiated exothermic reactions. The compacts are characterized based on uniformity of micro structure and degree of densification. Mechanical properties of the compacts are characterized over the strain-rate range of 10-3 to 104 s-1. The impact reactivity is determined using rod-on-anvil experiments, in which disk-shaped compacts mounted on a copper projectile, are impacted against a steel anvil in using a 7.62 mm gas gun. The impact reactivity of the various explosively-consolidated reactive powder mixture compacts is correlated with overall kinetic energy and impact stress to determine their influence on threshold for reaction initiation. The characteristics of the various compacts, their mechanical properties and impact-initiated chemical reactivity will be described in this paper.

  16. 7 CFR 201.40 - Bulk.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Sampling in the Administration of the Act § 201.40 Bulk. Bulk seeds or screenings shall be sampled by inserting a long probe or thrusting the hand into the bulk as circumstances require in at least seven... 7 Agriculture 3 2011-01-01 2011-01-01 false Bulk. 201.40 Section 201.40 Agriculture Regulations of...

  17. 7 CFR 201.40 - Bulk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Sampling in the Administration of the Act § 201.40 Bulk. Bulk seeds or screenings shall be sampled by inserting a long probe or thrusting the hand into the bulk as circumstances require in at least seven... 7 Agriculture 3 2010-01-01 2010-01-01 false Bulk. 201.40 Section 201.40 Agriculture Regulations of...

  18. Nanoparticles of CdCl2 with closed cage structures

    NASA Astrophysics Data System (ADS)

    Popovitz-Biro, R.; Twersky, A.; Hacohen, Y. Rosenfeld; Tenne, R.

    2000-11-01

    Nanoparticles of various layered compounds having a closed cage or nanotubular structure, designated also inorganic fullerene-like (IF) materials, have been reported in the past. In this work IF-CdCl2 nanoparticles were synthesized by electron beam irradiation of the source powder leading to its recrystallization into closed nanoparticles with a nonhollow core. This process created polyhedral nanoparticles with hexagonal or elongated rectangular characters. The analysis also shows that, while the source (dried) powder is orthorhombic cadmium chloride monohydrate, the crystallized IF cage consists of the anhydrous 3R polytype which is not stable as bulk material in ambient atmosphere. Consistent with previous observations, this study shows that the seamless structure of the IF materials can stabilize phases, which are otherwise unstable in ambient conditions.

  19. Transport Powder and Liquid Samples by Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Louyeh, Sahar

    2009-01-01

    Sample transport is an important requirement for In-situ analysis of samples in NASA planetary exploration missions. Tests have shown that powders or liquid drops on a surface can be transported by surface acoustic waves (SAW) that are generated on the surface using interdigital transducers. The phenomena were investigated experimentally and to generate SAWs interdigital electrodes were deposited on wafers of 128 deg rotated Y-cut LiNbO?. Transporting capability of the SAW device was tested using particles of various sizes and drops of various viscosities liquids. Because of different interaction mechanisms with the SAWs, the powders and the liquid drops were observed to move in opposite directions. In the preliminary tests, a speed of 180 mm/s was achieved for powder transportation. The detailed experimental setup and results are presented in this paper. The transporting mechanism can potentially be applied to miniaturize sample analysis system or " lab-on-chip" devices.

  20. Electromagnetic properties of photodefinable barium ferrite polymer composites

    NASA Astrophysics Data System (ADS)

    Sholiyi, Olusegun; Lee, Jaejin; Williams, John D.

    2014-07-01

    This article reports the magnetic and microwave properties of a Barium ferrite powder suspended in a polymer matrix. The sizes for Barium hexaferrite powder are 3-6 μm for coarse and 0.8-1.0 μm for the fine powder. Ratios 1:1 and 3:1 (by mass) of ferrite to SU8 samples were characterized and analyzed for predicting the necessary combinations of these powders with SU8 2000 Negative photoresist. The magnetization properties of these materials were equally determined and were analyzed using Vibrating Sample Magnetometer (VSM). The Thru, Reflect, Line (TRL) calibration technique was employed in determining complex relative permittivity and permeability of the powders and composites with SU8 between 26.5 and 40 GHz.

Top