Yan, Junqing; Wu, Guangjun; Guan, Naijia; Li, Landong; Li, Zhuoxin; Cao, Xingzhong
2013-07-14
The sole effect of surface/bulk defects of TiO2 samples on their photocatalytic activity was investigated. Nano-sized anatase and rutile TiO2 were prepared by hydrothermal method and their surface/bulk defects were adjusted simply by calcination at different temperatures, i.e. 400-700 °C. High temperature calcinations induced the growth of crystalline sizes and a decrease in the surface areas, while the crystalline phase and the exposed facets were kept unchanged during calcination, as indicated by the characterization results from XRD, Raman, nitrogen adsorption-desorption, TEM and UV-Vis spectra. The existence of surface/bulk defects in calcined TiO2 samples was confirmed by photoluminescence and XPS spectra, and the surface/bulk defect ratio was quantitatively analyzed according to positron annihilation results. The photocatalytic activity of calcined TiO2 samples was evaluated in the photocatalytic reforming of methanol and the photocatalytic oxidation of α-phenethyl alcohol. Based on the characterization and catalytic results, a direct correlation between the surface specific photocatalytic activity and the surface/bulk defect density ratio could be drawn for both anatase TiO2 and rutile TiO2. The surface defects of TiO2, i.e. oxygen vacancy clusters, could promote the separation of electron-hole pairs under irradiation, and therefore, enhance the activity during photocatalytic reaction.
Offenthaler, I; Jakobi, G; Kaiser, A; Kirchner, M; Kräuchi, N; Niedermoser, B; Schramm, K-W; Sedivy, I; Staudinger, M; Thanner, G; Weiss, P; Moche, W
2009-12-01
High- and low-volume active air samplers as well as bulk deposition samplers were developed to sample atmospheric SOCs under the adverse conditions of a mountain environment. Active sampling employed separate filters for different European source regions. Filters were switched depending on daily trajectory forecasts, whose accuracy was evaluated post hoc. The sampling continued on three alpine summits over five periods of four months. The prevailing trajectories varied stronger between sampling periods than between stations. The sampling equipment (active and bulk deposition) proved dependable for operation in a mountain environment, with idle times being mainly due to non-routine manipulations and connectivity.
NASA Astrophysics Data System (ADS)
Obert, J. Christina; Scholz, Denis; Felis, Thomas; Brocas, William M.; Jochum, Klaus P.; Andreae, Meinrat O.
2016-04-01
We compared the suitability of two skeletal materials of the Atlantic brain coral Diploria strigosa for 230Th/U-dating: the commonly used bulk material comprising all skeletal elements and the denser theca wall material. Eight fossil corals of presumably Last Interglacial age from Bonaire, southern Caribbean Sea, were investigated, and several sub-samples were dated from each coral. For four corals, both the ages and the activity ratios of the bulk material and theca wall agree within uncertainty. Three corals show significantly older ages for their bulk material than for their theca wall material as well as substantially elevated 232Th content and (230Th/238U) ratios. The bulk material samples of another coral show younger ages and lower (230Th/238U) ratios than the corresponding theca wall samples. This coral also contains a considerable amount of 232Th. The application of the available open-system models developed to account for post-depositional diagenetic effects in corals shows that none of the models can successfully be applied to the Bonaire corals. The most likely explanation for this observation is that the assumptions of the models are not fulfilled by our data set. Comparison of the theca wall and bulk material data enables us to obtain information about the open-system processes that affected the corals. The corals showing apparently older ages for their bulk material were probably affected by contamination with a secondary (detrital) phase. The most likely source of the detrital material is carbonate sand. The higher (230Th/232Th) ratio of this material implies that detrital contamination would have a much stronger impact on the ages than a contaminant with a bulk Earth (230Th/232Th) ratio and that the threshold for the commonly applied 232Th reliability criterion would be much lower than the generally used value of 1 ng g-1. The coral showing apparently younger ages for its bulk material was probably influenced by more than one diagenetic process. A potential scenario is a combination of detrital contamination and U addition by secondary pore infillings. Our results show that the dense theca wall material of D. strigosa is generally less affected by post-depositional open-system behaviour and better suited for 230Th/U-dating than the bulk material. This is also obvious from the fact that all ages of theca wall material reflect a Last Interglacial origin (∼125 ka), whereas the bulk material samples are either substantially older or younger. However, for some corals, the 230Th/U-ages and activity ratios of the bulk material and the theca wall samples are similar. This shows that strictly reliable 230Th/U-ages can also be obtained from bulk material samples of exceptionally well-preserved corals. However, the bulk material samples more frequently show elevated activity ratios and ages than the corresponding theca wall samples. Our findings should be generally applicable to brain corals (Mussidae) that are found in tropical oceans worldwide and may enable reliable 230Th/U-dating of fossil corals with similar skeletal architecture, even if their bulk skeleton is altered by diagenesis. The 230Th/U-ages we consider reliable (120-130 ka), along with a recently published age of 118 ka, provide the first comprehensive dating of the elevated lower reef terrace at Bonaire (118-130 ka), which is in agreement in timing and duration with other Last Interglacial records.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sexton, L.
2012-06-06
Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity tomore » collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA).« less
Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid
2012-01-01
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity. PMID:22389373
Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid; Höfle, Manfred G
2012-05-01
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.
Natural gas storage with activated carbon from a bituminous coal
Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.
1996-01-01
Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.
Comparison of Grab, Air, and Surface Results for Radiation Site Characterization
NASA Astrophysics Data System (ADS)
Glassford, Eric Keith
2011-12-01
The use of proper sampling methods and sample types for evaluating sites believed to be contaminated with radioactive materials is necessary to avoid misrepresenting conditions at the site. This study was designed to investigate if the site characterization, based upon uranium contamination measured in different types of samples, is dependent upon the mass of the sample collected. A bulk sample of potentially contaminated interior dirt was collected from an abandoned metal processing mill that rolled uranium between 1948 and 1956. The original mill dates from 1910 and has a dirt floor. The bulk sample was a mixture of dirt, black and yellow particles of metal dust, and small fragments of natural debris. Small mass (approximately 0.75 grams (g)) and large mass (approximately 70g) grab samples were prepared from the bulk sample material to simulate collection of a "grab" type sample. Air sampling was performed by re-suspending a portion of the bulk sample material using a vibration table to simulate airborne contamination that might be present during site remediation. Additionally, samples of removable contaminated surface dust were collected on 47 mm diameter filter paper by wiping the surfaces of the exposure chamber used to resuspend the bulk material. Certified reference materials, one containing a precisely known quantity of U 3O8 and one containing a known quantity of natural uranium, were utilized to calibrate the gamma spectrometry measurement system. Non-destructive gamma spectrometry measurements were used to determine the content of uranium-235 (235U) at 185 keV and 143 keV, thorium-234 (234Th) at 63 keV, and protactinium-234m (234mPa) at 1001 keV in each sample. Measurement of natural uranium in small, 1 g samples is usually accomplished by radiochemical analysis in order to measure alpha particles emitted by 238U, 235U, and 234U. However, uranium in larger bulk samples can also be measured non-destructively using gamma spectrometry to detect the low energy photons from 234Th and 234mPa, the short-lived decay products of 238U, and 235U. Two sided t-tests and coefficient of variation were used to compare sampling types. The large grab samples had the lowest calculated coefficient of variation results for activity and atom percentage. The wipe samples had the highest calculated coefficient of variation of mean specific activity (dis/sec/g) for all three energies. The air filter samples had the highest coefficient of variation calculation for mean atom percentage, for both uranium isotopes examined. The data indicated that the large mass sample was the most effective at characterizing the rolling mill radioactive site conditions, since this would indicate which samples had the smallest variations compared to the mean. Additionally, measurement results of natural uranium in the samples indicate that the distribution of radioactive contamination at the sampling location is most likely non-homogeneous and that the size of the sample collected and analyzed must be sufficiently large to insure that the analytical results are truly representative of the activity present.
Anicić, M; Tasić, M; Frontasyeva, M V; Tomasević, M; Rajsić, S; Mijić, Z; Popović, A
2009-02-01
Active biomonitoring with wet and dry moss bags was used to examine trace element atmospheric deposition in the urban area of Belgrade. The element accumulation capability of Sphagnum girgensohnii Russow was tested in relation to atmospheric bulk deposition. Moss bags were mounted for five 3-month periods (July 2005-October 2006) at three representative urban sites. For the same period monthly bulk atmospheric deposition samples were collected. The concentrations of Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb were determined by instrumental neutron activation analyses and atomic absorption spectrometry. Significant accumulation of most elements occurred in the exposed moss bags compared with the initial moss content. High correlations between the elements in moss and bulk deposits were found for V, Cu, As, and Ni. The enrichment factors of the elements for both types of monitor followed the same pattern at the corresponding sites.
Schaffner, Donald W; Jensen, Dane; Gerba, Charles P; Shumaker, David; Arbogast, James W
2018-02-01
Concern has been raised regarding the public health risks from refillable bulk-soap dispensers because they provide an environment for potentially pathogenic bacteria to grow. This study surveyed the microbial quality of open refillable bulk soap in four different food establishment types in three states. Two hundred ninety-six samples of bulk soap were collected from food service establishments in Arizona, New Jersey, and Ohio. Samples were tested for total heterotrophic viable bacteria, Pseudomonas, coliforms and Escherichia coli, and Salmonella. Bacteria were screened for antibiotic resistance. The pH, solids content, and water activity of all soap samples were measured. Samples were assayed for the presence of the common antibacterial agents triclosan and parachlorometaxylenol. More than 85% of the soap samples tested contained no detectable microorganisms, but when a sample contained any detectable microorganisms, it was most likely contaminated at a very high level (∼7 log CFU/mL). Microorganisms detected in contaminated soap included Klebsiella oxytoca, Serratia liquefaciens, Shigella sonnei, Enterobacter gergoviae, Serratia odorifera, and Enterobacter cloacae. Twenty-three samples contained antibiotic-resistant organisms, some of which were resistant to two or more antibiotics. Every sample containing less than 4% solids had some detectable level of bacteria, whereas no samples with greater than 14% solids had detectable bacteria. This finding suggests the use of dilution and/or low-cost formulations as a cause of bacterial growth. There was a statistically significant difference ( P = 0.0035) between the fraction of bacteria-positive samples with no detected antimicrobial agent (17%) and those containing an antimicrobial agent (7%). Fast food operations and grocery stores were more likely to have detectable bacteria in bulk-soap samples compared with convenience stores ( P < 0.05). Our findings underscore the risk to public health from use of refillable bulk-soap dispensers in food service establishments.
Bulk, rare earth, and other trace elements in Apollo 14 and 15 and Luna 16 samples.
NASA Technical Reports Server (NTRS)
Laul, J. C.; Wakita, H.; Showalter, D. L.; Boynton, W. V.; Schmitt, R. A.
1972-01-01
Measurement of 24 and 34 bulk, minor, and trace elements in lunar specimens by instrumental and radiochemical neutron activation analysis shows greater Al2O3, Na2O, and K2O abundances and higher TiO2, FeO, MnO and Cr2O3 depletions in Apollo 14 soil samples as compared to Apollo 11 samples and to most of Apollo 12 samples. The uniform abundances in 14230 core tube soils and three other Apollo 14 soils indicate that the regolith is uniform to at least 22 cm depth and within about 200 m from the lunar module.
Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard
Cooper, R.J.; Wadham, J.L.; Tranter, M.; Hodgkins, R.; Peters, N.E.
2002-01-01
Glacial bulk meltwaters and active-layer groundwaters were sampled from the proglacial zone of Finsterwalderbreen during a single melt season in 1999, in order to determine the geochemical processes that maintain high chemical weathering rates in the proglacial zone of this glacier. Results demonstrate that the principle means of solute acquisition is the weathering of highly reactive moraine and fluvial active-layer sediments by supra-permafrost groundwaters. Active-layer groundwater derives from the thaw of the proglacial snowpack, buried ice and glacial bulk meltwaters. Groundwater evolves by sulphide oxidation and carbonate dissolution. Evaporation- and freeze-concentration of groundwater in summer and winter, respectively produce Mg-Ca-sulphate salts on the proglacial surface. Re-dissolution of these salts in early summer produces groundwaters that are supersaturated with respect to calcite. There is a pronounced spatial pattern to the geochemical evolution of groundwater. Close to the main proglacial channel, active layer sediments are flushed diurnally by bulk meltwaters. Here, Mg-Ca-sulphate deposits become exhausted in the early season and geochemical evolution proceeds by a combination of sulphide oxidation and carbonate dissolution. At greater distances from the channel, the dissolution of Mg-Ca-sulphate salts is a major influence and dilution by the bulk meltwaters is relatively minor. The influence of sulphate salt dissolution decreases during the sampling season, as these salts are exhausted and waters become increasingly routed by subsurface flowpaths. ?? 2002 Elsevier Science B.V. All rights reserved.
Maronde, Carl P.; Killmeyer, Jr., Richard P.
1992-01-01
An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.
Maronde, Carl P.; Killmeyer JR., Richard P.
1992-03-03
An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.
1969-08-03
S69-40749 (July 1969) --- Dr. Grant Heikan, MSC and a Lunar Sample Preliminary Examination Team member, examines lunar material in a sieve from the bulk sample container which was opened in the Biopreparation Laboratory of the Lunar Receiving Laboratory. The samples were collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.
Modelling of discrete TDS-spectrum of hydrogen desorption
NASA Astrophysics Data System (ADS)
Rodchenkova, Natalia I.; Zaika, Yury V.
2015-12-01
High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.
Bass, David; van der Gast, Christopher; Thomson, Serena; Neuhauser, Sigrid; Hilton, Sally; Bending, Gary D.
2018-01-01
Microbial communities closely associated with the rhizosphere can have strong positive and negative impacts on plant health and growth. We used a group-specific amplicon approach to investigate local scale drivers in the diversity and distribution of plasmodiophorids in rhizosphere/root and bulk soil samples from oilseed rape (OSR) and wheat agri-systems. Plasmodiophorids are plant- and stramenopile-associated protists including well known plant pathogens as well as symptomless endobiotic species. We detected 28 plasmodiophorid lineages (OTUs), many of them novel, and showed that plasmodiophorid communities were highly dissimilar and significantly divergent between wheat and OSR rhizospheres and between rhizosphere and bulk soil samples. Bulk soil communities were not significantly different between OSR and wheat systems. Wheat and OSR rhizospheres selected for different plasmodiophorid lineages. An OTU corresponding to Spongospora nasturtii was positively selected in the OSR rhizosphere, as were two genetically distinct OTUs. Two novel lineages related to Sorosphaerula veronicae were significantly associated with wheat rhizosphere samples, indicating unknown plant-protist relationships. We show that group-targeted eDNA approaches to microbial symbiont-host ecology reveal significant novel diversity and enable inference of differential activity and potential interactions between sequence types, as well as their presence. PMID:29503632
NASA Astrophysics Data System (ADS)
Santosh, M.; Naik, S. Pavan Kumar; Koblischka, M. R.
2017-07-01
In the upcoming generation, bulk high temperature superconductors (HTS) will play a crucial and a promising role in numerous industrial applications ranging from Maglev trains to magnetic resonance imaging, etc. Especially, the bulk HTS as permanent magnets are suitable due to the fact that they can trap magnetic fields being several orders of magnitude higher than those of the best hard ferromagnets. The bulk HTS LREBa2Cu3O7-δ (LREBCO or LRE-123, LRE: Y, Gd, etc.,) materials could obtain very powerful compact superconducting super-magnets, which can be operated at the cheaper liquid nitrogen temperature or below due to higher critical temperatures (i.e., ∼90 K). As a result, the new advanced technology can be utilized in a more attractive manner for a variety of technological and medical applications which have the capacity to revolutionize the field. An understanding of the magnetic field dependence of the critical current density (J c(H)) is important to develop better adapted materials. To achieve this goal, a variety of Jc (H) behaviours of bulk LREBCO samples were modelled regarding thermally activated flux motion. In essence, the Jc (H) curves follows a certain criterion where an exponential model is applied. However, to fit the complete Jc (H) curve of the LRE-123 samples an unique model is necessary to explain the behavior at low and high fields. The modelling of the various superconducting materials could be understood in terms of the pinning mechanisms.
Laboratory Evaluation of Remediation Alternatives for U.S. Coast Guard Small Arms Firing Ranges
1999-11-01
S) is an immobilization process that involves the mixing of a contaminated soil with a binder material to enhance the physical and chemical...samples were shipped to WES for laboratory analysis. Phase III: Homogenization of the Bulk Samples. Each of the bulk samples was separately mixed to...produce uniform samples for testing. These mixed bulk soil samples were analyzed for metal content. Phase IV: Characterization of the Bulk Soils
Priming effect in topsoil and subsoil induced by earthworm burrows
NASA Astrophysics Data System (ADS)
Thu, Duyen Hoang Thi
2017-04-01
Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently important hotspots of microbial mediated carbon and C turnover through their burrowing activity. However, it is still unknown to which extend earthworms affect priming effect in top- and subsoil horizons. More labile C inputs in earthworm burrows were hypothesized to trigger higher priming of soil organic matter (SOM) decomposition compared to rhizosphere and bulk soil. Moreover, this effect was expected to be more pronounced in subsoil due to its greater C and nutrient limitation. To test these hypotheses, biopores and bulk soil were sampled from topsoil (0-30 cm) and two subsoil depths (45-75 and 75-105 cm). Additionally, rhizosphere samples were taken from the topsoil. Total organic C (Corg), total N (TN), total P (TP) and enzyme activities involved in C-, N-, and P-cycling (cellobiohydrolase, β-glucosidase, xylanase, chitinase, leucine aminopeptidase and phosphatase) were measured. Priming effects were calculated as the difference in SOM-derived CO2 from soil with or without 14C-labelled glucose addition. Enzyme activities in biopores were positively correlated with Corg, TN and TP, but in bulk soil this correlation was negative. The more frequent fresh and labile C inputs to biopores caused 4 to 20 time higher absolute priming of SOM turnover due to enzyme activities that were one order of magnitude higher than in bulk soil. In subsoil biopores, reduced labile C inputs and lower N availability stimulated priming twofold greater than in topsoil. In contrast, a positive priming effect in bulk soil was only detected at 75-105 cm depth. We conclude that earthworm burrows provide not only the linkage between top- and subsoil for C and nutrients, but strongly increase microbial activities and accelerate SOM turnover in subsoil, contributing to nutrient mobilization for roots and CO2 emission increase as a greenhouse gas. Additionally, the mechanisms of native SOM decomposition are distinct between topsoil and subsoil, which relies on the fresh C input and nutrient availability. Keywords: Priming effect; Earthworms; Organic matter decomposition; Biopores; Subsoil; Microbial hotspots.
Application of stable‐isotope labelling techniques for the detection of active diazotrophs
Angel, Roey; Panhölzl, Christopher; Gabriel, Raphael; Herbold, Craig; Wanek, Wolfgang; Richter, Andreas; Eichorst, Stephanie A.
2017-01-01
Summary Investigating active participants in the fixation of dinitrogen gas is vital as N is often a limiting factor for primary production. Biological nitrogen fixation is performed by a diverse guild of bacteria and archaea (diazotrophs), which can be free‐living or symbionts. Free‐living diazotrophs are widely distributed in the environment, yet our knowledge about their identity and ecophysiology is still limited. A major challenge in investigating this guild is inferring activity from genetic data as this process is highly regulated. To address this challenge, we evaluated and improved several 15N‐based methods for detecting N2 fixation activity (with a focus on soil samples) and studying active diazotrophs. We compared the acetylene reduction assay and the 15N2 tracer method and demonstrated that the latter is more sensitive in samples with low activity. Additionally, tracing 15N into microbial RNA provides much higher sensitivity compared to bulk soil analysis. Active soil diazotrophs were identified with a 15N‐RNA‐SIP approach optimized for environmental samples and benchmarked to 15N‐DNA‐SIP. Lastly, we investigated the feasibility of using SIP‐Raman microspectroscopy for detecting 15N‐labelled cells. Taken together, these tools allow identifying and investigating active free‐living diazotrophs in a highly sensitive manner in diverse environments, from bulk to the single‐cell level. PMID:29027346
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad
Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the usemore » of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.« less
NASA Technical Reports Server (NTRS)
Lindstrom, David J.; Lindstrom, Richard M.
1989-01-01
Prompt gamma activation analysis (PGAA) is a well-developed analytical technique. The technique involves irradiation of samples in an external neutron beam from a nuclear reactor, with simultaneous counting of gamma rays produced in the sample by neutron capture. Capture of neutrons leads to excited nuclei which decay immediately with the emission of energetic gamma rays to the ground state. PGAA has several advantages over other techniques for the analysis of cometary materials: (1) It is nondestructive; (2) It can be used to determine abundances of a wide variety of elements, including most major and minor elements (Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni), volatiles (H, C, N, F, Cl, S), and some trace elements (those with high neutron capture cross sections, including B, Cd, Nd, Sm, and Gd); and (3) It is a true bulk analysis technique. Recent developments should improve the technique's sensitivity and accuracy considerably.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Sampling in the Administration of the Act § 201.40 Bulk. Bulk seeds or screenings shall be sampled by inserting a long probe or thrusting the hand into the bulk as circumstances require in at least seven... 7 Agriculture 3 2011-01-01 2011-01-01 false Bulk. 201.40 Section 201.40 Agriculture Regulations of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Sampling in the Administration of the Act § 201.40 Bulk. Bulk seeds or screenings shall be sampled by inserting a long probe or thrusting the hand into the bulk as circumstances require in at least seven... 7 Agriculture 3 2010-01-01 2010-01-01 false Bulk. 201.40 Section 201.40 Agriculture Regulations of...
Jimenez-Alvarez, D; Giuffrida, F; Golay, P A; Cotting, C; Lardeau, A; Keely, Brendan J
2008-08-27
The antioxidant activity of oregano, parsley, olive mill wastewaters (OMWW), Trolox, and ethylenediaminetetraacetic acid (EDTA) was evaluated in bulk oils and oil-in-water (o/w) emulsions enriched with 5% tuna oil by monitoring the formation of hydroperoxides, hexanal, and t-t-2,4-heptadienal in samples stored at 37 degrees C for 14 days. In bulk oil, the order of antioxidant activity was, in decreasing order (p < 0.05), OMWW > oregano > parsley > EDTA > Trolox. The antioxidant activity in o/w emulsion followed the same order except that EDTA was as efficient an antioxidant as OMWW. In addition, the total phenolic content, the radical scavenging properties, the reducing capacity, and the iron chelating activity of OMWW, parsley, and oregano extracts were determined by the Folin-Ciocalteau, oxygen radical absorbance capacity, ferric reducing antioxidant power, and iron(II) chelating activity assays, respectively. The antioxidant activity of OMWW, parsley, and oregano in food systems was related to their total phenolic content and radical scavenging capacity but not to their ability to chelate iron in vitro. OMWW was identified as a promising source of antioxidants to retard lipid oxidation in fish oil-enriched food products.
40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling bulk PCB remediation waste..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.265 Sampling bulk PCB remediation waste and porous surfaces...
Structural and transport properties of double perovskite Dy{sub 2}NiMnO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanda, Sadhan, E-mail: sadhan.physics@gmail.com; Saha, Sujoy; Dutta, Alo
2015-02-15
Highlights: • Sol–gel citrate method is used to prepare the double perovskite Dy{sub 2}NiMnO{sub 6}. • Structure and dielectric relaxation of the sample are studied for nano and bulk phases. • The relaxation mechanism of the sample is modeled by Cole–Cole equation. • With increasing sintering temperature conductivity increases. • Electronic structures and magnetic properties have been studied by DFT calculations. - Abstract: The double perovskite oxide Dy{sub 2}NiMnO{sub 6} (DNMO) is synthesized in nano and bulk phase by the sol–gel citrate method. The Rietveld refinement of X-ray diffraction pattern of the sample at room temperature shows the monoclinic P2{submore » 1}/n phase. Dielectric relaxation of the sample is investigated in the impedance and electric modulus formalisms in the frequency range from 50 Hz to 1 MHz and in the temperature range from 253 to 415 K. The Cole–Cole model is used to explain the relaxation mechanism in DNMO. The frequency-dependent maxima in the imaginary part of impedance are found to obey an Arrhenius law with activation energy of 0.346 and 0.344 eV for nano and bulk DNMO, respectively. A significant increase in conductivity of bulk DNMO has been observed than that of the nanoceramic. Electronic structures and magnetic properties of DNMO have been studied by performing first principles calculation based on density functional theory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todt, Michael A.; Isenberg, Allan E.; Nanayakkara, Sanjini U.
Semiconducting transition-metal dichalcogenide (TMD) nanoflake thin films are promising large-area electrodes for photo-electrochemical solar energy conversion applications. However, their energy conversion efficiencies are typically much lower than those of bulk electrodes. It is unclear to what extent this efficiency gap stems from differences among nanoflakes (e.g., area, thickness, and surface structural features). It is also unclear whether individual exfoliated nanoflakes can achieve energy conversion efficiencies similar to those of bulk crystals. Here, we use a single-nanoflake photo-electrochemical approach to show that there are both highly active and completely inactive nanoflakes within a film. For the exfoliated MoSe 2 samples studiedmore » herein, 7% of nanoflakes are highly active champions, whose photocurrent efficiency exceeds that of the bulk crystal. However, 66% of nanoflakes are inactive spectators, which are mostly responsible for the overall lower photocurrent efficiency compared to the bulk crystal. The photocurrent collection efficiency increases with nanoflake area and decreases more at perimeter edges than at interior step edges. These observations, which are hidden in ensemble-level measurements, reveal the underlying performance issues of exfoliated TMD electrodes for photo-electrochemical energy conversion applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyshev, Oleg B., E-mail: oleg.malyshev@stfc.ac.uk; Valizadeh, Reza; Hogan, Benjamin T.
2014-11-01
In this study, two identical 316LN stainless steel tubular samples, which had previously been polished and vacuum-fired and then used for the electron-stimulated desorption (ESD) experiments, were coated with Ti-Zr-Hf-V with different morphologies: columnar and dense. ESD measurement results after nonevaporable getter (NEG) activation to 150, 180, 250, and 350 °C indicated that the values for the ESD yields are significantly (2–20 times) lower than the data from our previous study with similar coatings on nonvacuum-fired samples. Based on these results, the lowest pressure and best long-term performance in particle accelerators will be achieved with a vacuum-fired vacuum chamber coated withmore » dense Ti-Zr-Hf-V coating activated at 180 °C. This is likely due to the following facts: after NEG activation, the hydrogen concentration inside the NEG was lower than in the bulk stainless steel substrate; the NEG coating created a barrier for gas diffusion from the sample bulk to vacuum; the dense NEG coating performed better as a barrier than the columnar NEG coating.« less
Jiang, Xiao-Tao; Guo, Feng; Zhang, Tong
2016-04-11
Bulking and foaming are two notorious problems in activated sludge wastewater treatment plants (WWTPs), which are mainly associated with the excessive growth of bulking and foaming bacteria (BFB). However, studies on affecting factors of BFB in full-scale WWTPs are still limited. In this study, data sets of high-throughput sequencing (HTS) of 16S V3-V4 amplicons of 58 monthly activated sludge samples from a municipal WWTP was re-analyzed to investigate the BFB dynamics and further to study the determinative factors. The population of BFB occupied 0.6~36% (averagely 8.5% ± 7.3%) of the total bacteria and showed seasonal variations with higher abundance in winter-spring than summer-autumn. Pair-wise correlation analysis and canonical correlation analysis (CCA) showed that Gordonia sp. was positively correlated with NO2-N and negatively correlated with NO3-N, and Nostocodia limicola II Tetraspharea sp. was negatively correlated with temperature and positively correlated with NH3-N in activated sludge. Bacteria species correlated with BFB could be clustered into two negatively related modules. Moreover, with intensive time series sampling, the dominant BFB could be accurately modeled with environmental interaction network, i.e. environmental parameters and biotic interactions between BFB and related bacteria, indicating that abiotic and biotic factors were both crucial to the dynamics of BFB.
Thermal conductivity of bulk and thin film β-Ga2O3 measured by the 3ω technique
NASA Astrophysics Data System (ADS)
Blumenschein, N.; Slomski, M.; Paskov, P. P.; Kaess, F.; Breckenridge, M. H.; Muth, J. F.; Paskova, T.
2018-02-01
Thermal conductivity of undoped and Sn-doped β-Ga2O3 bulk and single-crystalline thin films have been measured by the 3ω technique. The bulk samples were grown by edge-defined film-field growth (EFG) method, while the thin films were grown on c-plane sapphire by pulsed-laser deposition (PLD). All samples were with (-201) surface orientation. Thermal conductivity of bulk samples was calculated along the in-plane and cross-plane crystallographic directions, yielding a maximum value of 29 W/m-K in the [010] direction at room temperature. A slight thermal conductivity decrease was observed in the Sn-doped bulk samples, which was attributed to enhanced phonon-impurity scattering. The differential 3ω method was used for β-Ga2O3 thin film samples due to the small film thickness. Results show that both undoped and Sndoped films have a much lower thermal conductivity than that of the bulk samples, which is consistent with previous reports in the literature showing a linear relationship between thermal conductivity and film thickness. Similarly to bulk samples, Sn-doped thin films have exhibited a thermal conductivity decrease. However, this decrease was found to be much greater in thin film samples, and increased with Sn doping concentration. A correlation between thermal conductivity and defect/dislocation density was made for the undoped thin films.
Catalog of Mount St. Helens 2004 - 2005 Tephra Samples with Major- and Trace-Element Geochemistry
Rowe, Michael C.; Thornber, Carl R.; Gooding, Daniel J.; Pallister, John S.
2008-01-01
This open-file report presents a catalog of information about 135 ash samples along with geochemical analyses of bulk ash, glass and individual mineral grains from tephra deposited as a result of volcanic activity at Mount St. Helens, Washington, from October 1, 2004 until August 15, 2005. This data, in conjunction with that in a companion report on 2004?2007 Mount St. Helens dome samples by Thornber and others (2008a) are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, ed., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data presented here. All ash samples reported herein are currently archived at the David A. Johnston Cascades Volcano Observatory in Vancouver, Washington. The Mount St. Helens 2004?2005 Tephra Sample Catalogue along with bulk, glass and mineral geochemistry are tabulated in 6 worksheets of the accompanying Microsoft Excel file, of2008-1131.xls. Samples in all tables are organized by collection date. Table 1 is a detailed catalog of sample information for tephra deposited downwind of Mount St. Helens between October 1, 2004 and August 18, 2005. Table 2 provides major- and trace-element analyses of 8 bulk tephra samples collected throughout that interval. Major-element compositions of 82 groundmass glass fragments, 420 feldspar grains, and 213 mafic (clinopyroxene, amphibole, hypersthene, and olivine) mineral grains from 12 ash samples collected between October 1, 2004 and March 8, 2005 are presented in tables 3 through 5. In addition, trace-element abundances of 198 feldspars from 11 ash samples (same samples as major-element analyses) are provided in table 6. Additional mineral and bulk ash analyses from 2004 and 2005 ash samples are published in chapters 30 (oxide thermometry; Pallister and others, 2008), 32 (amphibole major elements; Thornber and others, 2008b) and 37 (210Pb; 210Pb/226Pa; Reagan and others, 2008) of U.S. Geological Survey Professional Paper 1750 (Sherrod and others, 2008). A brief overview of sample collection methods is given below as an aid to deciphering the tephra sample catalog. This is followed by an explanation of the categories of sample information (column headers) in table 1. A summary of the analytical methods used to obtain the geochemical data in this report introduces the presentation of major- and trace-element geochemistry of Mount St. Helens 2004?2005 tephra samples in tables 2?6. Rhyolite glass standard analyses are reported (Appendix 1) to demonstrate the accuracy and precision of similar glass analyses presented herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen
2011-12-01
Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphitemore » content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present« less
NASA Astrophysics Data System (ADS)
Maeda, Koki; Toyoda, Sakae; Yano, Midori; Hattori, Shohei; Fukasawa, Makoto; Nakajima, Keiichi; Yoshida, Naohiro
2016-03-01
Nitrogen isotope ratios (δ15N) of NH4+ in dairy manure compost piles with and without bulking agent (10 % w/w) were compared to understand the effects of the use of bulking agent on nitrogen conversion during manure composting. The δ15N-NH4+ values in each of three pile zones (top, side and core) were also compared. At the end of the process, piles with bulking agent showed significantly higher δ15N values (17.7 ± 1.3 ‰) than piles without bulking agent (11.8 ± 0.9 ‰), reflecting the significantly higher nitrogen conversion and NH3 loss in the former. The samples from the top zone, especially in the piles with bulking agent, showed very high NH4+ concentrations with significantly high 15N (δ15N: 12.7-29.8 ‰) values, indicating that extremely high nitrogen conversion, nitrification-denitrification activity of the microbes and NH3 volatilization occurred in this zone.
The report presents the results of laboratories participating in the twelveth, thirteenth and third (III) blind round of the bulk sample analysis quality assurance program sponsored by the U.S. Environmental Protection Agency. Three hundred twenty-three, 386 and 51 laboratories w...
NASA Astrophysics Data System (ADS)
Yang, Zhen; Jiang, Jie
2016-04-01
Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on their molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, bulk humic acids (HA) were separated into low molecular weight fractions (LMWF) and retentate. LMWF account for only 2% of the total organic carbon content of HA molecules, however, their reducing capacities are up to 33 times greater than either those of the bulk HA or retentate. Furthermore, the total reducing capacity of the bulk HA accounts for less than 15% of the total reducing capacity of bulk HA, retentate and LMWF combined, suggesting that releasing of LMWF cannot reduce the number of RFG. RFG are neither in fixed amounts nor in uniformly distributed in bulk HA. LWMF have great fluorescence intensities for humic-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF, and protein-like fluorophores. The 3,500 Da molecules (1.25 nm diameter) of HS could stimulate transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex/Em position provides a possibility to predicate relative reducing capacities of HS in environmental samples.
Assessing airborne aflatoxin B1 during on-farm grain handling activities.
Selim, M I; Juchems, A M; Popendorf, W
1998-04-01
The presence of aflatoxin in corn and corn dust during relatively normal years and the increased risk of Aspergillus flavus infestation during drought conditions suggest that airborne agricultural exposures should be of considerable concern. Liquid extraction, thin layer chromatography, and high pressure liquid chromatography were used for the analysis of aflatoxin B1 in grain dust and bulk corn samples. A total of 24 samples of airborne dust were collected from 8 farms during harvest, 22 samples from 9 farms during animal feeding, and 14 sets of Andersen samples from 11 farms during bin cleaning. A total of 14 samples of settled dust and 18 samples of bulk corn were also collected and analyzed. The airborne concentration of aflatoxin B1 found in dust collected during harvest and grain unloading ranged from 0.04 to 92 ng/m3. Higher levels of aflatoxin B1 were found in the airborne dust samples collected from enclosed animal feeding buildings (5-421 ng/m3) and during bin cleaning (124-4849 ng/m3). Aflatoxin B1 up to 5100 ng/g were detected in settled dust collected from an enclosed animal feeding building; however, no apparent correlation was found between the airborne concentration of aflatoxin B1 and its concentration in settled dust or bulk corn. The data demonstrate that farmers and farm workers may be exposed to potentially hazardous concentrations of aflatoxin B1, particularly during bin cleaning and animal feeding in enclosed buildings.
Analysis of laboratory compaction methods of roller compacted concrete
NASA Astrophysics Data System (ADS)
Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef
2017-09-01
Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.
NASA Astrophysics Data System (ADS)
Simon, S. B.; Grossman, L.
2004-10-01
Analyses of coarse-grained refractory inclusions typically do not have the solar CaO/Al 2O 3 ratio, probably reflecting nonrepresentative sampling of them in the laboratory. Many previous studies, especially those done by instrumental neutron activation analysis (INAA), were based on very small amounts of material removed from those restricted portions of inclusions that happened to be exposed on surfaces of bulk meteorite samples. Here, we address the sampling problem by studying thin sections of large inclusions, and by analyzing much larger aliquots of powders of these inclusions by INAA than has typically been done in the past. These results do show convergence toward the solar CaO/Al 2O 3 ratio of 0.792. The bulk compositions of 15 coarse-grained inclusions determined by INAA of samples >2 mg have an average CaO/Al 2O 3 ratio of 0.80 ± 0.18. When bulk compositions are obtained by modal recombination based on analysis of thin sections with cross-sections of entire, large, unbroken inclusions, the average of 11 samples (0.79 ± 0.15) also matches the solar value. Among those analyzed by INAA and by modal recombination, there were no inclusions for which both techniques agreed on a CaO/Al 2O 3 ratio deviating by >˜15% from the solar value. These results suggest that: individual inclusions may have the solar CaO/Al 2O 3 ratio; departures from this value are due to sample heterogeneity and nonrepresentative sampling in the laboratory; and it is therefore valid to correct compositions to this value. We present a method for doing so by mathematical addition or subtraction of melilite, spinel, or pyroxene. This yields a set of multiple, usually slightly different, corrected compositions for each inclusion. The best estimate of the bulk composition of an inclusion is the average of these corrected compositions, which simultaneously accounts for errors in sampling of all major phases. Results show that Type B2 inclusions tend to be more SiO 2-rich and have higher normative Anorthite/Gehlenite component ratios than Type B1s. The inclusion bulk compositions lie in a field that can result from evaporation at 1700-2000K of CMAS liquids with solar CaO/Al 2O 3, but with a wide range of initial MgO (30-60 wt%) and SiO 2 (15-50 wt%) contents.
The report presents the results of laboratories participating in the nineth, tenth, eleventh and second blind round(s) of the bulk sample analysis quality assurance program sponsored by the U.S. Environmental Protection Agency. Two hundred fifty-four, 320, 318, and 50 laboratorie...
NASA Astrophysics Data System (ADS)
Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed
2016-02-01
Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area.
NASA Astrophysics Data System (ADS)
Hou, Lili; Zhang, Min; Guan, Zhongjie; Li, Qiuye; Yang, Jianjun
2018-01-01
The surface and bulk oxygen vacancy have a prominent effect on the photocatalytic performance of TiO2. In this study, TiO2 possessing different types and concentration of oxygen vacancies were prepared by annealing nanotube titanic acid (NTA) at various temperatures in air or vacuum atmosphere. TiO2 with the unitary bulk single-electron-trapped oxygen vacancies (SETOVs) formed when NTA were calcined in air. Whereas, TiO2 with both bulk and surface oxygen vacancies were obtained when NTA were annealed in vacuum. The series of TiO2 with different oxygen vacancies were systematically characterized by TEM, XRD, PL, XPS, ESR, and TGA. The PL and ESR analysis verified that surface oxygen vacancies and more bulk oxygen vacancies could form in vacuum atmosphere. Surface oxygen vacancies can trap electron and hinder the recombination of photo-generated charges, while bulk SETOVs act as the recombination center. The surface or bulk oxygen vacancies attributed different roles on the photo-absorbance and activity, leading that the sample of NTA-A400 displayed higher hydrogen evolution rate under UV light, whereas NTA-V400 displayed higher hydrogen evolution rate under visible light because bulk SETOVs can improve visible light absorption because sub-band formed by bulk SETOVs prompted the secondary transition of electron excited.
Modulation of magnetic interaction in Bismuth ferrite through strain and spin cycloid engineering
NASA Astrophysics Data System (ADS)
Yadav, Rama Shanker; Reshi, Hilal Ahmad; Pillai, Shreeja; Rana, D. S.; Shelke, Vilas
2016-12-01
Bismuth ferrite, a widely studied room temperature multiferroic, provides new horizons of multifunctional behavior in phase transited bulk and thin film forms. Bismuth ferrite thin films were deposited on lattice mismatched LaAlO3 substrate using pulsed laser deposition technique. X-ray diffraction confirmed nearly tetragonal (T-type) phase of thin film involving role of substrate induced strain. The film thickness of 56 nm was determined by X-ray reflectivity measurement. The perfect coherence and epitaxial nature of T- type film was observed through reciprocal space mapping. The room temperature Raman measurement of T-type bismuth ferrite thin film also verified phase transition with appearance of only few modes. In parallel, concomitant La and Al substituted Bi1-xLaxFe0.95Al0.05O3 (x = 0.1, 0.2, 0.3) bulk samples were synthesized using solid state reaction method. A structural phase transition into orthorhombic (Pnma) phase at x = 0.3 was observed. The structural distortion at x = 0.1, 0.2 and phase transition at x = 0.3 substituted samples were also confirmed by changes in Raman active modes. The remnant magnetization moment of 0.199 emu/gm and 0.28 emu/gm were observed for x = 0.2 and 0.3 bulk sample respectively. The T-type bismuth ferrite thin film also showed high remnant magnetization of around 20emu/cc. The parallelism in magnetic behavior between T-type thin film and concomitant La and Al substituted bulk samples is indication of modulation, frustration and break in continuity of spiral spin cycloid.
Ali, M A; Louche, J; Legname, E; Duchemin, M; Plassard, C
2009-12-01
Young seedlings of maritime pine (Pinus pinaster Soland in Aït.) were grown in rhizoboxes using intact spodosol soil samples from the southwest of France, in Landes of Gascogne, presenting a large variation of phosphorus (P) availability. Soils were collected from a 93-year-old unfertilized stand and a 13-year-old P. pinaster stand with regular annual fertilization of either only P or P and nitrogen (N). After 6 months of culture in controlled conditions, different morphotypes of ectomycorrhiza (ECM) were used for the measurements of acid phosphatase activity and molecular identification of fungal species using amplification of the ITS region. Total biomass, N and P contents were measured in roots and shoots of plants. Bicarbonate- and NaOH-available inorganic P (Pi), organic P (Po) and ergosterol concentrations were measured in bulk and rhizosphere soil. The results showed that bulk soil from the 93-year-old forest stand presented the highest Po levels, but relatively higher bicarbonate-extractable Pi levels compared to 13-year-old unfertilized stand. Fertilizers significantly increased the concentrations of inorganic P fractions in bulk soil. Ergosterol contents in rhizosphere soil were increased by fertilizer application. The dominant fungal species was Rhizopogon luteolus forming 66.6% of analysed ECM tips. Acid phosphatase activity was highly variable and varied inversely with bicarbonate-extractable Pi levels in the rhizosphere soil. Total P or total N in plants was linearly correlated with total plant biomass, but the slope was steep only between total P and biomass in fertilized soil samples. In spite of high phosphatase activity in ECM tips, P availability remained a limiting nutrient in soil samples from unfertilized stands. Nevertheless young P. pinaster seedlings showed a high plasticity for biomass production at low P availability in soils.
Mechanisms of red blood cells agglutination in antibody-treated paper.
Jarujamrus, Purim; Tian, Junfei; Li, Xu; Siripinyanond, Atitaya; Shiowatana, Juwadee; Shen, Wei
2012-05-07
Recent reports on using bio-active paper and bio-active thread to determine human blood type have shown a tremendous potential of using these low-cost materials to build bio-sensors for blood diagnosis. In this work we focus on understanding the mechanisms of red blood cell agglutination in the antibody-loaded paper. We semi-quantitatively evaluate the percentage of antibody molecules that are adsorbed on cellulose fibres and can potentially immobilize red blood cells on the fibre surface, and the percentage of the molecules that can desorb from the cellulose fibre surface into the blood sample and cause haemagglutination reaction in the bulk of a blood sample. Our results show that 34 to 42% of antibody molecules in the papers treated with commercial blood grouping antibodies can desorb from the fibre surface. When specific antibody molecules are released into the blood sample via desorption, haemagglutination reaction occurs in the blood sample. The reaction bridges the red cells in the blood sample bulk to the layer of red cells immobilized on the fibre surface by the adsorbed antibody molecules. The desorbed antibody also causes agglutinated lumps of red blood cells to form. These lumps cannot pass through the pores of the filter paper. The immobilization and filtration of agglutinated red cells give reproducible identification of positive haemagglutination reaction. Results from this study provide information for designing new bio-active paper-based devices for human blood typing with improved sensitivity and specificity.
Sample sizes to control error estimates in determining soil bulk density in California forest soils
Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber
2016-01-01
Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...
Akamatsu, Fumikazu; Suzuki, Yaeko; Kato, Yoshikazu; Yoshimizu, Chikage; Tayasu, Ichiro
2016-01-15
Carbon stable isotope analysis of bulk samples and fatty acids is an established method for tracing carbon flow pathways and reconstructing trophic interactions, but there is no consensus on which sample drying method should be used for sample preparation. The aim of this study was to determine if freeze-drying and oven-drying treatments used to prepare samples of the benthic macroinvertebrates Stenopsyche marmorata and Epeorus latifolium for bulk and fatty-acid-specific carbon stable isotope analysis yield different isotopic ratio values. Five individuals each from two species were split in half; one half was freeze-dried and the other half was oven-dried. The samples were ground and the δ(13)C values of the bulk samples and eight fatty acids were measured following combustion using an isotope ratio mass spectrometer coupled to an elemental analyzer or gas chromatography system. The mean difference in the bulk and fatty acid δ(13)C values between freeze-dried and oven-dried samples was small (≤0.1‰ in both cases), although relatively large variations were observed in individual fatty-acid-specific δ(13)C values (maximum of ≤0.9 ‰). There were no significant differences in either bulk sample or fatty-acid-specific δ(13)C values between freeze-dried or oven-dried samples of the same species. Freeze-drying and oven-drying are equally acceptable methods for preparing freshly caught S. marmorata and E. latifolium samples for bulk and fatty-acid-specific carbon stable isotope analyses. Copyright © 2015 John Wiley & Sons, Ltd.
Todt, Michael A.; Isenberg, Allan E.; Nanayakkara, Sanjini U.; ...
2018-03-06
Semiconducting transition-metal dichalcogenide (TMD) nanoflake thin films are promising large-area electrodes for photo-electrochemical solar energy conversion applications. However, their energy conversion efficiencies are typically much lower than those of bulk electrodes. It is unclear to what extent this efficiency gap stems from differences among nanoflakes (e.g., area, thickness, and surface structural features). It is also unclear whether individual exfoliated nanoflakes can achieve energy conversion efficiencies similar to those of bulk crystals. Here, we use a single-nanoflake photo-electrochemical approach to show that there are both highly active and completely inactive nanoflakes within a film. For the exfoliated MoSe 2 samples studiedmore » herein, 7% of nanoflakes are highly active champions, whose photocurrent efficiency exceeds that of the bulk crystal. However, 66% of nanoflakes are inactive spectators, which are mostly responsible for the overall lower photocurrent efficiency compared to the bulk crystal. The photocurrent collection efficiency increases with nanoflake area and decreases more at perimeter edges than at interior step edges. These observations, which are hidden in ensemble-level measurements, reveal the underlying performance issues of exfoliated TMD electrodes for photo-electrochemical energy conversion applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capsoni, D.; CNR-IENI, Sezione di Pavia, viale Taramelli 16, 27100 Pavia; Bini, M.
2004-12-01
The dopant role on the electric and dielectric properties of the perovskite-type CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) compound is evidenced. Impedance spectroscopy measurements show that the relevant permittivity value attributed to sintered CCTO is due to grain boundary (g.b.) effects. The g.b. permittivity value of the pure CCTO can be increased of 1-2 orders of magnitude by cation substitution on Ti site and/or segregation of CuO phase, while the bulk permittivity keeps values 90{epsilon}r180. Bulk and g.b. conductivity contributions are discussed: electrons are responsible for the charge transport and a mean bulk activation energy of 0.07eV is obtained at roommore » temperature for all the examined samples. The g.b. activation energy ranges between 0.54 and 0.76eV. Defect models related to the transport properties are proposed, supported by electron paramagnetic resonance measurements.« less
NASA Astrophysics Data System (ADS)
Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M.; Hossain, Al; Acar, S.; Kim, Jung Ho; Xue Dou, Shi
2015-05-01
High performance MgB2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB2 grains with a high level of homogeneous carbon doping were formed in these MgB2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (Jc) in the as-prepared samples. In particular, the value of Jc for the carbon-coated (Mg1.1B2)Cu0.05 sample prepared here is even above 1 × 105 A cm-2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB2 bulks or wires with excellent Jc, as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive.
Abbasi, Amir Reza; Rizvandi, Maryam
2018-01-01
In this work, we study uptake and release properties of rifampicin (denoted henceforth as Rif) from ultrasound-assisted synthesis Cu-BTC nanoparticles in comparison with bulk Cu-BTC and activated carbon. To explore the absorption ability of the Cu-BTC to Rif, fresh sample of Cu-BTC was immersed in an aqueous solution of Rif and were monitored in real time with UV/vis spectroscopy. Results show that the adsorbed quantity of Rif over nano Cu-BTC (denoted henceforth as I) is much higher than those over a bulk Cu-BTC (denoted henceforth as II) and activated carbon. In compound I and all of the nano-MOFs the channel length is decreased so that the amount of adsorption is increased a little. The samples were characterized with X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and UV/vis spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.
Zaman, Mashrur; Schubert, Michael; Antao, Sytle
2012-01-01
The study focuses on elevated levels of environmental radioactivity present in heavy mineral deposits located along a 120-km coastal section of Cox's Bazar on the eastern panhandle of Bangladesh. The deposits are situated in or at sand dunes located on the recent beach (foredune area) or in attached paleo-beach areas (backdune area). This study investigates activity concentrations in bulk beach sands (six representative samples) and in five mineral fractions separated from the beach sands in order to assess potential radio-ecological effects and the possible use of the mineral deposits as a source for uranium and thorium. The bulk beach sands and individual mineral fractions were analysed by gamma-ray spectroscopy. The activity concentrations of U-238, U-235, Th-232 and K-40 in the bulk beach sand samples were found to be considerably high and positively correlated to the concentration of heavy minerals in the sand. In the mineral fractions, the highest activity concentrations were found in the zircon fraction followed by garnet, rutile, ilmenite and magnetite. The determination of (i) the radium activity, (ii) several radiation hazard indices and (iii) adsorbed and effective gamma doses allowed to assess the related exposure of the environment and the local population to elevated radioactivity. It becomes evident from the present data that (1) if raw sands or mineral fractions mined in the study area are used for building purposes or industrial use, their activity concentrations have to be considered from a radio-ecological perspective and (2) if mining and processing of the minerals is being considered, uranium and thorium may become strategically significant by-products.
O'Connell, A; Kelly, A L; Tobin, J; Ruegg, P L; Gleeson, D
2017-02-01
The objective of this study was to investigate the effects of storage temperature and duration on the composition and functional properties of bulk tank milk when fresh milk was added to the bulk tank twice daily. The bulk tank milk temperature was set at each of 3 temperatures (2, 4, and 6°C) in each of 3 tanks on 2 occasions during two 6-wk periods. Period 1 was undertaken in August and September when all cows were in mid lactation, and period 2 was undertaken in October and November when all cows were in late lactation. Bulk tank milk stored at the 3 temperatures was sampled at 24-h intervals during storage periods of 0 to 96 h. Compositional parameters were measured for all bulk tank milk samples, including gross composition and quantification of nitrogen compounds, casein fractions, free amino acids, and Ca and P contents. The somatic cell count, heat stability, titratable acidity, and rennetability of bulk tank milk samples were also assessed. Almost all parameters differed between mid and late lactation; however, the interaction between lactation, storage temperature, and storage duration was significant for only 3 parameters: protein content and concentrations of free cysteic acid and free glutamic acid. The interaction between storage temperature and storage time was not significant for any parameter measured, and temperature had no effect on any parameter except lysine: lysine content was higher at 6°C than at 2°C. During 96 h of storage, the concentrations of some free amino acids (glutamic acid, lysine, and arginine) increased, which may indicate proteolytic activity during storage. Between 0 and 96 h, minimal deterioration was observed in functional properties (rennet coagulation time, curd firmness, and heat stability), which was most likely due to the dissociation of β-casein from the casein micelle, which can be reversed upon pasteurization. Thus, this study suggests that blended milk can be stored for up to 96 h at temperatures between 2°C and 6°C with little effect on its composition or functional properties. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Improved texture measurement during deformation of polycrystalline olivine at high pressure
NASA Astrophysics Data System (ADS)
Dixon, N. A.; Durham, W. B.; Kohlstedt, D. L.; Hunt, S. A.
2014-12-01
Unresolved issues in geodynamics demand a better understanding of the bulk mechanical properties of mantle minerals, and also careful analysis of the complex lattice-scale physics behind these properties. Instead of probing the mechanical properties of a material by testing the relationship between "bulk" stress and strain rate in a sample at a variety of conditions (varying P, T, water content, and other environmental variables), synchrotron x-ray diffraction now allows us to observe, in situ, the active deformation physics in much greater detail. This includes in situ monitoring of plastic anisotropy and local stress heterogeneity, grain size, the development of lattice-preferred orientation (LPO), and even the partitioning of stress between multiple phases in the same polycrystalline sample. Here, we present results obtained with the use of the MTEX toolbox for Matlab and energy-dispersive x-ray diffraction, showing the in situ development of LPO in deforming dry San Carlos olivine samples, at pressures from 2-7 GPa. These measurements hint at the active dislocation mechanisms for these conditions. The ability generate a broad range of mantle conditions in the D-DIA, while precisely measuring the structure and conditions within our sample at the grain and lattice scale, demonstrates the promising future of deformation experiments as a means to understanding the evolution of the deep Earth.
Rare earth and other elements in components of the Abee enstatite chondrite
NASA Technical Reports Server (NTRS)
Frazier, R. M.; Boynton, W. V.
1985-01-01
Radiochemical and instrumental neutron activation analyses of REEs and other elements have been conducted for Abee clast samples, a matrix sample, a dark inclusion, magnetic and nonmagnetic samples, and bulk samples. Correlations of the REEs and oldhamite abundance for both the clasts and dark inclusions indicate that the REEs chiefly occur in oldhamite. The similar REE patterns for clasts and dark inclusions, and the similar mineral composition of oldhamite in clast and dark inclusions, suggest that the oldhamite in both the clasts and dark inclusions is of a common origin.
Effect of layer thickness on the elution of bulk-fill composite components.
Rothmund, Lena; Reichl, Franz-Xaver; Hickel, Reinhard; Styllou, Panorea; Styllou, Marianthi; Kehe, Kai; Yang, Yang; Högg, Christof
2017-01-01
An increment layering technique in a thickness of 2mm or less has been the standard to sufficiently convert (co)monomers. Bulk fill resin composites were developed to accelerate the restoration process by enabling up to 4mm thick increments to be cured in a single step. The aim of the present study is to investigate the effect of layer thickness on the elution of components from bulk fill composites. The composites ELS Bulk fill, SDR Bulk fill and Venus Bulkfill were polymerized according to the instruction of the manufacturers. For each composite three groups with four samples each (n=4) were prepared: (1) samples with a layer thickness of 2mm; (2) samples with a layer thickness of 4mm and (3) samples with a layer thickness of 6mm. The samples were eluted in methanol and water for 24h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). A total of 11 different elutable substances have been identified from the investigated composites. Following methacrylates showed an increase of elution at a higher layer thickness: TEGDMA (SDR Bulk fill, Venus Bulk fill), EGDMA (Venus Bulk fill). There was no significant difference in the elution of HEMA regarding the layer thickness. The highest concentration of TEGDMA was 146μg/mL for SDR Bulk fill at a layer thickness of 6mm after 7 d in water. The highest HEMA concentration measured at 108μg/mL was detected in the methanol eluate of Venus Bulk fill after 7 d with a layer thickness of 6mm. A layer thickness of 4mm or more can lead to an increased elution of some bulk fill components, compared to the elution at a layer thickness of 2mm. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Bovine herpesvirus 1: within-herd seroprevalence and antibody levels in bulk-tank milk.
Martínez, S; Yus, E; Sanjuán, M L; Camino, F; Eiras, M C; Arnaiz, I; Diéguez, F J
2016-12-01
The aim of the present study was to establish a relationship between the results obtained with the enzyme-linked immunosorbent assay (ELISA) technique for antibodies (against bovine herpesvirus 1) in serum and those in milk at the herd level. For this purpose, 275 samples of bulk-tank milk were analysed with glycoprotein E (gE) antibody ELISA and 207 more were analysed with glycoprotein B (gB) antibody ELISA (482 in total). All of these samples came from dairy herds whose seroprevalence was also evaluated. The results of this study were then used to analyse the sensitivity of the bulk-tankmilk test in detecting herds with a high risk of active infection (>60% seroprevalence) and its specificity in detecting those with few (<20%) or no seropositive animals. In regard to the reference test (results in blood serum), the sensitivity of the bulk-tankmilk test in detecting herds with >60% seropositive animals was 100% for both gE and gB ELISAs. The specificity figures, for gE and gB ELISAs, respectively, were 88.4% and 99.1% for infection-free herds and 72.6% and 96% for herds with <20% seroprevalence. In a quantitative approach, Pearson's correlation coefficients, reported as a measure of linear association between herd seroprevalences and transformed optical density values recorded in bulk-tank milk, were -0.63 for gE ELISA and 0.67 for gB ELISA. © OIE (World Organisation for Animal Health), 2016.
Butler, Owen; Musgrove, Darren; Stacey, Peter
2014-01-01
Workers can be exposed to fume, arising from welding activities, which contain toxic metals and metalloids. Occupational hygienists need to assess and ultimately minimize such exposure risks. The monitoring of the concentration of particles in workplace air is one assessment approach whereby fume, from representative welding activities, is sampled onto a filter and returned to a laboratory for analysis. Inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry are generally employed as instrumental techniques of choice for the analysis of such filter samples. An inherent difficulty, however, with inductively coupled plasma-based analytical techniques is that they typically require a sample to be presented for analysis in the form of a solution. The efficiency of the required dissolution step relies heavily upon the skill and experience of the analyst involved. A useful tool in assessing the efficacy of this dissolution step would be the availability and subsequent analysis of welding fume reference materials with stated elemental concentrations and matrices that match as closely as possible the matrix composition of welding fume samples submitted to laboratories for analysis. This article describes work undertaken at the Health and Safety Laboratory to prepare and certify two new bulk welding fume reference materials that can be routinely used by analysts to assess the performance of the digestion procedures they employ in their laboratories. PMID:24499055
Butler, Owen; Musgrove, Darren; Stacey, Peter
2014-01-01
Workers can be exposed to fume, arising from welding activities, which contain toxic metals and metalloids. Occupational hygienists need to assess and ultimately minimize such exposure risks. The monitoring of the concentration of particles in workplace air is one assessment approach whereby fume, from representative welding activities, is sampled onto a filter and returned to a laboratory for analysis. Inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry are generally employed as instrumental techniques of choice for the analysis of such filter samples. An inherent difficulty, however, with inductively coupled plasma-based analytical techniques is that they typically require a sample to be presented for analysis in the form of a solution. The efficiency of the required dissolution step relies heavily upon the skill and experience of the analyst involved. A useful tool in assessing the efficacy of this dissolution step would be the availability and subsequent analysis of welding fume reference materials with stated elemental concentrations and matrices that match as closely as possible the matrix composition of welding fume samples submitted to laboratories for analysis. This article describes work undertaken at the Health and Safety Laboratory to prepare and certify two new bulk welding fume reference materials that can be routinely used by analysts to assess the performance of the digestion procedures they employ in their laboratories.
NASA Astrophysics Data System (ADS)
Pszenny, A.; Keene, W. C.; Sander, R.; Bearekman, R.; Deegan, B.; Maben, J. R.; Warrick-Wriston, C.; Young, A.
2011-12-01
Bulk and size-segregated aerosol samples were collected 22 m AGL at the Boulder Atmospheric Observatory (40°N, 105°W, 1563 m ASL) from 18 February to 13 March 2011. Total concentrations of Na, Mg, Al, Cl, V, Mn, Br and I in bulk samples were determined by neutron activation analysis. Ionic composition of all size-segregated and a subset of bulk samples was determined by ion chromatography of aqueous extracts. Mg, Al, V and Mn mass concentrations were highly correlated and present in ratios similar to those in Denver area surface soils. Na and Cl were less well correlated with these soil elements but, after correction for soil contributions, highly correlated with each other. Linear regression of non-soil Cl vs. non-soil Na yielded a slope of 1.69 ± 0.09 (95% C.I.; n = 173), a value between the mass ratios of sea salt (1.80) and halite (1.54). The median Na and Cl concentrations (6.8 and 6.6 nmol m-3 STP, respectively) were factors of 25 to 35 less than those typically measured in the marine boundary layer. Br and I were somewhat correlated and appeared to represent a third aerosol component. The average bulk Cl-:total Cl ratio was 0.99 ± 0.03 (n = 44) suggesting that essentially all aerosol chlorine was water-soluble. Na+ and Cl- mass distributions were bimodal with most of the masses (medians 75% and 78%, respectively, n = 45) in supermicrometer particles. Possible origins of the "salt" component will be discussed based on consideration of 5-day HYSPLIT back trajectories and other information on sampled air mass characteristics.
Lübbert, Christoph; Baars, Christian; Dayakar, Anil; Lippmann, Norman; Rodloff, Arne C; Kinzig, Martina; Sörgel, Fritz
2017-08-01
High antibiotic and antifungal concentrations in wastewater from anti-infective drug production may exert selection pressure for multidrug-resistant (MDR) pathogens. We investigated the environmental presence of active pharmaceutical ingredients and their association with MDR Gram-negative bacteria in Hyderabad, South India, a major production area for the global bulk drug market. From Nov 19 to 28, 2016, water samples were collected from the direct environment of bulk drug manufacturing facilities, the vicinity of two sewage treatment plants, the Musi River, and habitats in Hyderabad and nearby villages. Samples were analyzed for 25 anti-infective pharmaceuticals with liquid chromatography-tandem mass spectrometry and for MDR Gram-negative bacteria using chromogenic culture media. In addition, specimens were screened with PCR for bla VIM , bla KPC , bla NDM , bla IMP-1 , and bla OXA-48 resistance genes. All environmental specimens from 28 different sampling sites were contaminated with antimicrobials. High concentrations of moxifloxacin, voriconazole, and fluconazole (up to 694.1, 2500, and 236,950 µg/L, respectively) as well as increased concentrations of eight other antibiotics were found in sewers in the Patancheru-Bollaram industrial area. Corresponding microbiological analyses revealed an extensive presence of extended-spectrum beta-lactamase and carbapenemase-producing Enterobacteriaceae and non-fermenters (carrying mainly bla OXA-48 , bla NDM , and bla KPC ) in more than 95% of the samples. Insufficient wastewater management by bulk drug manufacturing facilities leads to unprecedented contamination of water resources with antimicrobial pharmaceuticals, which seems to be associated with the selection and dissemination of carbapenemase-producing pathogens. The development and global spread of antimicrobial resistance present a major challenge for pharmaceutical producers and regulatory agencies.
NASA Astrophysics Data System (ADS)
Chantara, Somporn; Chunsuk, Nawarut
The chemical composition of 122 rainwater samples collected daily from bulk and wet-only collectors in a sub-urban area of Chiang Mai (Thailand) during August 2005-July 2006 has been analyzed and compared to assess usability of a cheaper and less complex bulk collector over a sophisticated wet-only collector. Statistical analysis was performed on log-transformed daily rain amount and depositions of major ions for each collector type. The analysis of variance (ANOVA) test revealed that the amount of rainfall collected from a rain gauge, bulk collector and wet-only collector showed no significant difference ( ∝=0.05). The volume weight mean electro-conductivity (EC) values of bulk and wet-only samples were 0.69 and 0.65 mS/m, respectively. The average pH of the samples from both types of collectors was 5.5. Scatter plots between log-transformed depositions of specific ions obtained from bulk and wet-only samples showed high correlation ( r>0.91). Means of log-transformed bulk deposition were 14% (Na + and K +), 13% (Mg 2+), 7% (Ca 2+), 4% (NO 3-), 3% (SO 42- and Cl -) and 2% (NH 4+) higher than that of wet-only deposition. However, multivariate analysis of variance (MANOVA) revealed that ion depositions obtained from bulk and wet-only collectors were not significantly different ( ∝=0.05). Therefore, it was concluded that a bulk collector can be used instead of a wet-only collector in a sub-urban area.
Rhizosphere: a leverage for tolerance to water deficits of soil microflora ?
NASA Astrophysics Data System (ADS)
Bérard, Annette; Ruy, Stéphane; Coronel, Anaïs; Toussaint, Bruce; Czarnes, Sonia; Legendre, Laurent; Doussan, Claude
2015-04-01
Microbial soil communities play a fundamental role in soil organic matter mineralization, which is a key process for plant nutrition, growth and production in agro-ecosystems. A number of these microbial processes take place in the rhizosphere: the soil zone influenced by plant roots activity, which is a "hotspot " of biological and physico-chemical activity, transfers and biomass production. The knowledge of rhizosphere processes is however still scanty, especially regarding the interactions between physico-chemical processes occurring there and soil microorganisms. The rhizosphere is a place where soil aggregates are more stable, and where bulk density, porosity, water and nutrients transfer are modified with respect to the bulk soil (e.g. because of production of mucilage, of which exo-polysaccharides (EPS) produced by roots and microorganisms. During a maize field experiment, rhizospheric soil (i.e. soil strongly adhering to maize roots) and bulk soil were sampled twice in spring and summer. These soil samples were characterized for physicochemical parameters (water retention curves and analysis of exopolysaccarides) and microflora (microbial biomass, catabolic capacities of the microbial communities assessed with the MicroRespTM technique, stability of soil microbial respiration faced to a heat-drought disturbance). We observed differences between rhizospheric and bulk soils for all parameters studied: Rhizospheric soils showed higher microbial biomasses, higher quantities of exopolysaccarides and a higher water retention capacity compared to bulk soil measurements. Moreover, microbial soil respiration showed a higher stability confronted to heat-drought stress in the rhizospheric soils compared to bulk soils. Results were more pronounced during summer compared to spring. Globally these data obtained from field suggest that in a changing climate conditions, the specific physico-biological conditions in the rhizosphere partially linked to exopolysaccarides, could induce stability (Resistance, Resilience) of soil microbial communities towards stresses, in particular severe drought. The knowledge of these interactions in the rhizosphere between local hydric soil properties and microbial behaviour facing drought, could allow a better understanding of the functioning of agro-ecosystems for their management in a changing climate.
40 CFR 761.289 - Compositing samples.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or... compositing bulk PCB remediation waste samples. These procedures are based on the method for selecting...
40 CFR 761.289 - Compositing samples.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or... compositing bulk PCB remediation waste samples. These procedures are based on the method for selecting...
Structural and AC loss study for pure and doped MgB{sub 2} superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansdah, J. S.; Sarun, P. M., E-mail: sarun.res@gmail.com
2015-06-24
Superconducting polycrystalline bulk MgB{sub 2} samples doped with n-C, n-Y{sub 2}O{sub 3} and n-Ho{sub 2}O{sub 3} were prepared by powder-in-sealed (PIST) method. XRD measurement shows the influence of dopants on phase and lattice parameters of samples. The ac susceptibility measurement reveals ac loss and activation energy of the samples. Nano-C doped sample shows less ac loss in all frequency (208 Hz – 999 Hz) among the doped samples; whereas n-Ho{sub 2}O{sub 3} doped sample shows highest ac loss. The activation energy is high for rare earth (n-Y{sub 2}O{sub 3} and n-Ho{sub 2}O{sub 3}) doped samples as compare to n-C doped samples whichmore » reveals the enhancement in flux-pinning properties of these materials.« less
Improving detection probabilities for pests in stored grain.
Elmouttie, David; Kiermeier, Andreas; Hamilton, Grant
2010-12-01
The presence of insects in stored grain is a significant problem for grain farmers, bulk grain handlers and distributors worldwide. Inspection of bulk grain commodities is essential to detect pests and thereby to reduce the risk of their presence in exported goods. It has been well documented that insect pests cluster in response to factors such as microclimatic conditions within bulk grain. Statistical sampling methodologies for grain, however, have typically considered pests and pathogens to be homogeneously distributed throughout grain commodities. In this paper, a sampling methodology is demonstrated that accounts for the heterogeneous distribution of insects in bulk grain. It is shown that failure to account for the heterogeneous distribution of pests may lead to overestimates of the capacity for a sampling programme to detect insects in bulk grain. The results indicate the importance of the proportion of grain that is infested in addition to the density of pests within the infested grain. It is also demonstrated that the probability of detecting pests in bulk grain increases as the number of subsamples increases, even when the total volume or mass of grain sampled remains constant. This study underlines the importance of considering an appropriate biological model when developing sampling methodologies for insect pests. Accounting for a heterogeneous distribution of pests leads to a considerable improvement in the detection of pests over traditional sampling models. Copyright © 2010 Society of Chemical Industry.
Iglesias, Jacobo; Pazos, Manuel; Lois, Salomé; Medina, Isabel
2010-06-23
Polyphenolic fractions extracted from pine (Pinus pinaster) bark, grape (Vitis vinifera) pomace, and witch hazel (Hamamelis virginiana) bark were selected for investigating the influence of the number of phenolic units, polymerization, and the content of esterified galloyl residues (galloylation) on their efficacy for inhibiting lipid oxidation in fish lipid enriched foodstuffs. Experiments carried out with nongalloylated pine bark fractions with different polymerization degrees demonstrated that the number of catechin residues per molecule modulates their reducing and chelating properties in solution. In real food systems such as bulk fish oil and fish oil-in-water emulsions, the efficacy against lipid oxidation was highly dependent on the physical location of the antioxidant at the oxidative sensitive sites. The lowest polymerized fractions were the most efficient in bulk fish oil samples, whereas proanthocyanidins with an intermediate polymerization degree showed the highest activity in fish oil-in-water emulsions. Galloylation did not influence the antioxidant effectiveness of proanthocyanidins in bulk fish oils. The presence of galloyl groups favored the antioxidant activity of the polyphenols in emulsions, although results indicated that a high degree of galloylation did not improve significantly the activity found with medium galloylated proanthocyanidins. The results obtained in this research provide useful information about the relationship between structure and antioxidant activity in order to design antioxidant additives with application in fish oil-enriched functional foods.
Single Crystal Synthesis and STM Studies of High Temperature Superconductors
NASA Technical Reports Server (NTRS)
Barrientos, Alfonso
1997-01-01
This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.
Justice-Allen, A; Trujillo, J; Goodell, G; Wilson, D
2011-07-01
The objective of this study was to further validate a SYBR PCR protocol for Mycoplasma spp. by comparing it with standard microbial culture in the detection of Mycoplasma spp. in bulk tank milk samples. Additionally, we identified Mycoplasma spp. present by analysis of PCR-generated amplicons [dissociation (melt) temperature (T(m)), length, and DNA sequence]. The research presented herein tests the hypothesis that the SYBR PCR protocol is as sensitive as conventional culture for the detection of Mycoplasma spp. in bulk tank milk samples. Mycoplasmas cause several important disease syndromes in cattle, including mastitis in dairy cows. The standard diagnostic method at the herd level has been microbial isolation of mycoplasmas on 1 of several specialized media and speciation through biochemical or immunological techniques; repeated sampling schemes are recommended. The development of a real-time SYBR PCR protocol offers advantages in decrease of time to detection, cost, and complexity. The T(m) of the double-stranded DNA generated from the PCR reaction was used to detect the presence of and tentatively identify the species of mycoplasmas other than Mycoplasma bovis. In the SYBR PCR protocol, the presence of multiple species of mycoplasmas is indicated by an atypical dissociation curve. Gel electrophoresis and sequencing of the amplicons was used to confirm the mycoplasma species present when a non-M. bovis organism was detected (T(m) not equal to M. bovis) and used to identify all the mycoplasma species present for the samples with atypical dissociation curves. Mycoplasma bovis was identified in 83% of SYBR PCR mycoplasma-positive bulk tank samples. Another mycoplasma was identified either alone or in addition to M. bovis in 25% of SYBR PCR mycoplasma-positive bulk tank milk samples. Four species of mycoplasma other than M. bovis (Mycoplasma alkalescens, Mycoplasma arginini, Mycoplasma bovigenitalium, and Mycoplasma gateae) were identified in bulk tank milk samples tested with this method. Five farms had 2 mycoplasma species occurring at different times in their bulk tanks. Two mycoplasma species were identified in the same bulk tank sample in 7 instances on 2 farms. The finding of multiple Mycoplasma spp. coexisting on a farm and even in the same bulk tank milk sample indicates that the clinical significance of multiple mycoplasma species in the pathology of intramammary infections should be investigated further. In comparison with conventional culture, the SYBR PCR protocol was slightly (but not statistically significantly) more sensitive in the detection of mycoplasmas in bulk tank milk. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
2008-01-01
oriented grain-boundaries. In this work we show considerable evidence for such weak-coupling by study of the dependence of magnetization in bulk and...powdered samples. Bulk sample magnetization curves show very little hysteresis while remanent magnetization shows almost no sample size dependence...K Fig. 2 (Color online) Magnetization hysteresis loops at 5 and 20 K for the bulk LaO0.89F0.11FeAs. Inset shows the temperature dependence of
Soltau, J B; Einax, E; Klengel, K; Katholm, J; Failing, K; Wehrend, A; Donat, K
2017-10-01
The objective of the study was to assess the value of quantitative multiplex real-time PCR examination of bulk tank milk samples for bovine mastitis pathogens as a tool for herd level diagnosis. Using a logistic regression model, this study is aimed at calculating the threshold level of the apparent within-herd prevalence as determined by quarter milk sample cultivation of all lactating cows, thus allowing the detection of a herd positive for a specific pathogen within certain probability levels. A total of 6,335 quarter milk samples were collected and cultured from 1,615 cows on 51 farms in Germany. Bulk tank milk samples were taken from each farm and tested by bacterial culture as well as the commercial PCR assay Mastit 4A (DNA Diagnostic A/S, Risskov, Denmark) identifying Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus agalactiae, and Streptococcus uberis. In addition, PCR was performed on pooled herd milk samples containing milk aliquots from all lactating cows in each of the 51 herds. Only 1 out of the 51 herds was found PCR positive for Streptococcus agalactiae in bulk tank and pooled herd milk samples, and cultured quarter milk samples. Spearman's rank correlations between the cycle threshold value of bulk tank milk PCR and the apparent within-herd prevalence were calculated in regard to Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis. For these pathogens, significant correlations were found. If 1 bulk tank milk sample per herd was tested, the estimated within-herd prevalence thresholds for 90% probability of detection were 27.6% for Staphylococcus aureus, 9.2% for Streptococcus dysgalactiae, and 13.8% for Streptococcus uberis on the cow level. On the quarter level, the within-herd prevalence had to be at least 32.6% for Staphylococcus aureus, 1.7% for Streptococcus dysgalactiae, and 4.3% for Streptococcus uberis to detect a herd as positive using a single bulk milk sample. The results indicate that mastitis pathogens in bulk tank milk can be identified by the applied PCR assay. Bulk tank milk examination is not a reliable tool for the identification of the named pathogens by single testing, but might be a valuable monitoring tool when used frequently with repeated testing. Furthermore, this approach could be a useful monitoring tool for detecting new pathogen occurrence in the herd. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fonseca, Jose Pedro; Hoffmann, Luisa; Cabral, Bianca Catarina Azeredo; Dias, Victor Hugo Giordano; Miranda, Marcio Rodrigues; de Azevedo Martins, Allan Cezar; Boschiero, Clarissa; Bastos, Wanderley Rodrigues; Silva, Rosane
2018-02-05
Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon forest reserve that are probably caused by more than one environmental factors such as rhizosphere and soil depth. Copyright © 2017 Elsevier B.V. All rights reserved.
De Visscher, A; Piepers, S; Haesebrouck, F; Supré, K; De Vliegher, S
2017-01-01
Coagulase-negative staphylococci (CNS) have become the main pathogens causing bovine mastitis in recent years. A huge variation in species distribution among herds has been observed in several studies, emphasizing the need to identify subgroup- and species-specific herd-level factors to improve our understanding of the differences in ecological and epidemiological nature between species. The use of bulk milk samples enables the inclusion of a large(r) number of herds needed to identify herd-level risk factors and increases the likelihood of recovering enough isolates per species needed for conducting subgroup- and, eventually, species-specific analyses at the same time. This study aimed to describe the prevalence and distribution of CNS species in bulk milk samples and to identify associated subgroup- and species-specific herd-level factors. Ninety percent of all bulk milk samples yielded CNS. Staphylococcus equorum was the predominant species, followed by Staphylococcus haemolyticus and Staphylococcus epidermidis. A seasonal effect was observed for several CNS species. Bulk milk samples from herds with a loose-pack or a tiestall housing system were more likely to yield CNS species compared with herds with a freestall barn, except for S. epidermidis, Staphylococcus simulans, and Staphylococcus cohnii. In September, herds in which udders were clipped had lower odds of yielding Staphylococcus chromogenes, S. simulans, and Staphylococcus xylosus, the CNS species assumed to be most relevant for udder health, in their bulk milk than herds in which udder clipping was not practiced. Bulk milk of herds participating in a monthly veterinary udder health-monitoring program was more likely to yield these 3 CNS species. Herds always receiving their milk quality premium or predisinfecting teats before attachment of the milking cluster had lower odds of having S. equorum in their bulk milk. Herds not using a single dry cotton or paper towel for each cow during premilking udder preparation were more likely to have S. cohnii-positive bulk milk. Herds in which flushing with hot water or steam of the milking cluster after having milked a cow with a (sub)clinical mastitis was applied, were less likely to yield S. simulans, S. haemolyticus, and S. cohnii in their bulk milk. Always wearing gloves during milking decreased the odds of having Staphylococcus devriesei-positive bulk milk. Tap water from the public drinking system used as drinking water increased the odds of yielding S. simulans in the bulk milk. In conclusion, CNS are highly prevalent in bulk milk and might originate from the environment for some species (we hypothesize this is true for S. equorum or S. cohnii), or from within the udder (e.g., for S. simulans). Studies collecting bulk milk and quarter milk samples at the same time along with environmental samples are needed to determine the exact origin of the different (subgroups of) CNS species present in bulk milk using strain-typing techniques. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Triebel, W.; Mühlig, C.; Kufert, S.
2005-10-01
Precise absorption measurements of bulk materials and coatings upon pulsed ArF laser irradiation are presented using a compact experimental setup based on the laser induced deflection technique (LID). For absorption measurements of bulk materials the influence of pure bulk and pure surface absorption on the temperature and refractive index profile and thus for the probe beam deflection is analyzed in detail. The separation of bulk and surface absorption via the commonly used variation of the sample thickness is carried out for fused silica and calcium fluoride. The experimental results show that for the given surface polishing quality the bulk absorption coefficient of fused silica can be obtained by investigating only one sample. To avoid the drawback of different bulk and surface properties amongst a thickness series, we propose a strategy based on the LID technique to generally obtain surface and bulk absorption separately by investigating only one sample. Apart from measuring bulk absorption coefficients the LID technique is applied to determine the absorption of highly reflecting (HR) coatings on CaF2 substrates. Beside the measuring strategy the experimental results of a AlF3/LaF3 based HR coating are presented. In order to investigate a larger variety of coatings, including high transmitting coatings, a general measuring strategy based on the LID technique is proposed.
Koop, G; Dik, N; Nielen, M; Lipman, L J A
2010-06-01
The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC (Fossomatic 5000, Foss, Hillerød, Denmark) and TBC (BactoScan FC 150, Foss) were measured. Staphylococcal count was correlated to SCC (r=0.40), TBC (r=0.51), and SPC (r=0.53). Coliform count was correlated to TBC (r=0.33), but not to any of the other variables. Staphylococcus aureus did not correlate to SCC. The contribution of the staphylococcal count to the SPC was 31%, whereas the coliform count comprised only 1% of the SPC. The agreement of the repeated measurements was low. This study indicates that staphylococci in goat bulk milk are related to SCC and make a significant contribution to SPC. Because of the high variation in bacterial counts, repeated sampling is necessary to draw valid conclusions from bulk milk culturing. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Miniature Neutron-Alpha Activation Spectrometer
NASA Astrophysics Data System (ADS)
Rhodes, E.; Goldsten, J.
2001-01-01
We are developing a miniature neutron-alpha activation spectrometer for in situ analysis of samples including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform, that would meet the severe mass, power, and environmental constraints of missions to the outer planets. In the neutron-activation mode, a gamma-ray spectrometer will first perform a penetrating scan of soil, ice, and loose material underfoot (depths to 10 cm or more) to identify appropriate samples. Chosen samples will be analyzed in bulk in neutron-activation mode, and then the sample surfaces will be analyzed in alpha-activation mode using Rutherford backscatter and x-ray spectrometers. The instrument will provide sample composition over a wide range of elements, including rock-forming elements (such as Na, Mg, Si, Fe, and Ca), rare earths (Sm and Eu for example), radioactive elements (K, Th, and U), and light elements present in water, ices, and biological materials (mainly H, C, O, and N). The instrument is expected to have a mass of about l kg and to require less than 1 W power. Additional information is contained in the original extended abstract.
Lianou, Alexandra; Samelis, John
2014-08-01
Recent research has shown that mild milk thermization treatments routinely used in traditional Greek cheese production are efficient to inactivate Listeria monocytogenes and other pathogenic or undesirable bacteria, but they also inactivate a great part of the autochthonous antagonistic microbiota of raw milk. Therefore, in this study, the antilisterial activity of raw or thermized (63°C, 30 s) milk in the presence or absence of Lactococcus lactis subsp. cremoris M104, a wild, novel, nisin A-producing (Nis-A+) raw milk isolate, was assessed. Bulk milk samples were taken from a local cheese plant before or after thermization and were inoculated with a five-strain cocktail of L. monocytogenes (approximately 4 log CFU/ml) or with the cocktail, as above, plus the Nis-A+ strain (approximately 6 log CFU/ml) as a bioprotective culture. Heat-sterilized (121°C, 5 min) raw milk inoculated with L. monocytogenes was used as a control treatment. All milk samples were incubated at 37°C for 6 h and then at 18°C for an additional 66 h. L. monocytogenes grew abundantly (>8 log CFU/ml) in heat-sterilized milk, whereas its growth was completely inhibited in all raw milk samples. Conversely, in thermized milk, L. monocytogenes increased by 2 log CFU/ml in the absence of strain M104, whereas its growth was completely inhibited in the presence of strain M104. Furthermore, nisin activity was detected only in milk samples inoculated with strain M104. Thus, postthermal supplementation of thermized bulk milk with bioprotective L. lactis subsp. cremoris cultures replaces the natural antilisterial activity of raw milk reduced by thermization.
NASA Astrophysics Data System (ADS)
Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakahata, M.; Norita, T.; Ogawa, H.; Sato, K.; Sekiya, H.; Takachio, O.; Takeda, A.; Tasaka, S.; Yamashita, M.; Yang, B. S.; Kim, N. Y.; Kim, Y. D.; Itow, Y.; Kanzawa, K.; Kegasa, R.; Masuda, K.; Takiya, H.; Fushimi, K.; Kanzaki, G.; Martens, K.; Suzuki, Y.; Xu, B. D.; Fujita, R.; Hosokawa, K.; Miuchi, K.; Oka, N.; Takeuchi, Y.; Kim, Y. H.; Lee, K. B.; Lee, M. K.; Fukuda, Y.; Miyasaka, M.; Nishijima, K.; Nakamura, S.
2018-03-01
We established a method to assay 210Pb and 210Po contaminations in the bulk of copper samples using a low-background alpha particle counter. The achieved sensitivity for the 210Pb and 210Po contaminations reaches a few mBq/kg. Due to this high sensitivity, the 210Pb and 210Po contaminations in oxygen free copper bulk were identified and measured for the first time. The 210Pb contaminations of our oxygen free copper samples were 17-40 mBq/kg. Based on our investigation of copper samples in each production step, the 210Pb in oxygen free copper was understood to be a small residual of an electrolysis process. This method to measure bulk contaminations of 210Pb and 210Po could be applied to other materials.
NASA Astrophysics Data System (ADS)
Kobayashi, Kazuyoshi
2018-01-01
We established a method to assay 210Pb and 210Po contaminations in the bulk of copper samples using a low-background alpha particle counter. The achieved sensitivity for the 210Pb and 210Po contaminations reaches a few mBq/kg. Due to this high sensitivity, the 210Pb and 210Po contaminations in oxygen free copper bulk were identified and measured for the first time. The 210Pb contaminations of our oxygen free copper samples were 17-40 mBq/kg. Based on our investigation of copper samples in each production step, the 210Pb in oxygen free copper was understood to be a small residual of an electrolysis process. This method to measure bulk contaminations of 210Pb and 210Po could be applied to other materials.
The use of bulk collectors in monitoring wet deposition at high-altitude sites in winter
Ranalli, A.J.; Turk, J.T.; Campbell, D.H.
1997-01-01
Concentrations of dissolved ions from samples collected by wet/dry collectors were compared to those collected by bulk collectors at Halfmoon Creek and Ned Wilson Lake in western Colorado to determine if bulk collectors can be used to monitor wet deposition chemistry in remote, high-altitude regions in winter. Hydrogen-ion concentration was significantly lower (p 0.05) at Halfmoon Creek. Wet deposition concentrations were predicated from bulk deposition concentrations through linear regression analysis. Results indicate that anions (chloride, nitrate and sulfate) can be predicted with a high degree of confidence. Lack of significant differences between seasonal (winter and summer) ratios of bulk to wet deposition concentrations indicates that at sites where operation of a wet/dry collector during the winter is not practical, wet deposition concentrations can be predicted from bulk collector samples through regression analysis of wet and bulk deposition data collected during the summer.
Origins of low resistivity in Al ion-implanted ZnO bulk single crystals
NASA Astrophysics Data System (ADS)
Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.
2011-06-01
The origins of low resistivity in Al ion-implanted ZnO bulk single crystals are studied by combining Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), photoluminescence (PL), and Van der Pauw methods. The Al-ion implantation (peak concentration: 2.6 × 1020cm-3) into ZnO is performed using a multiple-step energy. The resistivity decreases from ˜104 Ω cm for un-implanted ZnO to 1.4 × 10-1 Ω cm for as-implanted, and reaches 6.0 × 10-4 Ω cm for samples annealed at 1000 °C. RBS and NRA measurements for as-implanted ZnO suggest the existence of the lattice displacement of Zn (Zni) and O (Oi), respectively. After annealing at 1000 °C, the Zni related defects remain and the Oi related defects disappear. The origin of the low resistivity in the as-implanted sample is attributed to the Zni (˜30 meV [Look et al., Phys. Rev. Lett. 82, 2552 (1999)]). In contrast, the origin of the low resistivity in the sample annealed at 1000 °C is assigned to both of the Zni related defects and the electrically activated Al donor. A new PL emission appears at around 3.32 eV after annealing at 1000 °C, suggesting electrically activated Al donors.
40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...
40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...
40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...
40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...
Appendix D - Sample Bulk Storage Facility Plan
This sample Spill Prevention, Control and Countermeasure (SPCC) Plan in Appendix D is intended to provide examples and illustrations of how a bulk storage facility could address a variety of scenarios in its SPCC Plan.
NASA Technical Reports Server (NTRS)
Rubin, Alan E.; Pernicka, Ernst
1989-01-01
Bulk compositions of 19 chondrules and one matrix-rich sample from H3.4 Sharps were determined by instrumental neutron activation analysis. Samples were characterized petrographically, and mineral compositions were determined by electron microprobe analysis. There is constancy among ordinary chondrite (OC) groups in the compositional interrelationships of different chondrule types; e.g., in H3 as well as L3 and LL3 chondrites, porphyritic chondrules are more refractory than nonporphyritic chondrules. Precursor components of H3 chondrules are closely related to those of LL3 chondrules. The mean Ir/Ni, Ir/Co, and Ir/Au ratios of H3 chondrules differ from the corresponding ratios of LL3 chondrules at the 99, 90, and 79 percent confidence levels, respectively. The ratios in H3 chondrules exceed those in LL3 chondrules by amounts similar to those by which H whole-rocks exceed LL whole-rocks. These data suggest that there are primary systematic differences in bulk composition between H and LL chondrules. These differences support the inference that chondrule formation occurred after major nebular fractionation events had established the observed bulk compositional differences among OC groups.
Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring.
Chen, Da; Song, Shuren; Ma, Jilong; Zhang, Zhen; Wang, Peng; Liu, Weihui; Guo, Qiuquan
2017-05-15
Monitoring blood coagulation is an important issue in the surgeries and the treatment of cardiovascular diseases. In this work, we reported a novel strategy for the blood coagulation monitoring based on a micro-electromechanical film bulk acoustic resonator. The resonator was excited by a lateral electric field and operated under the shear mode with a frequency of 1.9GHz. According to the apparent step-ladder curves of the frequency response to the change of blood viscoelasticity, the coagulation time (prothrombin time) and the coagulation kinetics were measured with the sample consumption of only 1μl. The procoagulant activity of thromboplastin and the anticoagulant effect of heparin on the blood coagulation process were illustrated exemplarily. The measured prothrombin times showed a good linear correlation with R 2 =0.99969 and a consistency with the coefficient of variation less than 5% compared with the commercial coagulometer. The proposed film bulk acoustic sensor, which has the advantages of small size, light weight, low cost, simple operation and little sample consumption, is a promising device for miniaturized, online and automated analytical system for routine diagnostics of hemostatic status and personal health monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
2009-01-01
measured magnetizations of Ba-doped bulk BiFeO3 samples65, 68 The coercivity, or resistance of the sample to 72 demagnetization , is about 6000 Oe on...methods for sample analysis are briefly discussed. Investigation of BaFeO3 and its structural and magnetic properties, which differ from that of the bulk ...at the atomic level. The interfaces comprised of a magnetic and ferroelectric material layered on one another has great advantage over bulk
Morán, Xosé Anxelu G; Calvo-Díaz, Alejandra
2009-01-01
The connections between single-cell activity properties of heterotrophic planktonic bacteria and whole community metabolism are still poorly understood. Here, we show flow cytometry single-cell analysis of membrane-intact (live), high nucleic acid (HNA) content and actively respiring (CTC+) bacteria with samples collected monthly during 2006 in northern Spain coastal waters. Bulk activity was assessed by measuring 3H-Leucine incorporation and specific growth rates. Consistently, different single-cell relative abundances were found, with 60-100% for live, 30-84% for HNA and 0.2-12% for CTC+ cells. Leucine incorporation rates (2-153 pmol L(-1) h(-1)), specific growth rates (0.01-0.29 day(-1)) and the total and relative abundances of the three single-cell groups showed marked seasonal patterns. Distinct depth distributions during summer stratification and different relations with temperature, chlorophyll and bacterial biovolume suggest the existence of different controlling factors on each single-cell property. Pooled leucine incorporation rates were similarly correlated with the abundance of all physiological groups, while specific growth rates were only substantially explained by the percentage of CTC+ cells. However, the ability to reduce CTC proved notably better than the other two single-cell properties at predicting bacterial bulk rates within seasons, suggesting a tight linkage between bacterial individual respiration and biomass production at the community level.
Kim, Dahae; Kim, Jung-Hyun; Kim, Min-Seob; Ra, Kongtae; Shin, Kyung-Hoon
2018-05-04
We investigate historical environmental changes in an artificial lake, Lake Shihwa in South Korea, based on bulk (TOC, TN, C/N ratio, δ 13 C TOC , and δ 15 N TN ) and molecular (concentrations and δ 13 C of n-alkanes) parameters, by analyzing riverbank sediments (n = 12), lake surface sediments (n = 9), and lake core sediments (n = 108). Although the bulk organic parameters showed similar characteristics for all lake surface sediment samples, the distribution pattern and δ 13 C of n-alkanes revealed distinct differences between 2009 samples and 2012/2016 samples. This change of sedimentary organic matter characteristics can be attributed to operation of the tidal power plant that began in 2011, which improved lake water circulation and thus changed the lake sedimentary environment from anoxic to more oxic conditions. The vertical profiles of bulk and molecular lake sediment core records collected in 2009, especially at the site closest to the dike, showed a drastic shift around 1987, indicating that stronger anoxic sedimentary conditions prevailed after 1987. This is linked to sea dike construction in 1987, which prohibited sea-lake water exchange and thus deteriorated water quality in Lake Shihwa. We conclude that Lake Shihwa has experienced severe environmental changes due to human activities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Use of thermal neutron reflection method for chemical analysis of bulk samples
NASA Astrophysics Data System (ADS)
Papp, A.; Csikai, J.
2014-09-01
Microscopic, σβ, and macroscopic, Σβ, reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σβ values are additive even for bulk samples in the z=0.5-8 cm interval and so the σβmol(z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ~1000 cm3 dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Gasoline Distribution Bulk Terminals, Bulk Plants, Pipeline Facilities and Gasoline Dispensing Facilities AGENCY: Environmental... http://www.regulations.gov . Title: NESHAP for Gasoline Distribution Bulk Terminals, Bulk Plants...
Tamminga, Matthias; Hengstmann, Elena; Fischer, Elke Kerstin
2018-03-01
Microplastic contamination in surface waters of the South Funen Archipelago in Denmark was assessed. Therefore, ten manta trawls were conducted in June 2015. Moreover, 31 low-volume bulk samples were taken to evaluate, whether consistent results in comparison to the net-based approach can be obtained. Microplastic contamination in the South Funen Archipelago (0.07 ± 0.02 particles/m3) is slightly below values reported before. The sheltered position of the study area, low population pressure on adjacent islands and the absence of any major potential point sources were identified as major factors explaining the low concentration of microplastics. Within the Archipelago, harbors or marinas and the associated vessel traffic are the most probable sources of microplastics. The concentration of microplastics in low-volume bulk samples is not comparable to manta trawl results. This is mainly due to insufficient representativeness of the bulk sample volumes.
Low Cost Solar Array Project: Composition Measurements by Analytical Photon Catalysis
NASA Technical Reports Server (NTRS)
Sutton, D. G.; Galvan, L.; Melzer, J.; Heidner, R. F., III
1979-01-01
The applicability of the photon catalysis technique for effecting composition analysis of silicon samples was assessed. Third quarter activities were devoted to the study of impurities in silicon matrices. The evaporation process was shown to be congruent; thus, the spectral analysis of the vapor yields the composition of the bulk sample. Qualitative analysis of metal impurities in silicon was demonstrated e part per million level. Only one atomic spectral interference was noted; however, it is imperative to maintain a leak tight system due to chemical and spectral interferences caused by the presence of even minute amounts of oxygen in the active nitrogen afterglow.
NASA Astrophysics Data System (ADS)
Ramasamy, Parthiban; Stoica, Mihai; Taghvaei, A. H.; Prashanth, K. G.; Ravi Kumar, Eckert, Jürgen
2016-02-01
The crystallization kinetics of [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 and {[(Fe0.5Co0.5)0.75B0.2Si0.05]0.96Nb0.04}99.5Cu0.5 bulk metallic glasses were evaluated using differential scanning calorimetry under non-isothermal condition. The fully glassy rods with diameters up to 2 mm were obtained by copper mold injection casting. Both glasses show good thermal stability, but the addition of only 0.5% Cu completely changes the crystallization behavior. The average activation energy required for crystallization decreases from 645 kJ/mol to 425 kJ/mol after Cu addition. Upon heating, the Cu-free alloy forms only the metastable Fe23B6 phase. In contrast, two well-separated exothermic events are observed for the Cu-added bulk glassy samples. First, the (Fe,Co) phase nucleates and then (Fe,Co)2B and/or (Fe,Co)3B crystallize from the remaining glassy matrix. The Cu-added alloy exhibits a lower coercivity and a higher magnetic saturation than the base alloy, both in as-cast as well as in annealed condition. Besides, the Cu-added glassy sample with 2 mm diameter exhibits a maximum compressive fracture strength of 3913 MPa together with a plastic strain of 0.6%, which is highest plastic strain ever reported for 2 mm diameter ferromagnetic bulk metallic glass sample. Although Cu addition improves the magnetic and mechanical properties of the glass, it affects the glass-forming ability of the base alloy.
Electrodrift purification of materials for room temperature radiation detectors
James, R.B.; Van Scyoc, J.M. III; Schlesinger, T.E.
1997-06-24
A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material is disclosed. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI{sub 2} and preferably HgI{sub 2}, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected. 4 figs.
Electrodrift purification of materials for room temperature radiation detectors
James, Ralph B.; Van Scyoc, III, John M.; Schlesinger, Tuviah E.
1997-06-24
A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected.
USDA-ARS?s Scientific Manuscript database
Deoxynivalenol (DON) levels in harvested grain samples are used to evaluate the Fusarium head blight (FHB) resistance of wheat cultivars and breeding lines. Fourier transform near-infrared (FT-NIR) calibrations were developed to estimate the DON and moisture content (MC) of bulk wheat grain samples ...
Measured acoustic properties of variable and low density bulk absorbers
NASA Technical Reports Server (NTRS)
Dahl, M. D.; Rice, E. J.
1985-01-01
Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.
The length of channelized lava flows: Insight from the 1859 eruption of Mauna Loa Volcano, Hawai‘i
NASA Astrophysics Data System (ADS)
Riker, Jenny M.; Cashman, Katharine V.; Kauahikaua, James P.; Montierth, Charlene M.
2009-06-01
The 1859 eruption of Mauna Loa Volcano, Hawai'i, produced paired 'a'ā and pāhoehoe flows of exceptional length (51 km). The 'a'ā flow field is distinguished by a long (> 36 km) and well-defined pāhoehoe-lined channel, indicating that channelized lava remained fluid to great distances from the vent. The 1859 eruption was further unusual in initiating at a radial vent on the volcano's northwest flank, instead of along the well-defined rift zone that has been the source of most historic activity. As such, it presents an opportunity both to examine controls on the emplacement of long lava channels and to assess hazards posed by future flank eruptions of Mauna Loa. Here we combine evidence from historical chronicles with analysis of bulk compositions, glass geothermometry, and microlite textures of samples collected along the 1859 lava flows to constrain eruption and flow emplacement conditions. The bulk compositions of samples from the 'a'ā and pāhoehoe flow fields are bimodally distributed and indicate tapping of two discrete magma bodies during eruption. Samples from the pāhoehoe flow field have bulk compositions similar to those of historically-erupted lavas (< 8 wt.% MgO); lava that fed the 'a'ā channel is more primitive (> 8 wt.% MgO), nearly aphyric, and was erupted at high temperatures (1194-1216 °C). We suggest that the physical properties of proximal channel-fed lava (i.e., high-temperature, low crystallinity, and low bulk viscosity) promoted both rapid flow advance and development of long pāhoehoe-lined channels. Critical for the latter was the large temperature decrease (~ 50 °C) required to reach the point at which plagioclase and pyroxene started to crystallize; the importance of phase constraints are emphasized by our difficulty in replicating patterns of cooling and crystallization recorded by high-temperature field samples using common models of flow emplacement. Placement of the 1859 eruption within the context of historic activity at Mauna Loa suggests that the formation of radial vents and eruptions of high-temperature magma may not only be linked, but may also be a consequence of periods of high magma supply (e.g., 1843-1877). Flank eruptions could therefore warrant special consideration in models and hazard mitigation efforts.
Guideline on Isotope Dilution Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaffney, Amy
Isotope dilution mass spectrometry is used to determine the concentration of an element of interest in a bulk sample. It is a destructive analysis technique that is applicable to a wide range of analytes and bulk sample types. With this method, a known amount of a rare isotope, or ‘spike’, of the element of interest is added to a known amount of sample. The element of interest is chemically purified from the bulk sample, the isotope ratio of the spiked sample is measured by mass spectrometry, and the concentration of the element of interest is calculated from this result. Thismore » method is widely used, although a mass spectrometer required for this analysis may be fairly expensive.« less
Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields
NASA Astrophysics Data System (ADS)
Collins, Christian B.; Ackerson, Christopher J.
2018-02-01
The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.
Influence of Ag, Cd or Pb Addition on Electrical and Dielectric Properties of Bulk Glassy Se-Ge
NASA Astrophysics Data System (ADS)
El-Metwally, E. G.; Shakra, A. M.
2018-05-01
Bulk glassy samples of Se0.7Ge0.3 and Se0.7Ge0.25 X 0.05 (X = Ag, Cd or Pb) chalcogenide glass have been prepared by melt-quenching method. The studied compositions were examined in powder form by x-ray diffraction analysis. The direct-current (dc) conductivity σ_{{dc}} was measured for bulk samples in the temperature range from 303 K to 433 K, revealing enhancement with temperature for all samples. The results indicate two values of activation energy ( Δ E_{{σ1 }} and Δ E_{{σ2 }} ) due to two conduction mechanisms. Measurements of the alternating-current (ac) conductivity σ_{{ac}} ( ω ) and dielectric properties for bulk samples were carried out in the temperature range from 303 K to 433 K and frequency range from 1 kHz to 1 MHz. The ac conductivity σ_{{ac}} ( ω ) was temperature dependent and proportional to ωS , where S is the frequency exponent, which reduced with rising temperature, and ω is the angular frequency. These results are discussed based on a correlated barrier hopping model. The calculated values of the maximum height of the barrier W_{{M}} for each composition are consistent with carrier hopping over a potential barrier. The density of localized states N( {E_{{F}} } ) at the Fermi level lay in the range from 1019 eV-1 cm-3 to 1020 eV-1 cm-3, and increased with temperature. The dielectric constant ɛ1 ( ω ) and loss ɛ2 ( ω ) increased with temperature but decreased with frequency. The values of σ_{{dc}} , σ_{{ac}} ( ω ) , ɛ1 ( ω ) , and ɛ2 ( ω ) increased with temperature and with addition of Ag, Cd or Pb. The observed increase was greater for Se0.7Ge0.25Pb0.05 than for Se0.7Ge0.25Cd0.05, which was greater than for Se0.7Ge0.25Ag0.05.
NASA Astrophysics Data System (ADS)
Günther, A.; Hochleitner, R.; Lohringer, H.; Schmidbauer, E.; Schöttler-Himmel, A.; Volk, M.
2017-05-01
Electrical and dielectric properties were measured on rutile-type FeNbTiO6, sintered in air, CO2 or 5%H2/CO2 atmosphere between temperatures of 1423 and 1573 K. The individual samples show characteristic differences in DC and AC conductivity, dielectric constant ε(ω) (ω is angular frequency), dielectric loss and dissipation factor. Attempts were made to distinguish between bulk, grain boundary (GB) and sample-electrode (SE) processes. Samples show very high relaxor-like ε(ω) peaks at 500-600 K using Ag-paint contacts as expected from previous studies during preparation in air that is of interest for industrial application; utilizing Pt-paint and using slightly reducing sintering conditions, a clear variation was observed. These findings point to a notable influence of GB and/or SE effects on the experimental ε(ω), in addition to the intrinsic origin by polar nanoregions, as suggested earlier. Complex plane impedance plots are characterized by semicircular arcs due to bulk, GB and/or SE charge transport. The derived DC conductivity σDC shows Arrhenius behavior with activation energy of EA≈0.27-0.37 eV and σDC(300 K) ≈1×10-6-3×10-4 Ω-1cm-1 for the bulk, EA≈0.7-0.9 eV and σDC(300 K)≈5×10-10-1×10-4 Ω-1cm-1 for GB and/or SE processes, depending on the preparation conditions. The thermopower is small and negative, hence n-type conduction occurs and the charge carriers are electrons or electron polarons. 57Fe Mössbauer spectroscopy enabled to gain knowledge of local nonstoichiometry in the environment of Fe cations, presumably affecting electrical conduction in the bulk and GBs; after sample preparation in reducing conditions, apart from Fe3+ also the presence of Fe2+ ions was established.
Dzhongova, Elitsa; Harwood, Colin R; Thennadil, Suresh N
2011-11-01
In order to determine the bulk optical properties of a Bacillus subtilis culture during growth phase we investigated the effect of sample thickness on measurements taken with different measurement configurations, namely total diffuse reflectance and total diffuse transmittance. The bulk optical properties were extracted by inverting the measurements using the radiative transfer theory. While the relationship between reflectance and biomass changes with sample thickness and the intensity (absorbance) levels vary significantly for both reflectance and transmittance measurements, the extracted optical properties show consistent behavior in terms of both the relationship with biomass and magnitude. This observation indicates the potential of bulk optical properties for building models that could be more easily transferable compared to those built using raw measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; School of Chemical Engineering and Materials Engineering, Huainan Normal University, Huainan 232038; Zou, Lei
2015-08-15
Highlights: • YVO{sub 4} polyhedrons were prepared from Y(OH){sub 3} nanofiber bundles through a hydrothermal conversion process. • In contrast to the bulk oxide, the photocatalytic performance of the polyhedrons was much improved. • The main active species involved in photocatalytic oxidative reaction were also investigated. - Abstract: This paper reports a hydrothermal conversion process of rare earth microstructures, Y(OH){sub 3} nanofiber bundles, into YVO{sub 4} polyhedrons, together with the investigation on the related photocatalytic properties. The as-synthesized samples were characterized by a variety of techniques, including XRD, SEM, TEM and UV–vis diffuse reflectance spectroscopy. The photocatalytic activities of YVO{submore » 4} polyhedrons were comparatively evaluated by the photodegradation of Rhodamine B and methylene blue. In contrast to the bulk oxide, the photocatalytic performance of the polyhedrons was much improved. The mechanism and the main active species involved in photocatalytic oxidative reaction were also investigated through the carriers trapping experiments.« less
NASA Astrophysics Data System (ADS)
Sitko, Rafał
2008-11-01
Knowledge of X-ray tube spectral distribution is necessary in theoretical methods of matrix correction, i.e. in both fundamental parameter (FP) methods and theoretical influence coefficient algorithms. Thus, the influence of X-ray tube distribution on the accuracy of the analysis of thin films and bulk samples is presented. The calculations are performed using experimental X-ray tube spectra taken from the literature and theoretical X-ray tube spectra evaluated by three different algorithms proposed by Pella et al. (X-Ray Spectrom. 14 (1985) 125-135), Ebel (X-Ray Spectrom. 28 (1999) 255-266), and Finkelshtein and Pavlova (X-Ray Spectrom. 28 (1999) 27-32). In this study, Fe-Cr-Ni system is selected as an example and the calculations are performed for X-ray tubes commonly applied in X-ray fluorescence analysis (XRF), i.e., Cr, Mo, Rh and W. The influence of X-ray tube spectra on FP analysis is evaluated when quantification is performed using various types of calibration samples. FP analysis of bulk samples is performed using pure-element bulk standards and multielement bulk standards similar to the analyzed material, whereas for FP analysis of thin films, the bulk and thin pure-element standards are used. For the evaluation of the influence of X-ray tube spectra on XRF analysis performed by theoretical influence coefficient methods, two algorithms for bulk samples are selected, i.e. Claisse-Quintin (Can. Spectrosc. 12 (1967) 129-134) and COLA algorithms (G.R. Lachance, Paper Presented at the International Conference on Industrial Inorganic Elemental Analysis, Metz, France, June 3, 1981) and two algorithms (constant and linear coefficients) for thin films recently proposed by Sitko (X-Ray Spectrom. 37 (2008) 265-272).
Wágner, Dorottya S; Ramin, Elham; Szabo, Peter; Dechesne, Arnaud; Plósz, Benedek Gy
2015-07-01
The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient and compression settling velocity functions were estimated by carrying out biweekly batch settling tests using a novel column setup through a four-month long measurement campaign. To estimate viscosity model parameters, rheological experiments were carried out on the same sludge sample using a rotational viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that M. parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through altering the hindered settling velocity and yield stress parameter. Strikingly, this is not the case for Chloroflexi, occurring in more than double the abundance of M. parvicella, and forming filaments primarily protruding from the flocs. The transient and compression settling parameters show a comparably high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from explicitly accounting for filamentous bulking by calibrating the hindered settling velocity function. Furthermore, accounting for the transient and compression settling velocity in the computational domain is crucial to improve model accuracy when modelling filamentous bulking. However, the case-specific calibration of transient and compression settling parameters as well as yield stress is not necessary, and an average parameter set - obtained under bulking and good settling conditions - can be used. Copyright © 2015 Elsevier Ltd. All rights reserved.
Paired lunar meteorites MAC88104 and MAC88105 - A new 'FAN' of lunar petrology
NASA Astrophysics Data System (ADS)
Neal, Clive R.; Taylor, Lawrence A.; Lui, Yun-Gang; Schmitt, Roman A.
1991-11-01
To determine the chemical characteristics of the MAC88104/5 meteorite six thin sections and three bulk samples were analyzed by electron microprobe and instrumental neutron activation. It is concluded that this meteorite is dominated by lithologies of the ferroan anorthosite suite and contains abundant granulitized highland clasts, devitrified glass beads of impact origin, and two small clasts of basaltic origin. It is suggested that one of these basaltic clasts, clast E, is mesostasis material, and clast G is similar to the very low-Ti or low-Ti/high-alumina mare basalts. Impact melt clasts MAC88105, 69, and 72 have major and trace element compositions similar to the bulk meteorite.
19 CFR 151.24 - Unlading facilities for bulk sugar.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...
19 CFR 151.24 - Unlading facilities for bulk sugar.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 2 2011-04-01 2011-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...
19 CFR 151.24 - Unlading facilities for bulk sugar.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 2 2014-04-01 2014-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...
19 CFR 151.24 - Unlading facilities for bulk sugar.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 2 2012-04-01 2012-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...
19 CFR 151.24 - Unlading facilities for bulk sugar.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 2 2013-04-01 2013-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...
Should bulk cloudwater or fogwater samples obey Henry's law?
NASA Astrophysics Data System (ADS)
Pandis, Spyros N.; Seinfeld, John H.
1991-06-01
Mixing of droplets with different pH that are individually in Henry's law equilibrium with the surrounding atmosphere always results in a bulk mixture that is supersaturated with weak acids like S(IV) and HCOOH, and bases like NH3 with respect to the original atmosphere. High supersaturations result only when the pH of the bulk droplet mixture exceeds the pKa of the species, in which pH range large pH differences among droplets of different sizes lead to large deviations from Henry's law for the bulk mixture. The deviation is shown to depend on the ratio of the arithmetic mean to the harmonic mean of the hydrogen ion concentrations of the droplets with the liquid water content used as weighting factor in the calculation of the means. The theory developed can explain observed discrepancies from Henry's law in atmospheric samples and also other observed phenomena like the reported increase of pH values of bulk aqueous samples during storage.
NASA Astrophysics Data System (ADS)
Drazin, John Walter
Calcia-, and yttria- doped zirconia powders and samples are essential systems in academia and industry due to their observed bulk polymorphism. Pure zirconia manifests as Baddeleyite, a monoclinic structured mineral with 7-fold coordination. This bulk form of zirconia has little application due to its asymmetry. Therefore dopants are added to the grain in-order to induce phase transitions to either a tetragonal or cubic polymorph with the incorporation of oxygen vacancies due to the dopant charge mis-match with the zirconia matrix. The cubic polymorph has cubic symmetry such that these samples see applications in solid oxide fuel cells (SOFCs) due to the high oxygen vacancy concentrations and high ionic mobility at elevated temperatures. The tetragonal polymorph has slight asymmetry in the c-axis compared to the a-axis such that the tetragonal samples have increased fracture toughness due to an impact induced phase transformation to a cubic structure. These ceramic systems have been extensively studied in academia and used in various industries, but with the advent of nanotechnology one can wonder whether smaller grain samples will see improved characteristics similar to their bulk grain counterparts. However, there is a lack of data and knowledge of these systems in the nano grained region which provides us with an opportunity to advance the theory in these systems. The polymorphism seen in the bulk grains samples is also seen in the nano-grained samples, but at slightly distinct dopant concentrations. The current theory hypothesizes that a surface excess, gamma (J/m 2), can be added to the Gibbs Free energy equation to account for the additional free energy of the nano-grain atoms. However, these surface energies have been difficult to measure and therefore thermodynamic data on these nano-grained samples have been sparse. Therefore, in this work, I will use a well established water adsorption microcalorimetry apparatus to measure the water coverage isotherms while simultaneously collecting the energetic contribution of the adsorbing water vapor. With this data and apparatus, I have derived a 2nd order differential equation that relates the surface energy to the measured quantities such that I collected surfaces energies for over 35 specimens in the calcia-zirconia and yttria-zirconia systems for the first time. From the results, it was found that the monoclinic polymorph had the largest surface energy in the range of 1.9 - 2.1 ( J/m2) while the tetragonal surface energies were roughly 1.4 - 1.6 (J/m2), the cubic surface energies were roughly 0.8 - 1.0 (J/m2), and the amorphous surface energies were the smallest at roughly 0.7 - 0.8 (J/m 2). With the measured surface energy data, collected for the first time, we can create a nano-grain phase diagram similar to a bulk phase diagram that shows the stable polymorph as a function of dopant concentration and grain size using the bulk enthalpy data collected from high temperature oxide melt drop solution calorimetry. The phase diagrams show that pure zirconia will transform into tetragonal and cubic polymorphs from the monoclinic one at 7 and 5 nm respectively which confirms the experimental observations. The results are powerful predictive tools successfully applied in the nCZ and nYZ systems to a high degree of accuracy and adds a new development to conventional bulk phase diagrams. These diagrams should be the basis for nanotechnological efforts in nCZ and nYZ based systems, and suggest similar efforts are needed in other nano systems to pursue an in depth understanding and optimization of nanomaterials. After working on the theoretical aspects of phase stability, the focus of the research will shift to producing dense samples to measure observable quantities such as oxygen conduction and mechanical hardness. However, producing said samples with the nanocrystalline grain sizes has also been challenging as conventional sintering requires high temperatures which, as a consequence, induces grain growth of the samples limiting the minimum grain size of the samples. Therefore, in this work, we have developed a Pressure Assisted Rapid Sintering Technique (PARS) that uses high currents to Joule heat the samples to moderate temperatures (650-900 °C) for short durations (5-10 min) under large compressive pressures (600-2200 MPa). With this new technique, atomic level grain sizes (sub-10nm) can be easily achieved at high relative densities (>98 %). Using the PARS setup, multiple 3nYZ samples were produced with varied grain sizes down to 9 nm and as large as 5mum. The mechanical hardness of these samples were tested using a Vicker's microhardness indentation apparatus. The hardness of the "bulk" grains was roughly 12.9 GPa while the smallest grain size pellet had a hardness approaching 15 GPa. All of the 3nYZ pellets had a higher hardness with diminishing grain size, thereby extending the Hall-Petch relationship to 9 nm in the 3YZ system. This is an amazing and unprecedented result to date. After producing the extreme nano-grained samples (15nCZ and 17.5nYSZ), they were tested for inter- and intragranular oxygen ion conduction as well. The results showed that the smaller grained samples have increased levels of oxygen ion conduction from both inter- and intragranular diffusion regardless of the operating temperatures. In addition, it was seen that the activation energies for both modes of oxygen ion diffusion were lowered for the nCZ system while a plateaued effect was seen in the nYZ system. A new theoretical formulation was proposed to explain the trends such that there are two modifiable parameters to exploit; activation energy and grain size. With the lowering of the grain size, the number of interconnected grain boundaries would increase dramatically allowing for more efficient travel around and through the grains. The activation energy can be lowered by modifying the chemistry of the grain boundary by specifically choosing larger dopants with a positive enthalpy of segregation such the concentration of the dopants on the grain boundary would increase, spacing the unattached bonds further apart and reducing their number. Therefore, one can use an engineered nanograined SOFC to decrease the operating temperature of the device without altering the output power density; significantly improving safety and economics.
Trevisi, R; Risica, S; D'Alessandro, M; Paradiso, D; Nuccetelli, C
2012-02-01
The authors set up a database of activity concentration measurements of natural radionuclides (²²⁶Ra, ²³²Th and ⁴⁰K) in building material. It contains about 10,000 samples of both bulk material (bricks, concrete, cement, natural- and phosphogypsum, sedimentary and igneous bulk stones) and superficial material (igneous and metamorphic stones) used in the construction industry in most European Union Member States. The database allowed the authors to calculate the activity concentration index I--suggested by a European technical guidance document and recently used as a basis for elaborating the draft Euratom Basic Safety Standards Directive--for bricks, concrete and phosphogypsum used in the European Union. Moreover, the percentage could be assessed of materials possibly subject to restrictions, if either of the two dose criteria proposed by the technical guidance were to be adopted. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bellomo, S; D'Alessandro, W; Longo, M
2003-01-01
Many studies have assessed the strong influence of volcanic activity on the surrounding environment. This is particularly true for strong gas emitters such as Mt. Etna and Stromboli volcanoes. Among volcanic gases, fluorine compounds are potentially very harmful. Fluorine cycling through rainwater in the above volcanic areas was studied analysing more than 400 monthly bulk samples. Data indicate that only approximately 1% of fluorine emission through the plume is deposited on the two volcanic areas by meteoric precipitations. Although measured bulk rainwater fluorine fluxes are comparable to and sometimes higher than in heavily polluted areas, their influence on the surrounding vegetation is limited. Only annual crops, in fact, show some damage that could be an effect of fluorine deposition, indicating that long-living endemic plant species or varieties have developed some kind of resistance. Copyright 2002 Elsevier Science B.V.
Direct Comparison of Surface and Bulk Relaxation of PS - A Temperature Dependent Study
NASA Astrophysics Data System (ADS)
Wu, Wen-Li; Sambasivan, Sharadha; Wang, Chia-Ying; Genzer, Jan; Fischer, Daniel A.
2005-03-01
Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to measure simultaneously the relaxation rates of polystyrene (PS) molecules at the free surface and in the bulk. The samples were uniaxially oriented at room temperature via a modified cold rolling process. The density of the oriented samples as determined by liquid immersion technique is identical to that of bulk PS. At temperatures below its bulk glass transition temperature the rate of surface and bulk chain relaxation was monitored by measuring the partial-electron yield (PEY) and the fluorescence NEXAFS yields (FS), respectively, both parallel and perpendicular to the stretching direction. The decay rate of the dichroic ratios from both PEY and FY at various temperatures was taken as a measure of the relaxation rate of surface and bulk molecules respectively. In addition, the decay rate of the optical birefringence was also measured to provide an independent measure of the bulk relaxation. Relaxation of PS chains was found to occur faster on the surface relative to the bulk. The magnitude of the surface glass transition temperature suppression over the bulk was estimated to be 18 C based on the measured temperature dependence of the relaxation rates.
9 CFR 113.111 - Clostridium Perfringens Type C Toxoid and Bacterin-Toxoid.
Code of Federal Regulations, 2013 CFR
2013-01-01
... a prescribed test shall not be released. (a) Purity test. Final container samples of completed... § 113.26. (b) Safety test. Bulk or final container samples of completed product from each serial shall be tested for safety as provided in § 113.33(b). (c) Potency test. Bulk or final container samples of...
9 CFR 113.111 - Clostridium Perfringens Type C Toxoid and Bacterin-Toxoid.
Code of Federal Regulations, 2014 CFR
2014-01-01
... a prescribed test shall not be released. (a) Purity test. Final container samples of completed... § 113.26. (b) Safety test. Bulk or final container samples of completed product from each serial shall be tested for safety as provided in § 113.33(b). (c) Potency test. Bulk or final container samples of...
9 CFR 113.111 - Clostridium Perfringens Type C Toxoid and Bacterin-Toxoid.
Code of Federal Regulations, 2012 CFR
2012-01-01
... a prescribed test shall not be released. (a) Purity test. Final container samples of completed... § 113.26. (b) Safety test. Bulk or final container samples of completed product from each serial shall be tested for safety as provided in § 113.33(b). (c) Potency test. Bulk or final container samples of...
Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen
This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopographymore » in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.« less
Thermoelastic enhancement of the magnonic spin Seebeck effect in thin films and bulk samples
NASA Astrophysics Data System (ADS)
Chotorlishvili, L.; Wang, X.-G.; Toklikishvili, Z.; Berakdar, J.
2018-04-01
A nonuniform temperature profile may generate a pure spin current in magnetic films, as observed, for instance, in the spin Seebeck effect. In addition, thermally induced elastic deformations may set in that could affect the spin current. A self-consistent theory of the magnonic spin Seebeck effect including thermally activated magnetoelastic effects is presented, and analytical expressions for the thermally activated deformation tensor and dispersion relations for coupled magnetoelastic modes are obtained. We derive analytical results for bulk (three-dimensional) systems and thin magnetic (two-dimensional) films. We observe that the displacement vector and the deformation tensor in bulk systems decay asymptotically as u ˜1 /R2 and ɛ ˜1 /R3 , respectively, while the decays in thin magnetic films proceed slower, following u ˜1 /R and ɛ ˜1 /R2 . The dispersion relations evidence a strong anisotropy in the magnetic excitations. We observe that a thermoelastic steady-state deformation may lead to both an enchantment and a reduction of the gap in the magnonic spectrum. The reduction of the gap increases the number of magnons contributing to the spin Seebeck effect and offers new possibilities for the thermoelastic control of the spin Seebeck effect.
Non-noble catalysts and catalyst supports for phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Mcalister, A. J.
1981-01-01
Four different samples of the cubic alloys W sub x-1 Ti sub x C sub 1-y were prepared and found to be active and CO tolerant. When the activities of these cubic alloys were weighted by the reciprocal of the square of the W exchange, they displayed magnitudes and dependence on bulk C deficiency comparable to those of highly active forms of WC. It is concluded that they may offer important insight into the nature of the active sites on, and means for improving the performance of, W-C anode catalysts for use in phosphoric acid fuel cells.
NASA Astrophysics Data System (ADS)
Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri
2017-09-01
An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70°C for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear.
Raman study of supported molybdenum disulfide single layers
NASA Astrophysics Data System (ADS)
Durrer, William; Manciu, Felicia; Afanasiev, Pavel; Berhault, Gilles; Chianelli, Russell
2008-10-01
Owing to the increasing demand for clean transportation fuels, highly dispersed single layer transition metal sulfides such as MoS2-based catalysts play an important role in catalytic processes for upgrading and removing sulfur from heavy petroleum feed. In its crystalline bulk form, MoS2 is chemically rather inactive due to a strong tendency to form highly stacked layers, but, when dispersed as single-layer nanoclusters on a support, the MoS2 becomes catalytically active in the hydrogenolysis of sulphur and nitrogen from organic compounds (hydrotreating catalysis). In the present studies alumina-supported MoS2 samples were analyzed by confocal Raman spectroscopy. Evidence of peaks at 152 cm-1, 234 cm-1, and 336 cm-1, normally not seen in the Raman spectrum of the standard bulk crystal, confirms the formation of single layers of MoS2. Furthermore, the presence of the 383 cm-1 Raman line suggests the trigonal prismatic coordination of the formed MoS2 single layers. Depending on the sample preparation method, a restacking of MoS2 layers is also observed, mainly for ex-thiomolybdate samples sulfided at 550 C.
Kruze, J; Monti, G; Schulze, F; Mella, A; Leiva, S
2013-09-01
Paratuberculosis, an infectious disease of domestic and wild ruminants caused by Mycobacterium avium subsp. paratuberculosis (Map), is an economically important disease in dairy herds worldwide. In Chile the disease has been reported in domestic and wildlife animals. However, accurate and updated estimations of the herd-prevalence in cattle at national or regional level are not available. The objectives of this study were to determine the herd-level prevalence of dairy herds with Map infected animals of Southern Chile, based on two diagnostic tests: culture of environmental fecal samples and bulk-tank milk qPCR. Two composite environmental fecal samples and one bulk-tank milk sample were collected during September 2010 and September 2011 from 150 dairy farms in Southern Chile. Isolation of Map from environmental fecal samples was done by culture of decontaminated samples on a commercial Herrold's Egg Yolk Medium (HEYM) with and without mycobactin J. Suspicious colonies were confirmed to be Map by conventional IS900 PCR. Map detection in bulk-tank milk samples was done by real time IS900 PCR assay. PCR-confirmed Map was isolated from 58 (19.3%) of 300 environmental fecal samples. Holding pens and manure storage lagoons were the two more frequent sites found positive for Map, representing 35% and 33% of total positive samples, respectively. However, parlor exits and cow alleyways were the two sites with the highest proportion of positive samples (40% and 32%, respectively). Herd prevalence based on environmental fecal culture was 27% (true prevalence 44%) compared to 49% (true prevalence 87%) based on bulk-tank milk real time IS900 PC. In both cases herd prevalence was higher in large herds (>200 cows). These results confirm that Map infection is wide spread in dairy herds in Southern Chile with a rough herd-level prevalence of 28-100% depending on the herd size, and that IS900 PCR on bulk-tank milk samples is more sensitive than environmental fecal culture to detect Map-infected dairy herds. Copyright © 2013 Elsevier B.V. All rights reserved.
Fused Bead Analysis of Diogenite Meteorites
NASA Technical Reports Server (NTRS)
Mittlefehldt, D.W.; Beck, B.W.; McSween, H.Y.; Lee, C.T. A.
2009-01-01
Bulk rock chemistry is an essential dataset in meteoritics and planetary science [1]. A common method used to obtain the bulk chemistry of meteorites is ICP-MS. While the accuracy, precision and low detection limits of this process are advantageous [2], the sample size used for analysis (approx.70 mg) can be a problem in a field where small and finite samples are the norm. Fused bead analysis is another bulk rock analytical technique that has been used in meteoritics [3]. This technique involves forming a glass bead from 10 mg of sample and measuring its chemistry using a defocused beam on a microprobe. Though the ICP-MS has lower detection limits than the microprobe, the fused bead method destroys a much smaller sample of the meteorite. Fused bead analysis was initially designed for samples with near-eutectic compositions and low viscosities. Melts generated of this type homogenize at relatively low temperatures and produce primary melts near the sample s bulk composition [3]. The application of fused bead analysis to samples with noneutectic melt compositions has not been validated. The purpose of this study is to test if fused bead analysis can accurately determine the bulk rock chemistry of non-eutectic melt composition meteorites. To determine this, we conduct two examinations of the fused bead. First, we compare ICP-MS and fused bead results of the same samples using statistical analysis. Secondly, we inspect the beads for the presence of crystals and chemical heterogeneity. The presence of either of these would indicate incomplete melting and quenching of the bead.
Hg Storage and Mobility in Tundra Soils of Northern Alaska
NASA Astrophysics Data System (ADS)
Olson, C.; Obrist, D.
2017-12-01
Atmospheric mercury (Hg) can be transported over long distances to remote regions such as the Arctic where it can then deposit and temporarily be stored in soils. This research aims to improve the understanding of terrestrial Hg storage and mobility in the arctic tundra, a large receptor area for atmospheric deposition and a major source of Hg to the Arctic Ocean. We aim to characterize spatial Hg pool sizes across various tundra sites and to quantify the mobility of Hg from thawing tundra soils using laboratory mobility experiments. Active layer and permafrost soil samples were collected in the summer of 2014 and 2015 at the Toolik Field Station in northern Alaska (68° 38' N) and along a 200 km transect extending from Toolik to the Arctic Ocean. Soil samples were analyzed for total Hg concentration, bulk density, and major and trace elements. Hg pool sizes were estimated by scaling up Hg soil concentrations using soil bulk density measurements. Mobility of Hg in tundra soils was quantified by shaking soil samples with ultrapure Milli-Q® water as an extracting solution for 24 and 72 hours. Additionally, meltwater samples were collected for analysis when present. The extracted supernatant was analyzed for total Hg, dissolved organic carbon, cations and anions, redox, and ph. Mobility of Hg from soil was calculated using Hg concentrations determined in solid soil samples and in supernatant of soil solution samples. Results of this study show Hg levels in tundra mineral soils that are 2-5 times higher than those observed at temperate sites closer to pollution sources. Most of the soil Hg was located in mineral horizons where Hg mass accounted for 72% of the total soil pool. Soil Hg pool sizes across the tundra sites were highly variable (166 - 1,365 g ha-1; avg. 419 g ha-1) due to the heterogeneity in soil type, bulk density, depth to frozen layer, and soil Hg concentration. Preliminary results from the laboratory experiment show higher mobility of Hg in mineral soils of active layer samples (0.062%) than in permafrost soils (0.026%) where soil Hg concentrations were lower. Mobilization of Hg stored in thawing permafrost soils could lead to accelerated export of Hg to aquatic systems, with major implications to Arctic wildlife and human health.
Somatic cell counts in bulk milk and their importance for milk processing
NASA Astrophysics Data System (ADS)
Savić, N. R.; Mikulec, D. P.; Radovanović, R. S.
2017-09-01
Bulk tank milk somatic cell counts are the indicator of the mammary gland health in the dairy herds and may be regarded as an indirect measure of milk quality. Elevated somatic cell counts are correlated with changes in milk composition The aim of this study was to assess the somatic cell counts that significantly affect the quality of milk and dairy products. We examined the somatic cell counts in bulk tank milk samples from 38 farms during the period of 6 months, from December to the May of the next year. The flow cytometry, Fossomatic was used for determination of somatic cell counts. In the same samples content of total proteins and lactose was determined by Milcoscan. Our results showed that average values for bulk tank milk samples were 273,605/ml from morning milking and 292,895/ml from evening milking. The average values for total proteins content from morning and evening milking are 3,31 and 3,34%, respectively. The average values for lactose content from morning and evening milking are 4,56 and 4,63%, respectively. The highest somatic cell count (516,000/ml) was detected in bulk tank milk sample from evening milk in the Winter and the lowest content of lactose was 4,46%. Our results showed that obtained values for bulk tank milk somatic cell counts did not significantly affected the content of total proteins and lactose.
NASA Technical Reports Server (NTRS)
Fieldler, F. S.; Ast, D.
1982-01-01
Experimental techniques for the preparation of electron beam induced current samples of Web-dentritic silicon are described. Both as grown and processed material were investigated. High density dislocation networks were found close to twin planes in the bulk of the material. The electrical activity of these networks is reduced in processed material.
A magnetic resonance study of MoS(2) fullerene-like nanoparticles.
Panich, A M; Shames, A I; Rosentsveig, R; Tenne, R
2009-09-30
We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) investigation of inorganic fullerene-like MoS(2) nanoparticles. Spectra of bulk 2H-MoS(2) samples have also been measured for comparison. The similarity between the measured quadrupole coupling constants and chemical shielding anisotropy parameters for bulk and fullerene-like MoS(2) reflects the nearly identical local crystalline environments of the Mo atoms in these two materials. EPR measurements show that fullerene-like MoS(2) exhibits a larger density of dangling bonds carrying unpaired electrons, indicative of them having a more defective structure than the bulk sample. The latter observation explains the increase in the spin-lattice relaxation rate observed in the NMR measurements for this sample in comparison with the bulk 2H- MoS(2) ones.
A magnetic resonance study of MoS2 fullerene-like nanoparticles
NASA Astrophysics Data System (ADS)
Panich, A. M.; Shames, A. I.; Rosentsveig, R.; Tenne, R.
2009-09-01
We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) investigation of inorganic fullerene-like MoS2 nanoparticles. Spectra of bulk 2H-MoS2 samples have also been measured for comparison. The similarity between the measured quadrupole coupling constants and chemical shielding anisotropy parameters for bulk and fullerene-like MoS2 reflects the nearly identical local crystalline environments of the Mo atoms in these two materials. EPR measurements show that fullerene-like MoS2 exhibits a larger density of dangling bonds carrying unpaired electrons, indicative of them having a more defective structure than the bulk sample. The latter observation explains the increase in the spin-lattice relaxation rate observed in the NMR measurements for this sample in comparison with the bulk 2H- MoS2 ones.
New Magnetic and Geochemical Results on Topsoils of the Mexico City Metropolitan Area
NASA Astrophysics Data System (ADS)
Martínez-Pichar, E.; Soler-Arechalde, A. M.; Morton, O.; Hernandez, E.; Lozano-Santa-Cruz, R.; Gonzalez, G.; Beramendi, L.; Urrutia-Fucugauchi, J. H.
2008-05-01
The Metropolitan Area of Mexico city is a region well known for intense industrial and commercial activity. The potential sources of the heavy metal pollutants are assumed to be petroleum processing, production of iron material, manufacturing, coal combustion, commercial and automobile exhaust. New samples were collected from industrial, roadside, residential and public parks in the urban areas around the city and added to two previous field campaigns (2003 and 2005). Localities selected for the study represent, presumably, different heavy metal pollution levels and sources. At each sampling point, the top 2 cm layer of the soil profile was collected with a stainless steel trowel and stored in a plastic bag. The elements Fe, Cu and Zn concentrations were determined by EDXRF (Philips PW1400 apparatus) on bulk- sample pressed, boric-acid backed pellets. Metal concentrations of Pb, Ni, Cr, and V were analyzed by ICP-MS with a VG Elemental PQ3 instrument. Magnetic mineralogy in bulk soil samples was investigated by low-field susceptibility using a Kappabridge KLY2. Remanent magnetizations (ARM and IRM) and Hysteresis loops of micro samples had been carried out at room temperature. Bivariate analysis on different ratios of magnetic parameters was employed to characterize the pollution sources.
Spanjer, M; Stroka, J; Patel, S; Buechler, S; Pittet, A; Barel, S
2001-06-01
Mycotoxins contamination is highly non-uniformly distributed as is well recog-nized by the EC, by not only setting legal limits in a series of commodities, but also schedule a sampling plan that takes this heterogeneity into account. In practice however, it turns out that it is very difficult to carry out this sampling plan in a harmonised way. Applying the sampling plan to a container filled with pallets of bags (i.e. with nuts or coffee beans) varies from very laborious to almost impossible. The presented non-destructive automated method to sample bulk food could help to overcome these practical problems and to enforcing of EC directives. It is derived from a tested and approved technology for detection of illicit substances in security applications. It has capability to collect and iden-tify ultra trace contaminants, i.e. from a fingerprint of chemical substance in a bulk of goods, a cargo pallet load (~ 1000 kg) with boxes and commodities.The technology, patented for explosives detection, uses physical and chemistry processes for excitation and remote rapid enhanced release of contaminant residues, vapours and particulate, of the inner/outer surfaces of inspected bulk and collect them on selective probes. The process is automated, takes only 10 minutes, is non-destructive and the bulk itself remains unharmed. The system design is based on applicable international regulations for shipped cargo hand-ling and transportation by road, sea and air. After this process the pallet can be loaded on a truck, ship or plane. Analysis can be carried out before the cargo leaves the place of shipping. The potent application of this technology for myco-toxins detection, has been demonstrated by preliminary feasibility experiments. Aflatoxins were detected in pistachios and ochratoxin A in green coffee beans bulk. Both commodities were naturally contaminated, priory found and confirm-ed by common methods as used at routine inspections. Once the contaminants are extracted from a bulk shipment, an appropriate existing analytical method, i.e. a CEN method, can be used to measure the mycotoxins.The system, routinely in use for explosives detection, was able to screen bulk food and feed for mycotoxins, through non-destructive automated sampling of a whole batch/lot/sublot of commodities. The opportunity to sample a whole bulk would provide more effective tools for inspection at seaports, production facili-ties and distri-bution points. It will advance the current process of myco-toxins check because: (i) Checks will be automated and harmonized, (ii) Checks will be non-destructive, (iii) Checks will be faster and allow a greater amount of bulk commodities to be inspected and (iv) The ability to check, with automated equipment, larger portions of lots of a shipment will increase the probability to detect the heterogeneous mycotoxins contamination in bulk foods. The poster provides some results of feasibility experiments indicating the capability of this technology for inspection of commodities bulks for the detection of mycotoxins, at legal limits, in naturally contaminated food.
Haptoglobin and serum amyloid A in bulk tank milk in relation to raw milk quality.
Akerstedt, Maria; Waller, Karin Persson; Sternesjö, Ase
2009-11-01
The aim of the present study was to evaluate relationships between the presence of the two major bovine acute phase proteins haptoglobin (Hp) and serum amyloid A (SAA) and raw milk quality parameters in bulk tank milk samples. Hp and SAA have been suggested as specific markers of mastitis but recently also as markers for raw milk quality. Since mastitis has detrimental effects on milk quality, it is important to investigate whether the presence of Hp or SAA indicates such changes in the composition and properties of the milk. Bulk tank milk samples (n=91) were analysed for Hp, SAA, total protein, casein, whey protein, proteolysis, fat, lactose, somatic cell count and coagulating properties. Samples with detectable levels of Hp had lower casein content, casein number and lactose content, but higher proteolysis than samples without Hp. Samples with detectable levels of SAA had lower casein number and lactose content, but higher whey protein content than samples without SAA. The presence of acute phase proteins in bulk tank milk is suggested as an indicator for unfavourable changes in the milk composition, e.g. protein quality, due to udder health disturbances, with economical implications for the dairy industry.
The thermal and physical characteristics of the Gao-Guenie (H5) meteorite
NASA Astrophysics Data System (ADS)
Beech, Martin; Coulson, Ian M.; Nie, Wenshuang; McCausland, Phil
2009-06-01
Measurements of the bulk density, grain density, porosity, and magnetic susceptibility of 19 Gao-Guenie H5 chondrite meteorite samples are presented. We find average values of bulk density < ρbulk>=3.46±0.07 g/cm 3, grain density < ρgrain>=3.53±0.08 g/cm 3, porosity < P(%)>=2.46±1.39, and bulk mass magnetic susceptibility
Concentration of (137)Cs in soil across Nebraska.
Weesner, Alexandra Palensky; Fairchild, Robert W
2008-06-01
Atmospheric nuclear weapons testing from 1945 through 1980 produced radioactive fallout that was transported by stratospheric winds and deposited unevenly around the world. The accident at Chernobyl in 1986 also contributed to the fallout in some locations. The (137)Cs activity concentration from fallout has been measured as a function of depth in soil samples from five different locations across Nebraska. Soil samples 2-cm thick down to a depth of 30 cm were collected in Brown, Dawes, Lancaster, Red Willow, and Thurston Counties. Samples taken from each of the sites were dried, sieved, and counted using an HPGe gamma spectroscopy system to measure the activity concentration of (137)Cs at each depth in the soil. Activity concentrations as high as 216 Bq kg(-1) were measured in the samples. Dry soil bulk densities were calculated for each site based on soil type and used to calculate the area density of deposition. Area deposition densities up to 13,100 Bq m(-2) were measured, consistent with published estimates.
Bulk specific gravity round-robin using the Corelok vacuum sealing device
DOT National Transportation Integrated Search
2002-11-01
This project conducted an evaluation of the Corelok device for the determination of the bulk specific gravity of compacted hot mix asphalt samples. The project consisted of the bulk specific gravity determination for compacted HMA mixes utilizing the...
Spontaneous Generation of Chirality in Simple Diaryl Ethers.
Lennartson, Anders; Hedström, Anna; Håkansson, Mikael
2015-07-01
We studied the spontaneous formation of chiral crystals of four diaryl ethers, 3-phenoxybenzaldehyde, 1; 1,3-dimethyl-2-phenoxybenzene, 2; di(4-aminophenyl) ether, 3; and di(p-tolyl) ether, 4. Compounds 1, 3, and 4 form conformationally chiral molecules in the solid state, while the chirality of 2 arises from the formation of supramolecular helices. Compound 1 is a liquid at ambient temperature, but 2-4 are crystalline, and solid-state CD-spectroscopy showed that they could be obtained as optically active bulk samples. It should be noted that the optical activity arise upon crystallization, and no optically active precursors were used. Indeed, even commercial samples of 3 and 4 were found to be optically active, giving evidence for the ease at which total spontaneous resolution may occur in certain systems. © 2015 Wiley Periodicals, Inc.
Effect of Sn addition on glassy Si-Te bulk sample
NASA Astrophysics Data System (ADS)
Babanna, Jagannatha K.; Roy, Diptoshi; Varma, Sreevidya G.; Asokan, Sundarrajan; Das, Chandasree
2018-05-01
Bulk Si20Te79Sn1 glass is prepared by melt-quenching method, amorphous nature of the as-quenched glass is confirmed by XRD. I-V characteristics reveals that Si20Te79Sn1 bulk sample exhibits threshold type electrical switching behavior. The thermal parameters such as crystallization temperature, glass transition temperature are obtained using differential scanning calorimetry. The crystalline peak study of the sample annealed at crystallization temperature for 2 hr shows that the Sn atom interact with Si or Te but do not interact with the Si-Te matrix in a greater extent and it forms a separate phase network individually.
NASA Astrophysics Data System (ADS)
Vandaele, K.; He, Bin; Van Der Voort, P.; De Buysser, K.; Heremans, J. P.
2018-02-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. In 1993, Hicks and Dresselhaus [Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47, 16631 (1993)., 10.1103/PhysRevB.47.16631] suggested that Bi nanowires could result in values of the thermoelectric figure of merit z T >1 . The Dresselhaus group also calculated a ternary phase diagram for Bi1 -xSbx nanowires as a function of x and wire diameter. This manuscript reports a wet-chemical method to synthesize Bi1 -xSbx -silica nanowire composites. Resistivity, Hall electron concentration, electron mobility, Seebeck and Nernst coefficients, and thermal conductivity of composites are measured and compared to bulk polycrystalline Bi1 -xSbx samples prepared either by ingot casting or by the same wet chemistry but without nanostructuring. A clear increase of the thermopower in 20-nm Bi94Sb6 -silica is reported when compared to bulk samples, and the values are among the highest found in the literature from 300 to 380 K, even though the electron concentration is higher than in the bulk. This suggests that consistent with theory, size quantization is responsible for the thermopower increase.
Urakami, K; Saito, Y; Fujiwara, Y; Watanabe, C; Umemoto, K; Godo, M; Hashimoto, K
2000-12-01
Thermal desorption (TD) techniques followed by capillary GC/MS were applied for the analysis of residual solvents in bulk pharmaceuticals. Solvents desorbed from samples by heating were cryofocused at the head of a capillary column prior to GC/MS analysis. This method requires a very small amount of sample and no sample pretreatment. Desorption temperature was set at the point about 20 degrees C higher than the melting point of each sample individually. The relative standard deviations of this method tested by performing six consecutive analyses of 8 different samples were 1.1 to 3.1%, and analytical results of residual solvents were in agreement with those obtained by direct injection of N,N-dimethylformamide solution of the samples into the GC. This novel TD/GC/MS method was demonstrated to be very useful for the identification and quantification of residual solvents in bulk pharmaceuticals.
Occurrence of Staphylococcus aureus in raw milk produced in dairy farms in São Paulo state, Brazil
Fagundes, Helena; Barchesi, Luciana; Filho, Antonio Nader; Ferreira, Luciano Menezes; Oliveira, Carlos Augusto Fernandes
2010-01-01
The objective of the present study was to evaluate the occurrence of Staphylococcus aureus in milk produced in 37 farms located in the regions of Ribeirão Preto and São Carlos, state of São Paulo, Brazil. Two-hundred and eight samples of milk from individual cows showing subclinical mastitis, and 37 samples of bulk tank milk were analyzed. S. aureus strains were detected in 18 (7.3%) milk samples: 14 (6.7%) from samples of individual cows, and 4 (10.8%) from bulk tank milk. Two individual milk samples (14.3%) and two bulk milk samples contained enterotoxigenic S. aureus. PFGE analysis revealed the genetic heterogeneity of the strains isolated from raw milk, which presented to 13 S. aureus patterns. Results confirmed the potential transmission of staphylococcal food poisoning to consumers via milk of cows affected by subclinical mastitis, mainly when raw milk is ingested. PMID:24031507
NASA Technical Reports Server (NTRS)
Vander Kaaden, K. E.; McCubbin, F. M.; Harrington, A. D.
2017-01-01
Determining the bulk composition of precious materials with a finite mass (e.g., meteorite samples) is extremely important in the fields of Earth and Planetary Science. From meteorite studies we are able to place constraints on large scale planetary processes like global differentiation and subsequent volcanism, as well as smaller scale processes like crystallization in a magma chamber or sedimentary compaction at the surface. However, with meteorite samples in particular, far too often we are limited by how precious the sample is as well as its limited mass. In this study, we have utilized aliquots of samples previously studied for toxicological hazards, including both the fresh samples (lunar mare basalt NWA 4734, lunar regolith breccia NWA 7611, martian basalt Tissint, martian regolith breccia NWA 7034, a vestian basalt Berthoud, a vestian regolith breccia NWA 2060, and a terrestrial mid-ocean ridge basalt (MORB)), and those that underwent iron leaching (Tissint, NWA 7034, NWA 4734, MORB). With these small masses of material, we performed low pressure (approx. 0.75 GPa), high temperature (greater than 1600 degrees Celsius) melting experiments. Each sample was analyzed using a JEOL 8530F electron microprobe to determine the bulk composition of the materials that were previously examined. When available, the results of our microprobe data were compared with bulk rock compositions in the literature. The results of this study show that with this technique, only approx. 50 mg of sample is required to accurately determine the bulk composition of the materials of interest.
Cadmium Isotope Variations in Bulk Chondrites: The Effect of Thermal Neutron Capture
NASA Astrophysics Data System (ADS)
Toth, E. R.; Schönbächler, M.; Friebel, M.; Fehr, M. A.
2017-07-01
Cadmium isotope data will be presented for bulk carbonaceous and enstatite chondrites, and acid leachates of Jbilet Winselwan (CM). Results of bulk samples show Cd isotope variations that are in good agreement with models of thermal neutron capture.
Corti, Sabrina; Stephan, Roger
2002-01-01
Background Since Mycobacterium avium subspecies paratuberculosis (MAP) was isolated from intestinal tissue of a human patient suffering Crohn's disease, a controversial discussion exists whether MAP have a role in the etiology of Crohn's disease or not. Raw milk may be a potential vehicle for the transmission of MAP to human population. In a previous paper, we have demonstrated that MAP are found in raw milk samples obtained from a defined region in Switzerland. The aim of this work is to collect data about the prevalence of MAP specific IS900 insertion sequence in bulk-tank milk samples in different regions of Switzerland. Furthermore, we examined eventual correlation between the presence of MAP and the somatic cell counts, the total colony counts and the presence of Enterobacteriaceae. Results 273 (19.7%) of the 1384 examined bulk-tank milk samples tested IS900 PCR-positive. The prevalence, however, in the different regions of Switzerland shows significant differences and ranged from 1.7% to 49.2%. Furthermore, there were no statistically significant (p >> 0.05) differences between the somatic cell counts and the total colony counts of PCR-positive and PCR-negative milk samples. Enterobacteriaceae occur as often in IS900 PCR-positive as in PCR-negative milk samples. Conclusion This is the first study, which investigates the prevalence of MAP in bulk-tank milk samples all over Switzerland and infers the herd-level prevalence of MAP infection in dairy herds. The prevalence of 19.7% IS900 PCR-positive bulk-milk samples shows a wide distribution of subclinical MAP-infections in dairy stock in Switzerland. MAP can therefore often be transmitted to humans by raw milk consumption. PMID:12097144
46 CFR 153.935 - Opening of tanks and cargo sampling.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.935 - Opening of tanks and cargo sampling.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.935 - Opening of tanks and cargo sampling.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.935 - Opening of tanks and cargo sampling.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
46 CFR 153.935 - Opening of tanks and cargo sampling.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...
Beaver, A; Cazer, C L; Ruegg, P L; Gröhn, Y T; Schukken, Y H
2016-02-01
Mycobacterium avium ssp. paratuberculosis (MAP), the etiologic agent of Johne's disease in dairy cattle, may enter the bulk tank via environmental contamination or direct excretion into milk. Traditionally, diagnostics to identify MAP in milk target either MAP antibodies (by ELISA) or the organism itself (by culture or PCR). High ELISA titers may be directly associated with excretion of MAP into milk but only indirectly linked to environmental contamination of the bulk tank. Patterns of bulk-milk ELISA and bulk-milk PCR results could therefore provide insight into the routes of contamination and level of infection or environmental burden. Coupled with questionnaire responses pertaining to management, the results of these diagnostic tests could reveal correlations with herd characteristics or on-farm practices that distinguish herds with high and low environmental bulk-tank MAP contamination. A questionnaire on hygiene, management, and Johne's specific parameters was administered to 292 dairy farms in New York, Oregon, and Wisconsin. Bulk-tank samples were collected from each farm for evaluation by real-time PCR and ELISA. Before DNA extraction and testing of the unknown samples, bulk-milk template preparation was optimized with respect to parameters such as MAP fractionation patterns and lysis. Two regression models were developed to explore the relationships among bulk-tank PCR, ELISA, environmental predictors, and herd characteristics. First, ELISA optical density (OD) was designated as the outcome in a linear regression model. Second, the log odds of being PCR positive in the bulk tank were modeled using binary logistic regression with penalized maximum likelihood. The proportion of PCR-positive bulk tanks was highest for New York and for organic farms, providing a clue as to the geographical patterns of MAP-positive bulk-tank samples and relationship to production type. Bulk-milk PCR positivity was also higher for large relative to small herds. The models revealed that bulk-milk PCR result could predict ELISA OD, with PCR-positive results corresponding to high bulk-milk ELISA titers. Similarly, ELISA was a predictor of PCR result, although the association was stronger for organic farms. Despite agreement between high bulk-milk ELISA titers and positive PCR results, a large proportion of high ELISA farms had PCR-negative bulk tanks, suggesting that farms are able to maintain satisfactory hygiene and management despite a presence of MAP in these herds. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Plakhotnik, Taras; Reichardt, Jens
2018-03-01
A theoretical framework is presented that permits investigations of the relation between inelastic backscattering from microparticles and bulk samples of Raman-active materials. It is based on the Lorentz reciprocity theorem and no fundamental restrictions concerning the microparticle shape apply. The approach provides a simple and intuitive explanation for the enhancement of the differential backscattering cross-section in particles in comparison to bulk. The enhancement factor for scattering of water droplets in the diameter range from 0 to 60 μm (vitally important for the a priori measurement of liquid water content of warm clouds with spectroscopic Raman lidars) is about a factor of 1.2-1.6 larger (depending on the size of the sphere) than an earlier study has shown. The numerical calculations are extended to 1000 μm and demonstrate that dispersion of the refractive index of water becomes an important factor for spheres larger than 100 μm. The physics of the oscillatory phenomena predicted by the simulations is explained.
Pristine moon rocks - A 'large' felsite and a metal-rich ferroan anorthosite
NASA Technical Reports Server (NTRS)
Warren, Paul H.; Jerde, Eric A.; Kallemeyn, Gregory W.
1987-01-01
Results of elemental analyses, performed either by instrumental neutron activation analysis (NAA) or radiochemical NAA, of 19 lunar rock samples obtained by the Apollo 15, 17, and 12 missions are presented. Two of the samples are most extraordinary: 'large' (1 g) felsite from Apollo 12 and a pristine ferroan anorthosite from Apollo 15. The felsite is mainly a graphic intergrowth of K-feldspar and a silica phase, with about 6 pct plagioclase and 1 pct each of ferroaugite, ilmenite, and fayalitic olivine. The Fe-metal content of ferroan anorthosite is 1.2 wt pct in the thin section studied (but, based on mass balance for Co and Ni, must have been lower in the chip used for bulk-rock analysis); the measured bulk-rock concentrations of siderophile elements Re, Os, and Ir are far higher than previously observed among pristine lunar anorthosites. These results underscore the uncertainty associated with any attempt to estimate the overall siderophile element contents of the moon's crust.
Determination of hydrogen abundance in selected lunar soils
NASA Technical Reports Server (NTRS)
Bustin, Roberta
1987-01-01
Hydrogen was implanted in lunar soil through solar wind activity. In order to determine the feasibility of utilizing this solar wind hydrogen, it is necessary to know not only hydrogen abundances in bulk soils from a variety of locations but also the distribution of hydrogen within a given soil. Hydrogen distribution in bulk soils, grain size separates, mineral types, and core samples was investigated. Hydrogen was found in all samples studied. The amount varied considerably, depending on soil maturity, mineral types present, grain size distribution, and depth. Hydrogen implantation is definitely a surface phenomenon. However, as constructional particles are formed, previously exposed surfaces become embedded within particles, causing an enrichment of hydrogen in these species. In view of possibly extracting the hydrogen for use on the lunar surface, it is encouraging to know that hydrogen is present to a considerable depth and not only in the upper few millimeters. Based on these preliminary studies, extraction of solar wind hydrogen from lunar soil appears feasible, particulary if some kind of grain size separation is possible.
In-package inhibition of E. coli O157:H7 on bulk Romaine lettuce using cold plasma.
Min, Sea C; Roh, Si Hyeon; Niemira, Brendan A; Boyd, Glenn; Sites, Joseph E; Uknalis, Joseph; Fan, Xuetong
2017-08-01
Dielectric barrier discharge atmospheric cold plasma (DACP) treatment was evaluated for the inactivation of Escherichia coli O157:H7, surface morphology, color, carbon dioxide generation, and weight loss of bulk Romaine lettuce in a commercial plastic clamshell container. The lettuce samples were packed in a model bulk packaging configuration (three rows with either 1, 3, 5, or 7 layers) in the container and treated by DACP (42.6 kV, 10 min). DACP treatment reduced the number of E. coli O157:H7 in the leaf samples in the 1-, 3-, and 5-layer configurations by 0.4-0.8 log CFU/g lettuce, with no significant correlation to the sample location (P > 0.05). In the largest bulk stacking with 7 layers, a greater degree of reduction (1.1 log CFU/g lettuce) was observed at the top layer, but shaking the container increased the uniformity of the inhibition. DACP did not significantly change the surface morphology, color, respiration rate, or weight loss of the samples, nor did these properties differ significantly according to their location in the bulk stack. DACP treatment inhibited E. coli O157:H7 on bulk lettuce in clamshell containers in a uniform manner, without affecting the physical and biological properties and thus holds promise as a post-packaging process for fresh and fresh-cut fruits and vegetables. Published by Elsevier Ltd.
Scanning measurement of Seebeck coefficient of a heated sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, G. Jeffrey; Iwanaga, Shiho
2016-04-19
A novel scanning Seebeck coefficient measurement technique is disclosed utilizing a cold scanning thermocouple probe tip on heated bulk and thin film samples. The system measures variations in the Seebeck coefficient within the samples. The apparatus may be used for two dimensional mapping of the Seebeck coefficient on the bulk and thin film samples. This technique can be utilized for detection of defective regions, as well as phase separations in the sub-mm range of various thermoelectric materials.
Retrieving cosmological signal using cosmic flows
NASA Astrophysics Data System (ADS)
Bouillot, V.; Alimi, J.-M.
2011-12-01
To understand the origin of the anomalously high bulk flow at large scales, we use very large simulations in various cosmological models. To disentangle between cosmological and environmental effects, we select samples with bulk flow profiles similar to the observational data Watkins et al. (2009) which exhibit a maximum in the bulk flow at 53 h^{-1} Mpc. The estimation of the cosmological parameters Ω_M and σ_8, done on those samples, is correct from the rms mass fluctuation whereas this estimation gives completely false values when done on bulk flow measurements, hence showing a dependance of velocity fields on larger scales. By drawing a clear link between velocity fields at 53 h^{-1} Mpc and asymmetric patterns of the density field at 85 h^{-1} Mpc, we show that the bulk flow can depend largely on the environment. The retrieving of the cosmological signal is achieved by studying the convergence of the bulk flow towards the linear prediction at very large scale (˜ 150 h^{-1} Mpc).
Thermoelectric properties of Tl and I dual-doped Bi2Te3-based alloys
NASA Astrophysics Data System (ADS)
Wu, Fang; He, Qinglin; Tang, Mingsheng; Song, Hongzhang
2018-04-01
TlxBi2‑xTe3‑xIx (x = 0, 0.05, 0.1 and 0.2) flower-like nanopowders were prepared successfully by the hydrothermal method. Then, the synthesized nanoparticles were pressed into bulks by hot-pressing. The thermoelectric (TE) properties of the TlxBi2‑xTe3‑xIx bulk samples were investigated and discussed. The results showed that the influences of Tl doping on the electrical resistivity and Seebeck coefficients of the Bi2Te3 is over that of I doping. Thus, the power factors of the dual-doped bulks are all less than that of the Bi2Te3 bulk. The thermal conductivities of the TlxBi2‑xTe3‑xIx bulk samples also remain at lower values. As a result, the ZT value of the optimized doped bulk Tl0.1Bi1.9Te2.9I0.1 attains a value of 1.1 at 398 K.
Low energy prompt gamma-ray tests of a large volume BGO detector.
Naqvi, A A; Kalakada, Zameer; Al-Anezi, M S; Raashid, M; Khateeb-ur-Rehman; Maslehuddin, M; Garwan, M A
2012-01-01
Tests of a large volume Bismuth Germinate (BGO) detector were carried out to detect low energy prompt gamma-rays from boron and cadmium-contaminated water samples using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. Inspite of strong interference between the sample- and the detector-associated prompt gamma-rays, an excellent agreement has been observed between the experimental and calculated yields of the prompt gamma-rays, indicating successful application of the large volume BGO detector in the PGNAA analysis of bulk samples using low energy prompt gamma-rays. Copyright © 2011 Elsevier Ltd. All rights reserved.
Guerrero, José Luis; Vallejos, Ángela; Cerón, Juan Carlos; Sánchez-Martos, Francisco; Pulido-Bosch, Antonio; Bolívar, Juan Pedro
2016-07-01
Sierra de Gádor is a karst macrosystem with a highly complex geometry, located in southeastern Spain. In this arid environment, the main economic activities, agriculture and tourism, are supported by water resources from the Sierra de Gádor aquifer system. The aim of this work was to study the levels and behaviour of some of the most significant natural radionuclides in order to improve the knowledge of the hydrogeochemical processes involved in this groundwater system. For this study, 28 groundwater and 7 surface water samples were collected, and the activity concentrations of the natural U-isotopes ((238)U, (235)U and (234)U) and (226)Ra by alpha spectrometry were determined. The activity concentration of (238)U presented a large variation from around 1.1 to 65 mBq L(-1). Elevated groundwater U concentrations were the result of oxidising conditions that likely promoted U dissolution. The PHREEQC modelling code showed that dissolved U mainly existed as uranyl carbonate complexes. The (234)U/(238)U activity ratios were higher than unity for all samples (1.1-3.8). Additionally, these ratios were in greater disequilibrium in groundwater than surface water samples, the likely result of greater water-rock contact time. (226)Ra presented a wide range of activity concentrations, (0.8 up to about 4 × 10(2) mBq L(-1)); greatest concentrations were detected in the thermal area of Alhama. Most of the samples showed (226)Ra/(234)U activity ratios lower than unity (median = 0.3), likely the result of the greater mobility of U than Ra in the aquifer system. The natural U-isotopes concentrations were strongly correlated with dissolution of sulphate evaporites (mainly gypsum). (226)Ra had a more complex behaviour, showing a strong correlation with water salinity, which was particularly evident in locations where thermal anomalies were detected. The most saline samples showed the lowest (234)U/(238)U activity ratios, probably due to fast uniform bulk mineral dissolution, which would minimize the impact of solubility-controlled fractionation processes. Furthermore, the high bulk dissolution rates promoted greater groundwater (226)Ra/(234)U ratios because the Ra has a comparatively much greater mobility than U in saline conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Atmospheric deposition of phthalate esters in a subtropical city
NASA Astrophysics Data System (ADS)
Zeng, Feng; Lin, Yujun; Cui, Kunyan; Wen, Jiaxin; Ma, Yongqin; Chen, Hongli; Zhu, Fang; Ma, Zhiling; Zeng, Zunxiang
2010-02-01
In Chinese cities, air pollution has become a serious and aggravating environmental problem undermining the sustainability of urban ecosystems and the quality of urban life. Bulk atmospheric deposition samples were collected two-weekly, from February 2007 to January 2008, at three representative areas, one suburban and two urbanized, in the subtropical city, Guangzhou, China, to assess the deposition fluxes and seasonal variations of phthalate esters (PAEs). Sixteen PAE congeners in bulk deposition samples were measured and the depositional fluxes of ∑ 16PAEs ranged from 3.41 to 190 μg m -2 day -1, and were highly affected by local anthropogenic activities. The significant relationship between PAEs and particulate depositional fluxes (correlation coefficient R2 = 0.72, P < 0.001) showed PAEs are associated primarily with particles. Temporal flux variations of PAEs were influenced by seasonal changes in meteorological parameters, and the deposition fluxes of PAEs were obviously higher in wet season than in dry season. Diisobutyl phthalate (D iBP), Di- n-butyl phthalate (D nBP), and Di(2-ethylhexyl) phthalate (DEHP) dominated the PAE pattern in bulk depositions, which is consistent with a high consumption of the plasticizer market in China. PAE profiles in bulk deposition showed similarities exhibited in both time and space, and a weak increase of high molecular weight PAE (HMW PAE) contribution in the wet season compared to those in the dry season. Average atmospheric deposition fluxes of PAEs in the present study were significantly higher than those from other studies, reflecting strong anthropogenic inputs as a consequence of rapid industrial and urban development in the region.
Biochemical surface modification of Co-Cr-Mo.
Puleo, D A
1996-01-01
Because of the limited mechanical properties of tissue substitutes formed by culturing cells on polymeric scaffolds, other approaches to tissue engineering must be explored for applications that require complete and immediate ability to bear weight, e.g. total joint replacements. Biochemical surface modification offers a way to partially regulate events at the bone-implant interface to obtain preferred tissue responses. Tresyl chloride, gamma-aminopropyltriethoxysilane (APS) and p-nitrophenyl chloroformate (p-NPC) immobilization schemes were used to couple a model enzyme, trypsin, on bulk samples of Co-Cr-Mo. For comparison, samples were simply adsorbed with protein. The three derivatization schemes resulted in different patterns and levels of activity. Tresyl chloride was not effective in immobilizing active enzyme on Co-Cr-Mo. Aqueous silanization with 12.5% APS resulted in optimal immobilized activity. Activity on samples derivatized with 0.65 mg p-NPC cm-2 was four to five times greater than that on samples simple adsorbed with enzyme or optimally derivatized with APS and was about eight times that on tresylated samples. This work demonstrates that, although different methods have different effectiveness, chemical derivatization can be used to alter the amount and/or stability of biomolecules immobilized on the surface of Co-Cr-Mo.
Sharaf, J M; Hamideen, M S
2013-10-01
This study is undertaken to determine the activity concentration of (226)Ra, (232)Th and (40)K in samples of commonly used building materials in Jordan. Samples of seven different materials were collected from construction sites and local agencies supplying raw construction materials and analyzed using a HPGe gamma-ray spectrometer, taking into account self-attenuation in bulk samples. The average specific activity concentrations of (226)Ra, (232)Th, and (40)K ranged from 2.84 to 41.52, 0.78 to 58.42. and 3.74 to 897 Bq/kg, respectively. All the samples had radium equivalent activities well below the limit of 370 Bq/kg set by the Organization for Economic Cooperation and Development (OECD, 1979). External and internal hazard indices, absorbed dose and annual effective dose rate associated with the radionuclides of interest were calculated and compared with the international legislation and guidance. In general, most of the activities did not exceed the recommended international limits, except for granite and ceramic samples which are usually used as secondary building materials in Jordan. Copyright © 2013 Elsevier Ltd. All rights reserved.
Site preparation effects on soil bulk density and pine seedling growth
John J. Stransky
1981-01-01
Soil bulk density was sampled the first and third growing seasons after site preparation and pine planting on three clearcut pine-hardwood forest sites in eastern Texas. Bulk density was measured 10 cm below the surface of mineral soil using a surface moisture-density probe. Plots that had been KG-bladed and chopped had significanlty higher bulk density than those that...
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.; Lindstrom, M. M.
1994-01-01
ALH 84001, a ferroan martian orthopyroxenite, originally consisted of three petrographically defined components: a cumulus assemblage of orthopyroxene + chromite, a trapped melt assemblage of orthopyroxene(?) + chromite + maskelynite + apatite + augite +/- pyrite, and a metasomatic assemblage of carbonate +/- pyrite. We present the results of Instrumental Neutron Activation Analysis (INAA) study of five bulk samples of ALH 84001, combined with Scanning Ion Mass Spectrometer (SIMS) data on the orthopyroxene, in order to attempt to set limits on the geochemical characteristics of the latter two components, and therefore on the petrogenesis of ALH 84001. The INAA data support the petrographic observations, suggesting that there are at least three components in ALH 84001. We will assume that each of the three geochemically required components can be equated with one of the petrographically observed components. Both trapped melt and metasomatic components in ALH 84001 have higher Na than orthopyroxene based on compositions of maskelynite, apatite, and carbonate. For the metasomatic component, we will assume its Na content is that of carbonate, while for a trapped melt component, we will use a typical Na content inferred for martian meteorite parent melts, approximately 1 wt% Na2O. Under these assumptions, we can set limits on the Light Rare Earth Elements/Heavy Rare Earth Elements (LREE/HREE) ratios of the components, and use this information to compare the petrogenesis of ALH 84001 with other martian meteorites. The above calculations assume that the bulk samples are representative of different portions of ALH 84001. We will also evaluate the possible heterogeneous distribution of mineral phases in the bulk samples as the cause of compositional heterogeneity in our samples.
Endolithic Boring Enhance the Deep-sea Carbonate Lithification on the Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Peng, X.; Xu, H.
2017-12-01
Deep-sea carbonates represent an important type of sedimentary rock due to their effect on the composition of upper oceanic crust and their contribution to deep-sea geochemical cycles. However, the lithification of deep-sea carbonates at the seafloor has remained a mystery for many years. A large lithified carbonate area, characterized by thriving benthic faunas and tremendous amount of endolithic borings, was discovered in 2008, blanketed on the seafloor of ultraslow spreading Southwest Indian Ridge (SWIR). Macrofaunal inhabitants including echinoids, polychaetes, gastropods as well as crustaceans, are abundant in the sample. The most readily apparent feature of the sample is the localized enhancement of density around the borings. The boring features of these carbonate rocks and factors that may enhance deep-sea carbonate lithification are reported. The δ13CPDB values of 46 bulk samples are -0.37 to 1.86‰, while these samples have a relatively narrow δ18OPDB range of 1.35 to 3.79‰. The bulk δ13CPDB values of chalk and gray excrements are positively correlated with bulk δ18OPDB values (r = 0.91) (Fig. 8), which reflects that endolithic boring is possibly a critical factor influence the lithification. We suggest that active boring may trigger the dissolution of the original calcite and thus accelerate deep-sea carbonate lithification on mid-ocean ridges. Our study reports an unfamiliar phenomenon of non-burial carbonate lithification and interested by the observation that it is often associated with boring feature. These carbonate rocks may provide a novel mechanism for deep-sea carbonate lithification at the deep-sea seafloor and also illuminate the geological and biological importance of deep-sea carbonate rocks on mid-ocean ridges.
Damage coefficients in low resistivity silicon. [solar cells
NASA Technical Reports Server (NTRS)
Srour, J. R.; Othmer, S.; Chiu, K. Y.; Curtis, O. L., Jr.
1975-01-01
Electron and proton damage coefficients are determined for low resistivity silicon based on minority-carrier lifetime measurements on bulk material and diffusion length measurements on solar cells. Irradiations were performed on bulk samples and cells fabricated from four types of boron-doped 0.1 ohm-cm silicon ingots, including the four possible combinations of high and low oxygen content and high and low dislocation density. Measurements were also made on higher resistivity boron-doped bulk samples and solar cells. Major observations and conclusions from the investigation are discussed.
Disentangling the surface and bulk electronic structures of LaOFeAs
Zhang, P.; Ma, J.; Qian, T.; ...
2016-09-20
We performed a comprehensive angle-resolved photoemission spectroscopy study of the electronic band structure of LaOFeAs single crystals. We found that samples cleaved at low temperature show an unstable and very complicated band structure, whereas samples cleaved at high temperature exhibit a stable and clearer electronic structure. Using in situ surface doping with K and supported by first-principles calculations, we identify both surface and bulk bands. Our assignments are confirmed by the difference in the temperature dependence of the bulk and surface states.
Surface versus bulk activity of lysozyme deposited on hydrogel contact lens materials in vitro.
Omali, Negar Babaei; Subbaraman, Lakshman N; Heynen, Miriam; Ng, Alan; Coles-Brennan, Chantal; Fadli, Zohra; Jones, Lyndon
2018-04-30
To determine and compare the levels of surface versus bulk active lysozyme deposited on several commercially available hydrogel contact lens materials. Hydrogel contact lens materials [polymacon, omafilcon A, nelfilcon A, nesofilcon A, ocufilcon and etafilcon A with polyvinylpyrrolidone (PVP)] were incubated in an artificial tear solution for 16 h. Total activity was determined using a standard turbidity assay. The surface activity of the deposited lysozyme was determined using a modified turbidity assay. The amount of active lysozyme present within the bulk of the lens material was calculated by determining the difference between the total and surface active lysozyme. The etafilcon A materials showed the highest amount of total lysozyme activity (519 ± 8 μg/lens, average of Moist and Define), followed by the ocufilcon material (200 ± 5 μg/lens) and these two were significantly different from each other (p < 0.05). The amount of surface active lysozyme on etafilcon and ocufilcon lens materials was significantly higher than that found on all other lenses (p < 0.05). There was no active lysozyme quantified in the bulk of the nelfilcon material, as all of the active lysozyme was found on the surface (1.7 ± 0.3 μg/lens). In contrast, no active lysozyme was quantified on the surface of polymacon, with all of the active lysozyme found in the bulk of the lens material (0.6 ± 0.6 μg/lens). The surface and bulk activity of lysozyme deposited on contact lenses is material dependent. Lysozyme deposited on ionic, high water content lens materials such as etafilcon A show significantly higher surface and bulk activity than many other hydrogel lens materials. Copyright © 2018 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Bulk Genotyping of Biopsies Can Create Spurious Evidence for Hetereogeneity in Mutation Content.
Kostadinov, Rumen; Maley, Carlo C; Kuhner, Mary K
2016-04-01
When multiple samples are taken from the neoplastic tissues of a single patient, it is natural to compare their mutation content. This is often done by bulk genotyping of whole biopsies, but the chance that a mutation will be detected in bulk genotyping depends on its local frequency in the sample. When the underlying mutation count per cell is equal, homogenous biopsies will have more high-frequency mutations, and thus more detectable mutations, than heterogeneous ones. Using simulations, we show that bulk genotyping of data simulated under a neutral model of somatic evolution generates strong spurious evidence for non-neutrality, because the pattern of tissue growth systematically generates differences in biopsy heterogeneity. Any experiment which compares mutation content across bulk-genotyped biopsies may therefore suggest mutation rate or selection intensity variation even when these forces are absent. We discuss computational and experimental approaches for resolving this problem.
40 CFR 761.283 - Determination of the number of samples to collect and sample collection locations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs...-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With... locations for bulk PCB remediation waste and porous surfaces destined to remain at a cleanup site after...
40 CFR 761.283 - Determination of the number of samples to collect and sample collection locations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs...-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With... locations for bulk PCB remediation waste and porous surfaces destined to remain at a cleanup site after...
Temporal soil bulk density following tillage
USDA-ARS?s Scientific Manuscript database
Soil is the medium for air, energy, water, and chemical transport between the atmosphere and the solid earth. Soil bulk density is a key variable impacting the rate at which this transport occurs. Typically, soil bulk density is measured by the gravimetric method, where a sample of known volume is t...
Niskanen, R; Alenius, S; Larsson, B; Jacobsson, S O
1991-01-01
An indirect ELISA has been evaluated for determination of the level of antibodies to BVDV in individual milk samples and recently in bulk tank milk from dairy herds. As part of an epidemiological study, bulk milk and individual milk samples from all cows in 15 dairy herds were analysed for antibodies to BVDV two times one year apart. There was an excellent correlation between the level of antibodies in the bulk tank milk and the prevalence of BVDV antibody positive cows. The mean prevalence of BVDV antibody positive cows in the 15 dairy herds was 45.5% (188/413) at the first sampling and 46.2% (191/413) one year later. Seven of the herds had no, or only a low number of antibody positive cows. In contrast, between 52 to 100% of the cows in seven other herds were antibody positive to BVDV. In the 15th herd all cows without antibodies at the first sampling were antibody positive to BVDV one year later, indicating a recently introduced BVDV infection in this herd. Analysis of bulk milk samples for BVDV antibodies is now routinely used in Sweden as a tool in diagnosis and prophylaxis of BVDV infections in dairy herds. The importance and advantages of this diagnostic technique, that has made it possible to establish BVDV-free dairy herds, is discussed.
Thermal hysteresis and electrocaloric effect in Ba1-xZrxTiO3
NASA Astrophysics Data System (ADS)
Zhang, Yingtang
2018-04-01
Samples of lead-free Ba(ZrxTi1-x)O3 bulk and thick film were fabricated using solid state reaction and tape - casting technique, respectively. A comprehensive investigation of dielectric, ferroelectric, and electrocaloric properties of these samples has been carried out. The results show that there is a dielectric relaxation behavior in the thick film Meantime, the "re-entrant relaxor behavior" and thermal hysteresis are observed in the bulk. Moreover, the electrocaloric effects are observed in the thick film and the bulk. The peak values of ΔTEC of the bulk and the thick film are 2.78 K and 0.37 K, respectively. This work is beneficial for realizing high efficiency and environmentally friendly cooling technology.
NASA Astrophysics Data System (ADS)
Randle, K.; Al-Jundi, J.; Mamas, C. J. V.; Sokhi, R. S.; Earwaker, L. G.
1993-06-01
Our work on heavy metals in the estuarine environment has involved the use of two multielement techniques: neutron activation analysis (NAA) and proton-induced X-ray emission (PIXE) analysis. As PIXE is essentially a surface analytical technique problems may arise due to sample inhomogeneity and surface roughness. In order to assess the contribution of these effects we have compared the results from PIXE analysis with those from a technique which analyzes a larger bulk sample rather than just the surface. An obvious method was NAA. A series of sediment samples containing particles of variable diameter were compared. Pellets containing a few mg of sediment were prepared from each sample and analyzed by the PIXE technique using both an absolute and a comparitive method. For INAA the rest of the sample was then irradiated with thermal neutrons and element concentrations determined from analyses of the subsequent gamma-ray spectrum. Results from the two methods are discussed.
First characterisation of natural radioactivity in building materials manufactured in Albania.
Xhixha, G; Ahmeti, A; Bezzon, G P; Bitri, M; Broggini, C; Buso, G P; Caciolli, A; Callegari, I; Cfarku, F; Colonna, T; Fiorentini, G; Guastaldi, E; Mantovani, F; Massa, G; Menegazzo, R; Mou, L; Prifti, D; Rossi Alvarez, C; Sadiraj Kuqi, Dh; Shyti, M; Tushe, L; Xhixha Kaçeli, M; Zyfi, A
2013-07-01
This study focuses on the radiological characterisation of building materials manufactured in Albania by using a high-resolution gamma-ray spectrometer. The average activity concentrations of (40)K, (226)Ra and (232)Th were, respectively, 644.1±64.2, 33.4 ± 6.4 and 42.2 ± 7.6 Bq kg(-1) in the clay brick samples and 179.7 ± 48.9, 55.0 ± 5.8 and 17.0 ± 3.3 Bq kg(-1) in the cement samples. The calculated activity concentration index (ACI), varied from 0.48±0.02 to 0.63±0.04 in the clay brick samples and from 0.29±0.03 to 0.37±0.02 in the cement samples. Based on the ACI, all of the clay brick and cement samples were categorised as A1 materials. The authors can exclude (at 3σ level) any restriction of their use as bulk materials.
A wireless electronic monitoring system for securing milk from farm to processor
NASA Astrophysics Data System (ADS)
Womble, Phillip; Hopper, Lindsay; Thompson, Chris; Alexander, Suraj M.; Crist, William; Payne, Fred; Stombaugh, Tim; Paschal, Jon; Moore, Ryan; Luck, Brian; Tabayehnejab, Nasrin
2008-04-01
The Department of Homeland Security and the Department of Health and Human Services have targeted bulk food contamination as a focus for attention. The contamination of bulk food poses a high consequence threat to our society. Milk transport falls into three of the 17 targeted NIPP (National Infrastructure Protection Plan) sectors including agriculture-food, public health, and commercial facilities. Minimal security safeguards have been developed for bulk milk transport. The current manual methods of securing milk are paper intensive and prone to errors. The bulk milk transportation sector requires a security enhancement that will both reduce recording errors and enable normal transport activities to occur while providing security against unauthorized access. Milk transportation companies currently use voluntary seal programs that utilize plastic, numbered seals on milk transport tank openings. Our group has developed a Milk Transport Security System which is an electromechanical access control and communication system that assures the secure transport of milk, milk samples, milk data, and security data between locations and specifically between dairy farms, transfer stations, receiving stations, and milk plants. It includes a security monitoring system installed on the milk transport tank, a hand held device, optional printers, data server, and security evaluation software. The system operates automatically and requires minimal or no attention by the bulk milk hauler/sampler. The system is compatible with existing milk transport infrastructure, and has the support of the milk producers, milk transportation companies, milk marketing agencies, and dairy processors. The security protocol developed is applicable for transport of other bulk foods both nationally and internationally. This system adds significantly to the national security infrastructure for bulk food transport. We are currently demonstrating the system in central Kentucky and will report on the results of the demonstration.
NASA Astrophysics Data System (ADS)
Makovníková, Jarmila; Širáň, Miloš; Houšková, Beata; Pálka, Boris; Jones, Arwyn
2017-10-01
Soil bulk density is one of the main direct indicators of soil health, and is an important aspect of models for determining agroecosystem services potential. By way of applying multi-regression methods, we have created a distributed prediction of soil bulk density used subsequently for topsoil carbon stock estimation. The soil data used for this study were from the Slovakian partial monitoring system-soil database. In our work, two models of soil bulk density in an equilibrium state, with different combinations of input parameters (soil particle size distribution and soil organic carbon content in %), have been created, and subsequently validated using a data set from 15 principal sampling sites of Slovakian partial monitoring system-soil, that were different from those used to generate the bulk density equations. We have made a comparison of measured bulk density data and data calculated by the pedotransfer equations against soil bulk density calculated according to equations recommended by Joint Research Centre Sustainable Resources for Europe. The differences between measured soil bulk density and the model values vary from -0.144 to 0.135 g cm-3 in the verification data set. Furthermore, all models based on pedotransfer functions give moderately lower values. The soil bulk density model was then applied to generate a first approximation of soil bulk density map for Slovakia using texture information from 17 523 sampling sites, and was subsequently utilised for topsoil organic carbon estimation.
Influence of selected physicochemical parameters on microbiological activity of mucks.
NASA Astrophysics Data System (ADS)
Całka, A.; Sokołowska, Z.; Warchulska, P.; Dąbek-Szreniawska, M.
2009-04-01
One of the basic factor decided about soil fertility are microorganisms that together with flora, determine trend and character of biochemical processes as well totality of fundamental transformations connected with biogeochemistry and physicochemical properties of soil. Determination of general bacteria number, quantity of selected groups of microorganisms and investigation of respiration intensity let estimate microbiological activity of soil. Intensity of microbiological processes is directly connected with physicochemical soil parameters. In that case, such structural parameters as bulk density, porosity, surface or carbon content play significant role. Microbiological activity also changes within the bounds of mucks with different stage of humification and secondary transformation. Knowledge of relations between structural properties, microorganism activity and degree of transformation and humification can lead to better understanding microbiological processes as well enable to estimate microbiological activity at given physicochemical conditions and at progressing process of soil transformation. The study was carried out on two peaty-moorsh (muck) soils at different state of secondary transformation and humification degree. Soil samples were collected from Polesie Lubelskie (layer depth: 5 - 25 cm). Investigated mucks originated from soils formed from low peatbogs. Soil sample marked as I belonged to muck group weakly secondary transformed. Second sample (II) represented soil group with middle stage of secondary transformation. The main purpose of the research was to examine the relations between some physicochemical and surface properties and their biological activity. Total number and respiration activity of microorganisms were determined. The effectiveness of utilizing the carbon substances from the soil by the bacteria increased simultaneously with the transformation state of the peat-muck soils. Quantity of organic carbon decreased distinctly in the soil at the higher stage of secondary transformation and it influenced quantity and activity of soil microorganisms. Bulk density and surface increased with increasing secondary transformation degree. On the other hand, porosity decreased with increasing secondary transformation index. Process of secondary transformation influenced the soil environment for the microbes by changing the physicochemical properties. This way it influenced the number of microorganisms and caused changes of biological activity in the soils.
NASA Astrophysics Data System (ADS)
Handa, Daishi; Somada, Yuka; Ijyu, Moriaki; Azechi, Sotaro; Nakaema, Fumiya; Arakaki, Takemitsu; Tanahara, Akira
2010-05-01
The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the long-range transported air pollution from Asian continent has gained a special attention in Japan because of increase in photochemical oxidants in relatively remote islands. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) in the bulk aerosols collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We will report water-soluble chemical components data of anions, cations and DOC in bulk atmospheric aerosols collected at CHAAMS during August, 2005 to April, 2010. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions. In addition, we calculated background concentration of water-soluble chemical components at Okinawa, Japan.
The effect of UV exposure and heat treatment on crystallization behavior of photosensitive glasses
NASA Astrophysics Data System (ADS)
Kıbrıslı, Orhan; Ersundu, Ali Erçin
2018-05-01
In this study, photosensitive glasses in the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, silver, tin, antimony) and halogenides (NaF and KBr) were synthesized through a conventional melt-quenching technique. The crystallization mechanism was investigated for solely heat-treated and UV-exposed + heat-treated samples using differential thermal analysis (DTA), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) techniques to understand the effect of UV exposure on crystallization behavior of photosensitive glasses. Accordingly, non-isothermal DTA measurements were performed at different heating rates to determine crystallization peak, T p, and onset, T c, temperatures. For solely heat-treated samples, the kinetic parameters such as the Avrami constant, n, and morphology index, m, were calculated as 1 from the Ozawa method indicating surface crystallization and the value of crystallization activation energy was calculated as 944 kJ/mol using modified Kissinger method. On the contrary, bulk crystallization was found to be predominant for UV exposed + heat-treated samples revealing that UV exposure is the primary cause of bulk crystallization in photosensitive glasses.
Elution of monomer from different bulk fill dental composite resins.
Cebe, Mehmet Ata; Cebe, Fatma; Cengiz, Mehmet Fatih; Cetin, Ali Rıza; Arpag, Osman Fatih; Ozturk, Bora
2015-07-01
The purpose of this study was to evaluate the elution of Bis-GMA, TEGDMA, HEMA, and Bis-EMA monomers from six bulk fill composite resins over four different time periods, using HPLC. Six different composite resin materials were used in the present study: Tetric Evo Ceram Bulk Fill (Ivoclar Vivadent, Amherst, NY), X-tra Fill (VOCO, Cuxhaven, Germany), Sonic Fill (Kerr, Orange, CA, USA), Filtek Bulk Fill (3M ESPE Dental Product, St. Paul, MN), SDR (Dentsply, Konstanz, Germany), EQUIA (GC America INC, Alsip, IL). The samples (4mm thickness, 5mm diameter) were prepared and polymerized for 20s with a light emitted diode unit. After fabrication, each sample was immediately immersed in 75wt% ethanol/water solution used as extraction fluid and stored in the amber colored bottles at room temperature. Ethanol/water samples were taken (0.5mL) at predefined time intervals:10m (T1), 1h (T2), 24h (T3) and 30 days (T4). These samples were analyzed by HPLC. The obtained data were analyzed with one-way ANOVA and Tukey HSD at significance level of p<0.05. Amount of eluted Bis-EMA and Bis-GMA from Tetric Evo Ceram Bulk Fill and amount of eluted TEGDMA and HEMA from X-tra Fill higher than others composites (p<0.05). Residual monomers were eluted from bulk fill composite resins in all time periods and the amount of eluted monomers was increased with time. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
H 2 Desorption from MgH 2 Surfaces with Steps and Catalyst-Dopants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reich, Jason M.; Wang, Lin-Lin; Johnson, Duane D.
2014-03-10
Light-metal hydrides, like MgH 2, remain under scrutiny as prototypes for reversible H-storage materials. For MgH 2, we assess hydrogen desorption/adsorption properties (enthalpy and kinetic barriers) for stepped, catalyst-doped surfaces occurring, e.g., from ball-milling in real samples. Employing density functional theory and simulated annealing in a slab model, we studied initial H 2 desorption from stepped surfaces with(out) titanium (Ti) catalytic dopant. Extensive simulated annealing studies were performed to find the dopant’s site preferences. For the most stable initial and final (possibly magnetic) states, nudged elastic band (NEB) calculations were performed to determine the H 2-desorption activation energy. We usedmore » a moment-transition NEB method to account for the dopant’s transition to the lowest-energy magnetic state at each image along the band. We identify a dopant-related surface-desorption mechanism that reloads via bulk H diffusion. While reproducing the observed bulk enthalpy of desorption, we find a decrease of 0.24 eV (a 14% reduction) in the activation energy on doped stepped surface; together with a 22% reduction on a doped flat surface, this brackets the assessed 18% reduction in kinetic barrier for ball-milled MgH 2 samples with low concentration of Ti from experiment.« less
Liu, Bitao; Xin, Shuangyu; Li, Fenghua; Zhang, Jiachi; Wang, Yuhua
2014-05-01
BaMgAl10O17:Eu2+ (BAM) phosphors used for plasma display panels and three-band fluorescence lamps are exposed to an oxidizing environment at about 500 degrees C, which is currently unavoidable in actual applications. We investigated the mechanism of the luminance degradation of BAM caused by annealing at 500 degrees C based on the difference in luminance degradation of bulk particle and nanoparticle samples under various excitation source irradiations. When the samples were excited by the different light sources, more than 30% degradation of luminance occurred under 147 nm while less than 10% degradation occurred under 254 nm both for nanoparticle and bulk particle samples. In addition, the luminescence degradation of nanophosphors shows a different tendency compared to the bulk phosphors. With a model based on the particle size and excitation light penetration depth, we demonstrate that the degradation is still mainly ascribed to the oxidized of divalent Eu. The differences in luminescence properties between nanophosphors and bulk phosphors are also illustrated by this model. As a result, the potential industrial applications of nanophosphors are evaluated.
NASA Astrophysics Data System (ADS)
Ghahremani, Mohammadreza; Aslani, Amir; Hosseinnia, Marjan; Bennett, Lawrence H.; Della Torre, Edward
2018-05-01
A systematic study of the magnetocaloric effect of a Ni51Mn33.4In15.6 Heusler alloy converted to nanoparticles via high energy ball-milling technique in the temperature range of 270 to 310 K has been performed. The properties of the particles were characterized by x-ray diffraction, electron microscopy, and magnetometer techniques. Isothermal magnetic field variation of magnetization exhibits field hysteresis in bulk Ni51Mn33.4In15.6 alloy across the martensitic transition which significantly lessened in the nanoparticles. The magnetocaloric effects of the bulk and nanoparticle samples were measured both with direct method, through our state of the art direct test bed apparatus with controllability over the applied fields and temperatures, as well as an indirect method through Maxwell and thermodynamic equations. In direct measurements, nanoparticle sample's critical temperature decreased by 6 K, but its magnetocaloric effect enhanced by 17% over the bulk counterpart. Additionally, when comparing the direct and indirect magnetocaloric curves, the direct method showed 14% less adiabatic temperature change in the bulk and 5% less adiabatic temperature change in the nanostructured sample.
Physicochemical properties of extrudates from white yam and bambara nut blends
NASA Astrophysics Data System (ADS)
Oluwole, O. B.; Olapade, A. A.; Awonorin, S. O.; Henshaw, F. O.
2013-01-01
This study was conducted to investigate effects of extrusion conditions on physicochemical properties of blend of yam and bambara nut flours. A blend of white yam grit (750 μm) and Bambara nut flour (500 μm) in a ratio of 4:1, respectively was extrusion cooked at varying screw speeds 50-70 r.p.m., feed moisture 12.5-17.5% (dry basis) and barrel temperatures 130-150°C. The extrusion variables employed included barrel temperature, screw speed, and feed moisture content, while the physicochemical properties of the extrudates investigated were the expansion ratio, bulk density, and trypsin inhibition activity. The results revealed that all the extrusion variables had significant effects (p<0.05) on the product properties considered in this study. The expansion ratio values ranged 1.55-2.06, bulk density values ranged 0.76-0.94 g cm-3, while trypsin inhibition activities were 1.01-8.08 mg 100 g-1 sample.
NASA Astrophysics Data System (ADS)
Ganeshraja, Ayyakannu Sundaram; Zhu, Kaixin; Nomura, Kiyoshi; Wang, Junhu
2018-05-01
The hierarchical silver chloride loaded tin-doped titania (AgCl@Sn-TiO2) microspheres were first time prepared by a hydrothermal method and annealing at different temperatures. The catalyst showed the enhanced visible light photocatalytic activity as compared to the plasmonic photocatalysts of AgCl and Ag/AgCl, and commercial Degussa P25 (TiO2). The improved efficiency is considered to local surface plasmonic resonance (AgCl could reduce to Ag0 during photocatalytic reaction) in enhanced broad band visible light absorption in addition to the characteristics of heterojunction between Sn-TiO2 and AgCl NPs. Moreover, the surface and bulk properties of as-synthesized samples were analyzed by 119Sn Mössbauer spectroscopy. The magnetic property of the bulk was studied as a function of magnetic field with different temperatures. These results signify the clear details of the magnetic and visible light photocatalytic activities of hierarchical AgCl@Sn-TiO2 microspheres.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
... Activities; Submission to OMB for Review and Approval; Comment Request; NSPS for Bulk Gasoline Terminals... information about the electronic docket, go to http://www.regulations.gov . Title: NSPS for Bulk Gasoline... New Source Performance Standards (NSPS) for Bulk Gasoline Terminals were proposed on December 17, 1980...
NASA Technical Reports Server (NTRS)
1981-01-01
The purpose of the Orbiting Quarantine Facility is to provide maximum protection of the terrestrial biosphere by ensuring that the returned Martian samples are safe to bring to Earth. The protocol designed to detect the presence of biologically active agents in the Martian soil is described. The protocol determines one of two things about the sample: (1) that it is free from nonterrestrial life forms and can be sent to a terrestrial containment facility where extensive chemical, biochemical, geological, and physical investigations can be conducted; or (2) that it exhibits "biological effects" of the type that dictate second order testing. The quarantine protocol is designed to be conducted on a small portion of the returned sample, leaving the bulk of the sample undisturbed for study on Earth.
Core vs. Bulk Samples in Soil-Moisture Tension Analyses
Walter M. Broadfoot
1954-01-01
The usual laboratory procedure in determining soil-moisture tension values is to use "undisturbed" soil cores for tensions up to 60 cm. of water and bulk soil samples for higher tensions. Low tensions are usually obtained with a tension table and the higher tensions by use of pressure plate apparatus. In tension analysis at the Vicksburg Infiltration Project...
40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.
Code of Federal Regulations, 2013 CFR
2013-07-01
... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...
40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.
Code of Federal Regulations, 2014 CFR
2014-07-01
... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...
40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.
Code of Federal Regulations, 2011 CFR
2011-07-01
... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...
40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.
Code of Federal Regulations, 2012 CFR
2012-07-01
... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...
40 CFR 761.347 - First level sampling-waste from existing piles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation... a cone; that is, having a circular base with PCB bulk product waste or PCB remediation waste... one pile. If the PCB bulk product waste or PCB remediation waste consists of more than one pile or...
NASA Astrophysics Data System (ADS)
Soom, F.; Ulrich, C.; Dafflon, B.; Wu, Y.; Kneafsey, T. J.; López, R. D.; Peterson, J.; Hubbard, S. S.
2016-12-01
The Arctic tundra with its permafrost dominated soils is one of the regions most affected by global climate change, and in turn, can also influence the changing climate through biogeochemical processes, including greenhouse gas release or storage. Characterization of shallow permafrost distribution and characteristics are required for predicting ecosystem feedbacks to a changing climate over decadal to century timescales, because they can drive active layer deepening and land surface deformation, which in turn can significantly affect hydrological and biogeochemical responses, including greenhouse gas dynamics. In this study, part of the Next-Generation Ecosystem Experiment (NGEE-Arctic), we use X-ray computed tomography (CT) to estimate wet bulk density of cores extracted from a field site near Barrow AK, which extend 2-3m through the active layer into the permafrost. We use multi-dimensional relationships inferred from destructive core sample analysis to infer organic matter density, dry bulk density and ice content, along with some geochemical properties from nondestructive CT-scans along the entire length of the cores, which was not obtained by the spatially limited destructive laboratory analysis. Multi-parameter cross-correlations showed good agreement between soil properties estimated from CT scans versus properties obtained through destructive sampling. Soil properties estimated from cores located in different types of polygons provide valuable information about the vertical distribution of soil and permafrost properties as a function of geomorphology.
The effect of storage temperature and duration on the microbial quality of bulk tank milk.
O'Connell, A; Ruegg, P L; Jordan, K; O'Brien, B; Gleeson, D
2016-05-01
The dairy industry in Ireland is currently undergoing a period of expansion and, as a result, it is anticipated that milk may be stored in bulk tanks on-farm for periods greater than 48 h. The objective of this study was to investigate the effects of storage temperature and duration on microbial quality of bulk tank milk when fresh milk is added to the bulk tank twice daily. Bulk tank milk stored at 3 temperatures was sampled at 24-h intervals during storage periods of 0 to 96 h. Bulk tank milk samples were analyzed for total bacterial count (TBC), psychrotrophic bacterial count (PBC), laboratory pasteurization count (LPC), psychrotrophic-thermoduric bacterial count (PBC-LPC), proteolytic bacterial count, lipolytic bacterial count, presumptive Bacillus cereus, sulfite-reducing Clostridia (SRC), and SCC. The bulk tank milk temperature was set at each of 3 temperatures (2°C, 4°C, and 6°C) in each of 3 tanks on 2 occasions during two 6-wk periods. Period 1 was undertaken in August and September, when all cows were in mid lactation, and period 2 was undertaken in October and November, when all cows were in late lactation. None of the bulk tank bacterial counts except the proteolytic count were affected by lactation period. The proteolytic bacterial count was greater in period 2 than in period 1. The TBC and PBC of milk stored at 6°C increased as storage duration increased. The TBC did not increase with increasing storage duration when milk was stored at 2°C or 4°C but the PBC of milk stored at 4°C increased significantly between 0 and 96 h. The numbers of proteolytic and lipolytic bacteria, LPC, or PBC-LPC in bulk tank milk were not affected by temperature or duration of storage. Presumptive B. cereus were detected in 10% of all bulk tank milk samples taken over the two 6-wk periods, with similar proportions observed in both. In bulk tank milk samples, a greater incidence of SRC was observed in period 2 (20%) compared with period 1 (3%). Milk produced on-farm with minimal bacterial contamination can be successfully stored at 2°C and 4°C for up to 96h with little effect on its microbial quality. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Physical properties of the Nankai inner accretionary prism at Site C0002, IODP Expedition 348
NASA Astrophysics Data System (ADS)
Kitamura, Manami; Kitajima, Hiroko; Henry, Pierre; Valdez, Robert; Josh, Matthew
2014-05-01
Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of 2.68 g/cm3 and 2.72 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density (2.66-2.70 g/cm3), but higher bulk density (2.05-2.41 g/cm3) and lower porosity (37-18%), respectively. The grain density agreement suggests that the measurements on both bulk cuttings and intact cuttings are of good quality, and the differences in porosity and density are real, but the values from the bulk cuttings are affected strongly by artifacts of the drilling process. Thus, the bulk density and porosity data on handpicked cuttings are better representative of formation properties. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical conductivity and P-wave velocity on discrete samples, which were prepared from both cuttings and core samples in the depth interval of 1745.5-3058.5 mbsf, range 0.15-0.9 S/m and 1.7-4.5 km/s, respectively. The electrical resistivity (a reciprocal of conductivity) on discrete samples is generally higher than the LWD resistivity data but the overall depth trends are similar. On the other hand, the P-wave velocity on discrete samples is lower than the LWD P-wave velocity between 2200 mbsf and 2600 mbsf, while the P-wave velocity on discrete samples and LWD P-wave velocity are in a closer agreement below 2600 mbsf. The electrical conductivity and P-wave velocity on discrete samples corrected for in-situ pressure and temperature will be presented. The shipboard physical properties measurements on cuttings are very limited but can be useful with careful treatment and observation.
NASA Astrophysics Data System (ADS)
Lal, D.; Jull, A. J. T.
1994-06-01
We have developed an experimental procedure for quantitative extraction of cosmogenic in-situ 14C produced in terrestrial and extraterrestrial samples, in the two chemical forms 14CO and 14CO2 in which it is found to be present in these samples. The technique is based on wet digestion of the sample in vacuo with hydrofluoric acid at 60-80°C in a Kel-F® vessel. Kel-F is a homo-polymer (chlortrifluorethylene). The procedures and the digestion vessel sizes used allow convenient extraction of 14C activity from samples of 50 mg to 50 g weight. Procedure blanks were reduced considerably by the experience gained with the system, and can be reduced further. We determined that most of the in-situ 14C activity was present in the CO phase (> 60%) in the case of both terrestrial quartz and in bulk samples of meteorites, analogous to the case of in-situ production of 14C in ice. Some results of measurements of 14C activities in meteorites and in terrestrial samples are presented. The latter include several samples which have been studied earlier for in-situ 10Be (and 26Al) concentrations, and allow us to determine relative 14C and 10Be production rates in quartz.
Gonzalez, A M; Arnaiz, I; Eiras, C; Camino, F; Sanjuán, M L; Yus, E; Diéguez, F J
2014-01-01
This study was designed to determine long-term responses in dairy herds after vaccination with 1 of 3 inactivated bovine viral diarrhea virus (BVDV) vaccines with regard to antibodies against p80 protein in bulk tank milk samples, as detected by ELISA. In the present study, 29 dairy herds were vaccinated with Bovilis BVD (MSD Animal Health, Milton Keynes, UK), 11 with Hiprabovis Balance (Laboratorios Hipra, Amer, Spain), and 9 with Pregsure BVD (Zoetis, Florham Park, NJ). In these herds, bulk tank milk samples were collected and examined at the time of the first vaccination and every 6 mo during a 3-yr period. Samples were analyzed with a commercial ELISA test for the p80 protein of BVDV. The results demonstrated that vaccination affected the level of antibodies against p80. Hence, vaccination status should be taken into consideration when interpreting bulk tank milk antibody tests. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Scholl, M.A.; Ingebritsen, S.E.
1995-01-01
Six-month cumulative precipitation samples provide estimates of bulk deposition of sulfate and chloride for the southeast part of the Island of Hawaii during four time periods: August 1991 to February 1992, February 1992 to September 1992, March 1993 to September 1993, and September 1993 to February 1994. Total estimated bulk deposition rates for sulfate ranged from 0.12 to 24 grams per square meter per 180 days, and non-seasalt sulfate deposition ranged from 0.06 to 24 grams per square meter per 180 days. Patterns of non-seasalt sulfate deposition were generally related to prevailing wind directions and the proximity of the collection site to large sources of sulfur gases, namely Kilauea Volcano's summit and East Rift Zone eruption. Total chloride deposition from bulk precipitation samples ranged from 0.01 to 17 grams per square meter per 180 days. Chloride appeared to be predominantly from oceanic sources, as non- seasalt chloride deposition was near zero for most sites.
Disorder-induced transition from grain boundary to bulk dominated ionic diffusion in pyrochlores
Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.
2017-05-04
In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion,more » while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.« less
NASA Astrophysics Data System (ADS)
Rivera, N.; Mueller, K. E.; Mueller, C. W.; Oleksyn, J.; Hale, C.; Freeman, K. H.; Eissenstat, D.
2009-12-01
The relative contributions of leaf and root material to soil organic matter (SOM) are poorly understood despite the importance of constraining SOM sources to conceptual and numeric models of SOM dynamics. Selective ingestion and bioturbation of litter and soil by earthworms can alter the fate and spatial distribution of OM in soils, including stabilization pathways of leaf and root litter. However, studies on the contributions of leaves, roots, and earthworms to SOM dynamics are rare. In 3 stands of sycamore maple (Acer pseudoplatanus) with minimal O horizon development and high earthworm activity, we sampled surface litter (> 2 mm) from the Oi horizon, fine roots (< 2 mm), bulk mineral soils (0-20 cm depth), and earthworm casts from Lumbricus terrestris middens. The chemical composition of these samples was estimated by wet-chemical degradation followed by GC-MS analysis. In addition, elemental analyses (C and N) were performed on bulk soils and earthworm casts, before and after physical fractionation by means of particle size and density. Relative to bulk soils, earthworm casts were highly enriched in organic matter, dominated by large particulate OM, and had lower acid to aldehyde ratios among lignin monomers (a proxy for extent of decomposition), confirming that L. terrestris casts stabilize recent plant litter inputs. Maple fine roots and surface litter were distinguished by different profiles of carboxylic acids estimated by GC-MS, facilitating interpretation of OM sources in bulk soil and earthworm casts. Earthworm casts were characterized by a distribution of carboxylic acids similar to that of surface litter while bulk soils had a carboxylic acid profile much closer to that of roots. These results confirm that L. terrestris is primarily a surface, leaf feeder and suggest that OM in the bulk soil may be dominated by root inputs. In bulk soils, the ratio of lignin to hydroxy- and diacids derived from suberin and cutin was low relative to plant litter, confirming the often-observed selective preservation of aliphatic over aromatic biomolecules. The ratio of lignin to cutin/suberin acids in earthworm casts was also low; based on the minimal extent of decomposition in casts evident by lignin acid to aldehyde ratios, we attribute this to selective ingestion by L. terrestris of leaf litter rich in aliphatic biomolecules at the expense of woody debris and petioles rich in lignin, rather than selective preservation.
SIMS study of oxygen diffusion in monoclinic HfO2
NASA Astrophysics Data System (ADS)
Mueller, Michael P.; De Souza, Roger A.
2018-01-01
The diffusion of oxygen in dense ceramics of monoclinic HfO2 was studied by means of (18O/16O) isotope exchange annealing and subsequent determination of isotope depth profiles by Secondary Ion Mass Spectrometry. Anneals were performed in the temperature range of 573 ≤T /K ≤ 973 at an oxygen partial pressure of p O2=200 mbar . All measured isotope profiles exhibited two features: the first feature, closer to the surface, was attributed mainly to slow oxygen diffusion in an impurity silicate phase; the second feature, deeper in the sample, was attributed to oxygen diffusion in bulk monoclinic HfO2 . The activation enthalpy of oxygen tracer diffusion in bulk HfO2 was found to be ΔHD∗≈0.5 eV .
Quantitative analysis of thoria phase in Th-U alloys using diffraction studies
NASA Astrophysics Data System (ADS)
Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.
2017-05-01
In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.
Piñero, A; Barandika, J F; Hurtado, A; García-Pérez, A L
2014-04-01
Bulk-tank milk (BTM) samples are frequently used to evaluate the health status of dairy livestock. A large-scale investigation carried out in BTM samples from dairy cattle herds from a Q fever-endemic region in Northern Spain revealed a high degree of exposure to Coxiella burnetii. This study was aimed at assessing the value of BTM samples analysis as an indicator of the C. burnetii status in dairy cattle herds. Three herds with BTM samples positive for C. burnetii by ELISA and PCR were selected, and blood, faeces and individual milk and BTM samples were analysed by serology and PCR. In spite of the high antibodies titres found in BTM samples, only one of the three farms presented an active infection by C. burnetii, as revealed by the presence of bacterial DNA in vaginal mucus and in environmental samples collected in the calving area, a seroprevalence around 40% in heifers and the seroconversion rate observed in cows. Results obtained indicated that the analysis of BTM samples is a good epidemiological tool at the population level that can be used to discriminate between seropositive and seronegative herds, but at the herd level, additional tests are necessary to evaluate whether Q fever is a potential problem in the farm. When Q fever is suspected in a cattle herd, sera from a small group of 1- to 3-year-old animals need to be analysed to investigate recent contact with C. burnetii. © 2012 Blackwell Verlag GmbH.
Virdis, Salvatore; Scarano, Christian; Spanu, Vincenzo; Murittu, Gavino; Spanu, Carlo; Ibba, Ignazio; De Santis, Enrico Pietro Luigi
2014-12-09
In the present work the results of a survey conducted in Sardinia Region on Aflatoxin M 1 (AFM 1 ) contamination in milk of small ruminants from 2005 to 2013 are reported. A total of 517 sheep and 88 goat milk samples from bulk tank, tank trucks and silo tank milk were collected. Analyses were performed by the Regional Farmers Association laboratory using high-performance liquid chromatography following the ISO 14501:1998 standard. None of the sheep milk samples analysed during 2005-2012 showed AFM 1 contamination. In sheep milk samples collected in 2013, 8 out of 172 (4.6%) were contaminated by AFM 1 with a concentration (mean±SD) of 12.59±14.05 ng/L. In one bulk tank milk sample 58.82 ng/L AFM 1 was detected, exceeding the EU limit. In none of goat milk samples analysed from 2010 to 2012 AFM 1 was detected. In 2013, 9 out of 66 goat milk samples (13.6%) showed an AFM 1 concentration of 47.21±19.58 ng/L. Two of these samples exceeded the EU limit, with concentrations of 62.09 and 138.6 ng/L. Higher contamination frequency and concentration rates were detected in bulk tank milk samples collected at farm than in bulk milk truck or silo samples, showing a dilution effect on AFM 1 milk content along small ruminants supply chain. The rate and levels of AFM 1 contamination in sheep and goat milk samples were lower than other countries. However, the small number of milk samples analysed for AFM 1 in Sardinia Region in 2005-2013 give evidence that food business operators check programmes should be improved to ensure an adequate monitoring of AFM 1 contamination in small ruminant dairy chain.
Synthetic turf field investigation in Connecticut.
Simcox, Nancy J; Bracker, Anne; Ginsberg, Gary; Toal, Brian; Golembiewski, Brian; Kurland, Tara; Hedman, Curtis
2011-01-01
The primary purpose of this study was to characterize the concentrations of volatile organic compounds (VOC), semivolatile organic compounds (SVOC), rubber-related chemicals such as benzothiazole (BZT) and nitrosamine, and particulate matter (PM(10)) in air at synthetic turf crumb rubber fields. Both new and older fields were evaluated under conditions of active use. Three types of fields were targeted: four outdoor crumb rubber fields, one indoor facility with crumb rubber turf, and an outdoor natural grass field. Background samples were collected at each field on grass. Personal air sampling was conducted for VOC, BZT, nitrosamines, and other chemicals. Stationary air samples were collected at different heights to assess the vertical profile of release. Air monitoring for PM(10) was conducted at one height. Bulk samples of turf grass and crumb rubber were analyzed, and meteorological data were recorded. Results showed that personal concentrations were higher than stationary concentrations and were higher on turf than in background samples for certain VOC. In some cases, personal VOC concentrations from natural grass fields were as high as those on turf. Naphthalene, BZT, and butylated hydroxytoluene (BHT) were detected in greater concentration at the indoor field compared to the outdoor fields. Nitrosamine air levels were below reporting levels. PM(10) air concentrations were not different between on-field and upwind locations. All bulk lead (Pb) samples were below the public health target of 400 ppm. More research is needed to better understand air quality at indoor facilities. These field investigation data were incorporated into a separate human health risk assessment.
Interaction of Polarized Light with Chalcogenide Glasses
2001-06-01
simultaneous measurement of the laser radiation transmitted through the bulk sample and radiation scattered by the sample to various angles up to 230...fixed in the central part of the lens, reflected the transmitted light beam to a second photodiode. He-Ne laser radiation (), = 633 nm) which was sub...band-gap radiation for the studied bulk glass samples (As 2S3 glass) played in this installation, by turns, a role of inducing or probing light. This
Optically active single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Peng, Xiaobin; Komatsu, Naoki; Bhattacharya, Sumanta; Shimawaki, Takanori; Aonuma, Shuji; Kimura, Takahide; Osuka, Atsuhiro
2007-06-01
The optical, electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) are largely determined by their structures, and bulk availability of uniform materials is vital for extending their technological applications. Since they were first prepared, much effort has been directed toward selective synthesis and separation of SWNTs with specific structures. As-prepared samples of chiral SWNTs contain equal amounts of left- and right-handed helical structures, but little attention has been paid to the separation of these non-superimposable mirror image forms, known as optical isomers. Here, we show that optically active SWNT samples can be obtained by preferentially extracting either right- or left-handed SWNTs from a commercial sample. Chiral `gable-type' diporphyrin molecules bind with different affinities to the left- and right-handed helical nanotube isomers to form complexes with unequal stabilities that can be readily separated. Significantly, the diporphyrins can be liberated from the complexes afterwards, to provide optically enriched SWNTs.
Using the Opposition Effect in Remotely Sensed Data to Assist in the Retrieval of Bulk Density
NASA Astrophysics Data System (ADS)
Ambeau, Brittany L.
Bulk density is an important geophysical property that impacts the mobility of military vehicles and personnel. Accurate retrieval of bulk density from remotely sensed data is, therefore, needed to estimate the mobility on "off-road" terrain. For a particulate surface, the functional form of the opposition effect can provide valuable information about composition and structure. In this research, we examine the relationship between bulk density and angular width of the opposition effect for a controlled set of laboratory experiments. Given a sample with a known bulk density, we collect reflectance measurements on a spherical grid for various illumination and view geometries -- increasing the amount of reflectance measurements collected at small phase angles near the opposition direction. Bulk densities are varied using a custom-made pluviation device, samples are measured using the Goniometer of the Rochester Institute of Technology-Two (GRIT-T), and observations are fit to the Hapke model using a grid-search method. The method that is selected allows for the direct estimation of five parameters: the single-scattering albedo, the amplitude of the opposition effect, the angular width of the opposition effect, and the two parameters that describe the single-particle phase function. As a test of the Hapke model, the retrieved bulk densities are compared to the known bulk densities. Results show that with an increase in the availability of multi-angular reflectance measurements, the prospects for retrieving the spatial distribution of bulk density from satellite and airborne sensors are imminent.
Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia.
Acosta, Jose A; Arocena, Joselito M; Faz, Angel
2015-11-01
Soils near artisanal and small-scale gold mines (ASGM) have high arsenic (As) contents due to the presence of arsenopyrite in gold ores and accelerated accumulations due to mine wastes disposal practices and other mining activities. We determined the content and speciation to understand the fate and environmental risks of As accumulations in 24 bulk and 12 rhizosphere soil samples collected in the Virgen Del Rosario and the Rayo Rojo cooperative mines in the highlands of Bolivia. Mean total As contents in bulk and rhizosphere soils ranged from 13 to 64 mg kg(-1) and exceeded the soil environmental quality guidelines of Canada. Rhizosphere soils always contained at least twice the As contents in the bulk soil. Elemental mapping using 4×5 μm synchrotron-generated X-ray micro-beam revealed As accumulations in areas enriched with Fe. Results of As-X-ray Absorption Near Edge Spectroscopy (As-XANES) showed that only As(V) species was detectable in all samples regardless of As contents, size fractions and types of vegetation. Although the toxicity of As(V) is less than As(III), we suggest that As uptake of commonly-grazed vegetation by alpaca and llama must be determined to fully understand the environmental risks of high As in soils near ASGM in Bolivia. In addition, knowledge on the speciation of the As bio-accessible fraction will provide another useful information to better understand the fate and transfer of As from soils into the food chain in environments associated with the ASGM in Bolivia and other parts of the world. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of Ca substitution on some physical properties of nano-structured and bulk Ni-ferrite samples
NASA Astrophysics Data System (ADS)
Assar, S. T.; Abosheiasha, H. F.
2015-01-01
Nanoparticles of Ni1-xCaxFe2O4 (x=0.0, 0.02, 0.04, 0.06 and 0.10) were prepared by citrate precursor method. A part of these samples was sintered at 600 °C for 2 h in order to keep the particles within the nano-size while the other part was sintered at 1000 °C to let the particles to grow to the bulk size. The effect of Ca2+ ion substitution in nickel ferrite on some structural, magnetic, electrical and thermal properties was investigated. All samples were characterized by using X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). A two probe method was used to measure the dc electrical conductivity whereas the photoacoustic (PA) technique was used to determine the thermal diffusivity of the samples. To interpret different experimental results for nano and bulk samples some cation distributions were assumed based on the VSM and XRD data. These suggested cation distributions give logical explanations for other experimental results such as the observed values of the absorption bands in FTIR spectra and the dc conductivity results. Finally, in the thermal measurements it was found that increasing the Ca2+ ion content causes a decrease in the thermal diffusivity of both nano and bulk samples. The explanation of this behavior is ascribed to the phonon-phonon scattering.
Live Soap: Stability, Order, and Fluctuations in Apolar Active Smectics
NASA Astrophysics Data System (ADS)
Adhyapak, Tapan Chandra; Ramaswamy, Sriram; Toner, John
2013-03-01
We construct a hydrodynamic theory of noisy, apolar active smectics in bulk suspension or on a substrate. Unlike purely orientationally ordered active fluids, active apolar smectics can be dynamically stable in Stokesian bulk suspensions. Smectic order in these systems is quasilong ranged in dimension d=2 and long ranged in d=3. We predict reentrant Kosterlitz-Thouless melting to an active nematic in our simplest model in d=2, a nonzero second-sound speed parallel to the layers in bulk suspensions, and that there are no giant number fluctuations in either case. We also briefly discuss possible instabilities in these systems.
Facilities Management Guide for Asbestos and Lead
2004-11-01
equipment such as HEPA filtered power tools, portable welding exhaust systems, and paint removal equipment when work disturbs lead. Do not dry sweep ...sampling and analysis of [______] paint bulk and wipe samples by atomic absorption spectrophotometry (AA) or anodic stripping voltametry (ASV...analysis. e. All bulk (destructive) collected for lead shall be analyzed by atomic absorption spectrophotometry (AA) or anodic stripping voltametry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, C
The Department of Energy (DOE) recognizes the need for the characterization of High-Level Waste (HLW) saltcake in the Savannah River Site (SRS) F- and H-area tank farms to support upcoming salt processing activities. As part of the enhanced characterization efforts, Tank 25F will be sampled and the samples analyzed at the Savannah River National Laboratory (SRNL). This Task Technical and Quality Assurance Plan documents the planned activities for the physical, chemical, and radiological analysis of the Tank 25F saltcake core samples. This plan does not cover other characterization activities that do not involve core sample analysis and it does notmore » address issues regarding sampling or sample transportation. The objectives of this report are: (1) Provide information useful in projecting the composition of dissolved salt batches by quantifying important components (such as actinides, {sup 137}Cs, and {sup 90}Sr) on a per batch basis. This will assist in process selection for the treatment of salt batches and provide data for the validation of dissolution modeling. (2) Determine the properties of the heel resulting from dissolution of the bulk saltcake. Also note tendencies toward post-mixing precipitation. (3) Provide a basis for determining the number of samples needed for the characterization of future saltcake tanks. Gather information useful towards performing characterization in a manner that is more cost and time effective.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Carli A.; Aciego, Sarah M.; Sims, Kenneth W. W.
The residence time of subglacial meltwater impacts aquifer recharge, nutrient production, and chemical signals that reflect underlying bedrock/substrate, but is inaccessible to direct observation. We report the seasonal evolution of subglacial meltwater chemistry from the 2011 melt season at the terminus of the Athabasca Glacier, Canada. We also measured major and trace analytes and U-series isotopes for twenty-nine bulk meltwater samples collected over the duration of the melt season. This dataset, which is the longest time-series record of ( 234U/ 238U) isotopes in a glacial meltwater system, provides insight into the hydrologic evolution of the subglacial system during active melting.more » Meltwater samples, measured from the outflow, were analyzed for ( 238U), ( 222Rn) and ( 234U/ 238U)activity, conductivity, alkalinity, pH and major cations. Subglacial meltwater varied in [238U] and (222Rn) from 23 to 832 ppt and 9 to 171 pCi/L, respectively. Activity ratios of ( 234U/ 238U) ranged from 1.003 to 1.040, with the highest ( 238U), ( 222Rn) and ( 234U/ 238U)activity values occurring in early May when delayed-flow basal meltwater composed a significant portion of the bulk melt. Furthemore, from the chemical evolution of the meltwater, we posit that the relative subglacial water residence times decrease over the course of the melt season. This decrease in qualitative residence time during active melt is consistent with prior field studies and model-predicted channel switching from a delayed, distributed network to a fast, channelized network flow. As such, our study provides support for linking U-series isotopes to storage lengths of meltwater beneath glacial systems as subglacial hydrologic networks evolve with increased melting and channel network efficiency.« less
Arendt, Carli A.; Aciego, Sarah M.; Sims, Kenneth W. W.; ...
2017-07-31
The residence time of subglacial meltwater impacts aquifer recharge, nutrient production, and chemical signals that reflect underlying bedrock/substrate, but is inaccessible to direct observation. We report the seasonal evolution of subglacial meltwater chemistry from the 2011 melt season at the terminus of the Athabasca Glacier, Canada. We also measured major and trace analytes and U-series isotopes for twenty-nine bulk meltwater samples collected over the duration of the melt season. This dataset, which is the longest time-series record of ( 234U/ 238U) isotopes in a glacial meltwater system, provides insight into the hydrologic evolution of the subglacial system during active melting.more » Meltwater samples, measured from the outflow, were analyzed for ( 238U), ( 222Rn) and ( 234U/ 238U)activity, conductivity, alkalinity, pH and major cations. Subglacial meltwater varied in [238U] and (222Rn) from 23 to 832 ppt and 9 to 171 pCi/L, respectively. Activity ratios of ( 234U/ 238U) ranged from 1.003 to 1.040, with the highest ( 238U), ( 222Rn) and ( 234U/ 238U)activity values occurring in early May when delayed-flow basal meltwater composed a significant portion of the bulk melt. Furthemore, from the chemical evolution of the meltwater, we posit that the relative subglacial water residence times decrease over the course of the melt season. This decrease in qualitative residence time during active melt is consistent with prior field studies and model-predicted channel switching from a delayed, distributed network to a fast, channelized network flow. As such, our study provides support for linking U-series isotopes to storage lengths of meltwater beneath glacial systems as subglacial hydrologic networks evolve with increased melting and channel network efficiency.« less
Visible and near-infrared bulk optical properties of raw milk.
Aernouts, B; Van Beers, R; Watté, R; Huybrechts, T; Lammertyn, J; Saeys, W
2015-10-01
The implementation of optical sensor technology to monitor the milk quality on dairy farms and milk processing plants would support the early detection of altering production processes. Basic visible and near-infrared spectroscopy is already widely used to measure the composition of agricultural and food products. However, to obtain maximal performance, the design of such optical sensors should be optimized with regard to the optical properties of the samples to be measured. Therefore, the aim of this study was to determine the visible and near-infrared bulk absorption coefficient, bulk scattering coefficient, and scattering anisotropy spectra for a diverse set of raw milk samples originating from individual cow milkings, representing the milk variability present on dairy farms. Accordingly, this database of bulk optical properties can be used in future simulation studies to efficiently optimize and validate the design of an optical milk quality sensor. In a next step of the current study, the relation between the obtained bulk optical properties and milk quality properties was analyzed in detail. The bulk absorption coefficient spectra were found to mainly contain information on the water, fat, and casein content, whereas the bulk scattering coefficient spectra were found to be primarily influenced by the quantity and the size of the fat globules. Moreover, a strong positive correlation (r ≥ 0.975) was found between the fat content in raw milk and the measured bulk scattering coefficients in the 1,300 to 1,400 nm wavelength range. Relative to the bulk scattering coefficient, the variability on the scattering anisotropy factor was found to be limited. This is because the milk scattering anisotropy is nearly independent of the fat globule and casein micelle quantity, while it is mainly determined by the size of the fat globules. As this study shows high correlations between the sample's bulk optical properties and the milk composition and fat globule size, a sensor that allows for robust separation between the absorption and scattering properties would enable accurate prediction of the raw milk quality parameters. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Foamed Bulk Metallic Glass (Foam) Investigation
NASA Technical Reports Server (NTRS)
2004-01-01
This soldering iron has an evacuated copper capsule at the tip that contains a pellet of Bulk Metallic Glass (BMG) aboard the International Space Station (ISS). Prior to flight, researchers sealed a pellet of bulk metallic glass mixed with microscopic gas-generating particles into the copper ampoule under vacuum. Once heated in space, such as in this photograph, the particles generated gas and the BMG becomes a viscous liquid. The released gas made the sample foam within the capsule where each microscopic particle formed a gas-filled pore within the foam. The inset image shows the oxidation of the sample after several minutes of applying heat. Although hidden within the brass sleeve, the sample retained the foam shape when cooled, because the viscosity increased during cooling until it was solid.
3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples
NASA Technical Reports Server (NTRS)
Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.
2015-01-01
In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible
A comparison of two ELISAs for the detection of antibodies to bovine leucosis virus in bulk-milk.
Ridge, S E; Galvin, J W
2005-07-01
To estimate the sensitivity, specificity and detection limits for two bulk-milk enzyme-linked immunosorbent assays, the Svanovir BLV-gp51-Ab and the Lactelisa BLV Ab Bi indirect tank 250, for the detection of antibody to bovine leucosis virus in milk. Milk samples from 27 cows known to have enzootic bovine leucosis (EBL) were serially diluted with milk from a herd known to be free from the disease. The dilution at which antibodies could no longer be detected by each test was determined. A total of 1959 bulk-milk samples submitted to a laboratory for the Victorian (EBL) eradication program were tested with both the Svanovir and the Lactelisa assays. A Bayesian approach was used to calculate maximum-likelihood estimates of test sensitivity and specificity. An additional 660 bulk-milk samples were tested with both the Svanovir and the Lactelisa assays. Herds that had positive results on either or both of the assays were subjected to blood or milk testing of individual cattle. The dilution of milk at which the Svanovir assay failed to detect enzootic bovine leucosis antibody in half of the samples was 1 in 40, whereas the comparable value for the Lactelisa was 1 in 200. Computer modeling of the operating characteristics of the Svanovir assay indicated that the sensitivity of that assay would be considerably lower than that for the Lactelisa, and the specificity was estimated to be higher. Evaluation of the assays using 660 bulk-milk samples showed that the Lactelisa assay detected four infected herds that were not detected by the Svanovir test. No false positive results were recorded for either assay. Use of the Lactelisa assay in the Victorian EBL eradication program will enhance disease detection and eradication, but may also result in an increased frequency of false positive bulk-milk test results.
Gutknecht, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kluber, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, C. W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-06-01
This data set provides the peat water content and peat temperature at time of sampling for peat cores collected before and during the SPRUCE Whole Ecosystem Warming (WEW) study. Cores for the current data set were collected during the following bulk peat sampling events: 13 June 2016 and 23 August 2016. Over time, this dataset will be updated with each new major bulk peat sampling event, and dates/methods will be updated accordingly.
High energy ball milling study of Fe{sub 2}MnSn Heusler alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Lakshmi, N.; Jain, Vishal
The structural and magnetic properties of as-melted and high energy ball milled alloy samples have been studied by X-ray diffraction, DC magnetization and electronic structure calculations by means of density functional theory. The observed properties are compared to that of the bulk sample. There is a very good enhancement of saturation magnetization and coercivity in the nano-sized samples as compared to bulk which is explained in terms of structural disordering and size effect.
NASA Astrophysics Data System (ADS)
Bore, E. K.; Apostel, C.; Halicki, S.; Dippold, M. A.; Kuzyakov, Y.
2016-12-01
Cold adapted organisms and their biomolecules have received considerable attention in the last few decades, particularly in light of the perceived biotechnological potential. Mostly, these studies are based on pure isolated cultures from permafrost or permafrost samples with inherently adapted microbes. However, microbial activities in agricultural soils that are predominantly exposed to freeze conditions during winter in temperate ecosystems remain unclear. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5 (control), -5 -20 oC. Soils were sampled after 1, 3 and 10 days (and after 30 days for samples at -20 °C). 13C was quantifed in CO2, bulk soil, microbial biomass and dissolved organic carbon (DOC). Highest 13C recovery in CO2 was obtained from C-1 position in control soil. Consequently, metabolic activity was dominated by pentose phosphate pathway at 5 °C. In contrast, metabolic behaviors switched towards a preferential respiration of the glucose C-4 position at -5 and -20 °C. High 13C recovery from C-4 position confirms previous studies suggesting that fermentation increases at subzero temperature. A 3-fold higher 13C recovery in microbial biomass at -5 °C than under control conditions points towards synthesis of intracellular antifreeze metabolites such as glycerol and ethanol and it is consistent with fermentative metabolism. A 5-fold higher 13C in bulk soil than microbial biomass at -20 °C does not reflect non-metabolized glucose because 13C recovery in DOC was less than 0.4% at day 1. Therefore, high 13C recovery in bulk soil at -20 °C was attributed to extracellular metabolites secreted to overcome frost. The shift in antifreeze mechanisms with temperature was brought about by shift in microbial community structure as indicated by incorporation into 13C into PLFA which was 2-fold higher in gram negative bacteria under control than frozen conditions, but inverted in gram positives. The results confirm that catabolic and anabolic processes continue under frozen conditions, but, mechanisms differ with temperature. This information is not only useful in modelling C dynamics in permafrost, but also in food industry where shelf-life depends on frozen conditions. Cold adapted organisms and their biomolecules have received considerable attention in the last few decades, particularly in light of the perceived biotechnological potential. Mostly, these studies are based on pure isolated cultures from permafrost or permafrost samples with inherently adapted microbes. However, microbial activities in agricultural soils that are predominantly exposed to freeze conditions during winter in temperate ecosystems remain unclear. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5 (control), -5 -20 oC. Soils were sampled after 1, 3 and 10 days (and after 30 days for samples at -20 °C). 13C was quantifed in CO2, bulk soil, microbial biomass and dissolved organic carbon (DOC). Highest 13C recovery in CO2 was obtained from C-1 position in control soil. Consequently, metabolic activity was dominated by pentose phosphate pathway at 5 °C. In contrast, metabolic behaviors switched towards a preferential respiration of the glucose C-4 position at -5 and -20 °C. High 13C recovery from C-4 position confirms previous studies suggesting that fermentation increases at subzero temperature. A 3-fold higher 13C recovery in microbial biomass at -5 °C than under control conditions points towards synthesis of intracellular antifreeze metabolites such as glycerol and ethanol and it is consistent with fermentative metabolism. A 5-fold higher 13C in bulk soil than microbial biomass at -20 °C does not reflect non-metabolized glucose because 13C recovery in DOC was less than 0.4% at day 1. Therefore, high 13C recovery in bulk soil at -20 °C was attributed to extracellular metabolites secreted to overcome frost. The shift in antifreeze mechanisms with temperature was brought about by shift in microbial community structure as indicated by incorporation into 13C into PLFA which was 2-fold higher in gram negative bacteria under control than frozen conditions, but inverted in gram positives. The results confirm that catabolic and anabolic processes continue under frozen conditions, but, mechanisms differ with temperature. This information is not only useful in modelling C dynamics in permafrost, but also in food industry where shelf-life depends on frozen conditions.
Effect of soil compaction on the degradation and ecotoxicological impact of isoproturon
NASA Astrophysics Data System (ADS)
Mamy, L.; Vrignaud, P.; Cheviron, N.; Perreau, F.; Belkacem, M.; Brault, A.; Breuil, S.; Delarue, G.; Touton, I.; Chaplain, V.
2009-04-01
Soil is essentially a non-renewable resource which performs many functions and delivers services vital to human activities and ecosystems survival. However the capacity of soil to keep on fully performing its broad variety of crucial functions is damaged by several threats and, among them, chemical contamination by pesticides and compaction due to intensive agriculture practices. How these two threats could interact is largely unknown: compaction may modify the fate of pesticides in soil therefore their effects on the biological functioning of soil. The aim of this work was to study the effect of soil compaction on (1) the degradation of one herbicide, isoproturon (2) the ecotoxicological impact of this herbicide measured through two enzyme activities involved in C (beta-glucosidase) and N (urease) cycles in soil. Undisturbed soil cylinders were sampled in the 2-4 cm layer of La Cage experimental site (INRA, Versailles, France), under intensive agriculture practices. Several soil samples were prepared with different bulk density then treated with isoproturon (IPU). The samples were incubated at 18 ± 1°C in darkness for 63 days. At 0, 2, 7, 14, 28 and 63 days, the concentrations of isoproturon and of two of its main metabolites in soil (monodesmethyl-isoproturon, IPPMU; didesmethyl-isoproturon, IPPU), and the enzyme activities were measured. The results showed that there was no significant difference in IPU degradation under no and moderate soil compaction. IPU was less persistent in the highly compacted soil, but this soil had also higher humidity which is known to increase the degradation. Only one metabolite, IPPMU, was detected independently of the conditions of compaction. The compaction did not modify the effect of IPU on beta-glucosidase and urease activities in the long term, but microbial communities were probably the same in all the soil samples that were initially not compacted. The communities developed in durably compacted zones in the field are possibly different and modification in enzyme activities might be observed as a result. These first results seem to show that compaction did not modify the degradation and ecotoxicological impact of isoproturon in the soil. However, further studies should be performed using soil samples taken in different zones of compaction in the field, and taking into account the relation between bulk density and soil humidity.
Methodological approaches for studying the microbial ecology of drinking water distribution systems.
Douterelo, Isabel; Boxall, Joby B; Deines, Peter; Sekar, Raju; Fish, Katherine E; Biggs, Catherine A
2014-11-15
The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fujii, Yuji; Henares, Terence G; Kawamura, Kunio; Endo, Tatsuro; Hisamoto, Hideaki
2012-04-21
To enhance sensitivity and facilitate easy sample introduction into a combinable poly(dimethylsiloxane) (PDMS) capillary (CPC) sensor array, PDMS was modified in bulk and on its surface to prepare "black" PDMS coated with a silver layer and self-assembled monolayer (SAM). India ink, a traditional Japanese black ink, was added to the PDMS pre-polymer for bulk modification. The surface was modified by a silver mirror reaction followed by SAM formation using cysteine. These modifications enhanced the fluorescence signals by reflecting them from the surface and reducing background interference. A decrease in the water contact angle led to enhanced sensitivity and easy sample introduction. Furthermore, a CPC sensor array for multiplex detection of serum sample components was prepared that could quantify the analytes glucose, potassium, and alkaline phosphatase (ALP). When serum samples were introduced by capillary action, the CPC sensor array showed fluorescence responses for each analyte and successfully identified the components with elevated concentrations in the serum samples.
Characterization of bacterial community dynamics in a full-scale drinking water treatment plant.
Li, Cuiping; Ling, Fangqiong; Zhang, Minglu; Liu, Wen-Tso; Li, Yuxian; Liu, Wenjun
2017-01-01
Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water. The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing, China. Both bulk water and biofilm samples on granular activated carbon (GAC) were collected over 9months. The proportion of cultivable cells decreased during the treatment processes, and this proportion was higher in warm season than cool season, suggesting that treatment processes and water temperature probably had considerable impact on the R2A cultivability of total bacteria. 16s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples. The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobacteria than water samples. Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time, and distinctive changes of the microbial communities in water occurred after GAC filtration. Furthermore, 20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified. Overall, our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations. Copyright © 2016. Published by Elsevier B.V.
Comparison of Schmallenberg virus antibody levels detected in milk and serum from individual cows.
Daly, Janet M; King, Barnabas; Tarlinton, Rachael A; Gough, Kevin C; Maddison, Ben C; Blowey, Roger
2015-03-11
Schmallenberg virus (SBV) is a recently emerged virus of ruminants in Europe. Enzyme-linked immunosorbent assays (ELISA) are commonly used to detect SBV-specific antibodies in bulk tank milk samples to monitor herd exposure to infection. However, it has previously been shown that a bulk tank milk sample can test positive even though the majority of cows within the herd are seronegative for SBV antibodies. Development of a pen-side test to detect antibodies in individual milk samples would potentially provide a cheaper test (for which samples are obtained non-invasively) than testing individual serum samples by ELISA. Therefore, the aim of this study was to investigate the agreement between antibody levels measured in milk and serum. Corresponding milk and serum samples from 88 cows in two dairy herds in the UK were tested for presence of immunoglobulin G antibodies to SBV using a commercially-available indirect ELISA. A serum neutralisation test (NT) was also performed as a gold standard assay. The ELISA values obtained for the bulk tank milk samples corresponded with the mean values for individual milk samples from each herd (bulk tank milk values were 58% and 73% and mean individual milk values 50% and 63% for herds A and B, respectively). Of the 88 serum samples tested in the NT, 82 (93%) were positive. Although at higher antibody levels, the ELISA values tended to be higher for the individual milk samples than for the corresponding serum samples, the positive predictive value for milk samples was 98% and for serum samples 94%. The serum ELISA was more likely to give false positive results around the lower cut-off value of the assay. The results indicate that testing of individual milk samples for antibodies against SBV by ELISA could be used to inform decisions in the management of dairy herds such as which, if any, animals to vaccinate.
NASA Astrophysics Data System (ADS)
Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee
2015-11-01
The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.
Hall, William L; Ramsey, Charles; Falls, J Harold
2014-01-01
Bulk blending of dry fertilizers is a common practice in the United States and around the world. This practice involves the mixing (either physically or volumetrically) of concentrated, high analysis raw materials. Blending is followed by bagging (for small volume application such as lawn and garden products), loading into truck transports, and spreading. The great majority of bulk blended products are not bagged but handled in bulk and transferred from the blender to a holding hopper. The product is then transferred to a transport vehicle, which may, or may not, also be a spreader. If the primary transport vehicle is not a spreader, then there is another transfer at the user site to a spreader for application. Segregation of materials that are mismatched due to size, density, or shape is an issue when attempting to effectively sample or evenly spread bulk blended products. This study, prepared in coordination with and supported by the Florida Department of Agriculture and Consumer Services and the Florida Fertilizer and Agrochemical Association, looks at the impact of varying particle size as it relates to blending, sampling, and application of bulk blends. The study addresses blends containing high ratios of N-P-K materials and varying (often small) quantities of the micronutrient Zn.
Graham, S L; Barling, K S; Waghela, S; Scott, H M; Thompson, J A
2005-06-10
Environmental factors that enhance either the survivability or dispersion of Salmonella enterica serovar Typhimurium (S. Typhimurium) could result in a spatial pattern of disease risk. The objectives of this study were to: (1) describe herd status based on antibody response to Salmonella Typhimurium as estimated from bulk tank milk samples and (2) to describe the resulting geographical patterns found among Texas dairy herds. Eight hundred and fifty-two bulk milk samples were collected from georeferenced dairy farms and assayed by an indirect enzyme-linked immunosorbent assay (ELISA) using S. Typhimurium lipopolysaccharide (LPS). ELISA signal-to-noise ratios for each bulk tank milk sample were calculated and used for geostatistical analyses. Best-fit parameters for the exponential theoretical variogram included a range of 438.8 km, partial sill of 0.060 and nugget of 0.106. The partial sill is the classical geostatistical term for the variance that can be explained by the herd's location and the nugget is the spatially random component of the variance. We have identified a spatial process in bulk milk tank titers for S. Typhimurium in Texas dairy herds and present a map of the expected smoothed surface. Areas with higher expected titers should be targeted in further studies on controlling Salmonella infection with environmental modifications.
NASA Astrophysics Data System (ADS)
Vander Kaaden, K. E.; McCubbin, F. M.; Harrington, A.
2017-12-01
Determining the bulk composition of precious materials with a finite mass (e.g., meteorite samples) is extremely important in the fields of Earth and Planetary Science. From meteorite studies we are able to place constraints on large scale planetary processes like global differentiation and subsequent volcanism, as well as smaller scale processes like crystallization in a magma chamber or sedimentary compaction at the surface. However, with meteorite samples in particular, far too often we are limited by how precious the sample is as well as its limited mass. In this study, we have utilized aliquots of samples previously studied for toxicological hazards [1] including both the fresh samples (lunar mare basalt NWA 4734, lunar regolith breccia NWA 7611, martian basalt Tissint, martian regolith breccia NWA 7034, a vestian basalt Berthoud, a vestian regolith breccia NWA 2060, and a terrestrial mid-ocean ridge basalt (MORB)), and those that underwent iron leaching (Tissint, NWA 7034, NWA 4734, MORB). With these small masses of material, we performed low pressure ( 0.75 GPa), high temperature (>1600°C) melting experiments. Each sample was analyzed using a JEOL 8530F electron microprobe to determine the bulk composition of the materials that were previously examined in [1]. When available, the results of our microprobe data were compared with bulk rock compositions in the literature. The results of this study show that with this technique, only 50 mg of sample is required to accurately determine the bulk composition of the materials of interest. [1] Harrington, A.D., McCubbin, F.M., Kaur, J., Smirnov, A., Galdanes, K., Schoonen, M.A.A., Chen, L.C., Tsirka, S.E., and Gordon, T. (2017) Pulmonary inflammatory responses to acute meteroite dust exposures - Implications for human space exploration. 48th Lunar and Planetary Science Conference, The Woodlands, TX, #2922.
NASA Astrophysics Data System (ADS)
Ngabonziza, P.; Wang, Y.; Brinkman, A.
2018-04-01
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, W.W.; Barrows, E.S.; Antrim, L.D
Buttermilk Channel was one of seven waterways that was sampled and evaluated for dredging and sediment disposal. Sediment samples were collected and analyses were conducted on sediment core samples. The evaluation of proposed dredged material from the channel included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples were analyzed for grain size, moisture content, and total organic carbon. A composite sediment samples, representing the entire area proposed for dredging, was analyzed for bulk density, polynuclear aromatic hydrocarbons, and 1,4-dichlorobenzene. Site water and elutriatemore » were analyzed for metals, pesticides, and PCBs.« less
Geoelectrical inference of mass transfer parameters using temporal moments
Day-Lewis, Frederick D.; Singha, Kamini
2008-01-01
We present an approach to infer mass transfer parameters based on (1) an analytical model that relates the temporal moments of mobile and bulk concentration and (2) a bicontinuum modification to Archie's law. Whereas conventional geochemical measurements preferentially sample from the mobile domain, electrical resistivity tomography (ERT) is sensitive to bulk electrical conductivity and, thus, electrolytic solute in both the mobile and immobile domains. We demonstrate the new approach, in which temporal moments of collocated mobile domain conductivity (i.e., conventional sampling) and ERT‐estimated bulk conductivity are used to calculate heterogeneous mass transfer rate and immobile porosity fractions in a series of numerical column experiments.
Nekouei, Omid; Durocher, Jean; Keefe, Greg
2016-07-01
This study assessed the diagnostic performance of a commercial ELISA for detecting bovine leukemia virus antibodies in bulk-tank milk samples from eastern Canada. Sensitivity and specificity of the test were estimated at 97.2% and 100%, respectively. The test was recommended as a cost-efficient tool for large-scale screening programs.
Nekouei, Omid; Durocher, Jean; Keefe, Greg
2016-01-01
This study assessed the diagnostic performance of a commercial ELISA for detecting bovine leukemia virus antibodies in bulk-tank milk samples from eastern Canada. Sensitivity and specificity of the test were estimated at 97.2% and 100%, respectively. The test was recommended as a cost-efficient tool for large-scale screening programs. PMID:27429469
NASA Astrophysics Data System (ADS)
Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An
2018-05-01
The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.
Numerical modelling of iron-pnictide bulk superconductor magnetization
NASA Astrophysics Data System (ADS)
Ainslie, Mark D.; Yamamoto, Akiyasu; Fujishiro, Hiroyuki; Weiss, Jeremy D.; Hellstrom, Eric E.
2017-10-01
Iron-based superconductors exhibit a number of properties attractive for applications, including low anisotropy, high upper critical magnetic fields (H c2) in excess of 90 T and intrinsic critical current densities above 1 MA cm-2 (0 T, 4.2 K). It was shown recently that bulk iron-pnictide superconducting magnets capable of trapping over 1 T (5 K) and 0.5 T (20 K) can be fabricated with fine-grain polycrystalline Ba0.6K0.4Fe2As2 (Ba122). These Ba122 magnets were processed by a scalable, versatile and low-cost method using common industrial ceramic processing techniques. In this paper, a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the H -formulation, is used to investigate the magnetisation properties of such iron-pnictide bulk superconductors. Using the measured J c(B, T) characteristics of a small specimen taken from a bulk Ba122 sample, experimentally measured trapped fields are reproduced well for a single bulk, as well as a stack of bulks. Additionally, the influence of the geometric dimensions (thickness and diameter) on the trapped field is analysed, with a view of fabricating larger samples to increase the magnetic field available from such trapped field magnets. It is shown that, with current state-of-the-art superconducting properties, surface trapped fields >2 T could readily be achieved at 5 K (and >1 T at 20 K) with a sample of diameter 50 mm. Finally, an aspect ratio of between 1 and 1.5 for R/H (radius/thickness) would be an appropriate compromise between the accessible, surface trapped field and volume of superconducting material for bulk Ba122 magnets.
NASA Astrophysics Data System (ADS)
Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.
2015-05-01
To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.
X-Ray Nanoscopy of a Bulk Heterojunction
NASA Astrophysics Data System (ADS)
Patil, Nilesh; Torbjørn, Eirik; Skjønsfjell, Bakken; Van den Brande, Niko; Chavez Panduro, Elvia Anabela; Claessens, Raf; Guizar-Sicairos, Manuel; Van Mele, Bruno; Breiby, Dag Werner
2016-07-01
Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and thermally treated for different annealing times is imaged to high resolution. Moreover, using a fast-scanning calorimetry chip setup, the nano-morphological changes caused by repeated thermal annealing applied to the same sample could be monitored. X-ray ptychography resolves to better than 100 nm the phase-segregated domains of electron donor and electron acceptor materials over a large field of view within the active layers. The quantitative phase contrast images further allow us to estimate the local volume fraction of PCBM across the photovoltaically active layers. The volume fraction gradient for different regions provides insight on the PCBM diffusion across the depletion zone surrounding PCBM aggregates. Phase contrast X-ray microscopy is under rapid development, and the results presented here are promising for future studies of organic-organic blends, also under in situ conditions, e.g., for monitoring the structural stability during UV-Vis irradiation.
X-Ray Nanoscopy of a Bulk Heterojunction.
Patil, Nilesh; Skjønsfjell, Eirik Torbjørn Bakken; Van den Brande, Niko; Chavez Panduro, Elvia Anabela; Claessens, Raf; Guizar-Sicairos, Manuel; Van Mele, Bruno; Breiby, Dag Werner
2016-01-01
Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and thermally treated for different annealing times is imaged to high resolution. Moreover, using a fast-scanning calorimetry chip setup, the nano-morphological changes caused by repeated thermal annealing applied to the same sample could be monitored. X-ray ptychography resolves to better than 100 nm the phase-segregated domains of electron donor and electron acceptor materials over a large field of view within the active layers. The quantitative phase contrast images further allow us to estimate the local volume fraction of PCBM across the photovoltaically active layers. The volume fraction gradient for different regions provides insight on the PCBM diffusion across the depletion zone surrounding PCBM aggregates. Phase contrast X-ray microscopy is under rapid development, and the results presented here are promising for future studies of organic-organic blends, also under in situ conditions, e.g., for monitoring the structural stability during UV-Vis irradiation.
NASA Astrophysics Data System (ADS)
Kitamura, M.; Kitajima, H.; Henry, P.; Valdez, R. D., II; Josh, M.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.
2014-12-01
Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of ~2.7 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density, but higher bulk density and lower porosity, respectively. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical conductivity and P-wave velocity on discrete samples, which were prepared from both cuttings and core samples in the depth interval of 1745.5-3058.5 mbsf, range 0.15-0.9 S/m and 1.7-4.5 km/s, respectively. The electrical resistivity on discrete samples is higher than the LWD resistivity data but the overall depth trends are similar. The electrical conductivity and P-wave velocity on discrete samples corrected for in-situ pressure and temperature will be presented. The shipboard physical properties measurements on cuttings are very limited but can be useful with careful treatment and observation.
Starting a European Space Agency Sample Analogue Collection for Robotic Exploration Missions
NASA Astrophysics Data System (ADS)
Smith, C. L.; Mavris, C.; Michalski, J. R.; Rumsey, M. S.; Russell, S. S.; Jones, C.; Schroeven-Deceuninck, H.
2015-12-01
The Natural History Museum is working closely with the European Space Agency (ESA) and the UK Space Agency to develop a European collection of analogue materials with appropriate physical/mechanical and chemical (mineralogical) properties which can support the development and verification of both spacecraft and scientific systems for potential science and exploration missions to Phobos/Deimos, Mars, C-type asteroids and the Moon. As an ESA Collection it will be housed at the ESA Centre based at Harwell, UK. The "ESA Sample Analogues Collection" will be composed of both natural and artificial materials chosen to (as closely as possible) replicate the surfaces and near-surfaces of different Solar System target bodies of exploration interest. The analogue samples will be fully characterised in terms of both their physical/mechanical properties (compressive strength, bulk density, grain shape, grain size, cohesion and angle of internal friction) and their chemical/mineralogical properties (texture, modal mineralogy, bulk chemical composition - major, minor and trace elements and individual mineralogical compositions). The Collection will be fully curated to international standards including implementation of a user-friendly database and will be available for use by engineers and scientists across the UK and Europe. Enhancement of the initial Collection will be possible through collaborations with other ESA and UK Space Agency supported activities, such as the acquisition of new samples during field trials.
Post-Formation Sodium Loss on the Moon: A Bulk Estimate
NASA Technical Reports Server (NTRS)
Saxena, P.; Killen, R. M.; Airapetian, V.; Petro, N. E.; Mandell, A. M.
2018-01-01
The Moon and Earth are generally similar in terms of composition, but there exist variations in the abundance of certain elements among the two bodies. These differences are a likely consequence of differing physical evolution of the two bodies over the solar system's history. While previous works have assumed this may be due to conditions during the Moonâ€"TM"s formation, we explore the likelihood that the observed depletion in Sodium in lunar samples may be partially due to post-formation mechanisms. Solar effects, loss from a primordial atmosphere and impacts are some of the dominant post-formation mechanisms that we examine. We describe how our past and current modeling efforts indicate that a significant fraction of the observed depletion of sodium in lunar samples relative to a bulk silicate earth composition may have been due to solar activity, atmospheric loss and impacts. Using profiles of sodium abundances from lunar crustal samples may thus serve as a powerful tool towards exploring conditions on the Moon's surface throughout solar system history. Conditions on the Moon immediately after formation may still be recorded in the lunar crust and may provide a window towards interpreting observations from some of the first rocky exoplanets that will be most amenable to characterization. Potential spatial variation of sodium in the lunar crust may be a relevant consideration for future sample return efforts. Sodium Depletion in the Lunar Crust: Lunar
Effect of Surface Preparation and Gas Flow on Nitrogen Atom Surface Recombination
NASA Technical Reports Server (NTRS)
Prok, George M.
1961-01-01
The effects of surface preparation and gas flow on the recombination of nitrogen atoms at copper and platinum surfaces were determined. Atoms were generated by an electrodeless 2450-megacycle-per-second discharge, and their concentration was measured by gas-phase titration with nitric oxide. Test surfaces were either vacuum-evaporated films or spheres machined from bulk metal and cemented around small glass-bead thermistors. Heat released by recombination was measured as the difference in electrical energy required to maintain a given thermistor temperature with and without a catalytic surface exposed. Recombination coefficients measured at flow velocities of 1120, 1790, 2250, and 3460 centimeters per second and at pressures of 0.42 and 0.59 millimeter of mercury showed that flow conditions had no effect. The results were also independent of atom concentration. A rough indication of the temperature dependence was obtained; it was greater for copper than for platinum. Platinum films deposited on platinum or on glass had the same activity - about 3 percent of the atoms impinging recombined. With copper, however, the glass substrate greatly reduced the percent of atoms recombining over that of a bulk copper substrate where 4 percent of the impinging atoms recombined. This effect could be overcome by depositing a second film on top of the first. Bulk metal samples were subjected to various surface treatments including polishing, degreasing with a chlorinated hydrocarbon, washing with nitric acid, and rinsing with water. Polished, degreased platinum had low activity compared to an evaporated film, but nitric acid treatment made it equivalent. Polished, degreased copper was only slightly less active than a copper film; nitric acid etching decreased the activity still further, probably by preferentially exposing facets of low catalytic efficiency.
Comparison of platelet activation through hinge vs bulk flow in mechanical heart valves
NASA Astrophysics Data System (ADS)
Hedayat, Mohammadali; Borazjani, Iman
2017-11-01
Bileaflet mechanical heart valves increase the risk of thrombus formation in patients which is believed to be initiated by platelet activation. Platelets can be activated by the elevated shear stresses in the bulk flow during the systole phase or the flow through the hinge during the diastole. However, the importance of platelet activation by the bulk flow vs the hinge in MHVs has yet to be studied. Here, we investigate the contribution of each of the above mechanisms to the activation of platelets in MHs by performing simulation of the flow through a 25mm St. Jude Medical valve placed in a straight aorta. Two different gap sizes (250 and 150 micrometer) are used in this study. The simulations are done using a sharp interface curvilinear immersed boundary method along with a strong-coupling algorithm for FSI solver on overset grids. The platelet activation through the hinge for different gap sizes is compared to the activation in the bulk flow using two platelet activation models to ensure the consistency of the results. Our results for all gap sizes using different activation models show that the integration of platelet activation caused by the bulk flow is several times higher in comparison to the activation through the hinge. This work is supported by the American Heart Association Grant 13SDG17220022, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.
Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window.
Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao
2018-06-15
SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO 2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV-vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 samples fabricated by the containerless process and SPS between 852 °C-857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.
Low field magnetocaloric effect in bulk and ribbon alloy La(Fe0.88Si0.12)13
NASA Astrophysics Data System (ADS)
Vuong, Van-Hiep; Do-Thi, Kim-Anh; Nguyen, Duy-Thien; Nguyen, Quang-Hoa; Hoang, Nam-Nhat
2018-03-01
Low-field magnetocaloric effect occurred in itinerant metamagnetic materials is at core for magnetic cooling application. This works reports the magnetocaloric responses obtained at 1.35 T for the silicon-doped iron-based binary alloy La(Fe0.88Si0.12)13 in the bulk and ribbon form. Both samples possess a same symmetry but with different crystallite sizes and lattice parameters. The ribbon sample shows a larger maximum entropy change (nearly 8.5 times larger) and a higher Curie temperature (5 K higher) in comparison with that of the bulk sample. The obtained relative cooling power for the ribbon is also larger and very promising for application (RCP = 153 J/kg versus 25.2 J/kg for the bulk). The origin of the effect observed is assigned to the occurrence of negative magnetovolume effect in the ribbon structure with limit crystallization, caused by rapid cooling process at the preparation, which induced smaller crystallite size and large lattice constant at the overall weaker local crystal field.
Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window
NASA Astrophysics Data System (ADS)
Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao
2018-06-01
SrAl2O4-Sr3Al2O6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV–vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl2O4-Sr3Al2O6 samples fabricated by the containerless process and SPS between 852 °C–857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl2O4-Sr3Al2O6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.
Fine-scale traverses in cumulate rocks, Stillwater Complex: A lunar analogue study
NASA Technical Reports Server (NTRS)
Elthon, Donald
1988-01-01
The objective was to document finite-scale compositional variations in cumulate rocks from the Stillwater Complex in Montana and to interpret these data in the context of planetary magma fractionation processes such as those operative during the formation of the Earth's Moon. This research problem involved collecting samples in the Stillwater Complex and analyzing them by electron microprobe, X-ray fluorescence (XRF), and instrumental neutron activation analysis (INAA). The electron microprobe is used to determine the compositions of cumulus and intercumulus phases in the rocks, the XRF is used to determine the bulk-rock major element and trace element (Y, Sr, Rb, Zr, Ni, and Cr) abundances, and the INAA lab. is used to determine the trace element (Sc, Co, Cr, Ni, Ta, Hf, U, Th, and the REE) abundances of mineral separates and bulk rocks.
NASA Astrophysics Data System (ADS)
Handa, D.; Nakajima, H.; Nakaema, F.; Arakaki, T.; Tanahara, A.
2008-12-01
The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the air pollution transported from Asian continent has gained a special attention in Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asian atmospheric aerosols because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. In 2005, Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) was established by the National Institute for Environmental Studies (NIES) at the northern tip of Okinawa Island, Japan to monitor the air quality of Asia. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon in the bulk aerosols collected at the CHAAMS, using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions.
NASA Astrophysics Data System (ADS)
Du, Y.; Cai, K. F.; Li, H.; An, B. J.
2011-05-01
Pure Bi2Te3 and Bi2Se3 nanopowders were hydrothermally synthesized, and n-type Bi2Te3- x Se x bulk samples were prepared by hot pressing a mixture of Bi2Te3 and Bi2Se3 nanopowders at 623 K, 648 K or 673 K and 80 MPa in vacuum. The phase composition of the powders and bulk samples were characterized by x-ray diffraction. The morphology of the powders was examined by transmission electron microscopy. The microstructure and composition of the bulk samples were characterized by field-emission scanning electron microscopy and energy-dispersive x-ray spectroscopy, respectively. The density of the samples increased with sintering temperature. The samples were somewhat oxidized, and the amount of oxide (Bi2TeO5) present increased with sintering temperature. The samples consisted of sheet-like grains with a thickness less than 100 nm. Seebeck coefficient, electrical conductivity, and thermal conductivity of the samples were measured from room temperature up to 573 K. Throughout the temperature range investigated, the sample sintered at 623 K had a higher power factor than the samples sintered at 648 K or 673 K.
Chemical potential in active systems: predicting phase equilibrium from bulk equations of state?
NASA Astrophysics Data System (ADS)
Paliwal, Siddharth; Rodenburg, Jeroen; van Roij, René; Dijkstra, Marjolein
2018-01-01
We derive a microscopic expression for a quantity μ that plays the role of chemical potential of active Brownian particles (ABPs) in a steady state in the absence of vortices. We show that μ consists of (i) an intrinsic chemical potential similar to passive systems, which depends on density and self-propulsion speed, but not on the external potential, (ii) the external potential, and (iii) a newly derived one-body swim potential due to the activity of the particles. Our simulations on ABPs show good agreement with our Fokker-Planck calculations, and confirm that μ (z) is spatially constant for several inhomogeneous active fluids in their steady states in a planar geometry. Finally, we show that phase coexistence of ABPs with a planar interface satisfies not only mechanical but also diffusive equilibrium. The coexistence can be well-described by equating the bulk chemical potential and bulk pressure obtained from bulk simulations for systems with low activity but requires explicit evaluation of the interfacial contributions at high activity.
NASA Astrophysics Data System (ADS)
Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2016-09-01
A fundamental requirement of the fabrication of high performing, (RE)-Ba-Cu-O bulk superconductors is achieving a single grain microstructure that exhibits good flux pinning properties. The top seeded melt growth (TSMG) process is a well-established technique for the fabrication of single grain (RE)BCO bulk samples and is now applied routinely by a number of research groups around the world. The introduction of a buffer layer to the TSMG process has been demonstrated recently to improve significantly the general reliability of the process. However, a number of growth-related defects, such as porosity and the formation of micro-cracks, remain inherent to the TSMG process, and are proving difficult to eliminate by varying the melt process parameters. The seeded infiltration and growth (SIG) process has been shown to yield single grain samples that exhibit significantly improved microstructures compared to the TSMG technique. Unfortunately, however, SIG leads to other processing challenges, such as the reliability of fabrication, optimisation of RE2BaCuO5 (RE-211) inclusions (size and content) in the sample microstructure, practical oxygenation of as processed samples and, hence, optimisation of the superconducting properties of the bulk single grain. In the present paper, we report the development of a near-net shaping technique based on a novel two-step, buffer-aided top seeded infiltration and growth (BA-TSIG) process, which has been demonstrated to improve greatly the reliability of the single grain growth process and has been used to fabricate successfully bulk, single grain (RE)BCO superconductors with improved microstructures and superconducting properties. A trapped field of ˜0.84 T and a zero field current density of 60 kA cm-2 have been measured at 77 K in a bulk, YBCO single grain sample of diameter 25 mm processed by this two-step BA-TSIG technique. To the best of our knowledge, this value of trapped field is the highest value ever reported for a sample fabricated by an infiltration and growth process. In this study we report the successful fabrication of 14 YBCO samples, with diameters of up to 32 mm, by this novel technique with a success rate of greater than 92%.
Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process
Miao, Yinglong; Baudry, Jerome
2011-01-01
Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site. PMID:21943431
Source-term characterisation and solid speciation of plutonium at the Semipalatinsk NTS, Kazakhstan.
Nápoles, H Jiménez; León Vintró, L; Mitchell, P I; Omarova, A; Burkitbayev, M; Priest, N D; Artemyev, O; Lukashenko, S
2004-01-01
New data on the concentrations of key fission/activation products and transuranium nuclides in samples of soil and water from the Semipalatinsk Nuclear Test Site are presented and interpreted. Sampling was carried out at Ground Zero, Lake Balapan, the Tel'kem craters and reference locations within the test site boundary well removed from localised sources. Radionuclide ratios have been used to characterise the source term(s) at each of these sites. The geochemical partitioning of plutonium has also been examined and it is shown that the bulk of the plutonium contamination at most of the sites examined is in a highly refractory, non-labile form.
Redesigning nursing work in long-term care environments.
Hall, L M; O'Brien-Pallas, L
2000-01-01
The authors present a highly statistically oriented argument for examining work attitudes and activities among three groups of caregivers [RNs, RPNs, and HCAs] working in long-term care. The investigators used both work sampling, written surveys, and interviews with a sample of 46 caregivers in a large university-affiliated LTC facility in Toronto, Canada. While RNs stated their strong affinity for direct patient care activities, they perform the lowest percentage of direct care, chiefly due to their accountability for planning and coordinating the care provided by others. The HCAs who provided the bulk of direct patient care "valued it the least," apparently finding little gratification with this aspect of their role. This study suggests that there is a need to examine and clarify work roles and perceptions for all caregivers as part of any work redesign process. A higher level of RN involvement in direct patient care activities, along with "attention to enhancing the importance" of these activities for staff employed in the HCA role, could be beneficial.
Sushko, Gennady B; Verkhovtsev, Alexey V; Yakubovich, Alexander V; Schramm, Stefan; Solov'yov, Andrey V
2014-08-21
The process of self-diffusion of titanium atoms in a bulk material, on grain junctions and on surface is explored numerically in a broad temperature range by means of classical molecular dynamics simulation. The analysis is carried out for a nanoscale cylindrical sample consisting of three adjacent sectors and various junctions between nanocrystals. The calculated diffusion coefficient varies by several orders of magnitude for different regions of the sample. The calculated values of the bulk diffusion coefficient correspond reasonably well to the experimental data obtained for solid and molten states of titanium. Investigation of diffusion in the nanocrystalline titanium is of a significant importance because of its numerous technological applications. This paper aims to reduce the lack of data on diffusion in titanium and describe the processes occurring in bulk, at different interfaces and on surface of the crystalline titanium.
NASA Astrophysics Data System (ADS)
Koestel, J. K.; Norgaard, T.; Luong, N. M.; Vendelboe, A. L.; Moldrup, P.; Jarvis, N. J.; Lamandé, M.; Iversen, B. V.; Wollesen de Jonge, L.
2013-02-01
It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field site in Silstrup (Denmark) at a sampling distance of approximately 15 m (with a few exceptions), covering an area of approximately 1 ha (60 m × 165 m). For 64 of the 65 investigated soil columns, we observed BTC shapes indicating a strong preferential transport. The strength of preferential transport was positively correlated with the bulk density and the degree of water saturation. The latter suggests that preferential macropore transport was the dominating transport process. Increased bulk densities were presumably related with a decrease in near-saturated hydraulic conductivities and as a consequence to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column scale have to be upscaled when applied to the field scale or larger.
Crystallization Kinetics of Barium and Strontium Aluminosilicate Glasses of Feldspar Composition
NASA Technical Reports Server (NTRS)
Hyatt, Mark J.; Bansal, Narottam P.
1994-01-01
Crystallization kinetics of BaO.Al2O3.2SiO2 (BAS) and SrO.Al2O3.2SiO2 (SAS) glasses in bulk and powder forms have been studied by non-isothermal differential scanning calorimetry (DSC). The crystal growth activation energies were evaluated to be 473 and 451 kJ/mol for bulk samples and 560 and 534 kJ/mol for powder specimens in BAS and SAS glasses, respectively. Development of crystalline phases on thermal treatments of glasses at various temperatures has been followed by powder x-ray diffraction. Powder samples crystallized at lower temperatures than the bulk and the crystallization temperature was lower for SAS glass than BAS. Crystallization in both glasses appeared to be surface nucleated. The high temperature phase hexacelsian, MAl2Si2O8 (M = Ba or Sr), crystallized first by nucleating preferentially on the glass surface. Also, monoclinic celsian does not nucleate directly in the glass, but is formed at higher temperatures from the transformation of the metastable hexagonal phase. In SAS the transformation to monoclinic celsian occurred rapidly after 1 h at 1100 C. In contrast, in BAS this transformation is sluggish and difficult and did not go to completion even after 10 h heat treatment at 1400 C. The crystal growth morphologies in the glasses have been observed by optical microscopy. Some of the physical properties of the two glasses are also reported.
How interfaces affect hydrophobically driven polymer folding.
Jamadagni, Sumanth N; Godawat, Rahul; Dordick, Jonathan S; Garde, Shekhar
2009-04-02
Studies of folding-unfolding of hydrophobic polymers in water provide an excellent starting point to probe manybody hydrophobic interactions in the context of realistic self-assembly processes. Such studies in bulk water have highlighted the similarities between thermodynamics of polymer collapse and of protein folding, and emphasized the role of hydration-water structure, density, and fluctuations-in the folding kinetics. Hydrophobic polymers are interfacially active-that is, they prefer locations at aqueous interfaces relative to bulk water-consistent with their low solubility. How does the presence of a hydrophobic solid surface or an essentially hydrophobic vapor-water interface affect the structural, thermodynamic, and kinetic aspects of polymer folding? Using extensive molecular dynamics simulations, we show that the large hydrophobic driving force for polymer collapse in bulk water is reduced at a solid alkane-water interface and further reduced at a vapor-water interface. As a result, at the solid-water interface, folded structures are marginally stable, whereas the vapor-liquid interface unfolds polymers completely. Structural sampling is also significantly affected by the interface. For example, at the solid-water interface, polymer conformations are quasi-2- dimensional, with folded states being pancake-like structures. At the vapor-water interface, the hydrophobic polymer is significantly excluded from the water phase and freely samples a broad range of compact to extended structures. Interestingly, although the driving force for folding is considerably lower, kinetics of folding are faster at both interfaces, highlighting the role of enhanced water fluctuations and dynamics at a hydrophobic interface.
Physical properties of sidewall cores from Decatur, Illinois
Morrow, Carolyn A.; Kaven, Joern; Moore, Diane E.; Lockner, David A.
2017-10-18
To better assess the reservoir conditions influencing the induced seismicity hazard near a carbon dioxide sequestration demonstration site in Decatur, Ill., core samples from three deep drill holes were tested to determine a suite of physical properties including bulk density, porosity, permeability, Young’s modulus, Poisson’s ratio, and failure strength. Representative samples of the shale cap rock, the sandstone reservoir, and the Precambrian basement were selected for comparison. Physical properties were strongly dependent on lithology. Bulk density was inversely related to porosity, with the cap rock and basement samples being both least porous (
New directions for nanoscale thermoelectric materials research
NASA Technical Reports Server (NTRS)
Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, F.; Fleurial, J. P.; Gogna, P.
2005-01-01
Many of the recent advances in enhancing the thermoelectric figure of merit are linked to nanoscale phenomena with both bulk samples containing nanoscale constituents and nanoscale materials exhibiting enhanced thermoelectric performance in their own right. Prior theoretical and experimental proof of principle studies on isolated quantum well and quantum wire samples have now evolved into studies on bulk samples containing nanostructured constituents. In this review, nanostructural composites are shown to exhibit nanostructures and properties that show promise for thermoelectric applications. A review of some of the results obtained to date are presented.
Smart tungsten alloys as a material for the first wall of a future fusion power plant
NASA Astrophysics Data System (ADS)
Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J. W.; Du, H.; Mayer, J.; Garcia-Rosales, C.; Calvo, A.; Ordas, N.
2017-06-01
Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere. New self-passivating ‘smart’ alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization. Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)-chroimum (Cr)-titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C-715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W-Cr-Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten. New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W-Cr-Ti systems and of pure W. The oxidation rate constant of W-Cr-Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treimer, Wolfgang; Ebrahimi, Omid; Karakas, Nursel
Polarized neutron radiography was used to study the three-dimensional magnetic flux distribution inside of single-crystal and polycrystalline Pb cylinders with large (cm3) volume and virtually zero demagnetization. Experiments with single crystals being in the Meissner phase (T
Microwave dielectric spectrum of rocks
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.
1988-01-01
A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.
In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion,more » while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.« less
Onset of bulk pinning in BSCCO single crystals
NASA Astrophysics Data System (ADS)
van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Li, T. W.; Benoit, W.
1996-11-01
The long growth defects often found in Bi2Sr2CaCu2O8, “single” crystals effectively weaken the geometrical barrier and lower the field of first flux penetration. This means that the intrinsic (bulk) magnetic properties can be more easily accessed using magnetic measurements. Thus, the onset of strong bulk flux pinning in the sample bulk is determined to lie at T ≈ 40 K, indepedent of whether the field strength is above or below the field of the second peak in the magnetisation.
NASA Astrophysics Data System (ADS)
Yang, W. M.; Yuan, X. C.; Guo, Y. X.
2017-10-01
Single domain YBCO bulk superconductors with different additions of ZnO have been successfully fabricated by RE+011 TSIG process with a new solid phase of [(100-x)(Y2O3 + 1.2BaCuO2)+xZnO] and a new liquid phase of (Y2O3+6CuO+10BaCuO2). The effects of ZnO additions on the growth morphology, microstructure, critical temperature (Tc), the levitation force and trapped field of the YBCO bulks have been investigated. It is found that within the range of ZnO additions x=0-1.0 wt.%, all the samples are of the typical characteristic of single-domain YBCO bulk; the Tc of the samples decreases from 92 K to 80 K when the ZnO addition x increases from x=0 wt.% to x=1.0 wt.%; the levitation force and trapped field of the samples firstly increase and then decrease with increase of ZnO additions after going through a maximum, which is closely related with the ZnO addition and the resulting flux pinning force caused by lattice distortion due to the substitution of Zn2+ for Cu2+ site in the YBCO crystal; the largest levitation force 36.8 N (77 K, 0.5 T) and trapped field 0.416 T (77 K, 0.5 T) of the samples are obtained when x=0.1 wt.%, respectively. This result is significantly important and helpful for us to improve the properties of YBCO bulk superconductors.
Geng, J.; Nlebedim, I. C.; Besser, M. F.; ...
2016-04-15
A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. Furthermore, the Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.
Keru, Godfrey; Ndungu, Patrick G.; Mola, Genene T.; Nyamori, Vincent O.
2015-01-01
Nanocomposites of poly(3-hexylthiophene) (P3HT) and nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized by two methods; specifically, direct solution mixing and in situ polymerization. The nanocomposites were characterized by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray dispersive spectroscopy, UV-Vis spectrophotometry, photoluminescence spectrophotometry (PL), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis, and dispersive surface energy analysis. The nanocomposites were used in the active layer of a bulk heterojunction organic solar cell with the composition ITO/PEDOT:PSS/P3HT:N-CNTS:PCBM/LiF/Al. TEM and SEM analysis showed that the polymer successfully wrapped the N-CNTs. FTIR results indicated good π-π interaction within the nanocomposite synthesized by in situ polymerization as opposed to samples made by direct solution mixing. Dispersive surface energies of the N-CNTs and nanocomposites supported the fact that polymer covered the N-CNTs well. J-V analysis show that good devices were formed from the two nanocomposites, however, the in situ polymerization nanocomposite showed better photovoltaic characteristics.
Evaluation of residual uranium contamination in the dirt floor of an abandoned metal rolling mill.
Glassford, Eric; Spitz, Henry; Lobaugh, Megan; Spitler, Grant; Succop, Paul; Rice, Carol
2013-02-01
A single, large, bulk sample of uranium-contaminated material from the dirt floor of an abandoned metal rolling mill was separated into different types and sizes of aliquots to simulate samples that would be collected during site remediation. The facility rolled approximately 11,000 tons of hot-forged ingots of uranium metal approximately 60 y ago, and it has not been used since that time. Thirty small mass (≈ 0.7 g) and 15 large mass (≈ 70 g) samples were prepared from the heterogeneously contaminated bulk material to determine how measurements of the uranium contamination vary with sample size. Aliquots of bulk material were also resuspended in an exposure chamber to produce six samples of respirable particles that were obtained using a cascade impactor. Samples of removable surface contamination were collected by wiping 100 cm of the interior surfaces of the exposure chamber with 47-mm-diameter fiber filters. Uranium contamination in each of the samples was measured directly using high-resolution gamma ray spectrometry. As expected, results for isotopic uranium (i.e., U and U) measured with the large-mass and small-mass samples are significantly different (p < 0.001), and the coefficient of variation (COV) for the small-mass samples was greater than for the large-mass samples. The uranium isotopic concentrations measured in the air and on the wipe samples were not significantly different and were also not significantly different (p > 0.05) from results for the large- or small-mass samples. Large-mass samples are more reliable for characterizing heterogeneously distributed radiological contamination than small-mass samples since they exhibit the least variation compared to the mean. Thus, samples should be sufficiently large in mass to insure that the results are truly representative of the heterogeneously distributed uranium contamination present at the facility. Monitoring exposure of workers and the public as a result of uranium contamination resuspended during site remediation should be evaluated using samples of sufficient size and type to accommodate the heterogeneous distribution of uranium in the bulk material.
NASA Astrophysics Data System (ADS)
Longpre, M. A.; Muller, J.; Beaudry, P.; Andronikides, A.; Felpeto, A.
2017-12-01
Since the 16th century, at least 13 volcanic eruptions have occurred in the Canary Islands that formed monogenetic cinder cones and lava flow fields: 2 on Lanzarote, 4 on Tenerife, 6 on La Palma, and 1 on the submarine flank of El Hierro. Here we present a comprehensive new dataset of tephra composition for all 13 eruptions, comprising major and trace element data for bulk rocks and matrix glasses, as well as vesicularity and crystallinity measurements. In addition, we compile available volcanological and petrological information for specific eruptions, including estimates of lava flow area and volume. All lapilli samples show a vesicularity of 40-50 vol% and a vesicle-free crystallinity (crystals ≥ 250 µm) of 5-15 vol%. Modal mineralogy varies significantly between samples, typically consisting of olivine ± clinopyroxene ± Fe-Ti oxide ± plagioclase ± amphibole in different proportions. All but 2 tephras have basanite-tephrite bulk rock compositions. Lapilli from vents of the AD 1730-1736 Timanfaya eruption, Lanzarote, largely are basaltic, whereas the AD 1798 Chahorra eruption, Tenerife, produced phonotephrite tephra. These results are in agreement with published bulk lava flow data. Unsurprisingly, glass compositions are more evolved than bulk rocks and MgOglass is weakly positively correlated to MgObulk (MgOglass = 0.30*MgObulk + 2.11, R2 = 0.54). Both bulk rocks and glasses show strikingly similar multi-element diagram patterns, with strong enrichment relative to the bulk-silicate Earth and marked positive Nb and Ta and negative Pb anomalies — typical for ocean island basalts. Glass/bulk rock elemental ratios reveal systematic differences between samples that relate to their mineralogy; for example, Lanzarote tephras that lack significant clinopyroxene and Fe-Ti oxide crystals have higher Scglass/Scbulk and Vglass/Vbulk than Tenerife, La Palma and El Hierro samples that typically contain these minerals. Among all elements, K and P display the greatest average glass/bulk rock enrichment factors (1.41 ± 0.18 and 1.47 ± 0.17, respectively). This work provides an internally consistent framework for the comparison of historical Canary Island eruptions and offers novel insights into the relationships between trace element signatures and the crystal cargo of basaltic magmas.
Real time and label free profiling of clinically relevant exosomes
Sina, Abu Ali Ibn; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G.; Shiddiky, Muhammad J. A.; Trau, Matt
2016-01-01
Tumor-derived exosomes possess significant clinical relevance due to their unique composition of genetic and protein material that is representative of the parent tumor. Specific isolation as well as identification of proportions of these clinically relevant exosomes (CREs) from biological samples could help to better understand their clinical significance as cancer biomarkers. Herein, we present a simple approach for quantification of the proportion of CREs within the bulk exosome population isolated from patient serum. This proportion of CREs can potentially inform on the disease stage and enable non-invasive monitoring of inter-individual variations in tumor-receptor expression levels. Our approach utilises a Surface Plasmon Resonance (SPR) platform to quantify the proportion of CREs in a two-step strategy that involves (i) initial isolation of bulk exosome population using tetraspanin biomarkers (i.e., CD9, CD63), and (ii) subsequent detection of CREs within the captured bulk exosomes using tumor-specific markers (e.g., human epidermal growth factor receptor 2 (HER2)). We demonstrate the isolation of bulk exosome population and detection of as low as 10% HER2(+) exosomes from samples containing designated proportions of HER2(+) BT474 and HER2(−) MDA-MB-231 cell derived exosomes. We also demonstrate the successful isolation of exosomes from a small cohort of breast cancer patient samples and identified that approximately 14–35% of their bulk population express HER2. PMID:27464736
Real time and label free profiling of clinically relevant exosomes.
Sina, Abu Ali Ibn; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G; Shiddiky, Muhammad J A; Trau, Matt
2016-07-28
Tumor-derived exosomes possess significant clinical relevance due to their unique composition of genetic and protein material that is representative of the parent tumor. Specific isolation as well as identification of proportions of these clinically relevant exosomes (CREs) from biological samples could help to better understand their clinical significance as cancer biomarkers. Herein, we present a simple approach for quantification of the proportion of CREs within the bulk exosome population isolated from patient serum. This proportion of CREs can potentially inform on the disease stage and enable non-invasive monitoring of inter-individual variations in tumor-receptor expression levels. Our approach utilises a Surface Plasmon Resonance (SPR) platform to quantify the proportion of CREs in a two-step strategy that involves (i) initial isolation of bulk exosome population using tetraspanin biomarkers (i.e., CD9, CD63), and (ii) subsequent detection of CREs within the captured bulk exosomes using tumor-specific markers (e.g., human epidermal growth factor receptor 2 (HER2)). We demonstrate the isolation of bulk exosome population and detection of as low as 10% HER2(+) exosomes from samples containing designated proportions of HER2(+) BT474 and HER2(-) MDA-MB-231 cell derived exosomes. We also demonstrate the successful isolation of exosomes from a small cohort of breast cancer patient samples and identified that approximately 14-35% of their bulk population express HER2.
NASA Astrophysics Data System (ADS)
Nakazawa, Haruna; Doi, Marika; Ogawa, Emiyu; Arai, Tsunenori
2018-02-01
To avoid an instability of the optical coefficient measurement using sliced tissue preparation, we proposed the combination of light intensity measurement through an optical fiber puncturing into a bulk tissue varying field of view (FOV) and ray tracing calculation using Monte-Carlo method. The optical coefficients of myocardium such as absorption coefficient μa, scattering coefficient μs, and anisotropic parameter g are used in the myocardium optical propagation. Since optical coefficients obtained using thin sliced tissue could be instable because they are affected by dehydration and intracellular fluid effusion on the sample surface, variety of coefficients have been reported over individual optical differences of living samples. The proposed method which combined the experiment using the bulk tissue with ray tracing calculation were performed. In this method, a 200 μmΦ high-NA silica fiber installed in a 21G needle was punctured up to the bottom of the myocardial bulk tissue over 3 cm in thickness to measure light intensity changing the fiber-tip depth and FOV. We found that the measured attenuation coefficients decreased as the FOV increased. The ray trace calculation represented the same FOV dependence in above mentioned experimental result. We think our particular fiber punctured measurement using bulk tissue varying FOV with Inverse Monte-Carlo method might be useful to obtain the optical coefficients to avoid sample preparation instabilities.
NASA Astrophysics Data System (ADS)
Khammeri, Yosra; Hamza, Ismail Sabeur; Zouari, Amel Bellaaj; Hamza, Asma; Sahli, Emna; Akrout, Fourat; Ben Kacem, Mohamed Yassine; Messaoudi, Sabri; Hassen, Malika Bel
2018-05-01
Monthly variability of atmospheric deposition of dissolved nitrogen, phosphorus and silicate was assessed during the year period from June 2014 to May 2015 in the Gulf of Gabès, situated near the most active source of dust. Nutrient concentrations, ultraphytoplankton <10 μm and heterotrophic prokaryotes abundances were simultaneously investigated in the surface coastal water near the sampling site. Results showed that most of the bulk nutrient deposition (more than 66%) occurred during wet season, from October to February, characterized by air masses originating from the Tunisian desert. Dissolved Inorganic Nitrogen (DIN) deposition was very low, whereas Dissolved Inorganic Phosphorus (DIP) bulk deposition was within the range of that observed in the Eastern Mediterranean. High organic nitrogen (30.47%) and phosphorus (83,5%) content contributed to the bulk nitrogen and phosphorus deposition respectively. Months marked by high deposition were accompanied by an increase of carbon biomass from picophytoplankton, Synecococcus and heterotrophic prokaryotes while nanophytoplankton biomass decreased from 62.38% to 43.39% towards the wet season. During the wet season, heterotrophic prokaryotes become the first contributors to the carbon biomass in the surface water. This suggests a possible contribution of bacteria to the organic nutrient pool driven by atmospheric deposition or/and a reinforcement of the heterotrophic character of the system due to the organic content mineralization processes.
High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K.
Tomita, Masaru; Murakami, Masato
2003-01-30
Large-grain high-temperature superconductors of the form RE-Ba-Cu-O (where RE is a rare-earth element) can trap magnetic fields of several tesla at low temperatures, and so can be used for permanent magnet applications. The magnitude of the trapped field is proportional to the critical current density and the volume of the superconductor. Various potential engineering applications for such magnets have emerged, and some have already been commercialized. However, the range of applications is limited by poor mechanical stability and low thermal conductivity of the bulk superconductors; RE-Ba-Cu-O magnets have been found to fracture during high-field activation, owing to magnetic pressure. Here we present a post-fabrication treatment that improves the mechanical properties as well as thermal conductivity of a bulk Y-Ba-Cu-O magnet, thereby increasing its field-trapping capacity. First, resin impregnation and wrapping the materials in carbon fibre improves the mechanical properties. Second, a small hole drilled into the centre of the magnet allows impregnation of Bi-Pb-Sn-Cd alloy into the superconductor and inclusion of an aluminium wire support, which results in a significant enhancement of thermal stability and internal mechanical strength. As a result, 17.24 T could be trapped, without fracturing, in a bulk Y-Ba-Cu-O sample of 2.65 cm diameter at 29 K.
Apparatus for rapid measurement of aerosol bulk chemical composition
Lee, Yin-Nan E.; Weber, Rodney J.
2003-01-01
An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.
Apparatus for rapid measurement of aerosol bulk chemical composition
Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas
2006-04-18
An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Haiming; Lin, Yaojun; Seidman, David N.
The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder–epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpledmore » discs to electron transparency. Compared with the well established and robust grinding–dimpling–ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Furthermore, our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.« less
Wen, Haiming; Lin, Yaojun; Seidman, David N.; ...
2015-09-09
The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder–epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpledmore » discs to electron transparency. Compared with the well established and robust grinding–dimpling–ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Furthermore, our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.« less
Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin
2014-06-01
Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.
Marathe, Nachiket P; Shetty, Sudarshan A; Shouche, Yogesh S; Larsson, D G Joakim
2016-01-01
Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL, which may affect not only resistance promotion but also general efficiency of the waste treatment process.
Shouche, Yogesh S.; Larsson, D. G. Joakim
2016-01-01
Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL, which may affect not only resistance promotion but also general efficiency of the waste treatment process. PMID:27812209
Bulk magnetic domain structures visualized by neutron dark-field imaging
NASA Astrophysics Data System (ADS)
Grünzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kühne, G.; Schäfer, R.; Pofahl, S.; Rønnow, H. M. R.; Pfeiffer, F.
2008-09-01
We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs.
Dynamic Pressure Induced Transformation Toughening and Strengthening in Bulk Metallic Glasses
2013-11-01
involved impact of 303 stainless steel flyer-plate on 303 stainless steel sample holder containing two BMGMC samples, at varying velocities. The Hugoniot...Technology. An aluminum sabot was used as the projectile with 303 Stainless Steel (SS) flyer plate to impact the DV1 bulk metallic glass composite. As...crystallization; polyamorphism; shear banding; high- strain -rate deformation REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR
Martin F. Jurgensen; Deborah S. Page-Dumroese; Robert E. Brown; Joanne M. Tirocke; Chris A. Miller; James B. Pickens; Min Wang
2017-01-01
Soils with high rock content are common in many US forests, and contain large amounts of stored C. Accurate measurements of soil bulk density and rock content are critical for calculating and assessing changes in both C and nutrient pool size, but bulk density sampling methods have limitations and sources of variability. Therefore, we evaluated the use of small-...
NASA Astrophysics Data System (ADS)
Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2016-03-01
Bulk (RE)-Ba-Cu-O ((RE)BCO, where RE stands for rare-earth), single grain superconductors can trap magnetic fields of several tesla at low temperatures and therefore can function potentially as high field magnets. Although top seeded melt growth (TSMG) is an established process for fabricating relatively high quality single grains of (RE)BCO for high field applications, this technique suffers from inherent problems such as sample shrinkage, a large intrinsic porosity and the presence of (RE)2BaCuO5 (RE-211)-free regions in the single grain microstructure. Seeded infiltration and growth (SIG), therefore, has emerged as a practical alternative to TSMG that overcomes many of these problems. Until now, however, the superconducting properties of bulk materials processed by SIG have been inferior to those fabricated using the TSMG technique. In this study, we identify that the inferior properties of SIG processed bulk superconductors are related to the presence of a relatively large Y-211 content (˜41.8%) in the single grain microstructure. Controlling the RE-211 content in SIG bulk samples is particularly challenging because it is difficult to regulate the entry of the liquid phase into the solid RE-211 preform during the infiltration process. In an attempt to solve this issue, we have investigated the effect of careful control of both the infiltration temperature and the quantity of liquid phase powder present in the sample preforms prior to processing. We conclude that careful control of the infiltration temperature is the most promising of these two process variables. Using this knowledge, we have fabricated successfully a YBCO bulk single grain using the SIG process of diameter 25 mm that exhibits a trapped field of 0.69 T at 77 K, which is the largest value reported to date for a sample fabricated by the SIG technique.
Comparison of methods for measuring atmospheric deposition of arsenic, cadmium, nickel and lead.
Aas, Wenche; Alleman, Laurent Y; Bieber, Elke; Gladtke, Dieter; Houdret, Jean-Luc; Karlsson, Vuokko; Monies, Christian
2009-06-01
A comprehensive field intercomparison at four different types of European sites (two rural, one urban and one industrial) comparing three different collectors (wet only, bulk and Bergerhoff samplers) was conducted in the framework of the European Committee for Standardization (CEN) to create an European standard for the deposition of the four elements As, Cd, Ni and Pb. The purpose was to determine whether the proposed methods lead to results within the uncertainty required by the EU's daughter directive (70%). The main conclusion is that a different sampling strategy is needed for rural and industrial sites. Thus, the conclusions on uncertainties and sample approach are presented separately for the different approaches. The wet only and bulk collector ("bulk bottle method") are comparable at wet rural sites where the total deposition arises mainly from precipitation, the expanded uncertainty when comparing these two types of sampler are below 45% for As, Cd and Pb, 67% for Ni. At industrial sites and possibly very dry rural and urban sites it is necessary to use Bergerhoff samplers or a "bulk bottle+funnel method". It is not possible to address the total deposition estimation with these methods, but they will give the lowest estimate of the total deposition. The expanded uncertainties when comparing the Bergerhoff and the bulk bottle+funnel methods are below 50% for As and Cd, and 63% for Pb. The uncertainty for Ni was not addressed since the bulk bottle+funnel method did not include a full digestion procedure which is necessary for sites with high loads of undissolved metals. The lowest estimate can however be calculated by comparing parallel Bergerhoff samplers where the expanded uncertainty for Ni was 24%. The reproducibility is comparable to the between sampler/method uncertainties. Sampling and sample preparation were proved to be the main factors in the uncertainty budget of deposition measurements.
Development of a Water Soluble Foam Packaging Material
1975-01-01
Material, Expanded Polystyrene , Looae-Fill Bulk and standard properties were established. Additional investigations conducted on the loose-fill samples...mechanical properties when tested as described in Federal Specification PPP-O-1683; Cushioning Material, Expanded Polystyrene , Loose-Fill Bulk. The following
Roach, David J.; Dou, Shichen; Colby, Ralph H.; ...
2012-01-06
Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T 1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T 1 values along with the presence of minima in T 1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similarmore » activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.« less
Using the nuclear activation AMS method for determining chlorine in solids at ppb-levels and below
NASA Astrophysics Data System (ADS)
Winkler, Stephan R.; Eigl, Rosmarie; Forstner, Oliver; Martschini, Martin; Steier, Peter; Sterba, Johannes H.; Golser, Robin
2015-10-01
Neutron activation analysis using decay counting of the activated element is a well-established method in elemental analysis. However, for chlorine there is a better alternative to measuring decay of the short-lived activation product chlorine-38 (t1/2 = 37.24 min) - accelerator mass spectrometry (AMS) of 36Cl: the relatively high neutron capture cross section of chlorine-35 for thermal neutrons (43.7 b) and combined the AMS technique for chlorine-36 (t1/2 = 301 ka) allow for determination of chlorine down to ppb-levels using practical sample sizes and common exposure durations. The combination of neutron activation and AMS can be employed for a few other elements (nitrogen, thorium, and uranium) as well. For bulk solid samples an advantage of the method is that lab contamination can be rendered irrelevant. The chlorine-35 in the sample is activated to chlorine-36, and surface chlorine can be removed after the irradiation. Subsequent laboratory contamination, however, will not carry a prominent chlorine-36 signature. After sample dissolution and addition of sufficient amounts of stable chlorine carrier the produced chlorine-36 and thus the original chlorine-35 of the sample can be determined using AMS. We have developed and applied the method for analysis of chlorine in steel samples. The chlorine content of steel is of interest to nuclear industry, precisely because of above mentioned high neutron capture cross section for chlorine-35, which leads to accumulation of chlorine-36 as long-term nuclear waste. The samples were irradiated at the TRIGA Mark II reactor of the Atominstitut in Vienna and the 36Cl-AMS setup at the Vienna Environmental Research Accelerator (VERA) was used for 36Cl/Cl analysis.
Seka, M A; Van DeWiele, T; Verstraete, W
2002-01-01
A multi-component additive formulated for a more efficient control of activated sludge filamentous bulking was evaluated at a full-scale treatment plant experiencing severe filamentous bulking. It was found that, besides offering an immediate improvement of sludge settling, the multi-component additive was able to eliminate the filamentous bacteria causing the bulking. Hence, contrary to ordinary additives, this novel additive yielded immediate as well as long-term improvements in sludge sedimentation upon a few additions. Preliminary lab-scale toxicity tests showed that the treatment of the sludge by the additive should not impart any toxicity to the resulting effluent.
Hanifian, Shahram; Khani, Sajjad
2012-04-02
To determine the prevalence of virulent Yersinia enterocolitica, 554 samples consisting of 354 bulk raw milks and 200 traditional cheeses were collected from different parts of Eastern-Azerbaijan province, during a 23-month period from 2008 to 2010. The occurrence of virulent strains of Y. enterocolitica in samples enriched in peptone sorbitol bile broth (PSBB) was evaluated via the detection of attachment invasion locus (ail) gene by PCR. The viability of virulent Y. enterocolitica in the PCR-positive samples was tested using conventional culture method and the isolates were confirmed by the second-phase ail-PCR. According to the results, 8.66% of total samples including 7.62% of bulk raw milks and 10.5% of raw milk cheeses were found ail-positive by PCR method; subsequently Y. enterocolitica was isolated by the culture method and confirmed by the second phase ail-PCR in 2.88% of total samples including 2.26% of raw milks and 4% of cheese samples. It was concluded that, a sample enrichment followed by ail-PCR was more sensitive and robust to detect and distinguish the virulent strains of Y. enterocolitica compared to the conventional culture method. Copyright © 2012 Elsevier B.V. All rights reserved.
Sampling Error in Relation to Cyst Nematode Population Density Estimation in Small Field Plots.
Župunski, Vesna; Jevtić, Radivoje; Jokić, Vesna Spasić; Župunski, Ljubica; Lalošević, Mirjana; Ćirić, Mihajlo; Ćurčić, Živko
2017-06-01
Cyst nematodes are serious plant-parasitic pests which could cause severe yield losses and extensive damage. Since there is still very little information about error of population density estimation in small field plots, this study contributes to the broad issue of population density assessment. It was shown that there was no significant difference between cyst counts of five or seven bulk samples taken per each 1-m 2 plot, if average cyst count per examined plot exceeds 75 cysts per 100 g of soil. Goodness of fit of data to probability distribution tested with χ 2 test confirmed a negative binomial distribution of cyst counts for 21 out of 23 plots. The recommended measure of sampling precision of 17% expressed through coefficient of variation ( cv ) was achieved if the plots of 1 m 2 contaminated with more than 90 cysts per 100 g of soil were sampled with 10-core bulk samples taken in five repetitions. If plots were contaminated with less than 75 cysts per 100 g of soil, 10-core bulk samples taken in seven repetitions gave cv higher than 23%. This study indicates that more attention should be paid on estimation of sampling error in experimental field plots to ensure more reliable estimation of population density of cyst nematodes.
Crystallization Kinetics of Calcium-magnesium Aluminosilicate (CMAS) Glass
NASA Technical Reports Server (NTRS)
Wiesner, Valerie L.; Bansal, Narottam P.
2015-01-01
The crystallization kinetics of a calcium-magnesium aluminosilicate (CMAS) glass with composition relevant for aerospace applications, like air-breathing engines, were evaluated using differential thermal analysis (DTA) in powder and bulk forms. Activation energy and frequency factor values for crystallization of the glass were evaluated. X-ray diffraction (XRD) was used to investigate the onset of crystallization and the phases that developed after heat treating bulk glass at temperatures ranging from 690 to 960 deg for various times. Samples annealed at temperatures below 900 deg remained amorphous, while specimens heat treated at and above 900 deg exhibited crystallinity originating at the surface. The crystalline phases were identified as wollastonite (CaSiO3) and aluminum diopside (Ca(Mg,Al) (Si,Al)2O6). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to examine the microstructure and chemical compositions of crystalline phases formed after heat treatment.
An experimental and theoretical investigation into the ``worm-hole'' effect
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jiancang; Zhang, Xibo; Pan, Yafeng; Wang, Limin; Fang, Jinpeng; Sun, Xu; Li, Rui; Zeng, Bo; Cheng, Jie
2013-08-01
On a nanosecond time scale, solid insulators abnormally fail in bulk rather than on surface, which is termed as the "worm-hole" effect. By using a generator with adjustable output pulse width and dozens of organic glass (PMMA) and polystyrene (PS) samples, experiments to verify this effect are conducted. The results show that under short pulses of 10 ns, all the samples fail due to bulk breakdown, whereas when the pulse width is tuned to a long pulse of 7 μs, the samples fail as a result of surface flashover. The experimental results are interpreted by analyzing the conditions for the bulk breakdown and the surface flashover. It is found that under short pulses, the flashover threshold would be as high as the bulk breakdown strength (EBD) and the flashover time delay (td) would be longer than the pulse width (τ), both of which make the dielectrics' cumulative breakdown occur easily; whereas under long pulses, that Ef is much lower than EBD and td is smaller than τ is advantageous to the occurrence of the surface flashover. In addition, a general principle on solid insulation design under short pulse condition is proposed based on the experimental results and the theoretical analysis.
Niskanen, R
1993-10-02
A positive relationship was found between the prevalence of cows in a herd which were antibody-positive for bovine viral diarrhoea virus (BVDV) and the level of antibodies to the virus in bulk tank milk as determined by an indirect enzyme-linked immunosorbent assay (ELISA). In herds with an ELISA absorbance value of up to 0.20 there were very few or no antibody-positive cows, whereas in herds with an ELISA absorbance value of at least 0.81, 87 to 100 per cent of the lactating cows were antibody-positive to BVDV. An analysis of the level of antibodies to BVDV in milk samples from Sweden and Finland showed that of 123 Swedish herds, 83.7 per cent had detectable antibodies to BVDV in their bulk milk whereas only 3.1 per cent of the 291 Finnish samples were antibody-positive. The incidence of BVDV infection in 105 herds in one area of Sweden was determined by analysing two samples of bulk tank milk taken one year apart. The infection had apparently occurred recently in five of these dairy herds.
NASA Astrophysics Data System (ADS)
Takiguchi, S.; Suganuma, Y.; Kataoka, R.; Yamaguchi, K. E.
2017-12-01
Cosmic rays react with substances in the Earth's atmosphere and form cosmogenic nuclides. The flux would abruptly increase with nearby supernova or terrestrial magnetic events such as reversal or excursion of terrestrial magnetism. The Earth must have been exposed to cosmic ray radiation for as long as 10 Ma, if any, by nearby supernova activities (Kataoka et al., 2014). Increased and prolonged activity of cosmic rays would affect Earth's climate through forming greenhouse gases and biosphere through damaging DNA. Therefore, interests have been growing as to whether and how past supernova events have ever left any fingerprints on them. However, detection of nearby supernova is still under debate (e.g., Knie et al., 2004) To detect long-term record of past supernova activities, we utilize cosmogenic nuclide 10Be because of its short residence time (1-2yr) in the atmosphere, simple transport process, and adequate half-life (1.36 kyr) which is nearly equivalent to the duration of present-day deep water circulation. Sediment samples collected from the equatorial western Pacific (706-825 kyr in age) were finely powdered and decomposed by mixed acids (HNO3, HF, and HClO4). Authigenic phase was also separated from bulk powders by leaching with a weak acid. Because quantitative separation of Be from samples is essential toward high-quality 10Be analysis, both Be-bearing fractions were applied to optimized anion exchange chromatography for Be separation, and Be abundance was measured by atomic absorption spectrometry. The 10Be abundance (10Be/9Be ratios) were measured by accelerator mass spectrometry. The authigenic phase showed temporal curve that is similar to that of bulk samples (Suganuma et al., 2012), reflecting the influence of relative paleo-intensity and utility of authigenic method. Increased data set in terms of sampling interval (density) and total age range would allow us to judge whether it could detect past supernova activities and how it appears when compared to the recent results of Wallner et al. (2016) using Fe isotopes. If past supernova activities are not detected, we then establish standard temporal curve, with higher resolution, of relative paleo-intensity of terrestrial magnetism and construct global ionization map as a function of terrestrial magnetism.
Datta, Manoshi S; Almada, Amalia A; Baumgartner, Mark F; Mincer, Tracy J; Tarrant, Ann M; Polz, Martin F
2018-06-06
Copepods harbor diverse bacterial communities, which collectively carry out key biogeochemical transformations in the ocean. However, bulk copepod sampling averages over the variability in their associated bacterial communities, thereby limiting our understanding of the nature and specificity of copepod-bacteria associations. Here, we characterize the bacterial communities associated with nearly 200 individual Calanus finmarchicus copepods transitioning from active growth to diapause. We find that all individual copepods sampled share a small set of "core" operational taxonomic units (OTUs), a subset of which have also been found associated with other marine copepod species in different geographic locations. However, most OTUs are patchily distributed across individual copepods, thereby driving community differences across individuals. Among patchily distributed OTUs, we identified groups of OTUs correlated with common ecological drivers. For instance, a group of OTUs positively correlated with recent copepod feeding served to differentiate largely active growing copepods from those entering diapause. Together, our results underscore the power of individual-level sampling for understanding host-microbiome relationships.
NASA Astrophysics Data System (ADS)
Chatterjee, Abhishek; Khamari, Shailesh K.; Porwal, S.; Kher, S.; Sharma, T. K.
2018-04-01
GaN Schottky photodetectors are fabricated on heavily doped n-type GaN epitaxial layers grown by the hydride vapour phase epitaxy technique. The effect of 60Co γ-radiation on the electronic transport in GaN epilayers and Schottky detectors is studied. In contrast to earlier observations, a steady rise in the carrier concentration with increasing irradiation dose is clearly seen. By considering a two layer model, the contribution of interfacial dislocations in carrier transport is isolated from that of the bulk layer for both the pristine and irradiated samples. The bulk carrier concentration is fitted by using the charge balance equation which indicates that no new electrically active defects are generated by γ-radiation even at 500 kGy dose. The irradiation induced rise in the bulk carrier concentration is attributed to the activation of native Si impurities that are already present in an electrically inert form in the pristine sample. Further, the rise in interfacial contribution in the carrier concentration is governed by the enhanced rate of formation of nitrogen vacancies by irradiation, which leads to a larger diffusion of oxygen impurities. A large value of the characteristic tunnelling energy for both the pristine and irradiated Au/Ni/GaN Schottky devices confirms that the dislocation-assisted tunnelling dominates the low temperature current transport even after irradiation. The advantage of higher displacement energy and larger bandgap of GaN as compared to GaAs is evident from the change in leakage current after irradiation. Further, a fast recovery of the photoresponse of GaN photodetectors after irradiation signifies their compatibility to operate in high radiation zones. The results presented here are found to be crucial in understanding the interaction of 60Co γ-irradiation with n+-GaN epilayers.
Spatial and Temporal Variations in CHLORINE-36 Deposition in the Northern United States
NASA Astrophysics Data System (ADS)
Hainsworth, Laura J.
Chlorine-36, a cosmogenic radioisotope, has been developed for use as a tracer in hydrological systems. The deposition of atmospheric ^{36} Cl, although of primary importance to hydrological applications, has not been well studied. To begin to address this problem, ^{36}Cl has been measured in monthly, wet-only, precipitation samples collected from February, 1991, to January, 1993, at the Elms Environmental Education Center in St. Mary's County, Maryland. In addition, bulk deposition samples were collected over a 1 y period at seven sites across the Northern United States and analyzed for ^{36} Cl. The mean, wet-only ^{36} Cl/Cl ratio for the 2 y sampling period is 68 +/- 19 (x10^{-15} ) and the mean ^{36}Cl concentration is 1.2 +/- 0.1 (x10 ^6) atoms/L. The ^ {36}Cl wet deposition flux data reveal a distinct seasonal deposition pattern, with peaks occurring in March and April. This pattern is attributed to stratospheric/tropospheric exchange. The mean ^{36}Cl wet deposition flux is 38.2 +/- 5 atoms/m^2s. Comparison between wet-only and bulk deposition samples indicates that the difference accounts for approximately 25% of the total ^{36}Cl deposition flux at the Elms site. A new model, using ^{90} Sr to predict the ^{36} Cl deposition pattern, is developed to predict ^{36}Cl/Cl ratios across the United States. Chlorine-36/Cl ratios in bulk deposition samples collected across the northern United States agree well with the model predictions. A mean global ^{36}Cl production rate of approximately 28 to 38 atoms/m^2s is indicated by these samples. A comparison between ^{36 }Cl concentrations in the Aquia and Magothy aquifers in southern Maryland and bulk deposition samples collected at the Elms, MD, site indicated that modern precipitation can account for the ^{36}Cl content in the youngest water in these aquifers. Surface water samples from the Susquehanna River basin reveal ^{36}Cl and stable chloride concentrations an order of magnitude higher than in bulk deposition samples collected at State College, PA. The source of excess ^{36}Cl in the Susquehanna is not known. Possible explanations include 'bomb-pulse' ^{36}Cl and in-situ ^{36}Cl production in surface rocks.
Ridge, S E; Andreata, S; Jones, K; Cantlon, K; Francis, B; Florisson, N; Gwozdz, J
2010-07-01
To compare the results of radiometric culture conducted in three Australian laboratories for Mycobacterium avium subsp. paratuberculosis (Mptb) using bulk vat and individual animal milk samples. Milk samples were collected from 15 cows exhibiting clinical signs of Johne's disease, and subsequently confirmed as infected with Mptb, and from the bulk milk vats on 91 farms running herds known to be infected with Mptb. Each milk sample was divided into three equivalent samples and one of each of the replicates was forwarded to the three participating laboratories. The identity and nature of the samples was protected from the study collaborators. The laboratories processed the samples and undertook radiometric culture for Mptb using their standard method. Results of testing were provided to the principal investigator for collation and analysis. In total, 2 (2.2%) of 91 vat-milk samples and 8 (53.3%) of 15 individual cows' milk samples returned positive radiometric milk culture results. Only one sample, from a clinical case of Johne's disease, was identified as positive by more than one laboratory. There were differences in the absolute frequency with which Mptb was identified in the milk samples by the collaborating laboratories. Mptb was cultured from a very small percentage of Australian raw bulk milk samples sourced from known infected herds. By contrast, Mptb was successfully cultured from half of the milk samples collected from clinically affected cows. There was no statistical difference between laboratories in the proportion of vat samples or individual animal milk samples in which Mptb was detected.
Pulsed Laser Deposition of BaCe(sub 0.85)Y(sub 0.15)0(sub 3) FILMS
NASA Technical Reports Server (NTRS)
Dynys, F. W.; Sayir, A.
2006-01-01
Pulsed laser deposition has been used to grow nanostructured BaCe(sub 0.85)Y(sub 0.15)0(sub 3) films. The objective is to enhance protonic conduction by reduction of membrane thickness. Sintered samples and laser targets were prepared by sintering BaCe(sub 0.85)Y(sub 0.15)O(sub 3) powders derived by solid state synthesis. Films 2 to 6 m thick were deposited by KrF excimer laser on Si and porous Al2O3 substrates. Nanocrystalline films were fabricated at deposition temperatures of 600-800 C deg at O2 pressure of 30 mTorr and laser fluence of 1.2 J/cm square. Films were characterized by x-ray diffraction, scanning electron microscopy and electrical impedance spectroscopy. Dense single phase BaCe(sub 0.85)Y((sub 0.15) 0(sub 3) films with a columnar growth morphology is observed, preferred crystal growth was found to be dependent upon deposition temperature and substrate type. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C deg to 900 C deg in moist argon. Electrical conduction of the fabricated films was 1 to 4 orders of magnitude lower than the sintered bulk samples. With respect to the film growth direction, activation energy for electrical conduction is 3 times higher in the perpendicular direction than the parallel direction.
NASA Astrophysics Data System (ADS)
Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri
2017-09-01
An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70oC for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear. At the request of all authors and with the approval of the proceedings editor, article 020188 titled, "The relationship between vickers microhardness and compressive strength of functional surface geopolymers," is being retracted from the public record due to the fact that it is a duplication of article 020170 published in the same volume.
Slow positrons in the study of surface and near-surface defects
NASA Astrophysics Data System (ADS)
Lynn, K. G.
A general theoretical model is presented which includes the probability of a positron diffusing back to the surface after implantation, and thermalization in samples containing various defects. This model incorporates surface state and thermal desorption from this state, as well as reflection back into the bulk. With this model vacancy formation enthalpies, activation energies of positrons from surface states, and specific trapping rates are deduced from the positronium fraction data. An amorphous Al/sub x/O/sub y/ overlayer on Al is discussed as an example of trapping in overlayers. In well-annealed single crystal samples, the positron is shown to be freely diffusing at low temperatures, whereas in a neutron-irradiatied Al single crystal sample the positron is localized at low positron binding energy defects presumably created during irradiation.
NASA Astrophysics Data System (ADS)
Hiroki, K.; Muralidhar, M.; Koblischka, M. R.; Murakami, M.
2017-07-01
The object of this investigation is to reduce the cost of bulk production and in the same time to increase the critical current performance of bulk MgB2 material. High-purity commercial powders of Mg metal (99.9% purity) and two types of crystalline (99% purity) and 16.5 wt% carbon-coated, nanometer-sized amorphous boron powders (98.5% purity) were mixed in a nominal composition of MgB2 to reduce the boron cost and to see the effect on the superconducting and magnetic properties. Several samples were produced mixing the crystalline boron and carbon-coated, nanometer-sized amorphous boron powders in varying ratios (50:50, 60:40, 70:30, 80:20, 90:10) and synthesized using a single-step process using the solid state reaction around 800 °C for 3 h in pure argon atmosphere. The magnetization measurements exhibited a sharp superconducting transition temperature with T c, onset around 38.6 K to 37.2 K for the bulk samples prepared utilizing the mixture of crystalline boron and 16.5% carbon-coated amorphous boron. The critical current density at higher magnetic field was improved with addition of carbon-coated boron to crystalline boron in a ratio of 80:20. The highest self-field Jc around 215,000 A/cm2 and 37,000 A/cm2 were recorded at 20 K, self-field and 2 T for the sample with a ratio of 80:10. The present results clearly demonstrate that the bulk MgB2 performance can be improved by adding carbon-coated nano boron to crystalline boron, which will be attractive to reduce the cost of bulk MgB2 material for several industrial applications.
Fabrication of single domain GdBCO bulk superconductors by a new modified TSIG technique
NASA Astrophysics Data System (ADS)
Yang, W. M.; Zhi, X.; Chen, S. L.; Wang, M.; Li, J. W.; Ma, J.; Chao, X. X.
2014-01-01
Single domain GdBCO bulk superconductors have been fabricated with new and traditional solid phases by a top seeded infiltration and growth (TSIG) process technique. In the conventional TSIG process, three types of powders, such as Gd2BaCuO5, GdBa2Cu3O7-x and Ba3Cu5O8, must be prepared, but in our new modified TSIG technique, only BaCuO2 powders are required during the fabrication of the single domain GdBCO bulk superconductors. The solid phase used in the conventional process is Gd2BaCuO5 instead of the solid phase (Gd2O3 + BaCuO2) utilized in the new process. The liquid phase used in the conventional process is a mixture of (GdBa2Cu3O7-x + Ba3Cu5O8), and the liquid phase in the new process is a mixture of (Gd2O3 + 10BaCuO2 + 6CuO). Single domain GdBCO bulk superconductors have been fabricated with the new solid and liquid phases. The levitation force of the GdBCO bulk samples fabricated by the new solid phase is 28 N, which is slightly higher than that of the samples fabricated using the conventional solid phases (26 N). The microstructure and the levitation force of the samples indicate that this new method can greatly simplify the fabrication process, introduce nanometer-sized flux centers, improve the levitation force and working efficiency, and greatly reduce the cost of fabrication of single domain GdBCO bulk superconductors by the TSIG process.
NASA Astrophysics Data System (ADS)
Hickson, D. C.; Boivin, A.; Daly, M. G.; Ghent, R. R.; Nolan, M. C.; Tait, K.; Cunje, A.; Tsai, C. A.
2017-12-01
Planetary radar is widely used to survey the Near-Earth Asteroid (NEA) population and can provide insight into target shapes, sizes, and spin states. The dual-polarization reflectivity is sensitive to surface roughness as well as material properties, specifically the real part of the complex permittivity, or dielectric constant. Knowledge of the behavior of the dielectric constant of asteroid regolith analogue material with environmental parameters can be used to inversely solve for such parameters, such as bulk density, from radar observations. In this study laboratory measurements of the complex permittivity of powdered aluminum oxide and dunite samples are performed in a low-pressure environment chamber using a coaxial transmission line from roughly 1 GHz to 8.5 GHz. The bulk densities of the samples are varied across the measurements by incrementally adding silica aerogel, a low-density material with a very low dielectric constant. This allows the alteration of the proportions of void space to solid particle grains to achieve microgravity-relevant porosities without significantly altering the dielectric properties of the powder sample. The data are then modeled using various electromagnetic mixing equations to characterize the change in dielectric constant with increasing volume fractions of void space (decreasing bulk density). Using spectral analogues as constraints on the composition of NEAs allows us to calculate the range in bulk densities in the near surface of NEAs that have been observed by planetary radar. Utilizing existing radar data from Arecibo Observatory we calculate the bulk density in the near-surface on (101955) Bennu, the target of NASA's OSIRIS-Rex mission, to be ρ = 1.27 ± 0.33 g cm-3 based on an average of the likely range in particle density and dielectric constant of the regolith material.
Improvement in trapped fields by stacking bulk superconductors
NASA Astrophysics Data System (ADS)
Suzuki, A.; Wongsatanawarid, A.; Seki, H.; Murakami, M.
2009-10-01
We studied the effects of stacking several bulk superconductor blocks on the field trapping properties. In order to avoid the detrimental effects of the bottom deteriorated parts, bulk Dy-Ba-Cu-O superconductors 45 mm in diameter and 10 mm in thickness were cut from the top parts of as-grown bulk blocks of 25 mm diameter. We stacked the superconductors and measured the field distribution as a function of the gap. The trapped field measurements were performed by field-cooling the samples inserted in between two permanent magnets with liquid nitrogen. It was found that the trapped field values are almost doubled when the number of stacked bulk superconductors increased from two to three. The present results clearly show that one can expect beneficial effects of increasing the ratio of the height to the diameter even in bulk high temperature superconductors.
NASA Astrophysics Data System (ADS)
Fu, Qiang; Xiong, Yucheng; Zhang, Wenhua; Xu, Dongyan
2017-09-01
This paper presents a setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials. The sample holder was designed to have a compact structure and can be directly mounted in a standard cryostat system for temperature-dependent measurements. For the Seebeck coefficient measurement, a thin bar-shaped sample is mounted bridging two copper bases; and two ceramic heaters are used to generate a temperature gradient along the sample. Two type T thermocouples are used to determine both temperature and voltage differences between two widely separated points on the sample. The thermocouple junction is flattened into a disk and pressed onto the sample surface by using a spring load. The flexible fixation method we adopted not only simplifies the sample mounting process but also prevents thermal contact deterioration due to the mismatch of thermal expansion coefficients between the sample and other parts. With certain modifications, the sample holder can also be used for four-probe electrical resistivity measurements. High temperature measurements are essential for thermoelectric power generation. The experimental system we developed is capable of measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials in a wide temperature range from 80 to 500 K, which can be further extended to even higher temperatures. Measurements on two standard materials, constantan and nickel, confirmed the accuracy and the reliability of the system.
Radiation detector using a bulk high T.sub.c superconductor
Artuso, Joseph F.; Franks, Larry A.; Hull, Kenneth L.; Symko, Orest G.
1993-01-01
A radiation detector (10) is provided, wherein a bulk high T.sub.c superconducting sample (11) is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil (12) which is coupled by an input coil (15) to an rf SQUID (16).
Radiation detector using a bulk high T[sub c] superconductor
Artuso, J.F.; Franks, L.A.; Hull, K.L.; Symko, O.G.
1993-12-07
A radiation detector is provided, wherein a bulk high T[sub c] superconducting sample is placed in a magnetic field and maintained at a superconducting temperature. Photons of incident radiation will cause localized heating in superconducting loops of the sample destroying trapped flux and redistributing the fluxons, and reducing the critical current of the loops. Subsequent cooling of the sample in the magnetic field will cause trapped flux redistributed Abrikosov fluxons and trapped Josephson fluxons. The destruction and trapping of the fluxons causes changes in the magnetization of the sample inducing currents in opposite directions in a pickup coil which is coupled by an input coil to an rf SQUID. 4 figures.
Rheology measurement for on-line monitoring of filaments proliferation in activated sludge tanks.
Tixier, N; Guibaud, G; Baudu, M
2004-01-01
Rheological behaviour of filamentous sludges originated from activated sludge reactors was studied. Filamentous bulking was detected via a hysteresis loop developed from rheograms resulting from increasing-decreasing shear rates. The rheological parameter reduced hysteresis area (rHa), corresponding to the loop area developed by rheograms was used to quantify filamentous bulking. Application to the evolution of several bulkings was carried out and it was shown that filaments proliferation and disappearance were correlated with, respectively, the increasing and decreasing of the value of the parameter rHa. In parallel with rheological measurement, parameters used for the study of sludge quality, such as sludge volume index (SVI) and settling initial flow (F0), were determined for comparison during the evolution of several bulkings. It was shown that rHa was more sensitive to the appearance of filamentous bulking than SVI and F0, therefore it was concluded that detection of filamentous bulking can be shown from rHa.
Strength and compressibility of returned lunar soil.
NASA Technical Reports Server (NTRS)
Carrier, W. D., III; Bromwell, L. G.; Martin, R. T.
1972-01-01
Two oedometer and three direct shear tests have been performed in vacuum on a 200 g sample of lunar soil from Apollo 12 (12001, 119). The compressibility data have been used to calculate bulk density and shear wave velocity versus depth on the lunar surface. The shear wave velocity was found to increase approximately with the one-fourth power of the depth, and the results suggest that the Apollo 14 Active Seismic Experiment may not have detected the Fra Mauro formation at a depth of 8.5 m, but only naturally consolidated lunar soil. The shear data indicate that the strength of the lunar soil sample is about 65% that of a ground basalt simulant at the same void ratio.
40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.
Code of Federal Regulations, 2010 CFR
2010-07-01
... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...
The homogeneity of levitation force in single domain YBCO bulk
NASA Astrophysics Data System (ADS)
Zhou, Keran; Xu, Ke-Xi; Wu, Xing-da; Pan, Peng-jun
2007-11-01
The pellet homogeneity of levitation force versus the position in comparison to the seed or to the top surface has been studied in the entire volume of a single domain YBa 2Cu 3O 7-δ bulk sample processed by the top-seeded melt texturing growth (TSMTG). It is found that the levitation forces increase and peak at a depth of 3 mm from the top of the sample at liquid nitrogen temperature. In other words, the second disk has the largest levitation force density. The phenomenon can be interpreted by the interaction between the microcracks or pores produced by crystal growth and the oxygenation. We propose a model in which Y211 particles distribution leading to microcracks and pores reduces the effective induced shielding current loops (ISCL) and increases the perimeters of ISCL. This corresponds to a decrease in the grain size and results in greatly reduced levitation forces of the bottom of the bulk. From the research, we know that the density of the YBCO bulk is also an important parameter for the levitation properties. The result is very attractive and useful for the fundamental studies and fabrication of TSMTG YBa 2Cu 3O 7-δ bulk.
Leukaemia cell of origin identified by chromatin landscape of bulk tumour cells
George, Joshy; Uyar, Asli; Young, Kira; Kuffler, Lauren; Waldron-Francis, Kaiden; Marquez, Eladio; Ucar, Duygu; Trowbridge, Jennifer J.
2016-01-01
The precise identity of a tumour's cell of origin can influence disease prognosis and outcome. Methods to reliably define tumour cell of origin from primary, bulk tumour cell samples has been a challenge. Here we use a well-defined model of MLL-rearranged acute myeloid leukaemia (AML) to demonstrate that transforming haematopoietic stem cells (HSCs) and multipotent progenitors results in more aggressive AML than transforming committed progenitor cells. Transcriptome profiling reveals a gene expression signature broadly distinguishing stem cell-derived versus progenitor cell-derived AML, including genes involved in immune escape, extravasation and small GTPase signal transduction. However, whole-genome profiling of open chromatin reveals precise and robust biomarkers reflecting each cell of origin tested, from bulk AML tumour cell sampling. We find that bulk AML tumour cells exhibit distinct open chromatin loci that reflect the transformed cell of origin and suggest that open chromatin patterns may be leveraged as prognostic signatures in human AML. PMID:27397025
Sato, Atsuya; Watanabe, Toshihiro; Unno, Yusuke; Purnomo, Erry; Osaki, Mitsuru; Shinano, Takuro
2009-01-01
The diversity of diazotrophic bacteria in the rhizosphere of Melastoma malabathricum L. was investigated by cloning-sequencing of the nifH gene directly amplified from DNA extracted from soil. Samples were obtained from the rhizosphere and bulk soil of M. malabathricum growing in three different soil types (acid sulfate, peat and sandy clay soils) located very close to each other in south Kalimantan, Indonesia. Six clone libraries were constructed, generated from bulk and rhizosphere soil samples, and 300 nifH clones were produced, then assembled into 29 operational taxonomic units (OTUs) based on percent identity values. Our results suggested that nifH gene diversity is mainly dependent on soil properties, and did not differ remarkably between the rhizosphere and bulk soil of M. malabathricum except in acid sulfate soil. In acid sulfate soil, as the Shannon diversity index was lower in rhizosphere than in bulk soil, it is suggested that particular bacterial species might accumulate in the rhizosphere.
Evidence of Schmallenberg virus circulation in ruminants in Greece.
Chaintoutis, Serafeim C; Kiossis, Evangelos; Giadinis, Nektarios D; Brozos, Christos N; Sailleau, Corinne; Viarouge, Cyril; Bréard, Emmanuel; Papanastassopoulou, Maria; Zientara, Stéphan; Papadopoulos, Orestis; Dovas, Chrysostomos I
2014-01-01
During March 2013, we investigated the presence and the levels of Schmallenberg virus (SBV) circulation in three dairy cow herds and three sheep flocks in Central Macedonia, Greece. In two cow herds, a high number of abortions had been observed during the winter. Six bulk-tank milk samples and 147 individual sera were screened for SBV-specific antibodies by ELISA. Positive reactions were obtained from 5 out of 6 bulk-tank milk samples, 58 out of 90 sera from the 3 cow herds, and 2 sera from 2 of the 3 sheep flocks. Twenty-two ELISA-positive sera were tested by serum neutralization test (SNT). SNT confirmed the presence of neutralizing antibodies against SBV in all samples tested, with titers ranging between 1:32 and ≥1:256. No neutralizing antibodies against Akabane virus (AKAV) or Shamonda virus (SHAV) were detected, indicating that neutralizing antibodies against SBV do not cross react with AKAV or SHAV in SNT. ELISA testing of bulk-tank milk samples proved to be convenient and reliable. None of the tested sera was found positive for SBV by real-time RT-PCR, indicating that the sampling was conducted past the viremia stage. This is the first report of SBV circulation in Greece.
The petrology and geochemistry of Miller Range 05035: A new lunar gabbroic meteorite
NASA Astrophysics Data System (ADS)
Joy, K. H.; Crawford, I. A.; Anand, M.; Greenwood, R. C.; Franchi, I. A.; Russell, S. S.
2008-08-01
Miller Range (MIL) 05035 is a lunar gabbroic meteorite. The mineralogy, Fe/Mn ratios in olivine and pyroxene, bulk-rock chemical composition and the bulk oxygen isotope values (δ 17O = 2.86-2.97‰ and δ 18O = 5.47-5.71‰) are similar to those of other mare basalts, and are taken as supporting evidence for a lunar origin for this meteorite. The sample is dominated by pyroxene grains (54-61% by area mode of thin section) along with large plagioclase feldspar (25-36% by mode) and accessory quartz, ilmenite, spinel, apatite and troilite. The bulk-rock major element composition of MIL 05035 indicates that the sample has a very low-Ti (VLT) to low-Ti lunar heritage (we measure bulk TiO 2 to be 0.9 Wt.%) and has low bulk incompatible trace element (ITE) concentrations, akin to samples from the VLT mare basalt suite. To account for these geochemical characteristics we hypothesize that MIL 05035's parental melt was derived from a mantle region dominated by early cumulates of the magma ocean (comprised principally of olivine and orthopyroxene). MIL 05035 is likely launch paired with the Asuka-881757 and Yamato-793169 basaltic lunar meteorites and the basaltic regolith breccia MET 01210. This group of meteorites (Y/A/M/M) therefore may be a part of a stratigraphic column consisting of an upper regolith environment underlain by a coarsening downwards basalt lava flow.
Chemical disorder influence on magnetic state of optimally-doped La0.7Ca0.3MnO3
NASA Astrophysics Data System (ADS)
Rozenberg, E.; Auslender, M.; Shames, A. I.; Jung, G.; Felner, I.; Tsindlekht, M. I.; Mogilyansky, D.; Sominski, E.; Gedanken, A.; Mukovskii, Ya. M.; Gorodetsky, G.
2011-10-01
X-band electron magnetic resonance and dc/ac magnetic measurements have been employed to study the effects of chemical disorder on magnetic ordering in bulk and nanometer-sized single crystals and bulk ceramics of optimally-doped La0.7Ca0.3MnO3 manganite. The magnetic ground state of bulk samples appeared to be ferromagnetic with the lower Curie temperature and higher magnetic homogeneity in the vicinity of the ferromagnetic-paramagnetic phase transition in the crystal, as compared with those characteristics in the ceramics. The influence of technological driven "macroscopic" fluctuations of Ca-dopant level in crystal and "mesoscopic" disorder within grain boundary regions in ceramics was proposed to be responsible for these effects. Surface spin disorder together with pronounced inter-particle interactions within agglomerated nano-sample results in well defined core/shell spin configuration in La0.7Ca0.3MnO3 nano-crystals. The analysis of the electron paramagnetic resonance data enlightened the reasons for the observed difference in the magnetic order. Lattice effects dominate the first-order nature of magnetic phase transition in bulk samples. However, mesoscale chemical disorder seems to be responsible for the appearance of small ferromagnetic polarons in the paramagnetic state of bulk ceramics. The experimental results and their analysis indicate that a chemical/magnetic disorder has a strong impact on the magnetic state even in the case of mostly stable optimally hole-doped manganites.
NASA Technical Reports Server (NTRS)
Fulton, J. P.; Wincheski, B.; Namkung, M.; Utrata, D.
1992-01-01
The magnetoacoustic measurement technique has been used successfully for residual stress measurements in laboratory samples. However, when used to field test samples with complex geometries, such as railroad wheels, the sensitivity of the method declines dramatically. It has been suggested that the decrease in performance may be due, in part, to an insufficient or nonuniform magnetic induction in the test sample. The purpose of this paper is to optimize the test conditions by using finite element modeling to predict the distribution of the induced bulk magnetization of railroad wheels. The results suggest that it is possible to obtain a sufficiently large and uniform bulk magnetization by altering the shape of the electromagnet used in the tests. Consequently, problems associated with bulk magnetization can be overcome, and should not prohibit the magnetoacoustic technique from being used to make residual stress measurements in railroad wheels. We begin by giving a brief overview of the magnetoacoustic technique as it applies to residual stress measurements of railroad wheels. We then define the finite element model used to predict the behavior of the current test configuration along with the nonlinear constitutive relations which we obtained experimentally through measurements on materials typically used to construct both railroad wheels and electromagnets. Finally, we show that by modifying the pole of the electromagnet it is possible to obtain a significantly more uniform bulk magnetization in the region of interest.
The successful incorporation of Ag into single grain, Y-Ba-Cu-O bulk superconductors
NASA Astrophysics Data System (ADS)
Congreve, Jasmin V. J.; Shi, Yunhua; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2018-07-01
The use of RE-Ba-Cu-O [(RE)BCO] bulk superconductors, where RE = Y, Gd, Sm, in practical applications is, at least in part, limited by their mechanical properties and brittle nature, in particular. Alloying these materials with silver, however, produces a significant improvement in strength without any detrimental impact on their superconducting properties. Unfortunately, the top seeded melt growth technique, used routinely to process bulk (RE)BCO superconductors in the form of large, single grains required for practical applications, is complex and has a large number of inter-related variables, so the addition of silver increases the complexity of the growth process even further. This can make successful growth of this system extremely challenging. Here we report measurements of the growth rate of YBCO-Ag fabricated using a new growth technique consisting of continuous cooling and isothermal hold process. The resulting data form the basis of a model that has been used to derive suitable heating profiles for the successful single grain growth of YBCO-Ag bulk superconductors of up to 26 mm in diameter. The microstructure and distribution of silver within these samples have been studied in detail. The maximum trapped field at the top surface of the bulk YBCO-Ag samples has been found to be comparable to that of standard YBCO processed without Ag. The YBCO-Ag samples also exhibit a much more uniform trapped field profile compared to that of YBCO.
Xu, Chao; Wygladacz, Katarzyna; Retter, Robert; Bell, Michael; Bakker, Eric
2007-12-15
Polymeric bulk optode microsphere ion sensors in combination with suspension array technologies such as analytical flow cytometry may become a power tool for measuring electrolytes in physiological samples. In this work, the methodology for the direct measurement of common blood electrolytes in physiological samples using bulk optode microsphere sensors was explored. The simultaneous determination of Na(+), K(+), and Ca(2+) in diluted sheep blood plasma was demonstrated for the first time, using a random suspension array containing three types of mixed microsphere bulk optodes of similar size, fabricated from the same chromoionophore without additional labeling. Sodium ionophore X, potassium ionophore III, and grafted AU-1 in poly(butyl acrylate) were the ionophores used in the bulk optode microsphere ion sensors for Na(+), K(+), and Ca(2+), respectively, in combination with the cation-exchanger NaTFPB (sodium tetrakis-[3,5-bis(trifluoromethyl)phenyl]borate) and the same concentration of the chromoionophore ETH 5294 (9-(di-ethylamino)-5-octadecanoylimino-5H-benzo[a]phen-oxazine) in plasticized poly(vinyl chloride). Excellent reproducibility was achieved for the sensing of potassium ions. The effect of sample pH was relatively small at near-physiological pH and followed theoretical predictions, yet the sample temperature was found to influence the sensor response to a larger extent. Multiplexed ion sensing was achieved by taking advantage of the chemical tunability of the sensor response, adjusting the sensor compositions so that the three types of ion sensors responded with distinct levels of protonation of the chromoionophore. Consequently, three well-resolved peaks were simultaneously observed in the single-channel histogram during the multiplexed calibration as well as in the subsequent measurement of the three cations in 10-fold-diluted sheep plasma. The assigned peak positions corresponded very well to the physiological range of the measured ions.
NASA Astrophysics Data System (ADS)
Akasaka, Masayasu; Iida, Tsutomu; Matsumoto, Atsunobu; Yamanaka, Kohei; Takanashi, Yoshifumi; Imai, Tomohiro; Hamada, Noriaki
2008-07-01
Bulk Mg2Si crystals were grown using the vertical Bridgman melt growth method. The n-type and p-type dopants, bismuth (Bi) and silver (Ag), respectively, were incorporated during the growth. X-ray powder diffraction analysis revealed clear peaks of Mg2Si with no peaks associated with the metallic Mg and Si phases. Residual impurities and process induced contaminants were investigated by using glow discharge mass spectrometry (GDMS). A comparison between the results of GDMS and Hall effect measurements indicated that electrical activation of the Bi doping in the Mg2Si was sufficient, while activation of the Ag doping was relatively smaller. It was shown that an undoped n-type specimen contained a certain amount of aluminum (Al), which was due either to residual impurities in the Mg source or the incorporation of process-induced impurities. Thermoelectric properties such as the Seebeck coefficient and the electrical and thermal conductivities were measured as a function of temperature up to 850 K. The dimensionless figures of merit for Bi-doped and Ag-doped samples were 0.65 at 840 K and 0.1 at 566 K, respectively. Temperature dependence of the observed Seebeck coefficient was fitted well by the two-carrier model. The first-principles calculations were carried out by using the all-electron band-structure calculation package (ABCAP) in which the full-potential linearized augmented-plane-wave method was employed. The ABCAP calculation adequately presents characteristics of the Seebeck coefficients for the undoped and heavily Bi-doped samples over the whole measured temperature range from room temperature to 850 K. The agreement between the theory and the experiment is poorer for the Ag-doped p-type samples.
Lima, Isabel; Marshall, Wayne E
2005-01-01
The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.
Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater
NASA Astrophysics Data System (ADS)
Irish, Victoria E.; Elizondo, Pablo; Chen, Jessie; Chou, Cédric; Charette, Joannie; Lizotte, Martine; Ladino, Luis A.; Wilson, Theodore W.; Gosselin, Michel; Murray, Benjamin J.; Polishchuk, Elena; Abbatt, Jonathan P. D.; Miller, Lisa A.; Bertram, Allan K.
2017-09-01
The sea-surface microlayer and bulk seawater can contain ice-nucleating particles (INPs) and these INPs can be emitted into the atmosphere. Our current understanding of the properties, concentrations, and spatial and temporal distributions of INPs in the microlayer and bulk seawater is limited. In this study we investigate the concentrations and properties of INPs in microlayer and bulk seawater samples collected in the Canadian Arctic during the summer of 2014. INPs were ubiquitous in the microlayer and bulk seawater with freezing temperatures in the immersion mode as high as -14 °C. A strong negative correlation (R = -0. 7, p = 0. 02) was observed between salinity and freezing temperatures (after correction for freezing depression by the salts). One possible explanation is that INPs were associated with melting sea ice. Heat and filtration treatments of the samples show that the INPs were likely heat-labile biological materials with sizes between 0.02 and 0.2 µm in diameter, consistent with previous measurements off the coast of North America and near Greenland in the Arctic. The concentrations of INPs in the microlayer and bulk seawater were consistent with previous measurements at several other locations off the coast of North America. However, our average microlayer concentration was lower than previous observations made near Greenland in the Arctic. This difference could not be explained by chlorophyll a concentrations derived from satellite measurements. In addition, previous studies found significant INP enrichment in the microlayer, relative to bulk seawater, which we did not observe in this study. While further studies are needed to understand these differences, we confirm that there is a source of INP in the microlayer and bulk seawater in the Canadian Arctic that may be important for atmospheric INP concentrations.
Paleomagnetism of a primitive achondrite parent body: The acapulcoite-lodranites
NASA Astrophysics Data System (ADS)
Schnepf, N. R.; Weiss, B. P.; Andrade Lima, E.; Fu, R. R.; Uehara, M.; Gattacceca, J.; Wang, H.; Suavet, C. R.
2014-12-01
Primitive achondrites are a recently recognized meteorite grouping with textures and compositions intermediate between unmelted meteorites (chondrites) and igneous meteorites (achondrites). Their existence demonstrates prima facie that some planetesimals only experienced partial rather than complete melting. We present the first paleomagnetic measurements of acapulcoite-lodranite meteorites to determine the existence and intensity of ancient magnetic fields on their parent body. Our paleomagnetic study tests the hypothesis that their parent body had an advecting metallic core, with the goal of providing one of the first geophysical constraints on its large-scale structure and the extent of interior differentiation. In particular, by analyzing samples whose petrologic textures require an origin on a partially differentiated body, we will be able to critically test a recent proposal that some achondrites and chondrite groups could have originated on a single body (Weiss and Elkins-Tanton 2013). We analyzed samples of the meteorites Acapulco and Lodran. Like other acapulcoites and lodranites, these meteorites are granular rocks containing large (~0.1-0.3 mm) kamacite and taenite grains along with similarly sized silicate crystals. Many silicate grains contain numerous fine (1-10 μm) FeNi metal inclusions. Our compositional measurements and rock magnetic data suggest that tetrataenite is rare or absent. Bulk paleomagnetic measurements were done on four mutually oriented bulk samples of Acapulco and one bulk sample of Lodran. Alternating field (AF) demagnetization revealed that the magnetization of the bulk samples is highly unstable, likely due to the large (~0.1-0.3 mm) interstitial kamacite grains throughout the samples. To overcome this challenge, we are analyzing individual ~0.2 mm mutually oriented silicate grains extracted using a wire saw micromill. Preliminary SQUID microscopy measurements of a Lodran silicate grain suggest magnetization stable to AF levels of at least 25-40 mT.
Powell, Joshua; Luh, Jeanne; Coronell, Orlando
2014-01-01
We studied the volume-averaged chlorine (Cl) uptake into the bulk region of the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine. Volume-averaged measurements were obtained using Rutherford backscattering spectrometry with samples prepared at a range of free chlorine concentrations, exposure times, and mixing, rinsing, and pH conditions. Our volume-averaged measurements complement previous studies that have quantified Cl uptake at the active layer surface (top ≈ 7 nm) and advance the mechanistic understanding of Cl uptake by aromatic polyamide active layers. Our results show that surface Cl uptake is representative of and underestimates volume-averaged Cl uptake under acidic conditions and alkaline conditions, respectively. Our results also support that (i) under acidic conditions, N-chlorination followed by Orton rearrangement is the dominant Cl uptake mechanism with N-chlorination as the rate-limiting step; (ii) under alkaline conditions, N-chlorination and dechlorination of N-chlorinated amide links by hydroxyl ion are the two dominant processes; and (iii) under neutral pH conditions, the rates of N-chlorination and Orton rearrangement are comparable. We propose a kinetic model that satisfactorily describes Cl uptake under acidic and alkaline conditions, with the largest discrepancies between model and experiment occurring under alkaline conditions at relatively high chlorine exposures.
Arístegui, Javier; Gasol, Josep M.; Herndl, Gerhard J.
2012-01-01
We analyzed the regional distribution of bulk heterotrophic prokaryotic activity (leucine incorporation) and selected single-cell parameters (cell viability and nucleic acid content) as parameters for microbial functioning, as well as bacterial and archaeal community structure in the epipelagic (0 to 200 m) and mesopelagic (200 to 1,000 m) subtropical Northeast Atlantic Ocean. We selectively sampled three contrasting regions covering a wide range of surface productivity and oceanographic properties within the same basin: (i) the eddy field south of the Canary Islands, (ii) the open-ocean NE Atlantic Subtropical Gyre, and (iii) the upwelling filament off Cape Blanc. In the epipelagic waters, a high regional variation in hydrographic parameters and bacterial community structure was detected, accompanied, however, by a low variability in microbial functioning. In contrast, mesopelagic microbial functioning was highly variable between the studied regions despite the homogeneous abiotic conditions found therein. More microbial functioning parameters indicated differences among the three regions within the mesopelagic (i.e., viability of cells, nucleic acid content, cell-specific heterotrophic activity, nanoflagellate abundance, prokaryote-to-nanoflagellate abundance ratio) than within the epipelagic (i.e., bulk activity, nucleic acid content, and nanoflagellate abundance) waters. Our results show that the mesopelagic realm in the Northeast Atlantic is, in terms of microbial activity, more heterogeneous than its epipelagic counterpart, probably linked to mesoscale hydrographical variations. PMID:22344670
Tremsin, Anton S.; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S.; Vogel, Sven C.
2017-01-01
Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5–10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity. PMID:28102285
NASA Astrophysics Data System (ADS)
El-Eskandarany, M. Sherif
2017-05-01
The room-temperature reactive ball milling (RBM) approach was employed to synthesize nanostructured fcc-titanium nitride (TiN) powders, starting from milling hcp-titanium (Ti) powders under 10 bar of a nitrogen gas atmosphere, using a roller mill. During the first and intermediate stage of milling, the agglomerated Ti powders were continuously disintegrated into smaller particles with fresh surfaces. Increasing the RBM time led to an increase in the active-fresh surfaces of Ti, resulting increasing of the mole fraction of TiN against unreacted hcp-Ti. Toward the end of the RBM time (20 h), ultrafine spherical powder (with particles 0.5 μm in diameter) of the fcc-TiN phase was obtained, composed of nanocrystalline grains with an average diameter of 8 nm. The samples obtained after different stages of RBM time were consolidated under vacuum at 1600 °C into cylindrical bulk compacts of 20 mm diameter, using spark plasma sintering technique. These compacts that maintained their nanocrystalline characteristics with an average grain size of 56 nm in diameter, possessed high relative density (above 99% of the theoretical density). The Vickers hardness of the as-consolidated TiN was measured and found to be 22.9 GPa. The modulus of elasticity and shear modulus of bulk TiN were measured by a nondestructive test and found to be 384 and 189 GPa, respectively. In addition, the coefficient of friction of the end-product TiN bulk sample was measured and found to be 0.35.
Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3
NASA Astrophysics Data System (ADS)
Fuhrer, Michael
2013-03-01
The three dimensional strong topological insulator (STI) is a new phase of electronic matter which is distinct from ordinary insulators in that it supports on its surface a conducting two-dimensional surface state whose existence is guaranteed by topology. I will discuss experiments on the STI material Bi2Se3, which has a bulk bandgap of 300 meV, much greater than room temperature, and a single topological surface state with a massless Dirac dispersion. Field effect transistors consisting of thin (3-20 nm) Bi2Se3 are fabricated from mechanically exfoliated from single crystals, and electrochemical and/or chemical gating methods are used to move the Fermi energy into the bulk bandgap, revealing the ambipolar gapless nature of transport in the Bi2Se3 surface states. The minimum conductivity of the topological surface state is understood within the self-consistent theory of Dirac electrons in the presence of charged impurities. The intrinsic finite-temperature resistivity of the topological surface state due to electron-acoustic phonon scattering is measured to be ~60 times larger than that of graphene largely due to the smaller Fermi and sound velocities in Bi2Se3, which will have implications for topological electronic devices operating at room temperature. As samples are made thinner, coherent coupling of the top and bottom topological surfaces is observed through the magnitude of the weak anti-localization correction to the conductivity, and, in the thinnest Bi2Se3 samples (~ 3 nm), in thermally-activated conductivity reflecting the opening of a bandgap.
Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett
2013-12-01
The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.
Atmospheric deposition patterns of (210)Pb and (7)Be in Cienfuegos, Cuba.
Alonso-Hernández, Carlos M; Morera-Gómez, Yasser; Cartas-Águila, Héctor; Guillén-Arruebarrena, Aniel
2014-12-01
The radiometric composition of bulk deposition samples, collected monthly for one year, February 2010 until January 2011, at a site located in Cienfuegos (22° 03' N, 80° 29' W) (Cuba), are analysed in this paper. Measurement of (7)Be and (210)Pb activity concentrations were carried out in 12 bulk deposition samples. The atmospheric deposition fluxes of (7)Be and (210)Pb are in the range of 13.2-132 and 1.24-8.29 Bq m(-2), and their mean values are: 56.6 and 3.97 Bq m(-2), respectively. The time variations of the different radionuclide have been discussed in relation with meteorological factors and the mean values have been compared to those published in recent literature from other sites located at different latitudes. The annual average flux of (210)Pb and (7)Be were 47 and 700 Bq m(-2) y(-1), respectively. Observed seasonal variations of deposition data are explained in terms of different environmental features. The atmospheric deposition fluxes of (7)Be and (210)Pb were moderately well correlated with precipitation and well correlated with one another. The (210)Pb/(7)Be ratios in the monthly depositions samples varied in the range of 0.05-0.10 and showed a strong correlation with the number of rainy days. Copyright © 2014 Elsevier Ltd. All rights reserved.
Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films
NASA Astrophysics Data System (ADS)
Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E.; Malko, Anton V.; Chabal, Yves J.
2016-01-01
The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06222e
Bulk charging and breakdown in electron-irradiated polymers
NASA Technical Reports Server (NTRS)
Frederickson, A. R.
1981-01-01
High energy electron irradiations were performed in an experimental and theoretical study of ten common polymers. Breakdowns were monitored by measuring currents between the electrodes on each side of the planar samples. Sample currents as a function of time during irradiation are compared with theory. Breakdowns are correlated with space charge electric field strength and polarity. Major findings include evidence that all polymers tested broke down, breakdowns remove negligible bulk charge and no breakdowns are seen below 20 million V/m.
Mineralogical and geochemical anomalous data of the K-T boundary samples
NASA Technical Reports Server (NTRS)
Miura, Y.; Shibya, G.; Imai, M.; Takaoka, N.; Saito, S.
1988-01-01
Cretaceous-Tertiary boundary problem has been discussed previously from the geological research, mainly by fossil changes. Although geochemical bulk data of Ir anomaly suggest the extraterrestrial origin of the K-T boundary, the exact formation process discussed mainly by mineralogical and geochemical study has been started recently, together with noble gas contents. The K-T boundary sample at Kawaruppu River, Hokkaido was collected, in order to compare with the typical K-T boundary samples of Bubbio, Italy, Stevns Klint, Denmark, and El Kef, Tunisia. The experimental data of the silicas and calcites in these K-T boundary samples were obtained from the X-ray unit-cell dimension (i.e., density), ESR signal and total linear absorption coefficient, as well as He and Ne contents. The K-T boundary samples are usually complex mixture of the terrestrial activities after the K-T boundary event. The mineralogical and geochemical anomalous data indicate special terrestrial atmosphere at the K-T boundary formation probably induced by asteroid impact, followed the many various terrestrial activities (especially the strong role of sea-water mixture, compared with terrestrial highland impact and impact craters in the other earth-type planetary bodies).
NASA Astrophysics Data System (ADS)
Bilenker, L.; Weis, D.; Scoates, J. S.
2017-12-01
We present stable Fe and radiogenic isotope and complementary trace element data for samples from Atlantis Massif. This oceanic core complex is located at 30°N where the Atlantis Transform Fault intersects the Mid-Atlantic Ridge (MAR) and is associated with the Lost City Hydrothermal Field (LCHF). It is a unique place to investigate the abiotic and biotic geochemical processes that play a role in the alteration of both crustal and mantle seafloor rocks. The samples analyzed represent a shallow (<15 m) survey of five drill sites (IODP Expedition 357) within Atlantis Massif, varying in distance from the LCHF and MAR. Analyses were performed on a sample set spanning a wide range in degree of alteration and lithology. Bulk measurements involved dissolving whole rock powders, whereas in situ analyses were performed on digested microdrilled samples or by laser ablation. Bulk rock Fe isotope values (n = 34) are correlated with loss-on-ignition (LOI) by sample lithology and location relative to LCHF. Using LOI as a proxy for degree of alteration, this observation indicates that the Fe isotope systematics of seafloor crustal and mantle rocks preserve indicators of fluid flow and source. The Hf and Nd isotope compositions for various lithologies form all analyzed sites are homogeneous, indicating minimal alteration of these isotopic systems. Bulk Sr values provide insight into elemental exchange between seawater and the surface of Atlantis Massif and bulk Pb isotopes allow for fingerprinting of the source of basalt breccias through comparison with published Pb isotope values of MAR basalts. The new results cluster around the Pb, Hf, Nd isotopic composition of mid-ocean ridge basalt from 30.68°N and do not match samples north or south of that location. In situ Fe isotope data within three altered samples reflect varying degrees of hydrothermal and seawater interaction, where the Fe isotope ratios within each sample are likely correlated with extent of exchange or redox. Laser trace element and Pb isotope data in progress will allow us to investigate this further. This study contributes to our understanding of element mobility and mass transfer during chemical reactions within the seafloor, provides insight into the source of the lithological units and fluid flow, and allows for quantification of alteration processes.
Analysis of the relationship between rusty root incidences and soil properties in Panax ginseng
NASA Astrophysics Data System (ADS)
Wang, Q. X.; Xu, C. L.; Sun, H.; Ma, L.; Li, L.; Zhang, D. D.; Zhang, Y. Y.
2016-08-01
Rusty root is a serious problem in ginseng cultivation that limits the production and quality of ginseng worldwide. The Changbai Mountains are the most famous area for ginseng cultivation in China. To clarify the relationship between rusty root and soil characteristics, physico-chemical properties and enzymatic activities of soil collected from five different fields in the Changbai Mountains were analyzed and a controlled experiment carried out by increasing the concentration of Fe (II). Soil bulk density, moisture, total iron (Fe) and total manganese (Mn) concentrations and polyphenol oxidase (PPO) activity were significantly higher in rusty root than healthy root groups (two-sample test, P<0.05 or P<0.01), respectively. Pearson test showed that there was a significant positive correlation between rusty root index and pH, N, Fe, Mn, Al, Zn and Ca of soil samples collected from fields (P<0.05 or P<0.01), and a significant positive correlation also occurred between rusty root index and Fe (II) added to soil in Fe (II) inducing rusty root (P<0.01). Physiological factors may be very important roles giving rise to ginseng rusty root. Fe (III) reduction and Fe (II) oxidation could be important in increasing the incidence of rusty root. Soil moisture and bulk density of non-rhizosphere soil not attached to the root surface, and pH, N and PPO content of rhizosphere soils attached to the root surface were heavily involved in the reduction, oxidation and sequestration of metal ions.
Origins of low resistivity and Ge donor level in Ge ion-implanted ZnO bulk single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamioka, K.; Oga, T.; Izawa, Y.
2013-12-04
The energy level of Ge in Ge-ion implanted ZnO single crystals is studied by Hall-effect and photoluminescence (PL) methods. The variations in resistivity from ∼10{sup 3} Ωcm for un-implanted samples to ∼10{sup −2} Ωcm for as-implanted ones are observed. The resistivity is further decreased to ∼10{sup −3} Ωcm by annealing. The origins of the low resistivity are attributed to both the zinc interstitial (Zn{sub i}) related defects and the electrical activated Ge donor. An activation energy of Ge donors estimated from the temperature dependence of carrier concentration is 102 meV. In PL studies, the new peak at 372 nm (3.33more » eV) related to the Ge donor is observed in 1000 °C annealed samples.« less
SUMMARY REPORT: THE CAUSES AND CONTROL OF ACTIVATED SLUDGE BULKING AND FOAMING
This 92-page Technology Transfer Summary Report provides reference material on the causes and controls of sludge bulking and foaming in activated sludge treatment that can be readily understood, and it includes sufficient detail to help plant operators control their systems. The ...
Washburn, Kathryn E.; Birdwell, Justin E.; Foster, Michael; Gutierrez, Fernando
2015-01-01
Mineralogical and geochemical information on reservoir and source rocks is necessary to assess and produce from petroleum systems. The standard methods in the petroleum industry for obtaining these properties are bulk measurements on homogenized, generally crushed, and pulverized rock samples and can take from hours to days to perform. New methods using Fourier transform infrared (FTIR) spectroscopy have been developed to more rapidly obtain information on mineralogy and geochemistry. However, these methods are also typically performed on bulk, homogenized samples. We present a new approach to rock sample characterization incorporating multivariate analysis and FTIR microscopy to provide non-destructive, spatially resolved mineralogy and geochemistry on whole rock samples. We are able to predict bulk mineralogy and organic carbon content within the same margin of error as standard characterization techniques, including X-ray diffraction (XRD) and total organic carbon (TOC) analysis. Validation of the method was performed using two oil shale samples from the Green River Formation in the Piceance Basin with differing sedimentary structures. One sample represents laminated Green River oil shales, and the other is representative of oil shale breccia. The FTIR microscopy results on the oil shales agree with XRD and LECO TOC data from the homogenized samples but also give additional detail regarding sample heterogeneity by providing information on the distribution of mineral phases and organic content. While measurements for this study were performed on oil shales, the method could also be applied to other geological samples, such as other mudrocks, complex carbonates, and soils.
Catalyst material and method of making
Matson, Dean W.; Fulton, John L.; Linehan, John C.; Bean, Roger M.; Brewer, Thomas D.; Werpy, Todd A.; Darab, John G.
1997-01-01
The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation.
Catalyst material and method of making
Matson, D.W.; Fulton, J.L.; Linehan, J.C.; Bean, R.M.; Brewer, T.D.; Werpy, T.A.; Darab, J.G.
1997-07-29
The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation. 7 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D. H.; Reigel, M. M.
A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposedmore » to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.« less
Marek, Ivo; Vojtěch, Dalibor; Michalcová, Alena; Kubatík, Tomáš František
2016-01-01
In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation. PMID:28773514
Experimental Study of the Stability of Aircraft Fuels at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Vranos, A.; Marteney, P. J.
1980-01-01
An experimental study of fuel stability was conducted in an apparatus which simulated an aircraft gas turbine fuel system. Two fuels were tested: Jet A and Number 2 Home Heating oil. Jet A is an aircraft gas turbine fuel currently in wide use. No. 2HH was selected to represent the properties of future turbine fuels, particularly experimental Reference Broad Specification, which, under NASA sponsorship, was considered as a possible next-generation fuel. Tests were conducted with varying fuel flow rates, delivery pressures and fuel pretreatments (including preheating and deoxygenation). Simulator wall temperatures were varied between 422K and 672K at fuel flows of 0.022 to 0.22 Kg/sec. Coking rate was determined at four equally-spaced locations along the length of the simulator. Fuel samples were collected for infrared analysis. The dependence of coking rate in Jet A may be correlated with surface temperature via an activation energy of 9 to 10 kcal/mole, although the results indicate that both bulk fluid and surface temperature affect the rate of decomposition. As a consequence, flow rate, which controls bulk temperature, must also be considered. Taken together, these results suggest that the decomposition reactions are initiated on the surface and continue in the bulk fluid. The coking rate data for No. 2 HH oil are very highly temperature dependent above approximately 533K. This suggests that bulk phase reactions can become controlling in the formation of coke.
Fog and precipitation chemistry at a mid-land forest in central Taiwan.
Liang, Yang-Ling; Lin, Teng-Chiu; Hwong, Jeen-Liang; Lin, Neng-Huei; Wang, Chiao-Ping
2009-01-01
We analyzed fog and bulk precipitation chemistry at a cloud forest in central Taiwan where mountain agriculture activities are highest. There were 320 foggy days (visibility <1000 m) recorded between April 2005 and March 2006. Fog was most frequent between April 2005 and July 2005 and in March 2006 (153/153 d) and least frequent in January 2006 (21/31 d). The total fog duration was 2415 h, representing 28% of the sampling period. Compared with bulk precipitation, fog was disproportionally enriched in NO(3)(-) and SO(4)(2-) relative to K(+), Ca(2+), Mg(2+), and NH(4)(+), resulting in higher a content of nitric acid and sulfuric acid than weak acids or neutral salts and, therefore, higher acidity (median pH, 4.9) in fog than in bulk precipitation (median and mean pH, 5.5). The very high input of NH(4)(+) (47 kg N ha(-1) yr(-1)) through bulk precipitation suggests that the use of fertilizer (ammonium sulfate and animal manure) associated with mountain agriculture has a major impact on atmospheric deposition at the surrounding forest ecosystems. The input of inorganic N reached 125 kg N ha(-1) yr(-1) and likely exceeded the biological demand of the forest ecosystem. Sulfate is the most abundant anion in fog at Chi-tou and in precipitation at various forests throughout Taiwan, suggesting that the emission and transport of large quantities of SO(2,) the precursor of SO(4)(2-), is an island-wide environmental issue.
Partitioning of tritium between surface and bulk of 316 stainless steel at room temperature
Sharpe, M. D.; Fagan, C.; Shmayda, W. T.; ...
2018-03-28
The distribution of tritium between the near surface and the bulk of 316 stainless steel has been measured using two independent techniques: pulsed-plasma exposures and a zinc-chloride wash. Between 17% and 20% of the total inventory absorbed into a stainless-steel sample during a 24-h exposure to DT gas at room temperature resides in the water layers present on the metal surface. Redistribution of tritium between the surface and the bulk of stainless steel, if it occurs, is very slow. Finally, tritium does not appear to enter into the bulk at a rate defined solely by lattice diffusivity.
Partitioning of tritium between surface and bulk of 316 stainless steel at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, M. D.; Fagan, C.; Shmayda, W. T.
The distribution of tritium between the near surface and the bulk of 316 stainless steel has been measured using two independent techniques: pulsed-plasma exposures and a zinc-chloride wash. Between 17% and 20% of the total inventory absorbed into a stainless-steel sample during a 24-h exposure to DT gas at room temperature resides in the water layers present on the metal surface. Redistribution of tritium between the surface and the bulk of stainless steel, if it occurs, is very slow. Finally, tritium does not appear to enter into the bulk at a rate defined solely by lattice diffusivity.
Oxygen storage properties and catalytic activity of layer-ordered perovskites BaY 1-xGd xMn 2O 5+δ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimkowicz, A.; Świerczek, K.; Rząsa, T.
2016-05-01
Crystal structure, oxygen storage-related and preliminary anaerobic methane combustion studies were conducted for BaY 1-xGd xMn 2O 5+δ (0, 0.25, 0.5, 0.75 and 1) series of oxides prepared by a sol–gel method. All samples were found to possess layered-type A-site cation ordering, with the unit cell volume linearly dependent on the average radius of Y 1-xGd x for both the reduced and the oxidized materials. The oxygen content in the temperature range of 400 °C–600 °C indicates change on the order of 1 atomic mole, occurring when the sample's surrounding atmosphere was changed from air to 5 vol.% H 2more » in Ar. The time dependence of the reduction shows activated character on temperature, with an activation energy, which seems to be related to the oxygen diffusion in the bulk of the materials. Initial data concerning methane combustion in oxygen-free conditions show promising catalytic activity of BaYMn 2O 6 at elevated temperatures.« less
Distribution of trace elements in the coastal sea sediments of Maslinica Bay, Croatia
NASA Astrophysics Data System (ADS)
Mikulic, Nenad; Orescanin, Visnja; Elez, Loris; Pavicic, Ljiljana; Pezelj, Durdica; Lovrencic, Ivanka; Lulic, Stipe
2008-02-01
Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.
Kuchkin, A.; Stebelkov, V.; Zhizhin, K.; ...
2018-01-30
Seven laboratories used the results of bulk uranium isotopic analysis by either inductively coupled plasma mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS) for characterization of the samples in the Nuclear Forensic International Technical Working Group fourth international collaborative material exercise, CMX-4. Comparison of the measured isotopic compositions of uranium in three exercise samples is implemented for identifying any differences or similarities between the samples. The role of isotopic analyses in the context of a real nuclear forensic investigation is discussed. Several limitations in carrying out ICP-MS or TIMS analysis in CMX-4 are noted.
NASA Technical Reports Server (NTRS)
Brucker, G. J.
1971-01-01
The effort reported here represents data of lithium properties in bulk-silicon samples before and after irradiation for analytical information required to characterize the interactions of lithium with radiation-induced defects in silicon. A model of the damage and recovery mechanisms in irradiated-lithium-containing solar cells is developed based on making measurements of the Hall coefficient and resistivity of samples irradiated by 1-MeV electrons. Experiments on bulk samples included Hall coefficient and resistivity measurements taken as a function of: (1) bombardment temperature, (2) resistivity, (3) fluence, (4) oxygen concentration, and (5) annealing time at temperatures from 300 to 373 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchkin, A.; Stebelkov, V.; Zhizhin, K.
Seven laboratories used the results of bulk uranium isotopic analysis by either inductively coupled plasma mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS) for characterization of the samples in the Nuclear Forensic International Technical Working Group fourth international collaborative material exercise, CMX-4. Comparison of the measured isotopic compositions of uranium in three exercise samples is implemented for identifying any differences or similarities between the samples. The role of isotopic analyses in the context of a real nuclear forensic investigation is discussed. Several limitations in carrying out ICP-MS or TIMS analysis in CMX-4 are noted.
Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films.
Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E; Malko, Anton V; Chabal, Yves J
2016-01-21
The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (∼10(17) cm(-3)) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.
Large-scale imaging of cortical network activity with calcium indicators.
Ikegaya, Yuji; Le Bon-Jego, Morgane; Yuste, Rafael
2005-06-01
Bulk loading of calcium indicators has provided a unique opportunity to reconstruct the activity of cortical networks with single-cell resolution. Here we describe the detailed methods of bulk loading of AM dyes we developed and have been improving for imaging with a spinning disk confocal microscope.
Effect of Bulk Viscosity on the Oscillating Screen Viscometer
NASA Technical Reports Server (NTRS)
Berg, Robert F.; Moldover, Michael R.
1993-01-01
Close to the critical temperature, the bulk viscosity of the xenon sample will exceed the shear viscosity by more than a factor of a billion. Nevertheless, the viscometer's low operating frequency ensures that the only significant force on the oscillating screen will be due to the shear viscosity.
Prevalence of Campylobacter spp. in bulk tank milk and filters from US dairies
USDA-ARS?s Scientific Manuscript database
Campylobacter spp. is an important zoonotic microaerophilic bacterial pathogen that caused the majority of US outbreaks associated with nonpasteurized milk from 2007 to 2012. Bulk tank milk and milk filter samples were collected from 236 dairy operations in 17 top dairy states from March through Jul...
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Zhang, Li; Tang, Xinfeng
2017-11-01
γ-Na x CoO2 single-phase powders have been synthesized by a poly(acrylic acid) (PAA) sol-gel (SG) method, and γ-Na x CoO2 bulk ceramic fabricated using spark plasma sintering. The effects of the PAA concentration on the sample phase composition and morphology were investigated. The thermoelectric properties of the γ-Na x CoO2 bulk ceramic were also studied. The results show that the PAA concentration did not significantly affect the crystalline phase of the product. However, agglomeration of γ-Na x CoO2 crystals was suppressed by the steric effect of PAA. The Na x CoO2 bulk ceramic obtained using the PAA SG method had higher crystallographic anisotropy, better chemical homogeneity, and higher density than the sample obtained by solid-state reaction (SSR), leading to improved thermoelectric performance. The PAA SG sample had power factor (in-plane PF = σS 2) of 0.61 mW m-1 K-2 and dimensionless figure of merit ( ZT) along the in-plane direction of 0.19 at 900 K, higher than for the SSR sample (in-plane PF = 0.51 mW m-1 K-2, in-plane ZT = 0.17). These results demonstrate that a simple and feasible PAA SG method can be used for synthesis of Na x CoO2 ceramics with improved thermoelectric properties.
Birgül, Askın; Tasdemir, Yücel
2011-03-01
Ambient air and bulk deposition samples were collected between June 2008 and June 2009. Eighty-three polychlorinated biphenyl (PCB) congeners were targeted in the samples. The average gas and particle PCB concentrations were found as 393 ± 278 and 70 ± 102 pg/m(3), respectively, and 85% of the atmospheric PCBs were in the gas phase. Bulk deposition samples were collected by using a sampler made of stainless steel. The average PCB bulk deposition flux value was determined as 6,020 ± 4,350 pg/m(2) day. The seasonal bulk deposition fluxes were not statistically different from each other, but the summer flux had higher values. Flux values differed depending on the precipitation levels. The average flux value in the rainy periods was 7,480 ± 4,080 pg/m(2) day while the average flux value in dry periods was 5,550 ± 4,420 pg/m(2) day. The obtained deposition values were lower than the reported values given for the urban and industrialized areas, yet close to the ones for the rural sites. The reported deposition values were also influenced by the type of the instruments used. The average dry deposition and total deposition velocity values calculated based on deposition and concentration values were found as 0.23 ± 0.21 and 0.13 ± 0.13 cm/s, respectively.
Role of aerosil dispersion on the activated kinetics of the LC1-xSilx system.
Sharma, Dipti; MacDonald, John C; Iannacchione, Germano S
2006-12-28
This study explores the role of aerosil dispersion on activated phase transitions of bulk octylcyanobiphenyl (8CB) liquid crystals by performing heating rate-dependent experiments. Differential scanning calorimetry (DSC) was used at various heating ramp rates in order to probe the activated phase dynamics of the system. The system, LC1-xSilx, was prepared by mixing aerosil nanoparticles (7 nm in diameter) in the bulk 8CB by the solvent dispersion method (SDM). LC represents bulk 8CB, and Sil represents aerosil nanoparticles with concentration x in percent. The concentration of the aerosil nanoparticles (x) varied from 0 to 0.2 g/cm3 in the bulk 8CB. Well-defined, endothermic peaks were found on a heating scan at melting and at the smectic-A to nematic (SmA-N) and nematic to isotropic (N-I) transitions. These peaks show a temperature shift and a change in their shapes and sizes in the presence of aerosil nanoparticles. In addition, an exothermic peak also appeared before the melting peak during the heating scan in the presence of aerosil nanoparticles. All transitions shifted significantly with different heating ramp rates, following an Arrhenius behavior, showing activated kinetics. The presence of aerosil nanoparticles caused a significant increase in the enthalpy and a decrease in the activation energy compared to the results found in bulk 8CB. This behavior can be explained by aerosil dispersion in the LC1-xSilx, inducing a disorder in the bulk 8CB. Infrared (IR) spectroscopy shows a shift to higher frequency for the broad peak at 1082 cm-1, corresponding to an Si-O bond as the density of the aerosil increases, and can be explained in terms of surface and molecular interactions between aerosil nanoparticles and 8CB liquid crystal molecules.
Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T. B.; Fondeur, F. F.; Taylor-Pashow, K. M.L.
2014-04-02
Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNLmore » refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating this. SRNL results support the transition to routine operations.« less
NASA Astrophysics Data System (ADS)
Nakamura, Minoru; Murakami, Susumu; Udono, Haruhiko
2018-03-01
We investigate the relationship between the intensity of band-edge (BDE) photoluminescence (PL) from 10 to 70 K and the concentration of iron diffused in boron-doped p-type silicon. Because of the nonradiative recombination activity of the interstitial iron-boron complex (FeiB center), the BDE-PL intensity at each temperature varies distinctively and systematically with the iron concentration, which means that this method has the potential to make the accurate measurements of a wide range of interstitial iron concentrations in silicon. The iron precipitates formed in the bulk and/or at the surface are found to exert much weaker recombination activity for excess carriers than FeiB center by exploiting both PL and deep-level transient spectroscopy (DLTS) measurements. The unexpected enhancement in BDE-PL intensity from iron-diffused silicon between 20 and 50 K is attributed to the passivation of the Si-oxide/Si interface by iron. For the samples diffused with trace amounts of iron, the iron concentration within 20 μm of the surface is significantly greater than that in the bulk, as measured by DLTS. This result is tentatively attributed to the affinity of iron with the Si-oxide.
NASA Astrophysics Data System (ADS)
Li, Yanan; Zhang, Fang; Li, Zhanqing; Sun, Li; Wang, Zhenzhu; Li, Ping; Sun, Yele; Ren, Jingye; Wang, Yuying; Cribb, Maureen; Yuan, Cheng
2017-05-01
With the aim of understanding the impact of aerosol particle size and chemical composition on CCN activity, the size-resolved cloud condensation nuclei (CCN) number concentration (NCCN), particle number size distribution (PSD) (10-600 nm), and bulk chemical composition of particles with a diameter < 1.0 μm (PM1) were measured simultaneously at Xinzhou, a suburban site in northern China, from 22 July to 26 August 2014. The NCCN was measured at five different supersaturations (SS) ranging from 0.075%-0.76%. Diurnal variations in the aerosol number concentration (NCN), NCCN, the bulk aerosol activation ratio (AR), the hygroscopicity parameter (κchem), and the ratio of 44 mass to charge ration (m/z 44) to total organic signal in the component spectrum (f44), and the PSD were examined integrally to study the influence of particle size and chemical composition on CCN activation. We found that particle size was more related to the CCN activation ratios in the morning, whereas in the afternoon ( 1400 LST), κchem and f44 were more closely associated with the bulk AR. Assuming the internal mixing of aerosol particles, NCCN was estimated using the bulk chemical composition and real-time PSD. We found that the predicted CCN number concentrations were underestimated by 20-30% at SS < 0.2% probably due to the measurement uncertainties. Estimates were more accurate at higher SS levels, suggesting that the hygroscopicity parameter based on bulk chemical composition information can provide a good estimate of CCN number concentrations. We studied the impacts of new particle formation (NPF) events on size-resolved CCN activity at the ;growth; stage and ;leveling-off; stage during a typical NPF event by comparing with the case during non-NPF event. It has been found that CCN activation was restrained at the ;growth; stage during which larger particle diameters were needed to reach an activation diameter(Da), and the bulk AR decreased as well. However, during the ;leveling-off; stage, a lower Da was observed and CCN activation was greatly enhanced.
Contamination of surface, ground, and drinking water from pharmaceutical production.
Fick, Jerker; Söderström, Hanna; Lindberg, Richard H; Phan, Chau; Tysklind, Mats; Larsson, D G Joakim
2009-12-01
Low levels of pharmaceuticals are detected in surface, ground, and drinking water worldwide. Usage and incorrect disposal have been considered the major environmental sources of these microcontaminants. Recent publications, however, suggest that wastewater from drug production can potentially be a source of much higher concentrations in certain locations. The present study investigated the environmental fate of active pharmaceutical ingredients in a major production area for the global bulk drug market. Water samples were taken from a common effluent treatment plant near Hyderabad, India, which receives process water from approximately 90 bulk drug manufacturers. Surface water was analyzed from the recipient stream and from two lakes that are not contaminated by the treatment plant. Water samples were also taken from wells in six nearby villages. The samples were analyzed for the presence of 12 pharmaceuticals with liquid chromatography-mass spectrometry. All wells were determined to be contaminated with drugs. Ciprofloxacin, enoxacin, cetirizine, terbinafine, and citalopram were detected at more than 1 microg/L in several wells. Very high concentrations of ciprofloxacin (14 mg/L) and cetirizine (2.1 mg/L) were found in the effluent of the treatment plant, together with high concentrations of seven additional pharmaceuticals. Very high concentrations of ciprofloxacin (up to 6.5 mg/L), cetirizine (up to 1.2 mg/L), norfloxacin (up to 0.52 mg/L), and enoxacin (up to 0.16 mg/L) were also detected in the two lakes, which clearly shows that the investigated area has additional environmental sources of insufficiently treated industrial waste. Thus, insufficient wastewater management in one of the world's largest centers for bulk drug production leads to unprecedented drug contamination of surface, ground, and drinking water. This raises serious concerns regarding the development of antibiotic resistance, and it creates a major challenge for producers and regulatory agencies to improve the situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yiming, E-mail: yangyiming1988@outlook.com
Minor phases make considerable contributions to the mechanical and physical properties of metals and alloys. Unfortunately, it is difficult to identify unknown minor phases in a bulk polycrystalline material using conventional metallographic methods. Here, a non-destructive method based on three-dimensional X-ray diffraction (3DXRD) is developed to solve this problem. Simulation results demonstrate that this method is simultaneously able to identify minor phase grains and reveal their positions, orientations and sizes within bulk alloys. According to systematic simulations, the 3DXRD method is practicable for an extensive sample set, including polycrystalline alloys with hexagonal, orthorhombic and cubic minor phases. Experiments were alsomore » conducted to confirm the simulation results. The results for a bulk sample of aluminum alloy AA6061 show that the crystal grains of an unexpected γ-Fe (austenite) phase can be identified, three-dimensionally and nondestructively. Therefore, we conclude that the 3DXRD method is a powerful tool for the identification of unknown minor phases in bulk alloys belonging to a variety of crystal systems. This method also has the potential to be used for in situ observations of the effects of minor phases on the crystallographic behaviors of alloys. - Highlights: •A method based on 3DXRD is developed for identification of unknown minor phase. •Grain position, orientation and size, is simultaneously acquired. •A systematic simulation demonstrated the applicability of the proposed method. •Experimental results on a AA6061 sample confirmed the practicability of the method.« less
van der Plaats, R. Q. J.; de Heer, L.; Paauwe, R.; Schimmer, B.; Vellema, P.; van Rotterdam, B. J.; van Duynhoven, Y. T. H. P.
2012-01-01
During large Q fever outbreaks in the Netherlands between 2007 and 2010, dairy goat farms were implicated as the primary source of human Q fever. The transmission of Coxiella burnetii to humans is thought to occur primarily via aerosols, although available data on C. burnetii in aerosols and other environmental matrices are limited. During the outbreak of 2009, 19 dairy goat farms and one dairy sheep farm were selected nationwide to investigate the presence of C. burnetii DNA in vaginal swabs, manure, surface area swabs, milk unit filters, and aerosols. Four of these farms had a positive status during the Coxiella burnetii bulk milk monitoring program in 2009 and additionally reported abortion waves in 2008 or 2009. Eleven farms were reported as having positive bulk milk only, and five selected (control) farms had a bulk milk-negative status in 2009 and no reported Q fever history. Screening by quantitative PCR (qPCR) revealed that on farms with a history of abortions related to C. burnetii and, to a lesser extent, on farms positive by bulk milk monitoring, generally higher proportions of positive samples and higher levels of C. burnetii DNA within positive samples were observed than on the control farms. The relatively high levels of C. burnetii DNA in surface area swabs and aerosols sampled in stables of bulk milk-positive farms, including farms with a Q fever-related abortion history, support the hypothesis that these farms can pose a risk for the transmission of C. burnetii to humans. PMID:22247143
Characterization of the Fault Core and Damage Zone of the Borrego Fault, 2010 M7.2 Rupture
NASA Astrophysics Data System (ADS)
Dorsey, M. T.; Rockwell, T. K.; Girty, G.; Ostermeijer, G.; Mitchell, T. M.; Fletcher, J. M.
2017-12-01
We collected a continuous sample of the fault core and 23 samples of the damage zone out to 52 m across the rupture trace of the 2010 M7.2 El Mayor-Cucapa earthquake to characterize the physical damage and chemical transformations associated with this active seismic source. In addition to quantifying fracture intensity from macroscopic analysis, we cut a continuous thin section through the fault core and from various samples in the damage zone, and ran each sample for XRD analyses for clay mineralogy, XRF for bulk geochemical analyses, and bulk and grain density from which porosity and volumetric strain were derived. The parent rock is a hydrothermally-altered biotite tonalite, with biotite partially altered to chlorite. The presence of epidote with chlorite suggests that these rocks were subjected to relatively high temperatures of 300-400° C. Adjacent to the outermost damage zone is a chaotic breccia zone with distinct chemical and physical characteristics, indicating possible connection to an ancestral fault to the southwest. The damage zone consists of an outer zone of protocataclasite, which grades inward towards mesocataclasite with seams of ultracataclasite. The fault core is anomalous in that it is largely composed of a sliver of marble that has been translated along the fault, so direct comparison with the damage zone is impaired. From collected data, we observe that chloritization increases into the breccia and damage zones, as does the presence of illite. Porosity reaches maximum values in the damage zone adjacent to the core, and closely follows trends in fracture intensity. Statistically significant gains in Mg, Na, K, Mn, and total bulk mass occurred within the inner damage zone, with losses of Ca and P mass, which led to the formation of chlorite and albite. The outer damage zone displays gains in Mg and Na mass with losses in Ca and P mass. The breccia zone shows gains in mass of Mg and Mn and loss in total bulk mass. A gain in LOI in both the breccia and damage zones is attributed to formation of clay. Volumetric strain tracks porosity, as expected, and increases towards the core. Notably, damage appears to be superposed on chemical alterations, which supports the idea that much of the hydrothermal alteration occurred at depth followed by brecciation and cataclasis once the fault zone rocks were exhumed closer to the surface.
Deep levels in H-irradiated GaAs1-xNx (x < 0.01) grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Shafi, M.; Mari, R. H.; Khatab, A.; Henini, M.; Polimeni, A.; Capizzi, M.; Hopkinson, M.
2011-12-01
Dilute nitride GaAs1-xNx layers have been grown by molecular beam epitaxy with nitrogen concentration ranging from 0.2% to 0.8%. These samples have been studied before and after hydrogen irradiation by using standard deep level transient spectroscopy (DLTS) and high resolution Laplace DLTS techniques. The activation energy, capture cross section and density of the electron traps have been estimated and compared with results obtained in N-free as-grown and H-irradiated bulk GaAs.
Fey, D.L.; Wirt, L.; Besser, J.M.; Wright, W.G.
2002-01-01
This report presents hydrologic, water-quality, and biologic toxicity data collected during the annual spring thaw of 2002 in the upper Animas River watershed near Silverton, Colorado. The spring-thaw runoff is a concern because elevated concentrations of iron oxyhydroxides can contain sorbed trace metals that are potentially toxic to aquatic life. Water chemistry of streams draining the San Juan Mountains is affected by natural acid drainage and weathering of hydrothermal altered volcanic rocks and by more than a century of mining activities. The timing of the spring-thaw sampling effort was determined by reviewing historical climate and stream-flow hydrographs and current weather conditions. Twenty-one water-quality samples were collected between 11:00 AM March 27, 2002 and 6:00 PM March 30, 2002 to characterize water chemistry at the A-72 gage on the upper Animas River below Silverton. Analyses of unfiltered water at the A-72 gage showed a relation between turbidity and total-recoverable iron concentrations, and showed diurnal patterns. Copper and lead concentrations were related to iron concentrations, indicating that these elements are probably sorbed to colloidal iron material. Calcium, strontium, and sulfate concentrations showed overall decreasing trends due to dilution, but the loads of those constituents increased over the sampling period. Nine water-quality samples were collected near the confluence of Mineral Creek with the Animas River, the confluence of Cement Creek with the Animas River, and on the upper Animas River above the confluence with Cement Creek (three samples at each site). A total of six bulk water-toxicity samples were collected before, during, and after the spring thaw from the Animas River at the A-72 gage site. Toxicity tests conducted with the bulk water samples on amphipods did not show strong differences in toxicity among the three sampling periods; however, toxicity of river water to fathead minnows showed a decreasing trend during the course of the study.
NASA Astrophysics Data System (ADS)
He, Minyou; Chen, Liang; Su, Lingai; Yin, Lin; Qian, Yunsheng
2017-06-01
To theoretically research the influence of a varied Al component on the active layer of AlGaN photocathodes, the first principle based on density functional theory is used to calculate the formation energy and band structure of Al x Ga1-x N with x at 0, 0.125, 0.25, 0.325, and 0.5. The calculation results show that the formation energy declines along with the Al component rise, while the band gap is increasing with Al component increasing. Al x Ga1-x N with x at 0, 0.125, 0.25, 0.325, and 0.5 are direct band gap semiconductors, and their absorption coefficient curves have the same variation tendency. For further study, we designed two kinds of reflection-mode AlGaN photocathode samples. Sample 1 has an Al x Ga1-x N active layer with varied Al component ranging from 0.5 to 0 and decreasing from the bulk to the surface, while sample 2 has an Al x Ga1-x N active layer with the fixed Al component of 0.25. Using the multi-information measurement system, we measured the spectral response of the activated samples at room temperature. Their photocathode parameters were obtained by fitting quantum efficiency curves. Results show that sample 1 has a better spectral response than sample 2 at the range of short-wavelength. This work provides a reference for the structure design of the AlGaN photocathode. Project supported by the National Natural Science Foundation of China (Nos. 61308089, 6144005) and the Public Technology Applied Research Project of Zhejiang Province (No. 2013C31068).
Chang, Hao-Xun; Haudenshield, James S.; Bowen, Charles R.; Hartman, Glen L.
2017-01-01
Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. In this study, bulk soil samples collected from a high and a low productivity area from within six agronomic fields in Illinois were quantified for abiotic and biotic characteristics. Extracted DNA from these bulk soil samples were shotgun sequenced. While logistic regression analyses resulted in no significant association between crop productivity and the 26 soil characteristics, principal coordinate analysis and constrained correspondence analysis showed crop productivity explained a major proportion of the taxa variance in the bulk soil microbiome. Metagenome-wide association studies (MWAS) identified more Bradyrhizodium and Gammaproteobacteria in higher productivity areas and more Actinobacteria, Ascomycota, Planctomycetales, and Streptophyta in lower productivity areas. Machine learning using a random forest method successfully predicted productivity based on the microbiome composition with the best accuracy of 0.79 at the order level. Our study showed that crop productivity differences were associated with bulk soil microbiome composition and highlighted several nitrogen utility-related taxa. We demonstrated the merit of MWAS and machine learning for the first time in a plant-microbiome study. PMID:28421041
USDA-ARS?s Scientific Manuscript database
Two formulations of rice protein concentrates (RPC) derived from brown rice were evaluated for their antioxidant activity in bulk oil and in oil-in-water emulsions. Bulk oils were mixed with RPC and heated to 180°C, and total polar compounds and triacylglycerol polymerization were measured. Minimal ...
NASA Astrophysics Data System (ADS)
Steele-Dunne, Susan; Polo Bermejo, Jaime; Judge, Jasmeet; Bongiovanni, Tara; Chakrabarti, Subit; Liu, Pang-Wei; Bragdon, James; Hornbuckle, Brian
2017-04-01
Vegetation cover confounds soil moisture retrieval from both active and passive microwave remote sensing observations. Vegetation attenuates the signal from the soil as well as contributing to emission and scattering. The goal of this study was to characterize the vertical distribution of moisture within an agricultural canopy, to examine how this varies during the growing season and to determine the influence these changes have on emission and backscatter from the surface. To this end, an extensive campaign of destructive sampling was conducted in a rain-fed corn field at Buckeye, Iowa within the SMAPVEX16-IA study domain. The experiment duration extended from the beginning of IOP1 to the end of IOP2, i.e. from May 18 to August 16 2016. Destructive vegetation sampling was performed on most days upon which SMAP had both an ascending and a descending pass. On these days, destructive samples were collected at 6pm and 6pm unless the weather conditions were prohibitive. In addition to measuring the bulk vegetation water content for comparison to the SMAP retrieved VWC, the samples were split into leaves and stems. To study the vertical profiles, leaf moisture content was measured as a function of collar height and the stem was cut into 10cm sections. The influence of plant development on the bulk and profile VWC was clearly discernible in the observations. Diurnal variations in bulk VWC were relatively small due to moisture availability in the root zone. SMAP brightness temperatures, and tower-based observations from the University of Florida radiometer and radar systems were analyzed to investigate the impact of VWC variations on emission and backscatter. Dynamic variations in SMAP retrieved soil moisture were notably larger than those observed in-situ, particularly during the early growing season. This may be attributed to the difference between observed VWC and that used in the SMAP retrieval during the early growing season. Backscatter (and RVI) increased, as expected, in response to accumulating biomass, though retaining some sensitivity to soil moisture variations. Polarization-dependent diurnal differences of up to 2dB were observed in the backscatter from the fully grown corn canopy.
Can standard cosmological models explain the observed Abell cluster bulk flow?
NASA Technical Reports Server (NTRS)
Strauss, Michael A.; Cen, Renyue; Ostriker, Jeremiah P.; Laure, Tod R.; Postman, Marc
1995-01-01
Lauer and Postman (LP) observed that all Abell clusters with redshifts less than 15,000 km/s appear to be participating in a bulk flow of 689 km/s with respect to the cosmic microwave background. We find this result difficult to reconcile with all popular models for large-scale structure formation that assume Gaussian initial conditions. This conclusion is based on Monte Carlo realizations of the LP data, drawn from large particle-mesh N-body simulations for six different models of the initial power spectrum (standard, tilted, and Omega(sub 0) = 0.3 cold dark matter, and two variants of the primordial baryon isocurvature model). We have taken special care to treat properly the longest-wavelength components of the power spectra. The simulations are sampled, 'observed,' and analyzed as identically as possible to the LP cluster sample. Large-scale bulk flows as measured from clusters in the simulations are in excellent agreement with those measured from the grid: the clusters do not exhibit any strong velocity bias on large scales. Bulk flows with amplitude as large as that reported by LP are not uncommon in the Monte Carlo data stes; the distribution of measured bulk flows before error bias subtraction is rougly Maxwellian, with a peak around 400 km/s. However the chi squared of the observed bulk flow, taking into account the anisotropy of the error ellipsoid, is much more difficult to match in the simulations. The models examined are ruled out at confidence levels between 94% and 98%.
Woods-Chabane, Gwen C; Glover, Caitlin M; Marti, Erica J; Dickenson, Eric R V
2017-07-01
This study examined the potential of using a novel bulk amine assay as an approximation for the tertiary and quaternary amine load in wastewaters and surface water samples, and this approximation was compared to N-nitrosodimethylamine (NDMA) formation potential using chloramines. An existing colorimetric method was examined and optimized for the detection of amines in environmental water samples. The method consists of liquid-liquid extraction followed by a catalyzed reaction to form a yet-undefined product that is known to be both a strong chromophore and fluorophore. Previous work verified that this reaction was effectively catalyzed by a number of compounds containing tertiary and quaternary amine moieties. Many tertiary and quaternary compounds are also efficient producers of NDMA under chloramination conditions, and a linear correlation was consequently derived from the bulk amine signals vs. NDMA formation potential in various wastewater samples (R 2 = 0.74; n = 24; p-value < 0.05). The results provide evidence that approximately 2% of the tertiary and quaternary amines measured can form NDMA and an estimated 0.01-1.3% of nitrogen in dissolved organic nitrogen originates from these bulk amines. The normalization of NDMA concentration by the amine measurement revealed that ozone effectively destroyed those tertiary and quaternary amine structures more likely to form NDMA in treated wastewater samples. This bulk amine assay illustrates that proxy measurements of tertiary and quaternary amines can be linked to the NDMA formation potential of a given sample, and this approach may prove useful as a characterizing tool for NDMA precursors in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Breit, George N.; Yount, James C.; Uddin, Md. Nehal; Muneem, Ad. Atual; Lowers, Heather; Driscoll, Rhonda L.; Whitney, John W.
2006-01-01
Processes active within sediment of the Bengal delta have attracted world concern because of the locally high content of arsenic dissolved in ground water drawn from that sediment. Sediment samples were collected from two boreholes in Srirampur village, Kachua upazila, Chandphur district, Bangladesh, to investigate the processes contributing to arsenic contamination. The samples were mineralogically and chemically analyzed to determine compositional variations related to the arsenic content of the sediment. Mineralogy of the sediments was determined using powder X-ray diffraction. Bulk chemical composition was measured by Combustion, Inductively Coupled Plasma Atomic Emission Spectroscopy, Energy Dispersive X-ray Fluorescence, and Hydride Generation Atomic Absorption Spectrophotometry. Solutions produced by four chemical extractions-0.1 molar strontium chloride, 0.5 normal hydrochloric acid, titanium(III)-EDTA, and a solution of hydrogen peroxide and hydrochloric acid-were analyzed to evaluate the chemical reactivity of the sediment with an emphasis on arsenic residence. Acid-volatile sulfide, acid-soluble sulfate, and reducible sulfide were also measured. Sediment sampled at Srirampur is typically unlithified, gray, micaceous, feldspathic, arenaceous silt and sand. Arsenic content of the sediment ranges from <1 to 210 ppm, with the highest contents measured in sediment collected at a depth of 320 meters. Samples with high arsenic contents typically contain high concentrations of sulfur. The greatest amount of arsenic was extracted using the oxidative hydrogen peroxide and hydrochloric acid extraction solution. The extraction results are consistent with the apparent association of arsenic in sulfur in the bulk chemical analyses. Pyrite is typically the most abundant form of sulfur in the sediment and is dissolved by the oxidative extraction.
Bulk and nanocrystalline electron doped Gd0.15Ca0.85MnO3: Synthesis and magnetic characterization
NASA Astrophysics Data System (ADS)
Dhal, Lakshman; Chattarpal; Nirmala, R.; Santhosh, P. N.; Kumary, T. Geetha; Nigam, A. K.
2014-09-01
Polycrystalline Gd0.15Ca0.85MnO3 sample was prepared by solid state reaction method and nanocrystalline samples of different grain sizes of the same were prepared by sol-gel method. Phase purity and composition were verified by room temperature X-ray diffraction and SEM-EDAX analysis. Magnetization data of bulk Gd0.15Ca0.85MnO3 in 5 kOe field shows a peak at 119 K (TN) suggesting an antiferromagnetic transition. Nanocrystalline Gd0.15Ca0.85MnO3 sample ( 54 nm size) also shows a cusp at 107 K and a broad thermal hysteresis between field cooled cooling (FCC) and field cooled warming (FCW) data around this temperature. This thermal hysteresis suggests possible crystal structural transition. Field variation of magnetization of bulk Gd0.15Ca0.85MnO3 at 5 K shows a tendency to saturate, but yields a magnetic moment value of only 1.12 μB/f.u. in 70 kOe. The value of magnetization of nanocrystalline sample at 5 K in 70 kOe field is slightly larger and is 1.38 μB/f.u. which is probably due to the surface moments of the nanoparticle samples. Both the samples show Curie-Weiss-like behaviour in their paramagnetic state.
Crystallization kinetics and Avrami index of Sb-doped Se-Te-Sn chalcogenide glasses
NASA Astrophysics Data System (ADS)
Dwivedi, D. K.; Rao, Vandita; Mehta, N.; Chandel, N.
2018-05-01
Bulk amorphous samples of Sb-substituted Se78-xTe20Sn2Sbx (0 < x < 6) have been prepared using melt quench technique. The structure of Se78-xTe20Sn2Sbx (x = 0, 2, 4, 6) glassy alloys has been investigated using X-ray diffraction technique. Calorimetric studies of the prepared samples have been performed under non-isothermal conditions using differential scanning calorimetry (DSC) and glass transition temperature as well as crystallization temperature has been evaluated using DSC scans. The activation energy of crystallization kinetics (Ec) has been determined using model-free approaches such as Kissinger, Ozawa, Tang and Starink methods. The Avrami index (n) and frequency factor (Ko) have been calculated by Matusita and Augis-Benett method.
Synthesis of carbon nanofibers by catalytic CVD of chlorobenzene over bulk nickel alloy
NASA Astrophysics Data System (ADS)
Kenzhin, Roman M.; Bauman, Yuri I.; Volodin, Alexander M.; Mishakov, Ilya V.; Vedyagin, Aleksey A.
2018-01-01
Catalytic chemical vapor deposition (CCVD) of chlorobenzene over bulk nickel alloy (nichrome) was studied. The bulk Ni-containing samples being exposed to a contact with aggressive reaction medium undergo self-disintegration followed by growth of carbon nanofibers. This process, also known as a metal dusting, requires the simultaneous presence of chlorine and hydrogen sources in the reaction mixture. Molecule of chlorobenzene complies with these requirements. The experiments on CCVD were performed in a flow-through reactor system. The initial stages of nickel disintegration process were investigated in a closed system under Autogenic Pressure at Elevated Temperature (RAPET) conditions. Scanning and transmission electron microscopies and ferromagnetic resonance spectroscopy were applied to examine the samples after their interaction with chlorobenzene. Introduction of additional hydrogen into the flow-through system was shown to affect the morphology of grown carbon nanofibers.
RESEARCH METHOD FOR SAMPLING AND ANALYSIS OF FIBROUS AMPHIBOLE IN VERMICULITE ATTIC INSULATION
NRMRL hosted a meeting on July 17-18, 2003 entitled, "Analytical Method for Bulk Analysis of Vermiculite." The purpose of this effort was to produce an interim research method for use by U.S. EPA's Office of Research and Development (ORD) for the analysis of bulk vermiculite for...
Dielectric properties-based method for rapid and nondestructive moisture sensing in almonds
USDA-ARS?s Scientific Manuscript database
A dielectric-based method is presented for moisture determination in almonds independent of bulk density. The dielectric properties of almond were measured between 5 and 15 GHz, with a 1-GHz increments, for samples with moisture contents ranging from 4.8% to 16.5%, wet basis, bulk densities ranging ...
Producing chondrules by recycling and volatile loss
NASA Technical Reports Server (NTRS)
Alexander, C. M. O.
1994-01-01
Interelement correlations observed in bulk chondrule INAA data, particularly between the refractory lithophiles, have led to the now generally accepted conclusion that the chondrule precursors were nebular condensates. However, it has been recently suggested that random sampling of fragments from a previous generation of chondrules could reproduce much of the observed range of bulk chondrule composition.
In-package inhibition of E.coli 0157:H7 on bulk romaine lettuce using cold plasma
USDA-ARS?s Scientific Manuscript database
Dielectric barrier discharge atmospheric cold plasma (DACP) treatment was evaluated for the inactivation of Escherichia coli O157:H7, surface morphology, color, carbon dioxide generation, and weight loss of bulk Romaine lettuce in a commercial plastic clamshell container. The lettuce samples were pa...
Direct observation of nucleation in the bulk of an opaque sample
Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; ...
2017-02-14
Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map amore » selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. In conclusion, possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed.« less
Direct observation of nucleation in the bulk of an opaque sample.
Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; Wu, Guilin; Liu, Wenjun; Tischler, Jonathan Z; Liu, Qing; Juul Jensen, Dorte
2017-02-14
Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map a selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. Possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed.
NASA Astrophysics Data System (ADS)
McColgan, Patrick T.; Meraki, Adil; Boltnev, Roman E.; Lee, David M.; Khmelenko, Vladimir V.
2017-04-01
We studied optical and electron spin resonance spectra during destruction of porous structures formed by nitrogen-rare gas (RG) nanoclusters in bulk superfluid helium containing high concentrations of stabilized nitrogen atoms. Samples were created by injecting products of a radio frequency discharge of nitrogen-rare gas-helium gas mixtures into bulk superfluid helium. These samples have a high energy density allowing the study of energy release in chemical processes inside of nanocluster aggregates. The rare gases used in the studies were neon, argon, and krypton. We also studied the effects of changing the relative concentrations between nitrogen and rare gas on thermoluminescence spectra during destruction of the samples. At the beginning of the destructions, α -group of nitrogen atoms, Vegard-Kaplan bands of N_2 molecules, and β -group of O atoms were observed. The final destruction of the samples were characterized by a series bright flashes. Spectra obtained during these flashes contain M- and β -bands of NO molecules, the intensities of which depend on the concentration of molecular nitrogen in the gas mixture as well as the type of rare gas present in the gas mixture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigam, Sandeep, E-mail: snigam@barc.gov.in; Sudarsan, V., E-mail: vsudar@barc.gov.in; Majumder, C.
Present manuscript deals with the structural changes associated with transformation of bulk Y{sub 2}Sn{sub 2}O{sub 7} into nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}. Nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7} both undoped and Eu{sup 3+} doped, were prepared at a relatively low temperature (700 °C) and investigated for their structural and luminescence properties and compared them with that of bulk Y{sub 2}Sn{sub 2}O{sub 7} sample prepared by the solid-state method at 1300 °C. Significant distortion in geometry and electron density distribution around Y{sup 3+}/Eu{sup 3+} ions in nanoparticles are confirmed from the Rietveld refinement of the powder X-ray diffraction patterns andmore » theoretical calculations based on the density functional theory (DFT). The SnO{sub 6} octahedron in Y{sub 2}Sn{sub 2}O{sub 7} is more expanded in nanoparticles compared to bulk. Iso-surface density distribution reveals that while bulk sample shows typical ionic feature in Y/Eu--O bonds, nanoparticle sample shows sharing of electron density along bond axis pertaining to covalent character. These inferences are further supported by the doped Eu{sup 3+} luminescence and calculated Ω{sub 2} and Ω{sub 4} parameters. - Graphical abstract: YO{sub 8} scalenohedron present in bulk and nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}.Variation of the electron density around Y{sup 3+} ions in YO{sub 8} polyhedron is also shown in bulk and nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}. The difference in the extent of ionic/covalent nature of the Y--O bond is clearly seen the contour plot of electron density. Highlights: ► YO{sub 8} scalenohedron is axially and equatorially distorted in Y{sub 2}Sn{sub 2}O{sub 7} nanoparticles. ► Enlargement of SnO{sub 6} octahedron in nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7} compared to bulk. ► Less symmetric charge distribution around Y{sup 3+} ions in Y{sub 2}Sn{sub 2}O{sub 7} nanoparticles.« less
Probing bulk physics in the 5/2 fractional quantum Hall effect using the Corbino geometry
NASA Astrophysics Data System (ADS)
Schmidt, Benjamin; Bennaceur, Keyan; Bilodeau, Simon; Gaucher, Samuel; Lilly, Michael; Reno, John; Pfeiffer, Loren; West, Ken; Reulet, Bertrand; Gervais, Guillaume
We present two- and four-point Corbino geometry transport measurements in the second Landau level in GaAs/AlGaAs heterostructures. By avoiding edge transport, we are able to directly probe the physics of the bulk quasiparticles in fractional quantum Hall (FQH) states including 5/2. Our highest-quality sample shows stripe and bubble phases in high Landau levels, and most importantly well-resolved FQH minima in the second Landau level. We report Arrhenius-type fits to the activated conductance, and find that σ0 agrees well with theory and existing Hall geometry data in the first Landau level, but not in the second Landau level. We will discuss the advantages the Corbino geometry could bring to various experiments designed to detect the non-Abelian entropy at 5/2, and our progress towards realizing those schemes. The results of these experiments could complement interferometry and other edge-based measurements by providing direct evidence for non-Abelian behaviour of the bulk quasiparticles. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.
Thennadil, Suresh N; Chen, Yi-Chieh
2017-02-01
The usual approach for estimating bulk optical properties using an integrating sphere measurement setup is by acquiring spectra from three measurement modes namely collimated transmittance (T c ), total transmittance (T d ), and total diffuse reflectance (R d ), followed by the inversion of these measurements using the adding-doubling method. At high scattering levels, accurate acquisition of T c becomes problematic due to the presence of significant amounts of forward-scattered light in this measurement which is supposed to contain only unscattered light. In this paper, we propose and investigate the effectiveness of using alternative sets of integrating sphere measurements that avoid the use of T c and could potentially increase the upper limit of concentrations of suspensions at which bulk optical property measurements can be obtained in the visible-near-infrared (Vis-NIR) region of the spectrum. We examine the possibility of replacing T c with one or more reflectance measurements at different sample thicknesses. We also examine the possibility of replacing both the collimated (T c ) and total transmittance (T d ) measurements with reflectance measurements taken from different sample thicknesses. The analysis presented here indicates that replacing T c with a reflectance measurement can reduce the errors in the bulk scattering properties when scattering levels are high. When only multiple reflectance measurements are used, good estimates of the bulk optical properties can be obtained when the absorption levels are low. In addition, we examine whether there is any advantage in using three measurements instead of two to obtain the reduced bulk scattering coefficient and the bulk absorption coefficient. This investigation is made in the context of chemical and biological suspensions which have a much larger range of optical properties compared to those encountered with tissue.
Meng, Lingqian; Zhu, Xiaochun; Mezari, Brahim; Pestman, Robert; Wannapakdee, Wannaruedee
2017-01-01
Abstract The influence of framework substituents (Al3+, Ga3+, Fe3+ and B3+) and morphology (bulk vs. nanometer‐sized sheets) of MFI zeolites on the acidity and catalytic performance in the methanol‐to‐hydrocarbons (MTH) reaction was investigated. The Brønsted acid density and strength decreased in the order Al(OH)Si>Ga(OH)Si>Fe(OH)Si≫B(OH)Si. Pyridine 15N NMR spectra confirmed the differences in the Brønsted and Lewis acid strengths but also provided evidence for site heterogeneity in the Brønsted acid sites. Owing to the lower efficiency with which tervalent ions can be inserted into the zeolite framework, sheet‐like zeolites exhibited lower acidity than bulk zeolites. The sheet‐like Al‐containing MFI zeolite exhibited the greatest longevity as a MTH catalyst, outperforming its bulk [Al]MFI counterpart. Although the lower acidity of bulk [Ga]MFI led to a better catalytic performance than bulk [Al]MFI, the sheet‐like [Ga]MFI sample was found to be nearly inactive owing to lower and heterogeneous Brønsted acidity. All Fe‐ and B‐substituted zeolite samples displayed very low catalytic performance owing to their weak acidity. Based on the product distribution, the MTH reaction was found to be dominated by the olefins‐based catalytic cycle. The small contribution of the aromatics‐based catalytic cycle was larger for bulk zeolite than for sheet‐like zeolite, indicating that shorter residence time of aromatics can explain the lower tendency toward coking and enhanced catalyst longevity. PMID:29201243
NASA Astrophysics Data System (ADS)
Shi, Yao; Sheng, Lianxi; Wang, Zhongqiang; Zhang, Xinyu; He, Nianpeng; Yu, Qiang
2016-10-01
In order to explore the responses of soil enzyme activities and microbial community compositions to long-term nitrogen (N) addition in both bulk soil and microaggregate of chestnut soil, we conducted a 7-year urea addition experiment with N treatments at 6 levels (0, 56, 112, 224, 392 and 560 kg N ha-1 yr-1) in a temperate steppe of Inner Mongolia in China. Soil properties and the activities of four enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were measured in both bulk soil and microaggregate, and phospholipid fatty acids (PLFAs) were measured in bulk soil. The results indicated that: 1) in bulk soil, N addition significantly decreased β-1,4-glucosidase (BG) and leucine aminopeptidase (LAP) activities at the treatment amounts of 224, 392 and 560 kg N ha-1 yr-1, and obviously suppressed β-1,4-N-acetylglucosaminidase (NAG) activity at the treatment amount of 560 kg N ha-1 yr-1. N addition enhanced total PLFAs (totPLFAs) and bacterial PLFAs (bacPLFAs) at the treatment amounts of 392 and 560 kg N ha-1 yr-1, respectively, but fungal PLFAs showed no response to N addition. The activities of BG, NAG and LAP were positively correlated with soil pH, but negatively correlated with the concentration of NH 4 + -N; 2) in microaggregate (53-250 μm), the activities of BG, NAG and AP showed no response to increased addition of N, but the significantly decreased LAP activity was observed at the treatment amount of 392 kg N ha-1 yr-1. These results suggested that enzyme activities were more sensitive to N addition than PLFA biomarkers in soil, and LAP activity in microaggregate may be a good indicator for evaluating N cycle response to long-term N addition.
7 CFR 201.52 - Noxious-weed seeds.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the bulk examined for noxious-weed seeds need not be noted: 1/2-gram purity working sample, 16 or more seeds; 1-gram purity working sample, 23 or more seeds; 2-gram purity working sample or larger, 30 or...
On Temperature Rise Within the Shear Bands in Bulk Metallic Glasses
NASA Astrophysics Data System (ADS)
Bazlov, A. I.; Churyumov, A. Yu.; Buchet, M.; Louzguine-Luzgin, D. V.
2018-05-01
Room temperature deformation process in a bulk metallic glassy sample was studied by using a hydraulic thermomechanical simulator. The temperature rise during each separate shear band propagation event was measured with a high data acquisition frequency by a thermocouple welded to the sample. Calculation showed that when propagation of the well developed shear bands takes place along the entire sample the temperature inside the shear band should be close to the glass-transition temperature. It was also possible to resolve the temporal stress distribution and a double-stage character of stress drops was also observed. The obtained results are compared with the literature data obtained by infrared camera measurements and the results of finite elements modeling.
On Temperature Rise Within the Shear Bands in Bulk Metallic Glasses
NASA Astrophysics Data System (ADS)
Bazlov, A. I.; Churyumov, A. Yu.; Buchet, M.; Louzguine-Luzgin, D. V.
2018-03-01
Room temperature deformation process in a bulk metallic glassy sample was studied by using a hydraulic thermomechanical simulator. The temperature rise during each separate shear band propagation event was measured with a high data acquisition frequency by a thermocouple welded to the sample. Calculation showed that when propagation of the well developed shear bands takes place along the entire sample the temperature inside the shear band should be close to the glass-transition temperature. It was also possible to resolve the temporal stress distribution and a double-stage character of stress drops was also observed. The obtained results are compared with the literature data obtained by infrared camera measurements and the results of finite elements modeling.
Inspection of wood density by spectrophotometry and a diffractive optical element based sensor
NASA Astrophysics Data System (ADS)
Palviainen, Jari; Silvennoinen, Raimo
2001-03-01
Correlation among gravimetric, spectrophotometric and radiographic data from dried wood samples of Scots pine (Pinus sylvestris L) was observed. A diffractive optical element (DOE) based sensor was applied to investigate density variations as well as optical anisotropy inside year rings of the wood samples. The correlation between bulk density of wood and spectrophotometric data (reflectance and transmittance) was investigated for the wavelength range 200-850 nm and the highest correlation was found at wavelengths from 800 to 850 nm. The correlation at this wavelength was smaller than the correlation between bulk density and radiography data. The DOE sensor was found to be capable of sensing anisotropy of the wood samples inside the year ring.
First-principles calculation of the bulk photovoltaic effect in bismuth ferrite.
Young, Steve M; Zheng, Fan; Rappe, Andrew M
2012-12-07
We compute the bulk photovoltaic effect (BPVE) in BiFeO(3) using first-principles shift current theory, finding good agreement with experimental results. Furthermore, we reconcile apparently contradictory observations: by examining the contributions of all photovoltaic response tensor components and accounting for the geometry and ferroelectric domain structure of the experimental system, we explain the apparent lack of BPVE response in striped polydomain samples that is at odds with the significant response observed in monodomain samples. We reveal that the domain-wall-driven response in striped polydomain samples is partially mitigated by the BPVE, suggesting that enhanced efficiency could be obtained in materials with cooperative rather than antagonistic interaction between the two mechanisms.
Van Kessel, J S; Karns, J S; Wolfgang, D R; Hovingh, E; Jayarao, B M; Van Tassell, C P; Schukken, Y H
2008-10-01
Although dairy cattle are known reservoirs for salmonellae, cattle that are shedding this organism are often asymptomatic and difficult to identify. A dairy herd that was experiencing a sustained, subclinical outbreak of Salmonella enterica subsp. enterica Cerro was monitored for 2 years. Fecal samples from the lactating cows were collected every 6 to 8 weeks and tested for the presence of Salmonella. Fecal prevalence of Salmonella fluctuated throughout the observation period and ranged from 8 to 88%. Manure composites and water trough samples were collected along with the fecal samples, and bulk milk and milk filters were cultured for the presence of Salmonella on a weekly basis. Over 90% of the manure composites--representing high-animal-traffic areas-were positive at each sampling. Salmonella was detected in 11% of milk samples and in 66% of the milk filters. Results of weekly bulk milk quality testing (i.e., bulk tank somatic cell score, standard plate count, preliminary incubation count) were typically well within acceptable ranges. Milk quality variables had low correlations with herd Salmonella fecal prevalence. When observed over time, sampling period average prevalence of Salmonella in milk filters closely paralleled fecal prevalence of Salmonella in the herd. Based on results of this study, milk filters appear to be an effective method for monitoring shedding prevalence at the herd level. In-line filter testing is also a more sensitive measure of Salmonella, and perhaps other pathogens, in raw milk than testing the milk alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beretta, D.; Lanzani, G.; Dipartimento di Fisica, P.zza Leonardo da Vinci 32, Politecnico di Milano, 20133 Milano
2015-07-15
A new experimental setup for reliable measurement of the in-plane Seebeck coefficient of organic and inorganic thin films and bulk materials is reported. The system is based on the “Quasi-Static” approach and can measure the thermopower in the range of temperature between 260 K and 460 K. The system has been tested on a pure nickel bulk sample and on a thin film of commercially available PEDOT:PSS deposited by spin coating on glass. Repeatability within 1.5% for the nickel sample is demonstrated, while accuracy in the measurement of both organic and inorganic samples is guaranteed by time interpolation of datamore » and by operating with a temperature difference over the sample of less than 1 K.« less
[H2O ortho-para spin conversion in aqueous solutions as a quantum factor of Konovalov paradox].
Pershin, S M
2014-01-01
Recently academician Konovalov and co-workers observed an increase in electroconductivity and biological activity simultaneously with diffusion slowing (or nanoobject diameter increasing) and extremes of other parameters (ζ-potential, surface tension, pH, optical activity) in low concentration aqueous solutions. This phenomenon completely disappeared when samples were shielded against external electromagnetic fields by a Faraday cage. A conventional theory of water and water solutions couldn't explain "Konovalov paradox" observed in numerous experiments (representative sampling about 60 samples and 7 parameters). The new approach was suggested to describe the physics of water and explain "Konovalov paradox". The proposed concept takes into account the quantum differences of ortho-para spin isomers of H2O in bulk water (rotational spin-selectivity upon hydration and spontaneous formation of ice-like structures, quantum beats and spin conversion induced in the presence of a resonant electromagnetic radiation). A size-dependent self-assembly of amorphous complexes of H2O molecules more than 275 leading to the ice Ih structure observed in the previous experiments supports this concept.
Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang
2014-05-23
An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.
Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang
2014-01-01
An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage. PMID:24853072
NORM in the East Midlands' oil and gas producing region of the UK.
Garner, Joel; Cairns, James; Read, David
2015-12-01
Naturally occurring radioactive material (NORM) is a common feature in North Sea oil and gas production offshore but, to date, has been reported from only one production site onshore in the United Kingdom. The latter, Wytch Farm on the Dorset coast, revealed high activity concentrations of (210)Pb in metallic form but little evidence of radium accumulation. NORM has now been discovered at two further onshore sites in the East Midlands region of the UK. The material has been characterized in terms of its mineralogy, bulk composition and disequilibrium in the natural uranium and thorium series decay chains. In contrast to Wytch Farm, scale and sludge samples from the East Midlands were found to contain elevated levels of radium and radioactive progeny associated with crystalline strontiobarite. The highest (226)Ra and (228)Ra activity concentrations found in scale samples were 132 and 60 Bq/g, with mean values of 86 and 40 Bq/g respectively; somewhat higher than the mean for the North Sea and well above national exemption levels for landfill disposal. The two East Midlands sites exhibited similar levels of radioactivity. Scanning electron microscope imaging shows the presence of tabular, idiomorphic and acicular strontiobarite crystals with elemental mapping confirming that barium and strontium are co-located throughout the scale. Bulk compositional data show a corresponding correlation between barium-strontium concentrations and radium activity. Scales and sludge were dated using the (226)Ra/(210)Pb method giving mean ages of 2.2 and 3.7 years, respectively. The results demonstrate clearly that these NORM deposits, with significant radium activity, can form over a very short period of time. Although the production sites studied here are involved in conventional oil recovery, the findings have direct relevance should hydraulic fracturing for shale gas be pursued in the East Midlands oilfield. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cooper, Daniel R; Capobianco, John A; Seuntjens, Jan
2018-04-26
We report on the synthesis, characterization, and radioluminescence quantification of several new varieties of nanoparticles with the general composition β-NaLnF4, incorporating known luminescent activator/sensitizer pairs. Using Monte Carlo modeling to complement luminescence measurements, we have calculated the radioluminescence yields and intrinsic conversion efficiencies of colloidally-dispersed nanoparticles by comparison to an organic liquid scintillator. While five of the compositions had low to modest radioluminescence yields relative to bulk materials, colloidal β-Na(Lu0.65Gd0.2Tb0.15)F4 displayed a strong output of 39 460 photons per MeV absorbed, comparable to some of the best non-hygroscopic bulk crystal scintillators and X-ray phosphors such as Gd2O2S:Tb. Measurements of β-Na(Lu0.65Gd0.2Tb0.15)F4 powder samples revealed persistent luminescence as well as stable charge trapping, warranting further investigation.
A Robust Analysis Method For Δ13c Signal Of Bulk Organic Matter In Speleothems
NASA Astrophysics Data System (ADS)
Bian, F.; Blyth, A. J.; Smith, C.; Baker, A.
2017-12-01
Speleothems preserve organic matter that is derived from both the surface soil and cave environments. This organic matter can be used to understand paleoclimate and paleoenvironments. However, a stable and quick micro-analysis method to measure the δ13C signals from speleothem organic matter separate from the total δ13C remains absent. And speleothem organic geochemistry is still relatively unexplored compared to inorganic geochemistry. In this research, for the organic matter analysis, bulk homogeneous power samples were obtained from one large stalagmite. These were dissolved by phosphoric acid to produce the aqueous solution. Then, the processed solution was degassed through a rotational vacuum concentrator. A liquid chromatograph was coupled to IRMS to control the oxidization and the measurement of analytes. This method is demonstrated to be robust for the analysis of speleothem d13C organic matter analysis under different preparation and instrumental settings, with the low standard deviation ( 0.2‰), and low sample consumption (<25 mg). Considering the complexity of cave environments, this method will be useful in further investigations the δ13C of entrapped organic matter and environmental controls in other climatic and ecological contexts, including the determination of whether vegetation or soil microbial activity is the dominant control on speleothem d13C of organic matter.
NASA Technical Reports Server (NTRS)
Coppolino, R. N.
1974-01-01
Details are presented of the implementation of the new formulation into NASTRAN including descriptions of the DMAP statements required for conversion of the program and details pertaining to problem definition and bulk data considerations. Details of the current 1/8-scale space shuttle external tank mathematical model, numerical results and analysis/test comparisons are also presented. The appendices include a description and listing of a FORTRAN program used to develop harmonic transformation bulk data (multipoint constraint statements) and sample bulk data information for a number of hydroelastic problems.
NASA Astrophysics Data System (ADS)
Murina, Ezequiel L.; Fernández-Prini, Roberto; Pastorino, Claudio
2017-08-01
We studied the behavior of long chain alkanes (LCAs) as they were transferred from gas to bulk water, through the liquid-vapor interface. These systems were studied using umbrella sampling molecular dynamics simulation and we have calculated properties like free energy profiles, molecular orientation, and radius of gyration of the LCA molecules. The results show changes in conformation of the solutes along the path. LCAs adopt pronounced molecular orientations and the larger ones extend appreciably when partially immersed in the interface. In bulk water, their conformations up to dodecane are mainly extended. However, larger alkanes like eicosane present a more stable collapsed conformation as they approach bulk water. We have characterized the more probable configurations in all interface and bulk regions. The results obtained are of interest for the study of biomatter processes requiring the transfer of hydrophobic matter, especially chain-like molecules like LCAs, from gas to bulk aqueous systems through the interface.
NASA Astrophysics Data System (ADS)
He, Yangkun; Coey, J. M. D.; Schaefer, Rudolf; Jiang, Chengbao
2018-01-01
The ground state of macroscopic samples of magnetically ordered materials is a domain state because of magnetostatic energy or entropy, yet we have limited experimental means for imaging the bulk domain structure and the magnetization process directly. The common methods available reveal the domains at the surface or in electron- or x-ray transparent lamellae, not those in the bulk. The magnetization curve just reflects the vector sum of the moments of all the domains in the sample, but magnetostriction curves are more informative. They are strongly influenced by the domain structure in the unmagnetized state and its evolution during the magnetization process in an applied field. Here we report a method of determining the bulk domain structure in a cubic magnetostrictive material by combining magneto-optic Kerr microscopy with magnetostriction and magnetization measurements on single crystals as a function of applied field. We analyze the magnetostriction of F e83G a17 crystals in terms of a domain structure that is greatly influenced by sample shape and heat treatment. Saturation magnetostriction measurements are used to determine the fraction of domains orientated along the three 〈100 〉 axes in the initial state. Domain wall motion and rotation process have characteristic signatures in the magnetostriction curves, including those associated with the Δ E effect and domain rotation through a 〈110 〉 auxetic direction.
Toxoplasma gondii Antibodies in Bulk Tank Milk Samples of Caprine Dairy Herds.
Gazzonis, Alessia Libera; Zanzani, Sergio Aurelio; Stradiotto, Katia; Olivieri, Emanuela; Villa, Luca; Manfredi, Maria Teresa
2018-06-15
A major public health issue, Toxoplasma gondii infection can affect humans mainly via the consumption of animal products from certain species, including small ruminants. Therefore, a regular monitoring of the infection in ovine and caprine populations is advisable for the control of human and animal toxoplasmosis. Antibody detection in individual and bulk tank milk may represent a valid alternative to serological analysis, being its collection easy and not affecting animal welfare. Many serological tools for milk analysis have already been validated for several parasites, including Apicomplexa. Thus, the aim of the present study was to obtain epidemiological data on T. gondii infection through the detection of antibodies in bulk tank milk of dairy goat herds from an important area for caprine dairy production (Northern Italy). The performance of a commercial ELISA was first evaluated for analysis on caprine milk samples, using a panel of serum-milk pairs of goats naturally infected by T. gondii. The analysis on bulk tank milk confirmed the presence of antibodies anti-T. gondii in 59% of the samples. Toxoplasma gondii antibody positivity was more frequently found in farms reared under extensive (64.9%) or semi-intensive systems (68.7%) in comparison to intensive farms (51.1%). Analysis on milk revealed to be a valid alternative to serological tests, being easily applied in large-scale epidemiological surveys and for continuous monitoring of T. gondii infection.
Alshali, Ruwaida Z; Salim, Nesreen A; Satterthwaite, Julian D; Silikas, Nick
2015-02-01
To measure bottom/top hardness ratio of bulk-fill and conventional resin-composite materials, and to assess hardness changes after dry and ethanol storage. Filler content and kinetics of thermal decomposition were also tested using thermogravimetric analysis (TGA). Six bulk-fill (SureFil SDR, Venus bulk fill, X-tra base, Filtek bulk fill flowable, Sonic fill, and Tetric EvoCeram bulk-fill) and eight conventional resin-composite materials (Grandioso flow, Venus Diamond flow, X-flow, Filtek Supreme Ultra Flowable, Grandioso, Venus Diamond, TPH Spectrum, and Filtek Z250) were tested (n=5). Initial and 24h (post-cure dry storage) top and bottom microhardness values were measured. Microhardness was re-measured after the samples were stored in 75% ethanol/water solution. Thermal decomposition and filler content were assessed by TGA. Results were analysed using one-way ANOVA and paired sample t-test (α=0.05). All materials showed significant increase of microhardness after 24h of dry storage which ranged from 100.1% to 9.1%. Bottom/top microhardness ratio >0.9 was exhibited by all materials. All materials showed significant decrease of microhardness after 24h of storage in 75% ethanol/water which ranged from 14.5% to 74.2%. The extent of post-irradiation hardness development was positively correlated to the extent of ethanol softening (R(2)=0.89, p<0.001). Initial thermal decomposition temperature assessed by TGA was variable and was correlated to ethanol softening. Bulk-fill resin-composites exhibit comparable bottom/top hardness ratio to conventional materials at recommended manufacturer thickness. Hardness was affected to a variable extent by storage with variable inorganic filler content and initial thermal decomposition shown by TGA. The manufacturer recommended depth of cure of bulk-fill resin-composites can be reached based on the microhardness method. Characterization of the primary polymer network of a resin-composite material should be considered when evaluating its stability in the aqueous oral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dr. Grant Heikan examines lunar material in sieve from sample container
NASA Technical Reports Server (NTRS)
1969-01-01
Dr. Grant Heikan, Manned Spacecraft Center and a Lunar Sample preliminary Examination Team member, examines lunar material in a sieve from the bulk sample container which was opened in the Biopreparation Laboratory of the Lunar Receiving Laboratory.
Practical Considerations of Moisture in Baled Biomass Feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
William A. Smith; Ian J. Bonner; Kevin L. Kenney
2013-01-01
Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover andmore » energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.« less
Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masashi Shimada; M. Hara; T. Otsuka
2014-05-01
Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recoverymore » mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st annealing for the sample exposed to TPE at 500 °C. Tritium Migration Analysis Program (TMAP) analysis reveals that the detrapping energy decreases from 1.8 eV to 1.4 eV, indicating the changes in trapping mechanisms. This paper also summarizes deuterium behavior studies in HFIR neutron-irradiated tungsten under US-Japan TITAN program.« less
NASA Astrophysics Data System (ADS)
Lin, W.; Tadai, O.; Shigematsu, N.; Nishikawa, O.; Mori, H.; Townend, J.; Capova, L.; Saito, S.; Kinoshita, M.
2015-12-01
The Alpine Fault is a mature active fault zone likely to rupture in the near future and DFDP aims to measure physical and chemical conditions within the fault. DFDP-2B borehole was drilled into hanging wall of the Alpine Fault. Downhole temperature measurements carried out in DFDP-2B borehole showed that the geothermal gradient in the hanging wall of the fault is very high, likely reaching to 130-150 °C/km (Sutherland et al., 2015 AGU Fall Meeting). To explain this abnormal feature, the determination of thermal properties of all the rock types in the hanging wall of the Alpine Fault is essential. To measure thermal properties and elastic wave velocities, we collected six typical rock block samples from outcrops in Stony creek and Gaunt creek. These include ultramylonite, mylonite, muscovite schist, garnet amphibolite, protomylonite and schist, which are representative of the hanging wall of the Alpine Fault. Their wet bulk densities are 2.7 - 2.8 g/cm3, and porosities are 1.4 - 3.0%. We prepared a pair of 4 cm cube specimens of each rock type with one flat plane parallel to the foliation. First, we measured thermal conductivity by the transient plane heat source (hot disc) method in a bulk mode, i.e. to deal with the rock as an isotropic material. However, several samples have clearly visible foliation and are likely to be anisotropic. Thus, the data measured in bulk mode provided an average value of the rocks in the range of approximately 2.4 - 3.2 W/mK. The next step will be to measure thermal conductivity in an anisotropic mode. We also measured P wave velocity (Vp) using the same samples, but in two directions, i.e. parallel and perpendicular to the foliation, respectively. Our preliminary results suggested that Vp is anisotropic in all the six rocks. Generally, Vp parallel to foliation is higher than that in the perpendicular direction. Vp in the parallel direction ranged in 5.5 - 6.0 km/s, whereas in the perpendicular direction it was 4.4 - 5.5 km/s. We thank the PIs and onsite staffs of the DFDP-2 project for their helps to collecting rock samples, and the financial support by JSPS (Japan-New Zealand Joint Research Program).
Thermal desorption of CO and H2 from degassed 304 and 347 stainless steel
NASA Technical Reports Server (NTRS)
Rezaie-Serej, S.; Outlaw, R. A.
1994-01-01
Thermal desorption spectroscopy (TDS), along with Auger electron spectroscopy, was used to study the desorption of H2 and CO from baked 304 and 347 stainless-steel samples exposed only to residual gases. Both 347 and 304 samples gave identical TDS spectra. The spectra for CO contained a sharp leading peak centered in the temperature range 410-440C and an exponentially increasing part for temperatures higher than 500C, with a small peak around 600C appearing as a shoulder. The leading peak followed a second-order desorption behavior with an activation energy of 28+/-2 kcal/mol, suggesting that the rate-limiting step for this peak is most likely a surface reaction that produces the CO molecules in the surface layer. The amount of desorbed CO corresponding to this peak was approximately 0.5X10(exp 14) molecules/cm(exp 2) . The exponentially rising part of the CO spectrum appeared to originate from a bulk diffusion process. The TDS spectrum for H2 consisted of a main peak centered also in the temperature range 410-440C, with two small peaks appearing as shoulders at approximately 500 and 650C. The main peak in this case also displayed a second-order behavior with an activation energy of 14+/-2 kcal/mol. The amount of desorbed H2, approximately 1.9X 10(exp 15) molecules/cm(exp 2) , appeared to be independent of the concentration of hydrogen in the bulk, indicating that the majority of the desorbed H2 originated from the surface layer.
Using Candy Samples to Learn about Sampling Techniques and Statistical Data Evaluation
ERIC Educational Resources Information Center
Canaes, Larissa S.; Brancalion, Marcel L.; Rossi, Adriana V.; Rath, Susanne
2008-01-01
A classroom exercise for undergraduate and beginning graduate students that takes about one class period is proposed and discussed. It is an easy, interesting exercise that demonstrates important aspects of sampling techniques (sample amount, particle size, and the representativeness of the sample in relation to the bulk material). The exercise…
Microstructure and thermoelectric properties of CuInSe2/In2Se3 compound
NASA Astrophysics Data System (ADS)
Wang, Kang; Feng, Jing; Ge, Zhen-Hua; Qin, Peng; Yu, Jie
2018-01-01
CuInSe2 powders were synthesized by solvothermal method, and then the CuInSe2/In2Se3 bulk samples were fabricated by spark plasma sintering (SPS) technique. To investigate the phase composition, the powders were determined by X-ray diffraction (XRD). The microstructures of the powders and bulk samples were observed by scanning electron microscopy (SEM). The transportation of the electronic properties and thermal conductivity were measured at room temperature to 700 K. According to the results, the CuInSe2 powders appeared in flower-like patterns which ranged from 3 μm to 6 μm. CuInSe2 powders were synthesized at 180∘C with a chalcopyrite structure. The Seebeck coefficient increased significantly in composite thermoelectric materials up to 200μVṡK-1 at 623 K. The thermal conductivity of the sample significantly decreases from the room temperature to 700 K. The CuInSe2 bulk composite by solvothermal method achieves the highest ZT value of 0.187 at 700 K.
NASA Astrophysics Data System (ADS)
Atapour, Hadi; Mortazavi, Ali
2018-04-01
The effects of textural characteristics, especially grain size, on index properties of weakly solidified artificial sandstones are studied. For this purpose, a relatively large number of laboratory tests were carried out on artificial sandstones that were produced in the laboratory. The prepared samples represent fifteen sandstone types consisting of five different median grain sizes and three different cement contents. Indices rock properties including effective porosity, bulk density, point load strength index, and Schmidt hammer values (SHVs) were determined. Experimental results showed that the grain size has significant effects on index properties of weakly solidified sandstones. The porosity of samples is inversely related to the grain size and decreases linearly as grain size increases. While a direct relationship was observed between grain size and dry bulk density, as bulk density increased with increasing median grain size. Furthermore, it was observed that the point load strength index and SHV of samples increased as a result of grain size increase. These observations are indirectly related to the porosity decrease as a function of median grain size.
Surface microlayer enrichment of polycyclic aromatic hydrocarbons in lower Chesapeake Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, K.; Dickhut, R.M.
1995-12-31
Surface microlayer samples were collected with a rotating cylinder sampler in the York River and Elizabeth River tributaries of lower Chesapeake Bay every other month from May 1994 to June, 1995. Spatial and temporal variabilities were also investigated over an annual cycle as well as shorter periods (i.e. days). All the samples were analyzed for 17 polycyclic aromatic hydrocarbons, total suspended particulate matter (TSP), particular organic carbon (POC), total nitrogen(TN) and dissolved organic carbon (DOC), and selected samples for chlorophyll. TSP in the surface microlayer was 10 to 100 times higher than that in the related bulk water. Particle associatedmore » PAH concentrations were 20--50 times those in bulk surface water, whereas PAH concentrations in freely dissolved phase of the surface microlayer were 5--60 times higher than dissolved concentrations in the bulk water. Particulate PAH concentrations increase with TSP in the surface microlayer and dissolved PAH concentrations increase with DOC. Overall, surface microlayer characteristics were found to be significantly affected by hydrological and meteorological parameters.« less
Saltas, V.; Chroneos, A.; Cooper, Michael William D.; ...
2016-01-01
In the present work, the defect properties of oxygen self-diffusion in PuO 2 are investigated over a wide temperature (300–1900 K) and pressure (0–10 GPa) range, by combining molecular dynamics simulations and thermodynamic calculations. Based on the well-established cBΩ thermodynamic model which connects the activation Gibbs free energy of diffusion with the bulk elastic and expansion properties, various point defect parameters such as activation enthalpy, activation entropy, and activation volume were calculated as a function of T and P. Molecular dynamics calculations provided the necessary bulk properties for the proper implementation of the thermodynamic model, in the lack of anymore » relevant experimental data. The estimated compressibility and the thermal expansion coefficient of activation volume are found to be more than one order of magnitude greater than the corresponding values of the bulk plutonia. As a result, the diffusion mechanism is discussed in the context of the temperature and pressure dependence of the activation volume.« less
Estimating forest canopy bulk density using six indirect methods
Robert E. Keane; Elizabeth D. Reinhardt; Joe Scott; Kathy Gray; James Reardon
2005-01-01
Canopy bulk density (CBD) is an important crown characteristic needed to predict crown fire spread, yet it is difficult to measure in the field. Presented here is a comprehensive research effort to evaluate six indirect sampling techniques for estimating CBD. As reference data, detailed crown fuel biomass measurements were taken on each tree within fixed-area plots...
Soil Compaction Absent in Plantation Thinning
Tony King; Sharon Haines
1979-01-01
We examine the effects on soil bulk density by using a TH-105 Thinner Harvester and two forwarders in a mechanically thinned slash pine (Pinus elliottii Engelm.) plantation. Points in the machine tracks were sampled before and after harvesting at depths of 5 and 10 cm (2 and 4 in) for moisture and bulk density. Both the standard gravimetric method...
Bulk water phase and biofilm growth in drinking water at low nutrient conditions.
Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik; Jørgensen, Claus
2002-11-01
In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used to quantify the effect of retention times at hydraulic conditions similar to those in drinking water distribution networks. Water and pipe wall samples were taken and examined during the experiment. The pipes had been exposed to drinking water at approximately 13 degrees C, for at least 385 days to allow the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day(-1). The bulk water phase bacteria exhibited a higher activity than the biofilm bacteria in terms of culturability, cell-specific ATP content, and cell-specific leucine incorporation rate. Bacteria in the bulk water phase incubated without the presence of biofilm exhibited a bacterial growth rate of 0.30 day(-1). The biofilm was radioactively labelled by the addition of 14C-benzoic acid. Subsequently, a biofilm detachment rate of 0.013 day(-1) was determined by measuring the release of 14C-labelled bacteria of the biofilm. For the quasi-stationary phase biofilm, the detachment rate was equivalent to the net growth rate. The growth rates determined in this study by different independent experimental approaches were comparable and within the range of values reported in the literature.
A Permeable Active Amendment Concrete (PAAC) for Contaminant Remediation and Erosion Control
2012-06-01
124: 131 -143. SRNL-STI-2012-00356 70 Tessier, A., Campbell, P.G.C., and Bisson, M. 1979. Sequential extraction procedure for the speciation of...Bulk Density, Dry, (AI( C-D)]* p, pcf 134.85 Bulk Dens ity after Immersion, [BI(C-D)]* p, pcf 146.65 Bulk Density after Immersion & Boiling1 jCI (C
Spore populations among bulk tank raw milk and dairy powders are significantly different.
Miller, Rachel A; Kent, David J; Watterson, Matthew J; Boor, Kathryn J; Martin, Nicole H; Wiedmann, Martin
2015-12-01
To accommodate stringent spore limits mandated for the export of dairy powders, a more thorough understanding of the spore species present will be necessary to develop prospective strategies to identify and reduce sources (i.e., raw materials or in-plant) of contamination. We characterized 1,523 spore isolates obtained from bulk tank raw milk (n=33 farms) and samples collected from 4 different dairy powder-processing plants producing acid whey, nonfat dry milk, sweet whey, or whey protein concentrate 80. The spores isolated comprised 12 genera, at least 44 species, and 216 rpoB allelic types. Bacillus and Geobacillus represented the most commonly isolated spore genera (approximately 68.9 and 12.1%, respectively, of all spore isolates). Whereas Bacillus licheniformis was isolated from samples collected from all plants and farms, Geobacillus spp. were isolated from samples from 3 out of 4 plants and just 1 out of 33 farms. We found significant differences between the spore population isolated from bulk tank raw milk and those isolated from dairy powder plant samples, except samples from the plant producing acid whey. A comparison of spore species isolated from raw materials and finished powders showed that although certain species, such as B. licheniformis, were found in both raw and finished product samples, other species, such as Geobacillus spp. and Anoxybacillus spp., were more frequently isolated from finished powders. Importantly, we found that 8 out of 12 genera were isolated from at least 2 different spore count methods, suggesting that some spore count methods may provide redundant information if used in parallel. Together, our results suggest that (1) Bacillus and Geobacillus are the predominant spore contaminants in a variety of dairy powders, implying that future research efforts targeted at elucidating approaches to reduce levels of spores in dairy powders should focus on controlling levels of spore isolates from these genera; and (2) the spore populations isolated from bulk tank raw milk and some dairy powder products are significantly different, suggesting that targeting in-plant sources of contamination may be important for achieving low spore counts in the finished product. These data provide important insight regarding the diversity of spore populations isolated from dairy powders and bulk tank raw milk, and demonstrate that several spore genera are detected by multiple spore count methods. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Ashish Kumar
Fe-based amorphous alloys are gaining increasing attention due to their exceptional wear and corrosion resistance for potential structural applications. Two major challenges that are hindering the commercialization of these amorphous alloys are difficulty in processing of bulk shapes (diameter > 10 mm) and lack of ductility. Spark plasma sintering (SPS) is evolving as a promising technique for processing bulk shapes of amorphous and nanocrystalline materials. The objective of this work is to investigate densification behavior, nanocrystallization, and mechanical properties of SPS sintered Fe-based amorphous alloys of composition Fe48Cr15Mo14Y2C15B6. SPS processing was performed in three distinct temperature ranges of amorphous alloys: (a) below glass transition temperature (Tg), (b) between Tg and crystallization temperature (Tx), and (c) above Tx. Punch displacement data obtained during SPS sintering was correlated with the SPS processing parameters such as temperature, pressure, and sintering time. Powder rearrangement, plastic deformation below T g, and viscous flow of the material between Tg and Tx were observed as the main densification stages during SPS sintering. Micro-scale temperature distributions at the point of contact and macro-scale temperature distribution throughout the sample during SPS of amorphous alloys were modeled. The bulk amorphous alloys are expected to undergo structural relaxation and nanocrystallization during SPS sintering. X-ray diffraction (XRD), small angle neutron scattering (SANS), and transmission electron microscopy (TEM) was performed to investigate the evolution of nanocrystallites in SPS sintered Fe-based bulk amorphous alloys. The SANS analysis showed significant scattering for the samples sintered in the supercooled region indicating local structural and compositional changes with the profuse nucleation of nano-clusters (~4 nm). Compression tests and microhardness were performed on the samples sintered at different temperatures ranging from 570 °C to 800 °C. Maximum compression strength (1.1+/-0.2 MPa) was obtained for the samples sintered in the supercooled region. Effects of crystallization on tribological behavior of sintered samples were also investigated where crystallization resulted in increase in wear resistance. Laser surface hardening of SPS sintered amorphous samples were performed. Depending on the processing parameters, the laser surface irradiation causes structural relaxation and nanocrystallization, resulting in surface hardening.
A Campaign Study of Sea Spray Aerosol Properties in the Bay of Aarhus
NASA Astrophysics Data System (ADS)
Nguyen, Quynh; Rasmussen, Berit; Kristensen, Kasper; Sloth Nielsen, Lærke; Bilde, Merete
2016-04-01
The oceans of the world are a dominant source of atmospheric aerosol. Together with mineral dust, sea spray aerosols (SSA) constitute the largest mass flux of particulate matter in the atmosphere (Andreae and Rosenfeld, 2008). Due to their effects on the global radiative budget - both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN), SSA are considered an important component of the climate system. The sea-surface microlayer (SML) is an ultra-thin boundary layer between the ocean and the atmosphere. The high concentration of surface-active organic compounds in the SML, compared to that of the underlying water column, creates rigid film-like layer over the surface of the ocean. The SML is believed to play an important role in the formation and composition of SSA. However, current knowledge on the SML and its impacts on SSA remain limited. To characterize the SML of natural seawater and examine its impacts on aerosol properties, a field campaign was conducted in the bay of Aarhus, Denmark, during spring 2015. Bulk seawater was collected 1-2 times every week along with selective sampling of the SML. Characterization of the sea water and SML included a wide range of measurements, including surface tension, water activity, dissolved organic matter, and chemical composition analysis by liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS). SSA was generated from sampled sea water by diffusion of air bubbles through a 10L seawater sample situated in a sea spray tank. Particle number concentration and CCN measurements were conducted along with measurements of the organic share in the aerosol phase as indicated by volatility measurements. To investigate the effect of the SML, spiking of the seawater samples with additional SML was performed and measurements repeated for comparison. Preliminary results show that the SML samples only displayed slightly lower surface tension compared to subsurface seawater. A number of overlapping masses were observed in dissolved organic matter extracted from SML and slick samples, which requires further identification. Spiking bulk seawater with SML seems to lead to a small increase in organic share in the aerosol phase as indicated by volatility measurements, while the trend is unclear in CCN measurements. Andreae, M. O., and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci Rev, 89, 13-41, 2008.
40 CFR 761.348 - Contemporaneous sampling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Contemporaneous sampling. 761.348... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...
40 CFR 761.348 - Contemporaneous sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Contemporaneous sampling. 761.348... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...
7 CFR 32.400 - Samples of grease mohair grades; method of obtaining.
Code of Federal Regulations, 2010 CFR
2010-01-01
... standard deviation of fiber diameter of bulk sample were within the limits corresponding to the grade of... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS PURCHASE OF GREASE MOHAIR AND MOHAIR TOP SAMPLES § 32.400 Samples of grease...
7 CFR 31.400 - Samples for wool and wool top grades; method of obtaining.
Code of Federal Regulations, 2010 CFR
2010-01-01
... average and standard deviation of fiber diameter of the bulk sample are within the limits corresponding to... MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS PURCHASE OF WOOL AND WOOL TOP SAMPLES § 31.400 Samples for wool...
Consortium reports on lunar meteorites Yamato 793169 and Asuka 881757, a new type of mare basalt
NASA Technical Reports Server (NTRS)
Yanai, Keizo; Takeda, Hiroshi; Lindstrom, M. M.; Tatsumoto, M.; Torigoe, N.; Misawa, K.; Warren, P. H.; Kallemeyn, G. W.; Koeberl, C.; Kojima, H.
1993-01-01
Consortium studies on lunar meteorites Yamato 793169 and Asuka 881757 (formerly Asuka-31) were performed to characterize these new samples from unknown locations in the lunar mare. Both meteorites are coarse-grained mare rocks having low Mg/Fe ratios (bulk mg'=30-35) and low TiO2 (1.5-2.5 percent in homogenized bulk samples). They are intermediate between VLT and low-Ti mare basalts. Although these meteorites are not identical to each other, their mineral and bulk compositions, isotopic systematics, and crystallization ages are remarkably similar and distinct from those of all other mare basalts. They appear to represent a new type of low-Ti mare basalt that crystallized at about 3.9Ga. These meteorites are inconsistent with the canonical correlation between the TiO2 contents and ages of mare basalts and suggest that our knowledge of lunar volcanism is far from complete.
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Agresti, David G.; Newcomb, Jeffery A.; Shelfer, Tad D.; Lauer, Howard V., Jr.
1989-01-01
Samples containing variable amounts of superparamagnetic hematite (sp-Hm) were prepared by a method in which the sp-Hm particles were dispersed throughout larger particles of silica gel, and the optical and magnetic properties of these samples were compared with those of larger-diameter hematite (bulk-Hm). It is shown that the optical properties of sp-Hm are different from those of bulk-Hm. Implications of the results for mineralogical interpretations of spectral data for the Martian surface and its terrestrial analogues are discussed. It is concluded that features resulting from ferric iron in the Martian spectral data and the results of the Viking magnetic properties experiment are both consistent with hematite present as both sp-Hm and bulk-Hm; the hematite particles most likely occur in pigmentary form, i.e., as particles dispersed throughout the volume of a spectrally neutral material.
Vacancy clustering and acceptor activation in nitrogen-implanted ZnO
NASA Astrophysics Data System (ADS)
Børseth, Thomas Moe; Tuomisto, Filip; Christensen, Jens S.; Monakhov, Edouard V.; Svensson, Bengt G.; Kuznetsov, Andrej Yu.
2008-01-01
The role of vacancy clustering and acceptor activation on resistivity evolution in N ion-implanted n -type hydrothermally grown bulk ZnO has been investigated by positron annihilation spectroscopy, resistivity measurements, and chemical profiling. Room temperature 220keV N implantation using doses in the low 1015cm-2 range induces small and big vacancy clusters containing at least 2 and 3-4 Zn vacancies, respectively. The small clusters are present already in as-implanted samples and remain stable up to 1000°C with no significant effect on the resistivity evolution. In contrast, formation of the big clusters at 600°C is associated with a significant increase in the free electron concentration attributed to gettering of amphoteric Li impurities by these clusters. Further annealing at 800°C results in a dramatic decrease in the free electron concentration correlated with activation of 1016-1017cm-3 acceptors likely to be N and/or Li related. The samples remain n type, however, and further annealing at 1000°C results in passivation of the acceptor states while the big clusters dissociate.
The mass function of Seyfert 1 nuclei
NASA Technical Reports Server (NTRS)
Padovani, P.; Burg, R.; Edelson, R. A.
1990-01-01
The first mass function of Seyfert 1 nuclei is derived from optical spectra of the complete CfA sample of Seyfert galaxies by estimating the mass for each object from a dynamical relation. An independent estimate is also derived using a complete infrared-selected sample. The two mass functions are indistinguishable. The mean mass of Seyfert 1 nuclei is about 2 x 10 to the 7th solar masses, and the integrated mass density is about 6 x 10 to the 11th solar masses/cu Gpc. This is approximately two orders of magnitude less than the value inferred from the energetics associated with quasar counts. A careful analysis of the various parameters and assumptions involved suggests that this large difference is not due to systematic errors in the determinations. Therefore, the bulk of mass related to the accretion processes connected with past quasar activity does not reside in Seyfert 1 nuclei. Instead, the remnants of past activity must be present in a much larger number of galaxies, and a one-to-one relation between distant and local active galactic nuclei seems then to be excluded.
NASA Astrophysics Data System (ADS)
Jonell, T. N.; Li, Y.; Blusztajn, J.; Giosan, L.; Clift, P. D.
2017-12-01
Rare earth element (REE) radioisotope systems, such as neodymium (Nd), have been traditionally used as powerful tracers of source provenance, chemical weathering intensity, and sedimentary processes over geologic timescales. More recently, the effects of physical fractionation (hydraulic sorting) of sediments during transport have called into question the utility of Nd isotopes as a provenance tool. Is source terrane Nd provenance resolvable if sediment transport strongly induces noise? Can grain-size sorting effects be quantified? This study works to address such questions by utilizing grain size analysis, trace element geochemistry, and Nd isotope geochemistry of bulk and grain-size fractions (<63μm, 63-125 μm, 125-250 μm) from the Indus delta of Pakistan. Here we evaluate how grain size effects drive Nd isotope variability and further resolve the total uncertainties associated with Nd isotope compositions of bulk sediments. Results from the Indus delta indicate bulk sediment ɛNd compositions are most similar to the <63 µm fraction as a result of strong mineralogical control on bulk compositions by silt- to clay-sized monazite and/or allanite. Replicate analyses determine that the best reproducibility (± 0.15 ɛNd points) is observed in the 125-250 µm fraction. The bulk and finest fractions display the worst reproducibility (±0.3 ɛNd points). Standard deviations (2σ) indicate that bulk sediment uncertainties are no more than ±1.0 ɛNd points. This argues that excursions of ≥1.0 ɛNd points in any bulk Indus delta sediments must in part reflect an external shift in provenance irrespective of sample composition, grain size, and grain size distribution. Sample standard deviations (2s) estimate that any terrigenous bulk sediment composition should vary no greater than ±1.1 ɛNd points if provenance remains constant. Findings from this study indicate that although there are grain-size dependent Nd isotope effects, they are minimal in the Indus delta such that resolvable provenance-driven trends can be identified in bulk sediment ɛNd compositions over the last 20 k.y., and that overall provenance trends remain consistent with previous findings.
Melting of superheated molecular crystals
NASA Astrophysics Data System (ADS)
Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad
2017-07-01
Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.
Fabrication of Bi2223 bulks with high critical current properties sintered in Ag tubes
NASA Astrophysics Data System (ADS)
Takeda, Yasuaki; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Nakashima, Takayoshi; Kagiyama, Tomohiro; Kobayashi, Shin-ichi; Hayashi, Kazuhiko
2017-03-01
Randomly grain oriented Bi2223 sintered bulks are one of the representative superconducting materials having weak-link problem due to very short coherence length particularly along the c-axis, resulting in poor intergrain Jc properties. In our previous studies, sintering and/or post-annealing under moderately reducing atmospheres were found to be effective for improving grain coupling in Bi2223 sintered bulks. Further optimizations of the synthesis process for Bi2223 sintered bulks were attempted in the present study to enhance their intergrain Jc. Effects of applied pressure of uniaxial pressing and sintering conditions on microstructure and superconducting properties have been systematically investigated. The best sample showed intergrain Jc of 2.0 kA cm-2 at 77 K and 8.2 kA cm-2 at 20 K, while its relative density was low ∼65%. These values are quite high as for a randomly oriented sintered bulk of cuprate superconductors.
K1.33Mn8O16 as an electrocatalyst and a cathode
NASA Astrophysics Data System (ADS)
Jalili, Seifollah; Moharramzadeh Goliaei, Elham; Schofield, Jeremy
2017-02-01
Density functional theory (DFT) calculations are carried out to investigate the electronic, magnetic and thermoelectric properties of bulk and nanosheet K1.33Mn8O16 materials. The catalytic activity and cathodic performance of bulk and nanosheet structures are examined using the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential. Electronic structure calculations reveal an anti-ferromagnetic ground state, with a TB-mMBJ band gap in bulk K1.33Mn8O16 that is in agreement with experimental results. Density of state plots indicate a partial reduction of Mn4+ ions to Mn3+, without any obvious sign of Jahn-Teller distortion. Moreover, use of the O p-band center as a descriptor of catalytic activity suggests that the nanosheet has enhanced catalytic activity compared to the bulk structure. Thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity are also calculated, and it is found that the Seebeck coefficients decrease with increasing temperature. High Seebeck coefficients for both spin-up and spin-down states are found in the nanosheet relative to their value in the bulk K1.33Mn8O16 structure, whereas the electrical and thermal conductivity are reduced relative to the bulk. In addition, figures of merit values are calculated as a function of the chemical potential and it is found that the nanosheet has a figure of merit of 1 at room temperature, compared to 0.5 for the bulk material. All results suggest that K1.33Mn8O16 nanosheets can be used both as a material in waste heat recovery and as an electrocatalyst in fuel cells and batteries.
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Ming,, Douglas W.; Blake, David; Vaniman, David; Bish, David L; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Gellert, Ralf; Campbell, Iain;
2013-01-01
Drill fines of mudstone (targets John Klein and Cumberland) from the Sheepbed unit at Yel-lowknife Bay were analyzed by MSL payload elements including the Chemistry and Mineralogy (CheMin), APXS (Alpha Particle X-Ray Spectrometer), and Sample Analysis at Mars (SAM) instruments. CheMin XRD results show a variety of crystalline phases including feldspar, pyroxene, olivine, oxides, oxyhydroxides, sulfates, sulfides, a tri-octahedral smectite, and XRD amorphous material. The drill fines are distinctly different from corresponding analyses of the global soil (target Rocknest) in that the mudstone samples contained detectable phyllosilicate. Here we focus on John Klein and combine CheMin and APXS data to calculate the chemical composition and concentration of the amorphous component. The chemical composition of the amorphous plus smectite component for John Klein was calculated by subtracting the abundance-weighted chemical composition of the individual XRD crystalline components from the bulk composition of John Kline as measured by APXS. The chemical composition of individual crystalline components was determined either by stoichiometry (e.g., hematite and magnetite) or from their unit cell parameters (e.g., feldspar, olivine, and pyroxene). The chemical composition of the amorphous + smectite component (approx 71 wt.% of bulk sample) and bulk chemical composition are similar. In order to calculate the chemical composition of the amorphous component, a chemical composition for the tri-octahedral smectite must be assumed. We selected two tri-octahedral smectites with very different MgO/(FeO + Fe2O3) ratios (34 and 1.3 for SapCa1 and Griffithite, respectively). Relative to bulk sample, the concentration of amorphous and smectite components are 40 and 29 wt.% for SapCa1 and 33 and 36 wt.% for Griffithite. The amount of smectite was calculated by requiring the MgO concentration to be approx 0 wt.% in the amorphous component. Griffithite is the preferred smectite because the position of its 021 diffraction peak is similar to that reported for John Klein. In both cases, the amorphous component has low SiO2 and MgO and high FeO + Fe2O3, P2O5, and SO3 concentrations relative to bulk sample. The chemical composition of the bulk drill fines and XRD crystalline, smectite, and amorphous components implies alteration of an initially basaltic material under near neutral conditions (not acid sulfate), with the sulfate incorporated later as veins of CaSO4 injected into the mudstone.
Boulais, Christophe; Wacker, Ron; Augustin, Jean-Christophe; Cheikh, Mohamed Hedi Ben; Peladan, Fabrice
2011-07-01
Mycobacterium avium subsp. paratuberculosis (MAP) is the causal agent of paratuberculosis (Johne's disease) in cattle and other farm ruminants. The potential role of MAP in Crohn's disease in humans and the contribution of dairy products to human exposure to MAP continue to be the subject of scientific debate. The occurrence of MAP in bulk raw milk from dairy herds was assessed using a stochastic modeling approach. Raw milk samples were collected from bulk tanks in dairy plants and tested for the presence of MAP. Results from this analytical screening were used in a Bayesian network to update the model prediction. Of the 83 raw milk samples tested, 4 were positive for MAP by culture and PCR. We estimated that the level of MAP in bulk tanks ranged from 0 CFU/ml for the 2.5th percentile to 65 CFU/ml for the 97.5th percentile, with 95% credibility intervals of [0, 0] and [16, 326], respectively. The model was used to evaluate the effect of measures aimed at reducing the occurrence of MAP in raw milk. Reducing the prevalence of paratuberculosis has less of an effect on the occurrence of MAP in bulk raw milk than does managing clinically infected animals through good farming practices. Copyright ©, International Association for Food Protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, J.; Nlebedim, I. C.; Besser, M. F.
A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. Furthermore, the Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.
Iron solubility related to particle sulfur content in source emission and ambient fine particles.
Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J
2012-06-19
The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (<1%, mineral dust and coal fly ash) up to 75% (mobile exhaust and biomass burning emissions). Differences in iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.
Bacterial selection by mycospheres of Atlantic Rainforest mushrooms.
Halsey, Joshua Andrew; de Cássia Pereira E Silva, Michele; Andreote, Fernando Dini
2016-10-01
This study focuses on the selection exerted on bacterial communities in the mycospheres of mushrooms collected in the Brazilian Atlantic Rainforest. A total of 24 paired samples (bulk soil vs. mycosphere) were assessed to investigate potential interactions between fungi and bacteria present in fungal mycospheres. Prevalent fungal families were identified as Marasmiaceae and Lepiotaceae (both Basidiomycota) based on ITS partial sequencing. We used culture-independent techniques to analyze bacterial DNA from soil and mycosphere samples. Bacterial communities in the samples were distinguished based on overall bacterial, alphaproteobacterial, and betaproteobacterial PCR-DGGE patterns, which were different in fungi belonging to different taxa. These results were confirmed by pyrosequencing the V4 region of the 16S rRNA gene (based on five bulk soil vs. mycosphere pairs), which revealed the most responsive bacterial families in the different conditions generated beneath the mushrooms, identified as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae. The bacterial families Acetobacteraceae, Chrhoniobacteraceae, Planctomycetaceae, Conexibacteraceae, and Burkholderiaceae were found in all mycosphere samples, composing the core mycosphere microbiome. Similarly, some bacterial groups identified as Koribacteriaceae, Acidobacteria (Solibacteriaceae) and an unclassified group of Acidobacteria were preferentially present in the bulk soil samples (found in all of them). In this study we depict the mycosphere effect exerted by mushrooms inhabiting the Brazilian Atlantic Rainforest, and identify the bacteria with highest response to such a specific niche, possibly indicating the role bacteria play in mushroom development and dissemination within this yet-unexplored environment.
The effect of guard ring on leakage current and spectroscopic performance of TlBr planar detectors
NASA Astrophysics Data System (ADS)
Kargar, Alireza; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2014-09-01
Four thallium bromide planar detectors were fabricated from materials grown at RMD Inc. The TlBr samples were prepared to investigate the effect of guard ring on device gamma-ray spectroscopy performance, and to investigate the leakage current through surface and bulk. The devices' active area in planar configuration were 4.4 × 4.4 × 1.0 mm3. In this report, the detector fabrication process is described and the resulting energy spectra are discussed. It is shown that the guard ring improves device spectroscopic performance by shielding the sensing electrode from the surface leakage current, and by making the electric filed more uniform in the active region of the device.
Star Formation in Dusty Quasars
NASA Astrophysics Data System (ADS)
Lumsden, Stuart; Croom, Scott
2012-04-01
Quasar mode feedback is thought to be a crucial ingredient in galaxy formation for luminous merging and star-bursting systems at high redshift. The energy from the active nucleus should cause significant gas outflows, reducing the available free gas reservoir for future star formation. It is currently unknown which observational state best corresponds to the stage at which this "blowout" should occur. We intend to test one possible source population for this transition phase, by studying the molecular gas content in a small, statistically complete sample of 3 K-band selected reddened quasars from the AUS survey. All lie in the redshift range 2
Determination of the effective sample thickness via radiative capture
Hurst, A. M.; Summers, N. C.; Szentmiklosi, L.; ...
2015-09-14
Our procedure for determining the effective thickness of non-uniform irregular-shaped samples via radiative capture is described. In this technique, partial γ-ray production cross sections of a compound nucleus produced in a neutron-capture reaction are measured using Prompt Gamma Activation Analysis and compared to their corresponding standardized absolute values. For the low-energy transitions, the measured cross sections are lower than their standard values due to significant photoelectric absorption of the γ rays within the bulk-sample volume itself. Using standard theoretical techniques, the amount of γ-ray self absorption and neutron self shielding can then be calculated by iteratively varying the sample thicknessmore » until the observed cross sections converge with the known standards. The overall attenuation provides a measure of the effective sample thickness illuminated by the neutron beam. This procedure is illustrated through radiative neutron capture using powdered oxide samples comprising enriched 186W and 182W from which their tungsten-equivalent effective thicknesses are deduced to be 0.077(3) mm and 0.042(8) mm, respectively.« less
Effect of grain-alignment on the levitation force of melt-processed YBCO bulk superconductors
NASA Astrophysics Data System (ADS)
Yang, Wan-min; Zhou, Lian; Feng, Yong; Zhang, Ping-xiang; Wu, Min-zhi; Wu, Xiao-zu; Gawalek, W.
1999-07-01
Single-domain YBCO bulk superconductors have been fabricated by Top Seeded Melt Slow Cooling Growth(TSSCG) process. Two typical YBCO cylinder samples with differential grain-alignment were selected for the investigation of the relationship between the grain-alignment and the levitation force under the same testing condition at liquid nitrogen temperature. It is found that the levitation force values is much different for the two samples, the levitation force of the sample with H par c-axis is more than two times higher than that of the samples with H ⊥ c-axis. So it is necessary to take account of this anisotropy in practical applications. The relationship between a magnet and a superconductor can be well described with a double exponential function. All the results are discussed in details.
Rainard, P; Ducelliez, M; Poutrel, B
1990-01-01
Quarter foremilk samples were taken at 2-3 weekly intervals for several years in an experimental herd comprising about 45 cows. The samples were submitted to bacteriological analysis and somatic cell counting. The most prevalent quarter infections from 1982 to 1988 were by coagulase-negative staphylococci (15-20% of all the quarters sampled). Most of these (75.6%) persisted until drying-off. Dry cow therapy eliminated 86.5% of these infections. Comparison of udder quarters within cows, involving 775 samples from pairs of non-infected quarters and quarters infected by coagulase-negative staphylococci, yielded geometric means of somatic cell counts of 210,000 and 420,000 cells/ml, respectively. The correlation (r = 0.87) between the herd bulk milk somatic cell count (SCC) and its estimation from the quarter milk somatic cell count performed on the same day allowed us to evaluate the contribution of the different categories of quarters, according to their infection status, to the herd bulk milk SCC. Quarters infected by a major pathogen (8.5% of samples) gave rise to 46.6% of the total number of cells, while quarters infected by coagulase-negative staphylococci (17.8% of samples) gave rise to 18.1%. Although coagulase-negative staphylococci represented only a secondary source of somatic cells as compared to major pathogens, they were not a negligible source considering the threshold of 300,000 somatic cells advocated for herd milk of good quality.
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Tarasov, S. Yu.; Podgornykh, O. A.; Chazov, P. A.; Shamarin, N. N.; Filippova, E. O.
2017-12-01
The effect of AE sensor positioning on the bulk ultrafine-grained materials used for sliding against steel ball has been investigated. Two versions of AE sensor positioning have been tested and showed the different attenuation levels. The experimentally obtained AE signal waveforms have been analyzed under the AE signal parameters such as a median frequency and AE energy. It was established that the AE sensor positioned on the sample supporting plate in the vicinity of the sample tested allowed redistribution of the signal energy from a low-frequency to high-frequency range as well as extending the median frequency range as compared to those obtained by mounting the sensor on the immobile sample holder.
2004-07-12
This soldering iron has an evacuated copper capsule at the tip that contains a pellet of Bulk Metallic Glass (BMG) aboard the International Space Station (ISS). Prior to flight, researchers sealed a pellet of bulk metallic glass mixed with microscopic gas-generating particles into the copper ampoule under vacuum. Once heated in space, such as in this photograph, the particles generated gas and the BMG becomes a viscous liquid. The released gas made the sample foam within the capsule where each microscopic particle formed a gas-filled pore within the foam. The inset image shows the oxidation of the sample after several minutes of applying heat. Although hidden within the brass sleeve, the sample retained the foam shape when cooled, because the viscosity increased during cooling until it was solid.
Carbon nanotubes grown on bulk materials and methods for fabrication
Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN
2011-11-08
Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.
Vacancy-mediated dehydrogenation of sodium alanate
Gunaydin, Hakan; Houk, Kendall N.; Ozoliņš, Vidvuds
2008-01-01
Clarification of the mechanisms of hydrogen release and uptake in transition-metal-doped sodium alanate, NaAlH4, a prototypical high-density complex hydride, has fundamental importance for the development of improved hydrogen-storage materials. In this and most other modern hydrogen-storage materials, H2 release and uptake are accompanied by long-range diffusion of metal species. Using first-principles density-functional theory calculations, we have determined that the activation energy for Al mass transport via AlH3 vacancies is Q = 85 kJ/mol·H2, which is in excellent agreement with experimentally measured activation energies in Ti-catalyzed NaAlH4. The activation energy for an alternate decomposition mechanism via NaH vacancies is found to be significantly higher: Q = 112 kJ/mol·H2. Our results suggest that bulk diffusion of Al species is the rate-limiting step in the dehydrogenation of Ti-doped samples of NaAlH4 and that the much higher activation energies measured for uncatalyzed samples are controlled by other processes, such as breaking up of AlH4− complexes, formation/dissociation of H2 molecules, and/or nucleation of the product phases. PMID:18299582
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2011 CFR
2011-07-01
... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2013 CFR
2013-07-01
... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2014 CFR
2014-07-01
... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2012 CFR
2012-07-01
... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
NASA Astrophysics Data System (ADS)
Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.
2013-07-01
We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.
NASA Astrophysics Data System (ADS)
Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.
2013-12-01
We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.
Vortex pinning properties in Fe-chalcogenides
NASA Astrophysics Data System (ADS)
Leo, A.; Grimaldi, G.; Guarino, A.; Avitabile, F.; Nigro, A.; Galluzzi, A.; Mancusi, D.; Polichetti, M.; Pace, S.; Buchkov, K.; Nazarova, E.; Kawale, S.; Bellingeri, E.; Ferdeghini, C.
2015-12-01
Among the families of iron-based superconductors, the 11-family is one of the most attractive for high field applications at low temperatures. Optimization of the fabrication processes for bulk, crystalline and/or thin film samples is the first step in producing wires and/or tapes for practical high power conductors. Here we present the results of a comparative study of pinning properties in iron-chalcogenides, investigating the flux pinning mechanisms in optimized Fe(Se{}1-xTe x ) and FeSe samples by current-voltage characterization, magneto-resistance and magnetization measurements. In particular, from Arrhenius plots in magnetic fields up to 9 T, the activation energy is derived as a function of the magnetic field, {U}0(H), whereas the activation energy as a function of temperature, U(T), is derived from relaxation magnetization curves. The high pinning energies, high upper critical field versus temperature slopes near critical temperatures, and highly isotropic pinning properties make iron-chalcogenide superconductors a technological material which could be a real competitor to cuprate high temperature superconductors for high field applications.
Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa.
Lusilao-Makiese, J G; Tessier, E; Amouroux, D; Tutu, H; Chimuka, L; Weiersbye, I; Cukrowska, E M
2016-01-01
Total mercury (HgTOT), inorganic mercury (IHg), and methylmercury (MHg) were determined in dry season waters, sediments, and tailings from an active mine which has long history of gold exploitation. Although HgTOT in waters was generally low (0.03 to 19.60 ng L(-1)), the majority of the samples had proportions of MHg of at least 90 % of HgTOT which denotes a substantial methylation potential of the mine watersheds. Mercury was relatively high in tailing materials (up to 867 μg kg(-1)) and also in the mine sediments (up to 837 μg kg(-1)) especially in samples collected near tailing storage facilities and within a receiving water dam. Sediment profiles revealed mercury enrichment and enhanced methylation rate at deeper layers. The presence of IHg and decaying plants (organic matter) in the watersheds as well as the anoxic conditions of bulk sediments are believed to be some of the key factors favoring the mercury methylation at the site.
Xylan from corn cobs, a promising polymer for drug delivery: production and characterization.
Oliveira, Elquio Eleamen; Silva, Acarília Eduardo; Júnior, Toshiyuki Nagashima; Gomes, Monique Christine Salgado; Aguiar, Larissa Muratori; Marcelino, Henrique Rodrigues; Araújo, Ivonete Batista; Bayer, Marc P; Ricardo, Nágila M P S; Oliveira, Anselmo Gomes; Egito, Eryvaldo Sócrates Tabosa
2010-07-01
Although many authors have reported several beneficial effects ascribed to xylan, such as inhibitory action on mutagenicity activity, antiphlogistic effects, and mitogenic and comitogenic activities, few papers have investigated a systematic study on the technological properties of this polymer. The aim of the present work was to evaluate xylan as a promise raw material for the pharmaceutical industry. The water-insoluble xylan samples were extracted from corn cobs following several steps. The obtained powered sample was analyzed by infrared and RMN spectroscopy, and characterized regarding their particle size, bulk and tap densities, compressibility index, compactability, Hausner ratio, and angle of repose. According to the results, infrared and RMN spectroscopy were shown to be able to evaluate the xylan structural conformation and composition, respectively. In addition, rheological data demonstrated that xylan powder obtained from corn cobs may be characterized as a material with low density and very cohesive flow properties. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Quantitative in vitro assessment of Mg65 Zn30 Ca5 degradation and its effect on cell viability.
Cao, Jake D; Martens, Penny; Laws, Kevin J; Boughton, Philip; Ferry, Michael
2013-01-01
A bulk metallic glass (BMG) of composition Mg(65) Zn(30) Ca(5) was cast directly from the melt and explored as a potential bioresorbable metallic material. The in vitro degradation behavior of the amorphous alloy and its associated effects on cellular activities were assessed against pure crystalline magnesium. Biocorrosion tests using potentiodynamic polarization showed that the amorphous alloy corroded at a much slower rate than the crystalline Mg. Analysis of the exchanged media using inductively coupled plasma optical emission spectrometry revealed that the dissolution rate of Mg ions in the BMG was 446 μg/cm(2)/day, approximately half the rate of crystalline Mg (859 μg/cm(2)/day). A cytotoxicity study, using L929 murine fibroblasts, revealed that both the BMG and pure Mg are capable of supporting cellular activities. However, direct contact with the samples created regions of minimal cell growth around both amorphous and crystalline samples, and no cell attachment was observed. Copyright © 2012 Wiley Periodicals, Inc.
Purification of p-type CdTe crystals by thermal treatment
NASA Astrophysics Data System (ADS)
Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Nykoniuk, Ye.; Shlyakhovyj, V.; Bolotnikov, A. E.; Yang, Ge; James, R. B.
2014-09-01
We studied the influence of prolonged thermal treatment on the concentration and the acceptor energy level positions in p-CdTe samples. We found that heating them at 720 K entails a decrease in the concentration of electrically active centers, i.e., a "self-cleaning" of the adverse effects of some contaminants. In samples wherein the conductivity was determined by the concentration of acceptors of the A1 type (EV + 0.03-0.05) eV, after heating it becomes controlled by a deeper acceptor of the A2 type (EV + 0.13-0.14) eV, and both the charge-carrier's mobility and the ratio μр80/μр300 increase. This effect reflects the fact that during thermal treatment, the A1 acceptors and the compensating donors are removed from their electrically active positions, most likely due to their diffusion and trapping within the inclusions in the CdTe bulk, where they have little or no influence on carrier scattering and trapping.
NASA Astrophysics Data System (ADS)
Vargas-Meleza, Liliana; Healy, David; Alsop, G. Ian; Timms, Nicholas E.
2015-01-01
We present the influence of mineralogy and microstructure on the seismic velocity anisotropy of evaporites. Bulk elastic properties and seismic velocities are calculated for a suite of 20 natural evaporite samples, which consist mainly of halite, anhydrite, and gypsum. They exhibit strong fabrics as a result of tectonic and diagenetic processes. Sample mineralogy and crystallographic preferred orientation (CPO) were obtained with the electron backscatter diffraction (EBSD) technique and the data used for seismic velocity calculations. Bulk seismic properties for polymineralic evaporites were evaluated with a rock recipe approach. Ultrasonic velocity measurements were also taken on cube shaped samples to assess the contribution of grain-scale shape preferred orientation (SPO) to the total seismic anisotropy. The sample results suggest that CPO is responsible for a significant fraction of the bulk seismic properties, in agreement with observations from previous studies. Results from the rock recipe indicate that increasing modal proportion of anhydrite grains can lead to a greater seismic anisotropy of a halite-dominated rock. Conversely, it can lead to a smaller seismic anisotropy degree of a gypsum-dominated rock until an estimated threshold proportion after which anisotropy increases again. The difference between the predicted anisotropy due to CPO and the anisotropy measured with ultrasonic velocities is attributed to the SPO and grain boundary effects in these evaporites.
Measurement of the magnetic field inside the holes of a drilled bulk high-Tc superconductor
NASA Astrophysics Data System (ADS)
Lousberg, Gregory P.; Fagnard, Jean-François; Noudem, Jacques G.; Ausloos, Marcel; Vanderheyden, Benoit; Vanderbemden, Philippe
2009-04-01
We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30 to 130 mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample.
40 CFR 761.348 - Contemporaneous sampling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.348 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...
40 CFR 761.348 - Contemporaneous sampling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.348 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...
40 CFR 761.348 - Contemporaneous sampling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.348 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...
Potato Operation: automatic detection of potato diseases
NASA Astrophysics Data System (ADS)
Lefebvre, Marc; Zimmerman, Thierry; Baur, Charles; Guegerli, Paul; Pun, Thierry
1995-01-01
The Potato Operation is a collaborative, multidisciplinary project in the domain of destructive testing of agricultural products. It aims at automatizing pulp sampling of potatoes in order to detect possible viral diseases. Such viruses can decrease fields productivity by a factor of up to ten. A machine, composed of three conveyor belts, a vision system, a robotic arm and controlled by a PC has been built. Potatoes are brought one by one from a bulk to the vision system, where they are seized by a rotating holding device. The sprouts, where the viral activity is maximum, are then detected by an active vision process operating on multiple views. The 3D coordinates of the sampling point are communicated to the robot arm holding a drill. Some flesh is then sampled by the drill, then deposited into an Elisa plate. After sampling, the robot arm washes the drill in order to prevent any contamination. The PC computer simultaneously controls these processes, the conveying of the potatoes, the vision algorithms and the sampling procedure. The master process, that is the vision procedure, makes use of three methods to achieve the sprouts detection. A profile analysis first locates the sprouts as protuberances. Two frontal analyses, respectively based on fluorescence and local variance, confirm the previous detection and provide the 3D coordinate of the sampling zone. The other two processes work by interruption of the master process.
Novello, Giorgia; Gamalero, Elisa; Bona, Elisa; Boatti, Lara; Mignone, Flavio; Massa, Nadia; Cesaro, Patrizia; Lingua, Guido; Berta, Graziella
2017-01-01
Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time) were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.
Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs.
Gallais, Laurent; Commandré, Mireille
2014-02-01
We report on extensive femtosecond laser damage threshold measurements of optical materials in both bulk and thin-film form. This study, which is based on published and new data, involved simple oxide and fluoride films, composite films made from a mixture of two dielectric materials, metallic films, and the surfaces of various bulk materials: oxides, fluorides, semiconductors, and ionic crystals. The samples were tested in comparable conditions at 1030 nm, 375 to 600 fs, under single-pulse irradiation. A large number of different samples prepared by different deposition techniques have been tested, involving classical materials used in the fabrication of optical thin film components (Ag, AlF3, Al2O3, HfO2, MgF2, Nb2O5, Pt, Sc2O3, SiO2, Ta2O5, Y2O3, and ZrO2) and their combination with codeposition processes. Their behaviors are compared with the surfaces of bulk materials (Al2O3, BaF2, CaF2, Ge, KBr, LiF, MgF2, NaCl, Quartz, Si, ZnS, ZnSe, and different silica glasses). Tabulated values of results are presented and discussed.
Structural and magnetic properties of Prussian blue analogue molecular magnet Fe1.5[Cr(CN)6].mH2O
NASA Astrophysics Data System (ADS)
Bhatt, Pramod; Meena, S. S.; Mukadam, M. D.; Yusuf, S. M.
2016-05-01
Molecular magnets, based on Prussian blue analogues, Fe1.5[Cr(CN)6].mH2O have been synthesized in the bulk as well as nanoparticle forms using a co-precipitation method, and their structural and magnetic properties have been investigated using x-ray diffraction (XRD) Mössbauer spectroscopy and dc magnetization. The XRD study confirms the single phase crystalline and nanoparticle nature of the compounds with a face centered cubic (fcc) structure of space group Fm3m. The values of lattice constant are found to be ~10.18(5) Å and ~9.98(9)Å, for the bulk and nanoparticle samples, respectively. The dc magnetization shows a Curie temperature (TC) of ~17 K and ~5 K for the bulk and nanopartcile samples, respectively. The Mossouber spectroscopy reveal that the compound shows spin flipping from the high spin (HS) Fe (CrIII-C≡N-FeII) to low spin (LS) FeII ions (CrIII-N≡C-FeII). Moreover, the TC and the HS state of the Fe ions decreases (converts to its LS states) with time as well as in the nanoparticle form compared to bulk.
Görög, Sándor
2011-06-25
A critical review of the literature of the analysis of steroid hormone drugs is presented based on 213 publications published between 2004 and 2010. The state of the art of the assay and purity check of bulk drug materials is characterized on the basis of the principal pharmacopoeias supplemented by the literature dealing with their impurity profiling and solid state characterization. The determination of the active ingredients and impurities/degradants in pharmaceutical formulation by HPLC, other chromatographic, electrodriven, spectrophotometric and other methods is also summarized. A short section deals with the application of analytical methods in drug research. The literature of the determination of steroid hormones in environmental samples is summarized in tabulated form. Copyright © 2010 Elsevier B.V. All rights reserved.
Goodman, Emmett D.; Dai, Sheng; Yang, An-Chih; ...
2017-05-18
Bimetallic catalytic materials are in widespread use for numerous reactions, as the properties of a monometallic catalyst are often improved upon addition of a second metal. In studies with bimetallic catalysts, it remains challenging to establish clear structure–property relationships using traditional impregnation techniques, due to the presence of multiple coexisting active phases of different sizes, shapes, and compositions. Here, a convenient approach to prepare small and uniform Pt/Pd bimetallic nanocrystals with tailorable composition is demonstrated, despite the metals being immiscible in the bulk. By depositing this set of controlled nanocrystals onto a high-surface-area alumina support, we systematically investigate the effectmore » of adding platinum to palladium catalysts for methane combustion. At low temperatures and in the absence of steam, all bimetallic catalysts show activity nearly identical with that of Pt/Al 2O 3, with much lower rates in comparison to that of the Pd/Al 2O 3 sample. BUt, unlike Pd/Al 2O 3, which experiences severe low-temperature steam poisoning, all Pt/Pd bimetallic catalysts maintain combustion activity on exposure to excess steam. These features are due to the influence of Pt on the Pd oxidation state, which prevents the formation of a bulk-type PdO phase. Despite lower initial combustion rates, hydrothermal aging of the Pd-rich bimetallic catalyst induces segregation of a PdO phase in close contact to a Pd/Pt alloy phase, forming more active and highly stable sites for methane combustion. Altogether, this work unambiguously clarifies the activity and stability attributes of Pt/Pd phases which often coexist in traditionally synthesized bimetallic catalysts and demonstrates how well-controlled bimetallic catalysts elucidate structure–property relationships.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, Emmett D.; Dai, Sheng; Yang, An-Chih
Bimetallic catalytic materials are in widespread use for numerous reactions, as the properties of a monometallic catalyst are often improved upon addition of a second metal. In studies with bimetallic catalysts, it remains challenging to establish clear structure–property relationships using traditional impregnation techniques, due to the presence of multiple coexisting active phases of different sizes, shapes, and compositions. Here, a convenient approach to prepare small and uniform Pt/Pd bimetallic nanocrystals with tailorable composition is demonstrated, despite the metals being immiscible in the bulk. By depositing this set of controlled nanocrystals onto a high-surface-area alumina support, we systematically investigate the effectmore » of adding platinum to palladium catalysts for methane combustion. At low temperatures and in the absence of steam, all bimetallic catalysts show activity nearly identical with that of Pt/Al 2O 3, with much lower rates in comparison to that of the Pd/Al 2O 3 sample. BUt, unlike Pd/Al 2O 3, which experiences severe low-temperature steam poisoning, all Pt/Pd bimetallic catalysts maintain combustion activity on exposure to excess steam. These features are due to the influence of Pt on the Pd oxidation state, which prevents the formation of a bulk-type PdO phase. Despite lower initial combustion rates, hydrothermal aging of the Pd-rich bimetallic catalyst induces segregation of a PdO phase in close contact to a Pd/Pt alloy phase, forming more active and highly stable sites for methane combustion. Altogether, this work unambiguously clarifies the activity and stability attributes of Pt/Pd phases which often coexist in traditionally synthesized bimetallic catalysts and demonstrates how well-controlled bimetallic catalysts elucidate structure–property relationships.« less
40 CFR 761.346 - Three levels of sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Three levels of sampling. 761.346... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...
40 CFR 761.346 - Three levels of sampling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Three levels of sampling. 761.346... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...
NASA Astrophysics Data System (ADS)
Ginsberg, Naomi
2015-03-01
The migration of Frenkel excitons, tightly-bound electron-hole pairs, in polymeric organic semiconducting films is critical to the efficiency of bulk heterojunction solar cells. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton diffusion lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore.
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Schütz, Felina; Förster, Andrea; Förster, Hans-Jürgen
2013-04-01
The thermal conductivity (TC) of a rock is, in collaboration with the temperature gradient, the basic parameter to determine the heat flow from the Earth interior. Moreover, it forms the input into models targeted on temperature prognoses for geothermal reservoirs at those depths not yet reached by boreholes. Thus, rock TC is paramount in geothermal exploration and site selection. Most commonly, TC of a rock is determined in the laboratory on samples that are either dry or water-saturated. Because sample saturation is time-consuming, it is desirable, especially if large numbers of samples need to be assessed, to develop an approach that quickly and reliably converts dry-measured bulk TC into the respective saturated value without applying the saturation procedure. Different petrophysical models can be deployed to calculate the matrix TC of a rock from the bulk TC and vice versa, if the effective porosity is known (e.g., from well logging data) and the TC of the saturation fluid (e.g., gas, oil, water) is considered. We have studied for a large suite of different sedimentary rocks the performance of two-component (rock matrix, porosity) models that are widely used in geothermics (arithmetic mean, geometric mean, harmonic mean, Hashin and Shtrikman mean, and effective medium theory mean). The data set consisted of 1147 TC data from three different sedimentary basins (North German Basin, Molasse Basin, Mesozoic platform sediments of the northern Sinai Microplate in Israel). Four lithotypes (sandstone, mudstone, limestone, dolomite) were studied exhibiting bulk TC in the range between 1.0 and 6.5 W/(mK). The quality of fit between measured (laboratory) and calculated bulk TC values was studied separately for the influence of lithotype, saturation fluid (water and isooctane), and rock anisotropy (parallel and perpendicular to bedding). The geometric mean model displays the best correspondence between calculated and measured bulk TC, however, the relation is not satisfying. To improve the fit of the models, correction equations are calculated based on the statistical data. In addition, the application of correction equations allows a significant improvement of the accuracy of bulk TC data calculated. However, the "corrected" geometric mean constitutes the only model universally applicable to different types of sedimentary rocks and, thus, is recommended for the calculation of bulk TC. Finally, the statistical analysis also resulted in lithotype-specific conversion equations, which permit a calculation of the water-saturated bulk TC from dry-measured TC and porosity (e.g., well-log-derived porosity). This approach has the advantage that the saturated bulk TC could be calculated readily without application of any mixing model. The expected errors with this approach are in the range between 5 and 10 % (Fuchs et al., 2013).
Investigation of the spin Seebeck effect and anomalous Nernst effect in a bulk carbon material
NASA Astrophysics Data System (ADS)
Wongjom, Poramed; Pinitsoontorn, Supree
2018-03-01
Since the discovery of the spin Seebeck effect (SSE) in 2008, it has become one of the most active topics in the spin caloritronics research field. It opened up a new way to create the spin current by a combination of magnetic fields and heat. The SSE was observed in many kinds of materials including metallic, semiconductor, or insulating magnets, as well as non-magnetic materials. On the other hand, carbon-based materials have become one of the most exciting research areas recently due to its low cost, abundance and some exceptional functionalities. In this work, we have investigated the possibility of the SSE in bulk carbon materials for the first time. Thin platinum film (Pt), coated on the smoothened surface of the bulk carbon, was used as the spin detector via the inverse spin Hall effect (ISHE). The experiment for observing longitudinal SSE in the bulk carbon was set up by applying a magnetic field up to 30 kOe to the sample with the direction perpendicular to the applied temperature gradient. The induced voltage from the SSE was extracted. However, for conductive materials, e.g. carbon, the voltage signal under this set up could be a combination of the SSE and the anomalous Nernst effect (ANE). Therefore, two measurement configurations were carried out, i.e. the in-plane magnetization (IM), and the perpendicular-to-plane magnetization (PM). For the IM configuration, the SSE + ANE signals were detected where as the only ANE signal existed in the PM configuration. The results showed that there were the differences between the voltage signals from the IM and PM configurations implying the possibility of the SSE in the bulk carbon material. Moreover, it was found that the difference in the IM and PM signals was a function of the magnetic field strength, temperature difference, and measurement temperature. Although the magnitude of the possible SSE voltage in this experiment was rather low (less than 0.5 μV at 50 K), this research showed that potential of using low cost and abundant bulk carbon as spin current supplier or thermoelectric power generators.
Tailoring Magnetic Properties in Bulk Nanostructured Solids
NASA Astrophysics Data System (ADS)
Morales, Jason Rolando
Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally applied magnetic field to the sample. Third, a dense magneto-optical material (rare earth oxide) was produced that rotates transmitted polarized light under an externally applied magnetic field, called the Faraday Effect. The magnitude of the rare earth oxide Faraday Effect surpasses that of the current market leader (terbium gallium garnet) in Faraday isolators by ˜2.24x.
NASA Astrophysics Data System (ADS)
Wu, Xinhe; Chen, Fengyun; Wang, Xuefei; Yu, Huogen
2018-01-01
Surface modification of g-C3N4 is one of the most effective strategies to boost its photocatalytic H2-evolution performance via promoting the interfacial catalytic reactions. In this study, an in situ one-step hydrothermal method was developed to prepare the oxygen-containing groups-modified g-C3N4 (OG/g-C3N4) by a facile and green hydrothermal treatment of bulk g-C3N4 in pure water without any additives. It was found that the hydrothermal treatment (180 °C) not only could greatly increase the specific surface area (from 2.3 to 69.8 m2 g-1), but also caused the formation of oxygen-containing groups (sbnd OH and Cdbnd O) on the OG/g-C3N4 surface, via the interlayer delamination and intralayer depolymerization of bulk g-C3N4. Photocatalytic experimental results indicated that after hydrothermal treatment, the resultant OG/g-C3N4 samples showed an obviously improved H2-evolution performance. Especially, when the hydrothermal time was 6 h, the resultant OG/g-C3N4(6 h) exhibited the highest photocatalytic activity, which was clearly higher than that of the bulk g-C3N4 by a factor of ca. 7. In addition to the higher specific surface area, the enhanced H2-evolution rate of OG/g-C3N4 photocatalysts can be mainly attributed to the formation of oxygen-containing groups, which possibly works as the effective H2-evolution active sites. Considering the facie and green synthesis method, the present work may provide a new insight for the development of highly efficient photocatalytic materials.
Effect of soil structure on the growth of bacteria in soil quantified using CARD-FISH
NASA Astrophysics Data System (ADS)
Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Otten, Wilfred
2014-05-01
It has been reported that compaction of soil due to use of heavy machinery has resulted in the reduction of crop yield. Compaction affects the physical properties of soil such as bulk density, soil strength and porosity. This causes an alteration in the soil structure which limits the mobility of nutrients, water and air infiltration and root penetration in soil. Several studies have been conducted to explore the effect of soil compaction on plant growth and development. However, there is scant information on the effect of soil compaction on the microbial community and its activities in soil. Understanding the effect of soil compaction on microbial community is essential as microbial activities are very sensitive to abrupt environmental changes in soil. Therefore, the aim of this work was to investigate the effect of soil structure on growth of bacteria in soil. The bulk density of soil was used as a soil physical parameter to quantify the effect of soil compaction. To detect and quantify bacteria in soil the method of catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) was used. This technique results in high intensity fluorescent signals which make it easy to quantify bacteria against high levels of autofluorescence emitted by soil particles and organic matter. In this study, bacterial strains Pseudomonas fluorescens SBW25 and Bacillus subtilis DSM10 were used. Soils of aggregate size 2-1mm were packed at five different bulk densities in polyethylene rings (4.25 cm3).The soil rings were sampled at four different days. Results showed that the total number of bacteria counts was reduced significantly (P
40 CFR 761.356 - Conducting a leach test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...