NASA Astrophysics Data System (ADS)
Kaufman, J.; Blaes, O. M.; Hirose, S.
2018-06-01
Warm Comptonization models for the soft X-ray excess in active galactic nuclei (AGN) do not self-consistently explain the relationship between the Comptonizing medium and the underlying accretion disc. Because of this, they cannot directly connect the fitted Comptonization temperatures and optical depths to accretion disc parameters. Since bulk velocities exceed thermal velocities in highly radiation pressure dominated discs, in these systems bulk Comptonization by turbulence may provide a physical basis in the disc itself for warm Comptonization models. We model the dependence of bulk Comptonization on fundamental accretion disc parameters, such as mass, luminosity, radius, spin, inner boundary condition, and α. In addition to constraining warm Comptonization models, our model can help distinguish contributions from bulk Comptonization to the soft X-ray excess from those due to other physical mechanisms, such as absorption and reflection. By linking the time variability of bulk Comptonization to fluctuations in the disc vertical structure due to magnetorotational instability (MRI) turbulence, our results show that observations of the soft X-ray excess can be used to study disc turbulence in the radiation pressure dominated regime. Because our model connects bulk Comptonization to 1D vertical structure temperature profiles in a physically intuitive way, it will be useful for understanding this effect in future simulations run in new regimes.
The solvent component of macromolecular crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine
2015-04-30
On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less
A predictive structural model for bulk metallic glasses
Laws, K. J.; Miracle, D. B.; Ferry, M.
2015-01-01
Great progress has been made in understanding the atomic structure of metallic glasses, but there is still no clear connection between atomic structure and glass-forming ability. Here we give new insights into perhaps the most important question in the field of amorphous metals: how can glass-forming ability be predicted from atomic structure? We give a new approach to modelling metallic glass atomic structures by solving three long-standing problems: we discover a new family of structural defects that discourage glass formation; we impose efficient local packing around all atoms simultaneously; and we enforce structural self-consistency. Fewer than a dozen binary structures satisfy these constraints, but extra degrees of freedom in structures with three or more different atom sizes significantly expand the number of relatively stable, ‘bulk' metallic glasses. The present work gives a new approach towards achieving the long-sought goal of a predictive capability for bulk metallic glasses. PMID:26370667
Ab initio study of perovskite type oxide materials for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin
2011-12-01
Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen exchange rates, and key OR energetics of the SOFC cathode perovskites, can be described by a single descriptor, either the bulk O p-band or the bulk oxygen vacancy formation energy. These simple descriptors will further enable first-principles optimization/design of new SOFC cathodes.
Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations
NASA Technical Reports Server (NTRS)
Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.
2009-01-01
Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.
Structure and dynamics of complex liquid water: Molecular dynamics simulation
NASA Astrophysics Data System (ADS)
S, Indrajith V.; Natesan, Baskaran
2015-06-01
We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.
Polder maps: Improving OMIT maps by excluding bulk solvent
Liebschner, Dorothee; Afonine, Pavel V.; Moriarty, Nigel W.; ...
2017-02-01
The crystallographic maps that are routinely used during the structure-solution workflow are almost always model-biased because model information is used for their calculation. As these maps are also used to validate the atomic models that result from model building and refinement, this constitutes an immediate problem: anything added to the model will manifest itself in the map and thus hinder the validation. OMIT maps are a common tool to verify the presence of atoms in the model. The simplest way to compute an OMIT map is to exclude the atoms in question from the structure, update the corresponding structure factorsmore » and compute a residual map. It is then expected that if these atoms are present in the crystal structure, the electron density for the omitted atoms will be seen as positive features in this map. This, however, is complicated by the flat bulk-solvent model which is almost universally used in modern crystallographic refinement programs. This model postulates constant electron density at any voxel of the unit-cell volume that is not occupied by the atomic model. Consequently, if the density arising from the omitted atoms is weak then the bulk-solvent model may obscure it further. A possible solution to this problem is to prevent bulk solvent from entering the selected OMIT regions, which may improve the interpretative power of residual maps. This approach is called a polder (OMIT) map. Polder OMIT maps can be particularly useful for displaying weak densities of ligands, solvent molecules, side chains, alternative conformations and residues both in terminal regions and in loops. As a result, the tools described in this manuscript have been implemented and are available in PHENIX.« less
Constraining the phantom braneworld model from cosmic structure sizes
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav; Kousvos, Stefanos R.
2017-11-01
We consider the phantom braneworld model in the context of the maximum turnaround radius, RTA ,max, of a stable, spherical cosmic structure with a given mass. The maximum turnaround radius is the point where the attraction due to the central inhomogeneity gets balanced with the repulsion of the ambient dark energy, beyond which a structure cannot hold any mass, thereby giving the maximum upper bound on the size of a stable structure. In this work we derive an analytical expression of RTA ,max for this model using cosmological scalar perturbation theory. Using this we numerically constrain the parameter space, including a bulk cosmological constant and the Weyl fluid, from the mass versus observed size data for some nearby, nonvirial cosmic structures. We use different values of the matter density parameter Ωm, both larger and smaller than that of the Λ cold dark matter, as the input in our analysis. We show in particular, that (a) with a vanishing bulk cosmological constant the predicted upper bound is always greater than what is actually observed; a similar conclusion holds if the bulk cosmological constant is negative (b) if it is positive, the predicted maximum size can go considerably below than what is actually observed and owing to the involved nature of the field equations, it leads to interesting constraints on not only the bulk cosmological constant itself but on the whole parameter space of the theory.
Disconnecting structure and dynamics in glassy thin films
Sussman, Daniel M.; Cubuk, Ekin D.; Liu, Andrea J.
2017-01-01
Nanometrically thin glassy films depart strikingly from the behavior of their bulk counterparts. We investigate whether the dynamical differences between a bulk and thin film polymeric glass former can be understood by differences in local microscopic structure. Machine learning methods have shown that local structure can serve as the foundation for successful, predictive models of particle rearrangement dynamics in bulk systems. By contrast, in thin glassy films, we find that particles at the center of the film and those near the surface are structurally indistinguishable despite exhibiting very different dynamics. Next, we show that structure-independent processes, already present in bulk systems and demonstrably different from simple facilitated dynamics, are crucial for understanding glassy dynamics in thin films. Our analysis suggests a picture of glassy dynamics in which two dynamical processes coexist, with relative strengths that depend on the distance from an interface. One of these processes depends on local structure and is unchanged throughout most of the film, while the other is purely Arrhenius, does not depend on local structure, and is strongly enhanced near the free surface of a film. PMID:28928147
Comparing Classical Water Models Using Molecular Dynamics to Find Bulk Properties
ERIC Educational Resources Information Center
Kinnaman, Laura J.; Roller, Rachel M.; Miller, Carrie S.
2018-01-01
A computational chemistry exercise for the undergraduate physical chemistry laboratory is described. In this exercise, students use the molecular dynamics package Amber to generate trajectories of bulk liquid water for 4 different water models (TIP3P, OPC, SPC/E, and TIP4Pew). Students then process the trajectory to calculate structural (radial…
Skepö, Marie; Linse, Per; Arnebrant, Thomas
2006-06-22
Structural properties of the acidic proline rich protein PRP-1 of salivary origin in bulk solution and adsorbed onto a negatively charged surface have been studied by Monte Carlo simulations. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. In addition to PRP-1, some mutants were considered to assess the role of the interactions in the systems. Contrary to polyelectrolytes, the protein has a compact structure in salt-free bulk solutions, whereas at high salt concentration the protein becomes more extended. The protein adsorbs to a negatively charged surface, although its net charge is negative. The adsorbed protein displays an extended structure, which becomes more compact upon addition of salt. Hence, the conformational response upon salt addition in the adsorbed state is the opposite as compared to that in bulk solution. The conformational behavior of PRP-1 in bulk solution and at charged surfaces as well as its propensity to adsorb to surfaces with the same net charge are rationalized by the block polyampholytic character of the protein. The presence of a triad of positively charged amino acids in the C-terminal was found to be important for the adsorption of the protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz; Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk; Zhukov, Vladimir P.
A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when allmore » motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unal, B.; Jenks, C.J.; Thiel, P.A.
From other work, two preferred sites have been suggested for metals and semimetals adsorbed on the fivefold surfaces of icosahedral, Al-based quasicrystals. Because of their appearance in scanning tunneling microscopy (STM) images, these sites are known as dark stars and white flowers. In this paper, we analyze four bulk structural models in physical space to determine the types, chemical decorations, and densities of the dark star - and, to a lesser extent, the white flower - adsorption sites for the fivefold planes of icosahedral Al-Pd-Mn. We find that the chemical decorations of these sites are heterogeneous, even within a singlemore » model. Both features are also structurally heterogeneous, according to STM measurements, and the structural variation is consistent with the bulk structure models. Finally, from the models, the density of dark stars in the planes correlates with the step height. This may explain previous experimental observations of different properties for different terraces.« less
Cosmic Bulk Flow and the Local Motion from Cosmicflows-2
NASA Astrophysics Data System (ADS)
Courtois, Helene M.; Hoffman, Yehuda; Tully, R. Brent
2015-08-01
Full sky surveys of peculiar velocity are arguably the best way to map the large scale structure out to distances of a few times 100 Mpc/h.Using the largest and most accurate ever catalog of galaxy peculiar velocities Cosmicflows-2, the large scale structure has been reconstructed by means of the Wiener filter and constrained realizations assuming as a Bayesian prior model the LCDM standard model of cosmology. The present paper focuses on studying the bulk flow of the local flow field, defined as the mean velocity of top-hat spheres with radii ranging out to R=500 Mpc/h. Our main results is that the estimated bulk flow is consistent with the LCDM model with the WMAP inferred cosmological parameters. At R=50 (150)Mpc/h the estimated bulk velocity is 250 +/- 21 (239 +/- 38) km/s. The corresponding cosmic variance at these radii is 126 (60) km/s, which implies that these estimated bulk flows are dominated by the data and not by the assumed prior model. The estimated bulk velocity is dominated by the data out to R ˜200 Mpc/h, where the cosmic variance on the individual Supergalactic Cartesian components (of the r.m.s. values) exceeds the variance of the constrined realizations by at least a factor of 2. The SGX and SGY components of the CMB dipole velocity are recovered by the Wiener Filter velocity field down to a very few km/s. The SGZ component of the estimated velocity, the one that is most affected by the Zone of Avoidance, is off by 126km/s (an almost 2 sigma discrepancy).The bulk velocity analysis reported here is virtually unaffected by the Malmquist bias and very similar results are obtained for the data with and without the bias correction.
Molecular Dynamics Simulations of Grain Boundary and Bulk Diffusion in Metals.
NASA Astrophysics Data System (ADS)
Plimpton, Steven James
Diffusion is a microscopic mass transport mechanism that underlies many important macroscopic phenomena affecting the structural, electrical, and mechanical properties of metals. This thesis presents results from atomistic simulation studies of diffusion both in bulk and in the fast diffusion paths known as grain boundaries. Using the principles of molecular dynamics single boundaries are studied and their structure and dynamic properties characterized. In particular, tilt boundary bicrystal and bulk models of fcc Al and bcc alpha-Fe are simulated. Diffusion coefficients and activation energies for atomic motion are calculated for both models and compared to experimental data. The influence of the interatomic pair potential on the diffusion is studied in detail. A universal relation between the melting temperature that a pair potential induces in a simulated bulk model and the potential energy barrier height for atomic hopping is derived and used to correlate results for a wide variety of pair potentials. Using these techniques grain boundary and bulk diffusion coefficients for any fcc material can be estimated from simple static calculations without the need to perform more time-consuming dynamic simulations. The influences of two other factors on grain boundary diffusion are also studied because of the interest of the microelectronics industry in the diffusion related reliability problem known as electromigration. The first factor, known to affect the self diffusion rate of Al, is the presence of Cu impurity atoms in Al tilt boundaries. The bicrystal model for Al is seeded randomly with Cu atoms and a simple hybrid Morse potential used to model the Al-Cu interaction. While some effect due to the Cu is noted, it is concluded that pair potentials are likely an inadequate approximation for the alloy system. The second factor studied is the effect of the boundary orientation angle on the diffusion rate. Symmetric bcc Fe boundaries are relaxed to find optimal structures and their diffusion coefficients calculated. Good agreement is found with the dislocation pipe model for tilt boundary diffusion.
Shock-wave structure for a polyatomic gas with large bulk viscosity
NASA Astrophysics Data System (ADS)
Kosuge, Shingo; Aoki, Kazuo
2018-02-01
The structure of a standing plane shock wave in a polyatomic gas is investigated on the basis of kinetic theory, with special interest in gases with large bulk viscosities, such as CO2 gas. The ellipsoidal statistical model for a polyatomic gas is employed. First, the shock structure is computed numerically for various upstream Mach numbers and for various (large) values of the ratio of the bulk viscosity to the shear viscosity, and different types of profiles, such as the double-layer structure consisting of a thin upstream layer with a steep change and a much thicker downstream layer with a mild change, are obtained. Then, an asymptotic analysis for large values of the ratio is carried out, and an analytical solution that describes the different types of profiles obtained by the numerical analysis, such as the double-layer structure, correctly is obtained.
Meijer, A S; de Wijn, A S; Peters, M F E; Dam, N J; van de Water, W
2010-10-28
We investigate coherent Rayleigh-Brillouin spectroscopy as an efficient process to measure the bulk viscosity of gases at gigahertz frequencies. Scattered spectral distributions are measured using a Fizeau spectrometer. We discuss the statistical error due to the fluctuating mode structure of the used pump laser. Experiments were done for both polar and nonpolar gases and the bulk viscosity was obtained from the spectra using the Tenti S6 model. Results are compared to simple classical kinetic models of molecules with internal degrees of freedom. At the extremely high (gigahertz) frequencies of our experiment, most internal vibrational modes remain frozen and the bulk viscosity is dominated by the rotational degrees of freedom. Our measurements show that the molecular dipole moments have unexpectedly little influence on the bulk viscosity at room temperature and moderate pressure.
NASA Technical Reports Server (NTRS)
Li, Xiao-Wen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne; Johnson, Daniel E.
2004-01-01
A cloud-resolving model is used to study sensitivities of two different microphysical schemes, one is the bulk type, and the other is an explicit bin scheme, in simulating a mid-latitude squall line case (PRE-STORM, June 10-11, 1985). Simulations using different microphysical schemes are compared with each other and also with the observations. Both the bulk and bin models reproduce the general features during the developing and mature stage of the system. The leading convective zone, the trailing stratiform region, the horizontal wind flow patterns, pressure perturbation associated with the storm dynamics, and the cool pool in front of the system all agree well with the observations. Both the observations and the bulk scheme simulation serve as validations for the newly incorporated bin scheme. However, it is also shown that, the bulk and bin simulations have distinct differences, most notably in the stratiform region. Weak convective cells exist in the stratiform region in the bulk simulation, but not in the bin simulation. These weak convective cells in the stratiform region are remnants of the previous stronger convections at the leading edge of the system. The bin simulation, on the other hand, has a horizontally homogeneous stratiform cloud structure, which agrees better with the observations. Preliminary examinations of the downdraft core strength, the potential temperature perturbation, and the evaporative cooling rate show that the differences between the bulk and bin models are due mainly to the stronger low-level evaporative cooling in convective zone simulated in the bulk model. Further quantitative analysis and sensitivity tests for this case using both the bulk and bin models will be presented in a companion paper.
Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity
NASA Astrophysics Data System (ADS)
Liu, Liping; Yu, Miao; Lin, Hao; Foty, Ramsey
2017-01-01
Measuring mechanical properties of cells or cell aggregates has proven to be an involved process due to their geometrical and structural complexity. Past measurements are based on material models that completely neglect the elasticity of either the surface membrane or the interior bulk. In this work, we consider general material models to account for both surface and bulk viscoelasticity. The boundary value problems are formulated for deformations and relaxations of a closed viscoelastic surface coupled with viscoelastic media inside and outside of the surface. The linearized surface elasticity models are derived for the constant surface tension model and the Helfrich-Canham bending model for coupling with the bulk viscoelasticity. For quasi-spherical surfaces, explicit solutions are obtained for the deformation, stress-strain and relaxation behaviors under a variety of loading conditions. These solutions can be applied to extract the intrinsic surface and bulk viscoelastic properties of biological cells or cell aggregates in the indentation, electro-deformation and relaxation experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tingkun; Gao, Yanfei; Bei, Hongbin
Shear banding dynamics in bulk metallic glasses (BMGs) is manifested by the spatiotemporal evolution of strain fields which in turn depend on structural heterogeneities. The spacing of these heterogeneities, as a characteristic length scale, was determined from the analysis of nanoindentation pop-in tests using a stochastic model. Furthermore, the pre-stress by elastic bending and residual stress by plastic bending of BMG plates were found to dramatically decrease such spacings, thus increasing heterogeneity density and mechanically rejuvenating the glass structure.
Liu, Tingkun; Gao, Yanfei; Bei, Hongbin
2017-07-21
Shear banding dynamics in bulk metallic glasses (BMGs) is manifested by the spatiotemporal evolution of strain fields which in turn depend on structural heterogeneities. The spacing of these heterogeneities, as a characteristic length scale, was determined from the analysis of nanoindentation pop-in tests using a stochastic model. Furthermore, the pre-stress by elastic bending and residual stress by plastic bending of BMG plates were found to dramatically decrease such spacings, thus increasing heterogeneity density and mechanically rejuvenating the glass structure.
NASA Astrophysics Data System (ADS)
Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.
2014-02-01
Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.
Effect of composition on the structure of lithium- and manganese-rich transition metal oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin
In this work, we establish a definitive structural model for lithium- and manganese-rich transition metal oxides and demonstrate the effect of composition on their bulk as well as the surface structure.
Effect of composition on the structure of lithium- and manganese-rich transition metal oxides
Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; ...
2018-01-01
In this work, we establish a definitive structural model for lithium- and manganese-rich transition metal oxides and demonstrate the effect of composition on their bulk as well as the surface structure.
Multiscale Modeling of PEEK Using Reactive Molecular Dynamics Modeling and Micromechanics
NASA Technical Reports Server (NTRS)
Pisani, William A.; Radue, Matthew; Chinkanjanarot, Sorayot; Bednarcyk, Brett A.; Pineda, Evan J.; King, Julia A.; Odegard, Gregory M.
2018-01-01
Polyether ether ketone (PEEK) is a high-performance, semi-crystalline thermoplastic that is used in a wide range of engineering applications, including some structural components of aircraft. The design of new PEEK-based materials requires a precise understanding of the multiscale structure and behavior of semi-crystalline PEEK. Molecular Dynamics (MD) modeling can efficiently predict bulk-level properties of single phase polymers, and micromechanics can be used to homogenize those phases based on the overall polymer microstructure. In this study, MD modeling was used to predict the mechanical properties of the amorphous and crystalline phases of PEEK. The hierarchical microstructure of PEEK, which combines the aforementioned phases, was modeled using a multiscale modeling approach facilitated by NASA's MSGMC. The bulk mechanical properties of semi-crystalline PEEK predicted using MD modeling and MSGMC agree well with vendor data, thus validating the multiscale modeling approach.
Chen, Xianfeng; Weber, Irene; Harrison, Robert W
2008-09-25
Water plays a critical role in the structure and function of proteins, although the experimental properties of water around protein structures are not well understood. The water can be classified by the separation from the protein surface into bulk water and hydration water. Hydration water interacts closely with the protein and contributes to protein folding, stability, and dynamics, as well as interacting with the bulk water. Water potential functions are often parametrized to fit bulk water properties because of the limited experimental data for hydration water. Therefore, the structural and energetic properties of the hydration water were assessed for 105 atomic resolution (
Acoustic wave propagation in heterogeneous structures including experimental validation
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Dahl, Milo D.
1989-01-01
A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.
Proposal of a Bulk HTSC Staggered Array Undulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kii, Toshiteru; Kinjo, Ryota; Bakr, Mahmoud A.
We proposed a new type of undulator based on bulk high-T{sub c} superconductors (HTSC) which consists of a single solenoid and a stacked array of bulk HTSC. The main advantage of this configuration is that a mechanical structure is not required to produce and control the undulator field. In order to perform a proof of principle experiment, we have developed a prototype of bulk HTSC staggered array undulator using 11 pairs of DyBaCuO bulk superconductors and a normal conducting solenoid. Experimental results obtained by using the prototype undulator and numerical results obtained by a loop current model based on themore » Bean mode for a type-II superconductor were compared.« less
Micro- and meso-scale pore structure in mortar in relation to aggregate content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yun, E-mail: yun.gao@ugent.be; De Schutter, Geert; Ye, Guang
2013-10-15
Mortar is often viewed as a three-phase composite consisting of aggregate, bulk paste, and an interfacial transition zone (ITZ). However, this description is inconsistent with experimental findings because of the basic assumption that larger pores are only present within the ITZ. In this paper, we use backscattered electron (BSE) imaging to investigate the micro- and meso-scale structure of mortar with varying aggregate content. The results indicate that larger pores are present not only within the ITZ but also within areas far from aggregates. This phenomenon is discussed in detail based on a series of analytical calculations, such as the effectivemore » water binder ratio and the inter-aggregate spacing. We developed a modified computer model that includes a two-phase structure for bulk paste. This model interprets previous mercury intrusion porosimetry data very well. -- Highlights: •Based on BSE, we examine the HCSS model. •We develop the HCSS-DBLB model. •We use the modified model to interpret the MIP data.« less
Fermion masses and mixing in general warped extra dimensional models
NASA Astrophysics Data System (ADS)
Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel
2015-06-01
We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.
NASA Astrophysics Data System (ADS)
Qing, Chun; Wu, Xiaoqing; Li, Xuebin; Tian, Qiguo; Liu, Dong; Rao, Ruizhong; Zhu, Wenyue
2018-01-01
In this paper, we introduce an approach wherein the Weather Research and Forecasting (WRF) model is coupled with the bulk aerodynamic method to estimate the surface layer refractive index structure constant (C n 2) above Taishan Station in Antarctica. First, we use the measured meteorological parameters to estimate C n 2 using the bulk aerodynamic method, and second, we use the WRF model output parameters to estimate C n 2 using the bulk aerodynamic method. Finally, the corresponding C n 2 values from the micro-thermometer are compared with the C n 2 values estimated using the WRF model coupled with the bulk aerodynamic method. We analyzed the statistical operators—the bias, root mean square error (RMSE), bias-corrected RMSE (σ), and correlation coefficient (R xy )—in a 20 day data set to assess how this approach performs. In addition, we employ contingency tables to investigate the estimation quality of this approach, which provides complementary key information with respect to the bias, RMSE, σ, and R xy . The quantitative results are encouraging and permit us to confirm the fine performance of this approach. The main conclusions of this study tell us that this approach provides a positive impact on optimizing the observing time in astronomical applications and provides complementary key information for potential astronomical sites.
Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; ...
2015-07-20
In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water andmore » ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.« less
Various continuum approaches for studying shock wave structure in carbon dioxide
NASA Astrophysics Data System (ADS)
Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.
2018-05-01
Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.
Structural and transport properties of double perovskite Dy{sub 2}NiMnO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanda, Sadhan, E-mail: sadhan.physics@gmail.com; Saha, Sujoy; Dutta, Alo
2015-02-15
Highlights: • Sol–gel citrate method is used to prepare the double perovskite Dy{sub 2}NiMnO{sub 6}. • Structure and dielectric relaxation of the sample are studied for nano and bulk phases. • The relaxation mechanism of the sample is modeled by Cole–Cole equation. • With increasing sintering temperature conductivity increases. • Electronic structures and magnetic properties have been studied by DFT calculations. - Abstract: The double perovskite oxide Dy{sub 2}NiMnO{sub 6} (DNMO) is synthesized in nano and bulk phase by the sol–gel citrate method. The Rietveld refinement of X-ray diffraction pattern of the sample at room temperature shows the monoclinic P2{submore » 1}/n phase. Dielectric relaxation of the sample is investigated in the impedance and electric modulus formalisms in the frequency range from 50 Hz to 1 MHz and in the temperature range from 253 to 415 K. The Cole–Cole model is used to explain the relaxation mechanism in DNMO. The frequency-dependent maxima in the imaginary part of impedance are found to obey an Arrhenius law with activation energy of 0.346 and 0.344 eV for nano and bulk DNMO, respectively. A significant increase in conductivity of bulk DNMO has been observed than that of the nanoceramic. Electronic structures and magnetic properties of DNMO have been studied by performing first principles calculation based on density functional theory.« less
Optical modeling of fiber organic photovoltaic structures using a transmission line method.
Moshonas, N; Stathopoulos, N A; O'Connor, B T; Bedeloglu, A Celik; Savaidis, S P; Vasiliadis, S
2017-12-01
An optical model has been developed and evaluated for the calculation of the external quantum efficiency of cylindrical fiber photovoltaic structures. The model is based on the transmission line theory and has been applied on single and bulk heterojunction fiber-photovoltaic cells. Using this model, optimum design characteristics have been proposed for both configurations, and comparison with experimental results has been assessed.
Computational Modeling of Interfacial Behaviors in Nanocomposite Materials
Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei
2017-01-01
Towards understanding the bulk material response in nanocomposites, an interfacial zone model was proposed to define a variety of material interface behaviors (e.g. brittle, ductile, rubber-like, elastic-perfectly plastic behavior etc.). It also has the capability to predict bulk material response though independently control of the interface properties (e.g. stiffness, strength, toughness). The mechanical response of granular nanocomposite (i.e. nacre) was investigated through modeling the “relatively soft” organic interface as an interfacial zone among “hard” mineral tablets and simulation results were compared with experimental measurements of stress-strain curves in tension and compression tests. Through modeling varies material interfaces, we found out that the bulk material response of granular nanocomposite was regulated by the interfacial behaviors. This interfacial zone model provides a possible numerical tool for qualitatively understanding of structure-property relationships through material interface design. PMID:28983123
NASA Astrophysics Data System (ADS)
Fan, Cang; Liaw, P. K.; Wilson, T. W.; Choo, H.; Gao, Y. F.; Liu, C. T.; Proffen, Th.; Richardson, J. W.
2006-12-01
Contrary to reported results on structural relaxation inducing brittleness in amorphous alloys, the authors found that structural relaxation actually caused an increase in the strength of Zr55Cu35Al10 bulk metallic glass (BMG) without changing the plasticity. Three dimensional models were rebuilt for the as-cast and structurally relaxed BMGs by reverse Monte Carlo (RMC) simulations based on the pair distribution function (PDF) measured by neutron scattering. Only a small portion of the atom pairs was found to change to more dense packing. The concept of free volume was defined based on the PDF and RMC studies, and the mechanism of mechanical behavior was discussed.
Ferreiro-Rangel, Carlos A; Gelb, Lev D
2013-06-13
Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials.
Optical properties of InGaN grown by MOCVD on sapphire and on bulk GaN
NASA Astrophysics Data System (ADS)
Osinski, Marek; Eliseev, Petr G.; Lee, Jinhyun; Smagley, Vladimir A.; Sugahara, Tamoya; Sakai, Shiro
1999-11-01
Experimental data on photoluminescence of various bulk and quantum-well epitaxial InGaN/GaN structures grown by MOCVD are interpreted in terms of a band-tail model of inhomogeneously broadened radiative recombination. The anomalous temperature-induced blue spectral is shown to result from band-tail recombination under non-degenerate conditions. Significant differences are observed between epilayers grown on sapphire substrates and on GaN substrates prepared by the sublimination method, with no apparent evidence of band tails in homoepitaxial structures, indicating their higher crystalline quality.
Can standard cosmological models explain the observed Abell cluster bulk flow?
NASA Technical Reports Server (NTRS)
Strauss, Michael A.; Cen, Renyue; Ostriker, Jeremiah P.; Laure, Tod R.; Postman, Marc
1995-01-01
Lauer and Postman (LP) observed that all Abell clusters with redshifts less than 15,000 km/s appear to be participating in a bulk flow of 689 km/s with respect to the cosmic microwave background. We find this result difficult to reconcile with all popular models for large-scale structure formation that assume Gaussian initial conditions. This conclusion is based on Monte Carlo realizations of the LP data, drawn from large particle-mesh N-body simulations for six different models of the initial power spectrum (standard, tilted, and Omega(sub 0) = 0.3 cold dark matter, and two variants of the primordial baryon isocurvature model). We have taken special care to treat properly the longest-wavelength components of the power spectra. The simulations are sampled, 'observed,' and analyzed as identically as possible to the LP cluster sample. Large-scale bulk flows as measured from clusters in the simulations are in excellent agreement with those measured from the grid: the clusters do not exhibit any strong velocity bias on large scales. Bulk flows with amplitude as large as that reported by LP are not uncommon in the Monte Carlo data stes; the distribution of measured bulk flows before error bias subtraction is rougly Maxwellian, with a peak around 400 km/s. However the chi squared of the observed bulk flow, taking into account the anisotropy of the error ellipsoid, is much more difficult to match in the simulations. The models examined are ruled out at confidence levels between 94% and 98%.
NASA Astrophysics Data System (ADS)
Livan, Giacomo; Alfarano, Simone; Scalas, Enrico
2011-07-01
We study some properties of eigenvalue spectra of financial correlation matrices. In particular, we investigate the nature of the large eigenvalue bulks which are observed empirically, and which have often been regarded as a consequence of the supposedly large amount of noise contained in financial data. We challenge this common knowledge by acting on the empirical correlation matrices of two data sets with a filtering procedure which highlights some of the cluster structure they contain, and we analyze the consequences of such filtering on eigenvalue spectra. We show that empirically observed eigenvalue bulks emerge as superpositions of smaller structures, which in turn emerge as a consequence of cross correlations between stocks. We interpret and corroborate these findings in terms of factor models, and we compare empirical spectra to those predicted by random matrix theory for such models.
Modeling direct interband tunneling. I. Bulk semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Andrew, E-mail: pandrew@ucla.edu; Chui, Chi On; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority ofmore » the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.« less
Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography.
Goossens, Sander; Sabaka, Terence J; Genova, Antonio; Mazarico, Erwan; Nicholas, Joseph B; Neumann, Gregory A
2017-08-16
Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moon's crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 ± 209 kg m -3 . This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth.
Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A) Structural Math Model - A1
NASA Technical Reports Server (NTRS)
Ely, W.
1996-01-01
This report presents the description for the NASTRAN finite element for the AMSU-A1 module. The purpose of this report is to document the NASTRAN bulk data deck, transmitted under separate cover. The structural Math Model is to be used by the spacecraft contractor for dynamic loads analysis.
Analytical theory of the hydrophobic effect of solutes in water.
Urbic, Tomaz; Dill, Ken A
2017-09-01
We develop an analytical statistical-mechanical model for hydrophobic solvation in water. In this three-dimensional Mercedes-Benz-like model, two neighboring waters have three possible interaction states: a radial van der Waals interaction, a tetrahedral orientation-dependent hydrogen-bonding interaction, or no interaction. Nonpolar solutes are modeled as van der Waals particles of different radii. The model is sufficiently simple that we can calculate the partition function and thermal and volumetric properties of solvation versus temperature, pressure, and solute radius. Predictions are in good agreement with results of Monte Carlo simulations. And their trends agree with experiments on hydrophobic solute insertion. The theory shows that first-shell waters are more highly structured than bulk waters, because of hydrogen bonding, and that that structure melts out faster with temperature than it does in bulk waters. Because the theory is analytical, it can explore a broad range of solvation properties and anomalies of water, at minimal computational expense.
Analytical theory of the hydrophobic effect of solutes in water
NASA Astrophysics Data System (ADS)
Urbic, Tomaz; Dill, Ken A.
2017-09-01
We develop an analytical statistical-mechanical model for hydrophobic solvation in water. In this three-dimensional Mercedes-Benz-like model, two neighboring waters have three possible interaction states: a radial van der Waals interaction, a tetrahedral orientation-dependent hydrogen-bonding interaction, or no interaction. Nonpolar solutes are modeled as van der Waals particles of different radii. The model is sufficiently simple that we can calculate the partition function and thermal and volumetric properties of solvation versus temperature, pressure, and solute radius. Predictions are in good agreement with results of Monte Carlo simulations. And their trends agree with experiments on hydrophobic solute insertion. The theory shows that first-shell waters are more highly structured than bulk waters, because of hydrogen bonding, and that that structure melts out faster with temperature than it does in bulk waters. Because the theory is analytical, it can explore a broad range of solvation properties and anomalies of water, at minimal computational expense.
First-principles study of the structural, electronic and thermal properties of CaLiF3
NASA Astrophysics Data System (ADS)
Chouit, N.; Amara Korba, S.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.
2013-09-01
Density functional theory calculations have been performed to study the structural, electronic and optical properties of CaLiF3 cubic fluoroperovskite. Our calculations were carried out by means of the full-potential linearized augmented plane-wave method. The exchange-correlation potential is treated by the local density approximation and the generalized gradient approximation (GGA) (Perdew, Burke and Ernzerhof). Moreover, the alternative form of GGA proposed by Engel and Vosko is also used for band structure calculations. The calculated total energy versus volume allows us to obtain structural properties such as the lattice constant (a0), bulk modulus (B0) and pressure derivative of the bulk modulus (B'0 ). Band structure, density of states and band gap pressure coefficients are also given. Our calculations show that CaLiF3 has an indirect band gap (R-Γ). Following the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the lattice constant, bulk modulus, thermal expansion coefficient, Debye temperature and heat capacities are calculated.
NASA Astrophysics Data System (ADS)
Sibileau, Alberto; Auricchio, Ferdinando; Morganti, Simone; Díez, Pedro
2018-01-01
Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen.
Electronic shell structure in Ga12 icosahedra and the relation to the bulk forms of gallium.
Schebarchov, D; Gaston, N
2012-07-28
The electronic structure of known cluster compounds with a cage-like icosahedral Ga(12) centre is studied by first-principles theoretical methods, based on density functional theory. We consider these hollow metalloid nanostructures in the context of the polymorphism of the bulk, and identify a close relation to the α phase of gallium. This previously unrecognised connection is established using the electron localisation function, which reveals the ubiquitous presence of radially-pointing covalent bonds around the Ga(12) centre--analogous to the covalent bonds between buckled deltahedral planes in α-Ga. Furthermore, we find prominent superatom shell structure in these clusters, despite their hollow icosahedral motif and the presence of covalent bonds. The exact nature of the electronic shell structure is contrasted with simple electron shell models based on jellium, and we demonstrate how the interplay between gallium dimerisation, ligand- and crystal-field effects can alter the splitting of the partially filled 1F shell. Finally, in the unique compound where the Ga(12) centre is bridged by six phosphorus ligands, the electronic structure most closely resembles that of δ-Ga and there are no well-defined superatom orbitals. The results of this comprehensive study bring new insights into the nature of chemical bonding in metalloid gallium compounds and the relation to bulk gallium metal, and they may also guide the development of more general models for ligand-protected clusters.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Model test. 154.449 Section 154.449 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF... § 154.449 Model test. The following analyzed data of a model test of structural elements for independent...
NASA Astrophysics Data System (ADS)
Pinney, Nathan Douglas
Due to their high surface area and reactivity toward a variety of heavy metal and oxyanion species of environmental concern, Fe-(oxyhydr)oxide materials play an important role in the geochemical fate of natural and anthropogenic contaminants in soils, aquifers and surface water environments worldwide. In this research, ab initio simulations describe the bulk structure, magnetic properties, and relative phase stability of major Fe-(oxyhydr)oxide materials, including hematite, goethite, lepidocrocite, and ferrihydrite.These bulk models are employed in further studies of point defect and alloy/dopant thermodynamics in these materials, allowing construction of a phase stability model that better replicates the structure and composition of real materials. Li + adsorption at the predominant goethite (101) surface is simulated using ab initio methods, offering energetic and structural insight into the binding mechanisms of metal cations over a range of surface protonation conditions.
Using the Opposition Effect in Remotely Sensed Data to Assist in the Retrieval of Bulk Density
NASA Astrophysics Data System (ADS)
Ambeau, Brittany L.
Bulk density is an important geophysical property that impacts the mobility of military vehicles and personnel. Accurate retrieval of bulk density from remotely sensed data is, therefore, needed to estimate the mobility on "off-road" terrain. For a particulate surface, the functional form of the opposition effect can provide valuable information about composition and structure. In this research, we examine the relationship between bulk density and angular width of the opposition effect for a controlled set of laboratory experiments. Given a sample with a known bulk density, we collect reflectance measurements on a spherical grid for various illumination and view geometries -- increasing the amount of reflectance measurements collected at small phase angles near the opposition direction. Bulk densities are varied using a custom-made pluviation device, samples are measured using the Goniometer of the Rochester Institute of Technology-Two (GRIT-T), and observations are fit to the Hapke model using a grid-search method. The method that is selected allows for the direct estimation of five parameters: the single-scattering albedo, the amplitude of the opposition effect, the angular width of the opposition effect, and the two parameters that describe the single-particle phase function. As a test of the Hapke model, the retrieved bulk densities are compared to the known bulk densities. Results show that with an increase in the availability of multi-angular reflectance measurements, the prospects for retrieving the spatial distribution of bulk density from satellite and airborne sensors are imminent.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.449 Model test. The following analyzed data of a model test of structural elements for independent tank type B must be submitted to the Commandant (CG-ENG) for special approval: (a) Stress concentration...
NASA Astrophysics Data System (ADS)
Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard
2014-03-01
Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan
2005-05-01
In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.
Delgado, Alfredo; Hays, Dirk B; Bruton, Richard K; Ceballos, Hernán; Novo, Alexandre; Boi, Enrico; Selvaraj, Michael Gomez
2017-01-01
Understanding root traits is a necessary research front for selection of favorable genotypes or cultivation practices. Root and tuber crops having most of their economic potential stored below ground are favorable candidates for such studies. The ability to image and quantify subsurface root structure would allow breeders to classify root traits for rapid selection and allow agronomist the ability to derive effective cultivation practices. In spite of the huge role of Cassava ( Manihot esculenta Crantz), for food security and industrial uses, little progress has been made in understanding the onset and rate of the root-bulking process and the factors that influence it. The objective of this research was to determine the capability of ground penetrating radar (GPR) to predict root-bulking rates through the detection of total root biomass during its growth cycle. Our research provides the first application of GPR for detecting below ground biomass in cassava. Through an empirical study, linear regressions were derived to model cassava bulking rates. The linear equations derived suggest that GPR is a suitable measure of root biomass ( r = .79). The regression analysis developed accounts for 63% of the variability in cassava biomass below ground. When modeling is performed at the variety level, it is evident that the variety models for SM 1219-9 and TMS 60444 outperform the HMC-1 variety model (r 2 = .77, .63 and .51 respectively). Using current modeling methods, it is possible to predict below ground biomass and estimate root bulking rates for selection of early root bulking in cassava. Results of this approach suggested that the general model was over predicting at early growth stages but became more precise in later root development.
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.
Ultrasound finite element simulation sensitivity to anisotropic titanium microstructures
NASA Astrophysics Data System (ADS)
Freed, Shaun; Blackshire, James L.; Na, Jeong K.
2016-02-01
Analytical wave models are inadequate to describe complex metallic microstructure interactions especially for near field anisotropic property effects and through geometric features smaller than the wavelength. In contrast, finite element ultrasound simulations inherently capture microstructure influences due to their reliance on material definitions rather than wave descriptions. To better understand and quantify heterogeneous crystal orientation effects to ultrasonic wave propagation, a finite element modeling case study has been performed with anisotropic titanium grain structures. A parameterized model has been developed utilizing anisotropic spheres within a bulk material. The resulting wave parameters are analyzed as functions of both wavelength and sphere to bulk crystal mismatch angle.
Patel, H C; Tokarski, J S; Hopfinger, A J
1997-10-01
The purpose of this study was to identify the key physicochemical molecular properties of polymeric materials responsible for gaseous diffusion in the polymers. Quantitative structure-property relationships, QSPRs were constructed using a genetic algorithm on a training set of 16 polymers for which CO2, N2, O2 diffusion constants were measured. Nine physicochemical properties of each of the polymers were used in the trial basis set for QSPR model construction. The linear cross-correlation matrices were constructed and investigated for colinearity among the members of the training sets. Common water diffusion measures for a limited training set of six polymers was used to construct a "semi-QSPR" model. The bulk modulus of the polymer was overwhelmingly found to be the dominant physicochemical polymer property that governs CO2, N2 and O2 diffusion. Some secondary physicochemical properties controlling diffusion, including conformational entropy, were also identified as correlation descriptors. Very significant QSPR diffusion models were constructed for all three gases. Cohesive energy was identified as the main correlation physicochemical property with aqueous diffusion measures. The dominant role of polymer bulk modulus on gaseous diffusion makes it difficult to develop criteria for selective transport of gases through polymers. Moreover, high bulk moduli are predicted to be necessary for effective gas barrier materials. This property requirement may limit the processing and packaging features of the material. Aqueous diffusion in polymers may occur by a different mechanism than gaseous diffusion since bulk modulus does not correlate with aqueous diffusion, but rather cohesive energy of the polymer.
Structure of the orthorhombic Al13Co4(100) surface using LEED, STM, and ab initio studies
NASA Astrophysics Data System (ADS)
Shin, Heekeun; Pussi, K.; Gaudry, É.; Ledieu, J.; Fournée, V.; Alarcón Villaseca, S.; Dubois, J.-M.; Grin, Yu.; Gille, P.; Moritz, W.; Diehl, R. D.
2011-08-01
In a combined scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and density functional theory (DFT) study of the surface of Al13Co4(100), all techniques have found that after annealing to 1165 K, the surface structure is consistent with a dense Al-rich plane with surface Co atom depletion. Various structure models were considered, and in the LEED study, the best agreement was found with a model that consists of Al-rich terminating planes with no Co atoms, and otherwise a structure similar to the bulk puckered layers. This structure was also found to be stable in the DFT study. The best-fit structural parameters are presented for the two domains of this structure, which contain bipentagons that can be related to the pentagonal bipyramidal structures in the bulk, plus additional glue atoms between them. These domains are not strictly related to each other by symmetry, as they have different surface relaxations. The STM study found significant differences in the surfaces of samples grown by different methods and is able to explain a different interpretation made in an earlier study.
NASA Astrophysics Data System (ADS)
Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An
2018-05-01
The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.
Analysis of Temperature and Humidity Field in a New Bulk Tobacco Curing Barn Based on CFD.
Bai, Zhipeng; Guo, Duoduo; Li, Shoucang; Hu, Yaohua
2017-01-31
A new structure bulk tobacco curing barn was presented. To study the temperature and humidity field in the new structure tobacco curing barn, a 3D transient computational fluid dynamics (CFD) model was developed using porous medium, species transport, κ-ε turbulence and discrete phase models. The CFD results demonstrated that (1) the temperature and relative humidity predictions were validated by the experimental results, and comparison of simulation results with experimental data showed a fairly close agreement; (2) the temperature of the bottom and inlet area was higher than the top and outlet area, and water vapor concentrated on the top and outlet area in the barn; (3) tobacco loading density and thickness of tobacco leaves had an explicit effect on the temperature distributions in the barn.
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.
2016-07-01
Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.
System design and verification of the precession electron diffraction technique
NASA Astrophysics Data System (ADS)
Own, Christopher Su-Yan
2005-07-01
Bulk structural crystallography is generally a two-part process wherein a rough starting structure model is first derived, then later refined to give an accurate model of the structure. The critical step is the determination of the initial model. As materials problems decrease in length scale, the electron microscope has proven to be a versatile and effective tool for studying many problems. However, study of complex bulk structures by electron diffraction has been hindered by the problem of dynamical diffraction. This phenomenon makes bulk electron diffraction very sensitive to specimen thickness, and expensive equipment such as aberration-corrected scanning transmission microscopes or elaborate methodology such as high resolution imaging combined with diffraction and simulation are often required to generate good starting structures. The precession electron diffraction technique (PED), which has the ability to significantly reduce dynamical effects in diffraction patterns, has shown promise as being a "philosopher's stone" for bulk electron diffraction. However, a comprehensive understanding of its abilities and limitations is necessary before it can be put into widespread use as a standalone technique. This thesis aims to bridge the gaps in understanding and utilizing precession so that practical application might be realized. Two new PED systems have been built, and optimal operating parameters have been elucidated. The role of lens aberrations is described in detail, and an alignment procedure is given that shows how to circumvent aberration in order to obtain high-quality patterns. Multislice simulation is used for investigating the errors inherent in precession, and is also used as a reference for comparison to simple models and to experimental PED data. General trends over a large sampling of parameter space are determined. In particular, we show that the primary reflection intensity errors occur near the transmitted beam and decay with increasing angle and decreasing specimen thickness. These errors, occurring at the lowest spatial frequencies, fortuitously coincide with reflections for which phases are easiest to determine via imaging methods. A general two-beam dynamical model based upon an existing approximate model is found to be fairly accurate across most experimental conditions, particularly where it is needed for providing a correction to distorted data. Finally, the practical structure solution procedure using PED is demonstrated for several model material systems. Of the experiment parameters investigated, the cone semi-angle is found to be the most important (it should be as large as possible), followed closely by specimen thickness (thinner is better). Assuming good structure projection characteristics in the specimen, the thickness tractable by PED is extended to 40-50 nm without correction, demonstrated for complex oxides. With a forward calculation based upon the two-beam dynamical model (using known structure factors), usable specimen thickness can be extended past 150 nm. For a priori correction, using the squared amplitudes approximates the two-beam model for most thicknesses if the scattering from the structure adheres to psuedo-kinematical behavior. Practically, crystals up to 60 nm in thickness can now be processed by the precession methods developed in this thesis.
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
NASA Astrophysics Data System (ADS)
Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.
2016-08-01
This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.
Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca
2016-08-15
This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better thanmore » the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.« less
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.
2004-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.
2001-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.
Mechanical properties of Fe rich Fe-Si alloys: ab initio local bulk-modulus viewpoint
NASA Astrophysics Data System (ADS)
Bhattacharya, Somesh Kr; Kohyama, Masanori; Tanaka, Shingo; Shiihara, Yoshinori; Saengdeejing, Arkapol; Chen, Ying; Mohri, Tetsuo
2017-11-01
Fe-rich Fe-Si alloys show peculiar bulk-modulus changes depending on the Si concentration in the range of 0-15 at.%Si. In order to clarify the origin of this phenomenon, we have performed density-functional theory calculations of supercells of Fe-Si alloy models with various Si concentrations. We have applied our recent techniques of ab initio local energy and local stress, by which we can obtain a local bulk modulus of each atom or atomic group as a local constituent of the cell-averaged bulk modulus. A2-phase alloy models are constructed by introducing Si substitution into bcc Fe as uniformly as possible so as to prevent mutual neighboring, while higher Si concentrations over 6.25 at.%Si lead to contacts between SiFe8 cubic clusters via sharing corner Fe atoms. For 12.5 at.%Si, in addition to an A2 model, we deal with partial D03 models containing local D03-like layers consisting of edge-shared SiFe8 cubic clusters. For the cell-averaged bulk modulus, we have successfully reproduced the Si-concentration dependence as a monotonic decrease until 11.11 at.%Si and a recovery at 12.5 at.%Si. The analysis of local bulk moduli of SiFe8 cubic clusters and Fe regions is effective to understand the variations of the cell-averaged bulk modulus. The local bulk moduli of Fe regions become lower for increasing Si concentration, due to the suppression of bulk-like d-d bonding states in narrow Fe regions. For higher Si concentrations till 11.11 at.%Si, corner-shared contacts or 1D chains of SiFe8 clusters lead to remarkable reduction of local bulk moduli of the clusters. At 12 at.%Si, on the other hand, two- or three-dimensional arrangements of corner- or edge-shared SiFe8 cubic clusters show greatly enhanced local bulk moduli, due to quite different bonding nature with much stronger p-d hybridization. The relation among the local bulk moduli, local electronic and magnetic structures, and local configurations such as connectivity of SiFe8 clusters and Fe-region sizes has been analyzed. The ab initio local stress has opened the way for obtaining accurate local elastic properties reflecting local valence-electron behaviors.
The NASTRAN user's manual (level 17.0)
NASA Technical Reports Server (NTRS)
1979-01-01
NASTRAN embodies a lumped element approach, wherein the distributed physical properties of a structure are represented by a model consisting of a finite number of idealized substructures or elements that are interconnected at a finite of grid points, to which loads are applied. All input and output data pertain to the idealized structural model. The general procedures for defining structural models are described and instructions are given for each of the bulk data cards and case control cards. Additional information on the case control cards and use of parameters is included for each rigid format.
NASA Technical Reports Server (NTRS)
Mock, W. D.; Latham, R. A.
1982-01-01
The NASTRAN model plan for the fairing structure was expanded in detail to generate the NASTRAN model of this substructure. The grid point coordinates, element definitions, material properties, and sizing data for each element were specified. The fairing model was thoroughly checked out for continuity, connectivity, and constraints. The substructure was processed for structural influence coefficients (SIC) point loadings to determine the deflection characteristics of the fairing model. Finally, a demonstration and validation processing of this substructure was accomplished using the NASTRAN finite element program. The bulk data deck, stiffness matrices, and SIC output data were delivered.
Estimating forest canopy fuel parameters using LIDAR data.
Hans-Erik Andersen; Robert J. McGaughey; Stephen E. Reutebuch
2005-01-01
Fire researchers and resource managers are dependent upon accurate, spatially-explicit forest structure information to support the application of forest fire behavior models. In particular, reliable estimates of several critical forest canopy structure metrics, including canopy bulk density, canopy height, canopy fuel weight, and canopy base height, are required to...
Radical re-appraisal of water structure in hydrophilic confinement.
Soper, Alan K
2013-12-18
The structure of water confined in MCM41 silica cylindrical pores is studied to determine whether confined water is simply a version of the bulk liquid which can be substantially supercooled without crystallisation. A combination of total neutron scattering from the porous silica, both wet and dry, and computer simulation using a realistic model of the scattering substrate is used. The water in the pore is divided into three regions: core, interfacial and overlap. The average local densities of water in these simulations are found to be about 20% lower than bulk water density, while the density in the core region is below, but closer to, the bulk density. There is a decrease in both local and core densities when the temperature is lowered from 298 K to 210 K. The radical proposal is made here that water in hydrophilic confinement is under significant tension, around -100 MPa, inside the pore.
Accurate modeling of defects in graphene transport calculations
NASA Astrophysics Data System (ADS)
Linhart, Lukas; Burgdörfer, Joachim; Libisch, Florian
2018-01-01
We present an approach for embedding defect structures modeled by density functional theory into large-scale tight-binding simulations. We extract local tight-binding parameters for the vicinity of the defect site using Wannier functions. In the transition region between the bulk lattice and the defect the tight-binding parameters are continuously adjusted to approach the bulk limit far away from the defect. This embedding approach allows for an accurate high-level treatment of the defect orbitals using as many as ten nearest neighbors while keeping a small number of nearest neighbors in the bulk to render the overall computational cost reasonable. As an example of our approach, we consider an extended graphene lattice decorated with Stone-Wales defects, flower defects, double vacancies, or silicon substitutes. We predict distinct scattering patterns mirroring the defect symmetries and magnitude that should be experimentally accessible.
NASA Astrophysics Data System (ADS)
Fujishiro, H.; Takahashi, K.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.
2018-07-01
We have proposed new reinforcement structures using an aluminum alloy ring to the annular REBaCuO bulks applicable to compact and cryogen-free 400 MHz (9.4 T) nuclear magnetic resonance (NMR) spectrometer using a numerical simulation of mechanical stress. The thermal compressive stress, σθcool, which was applied to the annular bulks during cooling due to the difference of thermal expansion coefficient between bulk and aluminum alloy, became fairly enhanced at the surface of the uppermost bulk for the new reinforcement structures, compared to the conventional reinforcement with the same height as the annular bulk, in which the compressive σθcool value was reduced. During field-cooled magnetization (FCM), the electromagnetic hoop stress, σθFCM, became the maximum at the innermost edge of the uppermost ring bulk at intermediate time step. The actual total hoop stress, σθ (= σθcool + σθFCM), due to both cooling and FCM processes was also analyzed and the new ring structures are fairly effective to reduce the σθ value and became lower than the fracture strength of the bulk. The new reinforcement structures have a possibility to avoid the fracture of the bulks and to realize a 400 MHz NMR spectrometer.
Structure and optical properties of evaporated films of the Cr- and V-group metals
NASA Technical Reports Server (NTRS)
Nestell, J. E., Jr.; Christy, R. W.; Cohen, M. H.; Ruben, G. C.
1980-01-01
Thin films of Cr, Mo, and W rapidly evaporated in high vacuum (5 x 10 to the -7th torr) onto room-temperature substrates show anomalously low reflectance (compared to bulk samples). From electron and X-ray diffraction and electron microscopy, the normal bcc crystal structure is found, but with very fine grains. Columnar grains about 100 A in diameter were separated by a less dense grain-boundary network about 10-A wide. The measured optical conductivity agrees with an inhomogeneous-medium model that assumes the normal crystalline conductivity for the grain interiors, with model parameters that correlate to the observed columnar grain size. In contrast, V and Nb films rapidly evaporated onto room-temperature substrates have the reflectance of bulk crystalline material. On liquid-nitrogen temperature substrates, however, V and Nb have normal bcc crystal structure but with small flat-plate grains, and the same model, with appropriate parameters, accounts for the optical conductivity. The difference between these two groups apparently depends on residual gases segregated at the grain boundaries in the Cr-group films.
NASA Astrophysics Data System (ADS)
Fan, Cang; Liaw, P. K.; Haas, V.; Wall, J. J.; Choo, H.; Inoue, A.; Liu, C. T.
2006-07-01
Based on a systematic study of pair distribution functions, carried out at cryogenic and ambient temperatures, on as-cast and crystallized ternary Zr-based bulk amorphous alloys (BAAs), we found that the atoms in BAAs are inhomogenously distributed at a local atomic level. They exist as different clusters with significantly shorter bond lengths than their crystallized counterpart structures—intermetallic compounds, and these structures exist stably in the amorphous state. This results in additional free volume, which is about ˜7% larger than that measured by the Archimedes method. The compressive strength measured at ˜77K was found to be ˜16% larger than that measured at 298K . In this study, an amorphous structural model is proposed, in which strongly bonded clusters acting as units are randomly distributed and strongly correlated to one another, as the free volume forms between clusters. Simulations with reverse Monte Carlo were performed by combining icosehadral and cubic structures as the initial structures for the BAA. The simulations show results consistent with our model. An attempt has been made to connect the relationship between amorphous structures and their mechanical properties.
Electronic, magnetic and structural properties of Co3O4 (100) surface: a DFT+U study
NASA Astrophysics Data System (ADS)
Hashim, Ameerul Hazeeq; Zayed, Ala'Omar Hasan; Zain, Sharifuddin Md; Lee, Vannajan Sanghiran; Said, Suhana Mohd
2018-01-01
The three most stable (100), (110), and (111) surfaces exposed by Co3O4 are effective catalysts for various oxidation reactions. Among these surfaces, (100) has not yet received ample attention. In this study, we investigated the structural, electronic and magnetic properties of Co3O4 (100) surface using density functional theory calculations. By considering both stoichiometric and nonstoichiometric surface structures of the two possible terminations, A and B. Besides the greater stability of the newly proposed stoichiometric models compared to nonstoichiometric models reported in previous studies, the results show that the B termination is energetically preferred over the entire range of oxygen chemical potentials. Unlike the bulk, Co3+ octahedral ions become magnetic at the surface, which leads to interesting surface magnetic properties. Density of states (DOS) indicate a small band gap of 1.15 eV for the B-stoichiometric model, due to the presence of surface states in the bulk band gap. More polar surface with a very narrow band gap is found in the A-nonstoichiometric model. These surface states may play an important role in the magnetism and metallicity observed experimentally in several Co3O4 systems.
Bulk Comptonization by Turbulence in Black Hole Accretion Discs
NASA Astrophysics Data System (ADS)
Kaufman, Jason
Radiation pressure dominated accretion discs may have turbulent velocities that exceed the electron thermal velocities. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. We discuss how to self-consistently resolve and interpret this effect in calculations of spectra of radiation MHD simulations. In particular, we show that this effect is dominated by radiation viscous dissipation and can be treated as thermal Comptonization with an equivalent temperature. We investigate whether bulk Comptonization may provide a physical basis for warm Comptonization models of the soft X-ray excess in AGN. We characterize our results with temperatures and optical depths to make contact with other models of this component. We show that bulk Comptonization shifts the Wien tail to higher energy and lowers the gas temperature, broadening the spectrum. More generally, we model the dependence of this effect on a wide range of fundamental accretion disc parameters, such as mass, luminosity, radius, spin, inner boundary condition, and the alpha parameter. Because our model connects bulk Comptonization to one dimensional vertical structure temperature profiles in a physically intuitive way, it will be useful for understanding this effect in future simulations run in new regimes. We also develop a global Monte Carlo code to study this effect in global radiation MHD simulations. This code can be used more broadly to compare global simulations with observed systems, and in particular to investigate whether magnetically dominated discs can explain why observed high Eddington accretion discs appear to be thermally stable.
Cosmic bulk flow and the local motion from Cosmicflows-2
NASA Astrophysics Data System (ADS)
Hoffman, Yehuda; Courtois, Hélène M.; Tully, R. Brent
2015-06-01
Full sky surveys of peculiar velocity are arguably the best way to map the large-scale structure (LSS) out to distances of a few × 100 h-1 Mpc. Using the largest and most accurate ever catalogue of galaxy peculiar velocities Cosmicflows-2, the LSS has been reconstructed by means of the Wiener filter (WF) and constrained realizations (CRs) assuming as a Bayesian prior model the Λ cold dark matter model with the WMAP inferred cosmological parameters. This paper focuses on studying the bulk flow of the local flow field, defined as the mean velocity of top-hat spheres with radii ranging out to R = 500 h-1 Mpc. The estimated LSS, in general, and the bulk flow, in particular, are determined by the tension between the observational data and the assumed prior model. A pre-requisite for such an analysis is the requirement that the estimated bulk flow is consistent with the prior model. Such a consistency is found here. At R = 50 (150) h-1 Mpc, the estimated bulk velocity is 250 ± 21 (239 ± 38) km s-1. The corresponding cosmic variance at these radii is 126 (60) km s-1, which implies that these estimated bulk flows are dominated by the data and not by the assumed prior model. The estimated bulk velocity is dominated by the data out to R ≈ 200 h-1 Mpc, where the cosmic variance on the individual supergalactic Cartesian components (of the rms values) exceeds the variance of the CRs by at least a factor of 2. The SGX and SGY components of the cosmic microwave background dipole velocity are recovered by the WF velocity field down to a very few km s-1. The SGZ component of the estimated velocity, the one that is most affected by the zone of avoidance, is off by 126 km s-1 (an almost 2σ discrepancy). The bulk velocity analysis reported here is virtually unaffected by the Malmquist bias and very similar results are obtained for the data with and without the bias correction.
Structural Analysis of MoS2 and other 2D layered materials using LEEM/LEED-I(V) and STM
NASA Astrophysics Data System (ADS)
Grady, Maxwell; Dai, Zhongwei; Jin, Wencan; Dadap, Jerry; Osgood, Richard; Sadowski, Jerzy; Pohl, Karsten
Layered two-dimensional materials, such as molybdenum disulfide, MoS2, are of interest for the development of many types of novel electronic devices. To fully understand the interfaces between these new materials, the atomic reconstructions at their surfaces must be understood. Low Energy Electron Microscopy and Diffraction, LEEM/ μLEED, present a unique method for rapid material characterization in real space and reciprocal space with high resolution. Here we present a study of the surface structure of 2H-MoS2 using μLEED intensity-voltage analysis. To aid this analysis, software is under development to automate the procedure of extracting I(V) curves from LEEM and LEED data. When matched with computational modeling, this data provides information with angstrom level resolution concerning the three dimensional atomic positions. We demonstrate that the surface structure of bulk MoS2 is distinct from the bulk crystal structure and exhibits a smaller surface relaxation at 320K compared to previous results at 95K. Furthermore, suspended monolayer samples exhibit large interlayer relaxations compared to the bulk surface termination. Further techniques for refining layer thickness determination are under development.
Probe for contamination detection in recyclable materials
Taleyarkhan, Rusi
2003-08-05
A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.
NASA Technical Reports Server (NTRS)
Mock, W. D.; Latham, R. A.
1982-01-01
The NASTRAN model plan for the wing structure was expanded in detail to generate the NASTRAN model for this substructure. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. The wing substructure model was thoroughly checked out for continuity, connectivity, and constraints. This substructure was processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail model. Finally, a demonstration and validation processing of this substructure was accomplished using the NASTRAN finite element program. The bulk data deck, stiffness matrices, and SIC output data were delivered.
NASA Technical Reports Server (NTRS)
Mock, W. D.; Latham, R. A.
1982-01-01
The NASTRAN model plan for the fuselage structure was expanded in detail to generate the NASTRAN model for this substructure. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. The fuselage substructure model was thoroughly checked out for continuity, connectivity, and constraints. This substructure was processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail model. Finally, a demonstration and validation processing of this substructure was accomplished using the NASTRAN finite element program. The bulk data deck, stiffness matrices, and SIC output data were delivered.
Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin
2014-06-01
Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.
A Combined Molecular Dynamics and Experimental Study of Doped Polypyrrole.
Fonner, John M; Schmidt, Christine E; Ren, Pengyu
2010-10-01
Polypyrrole (PPy) is a biocompatible, electrically conductive polymer that has great potential for battery, sensor, and neural implant applications. Its amorphous structure and insolubility, however, limit the experimental techniques available to study its structure and properties at the atomic level. Previous theoretical studies of PPy in bulk are also scarce. Using ab initio calculations, we have constructed a molecular mechanics force field of chloride-doped PPy (PPyCl) and undoped PPy. This model has been designed to integrate into the OPLS force field, and parameters are available for the Gromacs and TINKER software packages. Molecular dynamics (MD) simulations of bulk PPy and PPyCl have been performed using this force field, and the effects of chain packing and electrostatic scaling on the bulk polymer density have been investigated. The density of flotation of PPyCl films has been measured experimentally. Amorphous X-ray diffraction of PPyCl was obtained and correlated with atomic structures sampled from MD simulations. The force field reported here is foundational for bridging the gap between experimental measurements and theoretical calculations for PPy based materials.
A magnetic levitation rotating plate model based on high-Tc superconducting technology
NASA Astrophysics Data System (ADS)
Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang
2017-09-01
With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.
On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome
2017-01-10
benchmarks of conformational sampling methods and their all-atom force fields plus solvent descriptions to accurately model structural transitions on a...atom simulations of proteins is the replacement of explicit water interactions with a continuum description of treating implicitly the bulk physical... structure was reported by Amarasinghe and coworkers (Leung et al., 2015) of the Ebola nucleoprotein NP in complex with a 28-residue peptide extracted
Ueda, Masanori; Iwaki, Masafumi; Nishihara, Tokihiro; Satoh, Yoshio; Hashimoto, Ken-ya
2008-04-01
This paper describes a circuit model for the analysis of nonlinearity in the filters based on radiofrequency (RF) bulk acoustic wave (BAW) resonators. The nonlinear output is expressed by a current source connected parallel to the linear resonator. Amplitude of the nonlinear current source is programmed proportional to the product of linear currents flowing in the resonator. Thus, the nonlinear analysis is performed by the common linear analysis, even for complex device structures. The analysis is applied to a ladder-type RF BAW filter, and frequency dependence of the nonlinear output is discussed. Furthermore, this analysis is verified through comparison with experiments.
Towards a bulk description of higher spin SYK
NASA Astrophysics Data System (ADS)
González, Hernán A.; Grumiller, Daniel; Salzer, Jakob
2018-05-01
We consider on the bulk side extensions of the Sachdev-Ye-Kitaev (SYK) model to Yang-Mills and higher spins. To this end we study generalizations of the Jackiw-Teitelboim (JT) model in the BF formulation. Our main goal is to obtain generalizations of the Schwarzian action, which we achieve in two ways: by considering the on-shell action supplemented by suitable boundary terms compatible with all symmetries, and by applying the Lee-Wald-Zoupas formalism to analyze the symplectic structure of dilaton gravity. We conclude with a discussion of the entropy (including log-corrections from higher spins) and a holographic dictionary for the generalized SYK/JT correspondence.
Structural properties of thiophenes investigated with simulations of a coarse-grained model
NASA Astrophysics Data System (ADS)
Luettmer-Strathmann, Jutta; Almutairi, Amani
Thiophenes have important applications in organic electronics, energy conversion, and storage. The interfacial layer of an organic semiconductor in contact with a metal electrode has important effects on the performance of thin-film devices. However, the structure of this layer is not easy to model. In recent work, we developed a coarse-grained model for alpha-oligothiophenes in the bulk and near gold surfaces. We describe the molecules as linear chains of bonded, discotic particles with Gay-Berne potential interactions between non-bonded ellipsoids. In this work, we investigate structural properties of thiophenes with simulations of our coarse-grained model.
Diffused junction p(+)-n solar cells in bulk GaAs. II - Device characterization and modelling
NASA Technical Reports Server (NTRS)
Keeney, R.; Sundaram, L. M. G.; Rode, H.; Bhat, I.; Ghandhi, S. K.; Borrego, J. M.
1984-01-01
The photovoltaic characteristics of p(+)-n junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are presented in detail. Quantum efficiency measurements were analyzed and compared to computer simulations of the cell structure in order to determine material parameters such as diffusion length, surface recombination velocity and junction depth. From the results obtained it is projected that proper optimization of the cell parameters can increase the efficiency of the cells to close to 20 percent.
NASA Astrophysics Data System (ADS)
Rahaman, Md. Mashiur; Islam, Hafizul; Islam, Md. Tariqul; Khondoker, Md. Reaz Hasan
2017-12-01
Maneuverability and resistance prediction with suitable accuracy is essential for optimum ship design and propulsion power prediction. This paper aims at providing some of the maneuverability characteristics of a Japanese bulk carrier model, JBC in calm water using a computational fluid dynamics solver named SHIP Motion and OpenFOAM. The solvers are based on the Reynolds average Navier-Stokes method (RaNS) and solves structured grid using the Finite Volume Method (FVM). This paper comprises the numerical results of calm water test for the JBC model with available experimental results. The calm water test results include the total drag co-efficient, average sinkage, and trim data. Visualization data for pressure distribution on the hull surface and free water surface have also been included. The paper concludes that the presented solvers predict the resistance and maneuverability characteristics of the bulk carrier with reasonable accuracy utilizing minimum computational resources.
NASA Technical Reports Server (NTRS)
Massman, William J.
1987-01-01
The semianalytical model outlined in a previous study (Massman, 1987) to describe momentum exchange between the atmosphere and vegetated surfaces is extended to include the exchange of heat. The methods employed are based on one-dimensional turbulent diffusivities, and use analytical solutions to the steady-state diffusion equation. The model is used to assess the influence that the canopy foliage structure and density, the wind profile structure within the canopy, and the shelter factor can have upon the inverse surface Stanton number (kB exp -1), as well as to explore the consequences of introducing a scalar displacement height which can be different from the momentum displacement height. In general, the triangular foliage area density function gives results which agree more closely with observations than that for constant foliage area density. The intended application of this work is for parameterizing the bulk aerodynamic resistances for heat and momentum exchange for use within large-scale models of plant-atmosphere exchanges.
First-principles simulation on Seebeck coefficient in silicon nanowires
NASA Astrophysics Data System (ADS)
Nakamura, Koichi
2017-06-01
The Seebeck coefficients of silicon nanowires (SiNWs) were simulated on the basis of first-principles calculation using various atomistic structure models. The electronic band structures of fully hydrogen-terminated SiNW models give the correct image of quantum mechanical confinement from bulk silicon to SiNW for each axial direction, and the change in the density of states by dimensional reduction to SiNW enhances the thermoelectric performance in terms of the Seebeck coefficient, compared with those of bulk silicon and silicon nanosheets. The uniaxial tensile strain for the SiNW models does not strongly affect the Seebeck coefficient even for the SiNW system with giant piezoresistivity. In contrast, dangling bonds on a wire wall sharply reduce the Seebeck coefficient of SiNW and totally degrade thermoelectric performance from the viewpoint of the power factor. The exclusion of dangling bonds is a key element for the design and application of high-performance thermoelectric nanowires of semiconducting materials.
NASA Astrophysics Data System (ADS)
Ghosh, S.; Manchon, A.
2018-04-01
Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three-dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore our model accounts for the spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large dampinglike torque reported recently is more likely attributed to the Berry curvature of interfacial states, while spin Hall torque remains small even in the bulk-dominated regime.
Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses
Zhang, Pei; Maldonis, Jason J.; Besser, M. F.; ...
2016-03-05
Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr 50Cu 35Al 15 and Zr 50Cu 45Al 5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr 50Cu 35Al 15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, T g, than in Zr 50Cu 45Al 5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr 50Cu 35Al 15more » on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less
Structural investigation of the (010) surface of the Al13 Fe4 catalyst.
Ledieu, J; Gaudry, É; Loli, L N Serkovic; Villaseca, S Alarcón; de Weerd, M-C; Hahne, M; Gille, P; Grin, Y; Dubois, J-M; Fournée, V
2013-02-15
We have investigated the structure of the Al(13)Fe(4)(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al atoms, each centered by a protruding Fe atom. These motifs are interconnected via additional Al atoms referred to as "glue" atoms which partially desorb above 873 K. The surface structure of lower atomic density compared to the bulk P plane is explained by a strong Fe-Al-Fe covalent polar interaction that preserves intact clusters at the surface. The proposed surface model with identified Fe-containing atomic ensembles could explain the Al(13)Fe(4) catalytic properties recently reported in line with the site-isolation concept [M. Armbrüster et al., Nat. Mater. 11, 690 (2012)].
NASA Technical Reports Server (NTRS)
Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo
2012-01-01
A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow wrm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.
NASA Astrophysics Data System (ADS)
Iguchi, Takamichi; Matsui, Toshihisa; Tokay, Ali; Kollias, Pavlos; Tao, Wei-Kuo
2012-12-01
A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow warm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.
Nature of adsorption on TiC(111) investigated with density-functional calculations
NASA Astrophysics Data System (ADS)
Ruberto, Carlo; Lundqvist, Bengt I.
2007-06-01
Extensive density-functional calculations are performed for chemisorption of atoms in the three first periods (H, B, C, N, O, F, Al, Si, P, S, and Cl) on the polar TiC(111) surface. Calculations are also performed for O on TiC(001), for full O(1×1) monolayer on TiC(111), as well as for bulk TiC and for the clean TiC(111) and (001) surfaces. Detailed results concerning atomic structures, energetics, and electronic structures are presented. For the bulk and the clean surfaces, previous results are confirmed. In addition, detailed results are given on the presence of C-C bonds in the bulk and at the surface, as well as on the presence of a Ti-based surface resonance (TiSR) at the Fermi level and of C-based surface resonances (CSR’s) in the lower part of the surface upper valence band. For the adsorption, adsorption energies Eads and relaxed geometries are presented, showing great variations characterized by pyramid-shaped Eads trends within each period. An extraordinarily strong chemisorption is found for the O atom, 8.8eV /adatom. On the basis of the calculated electronic structures, a concerted-coupling model for the chemisorption is proposed, in which two different types of adatom-substrate interactions work together to provide the obtained strong chemisorption: (i) adatom-TiSR and (ii) adatom-CSR’s. This model is used to successfully describe the essential features of the calculated Eads trends. The fundamental nature of this model, based on the Newns-Anderson model, should make it apt for general application to transition-metal carbides and nitrides and for predictive purposes in technological applications, such as cutting-tool multilayer coatings and MAX phases.
Scalable nanohelices for predictive studies and enhanced 3D visualization.
Meagher, Kwyn A; Doblack, Benjamin N; Ramirez, Mercedes; Davila, Lilian P
2014-11-12
Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications. For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately. To study the effect of local structure on the properties of these complex geometries one must develop realistic models. To date, software packages are rather limited in creating atomistic helical models. This work focuses on producing atomistic models of silica glass (SiO₂) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of "bulk" silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented. The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix. With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions. The second method involves a more robust code which allows flexibility in modeling nanohelical structures. This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models. Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created. An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material. In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures. One application of these methods is the recent study of nanohelices via MD simulations for mechanical energy harvesting purposes.
Molecular modeling the microstructure and phase behavior of bulk and inhomogeneous complex fluids
NASA Astrophysics Data System (ADS)
Bymaster, Adam
Accurate prediction of the thermodynamics and microstructure of complex fluids is contingent upon a model's ability to capture the molecular architecture and the specific intermolecular and intramolecular interactions that govern fluid behavior. This dissertation makes key contributions to improving the understanding and molecular modeling of complex bulk and inhomogeneous fluids, with an emphasis on associating and macromolecular molecules (water, hydrocarbons, polymers, surfactants, and colloids). Such developments apply broadly to fields ranging from biology and medicine, to high performance soft materials and energy. In the bulk, the perturbed-chain statistical associating fluid theory (PC-SAFT), an equation of state based on Wertheim's thermodynamic perturbation theory (TPT1), is extended to include a crossover correction that significantly improves the predicted phase behavior in the critical region. In addition, PC-SAFT is used to investigate the vapor-liquid equilibrium of sour gas mixtures, to improve the understanding of mercaptan/sulfide removal via gas treating. For inhomogeneous fluids, a density functional theory (DFT) based on TPT1 is extended to problems that exhibit radially symmetric inhomogeneities. First, the influence of model solutes on the structure and interfacial properties of water are investigated. The DFT successfully describes the hydrophobic phenomena on microscopic and macroscopic length scales, capturing structural changes as a function of solute size and temperature. The DFT is used to investigate the structure and effective forces in nonadsorbing polymer-colloid mixtures. A comprehensive study is conducted characterizing the role of polymer concentration and particle/polymer size ratio on the structure, polymer induced depletion forces, and tendency towards colloidal aggregation. The inhomogeneous form of the association functional is used, for the first time, to extend the DFT to associating polymer systems, applicable to any association scheme. Theoretical results elucidate how reversible bonding governs the structure of a fluid near a surface and in confined environments, the molecular connectivity (formation of supramolecules, star polymers, etc.) and the phase behavior of the system. Finally, the DFT is extended to predict the inter- and intramolecular correlation functions of polymeric fluids. A theory capable of providing such local structure is important to understanding how local chemistry, branching, and bond flexibility affect the thermodynamic properties of polymers.
Perovskite oxides: Oxygen electrocatalysis and bulk structure
NASA Technical Reports Server (NTRS)
Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest
1987-01-01
Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.
Electronic transport in disordered MoS2 nanoribbons
NASA Astrophysics Data System (ADS)
Ridolfi, Emilia; Lima, Leandro R. F.; Mucciolo, Eduardo R.; Lewenkopf, Caio H.
2017-01-01
We study the electronic structure and transport properties of zigzag and armchair monolayer molybdenum disulfide nanoribbons using an 11-band tight-binding model that accurately reproduces the material's bulk band structure near the band gap. We study the electronic properties of pristine zigzag and armchair nanoribbons, paying particular attention to the edges states that appear within the MoS2 bulk gap. By analyzing both their orbital composition and their local density of states, we find that in zigzag-terminated nanoribbons these states can be localized at a single edge for certain energies independent of the nanoribbon width. We also study the effects of disorder in these systems using the recursive Green's function technique. We show that for the zigzag nanoribbons, the conductance due to the edge states is strongly suppressed by short-range disorder such as vacancies. In contrast, the local density of states still shows edge localization. We also show that long-range disorder has a small effect on the transport properties of nanoribbons within the bulk gap energy window.
NASA Astrophysics Data System (ADS)
Menichetti, Roberto; Kanekal, Kiran H.; Kremer, Kurt; Bereau, Tristan
2017-09-01
The partitioning of small molecules in cell membranes—a key parameter for pharmaceutical applications—typically relies on experimentally available bulk partitioning coefficients. Computer simulations provide a structural resolution of the insertion thermodynamics via the potential of mean force but require significant sampling at the atomistic level. Here, we introduce high-throughput coarse-grained molecular dynamics simulations to screen thermodynamic properties. This application of physics-based models in a large-scale study of small molecules establishes linear relationships between partitioning coefficients and key features of the potential of mean force. This allows us to predict the structure of the insertion from bulk experimental measurements for more than 400 000 compounds. The potential of mean force hereby becomes an easily accessible quantity—already recognized for its high predictability of certain properties, e.g., passive permeation. Further, we demonstrate how coarse graining helps reduce the size of chemical space, enabling a hierarchical approach to screening small molecules.
Perovskite-type oxides - Oxygen electrocatalysis and bulk structure
NASA Technical Reports Server (NTRS)
Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, E.
1988-01-01
Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.
NASA Technical Reports Server (NTRS)
Toplis, M. J.; Mizzon, H.; Forni, O.; Monnereau, M.; Barrat, J-A.; Prettyman, T. H.; McSween, H. Y.; McCoy, T. J.; Mittlefehldt, D. W.; De Sanctis, M. C.;
2012-01-01
While the HEDs provide an extremely useful basis for interpreting data from the Dawn mission, there is no guarantee that they provide a complete vision of all possible crustal (and possibly mantle) lithologies that are exposed at the surface of Vesta. With this in mind, an alternative approach is to identify plausible bulk compositions and use mass-balance and geochemical modelling to predict possible internal structures and crust/mantle compositions and mineralogies. While such models must be consistent with known HED samples, this approach has the potential to extend predictions to thermodynamically plausible rock types that are not necessarily present in the HED collection. Nine chondritic bulk compositions are considered (CI, CV, CO, CM, H, L, LL, EH, EL). For each, relative proportions and densities of the core, mantle, and crust are quantified. This calculation is complicated by the fact that iron may occur in metallic form (in the core) and/or in oxidized form (in the mantle and crust). However, considering that the basaltic crust has the composition of Juvinas and assuming that this crust is in thermodynamic equilibrium with the residual mantle, it is possible to calculate a single solution to this problem for a given bulk composition. Of the nine bulk compositions tested, solutions corresponding to CI and LL groups predicted a negative metal fraction and were not considered further. Solutions for enstatite chondrites imply significant oxidation relative to the starting materials and these solutions too are considered unlikely. For the remaining bulk compositions, the relative proportion of crust to bulk silicate is typically in the range 15 to 20% corresponding to crustal thicknesses of 15 to 20 km for a porosity-free Vesta-sized body. The mantle is predicted to be largely dominated by olivine (greater than 85%) for carbonaceous chondrites, but to be a roughly equal mixture of olivine and pyroxene for ordinary chondrite precursors. All bulk compositions have a significant core, but the relative proportions of metal and sulphide can be widely different. Using these data, total core size (metal+ sulphide) and average core densities can be calculated, providing a useful reference frame within which to consider geophysical/gravity data of the Dawn mission. Further to these mass-balance calculations, the MELTS thermodynamic calculator has been used to assess to what extent chondritic bulk compositions can produce Juvinas-like liquids at relevant degrees of partial melting/crystallization. This work will refine acceptable bulk compositions and predict the mineralogy and composition of the associated solid and liquid products over wide ranges of partial melting and crystallization, providing a useful and self-consistent reference frame for interpretation of the data from the VIR and GRaND instruments onboard the Dawn spacecraft.
A structural model for surface-enhanced stabilization in some metallic glass formers
NASA Astrophysics Data System (ADS)
Levchenko, Elena V.; Evteev, Alexander V.; Yavari, Alain R.; Louzguine-Luzgin, Dmitri V.; Belova, Irina V.; Murch, Graeme E.
2013-01-01
A structural model for surface-enhanced stabilization in some metallic glass formers is proposed. In this model, the alloy surface structure is represented by five-layer Kagomé-net-based lateral ordering. Such surface structure has intrinsic abilities to stabilize icosahedral-like short-range order in the bulk, acting as 'a cloak of liquidity'. In particular, recent experimental observations of surface-induced lateral ordering and a very high glass forming ability of the liquid alloy Au49Ag5.5Pd2.3Cu26.9Si16.3 can be united using this structural model. This model may be useful for the interpretation of surface structure of other liquid alloys with a high glass forming ability. In addition, it suggests the possibility of guiding the design of the surface coating of solid containers for the stabilization of undercooled liquids.
NASA Astrophysics Data System (ADS)
Bertazzi, Francesco; Goano, Michele; Calciati, Marco; Zhou, Xiangyu; Ghione, Giovanni; Bellotti, Enrico
2014-02-01
Auger recombination is at the hearth of the debate on droop, the decline of the internal quantum efficiency at high injection levels. The theory of Auger recombination in quantum wells is reviewed. The proposed microscopic model is based on a full-Brillouin-zone description of the electronic structure obtained by nonlocal empirical pseudopotential calculations and the linear combination of bulk bands. The lack of momentum conservation along the confining direction in InGaN/GaN quantum wells enhances direct (i.e. phononless) Auger transitions, leading to Auger coefficients in the range of those predicted for phonon-dressed processes in bulk InGaN.
NASA Astrophysics Data System (ADS)
Hamioud, L.; Boumaza, A.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.; Khenata, R.; Omran, S. Bin
2016-06-01
The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1-x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu-Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu-Cohen generalised gradient approximation and the modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard's law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.
Structure-based coarse-graining for inhomogeneous liquid polymer systems.
Fukuda, Motoo; Zhang, Hedong; Ishiguro, Takahiro; Fukuzawa, Kenji; Itoh, Shintaro
2013-08-07
The iterative Boltzmann inversion (IBI) method is used to derive interaction potentials for coarse-grained (CG) systems by matching structural properties of a reference atomistic system. However, because it depends on such thermodynamic conditions as density and pressure of the reference system, the derived CG nonbonded potential is probably not applicable to inhomogeneous systems containing different density regimes. In this paper, we propose a structure-based coarse-graining scheme to devise CG nonbonded potentials that are applicable to different density bulk systems and inhomogeneous systems with interfaces. Similar to the IBI, the radial distribution function (RDF) of a reference atomistic bulk system is used for iteratively refining the CG nonbonded potential. In contrast to the IBI, however, our scheme employs an appropriately estimated initial guess and a small amount of refinement to suppress transfer of the many-body interaction effects included in the reference RDF into the CG nonbonded potential. To demonstrate the application of our approach to inhomogeneous systems, we perform coarse-graining for a liquid perfluoropolyether (PFPE) film coated on a carbon surface. The constructed CG PFPE model favorably reproduces structural and density distribution functions, not only for bulk systems, but also at the liquid-vacuum and liquid-solid interfaces, demonstrating that our CG scheme offers an easy and practical way to accurately determine nonbonded potentials for inhomogeneous systems.
Wang, Zhi-Wu; Hamilton-Brehm, Scott D; Lochner, Adriane; Elkins, James G; Morrell-Falvey, Jennifer L
2011-02-01
In this study, a hydrolysate diffusion and utilization model was developed to examine factors influencing cellulolytic biofilm morphology. Model simulations using Caldicellulosiruptor obsidiansis revealed that the cellulolytic biofilm needs to generate more hydrolysate than it consumes to establish a higher than bulk solution intra-biofilm substrate concentration to support its growth. This produces a hydrolysate surplus that diffuses through the thin biofilm structure into the bulk solution, which gives rise to a uniform growth rate and hence the homogeneous morphology of the cellulolytic biofilm. Model predictions were tested against experimental data from a cellulose-fermenting bioreactor and the results were consistent with the model prediction and indicated that only a small fraction (10-12%) of the soluble hydrolysis products are utilized by the biofilm. The factors determining the rate-limiting step of cellulolytic biofilm growth are also analyzed and discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.
2002-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.
NASA Astrophysics Data System (ADS)
Kweun, Joshua Minwoo; Li, Chenzhe; Zheng, Yongping; Cho, Maenghyo; Kim, Yoon Young; Cho, Kyeongjae
2016-05-01
Designing metal-oxides consisting of earth-abundant elements has been a crucial issue to replace precious metal catalysts. To achieve efficient screening of metal-oxide catalysts via bulk descriptors rather than surface descriptors, we investigated the relationship between the electronic structure of bulk and that of the surface for lanthanum-based perovskite oxides, LaMO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Through density functional theory calculations, we examined the d-band occupancy of the bulk and surface transition-metal atoms (nBulk and nSurf) and the adsorption energy of an oxygen atom (Eads) on (001), (110), and (111) surfaces. For the (001) surface, we observed strong correlation between the nBulk and nSurf with an R-squared value over 94%, and the result was interpreted in terms of ligand field splitting and antibonding/bonding level splitting. Moreover, the Eads on the surfaces was highly correlated with the nBulk with an R-squared value of more than 94%, and different surface relaxations could be explained by the bulk electronic structure (e.g., LaMnO3 vs. LaTiO3). These results suggest that a bulk-derived descriptor such as nBulk can be used to screen metal-oxide catalysts.
Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures
NASA Astrophysics Data System (ADS)
Prisk, T. R.; Hoffmann, C.; Kolesnikov, A. I.; Mamontov, E.; Podlesnyak, A. A.; Wang, X.; Kent, P. R. C.; Anovitz, L. M.
2018-05-01
Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factor reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10-100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.
Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prisk, Timothy; Hoffmann, Christina; Kolesnikov, Alexander I.
Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here in this paper, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factormore » reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10–100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.« less
Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures
Prisk, Timothy; Hoffmann, Christina; Kolesnikov, Alexander I.; ...
2018-05-09
Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here in this paper, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factormore » reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10–100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Kok Wee; Koshelev, Alexei E.
Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. In addition, we found that themore » interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. Lastly, the intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe 2As 2-xP x .« less
Surface nematic order in iron pnictides
NASA Astrophysics Data System (ADS)
Song, Kok Wee; Koshelev, Alexei E.
2016-09-01
Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. We found that the interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. The intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe2As2 -xPx .
Multi-Scale Modeling of the Gamma Radiolysis of Nitrate Solutions.
Horne, Gregory P; Donoclift, Thomas A; Sims, Howard E; Orr, Robin M; Pimblott, Simon M
2016-11-17
A multiscale modeling approach has been developed for the extended time scale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages: radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modeling. The first three components model the physical and chemical evolution of an isolated radiation chemical track and provide radiolysis yields, within the extremely low dose isolated track paradigm, as the input parameters for a bulk deterministic chemistry model. This approach to radiation chemical modeling has been tested by comparison with the experimentally observed yield of nitrite from the gamma radiolysis of sodium nitrate solutions. This is a complex radiation chemical system which is strongly dependent on secondary reaction processes. The concentration of nitrite is not just dependent upon the evolution of radiation track chemistry and the scavenging of the hydrated electron and its precursors but also on the subsequent reactions of the products of these scavenging reactions with other water radiolysis products. Without the inclusion of intratrack chemistry, the deterministic component of the multiscale model is unable to correctly predict experimental data, highlighting the importance of intratrack radiation chemistry in the chemical evolution of the irradiated system.
Validation of Microphysical Schemes in a CRM Using TRMM Satellite
NASA Astrophysics Data System (ADS)
Li, X.; Tao, W.; Matsui, T.; Liu, C.; Masunaga, H.
2007-12-01
The microphysical scheme in the Goddard Cumulus Ensemble (GCE) model has been the most heavily developed component in the past decade. The cloud-resolving model now has microphysical schemes ranging from the original Lin type bulk scheme, to improved bulk schemes, to a two-moment scheme, to a detailed bin spectral scheme. Even with the most sophisticated bin scheme, many uncertainties still exist, especially in ice phase microphysics. In this study, we take advantages of the long-term TRMM observations, especially the cloud profiles observed by the precipitation radar (PR), to validate microphysical schemes in the simulations of Mesoscale Convective Systems (MCSs). Two contrasting cases, a midlatitude summertime continental MCS with leading convection and trailing stratiform region, and an oceanic MCS in tropical western Pacific are studied. The simulated cloud structures and particle sizes are fed into a forward radiative transfer model to simulate the TRMM satellite sensors, i.e., the PR, the TRMM microwave imager (TMI) and the visible and infrared scanner (VIRS). MCS cases that match the structure and strength of the simulated systems over the 10-year period are used to construct statistics of different sensors. These statistics are then compared with the synthetic satellite data obtained from the forward radiative transfer calculations. It is found that the GCE model simulates the contrasts between the continental and oceanic case reasonably well, with less ice scattering in the oceanic case comparing with the continental case. However, the simulated ice scattering signals for both PR and TMI are generally stronger than the observations, especially for the bulk scheme and at the upper levels in the stratiform region. This indicates larger, denser snow/graupel particles at these levels. Adjusting microphysical schemes in the GCE model according the observations, especially the 3D cloud structure observed by TRMM PR, result in a much better agreement.
The (111) Surface of NaAu 2. Structure, Composition, and Stability
Kwolek, Emma J.; Widmer, Roland; Gröning, Oliver; ...
2014-12-17
The (111) surface of single-crystal NaAu 2 is a model for catalytically active, powdered NaAu 2. We prepare and characterize this surface with a broad suite of techniques. Preparation in ultrahigh vacuum consists of the traditional approach of ion bombardment (to remove impurities) and thermal annealing (to restore surface order). Both of these steps cause loss of sodium (Na), and repeated treatments eventually trigger conversion of the surface and near-surface regions to crystalline gold. The bulk has a limited ability to repopulate the surface Na. Under conditions where Na depletion is minimized, electron diffraction patterns are consistent with the bulk-terminatedmore » structure, and scanning tunneling microscopy reveals mesa-like features with lateral dimensions of a few tens of nanometers. The tops of the mesas do not possess fine structure characteristic of a periodic lattice, suggesting that the surface layer is disordered under the conditions of these experiments.« less
A bulk viscosity approach for shock capturing on unstructured grids
NASA Astrophysics Data System (ADS)
Shoeybi, Mohammad; Larsson, Nils Johan; Ham, Frank; Moin, Parviz
2008-11-01
The bulk viscosity approach for shock capturing (Cook and Cabot, JCP, 2005) augments the bulk part of the viscous stress tensor. The intention is to capture shock waves without dissipating turbulent structures. The present work extends and modifies this method for unstructured grids. We propose a method that properly scales the bulk viscosity with the grid spacing normal to the shock for unstructured grid for which the shock is not necessarily aligned with the grid. The magnitude of the strain rate tensor used in the original formulation is replaced with the dilatation, which appears to be more appropriate in the vortical turbulent flow regions (Mani et al., 2008). The original form of the model is found to have an impact on dilatational motions away form the shock wave, which is eliminated by a proposed localization of the bulk viscosity. Finally, to allow for grid adaptation around shock waves, an explicit/implicit time advancement scheme has been developed that adaptively identifies the stiff regions. The full method has been verified with several test cases, including 2D shock-vorticity entropy interaction, homogenous isotropic turbulence, and turbulent flow over a cylinder.
Thomas, Laura L; Tirado-Rives, Julian; Jorgensen, William L
2010-03-10
Quantum and molecular mechanics calculations for the Diels-Alder reactions of cyclopentadiene with 1,4-naphthoquinone, methyl vinyl ketone, and acrylonitrile have been carried out at the vacuum-water interface and in the gas phase. In conjunction with previous studies of these cycloadditions in dilute solution, a more complete picture of aqueous environmental effects emerges with implications for the origin of observed rate accelerations using heterogeneous aqueous suspensions, "on water" conditions. The pure TIP4P water slab maintains the bulk density and hydrogen-bonding properties in central water layers. The bulk region merges to vacuum over a ca. 5 A band with progressive diminution of the density and hydrogen bonding. The relative free energies of activation and transition structures for the reactions at the interface are found to be intermediate between those calculated in the gas phase and in bulk water; i.e., for the reaction with 1,4-naphthoquinone, the DeltaDeltaG(++) values relative to the gas phase are -3.6 and -7.3 kcal/mol at the interface and in bulk water, respectively. Thus, the results do not support the notion that a water surface is more effective than bulk water for catalysis of such pericyclic reactions. The trend is in qualitative agreement with expectations based on density considerations and estimates of experimental rate constants for the gas phase, a heterogeneous aqueous suspension, and a dilute aqueous solution for the reaction of cyclopentadiene with methyl vinyl ketone. Computed energy pair distributions reveal a uniform loss of 0.5-1.0 hydrogen bond for the reactants and transition states in progressing from bulk water to the vacuum-water interface. Orientational effects are apparent at the surface; e.g., the carbonyl group in the methyl vinyl ketone transition structure is preferentially oriented into the surface. Also, the transition structure for the 1,4-naphthoquinone case is buried more in the surface, and the free energy of activation for this reaction is most similar to the result in bulk water.
Ngai, K L; Capaccioli, Simone; Paluch, Marian; Prevosto, Daniele
2014-05-22
When the thickness is reduced to nanometer scale, freestanding high molecular weight polymer thin films undergo large reduction of degree of cooperativity and coupling parameter n in the Coupling Model (CM). The finite-size effect together with the surfaces with high mobility make the α-relaxation time of the polymer in nanoconfinement, τ(α)(nano)(T), much shorter than τ(α)(bulk)(T) in the bulk. The consequence is avoidance of vitrification at and below the bulk glass transition temperature, T(g)(bulk), on cooling, and the freestanding polymer thin film remains at thermodynamic equilibrium at temperatures below T(g)(bulk). Molecular dynamics simulations have shown that the specific volume of the freestanding film is the same as the bulk glass-former at equilibrium at the same temperatures. Extreme nanoconfinement renders total or almost total removal of cooperativity of the α-relaxation, and τ(α)(nano)(T) becomes the same or almost the same as the JG β-relaxation time τ(β)(bulk)(T) of the bulk glass-former at equilibrium and at temperatures below T(g)(bulk). Taking advantage of being able to obtain τ(β)(bulk)(T) at equilibrium density below T(g)(bulk) by extreme nanoconfinement of the freestanding films, and using the CM relation between τ(α)(bulk)(T) and τ(β)(bulk)(T), we conclude that the Vogel-Fulcher-Tammann-Hesse (VFTH) dependence of τ(α)(bulk)(T) cannot hold for glass-formers in equilibrium at temperatures significantly below T(g)(bulk). In addition, τ(α)(bulk)(T) does not diverge at the Vogel temperature, T₀, as suggested by the VFTH-dependence and predicted by some theories of glass transition. Instead, τ(α)(bulk)(T) of the glass-former at equilibrium has a much weaker temperature dependence than the VFTH-dependence at temperature below T(g)(bulk) and even below T₀. This conclusion from our analysis is consistent with the temperature dependence of τ(α)(bulk)(T) found experimentally in polymers aged long enough time to attain the equilibrium state at various temperatures below T(g)(bulk).
NASA Astrophysics Data System (ADS)
Meeßen, C.; Sippel, J.; Scheck-Wenderoth, M.; Heine, C.; Strecker, M. R.
2018-02-01
Previous thermomechanical modeling studies indicated that variations in the temperature and strength of the crystalline crust might be responsible for the juxtaposition of domains with thin-skinned and thick-skinned crustal deformation along strike the foreland of the central Andes. However, there is no evidence supporting this hypothesis from data-integrative models. We aim to derive the density structure of the lithosphere by means of integrated 3-D density modeling, in order to provide a new basis for discussions of compositional variations within the crust and for future thermal and rheological modeling studies. Therefore, we utilize available geological and geophysical data to obtain a structural and density model of the uppermost 200 km of the Earth. The derived model is consistent with the observed Bouguer gravity field. Our results indicate that the crystalline crust in northern Argentina can be represented by a lighter upper crust (2,800 kg/m3) and a denser lower crust (3,100 kg/m3). We find new evidence for high bulk crustal densities >3,000 kg/m3 in the northern Pampia terrane. These could originate from subducted Puncoviscana wackes or pelites that ponded to the base of the crystalline crust in the late Proterozoic or indicate increasing bulk content of mafic material. The precise composition of the northern foreland crust, whether mafic or felsic, has significant implications for further thermomechanical models and the rheological behavior of the lithosphere. A detailed sensitivity analysis of the input parameters indicates that the model results are robust with respect to the given uncertainties of the input data.
Surface vibrational structure at alkane liquid/vapor interfaces
NASA Astrophysics Data System (ADS)
Esenturk, Okan; Walker, Robert A.
2006-11-01
Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C9H20) to n-heptadecane (C17H36), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.
Shaping Crystal-Crystal Phase Transitions
NASA Astrophysics Data System (ADS)
Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon
Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.
Structural Investigation of the (010) Surface of the Al13Fe4 Catalyst
NASA Astrophysics Data System (ADS)
Ledieu, J.; Gaudry, É.; Loli, L. N. Serkovic; Villaseca, S. Alarcón; de Weerd, M.-C.; Hahne, M.; Gille, P.; Grin, Y.; Dubois, J.-M.; Fournée, V.
2013-02-01
We have investigated the structure of the Al13Fe4(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al atoms, each centered by a protruding Fe atom. These motifs are interconnected via additional Al atoms referred to as “glue” atoms which partially desorb above 873 K. The surface structure of lower atomic density compared to the bulk P plane is explained by a strong Fe-Al-Fe covalent polar interaction that preserves intact clusters at the surface. The proposed surface model with identified Fe-containing atomic ensembles could explain the Al13Fe4 catalytic properties recently reported in line with the site-isolation concept [M. Armbrüster , Nat. Mater. 11, 690 (2012)NMAACR1476-1122].
Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films
NASA Astrophysics Data System (ADS)
Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva
2017-11-01
Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.
NASA Astrophysics Data System (ADS)
Hsu, David D.
Due to high nanointerfacial area to volume ratio, the properties of "nanoconfined" polymer thin films, blends, and composites become highly altered compared to their bulk homopolymer analogues. Understanding the structure-property mechanisms underlying this effect is an active area of research. However, despite extensive work, a fundamental framework for predicting the local and system-averaged thermomechanical properties as a function of configuration and polymer species has yet to be established. Towards bridging this gap, here, we present a novel, systematic coarse-graining (CG) method which is able to capture quantitatively, the thermomechanical properties of real polymer systems in bulk and in nanoconfined geometries. This method, which we call thermomechanically consistent coarse-graining (TCCG), is a two-bead-per-monomer CG hybrid approach through which bonded interactions are optimized to match the atomistic structure via the Iterative Boltzmann Inversion method (IBI), and nonbonded interactions are tuned to macroscopic targets through parametric studies. We validate the TCCG method by systematically developing coarse-grain models for a group of five specialized methacrylate-based polymers including poly(methyl methacrylate) (PMMA). Good correlation with bulk all-atom (AA) simulations and experiments is found for the temperature-dependent glass transition temperature (Tg) Flory-Fox scaling relationships, self-diffusion coefficients of liquid monomers, and modulus of elasticity. We apply this TCCG method also to bulk polystyrene (PS) using a comparable coarse-grain CG bead mapping strategy. The model demonstrates chain stiffness commensurate with experiments, and we utilize a density-correction term to improve the transferability of the elastic modulus over a 500 K range. Additionally, PS and PMMA models capture the unexplained, characteristically dissimilar scaling of Tg with the thickness of free-standing films as seen in experiments. Using vibrational density of states (VDOS) analysis, we discover that increasing backbone to sidechain mass ratio in CG models increases the amplitude of sidechain fluctuations associated with flexibility, and suppresses the free-surface Tg-nanoconfinement effect. This uncovers that intrinsic mass distribution and sidechain flexibility differences in the PS and PMMA chemical structure are central to explaining the dissimilarities in their free surface response. PS and PMMA models are subsequently combined in the supported bilayer film configuration to explore the local Tg-nanoconfinement effect associated with different interface types at nanometer resolution. We find that Tg gradients in the interphase regions where chain mobility deviates from the bulk are independent of the film thickness above a critical thickness and add by the principle of superposition below the critical thickness to good approximation. The analytical expressions describing the interphase regions and their interactions demonstrate geometric universality and can be used to derive accurate local and global Tg estimations for complex nanophase blends and nanocomposite configurations. Our studies ascertain the significance of molecular characteristics on nanoconfinement, and highlight the ability for chemistry-specific CG models to explore and predict thermomechanical property modification accompanying interfacial nanoconfinement.
Quantification of Processing Effects on Filament Wound Pressure Vessels
NASA Technical Reports Server (NTRS)
Aiello, Robert A.; Chamis, Christos C.
1999-01-01
A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the C C! end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be sued to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament would pressure vessels of all types of shells-of-revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.
Quantification of Processing Effects on Filament Wound Pressure Vessels. Revision
NASA Technical Reports Server (NTRS)
Aiello, Robert A.; Chamis, Christos C.
2002-01-01
A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be used to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament wound pressure vessels of all types of shells-of -revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.
Structure of marginally jammed polydisperse packings of frictionless spheres
NASA Astrophysics Data System (ADS)
Zhang, Chi; O'Donovan, Cathal B.; Corwin, Eric I.; Cardinaux, Frédéric; Mason, Thomas G.; Möbius, Matthias E.; Scheffold, Frank
2015-03-01
We model the packing structure of a marginally jammed bulk ensemble of polydisperse spheres. To this end we expand on the granocentric model [Clusel et al., Nature (London) 460, 611 (2009), 10.1038/nature08158], explicitly taking into account rattlers. This leads to a relationship between the characteristic parameters of the packing, such as the mean number of neighbors and the fraction of rattlers, and the radial distribution function g (r ) . We find excellent agreement between the model predictions for g (r ) and packing simulations, as well as experiments on jammed emulsion droplets. The observed quantitative agreement opens the path towards a full structural characterization of jammed particle systems for imaging and scattering experiments.
Molecular dynamics simulations to study the solvent influence on protein structure
NASA Astrophysics Data System (ADS)
Dominguez, Hector
2016-05-01
Molecular simulations were carried out to study the influence of different water models in two protein systems. Most of the solvents used in protein simulations, e.g., SPC/E or TIP3P, fail to reproduce the bulk water static dielectric constant. Recently a new water model, TIP4P/ɛ, which reproduces the experimental dielectric constant was reported. Therefore, simulations for two different proteins, Lysozyme and Ubiquitin with SPC/E, TIP3P and TIP4P/ɛ solvents were carried out. Dielectric constants and structural properties were calculated and comparisons were conducted. The structural properties between the three models are very similar, however, the dielectric constants are different in each case.
Using PAFEC as a preprocessor for COSMIC/NASTRAN
NASA Technical Reports Server (NTRS)
Gray, W. H.; Baudry, T. V.
1983-01-01
Programs for Automatic Finite Element Calculations (PAFEC) is a general purpose, three dimensional linear and nonlinear finite element program (ref. 1). PAFEC's features include free format input utilizing engineering keywords, powerful mesh generating facilities, sophisticated data base management procedures, and extensive data validation checks. Presented here is a description of a software interface that permits PAFEC to be used as a preprocessor for COSMIC/NASTRAN. This user friendly software, called PAFCOS, frees the stress analyst from the laborious and error prone procedure of creating and debugging a rigid format COSMIC/NASTRAN bulk data deck. By interactively creating and debugging a finite element model with PAFEC, thus taking full advantage of the free format engineering keyword oriented data structure of PAFEC, the amount of time spent during model generation can be drastically reduced. The PAFCOS software will automatically convert a PAFEC data structure into a COSMIC/NASTRAN bulk data deck. The capabilities and limitations of the PAFCOS software are fully discussed in the following report.
Disentangling the surface and bulk electronic structures of LaOFeAs
Zhang, P.; Ma, J.; Qian, T.; ...
2016-09-20
We performed a comprehensive angle-resolved photoemission spectroscopy study of the electronic band structure of LaOFeAs single crystals. We found that samples cleaved at low temperature show an unstable and very complicated band structure, whereas samples cleaved at high temperature exhibit a stable and clearer electronic structure. Using in situ surface doping with K and supported by first-principles calculations, we identify both surface and bulk bands. Our assignments are confirmed by the difference in the temperature dependence of the bulk and surface states.
Quantitative structure-activity relationship studies of threo-methylphenidate analogs.
Misra, Milind; Shi, Qing; Ye, Xiaocong; Gruszecka-Kowalik, Ewa; Bu, Wei; Liu, Zhanzhu; Schweri, Margaret M; Deutsch, Howard M; Venanzi, Carol A
2010-10-15
Complementary two-dimensional (2D) and three-dimensional (3D) Quantitative Structure-Activity Relationship (QSAR) techniques were used to derive a preliminary model for the dopamine transporter (DAT) binding affinity of 80 racemic threo-methylphenidate (MP) analogs. A novel approach based on using the atom-level E-state indices of the 14 common scaffold atoms in a sphere exclusion protocol was used to identify a test set for 2D- and 3D-QSAR model validation. Comparative Molecular Field Analysis (CoMFA) contour maps based on the structure-activity data of the training set indicate that the 2' position of the phenyl ring cannot tolerate much steric bulk and that addition of electron-withdrawing groups to the 3' or 4' positions of the phenyl ring leads to improved DAT binding affinity. In particular, the optimal substituents were found to be those whose bulk is mainly in the plane of the phenyl ring. Substituents with significant bulk above or below the plane of the ring led to decreased binding affinity. Suggested alterations to be explored in the design of new compounds are the placement at the 3' and 4' position of the phenyl ring of electron-withdrawing groups that lie chiefly in the plane of the ring, for example, halogen substituents on the 3',4'-benzo analog, 79. A complementary 2D-QSAR approach-partial least squares analysis using a reduced set of Molconn-Z descriptors-supports the CoMFA structure-activity interpretation that phenyl ring substitution is a major determinant of DAT binding affinity. The potential usefulness of the CoMFA models was demonstrated by the prediction of the binding affinity of methyl 2-(naphthalen-1-yl)-2-(piperidin-2-yl)acetate, an analog not in the original data set, to be in good agreement with the experimental value. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Häberlen, Oliver D.; Chung, Sai-Cheong; Stener, Mauro; Rösch, Notker
1997-03-01
A series of gold clusters spanning the size range from Au6 through Au147 (with diameters from 0.7 to 1.7 nm) in icosahedral, octahedral, and cuboctahedral structure has been theoretically investigated by means of a scalar relativistic all-electron density functional method. One of the main objectives of this work was to analyze the convergence of cluster properties toward the corresponding bulk metal values and to compare the results obtained for the local density approximation (LDA) to those for a generalized gradient approximation (GGA) to the exchange-correlation functional. The average gold-gold distance in the clusters increases with their nuclearity and correlates essentially linearly with the average coordination number in the clusters. An extrapolation to the bulk coordination of 12 yields a gold-gold distance of 289 pm in LDA, very close to the experimental bulk value of 288 pm, while the extrapolated GGA gold-gold distance is 297 pm. The cluster cohesive energy varies linearly with the inverse of the calculated cluster radius, indicating that the surface-to-volume ratio is the primary determinant of the convergence of this quantity toward bulk. The extrapolated LDA binding energy per atom, 4.7 eV, overestimates the experimental bulk value of 3.8 eV, while the GGA value, 3.2 eV, underestimates the experiment by almost the same amount. The calculated ionization potentials and electron affinities of the clusters may be related to the metallic droplet model, although deviations due to the electronic shell structure are noticeable. The GGA extrapolation to bulk values yields 4.8 and 4.9 eV for the ionization potential and the electron affinity, respectively, remarkably close to the experimental polycrystalline work function of bulk gold, 5.1 eV. Gold 4f core level binding energies were calculated for sites with bulk coordination and for different surface sites. The core level shifts for the surface sites are all positive and distinguish among the corner, edge, and face-centered sites; sites in the first subsurface layer show still small positive shifts.
Resolving structural influences on water-retention properties of alluvial deposits
Winfield, K.A.; Nimmo, J.R.; Izbicki, J.A.; Martin, P.M.
2006-01-01
With the goal of improving property-transfer model (PTM) predictions of unsaturated hydraulic properties, we investigated the influence of sedimentary structure, defined as particle arrangement during deposition, on laboratory-measured water retention (water content vs. potential [??(??)]) of 10 undisturbed core samples from alluvial deposits in the western Mojave Desert, California. The samples were classified as having fluvial or debris-flow structure based on observed stratification and measured spread of particle-size distribution. The ??(??) data were fit with the Rossi-Nimmo junction model, representing water retention with three parameters: the maximum water content (??max), the ??-scaling parameter (??o), and the shape parameter (??). We examined trends between these hydraulic parameters and bulk physical properties, both textural - geometric mean, Mg, and geometric standard deviation, ??g, of particle diameter - and structural - bulk density, ??b, the fraction of unfilled pore space at natural saturation, Ae, and porosity-based randomness index, ??s, defined as the excess of total porosity over 0.3. Structural parameters ??s and Ae were greater for fluvial samples, indicating greater structural pore space and a possibly broader pore-size distribution associated with a more systematic arrangement of particles. Multiple linear regression analysis and Mallow's Cp statistic identified combinations of textural and structural parameters for the most useful predictive models: for ??max, including Ae, ??s, and ??g, and for both ??o and ??, including only textural parameters, although use of Ae can somewhat improve ??o predictions. Textural properties can explain most of the sample-to-sample variation in ??(??) independent of deposit type, but inclusion of the simple structural indicators Ae and ??s can improve PTM predictions, especially for the wettest part of the ??(??) curve. ?? Soil Science Society of America.
Mass production of bulk artificial nacre with excellent mechanical properties.
Gao, Huai-Ling; Chen, Si-Ming; Mao, Li-Bo; Song, Zhao-Qiang; Yao, Hong-Bin; Cölfen, Helmut; Luo, Xi-Sheng; Zhang, Fu; Pan, Zhao; Meng, Yu-Feng; Ni, Yong; Yu, Shu-Hong
2017-08-18
Various methods have been exploited to replicate nacre features into artificial structural materials with impressive structural and mechanical similarity. However, it is still very challenging to produce nacre-mimetics in three-dimensional bulk form, especially for further scale-up. Herein, we demonstrate that large-sized, three-dimensional bulk artificial nacre with comprehensive mimicry of the hierarchical structures and the toughening mechanisms of natural nacre can be facilely fabricated via a bottom-up assembly process based on laminating pre-fabricated two-dimensional nacre-mimetic films. By optimizing the hierarchical architecture from molecular level to macroscopic level, the mechanical performance of the artificial nacre is superior to that of natural nacre and many engineering materials. This bottom-up strategy has no size restriction or fundamental barrier for further scale-up, and can be easily extended to other material systems, opening an avenue for mass production of high-performance bulk nacre-mimetic structural materials in an efficient and cost-effective way for practical applications.Artificial materials that replicate the mechanical properties of nacre represent important structural materials, but are difficult to produce in bulk. Here, the authors exploit the bottom-up assembly of 2D nacre-mimetic films to fabricate 3D bulk artificial nacre with an optimized architecture and excellent mechanical properties.
Changes in the Coherent Dynamics of Nanoconfined Room Temperature Ionic Liquids
NASA Astrophysics Data System (ADS)
Vallejo, Kevin; Cano, Melissa; Li, Song; Rotner, Gernot; Faraone, Antonio; Banuelos, Jose
Confinement and temperature effects on the coherent dynamics of the room temperature ionic liquid (RTIL) [C10MPy+] [Tf2N-] were investigated using neutron spin-echo (NSE) in two silica matrices with different pore size. Several intermolecular forces give rise to the bulk molecular structure between anions and cations. NSE provided dynamics (via the coherent intermediate scattering function) in the time range of 0.004 to 10 ns, and at Q-values corresponding to intermediate range ordering and inter- and intra-molecular length scales of the RTIL. Pore wall effects were delineated by comparing bulk RTIL dynamics with those of the confined fluid in 2.8 nm and 8 nm pores. Analytical models were applied to the experimental data to extract decay times and amplitudes of each component. We find a fast relaxation outside the experiment time window, a primary relaxation, and slow, surface-induced dynamics, which all speed up with increased temperature, however, the temperature dependence differs between bulk and confinement. This study sheds light on the structure and dynamics of RTILs and is relevant to the optimization of RTILs for green technologies and applications.
Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.; ...
2016-12-14
The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc 12-b-pNte 21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODTmore » corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.« less
NASA Astrophysics Data System (ADS)
Archer, Andrew J.; Chacko, Blesson; Evans, Robert
2017-07-01
In classical density functional theory (DFT), the part of the Helmholtz free energy functional arising from attractive inter-particle interactions is often treated in a mean-field or van der Waals approximation. On the face of it, this is a somewhat crude treatment as the resulting functional generates the simple random phase approximation (RPA) for the bulk fluid pair direct correlation function. We explain why using standard mean-field DFT to describe inhomogeneous fluid structure and thermodynamics is more accurate than one might expect based on this observation. By considering the pair correlation function g(x) and structure factor S(k) of a one-dimensional model fluid, for which exact results are available, we show that the mean-field DFT, employed within the test-particle procedure, yields results much superior to those from the RPA closure of the bulk Ornstein-Zernike equation. We argue that one should not judge the quality of a DFT based solely on the approximation it generates for the bulk pair direct correlation function.
Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali
2015-11-01
A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as away to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric and degradation characteristics of tissue engineering scaffolds. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico
2016-01-01
This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly. PMID:27196938
Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico
2016-05-16
This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly.
Hwang, Kyusung; Kim, Yong Baek
2016-01-01
We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect. PMID:27418293
Effect of Concentration on the Interfacial and Bulk Structure of Ionic Liquids in Aqueous Solution.
Cheng, H-W; Weiss, H; Stock, P; Chen, Y-J; Reinecke, C R; Dienemann, J-N; Mezger, M; Valtiner, M
2018-02-27
Bio and aqueous applications of ionic liquids (IL) such as catalysis in micelles formed in aqueous IL solutions or extraction of chemicals from biologic materials rely on surface-active and self-assembly properties of ILs. Here, we discuss qualitative relations of the interfacial and bulk structuring of a water-soluble surface-active IL ([C 8 MIm][Cl]) on chemically controlled surfaces over a wide range of water concentrations using both force probe and X-ray scattering experiments. Our data indicate that IL structuring evolves from surfactant-like surface adsorption at low IL concentrations, to micellar bulk structure adsorption above the critical micelle concentration, to planar bilayer formation in ILs with <1 wt % of water and at high charging of the surface. Interfacial structuring is controlled by mesoscopic bulk structuring at high water concentrations. Surface chemistry and surface charges decisively steer interfacial ordering of ions if the water concentration is low and/or the surface charge is high. We also demonstrate that controlling the interfacial forces by using self-assembled monolayer chemistry allows tuning of interfacial structures. Both the ratio of the head group size to the hydrophobic tail volume as well as the surface charging trigger the bulk structure and offer a tool for predicting interfacial structures. Based on the applied techniques and analyses, a qualitative prediction of molecular layering of ILs in aqueous systems is possible.
Effect of length scale on mechanical properties of Al-Cu eutectic alloy
NASA Astrophysics Data System (ADS)
Tiwary, C. S.; Roy Mahapatra, D.; Chattopadhyay, K.
2012-10-01
This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales.
A simple 2D biofilm model yields a variety of morphological features.
Hermanowicz, S W
2001-01-01
A two-dimensional biofilm model was developed based on the concept of cellular automata. Three simple, generic processes were included in the model: cell growth, internal and external mass transport and cell detachment (erosion). The model generated a diverse range of biofilm morphologies (from dense layers to open, mushroom-like forms) similar to those observed in real biofilm systems. Bulk nutrient concentration and external mass transfer resistance had a large influence on the biofilm structure.
NASA Astrophysics Data System (ADS)
Taniguchi, Shigeru; Arima, Takashi; Ruggeri, Tommaso; Sugiyama, Masaru
2018-05-01
The shock wave structure in rarefied polyatomic gases is analyzed based on extended thermodynamics (ET). In particular, the case with large relaxation time for the dynamic pressure, which corresponds to large bulk viscosity, is considered by adopting the simplest version of extended thermodynamics with only 6 independent fields (ET6); the mass density, the velocity, the temperature and the dynamic pressure. Recently, the validity of the theoretical predictions by ET was confirmed by the numerical analysis based on the kinetic theory in [S Kosuge and K Aoki: Phys. Rev. Fluids, Vol. 3, 023401 (2018)]. It was shown that numerical results using the polyatomic version of ellipsoidal statistical model agree with the theoretical predictions by ET for small or moderately large Mach numbers. In the present paper, first, we compare the theoretical predictions by ET6 with the ones by kinetic theory for large Mach number under the same assumptions, that is, the gas is polytropic and the bulk viscosity is proportional to the temperature. Second, the shock wave structure for large Mach number in a non-polytropic gas is analyzed with the particular interest in the effect of the temperature dependence of specific heat and the bulk viscosity on the shock wave structure. Through the analysis of the case of a rarefied carbon dioxide (CO2) gas, it is shown that these temperature dependences play important roles in the precise analysis of the structure for strong shock waves.
Ab initio study of the structure and dynamics of bulk liquid Fe
NASA Astrophysics Data System (ADS)
Marqués, M.; González, L. E.; González, D. J.
2015-10-01
Several static and dynamic properties of bulk liquid Fe at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the structure factor which underlines a substantial local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, with an associated dispersion relation which closely follows the experimental data. The dynamic structure factors S (q ,ω ) show a good agreement with their experimental counterparts which have been recently measured by an inelastic x-ray scattering experiment. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. The recent finding of transverselike excitation modes in the IXS data is analyzed by using the present ab initio simulation results. Several transport coefficients have been evaluated and the results are compared with the available experimental data.
Clark, Michael D; Jespersen, Michael L; Patel, Romesh J; Leever, Benjamin J
2013-06-12
Blends of poly(3-hexylthiophene) (P3HT) and C61-butyric acid methyl ester (PCBM) are widely used as a model system for bulk heterojunction active layers developed for solution-processable, flexible solar cells. In this work, vertical concentration profiles within the P3HT:PCBM active layer are predicted based on a thermodynamic analysis of the constituent materials and typical solvents. Surface energies of the active layer components and a common transport interlayer blend, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), are first extracted using contact angle measurements coupled with the acid-base model. From this data, intra- and interspecies interaction free energies are calculated, which reveal that the thermodynamically favored arrangement consists of a uniformly blended "bulk" structure capped with a P3HT-rich air interface and a slightly PCBM-rich buried interface. Although the "bulk" composition is solely determined by P3HT:PCBM ratio, composition near the buried interface is dependent on both the blend ratio and interaction free energy difference between solvated P3HT and PCBM deposition onto PEDOT:PSS. In contrast, the P3HT-rich overlayer is independent of processing conditions, allowing kinetic formation of a PCBM-rich sublayer during film casting due to limitations in long-range species diffusion. These thermodynamic calculations are experimentally validated by angle-resolved X-ray photoelectron spectroscopy (XPS) and low energy XPS depth profiling, which show that the actual composition profiles of the cast and annealed films closely match the predicted behavior. These experimentally derived profiles provide clear evidence that typical bulk heterojunction active layers are predominantly characterized by thermodynamically stable composition profiles. Furthermore, the predictive capabilities of the comprehensive free energy approach are demonstrated, which will enable investigation of structurally integrated devices and novel active layer systems including low band gap polymers, ternary systems, and small molecule blends.
Structure and dynamics of water in mixed solutions including laponite and PEO
NASA Astrophysics Data System (ADS)
Morikubo, Satoshi; Sekine, Yurina; Ikeda-Fukazawa, Tomoko
2011-01-01
To investigate the structure and dynamics of water in mixed solutions including laponite clay particles and poly(ethylene oxide) (PEO), we measured the Raman spectra of the mixed solutions in the temperature range 283-313 K. The results show that the vibrational energies of the O-H stretching modes in the mixed solutions depend on the water content and temperature. The energy shifts of the O-H stretching modes are attributed to changes in the water structure. By applying a structural model of bulk water to the spectra in the O-H stretching region, the local structures of water in the solutions were analyzed. The result shows that the formation probability of hydrogen bonds in the solutions decreases as the water content decreases. Laponite and PEO have effects to disrupt the network structure of hydrogen bonds between water molecules. Further, it was found that laponite and PEO cause increase in the strength of hydrogen bonds of surrounding water,although the strength of the hydrogen bonds increases with the order water-laponite < water-water < water-PEO. It is concluded that water in laponite-PEO mixed solutions has a less-networked structure with strong hydrogen bonds compared with bulk water.
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Gates, T. S.; Wise, K. E.
2002-01-01
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube shapes, sizes, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/LaRC-SI (with a PmPV interface) composite systems, one with aligned SWNTs and the other with three-dimensionally randomly oriented SWNTs. The Young's modulus and shear modulus have been calculated for the two systems for various nanotube lengths and volume fractions.
Investigation of combustion characteristics in a scramjet combustor using a modified flamelet model
NASA Astrophysics Data System (ADS)
Zhao, Guoyan; Sun, Mingbo; Wang, Hongbo; Ouyang, Hao
2018-07-01
In this study, the characteristics of supersonic combustion inside an ethylene-fueled scramjet combustor equipped with multi-cavities were investigated with different injection schemes. Experimental results showed that the flames concentrated in the cavity and separated boundary layer downstream of the cavity, and they occupied the flow channel further enhancing the bulk flow compression. The flame structure in distributed injection scheme differed from that in centralized injection scheme. In numerical simulations, a modified flamelet model was introduced to consider that the pressure distribution is far from homogenous inside the scramjet combustor. Compared with original flamelet model, numerical predictions based on the modified model showed better agreement with the experimental results, validating the reliability of the calculations. Based on the modified model, the simulations with different injection schemes were analysed. The predicted flame agreed reasonably with the experimental observations in structure. The CO masses were concentrated in cavity and subsonic region adjacent to the cavity shear layer leading to intense heat release. Compared with centralized scheme, the higher jet mixing efficiency in distributed scheme induced an intense combustion in posterior upper cavity and downstream of the cavity. From streamline and isolation surfaces, the combustion at trail of lower cavity was depressed since the bulk flow downstream of the cavity is pushed down.
Surface nematic order in iron pnictides
Song, Kok Wee; Koshelev, Alexei E.
2016-09-09
Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. In addition, we found that themore » interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. Lastly, the intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe 2As 2-xP x .« less
Edge effects in game-theoretic dynamics of spatially structured tumours.
Kaznatcheev, Artem; Scott, Jacob G; Basanta, David
2015-07-06
Cancer dynamics are an evolutionary game between cellular phenotypes. A typical assumption in this modelling paradigm is that the probability of a given phenotypic strategy interacting with another depends exclusively on the abundance of those strategies without regard for local neighbourhood structure. We address this limitation by using the Ohtsuki-Nowak transform to introduce spatial structure to the go versus grow game. We show that spatial structure can promote the invasive (go) strategy. By considering the change in neighbourhood size at a static boundary--such as a blood vessel, organ capsule or basement membrane--we show an edge effect that allows a tumour without invasive phenotypes in the bulk to have a polyclonal boundary with invasive cells. We present an example of this promotion of invasive (epithelial-mesenchymal transition-positive) cells in a metastatic colony of prostate adenocarcinoma in bone marrow. Our results caution that pathologic analyses that do not distinguish between cells in the bulk and cells at a static edge of a tumour can underestimate the number of invasive cells. Although we concentrate on applications in mathematical oncology, we expect our approach to extend to other evolutionary game models where interaction neighbourhoods change at fixed system boundaries. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Geometric structure of anatase Ti O2(101 )
NASA Astrophysics Data System (ADS)
Treacy, Jon P. W.; Hussain, Hadeel; Torrelles, Xavier; Grinter, David C.; Cabailh, Gregory; Bikondoa, Oier; Nicklin, Christopher; Selcuk, Sencer; Selloni, Annabella; Lindsay, Robert; Thornton, Geoff
2017-02-01
Surface x-ray diffraction has been used to determine the quantitative structure of the (101) termination of anatase Ti O2 . The atomic displacements from the bulk-terminated structure are significantly different from those previously calculated with density functional theory (DFT) methods with discrepancies for the Ti displacements in the [10 1 ¯] direction of up to 0.3 Å . DFT calculations carried out as part of the current paper provide a much better agreement through improved accuracy and thicker slab models.
Interface and Electronic Characterization of Thin Epitaxial Co3O4 Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaz, C.A.; Zhu, Y.; Wang, H.-Q.
2009-01-15
The interface and electronic structure of thin ({approx} 20-74 nm) Co{sub 3}O{sub 4}(1 1 0) epitaxial films grown by oxygen-assisted molecular beam epitaxy on MgAl{sub 2}O{sub 4}(1 1 0) single crystal substrates have been investigated by means of real and reciprocal space techniques. As-grown film surfaces are found to be relatively disordered and exhibit an oblique low energy electron diffraction (LEED) pattern associated with the O-rich CoO{sub 2} bulk termination of the (1 1 0) surface. Interface and bulk film structure are found to improve significantly with post-growth annealing at 820 K in air and display sharp rectangular LEED patterns,more » suggesting a surface stoichiometry of the alternative Co{sub 2}O{sub 2} bulk termination of the (1 1 0) surface. Non-contact atomic force microscopy demonstrates the presence of wide terraces separated by atomic steps in the annealed films that are not present in the as-grown structures; the step height of {approx}2.7 {angstrom} corresponds to two atomic layers and confirms a single termination for the annealed films, consistent with the LEED results. A model of the (1 x 1) surfaces that allows for compensation of the polar surfaces is presented.« less
Asare, Emmanuel Kwasi; Sefa-Dedeh, Samuel; Sakyi-Dawson, Esther; Afoakwa, Emmanuel Ohene
2004-08-01
Response surface methodology (with central composite rotatable design for k=3) was used to investigate the product properties of extruded rice-cowpea-groundnut blends in a single screw extruder. The combined effect of cowpea (0-20%), groundnut (0-10%), and feed moisture (14-48%) levels were used for formulation of the products. The product moisture, expansion ratio, bulk density and total colour change were studied using standard analytical methods. Well-expanded rice-legume blend extrudates of less bulk density and lower moisture content were produced at low feed moisture. Increasing legume addition affected the various shades of colour in the product. Models developed for the indices gave R(2) values ranging from 52.8% (for the b-value) to 86.5% (for bulk density). The models developed suggested that the optimal process variables for the production of a puffed snack with an enhanced nutrition and spongy structure from a rice-cowpea-groundnut blend are low feed moisture of 14-20% and maximum additions of 20% cowpea and 10% groundnut. A lack-of-fit test showed no significance, indicating that the models adequately fitted the data.
Sensing, Measuring and Modelling the Mechanical Properties of Sandstone
NASA Astrophysics Data System (ADS)
Antony, S. J.; Olugbenga, A.; Ozerkan, N. G.
2018-02-01
We present a hybrid framework for simulating the strength and dilation characteristics of sandstone. Where possible, the grain-scale properties of sandstone are evaluated experimentally in detail. Also, using photo-stress analysis, we sense the deviator stress (/strain) distribution at the micro-scale and its components along the orthogonal directions on the surface of a V-notch sandstone sample under mechanical loading. Based on this measurement and applying a grain-scale model, the optical anisotropy index K 0 is inferred at the grain scale. This correlated well with the grain contact stiffness ratio K evaluated using ultrasound sensors independently. Thereafter, in addition to other experimentally characterised structural and grain-scale properties of sandstone, K is fed as an input into the discrete element modelling of fracture strength and dilation of the sandstone samples. Physical bulk-scale experiments are also conducted to evaluate the load-displacement relation, dilation and bulk fracture strength characteristics of sandstone samples under compression and shear. A good level of agreement is obtained between the results of the simulations and experiments. The current generic framework could be applied to understand the internal and bulk mechanical properties of such complex opaque and heterogeneous materials more realistically in future.
Mittal, Jeetain; Errington, Jeffrey R; Truskett, Thomas M
2007-08-30
Static measures such as density and entropy, which are intimately connected to structure, have featured prominently in modern thinking about the dynamics of the liquid state. Here, we explore the connections between self-diffusivity, density, and excess entropy for two of the most widely used model "simple" liquids, the equilibrium Lennard-Jones and square-well fluids, in both bulk and confined environments. We find that the self-diffusivity data of the Lennard-Jones fluid can be approximately collapsed onto a single curve (i) versus effective packing fraction and (ii) in appropriately reduced form versus excess entropy, as suggested by two well-known scaling laws. Similar data collapse does not occur for the square-well fluid, a fact that can be understood on the basis of the nontrivial effects that temperature has on its static structure. Nonetheless, we show that the implications of confinement for the self-diffusivity of both of these model fluids, over a broad range of equilibrium conditions, can be predicted on the basis of knowledge of the bulk fluid behavior and either the effective packing fraction or the excess entropy of the confined fluid. Excess entropy is perhaps the most preferable route due to its superior predictive ability and because it is a standard, unambiguous thermodynamic quantity that can be readily predicted via classical density functional theories of inhomogeneous fluids.
NASA Technical Reports Server (NTRS)
Greitzer, E. M.; Bonnefoy, P. A.; delaRosaBlanco, E.; Dorbian, C. S.; Drela, M.; Hall, D. K.; Hansman, R. J.; Hileman, J. I.; Liebeck, R. H.; Lovegren, J.;
2010-01-01
Appendices A to F present the theory behind the TASOPT methodology and code. Appendix A describes the bulk of the formulation, while Appendices B to F develop the major sub-models for the engine, fuselage drag, BLI accounting, etc.
Electrical properties of double layer dielectric structures for space technology
NASA Astrophysics Data System (ADS)
Lian, Anqing
1993-04-01
Polymeric films such as polyimide (PI) and polyethylene terephthalate (PET) are used in space technology as thermal blankets. Thin SiO2 and SiN coatings plasma deposited onto PI and PET surfaces were proposed to protect the blanket materials against the space environment. The electrical properties of this kind of dual layer dielectric structure were investigated to understand the mechanisms for suppressing charge accumulation and flashover. Bulk and surface electrical conductivities of thin single-layer PI and PET samples and of the dual layer SiO2 and SiN combinations with PI and PET were measured in a range of applied electrical fields. The capacitance voltage (CV) technique was used for analyzing charge transport and distribution in the structures. The electric current in the bulk of the SiO2/PI and SiN/PI samples was found to depend on the polarity of the electric field. Other samples did not exhibit any such polarity effect. The polarity dependence is attributed to charge trapping at the PI/plasma deposit interface. The CV characteristics of the Al-PI-SiO2-Si structure confirm that charges which can modify the local electric field can be trapped near the interface. A model is proposed to interpret the properties of the currents in dual layer structures. This model can semi-quantitatively explain all the observed results.
Structure of the floating water bridge and water in an electric field
Skinner, Lawrie B.; Benmore, Chris J.; Shyam, Badri; Weber, J. K. R.; Parise, John B.
2012-01-01
The floating water bridge phenomenon is a freestanding rope-shaped connection of pure liquid water, formed under the influence of a high potential difference (approximately 15 kV). Several recent spectroscopic, optical, and neutron scattering studies have suggested that the origin of the bridge is associated with the formation of anisotropic chains of water molecules in the liquid. In this work, high energy X-ray diffraction experiments have been performed on a series of floating water bridges as a function of applied voltage, bridge length, and position within the bridge. The two-dimensional X-ray scattering data showed no direction-dependence, indicating that the bulk water molecules do not exhibit any significant preferred orientation along the electric field. The only structural changes observed were those due to heating, and these effects were found to be the same as for bulk water. These X-ray scattering measurements are supported by molecular dynamics (MD) simulations which were performed under electric fields of 106 V/m and 109 V/m. Directional structure factor calculations were made from these simulations parallel and perpendicular to the E-field. The 106 V/m model showed no significant directional-dependence (anisotropy) in the structure factors. The 109 V/m model however, contained molecules aligned by the E-field, and had significant structural anisotropy. PMID:23010930
Murdachaew, Garold; Mundy, Christopher J; Schenter, Gregory K; Laino, Teodoro; Hutter, Jürg
2011-06-16
We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements. © 2011 American Chemical Society
Continuum-Scale Modeling of Shear Banding in Bulk Metallic Glass-Matrix Composites
NASA Astrophysics Data System (ADS)
Gibbons, Michael
Metallic glasses represent a relatively new class of materials that have demonstrated enormous potential for functional and structural applications due to the unique set of properties attributed to them as a result of the disordered isotropic structure with metallically bonded elements. Amorphous metals benefit from the strong nature of the metallic bonds, but lack the crystallographic structure and polycrystalline nature of traditional metals which unsurprisingly has huge implications on the material properties, as all deformation mechanisms associated with a lattice are suppressed. This results in excellent strength, a high elastic strain limit, exceptional hardness, and improved corrosion and wear resistance. "Bulk" metallic glasses (BMG) represent the amorphous metals which can be produced at the cm length-scale, thus greatly expanding their applicability for structural applications. However, due to the catastrophic nature of the failure produced upon yielding, monolithic metallic glasses are seldomly used for structural applications. Bulk metallic glass-matrix composites (BMGMCs), however, are able to combine the excellent strength, hardness, and elastic strain limit of amorphous metallic glass with a ductile crystalline phase to achieve extraordinary toughness with minimal degradation in strength. In order to explore the mechanical interactions between the amorphous and crystalline phases, a full-field micromechanical model which couples the free-volume based constitutive behavior for the matrix phase with standard rate-dependent crystal plasticity for the dendrites, and its implementation via an elastic-viscoplastic Fast-Fourier Transform (FFT) solver. The model is calibrated to macroscale stress-strain data for Ti-Zr-V-Cu-Be BMGMCs with varying composition and furthermore by comparing the deformation behavior associated with the shear bands predicted by the model, to the artifacts observed from characterization microscopy analysis on the same failed BMGMC tensile specimens in which the macroscopic composite behavior predicted by the model was validated with. The FFT-based deformation modeling is then exercised to study the nature and origin of shear bands in metallic glass composites. Synthetic 3D microstructures were produced using images of real BMGMCs, and then subjected to uniaxial tension deformation simulations. The findings indicate that in BMGMCs, local inhomogeneities in the glass phase are less influential on the mechanical performance than the contrast in individual phase properties and the spatial distribution of the microstructure. Due to the strong contrast in mechanical properties between the phases, highly heterogeneous stress fields develop, contributing to regionally confined free-volume generation, localized flow and softening in the glass. These softened regions can link and plastic flow then rapidly localizes into a thin shear band with planar like geometry. The availability of finely resolved (spatially and temporally) 3D deformation maps allow for the determination of the mechanism corresponding with these macroscopic stick-slip oscillations apparent in the stress-strain curves. In addition to shedding light on the nature of shear banding in bulk metallic glass-matrix composites, this work also demonstrates the feasibility of using a spectral-based continuum-scale model to efficiently predict the microstructure and individual phase properties that lead to new materials, superior to those found using only experimental techniques.
Constraining the Bulk Density of 10m-Class Near-Earth Asteroid 2012 LA
NASA Astrophysics Data System (ADS)
Mommert, Michael; Hora, Joseph; Farnocchia, Davide; Trilling, David; Chesley, Steve; Harris, Alan; Mueller, Migo; Smith, Howard
2016-08-01
The physical properties of near-Earth asteroids (NEAs) provide important hints on their origin, as well as their past physical and orbital evolution. Recent observations seem to indicate that small asteroids are different than expected: instead of being monolithic bodies, some of them instead resemble loose conglomerates of smaller rocks, so called 'rubble piles'. This is surprising, since self-gravitation is practically absent in these bodies. Hence, bulk density measurements of small asteroids, from which their internal structure can be estimated, provide unique constraints on asteroid physical models, as well as models for asteroid evolution. We propose Spitzer Space Telescope observations of 10 m-sized NEA 2012 LA, which will allow us to constrain the diameter, albedo, bulk density, macroporosity, and mass of this object. We require 30 hrs of Spitzer time to detect our target with a minimum SNR of 3 in CH2. In order to interpret our observational results, we will use the same analysis technique that we used in our successful observations and analyses of tiny asteroids 2011 MD and 2009 BD. Our science goal, which is the derivation of the target's bulk density and its internal structure, can only be met with Spitzer. Our observations will produce only the third comprehensive physical characterization of an asteroid in the 10m size range (all of which have been carried out by our team, using Spitzer). Knowledge of the physical properties of small NEAs, some of which pose an impact threat to the Earth, is of importance for understanding their evolution and estimating the potential of destruction in case of an impact, as well as for potential manned missions to NEAs for either research or potential commercial uses.
Large-scale structure from cosmic-string loops in a baryon-dominated universe
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Scherrer, Robert J.
1988-01-01
The results are presented of a numerical simulation of the formation of large-scale structure in a universe with Omega(0) = 0.2 and h = 0.5 dominated by baryons in which cosmic strings provide the initial density perturbations. The numerical model yields a power spectrum. Nonlinear evolution confirms that the model can account for 700 km/s bulk flows and a strong cluster-cluster correlation, but does rather poorly on smaller scales. There is no visual 'filamentary' structure, and the two-point correlation has too steep a logarithmic slope. The value of G mu = 4 x 10 to the -6th is significantly lower than previous estimates for the value of G mu in baryon-dominated cosmic string models.
Dynamic fracture instability of tough bulk metallic glass
NASA Astrophysics Data System (ADS)
Meng, J. X.; Ling, Z.; Jiang, M. Q.; Zhang, H. S.; Dai, L. H.
2008-04-01
We report the observations of a clear fractographic evolution from vein pattern, dimple structure, and then to periodic corrugation structure, followed by microbranching pattern, along the crack propagation direction in the dynamic fracture of a tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit.1) bulk metallic glass (BMGs) under high-velocity plate impact. A model based on fracture surface energy dissipation and void growth is proposed to characterize this fracture pattern transition. We find that once the dynamic crack propagation velocity reaches a critical fraction of Rayleigh wave speed, the crack instability occurs; hence, crack microbranching goes ahead. Furthermore, the correlation between the critical velocity of amorphous materials and their intrinsic strength such as Young's modulus is uncovered. The results may shed new insight into dynamic fracture instability for BMGs.
Study of iridium silicide monolayers using density functional theory
NASA Astrophysics Data System (ADS)
Popis, Minh D.; Popis, Sylvester V.; Oncel, Nuri; Hoffmann, Mark R.; ćakır, Deniz
2018-02-01
In this study, we investigated physical and electronic properties of possible two-dimensional structures formed by Si (silicon) and Ir (iridium). To this end, different plausible structures were modeled by using density functional theory and the cohesive energies calculated for the geometry of optimized structures, with the lowest equilibrium lattice constants. Among several candidate structures, we identified three mechanically (via elastic constants and Young's modulus), dynamically (via phonon calculations), and thermodynamically stable iridium silicide monolayer structures. The lowest energy structure has a chemical formula of Ir2Si4 (called r-IrSi2), with a rectangular lattice (Pmmn space group). Its cohesive energy was calculated to be -0.248 eV (per IrSi2 unit) with respect to bulk Ir and bulk Si. The band structure indicates that the Ir2Si4 monolayer exhibits metallic properties. Other stable structures have hexagonal (P-3m1) and tetragonal (P4/nmm) cell structures with 0.12 and 0.20 eV/f.u. higher cohesive energies, respectively. Our calculations showed that Ir-Si monolayers are reactive. Although O2 molecules exothermically dissociate on the surface of the free-standing iridium silicide monolayers with large binding energies, H2O molecules bind to the monolayers with a rather weak interaction.
Interpretation of lunar heat flow data. [for estimating bulk uranium abundance
NASA Technical Reports Server (NTRS)
Conel, J. E.; Morton, J. B.
1975-01-01
Lunar heat flow observations at the Apollo 15 and 17 sites can be interpreted to imply bulk U concentrations for the moon of 5 to 8 times those of normal chondrites and 2 to 4 times terrestrial values inferred from the earth's heat flow and the assumption of thermal steady state between surface heat flow and heat production. A simple model of nearsurface structure that takes into account the large difference in (highly insulating) regolith thickness between mare and highland provinces is considered. This model predicts atypically high local values of heat flow near the margins of mare regions - possibly a factor of 10 or so higher than the global average. A test of the proposed model using multifrequency microwave techniques appears possible wherein heat flow traverse measurements are made across mare-highland contacts. The theoretical considerations discussed here urge caution in attributing global significance to point heat-flow measurements on the moon.
NASA Astrophysics Data System (ADS)
Duan, Suqin Q.; Wright, Jonathon S.; Romps, David M.
2018-02-01
Atmospheric water-vapor isotopes have been proposed as a potentially powerful constraint on convection, which plays a critical role in Earth's present and future climate. It is shown here, however, that the mean tropical profile of HDO in the free troposphere does not usefully constrain the mean convective entrainment rate or precipitation efficiency. This is demonstrated using a single-column analytical model of atmospheric water isotopes. The model has three parameters: the entrainment rate, the precipitation efficiency, and the distance that evaporating condensates fall. At a given relative humidity, the possible range of HDO is small: its range is comparable to both the measurement uncertainty in the mean tropical profile and the structural uncertainty of a single-column model. Therefore, the mean tropical HDO profile is unlikely to add information about convective processes in a bulk-plume framework that cannot already be learned from relative humidity alone.
The bulk, surface and corner free energies of the square lattice Ising model
NASA Astrophysics Data System (ADS)
Baxter, R. J.
2017-01-01
We use Kaufman’s spinor method to calculate the bulk, surface and corner free energies {f}{{b}},{f}{{s}},{f}{{s}}\\prime ,{f}{{c}} of the anisotropic square lattice zero-field Ising model for the ordered ferromagnetic case. For {f}{{b}},{f}{{s}},{f}{{s}}\\prime our results of course agree with the early work of Onsager, McCoy and Wu. We also find agreement with the conjectures made by Vernier and Jacobsen (VJ) for the isotropic case. We note that the corner free energy f c depends only on the elliptic modulus k that enters the working, and not on the argument v, which means that VJ’s conjecture applies for the full anisotropic model. The only aspect of this paper that is new is the actual derivation of f c, but by reporting all four free energies together we can see interesting structures linking them.
Multi-scale predictive modeling of nano-material and realistic electron devices
NASA Astrophysics Data System (ADS)
Palaria, Amritanshu
Among the challenges faced in further miniaturization of electronic devices, heavy influence of the detailed atomic configuration of the material(s) involved, which often differs significantly from that of the bulk material(s), is prominent. Device design has therefore become highly interrelated with material engineering at the atomic level. This thesis aims at outlining, with examples, a multi-scale simulation procedure that allows one to integrate material and device aspects of nano-electronic design to predict behavior of novel devices with novel material. This is followed in four parts: (1) An approach that combines a higher time scale reactive force field analysis with density functional theory to predict structure of new material is demonstrated for the first time for nanowires. Novel stable structures for very small diameter silicon nanowires are predicted. (2) Density functional theory is used to show that the new nanowire structures derived in 1 above have properties different from diamond core wires even though the surface bonds in some may be similar to the surface of bulk silicon. (3) Electronic structure of relatively large-scale germanium sections of realistically strained Si/strained Ge/ strained Si nanowire heterostructures is computed using empirical tight binding and it is shown that the average non-homogeneous strain in these structures drives their interesting non-conventional electronic characteristics such as hole effective masses which decrease as the wire cross-section is reduced. (4) It is shown that tight binding, though empirical in nature, is not necessarily limited to the material and atomic structure for which the parameters have been empirically derived, but that simple changes may adapt the derived parameters to new bond environments. Si (100) surface electronic structure is obtained from bulk Si parameters.
NASA Astrophysics Data System (ADS)
Kotliar, Gabriel
2005-01-01
Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.
NASA Astrophysics Data System (ADS)
Davis, L. J.; Boggess, M.; Kodpuak, E.; Deutsch, M.
2012-11-01
We report on a model for the deposition of three dimensional, aggregated nanocrystalline silver films, and an efficient numerical simulation method developed for visualizing such structures. We compare our results to a model system comprising chemically deposited silver films with morphologies ranging from dilute, uniform distributions of nanoparticles to highly porous aggregated networks. Disordered silver films grown in solution on silica substrates are characterized using digital image analysis of high resolution scanning electron micrographs. While the latter technique provides little volume information, plane-projected (two dimensional) island structure and surface coverage may be reliably determined. Three parameters governing film growth are evaluated using these data and used as inputs for the deposition model, greatly reducing computing requirements while still providing direct access to the complete (bulk) structure of the films throughout the growth process. We also show how valuable three dimensional characteristics of the deposited materials can be extracted using the simulated structures.
Emergent geometric description for a topological phase transition in the Kitaev superconductor model
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok; Park, Miok; Cho, Jaeyoon; Park, Chanyong
2017-10-01
Resorting to Wilsonian renormalization group (RG) transformations, we propose an emergent geometric description for a topological phase transition in the Kitaev superconductor model. An effective field theory consists of an emergent bulk action with an extra dimension, an ultraviolet (UV) boundary condition for an initial value of a coupling function, and an infrared (IR) effective action with a fully renormalized coupling function. The bulk action describes the evolution of the coupling function along the direction of the extra dimension, where the extra dimension is identified with an RG scale and the resulting equation of motion is nothing but a β function. In particular, the IR effective field theory turns out to be consistent with a Callan-Symanzik equation which takes into account both the bulk and IR boundary contributions. This derived Callan-Symanzik equation gives rise to a metric structure. Based on this emergent metric tensor, we uncover the equivalence of the entanglement entropy between the emergent geometric description and the quantum field theory in the vicinity of the quantum critical point.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir; Skripnyak, Evgeniya; Meyer, Lothar W.; Herzig, Norman; Skripnyak, Nataliya
2012-02-01
Researches of the last years have allowed to establish that the laws of deformation and fracture of bulk ultrafine-grained and coarse-grained materials are various both in static and in dynamic loading conditions. Development of adequate constitutive equations for the description of mechanical behavior of bulk ultrafine-grained materials at intensive dynamic influences is complicated in consequence of insufficient knowledge about general rules of inelastic deformation and nucleation and growth of cracks. Multi-scale computational model was used for the investigation of deformation and fracture of bulk structured aluminum and magnesium alloys under stress pulse loadings on mesoscale level. The increment of plastic deformation is defined by the sum of the increments caused by a nucleation and gliding of dislocations, the twinning, meso-blocks movement, and grain boundary sliding. The model takes into account the influence on mechanical properties of alloys an average grains size, grain sizes distribution of and concentration of precipitates. It was obtained the nucleation and gliding of dislocations caused the high attenuation rate of the elastic precursor of ultrafine-grained alloys than in coarse grained counterparts.
Wang, Meng; Ford, Roseanne M
2010-01-15
A two-dimensional mathematical model was developed to simulate transport phenomena of chemotactic bacteria in a sand-packed column designed with structured physical heterogeneity in the presence of a localized chemical source. In contrast to mathematical models in previous research work, in which bacteria were typically treated as immobile colloids, this model incorporated a convective-like chemotaxis term to represent chemotactic migration. Consistency between experimental observation and model prediction supported the assertions that (1) dispersion-induced microbial transfer between adjacent conductive zones occurred at the interface and had little influence on bacterial transport in the bulk flow of the permeable layers and (2) the enhanced transverse bacterial migration in chemotactic experiments relative to nonchemotactic controls was mainly due to directed migration toward the chemical source zone. On the basis of parameter sensitivity analysis, chemotactic parameters determined in bulk aqueous fluid were adequate to predict the microbial transport in our intermediate-scale porous media system. Additionally, the analysis of adsorption coefficient values supported the observation of a previous study that microbial deposition to the surface of porous media might be decreased under the effect of chemoattractant gradients. By quantitatively describing bacterial transport and distribution in a heterogeneous system, this mathematical model serves to advance our understanding of chemotaxis and motility effects in granular media systems and provides insights for modeling microbial transport in in situ microbial processes.
NASA Astrophysics Data System (ADS)
Garric, G.; Pirani, A.; Belamari, S.; Caniaux, G.
2006-12-01
order to improve the air/sea interface for the future MERCATOR global ocean operational system, we have implemented the new bulk formulation developed by METEO-FRANCE (French Meteo office) in the MERCATOR 2 degree global ocean-ice coupled model (ORCA2/LIM). A single bulk formulation for the drag, temperature and moisture exchange coefficients is derived from an extended consistent database gathering 10 years of measurements issued from five experiments dedicated to air-sea fluxes estimates (SEMAPHORE, CATCH, FETCH, EQUALANT99 and POMME) in various oceanic basins (from Northern to equatorial Atlantic). The available database (ALBATROS) cover the widest range of atmospheric and oceanic conditions, from very light (0.3 m/s) to very strong (up to 29 m/s) wind speeds, and from unstable to extremely stable atmospheric boundary layer stratification. We have defined a work strategy to test this new formulation in a global oceanic context, by using this multi- campaign bulk formulation to derive air-sea fluxes from base meteorological variables produces by the ECMWF (European Centre for Medium Range and Weather Forecast) atmospheric forecast model, in order to get surface boundary conditions for ORCA2/LIM. The simulated oceanic upper layers forced at the surface by the previous air/sea interface are compared to those forced by the optimal bulk formulation. Consecutively with generally weaker transfer coefficient, the latter formulation reduces the cold bias in the equatorial Pacific and increases the too weak summer sea ice extent in Antarctica. Compared to a recent mixed layer depth (MLD) climatology, the optimal bulk formulation reduces also the too deep simulated MLDs. Comparison with in situ temperature and salinity profiles in different areas allowed us to evaluate the impact of changing the air/sea interface in the vertical structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferralis, N.; Diehl, R.D.; Pussi, K.
2004-12-15
Potassium adsorption on graphite has been a model system for the understanding of the interaction of alkali metals with surfaces. The geometries of the (2x2) structure of potassium on both single-crystal graphite (SCG) and highly oriented pyrolytic graphite (HOPG) were investigated for various preparation conditions for graphite temperatures between 55 and 140 K. In all cases, the geometry was found to consist of K atoms in the hollow sites on top of the surface. The K-graphite average perpendicular spacing is 2.79{+-}0.03 A , corresponding to an average C-K distance of 3.13{+-}0.03 A , and the spacing between graphite planes ismore » consistent with the bulk spacing of 3.35 A. No evidence was observed for a sublayer of potassium. The results of dynamical LEED studies for the clean SCG and HOPG surfaces indicate that the surface structures of both are consistent with the truncated bulk structure of graphite.« less
Bulk and surface electronic structures of MgO
NASA Astrophysics Data System (ADS)
Schönberger, U.; Aryasetiawan, F.
1995-09-01
The bulk electronic structure of MgO is calculated from first principles including correlation effects within the GW approximation. The band gap, the position of the 2s O band, and the valence band width are in good agreement with experiment. From the quasiparticle band structure, optical transitions corresponding to the main optical absorption peaks are identified. The energy-loss spectrum is also calculated and compared with experiment. The surface electronic structure of MgO(100) is calculated self-consistently within the local-density approximation. It is found that states observed in a recent photoemission experiment outside the bulk allowed states are close to surface states.
Three-dimensionality of the bulk electronic structure in WTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Jo, Na Hyun; Mou, Daixiang
Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less
Three-dimensionality of the bulk electronic structure in WTe 2
Wu, Yun; Jo, Na Hyun; Mou, Daixiang; ...
2017-05-18
Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less
Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure
Wang, Q.; Yang, Y.; Jiang, H.; Liu, C. T.; Ruan, H. H.; Lu, J.
2014-01-01
Over centuries, structural glasses have been deemed as a strong yet inherently ‘brittle’ material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2–4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses. PMID:24755683
Jiang, Dianlu; Dinh, Kim Lien; Ruthenburg, Travis C; Zhang, Yi; Su, Lei; Land, Donald P; Zhou, Feimeng
2009-03-12
At the air/buffer solution interface the kinetics of adsorption of amyloid beta peptide, Abeta(1-42), whose bulk concentration (submicromolar) is more than 2 orders of magnitude lower than that typically used in other in vitro aggregation studies, has been studied using a Langmuir-Blodgett trough. The pressure-time curves exhibit a lag phase, wherein the surface pressure essentially remains at zero, and a rising phase, corresponding to the Abeta adsorption at the interface. The duration of the lag phase was found to be highly dependent on both the Abeta bulk concentration and the solution temperature. A large activation energy (62.2 +/- 4.1 KJ/mol) was determined and the apparent adsorption rate constant was found to be linearly dependent on the Abeta bulk concentration. Attenuated total reflection-IR spectra of the adsorbed Abeta transferred to a solid substrate and circular dichroism measurements of Abeta in the solution layer near the interface reveal that the natively unstructured Abeta in the bulk undergo a conformation change (folding) to mainly the alpha-helical structure. The results suggest that, prior to the adsorption step, an equilibrium between Abeta conformations is established within the subsurface. The kinetic equation derived from this model confirms that the overall Abeta adsorption is kinetically controlled and the apparent rate constant is proportional to the Abeta bulk concentration. This model also indicates that interfaces such as cell membranes and lipid bilayers may facilitate Abeta aggregation/ fibrillation by providing a thin hydrophobic layer adjacent to the interface for the initial A/beta conformation change (misfolding) and accumulation. Such a preconcentration effect offers a plausible explanation of the fact that Abeta fibrillation occurs in vivo at nanomolar concentrations. Another important biological implication from our work is that Abeta misfolding may occur before its adsorption onto a cell membrane. This general kinetic model should also find applications in adsorption studies of other types of biomolecules whose overall kinetics exhibits a lag phase that is dependent on the bulk concentration of the adsorbate.
Jiang, Dianlu; Dinh, Kim Lien; Ruthenburg, Travis; Zhang, Yi; Su, Lei; Land, Donald; Zhou, Feimeng
2011-01-01
The kinetics of adsorption at the air/buffer solution interface of amyloid beta peptide, Aβ(1–42), whose bulk concentration (submicromolar) is more than two orders of magnitude lower than that typically used in other in vitro aggregation studies, has been studied using a Langmuir-Blodgett trough. The pressure–time curves exhibit a lag phase, wherein the surface pressure essentially remains at zero, and a rising phase, corresponding to the Aβ adsorption at the interface. The duration of the lag phase was found to be highly dependent on both the Aβ bulk concentration and the solution temperature. A large activation energy (62.2 ± 4.1 KJ/mol) was determined and the apparent adsorption rate constant was found to be linearly dependent on the Aβ bulk concentration. Attenuated total reflection-IR spectra of the adsorbed Aβ transferred to a solid substrate and circular dichroism measurements of Aβ in the solution layer near the interface reveal that the natively unstructured Aβ in the bulk undergo a conformation change (folding) to mainly the α-helical structure. The results suggest that, prior to the adsorption step, an equilibrium between Aβ conformations is established within the subsurface. The kinetic equation derived from this model confirms that the overall Aβ adsorption is kinetically controlled and the apparent rate constant is proportional to the Aβ bulk concentration. This model also indicates that interfaces such as cell membranes and lipid bilayers may facilitate Aβ aggregation/fibrillation by providing a thin hydrophobic layer adjacent to the interface for the initial Aβ conformation change (misfolding) and accumulation. Such a preconcentration effect offers a plausible explanation of the fact that Aβ fibrillation occurs in vivo at nanomolar concentrations. Another important biological implication from our work is that Aβ misfolding may occur before its adsorption onto a cell membrane. This general kinetic model should also find applications in adsorption studies of other types of biomolecules whose overall kinetics exhibits a lag phase that is dependent on the bulk concentration of the adsorbate. PMID:19260715
First Principles Studies of Electronic and Optical Excitations in Noble Metal and Titania Clusters
NASA Astrophysics Data System (ADS)
Baishya, Kopinjol
Clusters are metastable structures that form a bridge between the atomic and the bulk phase. Due to their small size, quantum confinement effects are very important in clusters. They also have large surface to volume ratio, and as such, surface effects are also important. Due to these effects the properties of clusters are quite different from those of the bulk. When the size of a cluster is increased, its properties change from atomic to bulk values usually in nontrivial ways, often displaying interesting effects. By studying the evolution of cluster properties as a function of size one can try to understand the evolution and origin of bulk properties. This thesis concentrates on two main topics, noble-metal clusters of Ag and Cu, and TiO2 nanocrystals. I present my study of the optical properties of these systems calculated using first principles methods. Noble metal clusters have intriguing physical and chemical properties due to their electronic structure that contains a fully filled and localized d orbital energetically and spatially very close to the half filled s orbital. In Chapters 3 and 4 of this thesis, I present a detailed study of the role of d electrons on the optical properties of Ag and Cu clusters. I also show that the optical spectra of these clusters can be explained remarkably well by the classical Mie-Gans theory which uses the bulk dielectric constant of the material to predict their optical absorption spectra. The fact that the concept of the bulk dielectric constant survives up to the sub-nanometer size range is one of the main findings of this thesis. TiO2 is arguably the most studied single-crystalline material in the field of surface science of metal oxides. In chapter 5 of this thesis I present results and analyses on the electronic and optical excitations in rutile TiO2 nanocrystals. The motivation for this study stems from the following observation: In modeling optical prooperties of DSSC configurations with various organic molecules, a typical approach has been to use a finite, appropriately passivated TiO2 nanocrystal in order to limit the computational demand. In real systems on the other hand, the size of nanocrystalline TiO2 is of the order of several hundreds of nanometers, and hence, they can be considered to be essentially bulk-like. The question is then, whether finite TiO2 nanoparticles can accurately model the optical properties of bulk TiO2. I show in my thesis that the optical absorption absorption spectra of such TiO2 nanocrystals do not have the particular features seen in the imaginary part of the bulk dielectric function of TiO 2 associated with the van Hove singularities in the electronic density of states. Instead, the absorption spectra of bulk-terminated TiO2 nanocrystals can be reproduced quite well by the Mie-Gans theory.
Molecular Modeling of Interfacial Behaviors of Nanomaterials
2007-05-01
potential was originally designed for the modeling of mixed covalent- ionic bonding and was successfully used to describe oxides in crystalline, glassy, and...is separates from the bulk liquid polymer, i.e., the structure of this layer, as influenced by that of the meatal surface, is significantly more...Striolo, J. Kieffer, and P. Cummings, ’Evaluation of Force- fields for molecular simulation of polyhedral oligomeric silsesquioxanes,’ J. Phys. Chem
Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties
NASA Astrophysics Data System (ADS)
Lollobrigida, V.; Basso, V.; Borgatti, F.; Torelli, P.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Tortora, L.; Stefani, G.; Panaccione, G.; Offi, F.
2014-05-01
We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.
Rapid Solidification in Bulk Ti-Nb Alloys by Single-Track Laser Melting
NASA Astrophysics Data System (ADS)
Roehling, John D.; Perron, Aurélien; Fattebert, Jean-Luc; Haxhimali, Tomorr; Guss, Gabe; Li, Tian T.; Bober, David; Stokes, Adam W.; Clarke, Amy J.; Turchi, Patrice E. A.; Matthews, Manyalibo J.; McKeown, Joseph T.
2018-05-01
Single-track laser melting experiments were performed on bulk Ti-Nb alloys to explore process parameters and the resultant macroscopic structure and microstructure. The microstructures in Ti-20Nb and Ti-50Nb (at.%) alloys exhibited cellular growth during rapid solidification, with average cell size of approximately 0.5 µm. Solidification velocities during cellular growth were calculated from images of melt tracks. Measurements of the composition in the cellular and intercellular regions revealed nonequilibrium partitioning and its dependence on velocity during rapid solidification. Experimental results were used to benchmark a phase-field model to describe rapid solidification under conditions relevant to additive manufacturing.
Hall, S. A.; Burke, I.C.; Box, D. O.; Kaufmann, M. R.; Stoker, Jason M.
2005-01-01
The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires. Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from 57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should broaden to include low density forests, particularly systems where the vertical structure of the canopy is important, such as fire prone forests.
NASA Astrophysics Data System (ADS)
Makovníková, Jarmila; Širáň, Miloš; Houšková, Beata; Pálka, Boris; Jones, Arwyn
2017-10-01
Soil bulk density is one of the main direct indicators of soil health, and is an important aspect of models for determining agroecosystem services potential. By way of applying multi-regression methods, we have created a distributed prediction of soil bulk density used subsequently for topsoil carbon stock estimation. The soil data used for this study were from the Slovakian partial monitoring system-soil database. In our work, two models of soil bulk density in an equilibrium state, with different combinations of input parameters (soil particle size distribution and soil organic carbon content in %), have been created, and subsequently validated using a data set from 15 principal sampling sites of Slovakian partial monitoring system-soil, that were different from those used to generate the bulk density equations. We have made a comparison of measured bulk density data and data calculated by the pedotransfer equations against soil bulk density calculated according to equations recommended by Joint Research Centre Sustainable Resources for Europe. The differences between measured soil bulk density and the model values vary from -0.144 to 0.135 g cm-3 in the verification data set. Furthermore, all models based on pedotransfer functions give moderately lower values. The soil bulk density model was then applied to generate a first approximation of soil bulk density map for Slovakia using texture information from 17 523 sampling sites, and was subsequently utilised for topsoil organic carbon estimation.
Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen; Plósz, Benedek Gy
2014-10-15
Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
A second-order bulk boundary-layer model
NASA Technical Reports Server (NTRS)
Randall, David A.; Shao, Qingqiu; Moeng, Chin-Hoh
1992-01-01
Bulk mass-flux models represent the large eddies that are primarily responsible for the turbulent fluxes in the planetary boundary layer as convective circulations, with an associated convective mass flux. In order for such models to be useful, it is necessary to determine the fractional area covered by rising motion in the convective circulations. This fraction can be used as an estimate of the cloud amount, under certain conditions. 'Matching' conditions have been developed that relate the convective mass flux to the ventilation and entrainment mass fluxes. These are based on conservation equations for the scalar means and variances in the entrainment and ventilation layers. Methods are presented to determine both the fractional area covered by rising motion and the convective mass flux. The requirement of variance balance is used to relax the 'well-mixed' assumption. The vertical structures of the mean state and the turbulent fluxes are determined analytically. Several aspects of this simple model's formulation are evaluated using results from large-eddy simulations.
Minimal gravity and Frobenius manifolds: bulk correlation on sphere and disk
NASA Astrophysics Data System (ADS)
Aleshkin, Konstantin; Belavin, Vladimir; Rim, Chaiho
2017-11-01
There are two alternative approaches to the minimal gravity — direct Liouville approach and matrix models. Recently there has been a certain progress in the matrix model approach, growing out of presence of a Frobenius manifold (FM) structure embedded in the theory. The previous studies were mainly focused on the spherical topology. Essentially, it was shown that the action principle of Douglas equation allows to define the free energy and to compute the correlation numbers if the resonance transformations are properly incorporated. The FM structure allows to find the explicit form of the resonance transformation as well as the closed expression for the partition function. In this paper we elaborate on the case of gravitating disk. We focus on the bulk correlators and show that in the similar way as in the closed topology the generating function can be formulated using the set of flat coordinates on the corresponding FM. Moreover, the resonance transformations, which follow from the spherical topology consideration, are exactly those needed to reproduce FZZ result of the Liouville gravity approach.
Spatial fuel data products of the LANDFIRE Project
Reeves, M.C.; Ryan, K.C.; Rollins, M.G.; Thompson, T.G.
2009-01-01
The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50 states. Here we describe development of the LANDFIRE wildland fuels data layers for the conterminous 48 states: surface fire behavior fuel models, canopy bulk density, canopy base height, canopy cover, and canopy height. Surface fire behavior fuel models are mapped by developing crosswalks to vegetation structure and composition created by LANDFIRE. Canopy fuels are mapped using regression trees relating field-referenced estimates of canopy base height and canopy bulk density to satellite imagery, biophysical gradients and vegetation structure and composition data. Here we focus on the methods and data used to create the fuel data products, discuss problems encountered with the data, provide an accuracy assessment, demonstrate recent use of the data during the 2007 fire season, and discuss ideas for updating, maintaining and improving LANDFIRE fuel data products.
Polynuclear Speciation of Trivalent Cations near the Surface of an Electrolyte Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bera, Mrinal K.; Antonio, Mark R.
Despite long-standing efforts, there is no agreed upon structural model for electrolyte solutions at air-liquid interfaces. We report the simultaneous detection of the near-surface and bulk coordination environments of a trivalent metal cation (europium) in an aqueous solution by use of X-ray absorption spectroscopy. Within the first few nanometers of the liquid surface, the cations exhibit oxygen coordination typical of inner-sphere hydration of an aquated Eu3+ cation. Beyond that, outer-sphere ion-ion correlations are observed that are otherwise not present in the bulk electrolyte. The combination of near-surface and bulk sensitivities to probe metal ion speciation in electrolyte solutions is achievedmore » by detecting electron-yield and X-ray fluorescence signals from an inverted pendant drop. The results provide new knowledge about the near-surface chemistry of aqueous solutions of relevance to aerosols and ion transport processes in chemical separations and biological systems.« less
Ion specific correlations in bulk and at biointerfaces.
Kalcher, I; Horinek, D; Netz, R R; Dzubiella, J
2009-10-21
Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.
Steenbergen, Krista G; Gaston, Nicola
2013-10-07
First-principles Born-Oppenheimer molecular dynamics simulations of small gallium clusters, including parallel tempering, probe the distinction between cluster and molecule in the size range of 7-12 atoms. In contrast to the larger sizes, dynamic measures of structural change at finite temperature demonstrate that Ga7 and Ga8 do not melt, suggesting a size limit to melting in gallium exists at 9 atoms. Analysis of electronic structure further supports this size limit, additionally demonstrating that a covalent nature cannot be identified for clusters larger than the gallium dimer. Ga9, Ga10 and Ga11 melt at greater-than-bulk temperatures, with no evident covalent character. As Ga12 represents the first small gallium cluster to melt at a lower-than-bulk temperature, we examine the structural properties of each cluster at finite temperature in order to probe both the origins of greater-than-bulk melting, as well as the significant differences in melting temperatures induced by a single atom addition. Size-sensitive melting temperatures can be explained by both energetic and entropic differences between the solid and liquid phases for each cluster. We show that the lower-than-bulk melting temperature of the 12-atom cluster can be attributed to persistent pair bonding, reminiscent of the pairing observed in α-gallium. This result supports the attribution of greater-than-bulk melting in gallium clusters to the anomalously low melting temperature of the bulk, due to its dimeric structure.
Bulk-wave ultrasonic propagation imagers
NASA Astrophysics Data System (ADS)
Abbas, Syed Haider; Lee, Jung-Ryul
2018-03-01
Laser-based ultrasound systems are described that utilize the ultrasonic bulk-wave sensing to detect the damages and flaws in the aerospace structures. These systems apply pulse-echo or through transmission methods to detect longitudinal through-the-thickness bulk-waves. These thermoelastic waves are generated using Q-switched laser and non-contact sensing is performed using a laser Doppler vibrometer (LDV). Laser-based raster scanning is performed by either twoaxis translation stage for linear-scanning or galvanometer-based laser mirror scanner for angular-scanning. In all ultrasonic propagation imagers, the ultrasonic data is captured and processed in real-time and the ultrasonic propagation can be visualized during scanning. The scanning speed can go up to 1.8 kHz for two-axis linear translation stage based B-UPIs and 10 kHz for galvanometer-based laser mirror scanners. In contrast with the other available ultrasound systems, these systems have the advantage of high-speed, non-contact, real-time, and non-destructive inspection. In this paper, the description of all bulk-wave ultrasonic imagers (B-UPIs) are presented and their advantages are discussed. Experiments are performed with these system on various structures to proof the integrity of their results. The C-scan results produced from non-dispersive, through-the-thickness, bulk-wave detection show good agreement in detection of structural variances and damage location in all inspected structures. These results show that bulk-wave UPIs can be used for in-situ NDE of engineering structures.
Energy and momentum relaxation of electrons in bulk and 2D GaN
NASA Astrophysics Data System (ADS)
Zanato, D.; Balkan, N.; Hill, G.; Schaff, W. J.
2004-10-01
We present our experimental and theoretical studies regarding the energy and momentum relaxation of hot electrons in n-type bulk GaN and AlGaN/GaN HEMT structures. We determine the non-equilibrium temperatures and the energy relaxation rates in the steady state using the mobility mapping technique together with the power balance conditions as described by us elsewhere [N. Balkan, M.C. Arikan, S. Gokden, V. Tilak, B. Schaff, R.J. Shealy, J. Phys.: Condens. Matter 14 (2002) 3457]. We obtain the e-LO phonon scattering time of 8 fs and show that the power loss of electrons due to optical phonon emission agrees with the theoretical prediction. The drift velocity-field curves at high electric fields indicate that the drift velocity saturates at approximately 3×10 6 cm/s for the two-dimensional structure and 4×10 6 cm/s for the bulk material at 77 K. These values are much lower than those predicted by the existing theories. A critical analysis of the observations is given with a model taking into account of the non-drifting non-equilibrium phonon production.
Combined IR-Raman vs vibrational sum-frequency heterospectral correlation spectroscopy
NASA Astrophysics Data System (ADS)
Roy, Sandra; Beutier, Clémentine; Hore, Dennis K.
2018-06-01
Vibrational sum-frequency generation spectroscopy is a valuable probe of surface structure, particularly when the same molecules are present in one of the adjacent bulk solid or solution phases. As a result of the non-centrosymmetric requirement of SFG, the signal generated is a marker of the extent to which the molecules are ordered in an arrangement that breaks the up-down symmetry at the surface. In cases where the accompanying changes in the bulk are of interest in understanding and interpreting the surface structure, simultaneous analysis of the bulk IR absorption or bulk Raman scattering is helpful, and may be used in heterospectral surface-bulk two-dimensional correlation. We demonstrate that, in such cases, generating a new type of bulk spectrum that combines the IR and Raman amplitudes is a better candidate than the individual IR and Raman spectra for the purpose of correlation with the SFG signal.
NASA Astrophysics Data System (ADS)
Hanus, Josef; Viikinkoski, Matti; Marchis, Franck; Durech, Josef
2015-11-01
A reliable bulk density of an asteroid can be determined from the knowledge of its volume and mass. This quantity provides hints on the internal structure of asteroids and their origin. We compute volume of several asteroids by scaling sizes of their 3D shape models to fit the disk-resolved images, which are available in the Keck Observatory Archive (KOA) and the Virtual Observatory Binary Asteroids Database (VOBAD). The size of an asteroid is optimized together with its shape by the All-Data Asteroid Modelling inversion algorithm (ADAM, Viikinkoski et al., 2015, A&A, 576, A8), while the spin state of the original convex shape model from the DAMIT database is only used as an initial guess for the modeling. Updated sets of optical lightcurves are usually employed. Thereafter, we combine obtained volume with mass estimates available in the literature and derive bulk densities for tens of asteroids with a typical accuracy of 20-50%.On top of that, we also provide a list of asteroids, for which (i) there are already mass estimates with reported uncertainties better than 20% or their masses will be most likely determined in the future from Gaia astrometric observations, and (ii) their 3D shape models are currently unknown. Additional optical lightcurves are necessary in order to determine convex shape models of these asteroids. Our web page (https://asteroid-obs.oca.eu/foswiki/bin/view/Main/Photometry) contains additional information about this observation campaign.
Structural defects in GaN revealed by Transmission Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liliental-Weber, Zuzanna
This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.
Structural defects in GaN revealed by Transmission Electron Microscopy
Liliental-Weber, Zuzanna
2014-09-08
This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Lastly, some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.
Simulated glass transition of poly(ethylene oxide) bulk and film: a comparative study.
Wu, Chaofu
2011-09-29
Stepwise cooling molecular dynamics (MD) simulations have been carried out on the bulk and film models for poly(ethylene oxide) (PEO) to understand glass transition of amorphous polymer films. Three types of properties--density, energy, and dynamics--are computed and plotted against the temperature for the two systems. It has been confirmed that all these properties can reveal glass transition in both PEO bulk and film systems. All the determined glass transition temperatures (T(g)'s) drop in the same order of magnitude to the experimental data available. Among various methods, the T(g)'s obtained from the density and energy data are close to each other if the same space regions are defined, which can suggest the same free volume theory, and dynamic T(g)'s obtained from mean-squared displacements (MSDs) are highest, which can suggest the kinetic theory for structural relaxation. Consistently, all these T(g)'s obtained using different methods show that the T(g)'s of PEO film are lower than those of PEO bulk. The free surface layers of polymer films dictate this offset. © 2011 American Chemical Society
Structural rejuvenation in bulk metallic glasses
Tong, Yang; Iwashita, T.; Dmowski, Wojciech; ...
2015-01-05
Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.
Structural rejuvenation in bulk metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Yang; Iwashita, T.; Dmowski, Wojciech
Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.
Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs.
Campbell, Gavin P; Mannix, Andrew J; Emery, Jonathan D; Lee, Tien-Lin; Guisinger, Nathan P; Hersam, Mark C; Bedzyk, Michael J
2018-05-09
Atomically thin two-dimensional (2D) materials exhibit superlative properties dictated by their intralayer atomic structure, which is typically derived from a limited number of thermodynamically stable bulk layered crystals (e.g., graphene from graphite). The growth of entirely synthetic 2D crystals, those with no corresponding bulk allotrope, would circumvent this dependence upon bulk thermodynamics and substantially expand the phase space available for structure-property engineering of 2D materials. However, it remains unclear if synthetic 2D materials can exist as structurally and chemically distinct layers anchored by van der Waals (vdW) forces, as opposed to strongly bound adlayers. Here, we show that atomically thin sheets of boron (i.e., borophene) grown on the Ag(111) surface exhibit a vdW-like structure without a corresponding bulk allotrope. Using X-ray standing wave-excited X-ray photoelectron spectroscopy, the positions of boron in multiple chemical states are resolved with sub-angström spatial resolution, revealing that the borophene forms a single planar layer that is 2.4 Å above the unreconstructed Ag surface. Moreover, our results reveal that multiple borophene phases exhibit these characteristics, denoting a unique form of polymorphism consistent with recent predictions. This observation of synthetic borophene as chemically discrete from the growth substrate suggests that it is possible to engineer a much wider variety of 2D materials than those accessible through bulk layered crystal structures.
NASA Astrophysics Data System (ADS)
Ginsberg, Naomi
2015-03-01
The migration of Frenkel excitons, tightly-bound electron-hole pairs, in polymeric organic semiconducting films is critical to the efficiency of bulk heterojunction solar cells. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton diffusion lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore.
Role of quantum fluctuations in structural dynamics of liquids of light molecules
Agapov, A.; Novikov, V. N.; Kisliuk, A.; ...
2016-12-16
A possible role of quantum effects, such as tunneling and zero-point energy, in the structural dynamics of supercooled liquids is studied by dielectric spectroscopy. Our results demonstrate that the liquids, bulk 3-methyl pentane and confined normal and deuterated water, have low glass transition temperature and unusually low for their class of materials steepness of the temperature dependence of structural relaxation (fragility). Although we do not find any signs of tunneling in the structural relaxation of these liquids, their unusually low fragility can be well described by the influence of the quantum fluctuations. Confined water presents an especially interesting case inmore » comparison to the earlier data on bulk low-density amorphous and vapor deposited water. Confined water exhibits a much weaker isotope effect than bulk water, although the effect is still significant. Here, we show that it can be ascribed to the change of the energy barrier for relaxation due to a decrease in the zeropoint energy upon D/H substitution. We observed a difference in the behavior of confined and bulk water demonstrates high sensitivity of quantum effects to the barrier heights and structure of water. Moreover, these results demonstrate that extrapolation of confined water properties to the bulk water behavior is questionable.« less
Chen, Junxian; Liu, Qingyu; Li, Hao; Zhao, Zhigang; Lu, Zhiyun; Huang, Yan; Xu, Dingguo
2018-01-01
Squaraine core based small molecules in bulk heterojunction organic solar cells have received extensive attentions due to their distinguished photochemical properties in far red and infrared domain. In this paper, combining theoretical simulations and experimental syntheses and characterizations, three major factors (fill factor, short circuit and open-cirvuit voltage) have been carried out together to achieve improvement of power conversion efficiencies of solar cells. As model material systems with D-A-D' framework, two asymmetric squaraines (CNSQ and CCSQ-Tol) as donor materials in bulk heterojunction organic solar cell were synthesized and characterized. Intensive density functional theory computations were applied to identify some direct connections between three factors and corresponding molecular structural properties. It then helps us to predict one new molecule of CCSQ'-Ox that matches all the requirements to improve the power conversion efficiency.
Temperature distribution model for the semiconductor dew point detector
NASA Astrophysics Data System (ADS)
Weremczuk, Jerzy; Gniazdowski, Z.; Jachowicz, Ryszard; Lysko, Jan M.
2001-08-01
The simulation results of temperature distribution in the new type silicon dew point detector are presented in this paper. Calculations were done with use of the SMACEF simulation program. Fabricated structures, apart from the impedance detector used to the dew point detection, contained the resistive four terminal thermometer and two heaters. Two detector structures, the first one located on the silicon membrane and the second one placed on the bulk materials were compared in this paper.
Interactions of PAMAM dendrimers with SDS at the solid-liquid interface.
Arteta, Marianna Yanez; Eltes, Felix; Campbell, Richard A; Nylander, Tommy
2013-05-14
This work addresses structural and nonequilibrium effects of the interactions between well-defined cationic poly(amidoamine) PAMAM dendrimers of generations 4 and 8 and the anionic surfactant sodium dodecyl sulfate (SDS) at the hydrophilic silica-water interface. Neutron reflectometry and quartz crystal microbalance with dissipation monitoring were used to reveal the adsorption from premixed dendrimer/surfactant solutions as well as sequential addition of the surfactant to preadsorbed layers of dendrimers. PAMAM dendrimers of both generations adsorb to hydrophilic silica as a compact monolayer, and the adsorption is irreversible upon rinsing with salt solution. SDS adsorbs on the dendrimer layer and at low bulk concentrations causes the expansion of the dendrimer layers on the surface. When the bulk concentration of SDS is increased, the surfactant layer consists of aggregates or bilayer-like structures. The adsorption of surfactant is reversible upon rinsing, but slight changes of the structure of the preadsorbed PAMAM monolayer were observed. The adsorption from premixed solutions close to charge neutrality results in thick multilayers, but the surface excess is lower when the bulk complexes have a net negative charge. A critical examination of the pathway of adsorption for the interactions of SDS with preadsorbed PAMAM monolayers and premixed PAMAM/SDS solutions with hydrophilic silica revealed that nonequilibrium effects are important only in the latter case, and the application of a thermodynamic model to such experimental data would be inappropriate.
Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone
Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.
2015-01-01
Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.
NASA Astrophysics Data System (ADS)
Dalgicdir, Cahit; Sensoy, Ozge; Peter, Christine; Sayar, Mehmet
2013-12-01
One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties.
Computational investigation of surface freezing in a molecular model of water.
Haji-Akbari, Amir; Debenedetti, Pablo G
2017-03-28
Water freezes in a wide variety of low-temperature environments, from meteors and atmospheric clouds to soil and biological cells. In nature, ice usually nucleates at or near interfaces, because homogenous nucleation in the bulk can only be observed at deep supercoolings. Although the effect of proximal surfaces on freezing has been extensively studied, major gaps in understanding remain regarding freezing near vapor-liquid interfaces, with earlier experimental studies being mostly inconclusive. The question of how a vapor-liquid interface affects freezing in its vicinity is therefore still a major open question in ice physics. Here, we address this question computationally by using the forward-flux sampling algorithm to compute the nucleation rate in a freestanding nanofilm of supercooled water. We use the TIP4P/ice force field, one of the best existing molecular models of water, and observe that the nucleation rate in the film increases by seven orders of magnitude with respect to bulk at the same temperature. By analyzing the nucleation pathway, we conclude that freezing in the film initiates not at the surface, but within an interior region where the formation of double-diamond cages (DDCs) is favored in comparison with the bulk. This, in turn, facilitates freezing by favoring the formation of nuclei rich in cubic ice, which, as demonstrated by us earlier, are more likely to grow and overcome the nucleation barrier. The films considered here are ultrathin because their interior regions are not truly bulk-like, due to their subtle structural differences with the bulk.
Computational investigation of surface freezing in a molecular model of water
Haji-Akbari, Amir; Debenedetti, Pablo G.
2017-01-01
Water freezes in a wide variety of low-temperature environments, from meteors and atmospheric clouds to soil and biological cells. In nature, ice usually nucleates at or near interfaces, because homogenous nucleation in the bulk can only be observed at deep supercoolings. Although the effect of proximal surfaces on freezing has been extensively studied, major gaps in understanding remain regarding freezing near vapor–liquid interfaces, with earlier experimental studies being mostly inconclusive. The question of how a vapor–liquid interface affects freezing in its vicinity is therefore still a major open question in ice physics. Here, we address this question computationally by using the forward-flux sampling algorithm to compute the nucleation rate in a freestanding nanofilm of supercooled water. We use the TIP4P/ice force field, one of the best existing molecular models of water, and observe that the nucleation rate in the film increases by seven orders of magnitude with respect to bulk at the same temperature. By analyzing the nucleation pathway, we conclude that freezing in the film initiates not at the surface, but within an interior region where the formation of double-diamond cages (DDCs) is favored in comparison with the bulk. This, in turn, facilitates freezing by favoring the formation of nuclei rich in cubic ice, which, as demonstrated by us earlier, are more likely to grow and overcome the nucleation barrier. The films considered here are ultrathin because their interior regions are not truly bulk-like, due to their subtle structural differences with the bulk. PMID:28292905
Partitioning and lipophilicity in quantitative structure-activity relationships.
Dearden, J C
1985-01-01
The history of the relationship of biological activity to partition coefficient and related properties is briefly reviewed. The dominance of partition coefficient in quantitation of structure-activity relationships is emphasized, although the importance of other factors is also demonstrated. Various mathematical models of in vivo transport and binding are discussed; most of these involve partitioning as the primary mechanism of transport. The models describe observed quantitative structure-activity relationships (QSARs) well on the whole, confirming that partitioning is of key importance in in vivo behavior of a xenobiotic. The partition coefficient is shown to correlate with numerous other parameters representing bulk, such as molecular weight, volume and surface area, parachor and calculated indices such as molecular connectivity; this is especially so for apolar molecules, because for polar molecules lipophilicity factors into both bulk and polar or hydrogen bonding components. The relationship of partition coefficient to chromatographic parameters is discussed, and it is shown that such parameters, which are often readily obtainable experimentally, can successfully supplant partition coefficient in QSARs. The relationship of aqueous solubility with partition coefficient is examined in detail. Correlations are observed, even with solid compounds, and these can be used to predict solubility. The additive/constitutive nature of partition coefficient is discussed extensively, as are the available schemes for the calculation of partition coefficient. Finally the use of partition coefficient to provide structural information is considered. It is shown that partition coefficient can be a valuable structural tool, especially if the enthalpy and entropy of partitioning are available. PMID:3905374
NASA Astrophysics Data System (ADS)
Shah, M.; Satalkar, M.; Kane, S. N.; Ghodke, N. L.; Sinha, A. K.; Varga, L. K.; Teixeira, J. M.; Araujo, J. P.
2018-05-01
Effect of thermal annealing induced modification of structural, surface and bulk magnetic properties of Fe61.5Co5Ni8Si13.5B9Nb3 alloy is presented. The changes in properties were observed using synchrotron x-ray diffraction technique (SXRD), atomic force microscopy (AFM), magneto-optical kerr effect (MOKE) and bulk magnetic measurements. Significant variations on the both side of surface occur for the annealing temperature upto 500 °C promotes the surface crystallization. Surface roughness appears due to presence of nanocrystallization plays an important role in determining magnetic properties. Observed lower value of bulk coercivity Hc of 6.2 A/m annealed temperature at 450 °C/1 h ascribed to reduction of disorder as compared to the surface (both shiny and wheel side observed by MOKE measurement) whereas improvement of bulk saturation magnetization with annealing temperature indicates first near neighbor shell of Fe atoms are surrounded by Fe atoms. Evolution of coercivity of surface and bulk with annealing temperature has been presented in conjunction with the structural observations.
Promising Thermoelectric Bulk Materials with 2D Structures.
Zhou, Yiming; Zhao, Li-Dong
2017-12-01
Given that more than two thirds of all energy is lost, mostly as waste heat, in utilization processes worldwide, thermoelectric materials, which can directly convert waste heat to electricity, provide an alternative option for optimizing energy utilization processes. After the prediction that superlattices may show high thermoelectric performance, various methods based on quantum effects and superlattice theory have been adopted to analyze bulk materials, leading to the rapid development of thermoelectric materials. Bulk materials with two-dimensional (2D) structures show outstanding properties, and their high performance originates from both their low thermal conductivity and high Seebeck coefficient due to their strong anisotropic features. Here, the advantages of superlattices for enhancing the thermoelectric performance, the transport mechanism in bulk materials with 2D structures, and optimization methods are discussed. The phenomenological transport mechanism in these materials indicates that thermal conductivities are reduced in 2D materials with intrinsically short mean free paths. Recent progress in the transport mechanisms of Bi 2 Te 3 -, SnSe-, and BiCuSeO-based systems is summarized. Finally, possible research directions to enhance the thermoelectric performance of bulk materials with 2D structures are briefly considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental Observation of Bulk Liquid Water Structure in ``No Man's Land''
NASA Astrophysics Data System (ADS)
Sellberg, Jonas; McQueen, Trevor; Huang, Congcong; Loh, Duane; Laksmono, Hartawan; Sierra, Raymond; Hampton, Christina; Starodub, Dmitri; Deponte, Daniel; Martin, Andrew; Barty, Anton; Wikfeldt, Thor; Schlesinger, Daniel; Pettersson, Lars; Beye, Martin; Nordlund, Dennis; Weiss, Thomas; Feldkamp, Jan; Caronna, Chiara; Seibert, Marvin; Messerschmidt, Marc; Williams, Garth; Boutet, Sebastien; Bogan, Michael; Nilsson, Anders
2013-03-01
Experiments on pure bulk water below about 235 K have so far been difficult: water crystallization occurs very rapidly below the homogeneous nucleation temperature of 232 K and above 160 K, leading to a ``no man's land'' devoid of experimental results regarding the structure. Here, we demonstrate a new, general experimental approach to study the structure of liquid states at supercooled conditions below their limit of homogeneous nucleation. We use femtosecond x-ray pulses generated by the LCLS x-ray laser to probe evaporatively cooled droplets of supercooled bulk water and find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 223 K in the previously largely unexplored ``no man's land''. We acknoweledge NSF (CHE-0809324), Office of Basic Energy Sciences, and the Swedish Research Council for financial support.
Structural Chemistry of Functional Nano-Materials for Environmental Remediation
NASA Astrophysics Data System (ADS)
John, Jesse
Nano minerals and materials have become a focal point of Geoscience research due to the unique physical, chemical, optical, magnetic, electronic, and reactive properties. Many of these desired properties in Nano technology have the potential to impact society by improving remediation, photovoltaics, medicine and the sustainability limits on Earth for an expanding population. Despite the progress made on the discovery, synthesis, and manufacturing of numerous nano-materials, the atomistic cause of their desired properties is poorly understood. To gain a better understanding of the atomic structure of nano materials and their bulk counterparts we combined several crystallographic techniques to solve the crystal structure and performed formative characterization to ascertain the atomistic source of the desired application. These strategies and tools can be used to expedite discovery, development and the goals of the National Nanotechnology Initiative (NNI). This thesis will cover the optimization of the reaction conditions and resolve the atomic structure to produce pure synthetic nano nolanite (SNN) Fe2V3O7OH. The complete structural model of nolanite was described from a bulk mineral to the nano-regime using a combination of single crystal X-ray diffraction (SC-XRD), pair distribution function analysis (PDF) and neutron powder diffraction from synthetic material. Nolanite is isostructural to ferrihydrite, a ubiquitous nano-mineral, both of these mineral structures have been the subject for debate for the last half of century. A comparative study of the isostructural minerals nolanite, akdalaite and ferrihydrite was utilized to address the discrepancies and consolidate the structural models. Lastly, we developed a structural model for nano-crystalline titanium-based material; mono sodium titanate (MST) using high energy total X-ray scattering and PDF coupled with scanning transmission electron microscope (STEM). In the USA we have accumulated over 76000 metric tons of nuclear waste and the nuclear industry continues to generate an additional 2000 tons every year. MST is the baseline material used for to effectively remove 90Sr and alpha-emitting actinides from strongly alkaline, high-level nuclear waste solutions at the Savannah River site. Despite the success of MST in the remediation of high-level radioactive waste (HLW) the process by which the metals are structurally incorporated is still poorly understood, and there is still no structural model. This study aims to better understand the ion exchange mechanism of MST by generating a structural model derived from synchrotron X-ray powder diffraction data.
Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G
2009-05-07
We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the "D" stands for "density" to denote that the full solute electron density is used without defining partial atomic charges. "Continuum" denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where "universal" denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous organic solvents and water), and 143 transfer free energies for 93 neutral solutes between water and 15 organic solvents. The elements present in the solutes are H, C, N, O, F, Si, P, S, Cl, and Br. The SMD model employs a single set of parameters (intrinsic atomic Coulomb radii and atomic surface tension coefficients) optimized over six electronic structure methods: M05-2X/MIDI!6D, M05-2X/6-31G, M05-2X/6-31+G, M05-2X/cc-pVTZ, B3LYP/6-31G, and HF/6-31G. Although the SMD model has been parametrized using the IEF-PCM protocol for bulk electrostatics, it may also be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space. This includes, for example, the conductor-like screening algorithm. With the 6-31G basis set, the SMD model achieves mean unsigned errors of 0.6-1.0 kcal/mol in the solvation free energies of tested neutrals and mean unsigned errors of 4 kcal/mol on average for ions with either Gaussian03 or GAMESS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marenich, Aleksandr; Cramer, Christopher J; Truhlar, Donald G
2009-04-30
We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the “D” stands for “density” to denote that the full solute electron density is used without defining partial atomic charges. “Continuum” denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where “universal” denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which amore » few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous organic solvents and water), and 143 transfer free energies for 93 neutral solutes between water and 15 organic solvents. The elements present in the solutes are H, C, N, O, F, Si, P, S, Cl, and Br. The SMD model employs a single set of parameters (intrinsic atomic Coulomb radii and atomic surface tension coefficients) optimized over six electronic structure methods: M05-2X/MIDI!6D, M05-2X/6-31G*, M05-2X/6-31+G**, M05-2X/cc-pVTZ, B3LYP/6-31G*, and HF/6-31G*. Although the SMD model has been parametrized using the IEF-PCM protocol for bulk electrostatics, it may also be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space. This includes, for example, the conductor-like screening algorithm. With the 6-31G* basis set, the SMD model achieves mean unsigned errors of 0.6-1.0 kcal/mol in the solvation free energies of tested neutrals and mean unsigned errors of 4 kcal/mol on average for ions with either Gaussian03 or GAMESS.« less
The Origin of the Moon Within a Terrestrial Synestia
NASA Astrophysics Data System (ADS)
Lock, Simon J.; Stewart, Sarah T.; Petaev, Michail I.; Leinhardt, Zoë; Mace, Mia T.; Jacobsen, Stein B.; Cuk, Matija
2018-04-01
The giant impact hypothesis remains the leading theory for lunar origin. However, current models struggle to explain the Moon's composition and isotopic similarity with Earth. Here we present a new lunar origin model. High-energy, high-angular-momentum giant impacts can create a post-impact structure that exceeds the corotation limit, which defines the hottest thermal state and angular momentum possible for a corotating body. In a typical super-corotation-limit body, traditional definitions of mantle, atmosphere, and disk are not appropriate, and the body forms a new type of planetary structure, named a synestia. Using simulations of cooling synestias combined with dynamic, thermodynamic, and geochemical calculations, we show that satellite formation from a synestia can produce the main features of our Moon. We find that cooling drives mixing of the structure, and condensation generates moonlets that orbit within the synestia, surrounded by tens of bars of bulk silicate Earth vapor. The moonlets and growing moon are heated by the vapor until the first major element (Si) begins to vaporize and buffer the temperature. Moonlets equilibrate with bulk silicate Earth vapor at the temperature of silicate vaporization and the pressure of the structure, establishing the lunar isotopic composition and pattern of moderately volatile elements. Eventually, the cooling synestia recedes within the lunar orbit, terminating the main stage of lunar accretion. Our model shifts the paradigm for lunar origin from specifying a certain impact scenario to achieving a Moon-forming synestia. Giant impacts that produce potential Moon-forming synestias were common at the end of terrestrial planet formation.
A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow.
Wang, Zhongjie; Wood, Nigel B; Xu, Xiao Yun
2015-05-01
In this study, a fluid-structure interaction model (FSI) incorporating viscoelastic wall behaviour is developed and applied to an idealized model of the carotid artery under pulsatile flow. The shear and bulk moduli of the arterial wall are described by Prony series, where the parameters can be derived from in vivo measurements. The aim is to develop a fully coupled FSI model that can be applied to realistic arterial geometries with normal or pathological viscoelastic wall behaviour. Comparisons between the numerical and analytical solutions for wall displacements demonstrate that the coupled model is capable of predicting the viscoelastic behaviour of carotid arteries. Comparisons are also made between the solid only and FSI viscoelastic models, and the results suggest that the difference in radial displacement between the two models is negligible. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Vanwalleghem, T.; Román, A.; Peña, A.; Laguna, A.; Giráldez, J. V.
2017-12-01
There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties in the critical zone. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of traditional digital soil mapping versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.
2017-03-28
AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium-based Bulk Amorphous Alloys based on Stable Liquid -Metal Structures and...to 16 Dec 2016 4. TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium-based Bulk Amorphous Alloys based on Stable Liquid -Metal...including Al, Cu, Ni, Zr, Mg, Pd, Ga , Ca. Many new Al-based amorphous alloys were found within the numerous alloy systems studied in this project, and
NASA Astrophysics Data System (ADS)
Brázda, Petr; Mutombo, Pingo; Ondráček, Martin; Corrêa, Cinthia Antunes; Kopeček, Jaromír; Palatinus, Lukáš
2018-05-01
The bulk and surface structures of calcium and strontium disilicides are investigated by computational methods using density functional theory. The investigated structures are R6, R3 and P1-CaSi2 and P1-SrSi2. The investigated properties are the cleavage energy at the silicene sheet, buckling of the bulk and surface silicene layers, charge transfer from calcium to silicon, band structure of bulk and surface-terminated structures and adsorption energies on H atoms and H2 molecules on the silicene-terminated surface of the R3 phase. The cleavage energy at the silicene surface is low in all cases. Structures P1-CaSi2 and R3-CaSi2 contain silicene sheets with different coordination to Ca, while R6-CaSi2 contains both types of the sheets. It is shown that the properties of the two types of silicene-like sheets in R6-CaSi2 are similar to those of the corresponding sheets in P1-CaSi2 and R3-CaSi2, and the thermodynamically stable R6 phase is a good candidate for experimental investigation of silicene-terminated surface in calcium disilicide.
What is Neptune's D/H ratio really telling us about its water abundance?
NASA Astrophysics Data System (ADS)
Ali-Dib, Mohamad; Lakhlani, Gunjan
2018-05-01
We investigate the deep-water abundance of Neptune using a simple two-component (core + envelope) toy model. The free parameters of the model are the total mass of heavy elements in the planet (Z), the mass fraction of Z in the envelope (fenv), and the D/H ratio of the accreted building blocks (D/Hbuild).We systematically search the allowed parameter space on a grid and constrain it using Neptune's bulk carbon abundance, D/H ratio, and interior structure models. Assuming solar C/O ratio and cometary D/H for the accreted building blocks are forming the planet, we can fit all of the constraints if less than ˜15 per cent of Z is in the envelope (f_{env}^{median} ˜ 7 per cent), and the rest is locked in a solid core. This model predicts a maximum bulk oxygen abundance in Neptune of 65× solar value. If we assume a C/O of 0.17, corresponding to clathrate-hydrates building blocks, we predict a maximum oxygen abundance of 200× solar value with a median value of ˜140. Thus, both cases lead to oxygen abundance significantly lower than the preferred value of Cavalié et al. (˜540× solar), inferred from model-dependent deep CO observations. Such high-water abundances are excluded by our simple but robust model. We attribute this discrepancy to our imperfect understanding of either the interior structure of Neptune or the chemistry of the primordial protosolar nebula.
Simplified and refined structural modeling for economical flutter analysis and design
NASA Technical Reports Server (NTRS)
Ricketts, R. H.; Sobieszczanski, J.
1977-01-01
A coordinated use of two finite-element models of different levels of refinement is presented to reduce the computer cost of the repetitive flutter analysis commonly encountered in structural resizing to meet flutter requirements. One model, termed a refined model (RM), represents a high degree of detail needed for strength-sizing and flutter analysis of an airframe. The other model, called a simplified model (SM), has a relatively much smaller number of elements and degrees-of-freedom. A systematic method of deriving an SM from a given RM is described. The method consists of judgmental and numerical operations to make the stiffness and mass of the SM elements equivalent to the corresponding substructures of RM. The structural data are automatically transferred between the two models. The bulk of analysis is performed on the SM with periodical verifications carried out by analysis of the RM. In a numerical example of a supersonic cruise aircraft with an arrow wing, this approach permitted substantial savings in computer costs and acceleration of the job turn-around.
NASTRAN data generation and management using interactive graphics
NASA Technical Reports Server (NTRS)
Smootkatow, M.; Cooper, B. M.
1972-01-01
A method of using an interactive graphics device to generate a large portion of the input bulk data with visual checks of the structure and the card images is described. The generation starts from GRID and PBAR cards. The visual checks result from a three-dimensional display of the model in any rotated position. By detailing the steps, the time saving and cost effectiveness of this method may be judged, and its potential as a useful tool for the structural analyst may be established.
Causal Structure around Spinning 5-DIMENSIONAL Cosmic Strings
NASA Astrophysics Data System (ADS)
Slagter, Reinoud Jan
2008-09-01
We present a numerical solution of a stationary 5-dimensional spinning cosmic string in the Einstein-Yang-Mills (EYM) model, where the extra bulk coordinate ψ is periodic. It turns out that when gψψ approaches zero, i.e., a closed time-like curve (CTC) would appear, the solution becomes singular. We also investigated the geometrical structure of the static 5D cosmic string. Two opposite moving 5D strings could, in contrast with the 4D case, fulfil the Gott condition for CTC formation.
Novel Crystal Structure C60 Nanowire
NASA Astrophysics Data System (ADS)
Mickelson, William; Aloni, Shaul; Han, Weiqiang; Cumings, John; Zettl, Alex
2003-03-01
We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride (BN) nanotubes. For small-diameter BN tubes, the wire consists of a linear chain of C60's. With increasing BN tube inner diameter, novel C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) which are unknown for bulk or thin film forms of C60. C60 in BN nanotubes presents a model system for studying the properties of new dimensionally-constrained "silo" crystal structures.
Pugliese, P; Conde, M M; Rovere, M; Gallo, P
2017-11-16
A very recent experimental paper importantly and unexpectedly showed that water in carbon nanotubes is already in the solid ordered phase at the temperature where bulk water boils. The water models used so far in literature for molecular dynamics simulations in carbon nanotubes show freezing temperatures lower than the experiments. We present here results from molecular dynamics simulations of water inside single walled carbon nanotubes using an extremely realistic model for both liquid and icy water, the TIP4P/ICE. The water behavior inside nanotubes of different diameters has been studied upon cooling along the isobars at ambient pressure starting from temperatures where water is in a liquid state. We studied the liquid/solid transition, and we observed freezing temperatures higher than in bulk water and that depend on the diameter of the nanotube. The maximum freezing temperature found is 390 K, which is in remarkable agreement with the recent experimental measurements. We have also analyzed the ice structure called "ice nanotube" that water forms inside the single walled carbon nanotubes when it freezes. The ice forms observed are in agreement with previous results obtained with different water models. A novel finding, a partial proton ordering, is evidenced in our ice nanotubes at finite temperature.
NASA Astrophysics Data System (ADS)
Torbahn, Lutz; Weuster, Alexander; Handl, Lisa; Schmidt, Volker; Kwade, Arno; Wolf, Dietrich E.
2017-06-01
The interdependency of structure and mechanical features of a cohesive powder packing is on current scientific focus and far from being well understood. Although the Discrete Element Method provides a well applicable and widely used tool to model powder behavior, non-trivial contact mechanics of micron-sized particles demand a sophisticated contact model. Here, a direct comparison between experiment and simulation on a particle level offers a proper approach for model validation. However, the simulation of a full scale shear-tester experiment with micron-sized particles, and hence, validating this simulation remains a challenge. We address this task by down scaling the experimental setup: A fully functional micro shear-tester was developed and implemented into an X-ray tomography device in order to visualize the sample on a bulk and particle level within small bulk volumes of the order of a few micro liter under well-defined consolidation. Using spherical micron-sized particles (30 μm), shear tests with a particle number accessible for simulations can be performed. Moreover, particle level analysis allows for a direct comparison of experimental and numerical results, e.g., regarding structural evolution. In this talk, we focus on density inhomogeneity and shear induced heterogeneity during compaction and shear deformation.
Electronic structure of Fe1.08Te bulk crystals and epitaxial FeTe thin films on Bi2Te3
NASA Astrophysics Data System (ADS)
Arnold, Fabian; Warmuth, Jonas; Michiardi, Matteo; Fikáček, Jan; Bianchi, Marco; Hu, Jin; Mao, Zhiqiang; Miwa, Jill; Singh, Udai Raj; Bremholm, Martin; Wiesendanger, Roland; Honolka, Jan; Wehling, Tim; Wiebe, Jens; Hofmann, Philip
2018-02-01
The electronic structure of thin films of FeTe grown on Bi2Te3 is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk Fe1.08Te taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on Bi2Te3 in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film’s electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film’s high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.
Probing Actinide Electronic Structure through Pu Cluster Calculations
Ryzhkov, Mickhail V.; Mirmelstein, Alexei; Yu, Sung-Woo; ...
2013-02-26
The calculations for the electronic structure of clusters of plutonium have been performed, within the framework of the relativistic discrete-variational method. Moreover, these theoretical results and those calculated earlier for related systems have been compared to spectroscopic data produced in the experimental investigations of bulk systems, including photoelectron spectroscopy. Observation of the changes in the Pu electronic structure as a function of size provides powerful insight for aspects of bulk Pu electronic structure.
Bulk magnetic domain structures visualized by neutron dark-field imaging
NASA Astrophysics Data System (ADS)
Grünzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kühne, G.; Schäfer, R.; Pofahl, S.; Rønnow, H. M. R.; Pfeiffer, F.
2008-09-01
We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs.
Thermodynamic and structural properties of hcp bulk and nano-precipitated Ag-Al.
NASA Astrophysics Data System (ADS)
Zarkevich, Nikolai; Johnson, Duane; Smirnov, Andrei
2002-03-01
We study the short- and long- range chemical ordering in hcp bulk Ag_2Al using the Monte Carlo method based on a Hamiltonian constructed via structural formation energies from ab initio electronic-structure calculations. We find that the ground-state structure and thermodynamic properties of bulk Ag_2Al is that determined from the X-ray experimental data. We also address the influence of the interface, coherency strain, and off-stoichiometric disorder on the structure of metastable γ' nano-precipitates in fcc Al matrix. We show that γ' precipitates are off-stoichiometric and provide a new Al-rich structure that reproduces the observed TEM image. We acknowledge our support in part by an ALCOA Foundation Grant, the U.S. Department of Energy through the Frederick Seitz Materials Research Laboratory at UIUC under grant DEFG02-91ER45439, and the UIUC Materials Computation Center under National Science Foundation grant DMR-9976550.
NASA Astrophysics Data System (ADS)
Al-abadleh, H. A.; Tofan-Lazar, J.; Situm, A.; Ruffolo, J.; Slikboer, S.
2013-12-01
Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. Little is known about the role of surface water in the complexation of organic molecules to transition metals in multicomponent aerosol systems. We will show results from real time diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments for the in situ complexation of catechol to Fe(III) and its photosensitized degradation under dry and humid conditions. Catechol was chosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It has also been detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative and qualitative information about complexes in the bulk, and potential degradation products. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin islands on buildings, and ocean surfaces containing transition metals will be discussed.
Transport Physics Mechanisms in Thin-Film Oxides.
NASA Astrophysics Data System (ADS)
Tierney, Brian D.; Hjalmarson, Harold P.; Jacobs-Gedrim, Robin B.; James, Conrad D.; Marinella, Matthew M.
A physics-based model of electron transport mechanisms in metal-insulating oxide-metal (M-I-M) systems is presented focusing on transport through the metal-oxide interfaces and in the bulk of the oxide. Interface tunneling, such as electron tunneling between the metal and the conduction band, or to oxide defect states, is accounted for via a WKB model. The effects of thermionic emission are also included. In the bulk of the oxide, defect-site hopping is dominant. Corresponding continuum calculations are performed for Ta2O5 M-I-M systems utilizing two different metal electrodes, e.g., platinum and tantalum. Such an asymmetrical M-I-M structure, applicable to resistive memory applications or oxide-based capacitors, reveals that the current can be either bulk or interface limited depending on the bias polarity and concentration of oxygen vacancy defects. Also, the dominance of some transport mechanisms over others is shown to be due to a complex interdependence between the vacancy concentration and bias polarity. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Biointerface dynamics--Multi scale modeling considerations.
Pajic-Lijakovic, Ivana; Levic, Steva; Nedovic, Viktor; Bugarski, Branko
2015-08-01
Irreversible nature of matrix structural changes around the immobilized cell aggregates caused by cell expansion is considered within the Ca-alginate microbeads. It is related to various effects: (1) cell-bulk surface effects (cell-polymer mechanical interactions) and cell surface-polymer surface effects (cell-polymer electrostatic interactions) at the bio-interface, (2) polymer-bulk volume effects (polymer-polymer mechanical and electrostatic interactions) within the perturbed boundary layers around the cell aggregates, (3) cumulative surface and volume effects within the parts of the microbead, and (4) macroscopic effects within the microbead as a whole based on multi scale modeling approaches. All modeling levels are discussed at two time scales i.e. long time scale (cell growth time) and short time scale (cell rearrangement time). Matrix structural changes results in the resistance stress generation which have the feedback impact on: (1) single and collective cell migrations, (2) cell deformation and orientation, (3) decrease of cell-to-cell separation distances, and (4) cell growth. Herein, an attempt is made to discuss and connect various multi scale modeling approaches on a range of time and space scales which have been proposed in the literature in order to shed further light to this complex course-consequence phenomenon which induces the anomalous nature of energy dissipation during the structural changes of cell aggregates and matrix quantified by the damping coefficients (the orders of the fractional derivatives). Deeper insight into the matrix partial disintegration within the boundary layers is useful for understanding and minimizing the polymer matrix resistance stress generation within the interface and on that base optimizing cell growth. Copyright © 2015 Elsevier B.V. All rights reserved.
Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study
NASA Technical Reports Server (NTRS)
Wilson, Michael A.; Pohorille, Andrew
1991-01-01
Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.
Li, Xianfeng; Murthy, Sanjeeva; Latour, Robert A.
2011-01-01
A new empirical sampling method termed “temperature intervals with global exchange of replicas and reduced radii” (TIGER3) is presented and demonstrated to efficiently equilibrate entangled long-chain molecular systems such as amorphous polymers. The TIGER3 algorithm is a replica exchange method in which simulations are run in parallel over a range of temperature levels at and above a designated baseline temperature. The replicas sampled at temperature levels above the baseline are run through a series of cycles with each cycle containing four stages – heating, sampling, quenching, and temperature level reassignment. The method allows chain segments to pass through one another at elevated temperature levels during the sampling stage by reducing the van der Waals radii of the atoms, thus eliminating chain entanglement problems. Atomic radii are then returned to their regular values and re-equilibrated at elevated temperature prior to quenching to the baseline temperature. Following quenching, replicas are compared using a Metropolis Monte Carlo exchange process for the construction of an approximate Boltzmann-weighted ensemble of states and then reassigned to the elevated temperature levels for additional sampling. Further system equilibration is performed by periodic implementation of the previously developed TIGER2 algorithm between cycles of TIGER3, which applies thermal cycling without radii reduction. When coupled with a coarse-grained modeling approach, the combined TIGER2/TIGER3 algorithm yields fast equilibration of bulk-phase models of amorphous polymer, even for polymers with complex, highly branched structures. The developed method was tested by modeling the polyethylene melt. The calculated properties of chain conformation and chain segment packing agreed well with published data. The method was also applied to generate equilibrated structural models of three increasingly complex amorphous polymer systems: poly(methyl methacrylate), poly(butyl methacrylate), and DTB-succinate copolymer. Calculated glass transition temperature (Tg) and structural parameter profile (S(q)) for each resulting polymer model were found to be in close agreement with experimental Tg values and structural measurements obtained by x-ray diffraction, thus validating that the developed methods provide realistic models of amorphous polymer structure. PMID:21769156
Hexaferrite multiferroics: from bulk to thick films
NASA Astrophysics Data System (ADS)
Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.
2018-03-01
We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.
Steenbergen, Krista G; Gaston, Nicola
2016-01-13
Melting in finite-sized materials differs in two ways from the solid-liquid phase transition in bulk systems. First, there is an inherent scaling of the melting temperature below that of the bulk, known as melting point depression. Second, at small sizes changes in melting temperature become nonmonotonic and show a size-dependence that is sensitive to the structure of the particle. Melting temperatures that exceed those of the bulk material have been shown to occur for a very limited range of nanoclusters, including gallium, but have still never been ascribed a convincing physical explanation. Here, we analyze the structure of the liquid phase in gallium clusters based on molecular dynamics simulations that reproduce the greater-than-bulk melting behavior observed in experiments. We observe persistent nonspherical shape distortion indicating a stabilization of the surface, which invalidates the paradigm of melting point depression. This shape distortion suggests that the surface acts as a constraint on the liquid state that lowers its entropy relative to that of the bulk liquid and thus raises the melting temperature.
NASA Astrophysics Data System (ADS)
Pilarczyk, Wirginia
2016-06-01
Metallic glasses exhibit metastable structure and maintain this relatively stable amorphous state within certain temperature range. High intensity laser beam was used for the surface irradiation of Fe-Co-B-Si-Nb bulk metallic glasses. The variable parameter was laser beam pulse energy. For the analysis of structure and properties of bulk metallic glasses and their surface after laser remelting the X-ray analysis, microscopic observation and test of mechanical properties were carried out. Examination of the nanostructure of amorphous materials obtained by high pressure copper mold casting method and the irradiated with the use of TITAN 80-300 HRTEM was carried out. Nanohardness and reduced Young's modulus of particular amorphous and amorphous-crystalline material zone of the laser beam were examined with the use of Hysitron TI950 Triboindenter nanoindenter and with the use of Berkovich's indenter. The XRD and microscopic analysis showed that the test material is amorphous in its structure before irradiation. Microstructure observation with electron transmission microscopy gave information about alloy crystallization in the irradiated process. Identification of given crystal phases allows to determine the kind of crystal phases created in the first place and also further changes of phase composition of alloy. The main value of the nanohardness of the surface prepared by laser beam has the order of magnitude similar to bulk metallic glasses formed by casting process irrespective of the laser beam energy used. Research results analysis showed that the area between parent material and fusion zone is characterized by extraordinarily interesting structure which is and will be the subject of further analysis in the scope of bulk metallic glasses amorphous structure and high energy concentration source. The main goal of this work is the results' presentation of structure and chosen properties of the selected bulk metallic glasses after casting process and after irradiation process employing the high energy concentration sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, P. T.; Riordan, N. A.; Liu, S.
2015-12-28
The structural and optical properties of lattice-matched InAs{sub 0.911}Sb{sub 0.089} bulk layers and strain-balanced InAs/InAs{sub 1−x}Sb{sub x} (x ∼ 0.1–0.4) superlattices grown on (100)-oriented GaSb substrates by molecular beam epitaxy are examined using X-ray diffraction, spectroscopic ellipsometry, and temperature dependent photoluminescence spectroscopy. The photoluminescence and ellipsometry measurements determine the ground state bandgap energy and the X-ray diffraction measurements determine the layer thickness and mole fraction of the structures studied. Detailed modeling of the X-ray diffraction data is employed to quantify unintentional incorporation of approximately 1% Sb into the InAs layers of the superlattices. A Kronig-Penney model of the superlattice miniband structure ismore » used to analyze the valence band offset between InAs and InAsSb, and hence the InAsSb band edge positions at each mole fraction. The resulting composition dependence of the bandgap energy and band edge positions of InAsSb are described using the bandgap bowing model; the respective low and room temperature bowing parameters for bulk InAsSb are 938 and 750 meV for the bandgap, 558 and 383 meV for the conduction band, and −380 and −367 meV for the valence band.« less
Topics in Extrasolar Planet Characterization
NASA Astrophysics Data System (ADS)
Howe, Alex Ryan
I present four papers exploring different topics in the area of characterizing the atmospheric and bulk properties of extrasolar planets. In these papers, I present two new codes, in various forms, for modeling these objects. A code to generate theoretical models of transit spectra of exoplanets is featured in the first paper and is refined and expanded into the APOLLO code for spectral modeling and parameter retrieval in the fourth paper. Another code to model the internal structure and evolution of planets is featured in the second and third papers. The first paper presents transit spectra models of GJ 1214b and other super-Earth and mini-Neptune type planets--planets with a "solid", terrestrial composition and relatively small planets with a thick hydrogen-helium atmosphere, respectively--and fit them to observational data to estimate the atmospheric compositions and cloud properties of these planets. The second paper presents structural models of super-Earth and mini-Neptune type planets and estimates their bulk compositions from mass and radius estimates. The third paper refines these models with evolutionary calculations of thermal contraction and ultraviolet-driven mass loss. Here, we estimate the boundaries of the parameter space in which planets lose their initial hydrogen-helium atmospheres completely, and we also present formation and evolution scenarios for the planets in the Kepler-11 system. The fourth paper uses more refined transit spectra models, this time for hot jupiter type planets, to explore the methods to design optimal observing programs for the James Webb Space Telescope to quantitatively measure the atmospheric compositions and other properties of these planets.
Dense Regions in Supersonic Isothermal Turbulence
NASA Astrophysics Data System (ADS)
Robertson, Brant; Goldreich, Peter
2018-02-01
The properties of supersonic isothermal turbulence influence a variety of astrophysical phenomena, including the structure and evolution of star-forming clouds. This work presents a simple model for the structure of dense regions in turbulence in which the density distribution behind isothermal shocks originates from rough hydrostatic balance between the pressure gradient behind the shock and its deceleration from ram pressure applied by the background fluid. Using simulations of supersonic isothermal turbulence and idealized waves moving through a background medium, we show that the structural properties of dense, shocked regions broadly agree with our analytical model. Our work provides a new conceptual picture for describing the dense regions, which complements theoretical efforts to understand the bulk statistical properties of turbulence and attempts to model the more complex features of star-forming clouds like magnetic fields, self-gravity, or radiative properties.
Surface modes and reconstruction of diamond structure crystals
NASA Astrophysics Data System (ADS)
Goldammer, W.; Ludwig, W.; Zierau, W.
1986-08-01
Applying our recently proposed Green function method we calculate the surface phonon spectra for the (111) surfaces of the diamond structure crystals C, Si, Ge and α-Sn on the basis of a phenomenological force constant model. Allowing for changes in the surface force constants we investigate the possibility of a surface phonon softening. Relating these soft modes to surface reconstructions we find evidence for a Si (7 × 7), Ge (8 × 8) and α-Sn (3 × 3) reconstruction, while diamond does not exhibit a soft mode behavior at all. We can thus explain the occurrence of different surface structures in these geometrically identical crystals as being determined to a great extent already by bulk properties. Finally, we derive models of the reconstructed surfaces and discuss our model for the Si (7 × 7) surface with respect to experimental TED patterns.
Statistical mechanics of homogeneous partly pinned fluid systems.
Krakoviack, Vincent
2010-12-01
The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.
NASA Astrophysics Data System (ADS)
Kronberg, Elena A.; Ashour-Abdalla, Maha; Dandouras, Iannis; Delcourt, Dominique C.; Grigorenko, Elena E.; Kistler, Lynn M.; Kuzichev, Ilya V.; Liao, Jing; Maggiolo, Romain; Malova, Helmi V.; Orlova, Ksenia G.; Peroomian, Vahe; Shklyar, David R.; Shprits, Yuri Y.; Welling, Daniel T.; Zelenyi, Lev M.
2014-11-01
Knowledge of the ion composition in the near-Earth's magnetosphere and plasma sheet is essential for the understanding of magnetospheric processes and instabilities. The presence of heavy ions of ionospheric origin in the magnetosphere, in particular oxygen (O+), influences the plasma sheet bulk properties, current sheet (CS) thickness and its structure. It affects reconnection rates and the formation of Kelvin-Helmholtz instabilities. This has profound consequences for the global magnetospheric dynamics, including geomagnetic storms and substorm-like events. The formation and demise of the ring current and the radiation belts are also dependent on the presence of heavy ions. In this review we cover recent advances in observations and models of the circulation of heavy ions in the magnetosphere, considering sources, transport, acceleration, bulk properties, and the influence on the magnetospheric dynamics. We identify important open questions and promising avenues for future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Topp, Andreas; Queiroz, Raquel; Grüneis, Andreas
In this work, we present a model of the surface states of nonsymmorphic semimetals. These are derived from surface mass terms that lift the high degeneracy imposed in the band structure by the nonsymmorphic bulk symmetries. Reflecting the reduced symmetry at the surface, the bulk bands are strongly modified. This leads to the creation of two-dimensional floating bands, which are distinct from Shockley states, quantum well states or topologically protected surface states. We focus on the layered semimetal ZrSiS to clarify the origin of its surface states. We demonstrate an excellent agreement between DFT calculations and ARPES measurements and presentmore » an effective four-band model in which similar surface bands appear. Finally, we emphasize the role of the surface chemical potential by comparing the surface density of states in samples with and without potassium coating. Our findings can be extended to related compounds and generalized to other crystals with nonsymmorphic symmetries.« less
K1.33Mn8O16 as an electrocatalyst and a cathode
NASA Astrophysics Data System (ADS)
Jalili, Seifollah; Moharramzadeh Goliaei, Elham; Schofield, Jeremy
2017-02-01
Density functional theory (DFT) calculations are carried out to investigate the electronic, magnetic and thermoelectric properties of bulk and nanosheet K1.33Mn8O16 materials. The catalytic activity and cathodic performance of bulk and nanosheet structures are examined using the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential. Electronic structure calculations reveal an anti-ferromagnetic ground state, with a TB-mMBJ band gap in bulk K1.33Mn8O16 that is in agreement with experimental results. Density of state plots indicate a partial reduction of Mn4+ ions to Mn3+, without any obvious sign of Jahn-Teller distortion. Moreover, use of the O p-band center as a descriptor of catalytic activity suggests that the nanosheet has enhanced catalytic activity compared to the bulk structure. Thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity are also calculated, and it is found that the Seebeck coefficients decrease with increasing temperature. High Seebeck coefficients for both spin-up and spin-down states are found in the nanosheet relative to their value in the bulk K1.33Mn8O16 structure, whereas the electrical and thermal conductivity are reduced relative to the bulk. In addition, figures of merit values are calculated as a function of the chemical potential and it is found that the nanosheet has a figure of merit of 1 at room temperature, compared to 0.5 for the bulk material. All results suggest that K1.33Mn8O16 nanosheets can be used both as a material in waste heat recovery and as an electrocatalyst in fuel cells and batteries.
Shin, Jae Yoon; Yamada, Steven A; Fayer, Michael D
2017-01-11
Supported ionic liquid membranes (SILMs) are membranes that have ionic liquids impregnated in their pores. SILMs have been proposed for advanced carbon capture materials. Two-dimensional infrared (2D IR) and polarization selective IR pump-probe (PSPP) techniques were used to investigate the dynamics of reorientation and spectral diffusion of the linear triatomic anion, SeCN - , in poly(ether sulfone) (PES) membranes and room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf 2 ). The dynamics in the bulk EmimNTf 2 were compared to its dynamics in the SILM samples. Two PES membranes, PES200 and PES30, have pores with average sizes, ∼300 nm and ∼100 nm, respectively. Despite the relatively large pore sizes, the measurements reveal that the reorientation of SeCN - and the RTIL structural fluctuations are substantially slower in the SILMs than in the bulk liquid. The complete orientational randomization, slows from 136 ps in the bulk to 513 ps in the PES30. 2D IR measurements yield three time scales for structural spectral diffusion (SSD), that is, the time evolution of the liquid structure. The slowest decay constant increases from 140 ps in the bulk to 504 ps in the PES200 and increases further to 1660 ps in the PES30. The results suggest that changes at the interface propagate out and influence the RTIL structural dynamics even more than a hundred nanometers from the polymer surface. The differences between the IL dynamics in the bulk and in the membranes suggest that studies of bulk RTIL properties may be poor guides to their use in SILMs in carbon capture applications.
Thermal transport properties of bulk and monolayer MoS2: an ab-initio approach
NASA Astrophysics Data System (ADS)
Bano, Amreen; Khare, Preeti; Gaur, N. K.
2017-05-01
The transport properties of semiconductors are key to the performance of many solid-state devices (transistors, data storage, thermoelectric cooling and power generation devices, etc). In recent years simulation tools based on first-principles calculations have been greatly improved, being able to obtain the fundamental ground-state properties of materials accurately. The quasi harmonic thermal properties of bulk and monolayer of MoS2 has been computed with ab initio periodic simulations based of density functional theory (DFT). The temperature dependence of bulk modulus, specific heat, thermal expansion and gruneisen parameter have been calculated in our work within the temperature range of 0K to 900K with projected augmented wave (PAW) method using generalized gradient approximation (GGA). Our results show that the optimized lattice parameters are in good agreement with the earlier reported works and also for thermoelastic parameter, i.e. isothermal bulk modulus (B) at 0K indicates that monolayer MoS2 (48.5 GPa)is more compressible than the bulk structure (159.23 GPa). The thermal expansion of monolayer structure is slightly less than the bulk. Similarly, other parameters like heat capacity and gruneisen parameter shows different nature which is due to the confinement of 3 dimensional structure to 2 dimension (2D) for improving its transport characteristics.
NASA Astrophysics Data System (ADS)
Fan, Benhui; Liu, Yu; He, Delong; Bai, Jinbo
2018-01-01
Sandwich-structured composites of polydimethylsiloxane/carbon nanotube (PDMS/CNT) bulk between two neat PDMS thin films with different thicknesses are prepared by the spin-coating method. Taking advantage of CNT's percolation behavior, the composite keeps relatively high dielectric constant (ɛ' = 40) at a low frequency (at 100 Hz). Meanwhile, due to the existence of PDMS isolated out-layers which limits the conductivity of the composite, the composite maintains an extremely low dielectric loss (tan δ = 0.01) (at 100 Hz). Moreover, the same matrix of the out-layer and bulk can achieve excellent interfacial adhesion, and the thickness of the coating layer can be controlled by a multi-cycle way. Then, based on the experimental results, the calculation combining the percolation theory and core-shell model is used to analyze the thickness effect of the coating layer on ɛ'. The obtained relationship between the ɛ' of the composite and the thickness of the coating layer can help to optimize the sandwich structure in order to obtain the adjustable ɛ' and the extremely low tan δ.
Topological Optimization of Artificial Microstructure Strategies
2015-04-02
a 3D microstructural architecture structure made from bulk metallic glass , 3DMGS, exhibiting a combination of ceramic-like high strength (>1000 MPa...Research Triangle Park, NC 27709-2211 materials, cellular structures, metallic glass REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S...demonstrate a 3D microstructural architecture structure made from bulk metallic glass , 3DMGS, exhibiting a combination of ceramic-like high strength
Shell structures in aluminum nanocontacts at elevated temperatures
2012-01-01
Aluminum nanocontact conductance histograms are studied experimentally from room temperature up to near the bulk melting point. The dominant stable configurations for this metal show a very early crossover from shell structures at low wire diameters to ionic subshell structures at larger diameters. At these larger radii, the favorable structures are temperature-independent and consistent with those expected for ionic subshell (faceted) formations in face-centered cubic geometries. When approaching the bulk melting temperature, these local stability structures become less pronounced as shown by the vanishing conductance histogram peak structure. PMID:22325572
Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment
NASA Technical Reports Server (NTRS)
Page, Arthur T.
2001-01-01
This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.
Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment
NASA Technical Reports Server (NTRS)
Page, Arhur T.
1999-01-01
This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(Tm), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(Tm) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(Tm) generates the SINDA/Fluint input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.
NASA Technical Reports Server (NTRS)
Ovchinnikov, Mikhail; Ackerman, Andrew S.; Avramov, Alexander; Cheng, Anning; Fan, Jiwen; Fridlind, Ann M.; Ghan, Steven; Harrington, Jerry; Hoose, Corinna; Korolev, Alexei;
2014-01-01
Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds.
Quantitative theory of hydrophobic effect as a driving force of protein structure
Perunov, Nikolay; England, Jeremy L
2014-01-01
Various studies suggest that the hydrophobic effect plays a major role in driving the folding of proteins. In the past, however, it has been challenging to translate this understanding into a predictive, quantitative theory of how the full pattern of sequence hydrophobicity in a protein shapes functionally important features of its tertiary structure. Here, we extend and apply such a phenomenological theory of the sequence-structure relationship in globular protein domains, which had previously been applied to the study of allosteric motion. In an effort to optimize parameters for the model, we first analyze the patterns of backbone burial found in single-domain crystal structures, and discover that classic hydrophobicity scales derived from bulk physicochemical properties of amino acids are already nearly optimal for prediction of burial using the model. Subsequently, we apply the model to studying structural fluctuations in proteins and establish a means of identifying ligand-binding and protein–protein interaction sites using this approach. PMID:24408023
Zhao, Yingjun; Schagerl, Martin; Viechtbauer, Christoph
2017-01-01
The concept of lightweight design is widely employed for designing and constructing aerospace structures that can sustain extreme loads while also being fuel-efficient. Popular lightweight materials such as aluminum alloy and fiber-reinforced polymers (FRPs) possess outstanding mechanical properties, but their structural integrity requires constant assessment to ensure structural safety. Next-generation structural health monitoring systems for aerospace structures should be lightweight and integrated with the structure itself. In this study, a multi-walled carbon nanotube (MWCNT)-based polymer paint was developed to detect distributed damage in lightweight structures. The thin film’s electromechanical properties were characterized via cyclic loading tests. Moreover, the thin film’s bulk conductivity was characterized by finite element modeling. PMID:28773084
USDA-ARS?s Scientific Manuscript database
Near-Infrared reflectance spectroscopic prediction models were developed for common constituents of corn and soybeans using bulk reference values and mean spectra from single-seeds. The bulk reference model and a true single-seed model for soybean protein were compared to determine how well the bul...
NbTiN Based SIS Multilayer Structures for SRF Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valente, Anne-marie; Eremeev, Grigory; Phillips, H
2013-09-01
For the past three decades, bulk niobium has been the material of choice for SRF cavities applications. RF cavity performance is now approaching the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, Superconductor Insulator - Superconductor (SIS) multilayer structures (as recently proposed by Alex Gurevich) present the theoretical prospect to reach RF performance beyond bulk Nb, using thinly layered higher-Tc superconductors with enhanced Hc1. Jefferson Lab (JLab) is pursuing this approach with the development of NbTiN and AlN based multilayer SIS structures. This paper presents the results on the characteristics of NbTiNmore » films and the first RF measurements on NbTiN-based multilayer structure on thick Nb films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, H., E-mail: tanaka@semicon.kuee.kyoto-u.ac.jp; Morioka, N.; Mori, S.
2014-02-07
The conduction band structure and electron effective mass of GaAs nanowires with various cross-sectional shapes and orientations were calculated by two methods, a tight-binding method and an effective mass equation taking the bulk full-band structure into account. The effective mass of nanowires increases as the cross-sectional size decreases, and this increase in effective mass depends on the orientations and substrate faces of nanowires. Among [001], [110], and [111]-oriented rectangular cross-sectional GaAs nanowires, [110]-oriented nanowires with wider width along the [001] direction showed the lightest effective mass. This dependence originates from the anisotropy of the Γ valley of bulk GaAs. Themore » relationship between effective mass and bulk band structure is discussed.« less
NASA Astrophysics Data System (ADS)
Zhu, Fanglong; Zhou, Yu; Liu, Suyan
2013-10-01
In this paper, we propose a new fractal model to determine the moisture effective diffusivity of porous membrane such as expanded polytetrafluorethylene membrane, by taking account of both parallel and perpendicular channels to diffusion flow direction. With the consideration of both the Knudsen and bulk diffusion effect, a relationship between micro-structural parameters and effective moisture diffusivity is deduced. The effective moisture diffusivities predicted by the present fractal model are compared with moisture diffusion experiment data and calculated values obtained from other theoretical models.
Bias effects on the electronic spectrum of a molecular bridge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Heidi; Prociuk, Alexander; Dunietz, Barry D
2011-01-01
In this paper the effect of bias and geometric symmetry breaking on the electronic spectrum of a model molecular system is studied. Geometric symmetry breaking can either enhance the dissipative effect of the bias, where spectral peaks are disabled, or enable new excitations that are absent under zero bias conditions. The spectralanalysis is performed on a simple model system by solving for the electronic response to an instantaneously impulsive perturbation in the dipole approximation. The dynamical response is extracted from the electronic equations of motion as expressed by the Keldysh formalism. This expression provides for the accurate treatment of themore » electronic structure of a bulk-coupled system at the chosen model Hamiltonian electronic structure level.« less
Peebles, P. J. E.
1998-01-01
It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ∼ 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation. PMID:9419326
Experimental band structure of potassium as measured by angle-resolved photoemission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itchkawitz, B.S.; Lyo, I.; Plummer, E.W.
1990-04-15
The bulk band structure of potassium along the (110) direction was measured using angle-resolved photoemission from an epitaxial potassium film several thousand angstroms thick grown on a Ni(100) substrate. We find the occupied bandwidth to be 1.60{plus minus}0.05 eV, which is narrower than the free-electron bandwidth of 2.12 eV and agrees with recent calculations of the quasiparticle self-energy. A narrow peak near the Fermi level which did not disperse with photon energy was observed for photon energies which, according to the nearly-free-electron model, should yield no direct transitions. A comparison of the binding energy and intensity of the anomalous peakmore » as functions of photon energy is made to the calculations of Shung and Mahan (Phys. Rev. B 38, 3856 (1988)). The discrepancies found are discussed in terms of an enhanced surface photoeffect in the photon energy range 20{le}{h bar}{omega}{le}30 eV. For low photon energies, a bulk peak was also observed due to a surface umklapp process with an intensity comparable to the standard bulk (110) peak. The possible contributions to this strong surface umklapp process from a shear instability at the first few (110) atomic planes is discussed.« less
Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S
2016-03-01
In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1-0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. Copyright © 2015 Elsevier B.V. All rights reserved.
On the evolution of cured voxel in bulk photopolymerization upon focused Gaussian laser exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhole, Kiran, E-mail: kirandipali@gmail.com; Gandhi, Prasanna; Kundu, T.
Unconstrained depth photopolymerization is emerging as a promising technique for fabrication of several polymer microstructures such as self propagating waveguides, 3D freeform structures by bulk lithography, and polymer nanoparticles by flash exposure. Experimental observations reveal governing physics beyond Beer Lambert's law and scattering effects. This paper seeks to model unconstrained depth photopolymerization using classical nonlinear Schrödinger equation coupled with transient diffusion phenomenon. The beam propagation part of the proposed model considers scattering effects induced due to spatial variation of the refractive index as a function of the beam intensity. The critical curing energy model is used to further predict profilemore » of polymerized voxel. Profiles of photopolymerized voxel simulated using proposed model are compared with the corresponding experimental results for several cases of exposure dose and duration. The comparison shows close match leading to conclusion that the experimentally observed deviation from Beer Lambert's law is indeed due to combined effect of diffusion of photoinitiator and scattering of light because of change in the refractive index.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matanovic, Ivana; Kent, Paul; Garzon, Fernando
2013-03-14
We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, inducedmore » by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less
NASA Astrophysics Data System (ADS)
Singh, Ashish Kumar
Fe-based amorphous alloys are gaining increasing attention due to their exceptional wear and corrosion resistance for potential structural applications. Two major challenges that are hindering the commercialization of these amorphous alloys are difficulty in processing of bulk shapes (diameter > 10 mm) and lack of ductility. Spark plasma sintering (SPS) is evolving as a promising technique for processing bulk shapes of amorphous and nanocrystalline materials. The objective of this work is to investigate densification behavior, nanocrystallization, and mechanical properties of SPS sintered Fe-based amorphous alloys of composition Fe48Cr15Mo14Y2C15B6. SPS processing was performed in three distinct temperature ranges of amorphous alloys: (a) below glass transition temperature (Tg), (b) between Tg and crystallization temperature (Tx), and (c) above Tx. Punch displacement data obtained during SPS sintering was correlated with the SPS processing parameters such as temperature, pressure, and sintering time. Powder rearrangement, plastic deformation below T g, and viscous flow of the material between Tg and Tx were observed as the main densification stages during SPS sintering. Micro-scale temperature distributions at the point of contact and macro-scale temperature distribution throughout the sample during SPS of amorphous alloys were modeled. The bulk amorphous alloys are expected to undergo structural relaxation and nanocrystallization during SPS sintering. X-ray diffraction (XRD), small angle neutron scattering (SANS), and transmission electron microscopy (TEM) was performed to investigate the evolution of nanocrystallites in SPS sintered Fe-based bulk amorphous alloys. The SANS analysis showed significant scattering for the samples sintered in the supercooled region indicating local structural and compositional changes with the profuse nucleation of nano-clusters (~4 nm). Compression tests and microhardness were performed on the samples sintered at different temperatures ranging from 570 °C to 800 °C. Maximum compression strength (1.1+/-0.2 MPa) was obtained for the samples sintered in the supercooled region. Effects of crystallization on tribological behavior of sintered samples were also investigated where crystallization resulted in increase in wear resistance. Laser surface hardening of SPS sintered amorphous samples were performed. Depending on the processing parameters, the laser surface irradiation causes structural relaxation and nanocrystallization, resulting in surface hardening.
Romero, Cristina; Noyola, Juan C.; Santiago, Ulises; Valladares, Renela M.; Valladares, Alexander; Valladares, Ariel A.
2010-01-01
We review our approach to the generation of nanoporous materials, both semiconducting and metallic, which leads to the existence of nanopores within the bulk structure. This method, which we have named as the expanding lattice method, is a novel transferable approach which consists first of constructing crystalline supercells with a large number of atoms and a density close to the real value and then lowering the density by increasing the volume. The resulting supercells are subjected to either ab initio or parameterized—Tersoff-based—molecular dynamics processes at various temperatures, all below the corresponding bulk melting points, followed by geometry relaxations. The resulting samples are essentially amorphous and display pores along some of the “crystallographic” directions without the need of incorporating ad hoc semiconducting atomic structural elements such as graphene-like sheets and/or chain-like patterns (reconstructive simulations) or of reproducing the experimental processes (mimetic simulations). We report radial (pair) distribution functions, nanoporous structures of C and Si, and some computational predictions for their vibrational density of states. We present numerical estimates and discuss possible applications of semiconducting materials for hydrogen storage in potential fuel tanks. Nanopore structures for metallic elements like Al and Au also obtained through the expanding lattice method are reported.
NASA Astrophysics Data System (ADS)
Poulsen, H. F.; Andersen, N. H.; Lebech, B.
1991-02-01
We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+ x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes and 250 and 350Å, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J=J 0 exp( {-t}/{τ}) despite a rather broad particle size distribution. At higher temperatures, τ is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective bulk oxygen in-diffusion. All our results may be interpreted in terms of the 2D ASYNNNI model description of the oxygen basal plane ordering, and they suggest that recent first principles interaction parameters should be modified.
Modeling the Propagation of Shock Waves in Metals
NASA Astrophysics Data System (ADS)
Howard, W. Michael
2005-07-01
We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and bulk modulus depends on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and bulk modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that gives the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov. We also discuss the dependence of our results upon our material model for aluminum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Artee; Asthagiri, D.; Cox, Kenneth R.
A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium.more » The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.« less
Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit.
Yuan, Hongtao; Liu, Zhongkai; Xu, Gang; Zhou, Bo; Wu, Sanfeng; Dumcenco, Dumitru; Yan, Kai; Zhang, Yi; Mo, Sung-Kwan; Dudin, Pavel; Kandyba, Victor; Yablonskikh, Mikhail; Barinov, Alexei; Shen, Zhixun; Zhang, Shoucheng; Huang, Yingsheng; Xu, Xiaodong; Hussain, Zahid; Hwang, Harold Y; Cui, Yi; Chen, Yulin
2016-08-10
Layered transition metal chalcogenides with large spin orbit coupling have recently sparked much interest due to their potential applications for electronic, optoelectronic, spintronics, and valleytronics. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS2 remains controversial. Here, using angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS2, WS2, and WSe2, as well as the thickness dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.
Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit
Yuan, Hongtao; Liu, Zhongkai; Xu, Gang; ...
2016-07-12
Valley physics based on layered transition metal chalcogenides have recently sparked much interest due to their potential spintronics and valleytronics applications. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS 2 remains controversial. Here, using angle-resolved photoemission spectroscopy with sub-micron spatial resolution (micro- ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS 2, WS 2 and WSe 2, as well as the thicknessmore » dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.« less
NASA Astrophysics Data System (ADS)
Dai, Zhongwei; Jin, Wencan; Grady, Maxwell; Sadowski, Jerzy T.; Dadap, Jerry I.; Osgood, Richard M.; Pohl, Karsten
2017-06-01
We have used selected area low energy electron diffraction intensity-voltage (μLEED-IV) analysis to investigate the surface structure of crystalline 2H molybdenum disulfide (MoS2) and mechanically exfoliated and suspended monolayer MoS2. Our results show that the surface structure of bulk 2H-MoS2 is distinct from its bulk and that it has a slightly smaller surface relaxation at 320 K than previously reported at 95 K. We concluded that suspended monolayer MoS2 shows a large interlayer relaxation compared to the MoS2 sandwich layer terminating the bulk surface. The Debye temperature of MoS2 was concluded to be about 600 K, which agrees with a previous theoretical study. Our work has shown that the dynamical μLEED-IV analysis performed with a low energy electron microscope (LEEM) is a powerful technique for determination of the local atomic structures of currently extensively studied two-dimensional (2-D) materials.
Dai, Zhongwei; Jin, Wencan; Grady, Maxwell; ...
2017-02-10
Here, we used selected area low energy electron diffraction intensity-voltage (μLEED-IV) analysis to investigate the surface structure of crystalline 2H molybdenum disulfide (MoS 2) and mechanically exfoliated and suspended monolayer MoS 2. Our results show that the surface structure of bulk 2H-MoS 2 is distinct from its bulk and that it has a slightly smaller surface relaxation at 320 K than previously reported at 95 K. We concluded that suspended monolayer MoS 2 shows a large interlayer relaxation compared to the MoS 2 sandwich layer terminating the bulk surface. The Debye temperature of MoS 2 was concluded to be aboutmore » 600 K, which agrees with a previous theoretical study. Our work has shown that the dynamical μLEED-IV analysis performed with a low energy electron microscope (LEEM) is a powerful technique for determination of the local atomic structures of currently extensively studied two-dimensional (2-D) materials.« less
Evidence of a Transition Layer between the Free Surface and the Bulk.
Ogieglo, Wojciech; Tempelman, Kristianne; Napolitano, Simone; Benes, Nieck E
2018-03-15
The free surface, a very thin layer at the interface between polymer and air, is considered the main source of the perturbations in the properties of ultrathin polymer films, i.e., nanoconfinement effects. The structural relaxation of such a layer is decoupled from the molecular dynamics of the bulk. The free surface is, in fact, able to stay liquid even below the temperature where the polymer resides in the glassy state. Importantly, this surface layer is expected to have a very sharp interface with the underlying bulk. Here, by analyzing the penetration of n-hexane into polystyrene films, we report on the existence of a transition region, not observed by previous investigations, extending for 12 nm below the free surface. The presence of such a layer permits reconciling the behavior of interfacial layers with current models and has profound implications on the performance of ultrathin membranes. We show that the expected increase in the flux of the permeating species is actually overruled by nanoconfinement.
Experimental and modeling studies of sorption of ceria nanoparticle on microbial biofilms.
Jing, Hengye; Mezgebe, Bineyam; Aly Hassan, Ashraf; Sahle-Demessie, Endalkachew; Sorial, George A; Bennett-Stamper, Christina
2014-06-01
This study focuses on the interaction of ceria nanoparticles (CeO2-NPs) with Pseudomonas fluorescens and Mycobacterium smegmatis biofilms. Confocal laser microscopy and transmission electron microscopy determined the distribution of NPs in the complex structures of biofilm at molecular levels. Visual data showed that most of the adsorption takes place on the bacterial cell walls and spores. The interaction of nanoparticles (NPs) with biofilms reached equilibrium after the initial high adsorption rate regardless of biofilm heterogeneity and different nanoparticle concentrations in the bulk liquid. Physical processes may dominate this sorption phenomenon. Pseudo first order sorption kinetics was used to estimate adsorption and desorption rate of CeO2-NPs onto biofilms. When biofilms got exposed to CeO2-NPs, a self-protecting mechanism was observed. Cells moved away from the bulk solution in the biofilm matrix, and portions of biofilm outer layer were detached, hence releasing some CeO2-NPs back to the bulk phase. Published by Elsevier Ltd.
Nonconventional screening of the Coulomb interaction in FexOy clusters: An ab initio study
NASA Astrophysics Data System (ADS)
Peters, L.; Şaşıoǧlu, E.; Rossen, S.; Friedrich, C.; Blügel, S.; Katsnelson, M. I.
2017-04-01
From microscopic point-dipole model calculations of the screening of the Coulomb interaction in nonpolar systems by polarizable atoms, it is known that screening strongly depends on dimensionality. For example, in one-dimensional systems, the short-range interaction is screened, while the long-range interaction is antiscreened. This antiscreening is also observed in some zero-dimensional structures, i.e., molecular systems. By means of ab initio calculations in conjunction with the random-phase approximation (RPA) within the FLAPW method, we study screening of the Coulomb interaction in FexOy clusters. For completeness, these results are compared with their bulk counterpart magnetite. It appears that the on-site Coulomb interaction is very well screened both in the clusters and bulk. On the other hand, for the intersite Coulomb interaction, the important observation is made that it is almost constant throughout the clusters, while for the bulk it is almost completely screened. More precisely and interestingly, in the clusters antiscreening is observed by means of ab initio calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Rakesh S.; Debenedetti, Pablo G.; Biddle, John W.
Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and low density) forms of water. While the anomalies are observed in experiments on bulk and confined water and by computer simulation studies of different water-like models, the existence of a LLPT in water is still debated. Unambiguous experimental proof of the existence of a LLPT in bulk supercooled water is hampered by fast ice nucleation which is a precursor of the hypothesized LLPT. Moreover,more » the hypothesized LLPT, being metastable, in principle cannot exist in the thermodynamic limit (infinite size, infinite time). Therefore, computer simulations of water models are crucial for exploring the possibility of the metastable LLPT and the nature of the anomalies. In this work, we present new simulation results in the NVT ensemble for one of the most accurate classical molecular models of water, TIP4P/2005. To describe the computed properties and explore the possibility of a LLPT, we have applied two-structure thermodynamics, viewing water as a non-ideal mixture of two interconvertible local structures (“states”). The results suggest the presence of a liquid-liquid critical point and are consistent with the existence of a LLPT in this model for the simulated length and time scales. We have compared the behavior of TIP4P/2005 with other popular water-like models, namely, mW and ST2, and with real water, all of which are well described by two-state thermodynamics. In view of the current debate involving different studies of TIP4P/2005, we discuss consequences of metastability and finite size in observing the liquid-liquid separation. We also address the relationship between the phenomenological order parameter of two-structure thermodynamics and the microscopic nature of the low-density structure.« less
Electrical conductivity modeling and experimental study of densely packed SWCNT networks.
Jack, D A; Yeh, C-S; Liang, Z; Li, S; Park, J G; Fielding, J C
2010-05-14
Single-walled carbon nanotube (SWCNT) networks have become a subject of interest due to their ability to support structural, thermal and electrical loadings, but to date their application has been hindered due, in large part, to the inability to model macroscopic responses in an industrial product with any reasonable confidence. This paper seeks to address the relationship between macroscale electrical conductivity and the nanostructure of a dense network composed of SWCNTs and presents a uniquely formulated physics-based computational model for electrical conductivity predictions. The proposed model incorporates physics-based stochastic parameters for the individual nanotubes to construct the nanostructure such as: an experimentally obtained orientation distribution function, experimentally derived length and diameter distributions, and assumed distributions of chirality and registry of individual CNTs. Case studies are presented to investigate the relationship between macroscale conductivity and nanostructured variations in the bulk stochastic length, diameter and orientation distributions. Simulation results correspond nicely with those available in the literature for case studies of conductivity versus length and conductivity versus diameter. In addition, predictions for the increasing anisotropy of the bulk conductivity as a function of the tube orientation distribution are in reasonable agreement with our experimental results. Examples are presented to demonstrate the importance of incorporating various stochastic characteristics in bulk conductivity predictions. Finally, a design consideration for industrial applications is discussed based on localized network power emission considerations and may lend insight to the design engineer to better predict network failure under high current loading applications.
Questionable inheritance: What Processes on Planetesimals Mean for the Bulk Composition of the Earth
NASA Astrophysics Data System (ADS)
Elkins-Tanton, L. T.
2015-12-01
Interrogating Earth's interior is limited to indirect means, such as seismic or magnetic fields, and relies heavily on modeling. A large body of literature either attempts to constrain the composition of the deep mantle by mass balancing the Earth with a chondritic composition, or to demonstrate that the Earth does not have a chondritic composition. These models provide predictions for the composition and density of the ultra-low shear wave provinces and for the D" layer, among others, and compare their results to structures resulting from seismic studies. The bulk composition of the Earth, however, remains an open question. We now know that the planets accreted from embryos that were already differentiated. The complexity of processes that occurred on planetesimals and planetary embryos are just beginning to come to light. Heating by radiogenic 26Al likely produced waves of hydration and dehydration in planetesimals. These free fluids may have carried a wide range of volatiles, moving them from the interior to the lid, or even losing them to space. Simultaneously, the first free fluids may have reacted with metals, producing oxides or sulfides. Further heating is required to reduce these to metals and made core formation possible; or perhaps the earliest cores are not fully metallic. These planetesimals and the embryos they were growing into were subjected to a series of impacts. As the work of Asphaug and his group have demonstrated, some of these are accretionary impacts, and some are hit-and-run, or destructive impacts. These destructive impacts may have reduced the thickness of Mercury's mantle, and stripped the mantle off the metal asteroid Psyche. Where, then would the shattered silicates from such collisions go? Asphuag suggests that at least in part they are added to the growing terrestrial planets. If the planetesimals and planetary embryos were compositionally heterogeneous because of interior fluid and magma movement, then the silicates blown off them by impacts would not have a bulk chondritic composition. The growing planets would not then have a bulk chondritic composition. This talk will discuss the possible ramifications of this model and its application to bulk Earth models.
Temperature uniformity of the bulk medium produced in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Ray, Lanny
2006-10-01
The success of hydrodynamic models of elliptic flow in relativistic heavy ion collisions is often touted as evidence for rapid thermal equilibration. However, large momentum scale two-particle correlations indicate that a significant fraction of the final-state hadrons retain jet-like correlation structure associated with early stage, non-equilibrated low-Q^2 partons [1]. In addition, correlations on transverse momentum (pt1xpt2) suggest that low-Q^2 parton momentum is partially dissipated causing fluctuations in the effective temperature (thermal and/or collective motion) of the bulk medium[2]. We first show that both global and local temperature fluctuation models describe the available (pt1xpt2) correlation data equally well. Results of an analytical model are then presented which tests the sensitivity of (pt1xpt2) correlations to the first few lower-order cumulants of the two-point temperature distribution for the event ensemble. Unique signatures in the predicted (pt1xpt2) correlations are observed for each cumulant term studied. The prospects for direct measurement of the absolute temperature distribution in the bulk medium produced in relativistic heavy-ion collisions using (pt1xpt2) and other correlation measures are discussed. [1] J. Adams et al., Phys. Rev. C 73, 064907 (2006); J. Phys.G. 32, L37 (2006). [2]J. Adams et al., nucl-ex/0408012.
Younus, Mohammad; Hawley, Adrian; Boyd, Ben J; Rizwan, Shakila B
2018-05-07
Tween 80 has been reported to provide a means of targeting drug nanocarriers to the blood- brain barrier. This study investigated the influence of addition of Tween 80 on the formation of different bulk and dispersed lyotropic liquid crystalline phases in selachyl alcohol-based systems. The effect of increasing concentrations of Tween 80 and Pluronic F127 (as a control) (0-25% w/w relative to SA) on the bulk phase behaviour and dispersions of selachyl alcohol (SA) were investigated using small angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy. The addition of Tween 80 to SA bulk phase samples triggered concentration-dependent phase changes with the structure sequentially evolving from a reverse hexagonal phase (H 2 ) to a mixed H 2 and inverse bicontinuous cubic (V 2 ) then a V 2 phase alone. In contrast, the addition of Pluronic F127 resulted in a phase change from H 2 phase to a mixed lamellar and H 2 phase system. The mean particle size of internally structured particles was 125-190 nm with low polydispersity indices (0.1-0.2). Nanoparticles retained the bulk phase internal structure in the presence of Tween 80, whereas in the presence of Pluronic F127, the additional lamellar phase that formed in bulk phase systems was not observed. Cryo-TEM revealed the formation of cubosomes and hexosomes by SA in excess water in the presence of Tween 80 and Pluronic F127 respectively. In summary, it was shown that stabilisation of SA dispersions using Tween 80 resulted in a decrease in negative curvature leading to a change in internal structure from H 2 to V 2 phase. The studies provide the core understanding of particle structure to progress these structured lipid nanocarriers into delivery studies with Tween 80 as a mechanism to target the blood-brain barrier. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rasky, Daniel J.; Milstein, Frederick
1986-02-01
Milstein and Hill previously derived formulas for computing the bulk and shear moduli, κ, μ, and μ', at arbitrary pressures, for cubic crystals in which interatomic interaction energies are modeled by pairwise functions, and they carried out the moduli computations using the complete family of Morse functions. The present study extends their work to a pseudopotential description of atomic binding. Specifically: (1) General formulas are derived for determining these moduli under hydrostatic loading within the framework of a pseudopotential model. (2) A two-parameter pseudopotential model is used to describe atomic binding of the alkali metals, and the two parameters are determined from experimental data (the model employs the Heine-Abarenkov potential with the Taylor dielectric function). (3) For each alkali metal (Li, Na, K, Rb, and Cs), the model is used to compute the pressure-versus-volume behavior and, at zero pressure, the binding energy, the density, and the elastic moduli and their pressure derivatives; the theoretical behavior is found to be in excellent agreement with experiment. (4) Calculations are made of κ, μ, and μ' of the bcc alkali metals over wide ranges of hydrostatic compression and expansion. (5) The pseudopotential results are compared with those of arbitrary-central-force models (wherein κ-(2/3)μ=μ'+2P) and with the specific Morse-function results. The pressures, bulk moduli, and zero-pressure shear moduli (as determined for the Morse and pseudopotential models) are in excellent agreement, but important differences appear in the shear moduli under high compressions. The computations in the present paper are for the bcc metals; a subsequent paper will extend this work to include both the bcc and fcc structures, at compressions and expansions where elastic stability or lattice cohesion is, in practice, lost.
Melting of size-selected gallium clusters with 60-183 atoms.
Pyfer, Katheryne L; Kafader, Jared O; Yalamanchali, Anirudh; Jarrold, Martin F
2014-07-10
Heat capacities have been measured as a function of temperature for size-selected gallium cluster cations with between 60 and 183 atoms. Almost all clusters studied show a single peak in the heat capacity that is attributed to a melting transition. The peaks can be fit by a two-state model incorporating only fully solid-like and fully liquid-like species, and hence no partially melted intermediates. The exceptions are Ga90(+), which does not show a peak, and Ga80(+) and Ga81(+), which show two peaks. For the clusters with two peaks, the lower temperature peak is attributed to a structural transition. The melting temperatures for clusters with less than 50 atoms have previously been shown to be hundreds of degrees above the bulk melting point. For clusters with more than 60 atoms the melting temperatures decrease, approaching the bulk value (303 K) at around 95 atoms, and then show several small upward excursions with increasing cluster size. A plot of the latent heat against the entropy change for melting reveals two groups of clusters: the latent heats and entropy changes for clusters with less than 94 atoms are distinct from those for clusters with more than 93 atoms. This observation suggests that a significant change in the nature of the bonding or the structure of the clusters occurs at 93-94 atoms. Even though the melting temperatures are close to the bulk value for the larger clusters studied here, the latent heats and entropies of melting are still far from the bulk values.
Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces.
Misawa, Takahiro; Nomura, Yusuke; Biermann, Silke; Imada, Masatoshi
2016-07-01
Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2-x Sr x CuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices.
Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces
Misawa, Takahiro; Nomura, Yusuke; Biermann, Silke; Imada, Masatoshi
2016-01-01
Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2−xSrxCuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices. PMID:27482542
Non-local geometry inside Lifshitz horizon
NASA Astrophysics Data System (ADS)
Hu, Qi; Lee, Sung-Sik
2017-07-01
Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U( N ) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.
AB INITIO STUDY OF PHONON DISPERSION AND ELASTIC PROPERTIES OF L12 INTERMETALLICS Ti3Al AND Y3Al
NASA Astrophysics Data System (ADS)
Arikan, N.; Ersen, M.; Ocak, H. Y.; Iyigör, A.; Candan, A.; UǦUR, Ş.; UǦUR, G.; Khenata, R.; Varshney, D.
2013-12-01
In this paper, the structural, elastic and phonon properties of Ti3Al and Y3Al in L12(Cu3Al) phase are studied by performing first-principles calculations within the generalized gradient approximation. The calculated lattice constants, static bulk moduli, first-order pressure derivative of bulk moduli and elastic constants for both compounds are reported. The phonon dispersion curves along several high-symmetry lines at the Brillouin zone, together with the corresponding phonon density of states, are determined using the first-principles linear-response approach of the density functional perturbation theory. Temperature variations of specific heat in the range of 0-500 K are obtained using the quasi-harmonic model.
NASA Astrophysics Data System (ADS)
Vasilopoulos, G.; Leyland, J.; Nield, J. M.
2016-12-01
Plants function as large-scale, flexible obstacles that exert additional drag on water flows, affecting local scale turbulence and the structure of the boundary layer. Hence, vegetation plays a significant role controlling surface water flows and modulating geomorphic change. This makes it an important, but often under considered, component when undertaking flood or erosion control actions, or designing river restoration strategies. Vegetative drag varies depending on flow conditions and the associated vegetation structure and temporary reconfiguration of the plant. Whilst several approaches have been developed to describe this relationship, they have been limited due to the difficulty of accurately and precisely characterising the vegetation itself, especially when it is submerged in flow. In practice, vegetative drag is commonly expressed through bulk parameters that are typically derived from lookup tables. Terrestrial Laser Scanning (TLS) has the ability to capture the surface of in situ objects as 3D point clouds, at high resolution (mm), precision and accuracy, even when submerged in water. This allows for the development of workflows capable of quantifying vegetation structure in 3D from dense TLS point cloud data. A physical modelling experiment investigated the impact of a series of structurally variable plants on flow at three different velocities. Acoustic Doppler Velocimetry (ADV) was employed to measure the velocity field and the corresponding fluvial drag of the vegetation was estimated using a bulk roughness function calculated from precise measurements of the water surface slope. Simultaneously, through-water TLS was employed to capture snapshots of plant deformation and distinguish plant structure during flow, using a porosity approach. Although plant type is important, we find a good relationship between plant structure, drag and adjustments of the velocity field.
Nanoscopic diffusion studies on III-V compound semiconductor structures: Experiment and theory
NASA Astrophysics Data System (ADS)
Gonzalez Debs, Mariam
The electronic structure of multilayer semiconductor heterostructures is affected by the detailed compositional profiles throughout the structure and at critical interfaces. The extent of interdiffusion across these interfaces places limits on both the processing time and temperatures for many applications based on the resultant compositional profile and associated electronic structure. Atomic and phenomenological methods were used in this work through the combination of experiment and theory to understand the nanoscopic mechanisms in complex heterostructures. Two principal studies were conducted. Tin diffusion in GaAs was studied by fitting complex experimental diffusion profiles to a phenomenological model which involved the diffusion of substitutional and interstitial dopant atoms. A methodology was developed combining both the atomistic model and the use of key features within these experimentally-obtained diffusion profiles to determine meaningful values of the transport and defect reaction rate parameters. Interdiffusion across AlSb/GaSb multi-quantum well interfaces was also studied. The chemical diffusion coefficient characterizing the AlSb/GaSb diffusion couple was quantitatively determined by fitting the observed photoluminescence (PL) peak shifts to the solution of the Schrodinger equation using a potential derived from the solution of the diffusion equation to quantify the interband transition energy shifts. First-principles calculations implementing Density Functional Theory were performed to study the thermochemistry of point defects as a function of local environment, allowing a direct comparison of interfacial and bulk diffusion phenomena within these nanoscopic structures. Significant differences were observed in the Ga and Al vacancy formation energies at the AlSb/GaSb interface when compared to bulk AlSb and GaSb with the largest change found for Al vacancies. The AlSb/GaSb structures were further studied using positron annihilation spectroscopy (PAS) to investigate the role of vacancies in the interdiffusion of Al and Ga in the superlattices. The PL and PAS experimental techniques together with the phenomenological and atomistic modeling allowed for the determination of the underlying mass transport mechanisms at the nanoscale.
Preliminary Phase Field Computational Model Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Xu, Ke
2014-12-15
This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus ofmore » the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in experiments, special experimental methods were devised to create similar boundary conditions in the iron films. Preliminary MFM studies conducted on single and polycrystalline iron films with small sub-areas created with focused ion beam have correlated quite well qualitatively with phase-field simulations. However, phase-field model dimensions are still small relative to experiments thus far. We are in the process of increasing the size of the models and decreasing specimen size so both have identical dimensions. Ongoing research is focused on validation of the phase-field model. Validation is being accomplished through comparison with experimentally obtained MFM images (in progress), and planned measurements of major hysteresis loops and first order reversal curves. Extrapolation of simulation sizes to represent a more stochastic bulk-like system will require sampling of various simulations (i.e., with single non-magnetic defect, single magnetic defect, single grain boundary, single dislocation, etc.) with distributions of input parameters. These outputs can then be compared to laboratory magnetic measurements and ultimately to simulate magnetic Barkhausen noise signals.« less
K{sub 1.33}Mn{sub 8}O{sub 16} as an electrocatalyst and a cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalili, Seifollah, E-mail: sjalili@kntu.ac.ir; Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences; Moharramzadeh Goliaei, Elham
Density functional theory (DFT) calculations are carried out to investigate the electronic, magnetic and thermoelectric properties of bulk and nanosheet K{sub 1.33}Mn{sub 8}O{sub 16} materials. The catalytic activity and cathodic performance of bulk and nanosheet structures are examined using the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential. Electronic structure calculations reveal an anti-ferromagnetic ground state, with a TB-mMBJ band gap in bulk K{sub 1.33}Mn{sub 8}O{sub 16} that is in agreement with experimental results. Density of state plots indicate a partial reduction of Mn{sup 4+} ions to Mn{sup 3+}, without any obvious sign of Jahn-Teller distortion. Moreover, use of the O p-bandmore » center as a descriptor of catalytic activity suggests that the nanosheet has enhanced catalytic activity compared to the bulk structure. Thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity are also calculated, and it is found that the Seebeck coefficients decrease with increasing temperature. High Seebeck coefficients for both spin-up and spin-down states are found in the nanosheet relative to their value in the bulk K{sub 1.33}Mn{sub 8}O{sub 16} structure, whereas the electrical and thermal conductivity are reduced relative to the bulk. In addition, figures of merit values are calculated as a function of the chemical potential and it is found that the nanosheet has a figure of merit of ~1 at room temperature, compared to 0.5 for the bulk material. All results suggest that K{sub 1.33}Mn{sub 8}O{sub 16} nanosheets can be used both as a material in waste heat recovery and as an electrocatalyst in fuel cells and batteries. - Graphical abstract: K{sub 1.33}Mn{sub 8}O{sub 16}: bulk and nanosheet. - Highlights: • Electronic properties of bulk and nanosheet forms of K{sub 1.33}Mn{sub 8}O{sub 16} have been studied. • The K{sub 1.33}Mn{sub 8}O{sub 16} nanosheet is a semiconductor while the bulk is a metal. • K{sub 1.33}Mn{sub 8}O{sub 16} Nanosheet is a more efficient electrocatalyst than bulk K{sub 1.33}Mn{sub 8}O{sub 16}. • High figure of merit of K{sub 1.33}Mn{sub 8}O{sub 16} nanosheet makes it an efficient cathode.« less
Ionic Liquids with Symmetric Diether Tails: Bulk and Vacuum-Liquid Interfacial Structures.
Hettige, Jeevapani J; Amith, Weththasinghage D; Castner, Edward W; Margulis, Claudio J
2017-01-12
The behavior in the bulk and at interfaces of biphilic ionic liquids in which either the cation or anion possesses moderately long alkyl tails is to a significant degree well understood. Less clear is what happens when both the cation and anion possess tails that are not apolar, such as in the case of ether functionalities. The current article discusses the structural characteristics of C2OC2OC2-mim + /C2OC2OC2-OSO 3 - in the bulk and at the vacuum interface. We find that the vacuum interface affects only the nanometer length scale. This is in contrast to what we have recently found in ( J. Phys. Chem. Lett. , 2016 , 7 ( 19 ), 3785 - -3790 ) for isoelectronic C[8]-mim + /C[8]-OSO 3 - , where the interface effect is long ranged. Interestingly, ions with the diether tail functionality still favor the tail-outward orientation at the vacuum interface and the bulk phase preserves the alternation between charged networks and tails that is commonly observed for biphilic ionic liquids. However, such alternation is less well-defined and results in a significantly diminished first sharp diffraction peak in the bulk liquid structure function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.
The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc 12-b-pNte 21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODTmore » corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.« less
Structural determinants in the bulk heterojunction.
Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco
2018-02-21
Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.
A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.
Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E
2015-05-20
Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.
Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing.
Cheng, Chi; Jiang, Gengping; Garvey, Christopher J; Wang, Yuanyuan; Simon, George P; Liu, Jefferson Z; Li, Dan
2016-02-01
Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub-10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub-10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems.
Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing
Cheng, Chi; Jiang, Gengping; Garvey, Christopher J.; Wang, Yuanyuan; Simon, George P.; Liu, Jefferson Z.; Li, Dan
2016-01-01
Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub–10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub–10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems. PMID:26933689
NASA Astrophysics Data System (ADS)
Wu, Mingching; Fang, Weileun
2006-02-01
This work attempts to integrate poly-Si thin film and single-crystal-silicon (SCS) structures in a monolithic process. The process integrated multi-depth DRIE (deep reactive ion etching), trench-refilled molding, a two poly-Si MUMPs process and (1 1 1) Si bulk micromachining to accomplish multi-thickness and multi-depth structures for superior micro-optical devices. In application, a SCS scanning mirror driven by self-aligned vertical comb-drive actuators was demonstrated. The stiffness of the mirror was significantly increased by thick SCS structures. The thin poly-Si film served as flexible torsional springs and electrical routings. The depth difference of the vertical comb electrodes was tuned by DRIE to increase the devices' stroke. Finally, a large moving space was available after the bulk Si etching. In summary, the present fabrication process, named (1 1 1) MOSBE (molded surface-micromachining and bulk etching release on (1 1 1) Si substrate), can further integrate with the MUMPs devices to establish a more powerful platform.
NASA Astrophysics Data System (ADS)
Samanta, Gauranga Charan; Myrzakulov, Ratbay; Shah, Parth
2017-04-01
The authors considered the bulk viscous fluid in f(R, T) gravity within the framework of Kaluza-Klein space time. The bulk viscous coefficient (ξ) expressed as ξ = {ξ_0} + {ξ_1}{{\\dot a} \\over a} + {ξ_2}{{\\ddot a} \\over {\\dot a}}, where ξ0, ξ1, and ξ2 are positive constants. We take p=(γ-1)ρ, where 0≤γ≤2 as an equation of state for perfect fluid. The exact solutions to the corresponding field equations are given by assuming a particular model of the form of f(R, T)=R+2f(T), where f(T)=λT, λ is constant. We studied the cosmological model in two stages, in first stage: we studied the model with no viscosity, and in second stage: we studied the model involve with viscosity. The cosmological model involve with viscosity is studied by five possible scenarios for bulk viscous fluid coefficient (ξ). The total bulk viscous coefficient seems to be negative, when the bulk viscous coefficient is proportional to {ξ _2}{{\\ddot a} \\over {\\dot a}}, hence, the second law of thermodynamics is not valid; however, it is valid with the generalised second law of thermodynamics. The total bulk viscous coefficient seems to be positive, when the bulk viscous coefficient is proportional to ξ = {ξ _1}{{\\dot a} \\over a} + {ξ _2}{{\\ddot a} \\over {\\dot a}} and ξ = {ξ _0} + {ξ _1}{{\\dot a} \\over a} + {ξ _2}{{\\ddot a} \\over {\\dot a}}, so the second law of thermodynamics and the generalised second law of thermodynamics is satisfied throughout the evolution. We calculate statefinder parameters of the model and observed that it is different from the ∧CDM model. Finally, some physical and geometrical properties of the models are discussed.
Magnetostructural Transition Kinetics in Shocked Iron
Surh, Michael P.; Benedict, Lorin X.; Sadigh, Babak
2016-08-15
Here, a generalized Heisenberg model is implemented to study the effect of thermal magnetic disorder on kinetics of the Fe α–ε transition. The barrier to bulk martensitic displacement remains large in α-Fe shocked well past the phase line but is much reduced in the [001] α–ε boundary. The first result is consistent with observed overdriving to metastable α, while the second suggests structural instability, as implied by observation of a [001] shock transformation front without plastic relaxation. Reconciling both behaviors may require concurrent treatment of magnetic and structural order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luan, Qingbin; Ni, Zhenyi; Zhu, Tiejun
2014-12-15
Technologically important low-resistivity bulk Si has been usually produced by the traditional Czochralski growth method. We now explore a novel method to obtain low-resistivity bulk Si by hot-pressing B- and P-hyperdoped Si nanocrystals (NCs). In this work bulk Si with the resistivity as low as ∼ 0.8 (40) mΩ•cm has been produced by hot pressing P (B)-hyperdoped Si NCs. The dopant type is found to make a difference for the sintering of Si NCs during the hot pressing. Bulk Si hot-pressed from P-hyperdoped Si NCs is more compact than that hot-pressed from B-hyperdoped Si NCs when the hot-pressing temperature ismore » the same. This leads to the fact that P is more effectively activated to produce free carriers than B in the hot-pressed bulk Si. Compared with the dopant concentration, the hot-pressing temperature more significantly affects the structural and electrical properties of hot-pressed bulk Si. With the increase of the hot-pressing temperature the density of hot-pressed bulk Si increases. The highest carrier concentration (lowest resistivity) of bulk Si hot-pressed from B- or P-hyperdoped Si NCs is obtained at the highest hot-pressing temperature of 1050 °C. The mobility of carriers in the hot-pressed bulk Si is low (≤ ∼ 30 cm{sup -2}V{sup -1}s{sup -1}) mainly due to the scattering of carriers induced by structural defects such as pores.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.
The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less
Open-Source Software for Modeling of Nanoelectronic Devices
NASA Technical Reports Server (NTRS)
Oyafuso, Fabiano; Hua, Hook; Tisdale, Edwin; Hart, Don
2004-01-01
The Nanoelectronic Modeling 3-D (NEMO 3-D) computer program has been upgraded to open-source status through elimination of license-restricted components. The present version functions equivalently to the version reported in "Software for Numerical Modeling of Nanoelectronic Devices" (NPO-30520), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 37. To recapitulate: NEMO 3-D performs numerical modeling of the electronic transport and structural properties of a semiconductor device that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantum-mechanical behavior of the device resolved to the atomistic level of granularity. NEMO 3-D solves the applicable quantum matrix equation on a Beowulf-class cluster computer by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. A prior upgrade of NEMO 3-D incorporated a capability for a strain treatment, parameterized for bulk material properties of GaAs and InAs, for two tight-binding submodels. NEMO 3-D has been demonstrated in atomistic analyses of effects of disorder in alloys and, in particular, in bulk In(x)Ga(1-x)As and in In(0.6)Ga(0.4)As quantum dots.
Depth-of-interaction estimates in pixelated scintillator sensors using Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Sharma, Diksha; Sze, Christina; Bhandari, Harish; Nagarkar, Vivek; Badano, Aldo
2017-01-01
Image quality in thick scintillator detectors can be improved by minimizing parallax errors through depth-of-interaction (DOI) estimation. A novel sensor for low-energy single photon imaging having a thick, transparent, crystalline pixelated micro-columnar CsI:Tl scintillator structure has been described, with possible future application in small-animal single photon emission computed tomography (SPECT) imaging when using thicker structures under development. In order to understand the fundamental limits of this new structure, we introduce cartesianDETECT2, an open-source optical transport package that uses Monte Carlo methods to obtain estimates of DOI for improving spatial resolution of nuclear imaging applications. Optical photon paths are calculated as a function of varying simulation parameters such as columnar surface roughness, bulk, and top-surface absorption. We use scanning electron microscope images to estimate appropriate surface roughness coefficients. Simulation results are analyzed to model and establish patterns between DOI and photon scattering. The effect of varying starting locations of optical photons on the spatial response is studied. Bulk and top-surface absorption fractions were varied to investigate their effect on spatial response as a function of DOI. We investigated the accuracy of our DOI estimation model for a particular screen with various training and testing sets, and for all cases the percent error between the estimated and actual DOI over the majority of the detector thickness was ±5% with a maximum error of up to ±10% at deeper DOIs. In addition, we found that cartesianDETECT2 is computationally five times more efficient than MANTIS. Findings indicate that DOI estimates can be extracted from a double-Gaussian model of the detector response. We observed that our model predicts DOI in pixelated scintillator detectors reasonably well.
Kondalaji, Samaneh Ghassabi; Khakinejad, Mahdiar; Valentine, Stephen J
2018-06-01
Molecular dynamics (MD) simulations have been utilized to study peptide ion conformer establishment during the electrospray process. An explicit water model is used for nanodroplets containing a model peptide and hydronium ions. Simulations are conducted at 300 K for two different peptide ion charge configurations and for droplets containing varying numbers of hydronium ions. For all conditions, modeling has been performed until production of the gas-phase ions and the resultant conformers have been compared to proposed gas-phase structures. The latter species were obtained from previous studies in which in silico candidate structures were filtered according to ion mobility and hydrogen-deuterium exchange (HDX) reactivity matches. Results from the present study present three key findings namely (1) the evidence from ion production modeling supports previous structure refinement studies based on mobility and HDX reactivity matching, (2) the modeling of the electrospray process is significantly improved by utilizing initial droplets existing below but close to the calculated Rayleigh limit, and (3) peptide ions in the nanodroplets sample significantly different conformers than those in the bulk solution due to altered physicochemical properties of the solvent. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedelkoski, Zlatko; Kepaptsoglou, Demie; Lari, Leonardo
We compare the structural, chemical, and magnetic properties of magnetite nanoparticles. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. We show that atomistic magnetic modelling of nanoparticles with and without these defects reveal the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm.
NASA Technical Reports Server (NTRS)
Kachare, R.
1985-01-01
The high-efficiency crystalline silicon solar cells research forum addressed high-efficiency concepts, surface-interface effects, bulk effects, modeling and device processing. The topics were arranged into six interactive sessions, which focused on the state-of-the-art of device structures, identification of barriers to achieve high-efficiency cells and potential ways to overcome these barriers.
Identification of F impurities in F-doped ZnO by synchrotron X-ray absorption near edge structures
NASA Astrophysics Data System (ADS)
Na-Phattalung, Sutassana; Limpijumnong, Sukit; Min, Chul-Hee; Cho, Deok-Yong; Lee, Seung-Ran; Char, Kookrin; Yu, Jaejun
2018-04-01
Synchrotron X-ray absorption near edge structure (XANES) measurements of F K-edge in conjunction with first-principles calculations are used to identify the local structure of the fluorine (F) atom in F-doped ZnO. The ZnO film was grown by pulsed laser deposition with an Nd:YAG laser, and an oxyfluoridation method was used to introduce F ions into the ZnO films. The measured XANES spectrum of the sample was compared against the first-principles XANES calculations based on various models for local atomic structures surrounding F atoms. The observed spectral features are attributed to ZnF2 and FO defects in wurtzite bulk ZnO.
Spin-dependent dwell times of electron tunneling through double- and triple-barrier structures
NASA Astrophysics Data System (ADS)
Erić, Marko; Radovanović, Jelena; Milanović, Vitomir; Ikonić, Zoran; Indjin, Dragan
2008-04-01
We have analyzed the influence of Dresselhaus and Rashba spin-orbit couplings (caused by the bulk inversion asymmetry and the structural asymmetry, respectively) on electron tunneling through a double- and triple-barrier structures, with and without an externally applied electric field. The results indicate that the degree of structural asymmetry and external electric field can greatly affect the dwell times of electrons with opposite spin orientation. This opens up the possibilities of obtaining efficient spin separation in the time domain. The material system of choice is AlxGa1-xSb, and the presented model takes into account the position dependence of material parameters, as well as the effects of band nonparabolicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoh, Keiji, E-mail: itoh@okayama-u.ac.jp; Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494
Pulsed neutron diffraction and synchrotron X-ray diffraction measurements were performed on Se{sub 100-x}Te{sub x} bulk glasses with x=10, 20, 30 and 40. The coordination numbers obtained from the diffraction results demonstrate that Se and Te atoms are twofold coordinated and the glass structure is formed by the chain network. The three-dimensional structure model for Se{sub 60}Te{sub 40} glass obtained by using reverse Monte Carlo modelling shows that the alternating arrangements of Se and Te atoms compose the major part of the chain clusters but several other fragments such as Se{sub n} chains and Te-Te dimers are also present in largemore » numbers. The chain clusters have geometrically disordered forms and the interchain atomic order is different from those in the crystal structures of trigonal Se and trigonal Te. - Graphical abstract: Coordination environment in Se{sub 60}Te{sub 40} glass.« less
Conformal twists, Yang–Baxter σ-models & holographic noncommutativity
NASA Astrophysics Data System (ADS)
Araujo, Thiago; Bakhmatov, Ilya; Colgáin, Eoin Ó.; Sakamoto, Jun-ichi; Sheikh-Jabbari, Mohammad M.; Yoshida, Kentaroh
2018-06-01
Expanding upon earlier results (Araujo et al 2017 Phys. Rev. D 95 105006), we present a compendium of σ-models associated with integrable deformations of AdS5 generated by solutions to homogenous classical Yang–Baxter equation. Each example we study from four viewpoints: conformal (Drinfeld) twists, closed string gravity backgrounds, open string parameters and proposed dual noncommutative (NC) gauge theory. Irrespective of whether the deformed background is a solution to supergravity or generalized supergravity, we show that the open string metric associated with each gravity background is undeformed AdS5 with constant open string coupling and the NC structure Θ is directly related to the conformal twist. One novel feature is that Θ exhibits ‘holographic noncommutativity’: while it may exhibit non-trivial dependence on the holographic direction, its value everywhere in the bulk is uniquely determined by its value at the boundary, thus facilitating introduction of a dual NC gauge theory. We show that the divergence of the NC structure Θ is directly related to the unimodularity of the twist. We discuss the implementation of an outer automorphism of the conformal algebra as a coordinate transformation in the AdS bulk and discuss its implications for Yang–Baxter σ-models and self-T-duality based on fermionic T-duality. Finally, we comment on implications of our results for the integrability of associated open strings and planar integrability of dual NC gauge theories.
Temperature and pressure correlation for volume of gas hydrates with crystal structures sI and sII
NASA Astrophysics Data System (ADS)
Vinš, Václav; Jäger, Andreas; Hielscher, Sebastian; Span, Roland; Hrubý, Jan; Breitkopf, Cornelia
The temperature and pressure correlations for the volume of gas hydrates forming crystal structures sI and sII developed in previous study [Fluid Phase Equilib. 427 (2016) 268-281], focused on the modeling of pure gas hydrates relevant in CCS (carbon capture and storage), were revised and modified for the modeling of mixed hydrates in this study. A universal reference state at temperature of 273.15 K and pressure of 1 Pa is used in the new correlation. Coefficients for the thermal expansion together with the reference lattice parameter were simultaneously correlated to both the temperature data and the pressure data for the lattice parameter. A two-stage Levenberg Marquardt algorithm was employed for the parameter optimization. The pressure dependence described in terms of the bulk modulus remained unchanged compared to the original study. A constant value for the bulk modulus B0 = 10 GPa was employed for all selected hydrate formers. The new correlation is in good agreement with the experimental data over wide temperature and pressure ranges from 0 K to 293 K and from 0 to 2000 MPa, respectively. Compared to the original correlation used for the modeling of pure gas hydrates the new correlation provides significantly better agreement with the experimental data for sI hydrates. The results of the new correlation are comparable to the results of the old correlation in case of sII hydrates. In addition, the new correlation is suitable for modeling of mixed hydrates.
NASA Technical Reports Server (NTRS)
Yacaman, M. J.; Heinemann, K.; Yang, C. Y.; Poppa, H.
1979-01-01
'Multiply-twinned' gold particles with hexagonal bright field TEM profile were determined to be icosahedra composed of 20 identical and twin-related tetrahedral building units that do not have an fcc structure. The crystal structure of these slightly deformed tetrahedra is rhombohedral. Experimental evidence supporting this particle model was obtained by selected-zone dark field and weak beam dark field electron microscopy. In conjunction with the results of part I, it has been concluded that multiply-twinned gold particles of pentagonal or hexagonal profile that are found during the early stages of the vapor deposition growth process on alkali halide surfaces do not have an fcc crystal structure, which is in obvious contrast to the structure of bulk gold.
Bulk flow strength of forsterite?enstatite composites as a function of forsterite content
NASA Astrophysics Data System (ADS)
Ji, Shaocheng; Wang, Zichao; Wirth, Richard
2001-11-01
Creep experiments have been conducted to investigate the effect of varying forsterite content ( VFo) on the bulk flow strength of dry forsterite-enstatite (Fo-En) aggregates in order to evaluate the applicability of existing theoretical models to two-phase rocks, as well as to understand the rheology of polyphase systems in general. The experiments were performed at temperatures of 1423-1593 K, stresses of 18-100 MPa, oxygen fugacities of 10 -14-10 -2.5 MPa and 0.1 MPa total pressure. The fine-grained (Fo: 10-17 μm; En: 14-31 μm) composites of various Fo volume fractions ( VFo=0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1) were synthesized by isostatically hot-pressing in a gas-medium apparatus at 1523 and 350 MPa. Our experiments show that flow strength contrasts between Fo and En are in the range of 3-8 at the given experimental conditions, with Fo as the stronger phase. The measured stress exponent ( n) and activation energy ( Q) values of the Fo-En composites fall between those of the end-members. The n values show a nearly linear increase from 1.3 to 2.0, while the Q values display a non-linear increase from 472 to 584 kJ/mol with En volume fraction from 0 to 1.0. There is no clear dependence of creep rates on oxygen fugacity for the Fo-En composites. The mechanical data and TEM microstructural observations suggest no change in deformation mechanism of each phase when in the composites, compared to when in a single-phase aggregate, the En deformed mainly by dislocation creep while the Fo deformed by dislocation-accommodated diffusion creep for our grain sizes and experimental conditions. Comparisons between the measured composite strengths and various theoretical models indicate that none of the existing theoretical models can give a precise predication over the entire VFo range from 0 to 1. However, the theoretical models based on weak-phase supported structures (WPS) yield a good prediction for the flow strengths of the composites with VFo<0.4, while those based on strong-phase supported structures (SPS) are better for the composites with VFo>0.6. No model gives a good prediction for the bulk strength of two-phase composites in the transitional regime ( VFo=0.4-0.6). Applications of the WPS- and SPS-based models in the transitional regime result in under- and over-estimations for the composite flow strength, respectively. Thus, the effect of rock microstructure should be taken into consideration in modeling the bulk flow strengths of the crust and upper mantle using laboratory-determined flow laws of single-phase aggregates.
Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H
2016-01-01
Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry. © 2016 Elsevier Inc. All rights reserved.
Mechanical relaxation in a Zr-based bulk metallic glass: Analysis based on physical models
NASA Astrophysics Data System (ADS)
Qiao, J. C.; Pelletier, J. M.
2012-08-01
The mechanical relaxation behavior in a Zr55Cu30Ni5Al10 bulk metallic glass is investigated by dynamic mechanical analysis in both temperature and frequency domains. Master curves can be obtained for the storage modulus G' and for the loss modulus G'', confirming the validity of the time-temperature superposition principle. Different models are discussed to describe the main (α) relaxation, e.g., Debye model, Havriliak-Negami (HN) model, Kohlrausch-Williams-Watt (KWW) model, and quasi-point defects (QPDs) model. The main relaxation in bulk metallic glass cannot be described using a single relaxation time. The HN model, the KWW model, and the QPD theory can be used to fit the data of mechanical spectroscopy experiments. However, unlike the HN model and the KWW model, some physical parameters are introduced in QPD model, i.e., atomic mobility and correlation factor, giving, therefore, a new physical approach to understand the mechanical relaxation in bulk metallic glasses.
Fully-Coupled Fluid/Structure Vibration Analysis Using MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Fernholz, Christian M.; Robinson, Jay H.
1996-01-01
MSC/NASTRAN's performance in the solution of fully-coupled fluid/structure problems is evaluated. NASTRAN is used to perform normal modes (SOL 103) and forced-response analyses (SOL 108, 111) on cylindrical and cubic fluid/structure models. Bulk data file cards unique to the specification of a fluid element are discussed and analytic partially-coupled solutions are derived for each type of problem. These solutions are used to evaluate NASTRAN's solutions for accuracy. Appendices to this work include NASTRAN data presented in fringe plot form, FORTRAN source code listings written in support of this work, and NASTRAN data file usage requirements for each analysis.
Transmission electron diffraction determination of the Ge(001)-(2 × 1) surface structure
NASA Astrophysics Data System (ADS)
Collazo-Davila, C.; Grozea, D.; Landree, E.; Marks, L. D.
1997-04-01
The lateral displacements in the Ge(001)-(2 × 1) surface reconstruction have been determined using transmission electron diffraction (TED). The best-fit model includes displacements extending six layers into the bulk. The atomic positions found agree with X-ray studies to within a few hundredths of an ångström. With the positions determined so precisely, it is suggested that the Ge(001)-(2 × 1) surface can now serve as a standard for comparison with theoretical surface structure calculations. The results from the currently available theoretical studies on the surface are compared with the experimentally determined structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas
In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less
Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas; ...
2018-06-01
In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less
Structural and superconducting features of Tl-1223 prepared at ambient pressure
Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa
2015-09-25
This study provides an account of the bulk preparation of TlBa 2Ca 2Cu 3O 9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher T c = 125 K after annealing the polycrystalline material in either flowing Ar+4% H 2, or N 2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Duemore » to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less
Lapp, Aliya S; Duan, Zhiyao; Marcella, Nicholas; Luo, Long; Genc, Arda; Ringnalda, Jan; Frenkel, Anatoly I; Henkelman, Graeme; Crooks, Richard M
2018-05-11
In this report, we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2- , a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H atom capping layer prevents deposition of Pt multilayers. We applied this method to ∼1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to the well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).
Spontaneous emission in dielectric nanoparticles
NASA Astrophysics Data System (ADS)
Pukhov, K. K.; Basiev, T. T.; Orlovskii, Yu. V.
2008-09-01
An analytical expression is obtained for the radiative-decay rate of an excited optical center in an ellipsoidal dielectric nanoparticle (with sizes much less than the wavelength) surrounded by a dielectric medium. It is found that the ratio of the decay rate A nano of an excited optical center in the nanoparticle to the decay rate A bulk of an excited optical center in the bulk sample is independent of the local-field correction and, therefore, of the adopted local-field model. Moreover, the expression implies that the ratio A nano/ A bulk for oblate and prolate ellipsoids depends strongly on the orientation of the dipole moment of the transition with respect to the ellipsoid axes. In the case of spherical nanoparticles, a formula relating the decay rate A nano and the dielectric parameters of the nanocomposite and the volumetric content c of these particles in the nanocomposite is derived. This formula reduces to a known expression for spherical nanoparticles in the limit c ≪ 1, while the ratio A nano/ A bulk approaches unity as c tends to unity. The analysis shows that the approach used in a number of papers {H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, Phys. Rev. B 25, 1467 (1982); R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, Phys. Rev. B 60, R14012 (1999); R. I. Zakharchenya, A. A. Kaplyanskii, A. B. Kulinkin, et al., Fiz. Tverd. Tela 45, 2104 (2003) [Phys. Solid State 45, 2209 (2003)]; G. Manoj Kumar, D. Narayana Rao, and G. S. Agarwal, Phys. Rev. Lett. 91, 203903 (2003); Chang-Kui Duan, Michael F. Reid, and Zhongqing Wang, Phys. Lett. A 343, 474 (2005); K. Dolgaleva, R. W. Boyd, and P. W. Milonni, J. Opt. Soc. Am. B 24, 516 (2007)}, for which the formula for A nano is derived merely by substituting the bulk refractive index by the effective refractive index of the nanocomposite must be revised, because the resulting ratio A nano/ A bulk turns out to depend on the local-field model. The formulas for the emission and absorption cross sections σnano for nanoparticles are derived. It is shown that the ratios σnano/σbulk and A nano/ A bulk are not equal in general, which can be used to improve the lasing parameters. The experimentally determined and theoretically evaluated decay times of metastable states of dopant rare-earth ions in crystalline YAG and Y2O3 nanoparticles are compared with the corresponding values for bulk crystals of the same structure.
NASA Astrophysics Data System (ADS)
Herique, A.; Ciarletti, V.
2015-10-01
Our knowledge of the internal structure of asteroids is, so far, indirect - relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling. What are the bulk properties of the regolith and deep interior? And what are the physical processes that shape their internal structures? Direct measurements are needed to provide answers that will directly improve our ability to understand and model the mechanisms driving Near Earth Asteroids (NEA) for the benefit of science as well as for planetary defense or exploration. Radar tomography is the only technique to characterize internal structure from decimetric scale to global scale. This paper reviews the benefits of direct measurement of the asteroid interior. Then the radar concepts for both deep interior and shallow subsurface are presented and the radar payload proposed for the AIDA/AIM mission is outlined.
Magnetic fields end-face effect investigation of HTS bulk over PMG with 3D-modeling numerical method
NASA Astrophysics Data System (ADS)
Qin, Yujie; Lu, Yiyun
2015-09-01
In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in x-y plane, the magnetic field component Hz which is along the z-axis can be observed interior the HTS bulk.
Piezoelectric coefficients of bulk 3R transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Konabe, Satoru; Yamamoto, Takahiro
2017-09-01
The piezoelectric properties of bulk transition metal dichalcogenides (TMDCs) with a 3R structure were investigated using first-principles calculations based on density functional theory combined with the Berry phase treatment. Values for the elastic constant Cijkl , the piezoelectric coefficient eijk , and the piezoelectric coefficient dijk are given for bulk 3R-TMDCs (MoS2, MoSe2, WS2, and WSe2). The piezoelectric coefficients of bulk 3R-TMDCs are shown to be sufficiently large or comparable to those of conventional bulk piezoelectric materials such as α-quartz, wurtzite GaN, and wurtzite AlN.
Khattari, Ziad
2017-09-01
The secondary structure of apolipoprotein B-100 is studied within the bulk phase and at the air/water interface. In these "in viro" experiments, infrared reflection absorption spectroscopy (IRRAS) study was performed at the air/water interface while circular dichroism (CD) was conducted in the bulk phase. In the bulk phase, the conformational structure containing a significant amount of β-structure, whereas varying amount of α-helix, unordered structures, and β-sheet were observed at the air/water interface depending on the low-density lipoprotein (LDL) film interfacial pressure. The present IRRAS results demonstrate the importance of interfacial pressure-induced structural conformations on the apoB-100. A correlation between the secondary structure of the apoB-100 protein and the monomolecular film elasticity at the air/water interface was also established. The orientation of apoB-100 with respect to the LDL film-normal was found to depend on the interfacial pressure exhibited by the monomolecular film. These results may shed light on LDL's pivotal role in the progression of atherosclerotic coronary artery disease as demonstrated previously by clinical trials.
Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis.
Wang, Changhe; Wang, Yeshi; Hu, Meiqin; Chai, Zuying; Wu, Qihui; Huang, Rong; Han, Weiping; Zhang, Claire Xi; Zhou, Zhuan
2016-01-01
Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin-11 (Syt11), a non-Ca(2+)-binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin-mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin-coated pits and bulk endocytosis-like structures increase on the plasma membrane in Syt11-knockdown neurons. Structural-functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis. © 2015 The Authors.
First-Principles Materials Design of High-Performing Bulk Photovoltaics with the Li Nb O 3 Structure
Young, Steve M.; Zheng, Fan; Rappe, Andrew M.
2015-11-18
Here, the bulk photovoltaic effect is a long-known but poorly understood phenomenon. Recently, however, the multiferroic bismuth ferrite has been observed to produce strong photovoltaic response to visible light, suggesting that the effect has been underexploited as well. Here we present three polar oxides in the LiNbOmore » $$_3$$ structure that we predict to have band gaps in the 1-2 eV range and very high bulk photovoltaic response: PbNiO$$_3$$, Mg$$_{1/2}$$Zn$$_{1/2}$$PbO$$_3$$, and LiBiO$$_3$$. All three have band gaps determined by cations with $$d^{10}s^0$$ electronic configurations, leading to conduction bands composed of cation $s$-orbitals and O $p$-orbitals. This both dramatically lowers the band gap and increases the bulk photovoltaic response by as much as an order of magnitude over previous materials, demonstrating the potential for high-performing bulk photovoltaics.« less
Light Structures Phototroph, Bacterial and Fungal Communities at the Soil Surface
Davies, Lawrence O.; Schäfer, Hendrik; Marshall, Samantha; Bramke, Irene; Oliver, Robin G.; Bending, Gary D.
2013-01-01
The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0–3 mm) and bulk soil (3–12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere. PMID:23894406
NASA Astrophysics Data System (ADS)
Ngabonziza, P.; Wang, Y.; Brinkman, A.
2018-04-01
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.
NASA Astrophysics Data System (ADS)
Imura, Masataka; Tsuda, Shunsuke; Takeda, Hiroyuki; Nagata, Takahiro; Banal, Ryan G.; Yoshikawa, Hideki; Yang, AnLi; Yamashita, Yoshiyuki; Kobayashi, Keisuke; Koide, Yasuo; Yamaguchi, Tomohiro; Kaneko, Masamitsu; Uematsu, Nao; Wang, Ke; Araki, Tsutomu; Nanishi, Yasushi
2018-03-01
The surface and bulk electronic structures of In0.7Ga0.3N epilayers are investigated by angle-resolved hard X-ray photoelectron spectroscopy (HX-PES) combined with soft X-PES. The unintentionally and Mg-doped In0.7Ga0.3N (u-In0.7Ga0.3N and In0.7Ga0.3N:Mg, respectively) epilayers are grown by radio-frequency plasma-assisted molecular beam epitaxy. Here three samples with different Mg concentrations ([Mg] = 0, 7 × 1019, and 4 × 1020 cm-3) are chosen for comparison. It is found that a large downward energy band bending exists in all samples due to the formation of a surface electron accumulation (SEA) layer. For u-In0.7Ga0.3N epilayer, band bending as large as 0.8 ± 0.05 eV occurs from bulk to surface. Judged from the valence band spectral edge and numerical analysis of energy band with a surface quantum well, the valence band maximum (VBM) with respect to Fermi energy (EF) level in the bulk is determined to be 1.22 ± 0.05 eV. In contrast, for In0.7Ga0.3N:Mg epilayers, the band bending increases and the VBM only in the bulk tends to shift toward the EF level owing to the Mg acceptor doping. Hence, the energy band is considered to exhibit a downward bending structure due to the coexistence of the n+ SEA layer and Mg-doped p layer formed in the bulk. When [Mg] changes from 7 × 1019 to 4 × 1020 cm-3, the peak split occurs in HX-PES spectra under the bulk sensitive condition. This result indicates that the energy band forms an anomalous downward bending structure with a singular point due to the generation of a thin depleted region at the n+ p interface. For In0.7Ga0.3N:Mg epilayers, the VBM in the bulk is assumed to be slightly lower than EF level within 0.1 eV.
Solar steam generation by heat localization.
Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang
2014-07-21
Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.
Beaver, A; Cazer, C L; Ruegg, P L; Gröhn, Y T; Schukken, Y H
2016-02-01
Mycobacterium avium ssp. paratuberculosis (MAP), the etiologic agent of Johne's disease in dairy cattle, may enter the bulk tank via environmental contamination or direct excretion into milk. Traditionally, diagnostics to identify MAP in milk target either MAP antibodies (by ELISA) or the organism itself (by culture or PCR). High ELISA titers may be directly associated with excretion of MAP into milk but only indirectly linked to environmental contamination of the bulk tank. Patterns of bulk-milk ELISA and bulk-milk PCR results could therefore provide insight into the routes of contamination and level of infection or environmental burden. Coupled with questionnaire responses pertaining to management, the results of these diagnostic tests could reveal correlations with herd characteristics or on-farm practices that distinguish herds with high and low environmental bulk-tank MAP contamination. A questionnaire on hygiene, management, and Johne's specific parameters was administered to 292 dairy farms in New York, Oregon, and Wisconsin. Bulk-tank samples were collected from each farm for evaluation by real-time PCR and ELISA. Before DNA extraction and testing of the unknown samples, bulk-milk template preparation was optimized with respect to parameters such as MAP fractionation patterns and lysis. Two regression models were developed to explore the relationships among bulk-tank PCR, ELISA, environmental predictors, and herd characteristics. First, ELISA optical density (OD) was designated as the outcome in a linear regression model. Second, the log odds of being PCR positive in the bulk tank were modeled using binary logistic regression with penalized maximum likelihood. The proportion of PCR-positive bulk tanks was highest for New York and for organic farms, providing a clue as to the geographical patterns of MAP-positive bulk-tank samples and relationship to production type. Bulk-milk PCR positivity was also higher for large relative to small herds. The models revealed that bulk-milk PCR result could predict ELISA OD, with PCR-positive results corresponding to high bulk-milk ELISA titers. Similarly, ELISA was a predictor of PCR result, although the association was stronger for organic farms. Despite agreement between high bulk-milk ELISA titers and positive PCR results, a large proportion of high ELISA farms had PCR-negative bulk tanks, suggesting that farms are able to maintain satisfactory hygiene and management despite a presence of MAP in these herds. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
OPTIMIZING MODEL PERFORMANCE: VARIABLE SIZE RESOLUTION IN CLOUD CHEMISTRY MODELING. (R826371C005)
Under many conditions size-resolved aqueous-phase chemistry models predict higher sulfate production rates than comparable bulk aqueous-phase models. However, there are special circumstances under which bulk and size-resolved models offer similar predictions. These special con...
Gilroy, Kyle D.; Elnabawy, Ahmed O.; Yang, Tung -Han; ...
2017-04-27
Despite the remarkable success in controlling the synthesis of metal nanocrystals, it still remains a grand challenge to stabilize and preserve the shapes or internal structures of metastable kinetic products. In this work, we address this issue by systematically investigating the surface and bulk reconstructions experienced by a Pd concave icosahedron when subjected to heating up to 600 °C in vacuum. We used in situ high-resolution transmission electron microscopy to identify the equilibration pathways of this far-from-equilibrium structure. We were able to capture key structural transformations occurring during the thermal annealing process, which were mechanistically rationalized by implementing self-consistent plane-wavemore » density functional theory (DFT) calculations. Specifically, the concave icosahedron was found to evolve into a regular icosahedron via surface reconstruction in the range of 200–400 °C, and then transform into a pseudospherical crystalline structure through bulk reconstruction when further heated to 600 °C. As a result, the mechanistic understanding may lead to the development of strategies for enhancing the thermal stability of metal nanocrystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa
This study provides an account of the bulk preparation of TlBa 2Ca 2Cu 3O 9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher T c = 125 K after annealing the polycrystalline material in either flowing Ar+4% H 2, or N 2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Duemore » to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less
NASA Astrophysics Data System (ADS)
Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian
1998-05-01
We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.
NASA Astrophysics Data System (ADS)
Fang, F.; Szleifer, I.
2003-07-01
The competitive adsorption of proteins of different sizes and charges is studied using a molecular theory. The theory enables the study of charged systems explicitly including the size, shape, and charge distributions in all the molecular species in the mixture. Thus, this approach goes beyond the commonly used Poisson-Boltzmann approximation. The adsorption isotherms of the protein mixtures are studied for mixtures of two proteins of different size and charge. The amount of proteins adsorbed and the fraction of each protein is calculated as a function of the bulk composition of the solution and the amount of salt in the system. It is found that the total amount of proteins adsorbed is a monotonically decreasing function of the fraction of large proteins on the bulk solution and for fixed protein composition of the salt concentration. However, the composition of the adsorbed layer is a complicated function of the bulk composition and solution ionic strength. The structure of the adsorb layer depends upon the bulk composition and salt concentration. In general, there are multilayers adsorbed due to the long-range character of the electrostatic interactions. When the composition of large proteins in bulk is in very large excess it is found that the structure of the adsorb multilayer is such that the layer in contact with the surface is composed by a mixture of large and small proteins. However, the second and third layers are almost exclusively composed of large proteins. The theory is also generalized to study the time-dependent adsorption. The approach is based on separation of time scales into fast modes for the ions from the salt and the solvent and slow for the proteins. The dynamic equations are written for the slow modes, while the fast ones are obtained from the condition of equilibrium constrained to the distribution of proteins given by the slow modes. Two different processes are presented: the adsorption from a homogeneous solution to a charged surface at low salt concentration, and large excess of the large proteins in bulk. The second process is the kinetics of structural and adsorption change by changing the salt concentration of the bulk solution from low to high. The first process shows a large overshoot of the large proteins on the surface due to their excess in solution, followed by a surface replacement by the smaller molecules. The second process shows a very fast desorption of the large proteins followed by adsorption at latter stages. This process is found to be driven by large electrostatic repulsions induced by the fast ions from the salt approaching the surface. The relevance of the theoretical predictions to experimental system and possible directions for improvements of the theory are discussed.
Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.
2017-11-01
We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (Cd) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of Cd with positive and negative surface potentials.
Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study.
Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K
2017-11-21
We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (C d ) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of C d with positive and negative surface potentials.
NASA Astrophysics Data System (ADS)
Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.
2016-05-01
Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.
Patrick, John W.
2013-01-01
The pressure flow model of phloem transport envisaged by Münch (1930) has gained wide acceptance. Recently, however, the model has been questioned on structural and physiological grounds. For instance, sub-structures of sieve elements may reduce their hydraulic conductances to levels that impede flow rates of phloem sap and observed magnitudes of pressure gradients to drive flow along sieve tubes could be inadequate in tall trees. A variant of the Münch pressure flow model, the high-pressure manifold model of phloem transport introduced by Donald Fisher may serve to reconcile at least some of these questions. To this end, key predicted features of the high-pressure manifold model of phloem transport are evaluated against current knowledge of the physiology of phloem transport. These features include: (1) An absence of significant gradients in axial hydrostatic pressure in sieve elements from collection to release phloem accompanied by transport properties of sieve elements that underpin this outcome; (2) Symplasmic pathways of phloem unloading into sink organs impose a major constraint over bulk flow rates of resources translocated through the source-path-sink system; (3) Hydraulic conductances of plasmodesmata, linking sieve elements with surrounding phloem parenchyma cells, are sufficient to support and also regulate bulk flow rates exiting from sieve elements of release phloem. The review identifies strong circumstantial evidence that resource transport through the source-path-sink system is consistent with the high-pressure manifold model of phloem transport. The analysis then moves to exploring mechanisms that may link demand for resources, by cells of meristematic and expansion/storage sinks, with plasmodesmal conductances of release phloem. The review concludes with a brief discussion of how these mechanisms may offer novel opportunities to enhance crop biomass yields. PMID:23802003
NASA Astrophysics Data System (ADS)
Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.
2015-05-01
The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and good wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via the micro-slot cutting method, and then predict them using a three-dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analyses of serrated flows reveal plentiful and useful information of the underlying deformation process. Our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.
Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications
NASA Astrophysics Data System (ADS)
Chubenko, Oksana; Afanasev, Andrei
2017-01-01
At present, electron sources are essential in a wide range of applications - from common technical use to exploring the nature of matter. Depending on the application requirements, different methods and materials are used to generate electrons. State-of-the-art accelerator applications set a number of often-conflicting requirements for electron sources (e.g., quantum efficiency vs. polarization, current density vs. lifetime, etc). Development of advanced electron sources includes modeling and design of cathodes, material growth, fabrication of cathodes, and cathode testing. The detailed simulation and modeling of physical processes is required in order to shed light on the exact mechanisms of electron emission and to develop new-generation electron sources with optimized efficiency. The purpose of the present work is to study physical processes in advanced electron sources and develop scientific tools, which could be used to predict electron emission from novel nano-structured materials. In particular, the area of interest includes bulk/superlattice gallium arsenide (bulk/SL GaAs) photo-emitters and nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) photo/field-emitters. Work supported by The George Washington University and Euclid TechLabs LLC.
Cao, Yunfeng; Xie, Xie; Antonaglia, James; ...
2015-05-20
The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and excellent wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via themore » micro-slot cutting method, and then predict them using a three dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analysis of serrated flow reveals plentiful and useful information of the underlying deformation process. As a result, our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.« less
Heyden, Matthias; Sun, Jian; Forbert, Harald; Mathias, Gerald; Havenith, Martina; Marx, Dominik
2012-08-16
The combination of vibrational spectroscopy and molecular dynamics simulations provides a powerful tool to obtain insights into the molecular details of water structure and dynamics in the bulk and in aqueous solutions. Applying newly developed approaches to analyze correlations of charge currents, molecular dipole fluctuations, and vibrational motion in real and k-space, we compare results from nonpolarizable water models, widely used in biomolecular modeling, to ab initio molecular dynamics. For the first time, we unfold the infrared response of bulk water into contributions from correlated fluctuations in the three-dimensional, anisotropic environment of an average water molecule, from the OH-stretching region down to the THz regime. Our findings show that the absence of electronic polarizability in the force field model not only results in differences in dipolar couplings and infrared absorption but also induces artifacts into the correlated vibrational motion between hydrogen-bonded water molecules, specifically at the intramolecular bending frequency. Consequently, vibrational motion is partially ill-described with implications for the accuracy of non-self-consistent, a posteriori methods to add polarizability.
ΛCDM model with dissipative nonextensive viscous dark matter
NASA Astrophysics Data System (ADS)
Gimenes, H. S.; Viswanathan, G. M.; Silva, R.
2018-03-01
Many models in cosmology typically assume the standard bulk viscosity. We study an alternative interpretation for the origin of the bulk viscosity. Using nonadditive statistics proposed by Tsallis, we propose a bulk viscosity component that can only exist by a nonextensive effect through the nonextensive/dissipative correspondence (NexDC). In this paper, we consider a ΛCDM model for a flat universe with a dissipative nonextensive viscous dark matter component, following the Eckart theory of bulk viscosity, without any perturbative approach. In order to analyze cosmological constraints, we use one of the most recent observations of Type Ia Supernova, baryon acoustic oscillations and cosmic microwave background data.
Huang, Jieying; Yu, Zixuan; Gao, Hongjian; Yan, Xiaoming; Chang, Jiang; Wang, Chengming; Hu, Jingwei
2017-01-01
Changes in physicochemical characteristics, chemical structures and maturity of swine, cattle and chicken manures and composts during 70-day composting without addition of bulking agents were investigated. Physicochemical characteristics were measured by routine analyses and chemical structures by solid-state 13C NMR and FT-IR. Three manures were of distinct properties. Their changes in physicochemical characteristics, chemical structures, and maturity were different not only from each other but also from those with addition of bulking agents during composting. Aromaticity in chicken manure composts decreased at first, and then increased whereas that in cattle and swine manure composts increased. Enhanced ammonia volatilization occurred without addition of bulking agents. NMR structural information indicated that cattle and chicken composts were relatively stable at day 36 and 56, respectively, but swine manure composts were not mature up to day 70. Finally, the days required for three manures to reach the threshold values of different maturity indices were different. PMID:28604783
NASA Astrophysics Data System (ADS)
Wen, Xiangli; Liang, Yuxuan; Bai, Pengpeng; Luo, Bingwei; Fang, Teng; Yue, Luo; An, Teng; Song, Weiyu; Zheng, Shuqi
2017-11-01
The thermodynamic properties of Fe-S compounds with different crystal structure are very different. In this study, the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2) were investigated by first-principles calculations. Examination of the electronic density of states shows that mackinawite (FeS) is metallic and that pyrite (FeS2) is a semiconductor with a band gap of Eg = 1.02 eV. Using the stress-strain method, the elastic properties including the bulk modulus and shear modulus were derived from the elastic Cij data. Density functional perturbation theory (DFPT) calculations within the quasi-harmonic approximation (QHA) were used to calculate the thermodynamic properties, and the two Fe-S compounds are found to be dynamically stable. The isothermal bulk modulus, thermal expansion coefficient, heat capacities, Gibbs free energy and entropy of the Fe-S compounds are obtained by first-principles phonon calculations. Furthermore, the temperature of the mackinawite (FeS) ⟶ pyrite (FeS2) phase transition at 0 GPa was predicted. Based on the calculation results, the model for prediction of Fe-S compounds in the Fe-H2S-H2O system was improved.
Final Report: “Energetics of Nanomaterials”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodfield, Brian F.; navrotsky, alexandra; Ross, Nancy
2016-08-30
Nanomaterials, solids with very small particle size, form the basis of new technologies that are revolutionizing fields such as energy, lighting, electronics, medical diagnostics, and drug delivery. These nanoparticles are different from conventional bulk materials in many ways we do not yet fully understand. This project focused on their structure and thermodynamics and emphasized the role of water in nanoparticle surfaces. Using a unique and synergistic combination of high-tech techniques—namely oxide melt solution calorimetry, cryogenic heat capacity measurements, and inelastic neutron scattering—this work has identified differences in structure, thermodynamic stability, and water behavior on nanoparticles as a function of compositionmore » and particle size. The systematics obtained increase the fundamental understanding needed to synthesize, retain, and apply these technologically important nanomaterials and to predict and tailor new materials for enhanced functionality, eventually leading to a more sustainable way of life. Highlights are reported on the following topics: surface energies, thermochemistry of nanoparticles, and changes in stability at the nanoscale; heat capacity models and the gapped phonon spectrum; control of pore structure, acid sites, and thermal stability in synthetic γ-aluminas; the lattice contribution is the same for bulk and nanomaterials; and inelastic neutron scattering studies of water on nanoparticle surfaces.« less
Final Report: "Energetics of Nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navrotsky, Alexandra; Ross, Nancy; Woodfield, Brian
2015-02-14
Nanomaterials, solids with very small particle size, form the basis of new technologies that are revolutionizing fields such as energy, lighting, electronics, medical diagnostics, and drug delivery. These nanoparticles are different from conventional bulk materials in many ways we do not yet fully understand. This project focused on their structure and thermodynamics and emphasized the role of water in nanoparticle surfaces. Using a unique and synergistic combination of high-tech techniques—namely oxide melt solution calorimetry, cryogenic heat capacity measurements, and inelastic neutron scattering—this work has identified differences in structure, thermodynamic stability, and water behavior on nanoparticles as a function of compositionmore » and particle size. The systematics obtained increase the fundamental understanding needed to synthesize, retain, and apply these technologically important nanomaterials and to predict and tailor new materials for enhanced functionality, eventually leading to a more sustainable way of life. Highlights are reported on the following topics: surface energies, thermochemistry of nanoparticles, and changes in stability at the nanoscale; heat capacity models and the gapped phonon spectrum; control of pore structure, acid sites, and thermal stability in synthetic γ-aluminas; the lattice contribution is the same for bulk and nanomaterials; and inelastic neutron scattering studies of water on nanoparticle surfaces.« less
Primate cathelicidin orthologues display different structures and membrane interactions.
Morgera, Francesca; Vaccari, Lisa; Antcheva, Nikolinka; Scaini, Denis; Pacor, Sabrina; Tossi, Alessandro
2009-02-01
The human cathelicidin LL-37 displays both direct antibacterial activities and the capacity to modulate host-cell activities. These depend on structural characteristics that are subject to positive selection for variation, as observed in a previous analysis of the CAMP gene (encoding LL-37) in primates. The altered balance between cationic and anionic residues in different primate orthologues affects intramolecular salt-bridging and influences the stability of the helical conformation and tendency to aggregate in solution of the peptide. In the present study, we have analysed the effects of these structural variations on membrane interactions for human LL-37, rhesus RL-37 and orang-utan LL-37, using several complementary biophysical and biochemical methods. CD and ATR (attenuated total reflection)-FTIR (Fourier-transform IR) spectroscopy on model membranes indicate that RL-37, which is monomeric and unstructured in bulk solution [F-form (free form)], and human LL-37, which is partly structured and probably aggregated [A-form (aggregated form)], bind biological membranes in different manners. RL-37 may insert more deeply into the lipid bilayer than LL-37, which remains aggregated. AFM (atomic force microscopy) performed on the same supported bilayer as used for ATR-FTIR measurements suggests a carpet-like mode of permeabilization for RL37 and formation of more defined worm-holes for LL-37. Comparison of data from the biological activity on bacterial cells with permeabilization of model membranes indicates that the structure/aggregation state also affects the trajectory of the peptides from bulk solution through the outer cell-wall layers to the membrane. The results of the present study suggest that F-form cathelicidin orthologues may have evolved to have primarily a direct antimicrobial defensive capacity, whereas the A-forms have somewhat sacrificed this to gain host-cell modulating functions.
Proton transfer in liquid water confined inside graphene slabs
NASA Astrophysics Data System (ADS)
Tahat, Amani; Martí, Jordi
2015-09-01
The microscopic structure and dynamics of an excess proton in water constrained in narrow graphene slabs between 0.7 and 3.1 nm wide has been studied by means of a series of molecular dynamics simulations. Interaction of water and carbon with the proton species was modeled using a multistate empirical valence bond Hamiltonian model. The analysis of the effects of confinement on proton solvation structure and on its dynamical properties has been considered for varying densities. The system is organized in one interfacial and a bulk-like region, both of variable size. In the widest interplate separations, the lone proton shows a marked tendency to place itself in the bulk phase of the system, due to the repulsive interaction with the carbon atoms. However, as the system is compressed and the proton is forced to move to the vicinity of graphene walls it moves closer to the interface, producing a neat enhancement of the local structure. We found a marked slowdown of proton transfer when the separation of the two graphene plates is reduced. In the case of lowest distances between graphene plates (0.7 and 0.9 nm), only one or two water layers persist and the two-dimensional character of water structure becomes evident. By means of spectroscopical analysis, we observed the persistence of Zundel and Eigen structures in all cases, although at low interplate separations a signature frequency band around 2500 cm-1 suffers a blue shift and moves to characteristic values of asymmetric hydronium ion vibrations, indicating some unstability of the typical Zundel-Eigen moieties and their eventual conversion to a single hydronium species solvated by water.
Biswas, Biswajit; Mondal, Saptarsi; Singh, Prashant Chandra
2017-02-16
The presence of the fluorocarbon group in fluorinated alcohols makes them an important class of molecules that have diverse applications in the field of separation techniques, synthetic chemistry, polymer industry, and biology. In this paper, we have performed the density function theory calculation along with atom in molecule analysis, molecular dynamics simulation, and IR measurements of bulk monofluoroethanol (MFE) and compared them with the data for bulk ethanol (ETH) to understand the effect of the fluorocarbon group in the structure and the hydrogen bond network of bulk MFE. It has been found that the intramolecular O-H···F hydrogen bond is almost absent in bulk MFE. Molecular dynamics simulation and density function theory calculation along with atom in molecule analysis clearly depict that in the case of bulk MFE, a significant amount of intermolecular O-H···F and C-H···F hydrogen bonds are present along with the intermolecular O-H···O hydrogen bond. The presence of intermolecular O-H···F and C-H···F hydrogen bonds causes the difference in the IR spectrum of bulk MFE as compared to bulk ETH. This study clearly depicts that the organic fluorine (fluorocarbon) of MFE acts as a hydrogen bond acceptor and plays a significant role in the structure and hydrogen bond network of bulk MFE through the formation of weak O-H···F as well C-H···F hydrogen bonds, which may be one of the important reasons behind the unique behavior of the fluoroethanols.
NASA Astrophysics Data System (ADS)
Pelegrina, J. L.; Guillermet, A. Fernández
2018-03-01
The theme of the present work is the procedure for evaluating the minimum size for the stability of a crystalline particle with respect to the same group of atoms but in the amorphous state. A key goal of the study is the critical analysis of an extensively quoted paper by F.G. Shi [J. Mater. Res. 9 (1994) 1307-1313], who presented a criterion for evaluating a "crystallinity distance" (h) through its relation with the "critical diameter" (dC) of a particle, i.e., the diameter below which no particles with the crystalline structure are expected to exist at finite temperatures. Key assumptions of Shi's model are a direct proportionality relation between h and dC , and a prescription for estimating h from crystallographic information. In the present work the accuracy of the Shi model is assessed with particular reference to nanoparticles of the elements. To this end, an alternative way to obtain h, that better realizes Shi's idea of this quantity as "the height of a monolayer of atoms on the bulk crystal surface", is explored. Moreover, a thermodynamic calculation of dC , which involves a description of the bulk- and the surface contributions to the crystalline/amorphous relative phase stability for nanoparticles, is performed. It is shown that the Shi equation does not account for the key features of the h vs. dC relation established in the current work. Consequently, it is concluded that the parameter h obtained only from information about the structure of the crystalline phase, does not provide an accurate route to estimate the quantity dC . In fact, a key result of the current study is that dC crucially depends on the relation between bulk- and surface contributions to the crystalline/amorphous relative thermodynamic stability.
Polarization and charge transfer in the hydration of chloride ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Zhen; Rogers, David M.; Beck, Thomas L.
2010-01-07
A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters.more » The quantum theory of atoms in molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. The clusters extracted from the AMOEBA simulations exhibit high probabilities of anisotropic solvation for chloride ions in bulk water. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared to the quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2-level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.« less
Rettenwander, Daniel; Redhammer, Günther J; Guin, Marie; Benisek, Artur; Krüger, Hannes; Guillon, Olivier; Wilkening, Martin; Tietz, Frank; Fleig, Jürgen
2018-03-13
NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σ bulk of sub-mm-sized flux grown Na 3 Sc 2 (PO 4 ) 3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies E a . Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σ bulk turned out to be as high as 3 × 10 -4 S cm -1 at RT ( E a, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals.
2018-01-01
NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σbulk of sub-mm-sized flux grown Na3Sc2(PO4)3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies Ea. Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σbulk turned out to be as high as 3 × 10–4 S cm–1 at RT (Ea, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals. PMID:29606799
Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules.
Kim, Soon-Chul; Kim, Eun-Young; Seong, Baek-Seok
2011-04-28
A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.
Mechanical improvement of metal reinforcement rings for a finite ring-shaped superconducting bulk
NASA Astrophysics Data System (ADS)
Huang, Chen-Guang; Zhou, You-He
2018-03-01
As a key technique, reinforcement of type-II superconducting bulks with metal rings can efficiently improve their mechanical properties to enhance the maximum trapped field. In this paper, we study the magnetostrictive and fracture behaviors of a finite superconducting ring bulk reinforced by three typical reinforcing structures composed of metal rings during the magnetizing process by means of the minimization of magnetic energy and the finite element method. After a field-dependent critical current density is adopted, the magnetostriction, pinning-induced stress, and crack tip stress intensity factor are calculated considering the demagnetization effects. The results show that the mechanical properties of the ring bulk are strongly dependent on the reinforcing structure and the material and geometrical parameters of the metal rings. Introducing the metal ring can significantly reduce the hoop stress, and the reduction effect by internal reinforcement is much improved relative to external reinforcement. By comparison, bilateral reinforcement seems to be the best candidate structure. Only when the metal rings have particular Young's modulus and radial thickness will they contribute to improve the mechanical properties the most. In addition, if an edge crack is pre-existing in the ring bulk, the presence of metal rings can effectively avoid crack propagation since it reduces the crack tip stress intensity factor by nearly one order of magnitude.
Structural comparison of Ag-Ge-S bulk glasses and thin films
NASA Astrophysics Data System (ADS)
Wang, Fei; Jain, Mukul; Dunn, Porter; de Leo, Carter; Boolchand, Punit
2007-03-01
Ternary glasses of composition (GeS3)1-xAgx (x=0.1 and 0.2) are studied in form of bulk and thin films. Bulk glasses are synthesized and examined in Raman scattering and SEM. Raman scattering results of bulk glasses show that with increasing x, an increasing fraction of the Ag additive enters the base glass as Ag^+ with S^-anions serving to form thiogermanate species with one, two and three non-bridging S^- species. SEM measurements of the bulk glass show the material is intrinsically phase separated. White colored islands are observed distributed in a dark base. The EDS measurements show islands are Ag rich and the base is relatively Ag deficient. The Ag rich islands are expected to be mainly glassy phase Ag2S. Thin films of same compositions are fabricated using thermal evaporation. Films are evaporated following two different procedures to prevent the material from spitting. One method was preheating outgas and the other method was using tungsten mesh wrapped boats. The stoichiometry and molecular structure of films under each procedure are analyzed by Raman scattering and SEM to be compared with bulk glasses.
The light response of mesophyll conductance is controlled by structure across leaf profiles.
Théroux-Rancourt, Guillaume; Gilbert, Matthew E
2017-05-01
Mesophyll conductance to CO 2 (g m ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf g m (g m,leaf ). Thus, the bulk g m,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring g m,leaf . A species with bifacial structure, Arbutus × 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of g m,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of g m,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that g m,leaf apparently responds to light has large implications for how g m,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring g m under full light saturation. Responses of g m,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon. © 2016 John Wiley & Sons Ltd.
Nanometer scale atomic structure of zirconium based bulk metallic glass
NASA Astrophysics Data System (ADS)
Hwang, Jinwoo
We have studied the nanometer scale structure of bulk metallic glass (BMG) using fluctuation electron microscopy (FEM). The nanometer scale medium range order (MRO) in BMG is of significant interest because of its possible relationship to the properties, but the experimental study of the MRO is difficult because conventional diffraction techniques are not sensitive to the MRO scale. FEM is a quantitative transmission electron microscopy technique which measures the nanoscale structural fluctuation associated with MRO in amorphous materials, and provides information about the size, distribution, and internal structure of MRO. In this work, we developed an improved method for FEM using energy-filtered STEM nanodiffraction with highly coherent probes with size up to 11nm in a state-of-the-art Cs- corrected STEM. We also developed an effective way to eliminate the effect of sample thickness variation to the FEM data by using Z-contrast images as references. To study the detailed structure of MRO, we developed a hybrid reverse Monte Carlo (H-RMC) simulation which combines an empirical atomic potential and the FEM data. H-RMC generated model structures that match the experimental data at short and medium range. In addition, the subtle rotational symmetries in the FEM nanodiffraction patterns were analyzed by angular correlation function to reveal more details of the internal structure of MRO. Our experiments and simulations show that Zr-based BMG contains pseudo-planar, crystal-like MRO as well as icosahedral clusters in its nanoscale structure. We found that some icosahedral clusters may be connected, and that structural relaxation by annealing increases the population of icosahedral clusters.
Structural properties of ultrafine Ba-hexaferrite nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makovec, Darko, E-mail: Darko.Makovec@ijs.si; Primc, Darinka; Sturm, Saso
2012-12-15
Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was studied using X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption fine structure (XAFS), and Moessbauer spectroscopy (MS), to be compared to the structure of larger nanoparticles and the bulk. The nanoparticles were synthesized with hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH{sup -}. The ultrafine nanoparticles were formed in a discoid shape, {approx}10 nm wide and only {approx}3 nm thick, comparable to the size of the hexagonal unit cell in the c-direction.more » The HRTEM image analysis confirmed the hexaferrite structure, whereas EDXS showed the composition matching the BaFe{sub 12}O{sub 19} formula. XAFS and MS analyses showed considerable disorder of the structure, most probably responsible for the low magnetization. - Graphical abstract: Left: HREM image of an ultrafine Ba-hexaferrite nanoparticle (inset: TEM image of the nanoparticles); Right: the experimental HRTEM image is compared with calculated image and corresponding atomic model. Highlights: Black-Right-Pointing-Pointer Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was compared to the structure of the bulk. Black-Right-Pointing-Pointer Thickness the discoid nanoparticles was comparable to the size of the hexagonal unit cell in the c-direction. Black-Right-Pointing-Pointer Considerable disorder of the nanoparticles' structure is most probably responsible for their low magnetization.« less
High energy ball milling study of Fe{sub 2}MnSn Heusler alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Lakshmi, N.; Jain, Vishal
The structural and magnetic properties of as-melted and high energy ball milled alloy samples have been studied by X-ray diffraction, DC magnetization and electronic structure calculations by means of density functional theory. The observed properties are compared to that of the bulk sample. There is a very good enhancement of saturation magnetization and coercivity in the nano-sized samples as compared to bulk which is explained in terms of structural disordering and size effect.
NASA Astrophysics Data System (ADS)
Han, Chu; Bongiorno, Angelo
2014-03-01
Yttrium-doped barium zirconate (BZY) is a proton conducting electrolyte forming a class of novel materials for new generation of solid oxide fuel cells, for hydrogen separation and purification, and for electrolysis of water. Here we use density functional theory calculations to compute the energy of protons and oxygen vacancies at the surface and in the bulk of lightly Y-doped BZY materials. We found that protons are energetically more stable at the surface termination than in the bulk of BZY by about 1 eV. In contrast, doubly-positively charged oxygen vacancies are found to form iso-energetic defects at both the terminal surface layer and in the bulk of BZY, while in the sub-surface region the defect energy raises by about 1 eV with respect to the value in the bulk. The energetic behavior of protons and oxygen vacancies in the near surface region of BZY is attributed to the competition of strain and electrostatic effects. Lattice model representations of BZY surfaces are then used in combination with Monte Carlo simulations to solve the Poisson-Boltzmann equation and investigate the implication of the results above on the structure of the space charge region at the surface of BZY materials.
The unusual magnetism of nanoparticle LaCoO3.
Durand, A M; Belanger, D P; Hamil, T J; Ye, F; Chi, S; Fernandez-Baca, J A; Booth, C H; Abdollahian, Y; Bhat, M
2015-05-08
Bulk and nanoparticle powders of LaCoO3 (LCO) were synthesized and their magnetic and structural properties were studied using SQUID magnetometry and neutron diffraction. The bulk and large nanoparticles exhibit weak ferromagnetism (FM) below T ≈ 85 K and a crossover from strong to weak antiferromagnetic (AFM) correlations near a transition expressed in the lattice parameters, To≈40 K. This crossover does not occur in the smallest nanoparticles; instead, the magnetic behavior is predominantly ferromagnetic. The amount of FM in the nanoparticles depends on the amount of Co3O4 impurity phase, which induces tensile strain on the LCO lattice. A core-interface model is introduced, with the core region exhibiting the AFM crossover and with FM in the interface region near surfaces and impurity phases.
The unusual magnetism of nanoparticle LaCoO 3
Durand, A. M.; Belanger, D. P.; Hamil, T. J.; ...
2015-04-15
Bulk and nanoparticle powders of LaCoO 3 (LCO) were synthesized and their magnetic and structural properties were studied using SQUID magnetometry and neutron diffraction. The bulk and large nanoparticles exhibit weak ferromagnetism (FM) below T≈85K and a crossover from strong to weak antiferromagnetic (AFM) correlations near a transition expressed in the lattice parameters, To ≈ 40 K. This crossover does not occur in the smallest nanoparticles; instead, the magnetic behavior is predominantly ferromagnetic. The amount of FM in the nanoparticles depends on the amount of Co 3O 4 impurity phase, which induces tensile strain on the LCO lattice. A core-interfacemore » model is introduced, with the core region exhibiting the AFM crossover and with FM in the interface region near surfaces and impurity phases.« less
The unusual magnetism of nanoparticle LaCoO3
NASA Astrophysics Data System (ADS)
Durand, A. M.; Belanger, D. P.; Hamil, T. J.; Ye, F.; Chi, S.; Fernandez-Baca, J. A.; Booth, C. H.; Abdollahian, Y.; Bhat, M.
2015-05-01
Bulk and nanoparticle powders of LaCoO3 (LCO) were synthesized and their magnetic and structural properties were studied using SQUID magnetometry and neutron diffraction. The bulk and large nanoparticles exhibit weak ferromagnetism (FM) below T ≈ 85 K and a crossover from strong to weak antiferromagnetic (AFM) correlations near a transition expressed in the lattice parameters, To≈40 K. This crossover does not occur in the smallest nanoparticles; instead, the magnetic behavior is predominantly ferromagnetic. The amount of FM in the nanoparticles depends on the amount of Co3O4 impurity phase, which induces tensile strain on the LCO lattice. A core-interface model is introduced, with the core region exhibiting the AFM crossover and with FM in the interface region near surfaces and impurity phases.
FAST TRACK COMMUNICATION: Variation of equation of state parameters in the Mg2(Si1 - xSnx) alloys
NASA Astrophysics Data System (ADS)
Pulikkotil, J. J.; Alshareef, H. N.; Schwingenschlögl, U.
2010-09-01
Thermoelectric performance peaks up for intermediate Mg2(Si1 - xSnx) alloys, but not for isomorphic and isoelectronic Mg2(Si1 - xGex) alloys. A comparative study of the equation of state parameters is performed using density functional theory, Green's function technique, and the coherent potential approximation. Anomalous variation of the bulk modulus is found in Mg2(Si1 - xSnx) but not in the Mg2(Si1 - xGex) analogs. Assuming a Debye model, linear variations of the unit cell volume and pressure derivative of the bulk modulus suggest that lattice effects are important for the thermoelectric response. From the electronic structure perspective, Mg2(Si1 - xSnx) is distinguished by a strong renormalization of the anion-anion hybridization.
Multifrequency acoustics as a probe of mesoscopic blood coagulation dynamics
NASA Astrophysics Data System (ADS)
Ganesan, Adarsh; Rajendran, Gokulnath; Ercole, Ari; Seshia, Ashwin
2016-08-01
Coagulation is a complex enzymatic polymerisation cascade. Disordered coagulation is common in medicine and may be life-threatening yet clinical assays are typically bulky and/or provide an incomplete picture of clot mechanical evolution. We present the adaptation of an in-plane acoustic wave device: quartz crystal microbalance with dissipation at multiple harmonics to determine the time-evolution of mesoscale mechanical properties of clot formation in vitro. This approach is sensitive to changes in surface and bulk clot structure in various models of induced coagulopathy. Furthermore, we are able to show that clot formation at surfaces has different kinetics and mechanical strength to that in the bulk, which may have implications for the design of bioprosthetic materials. The "Multifrequency acoustics" approach thus enables unique capability to portray biological processes concerning blood coagulation.
Revilla, Marta; Galán, Berta; Viguri, Javier R
2016-07-01
An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Relationship between Bulk and Mobile Forms of Heavy Metals in Soils of Kursk
NASA Astrophysics Data System (ADS)
Nevedrov, N. P.; Protsenko, E. P.; Glebova, I. V.
2018-01-01
The contamination of Kursk urboecotopes by heavy metals (Pb, Cd, Zn, Cu, Ni) is considered. The relationships between the contents of bulk and mobile forms of heavy metal ions have been examined. The results of monitoring studies attest to a tendency for the accumulation of both bulk and mobile forms of heavy metals in the humus-accumulative horizon, except for bulk cadmium and mobile nickel. Linear and nonlinear regression models of the bulk contents of Pb, Cd, Zn, and Ni as dependent on the contents of their mobile forms have been developed. These models allow us to calculate the bulk content of heavy metal ions in the soils of urboecotopes using simpler methods of the extraction and laboratory determination of their mobile forms.
Nonlinear simulation of the fishbone instability
NASA Astrophysics Data System (ADS)
Idouakass, Malik; Faganello, Matteo; Berk, Herbert; Garbet, Xavier; Benkadda, Sadruddin; PIIM Team; IFS Team; IRFM Team
2014-10-01
We propose to extend the Odblom-Breizman precessional fishbone model to account for both the MagnetoHydroDynamic (MHD) nonlinearity at the q = 1 surface and the nonlinear response of the energetic particles contained within the q = 1 surface. This electromagnetic mode, whose excitation, damping and frequency chirping are determined by the self-consistent interaction between an energetic trapped particle population and the bulk plasma evolution, can induce effective transport and losses for the energetic particles, being them alpha-particles in next-future fusion devices or heated particles in present Tokamaks. The model is reduced to its simplest form, assuming a reduced MHD description for the bulk plasma and a two-dimensional phase-space evolution (gyro and bounce averaged) for deeply trapped energetic particles. Numerical simulations have been performed in order to characterize the mode chirping and saturation, in particular looking at the interplay between the development of phase-space structures and the system dissipation associated to the MHD non-linearities at the resonance locations.
Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.
Jin, J; Yusoh, K; Zhang, H X; Song, M
2016-03-01
A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep.
Radiation and temperature effects on the time-dependent response of T300/934 graphite/epoxy
NASA Technical Reports Server (NTRS)
Yancey, Robert N.; Pindera, Marek-Jerzy
1988-01-01
A time-dependent characterization study was performed on T300/934 graphite/epoxy in a simulated space environment. Creep tests on irradiated and nonirradiated graphite/epoxy and bulk resin specimens were carried out at temperatures of 72 and 250 F. Irradiated specimens were exposed to dosages of penetrating electron radiation equal to 30 years exposure at GEO-synchronous orbit. Radiation was shown to have little effect on the creep response of both the composite and bulk resin specimens at 72 F while radiation had a significant effect at 250 F. A healing process was shown to be present in the irradiated specimens where broken bonds in the epoxy due to radiation recombined over time to form cross-links in the 934 resin structure. An analytical micromechanical model was also developed to predict the viscoelastic response of fiber reinforced composite materials. The model was shown to correlate well with experimental results for linearly viscoelastic materials with relatively small creep strains.
Impact of Tortuosity on Charge-Carrier Transport in Organic Bulk Heterojunction Blends
NASA Astrophysics Data System (ADS)
Heiber, Michael C.; Kister, Klaus; Baumann, Andreas; Dyakonov, Vladimir; Deibel, Carsten; Nguyen, Thuc-Quyen
2017-11-01
The impact of the tortuosity of the charge-transport pathways through a bulk heterojunction film on the charge-carrier mobility is theoretically investigated using model morphologies and kinetic Monte Carlo simulations. The tortuosity descriptor provides a quantitative metric to characterize the quality of the charge-transport pathways, and model morphologies with controlled domain size and tortuosity are created using an anisotropic domain growth procedure. The tortuosity is found to be dependent on the anisotropy of the domain structure and is highly tunable. Time-of-flight charge-transport simulations on morphologies with a range of tortuosity values reveal that tortuosity can significantly reduce the magnitude of the mobility and the electric-field dependence relative to a neat material. These reductions are found to be further controlled by the energetic disorder and temperature. Most significantly, the sensitivity of the electric-field dependence to the tortuosity can explain the different experimental relationships previously reported, and exploiting this sensitivity could lead to simpler methods for characterizing and optimizing charge transport in organic solar cells.
Anomalous bulk behavior in the free parafermion Z (N ) spin chain
NASA Astrophysics Data System (ADS)
Alcaraz, Francisco C.; Batchelor, Murray T.
2018-06-01
We demonstrate using direct numerical diagonalization and extrapolation methods that boundary conditions have a profound effect on the bulk properties of a simple Z (N ) model for N ≥3 for which the model Hamiltonian is non-Hermitian. For N =2 the model reduces to the well-known quantum Ising model in a transverse field. For open boundary conditions, the Z (N ) model is known to be solved exactly in terms of free parafermions. Once the ends of the open chain are connected by considering the model on a ring, the bulk properties, including the ground-state energy per site, are seen to differ dramatically with increasing N . Other properties, such as the leading finite-size corrections to the ground-state energy, the mass gap exponent, and the specific-heat exponent, are also seen to be dependent on the boundary conditions. We speculate that this anomalous bulk behavior is a topological effect.
Interaction of pepsin-[C16mim]Br system: interfacial dilational rheology and conformational studies.
Huang, Tian; Cao, Chong; Liu, Zi-lin; Li, Yang; Du, Feng-pei
2014-09-21
The interfacial rheological property is closely related to the stabilities of foams and emulsions, yet there have been limited studies on the interaction between proteins with ionic liquid-type imidazolium surfactants at the decane-water interface as well as in the bulk. Herein, we investigated the interfacial and bulk properties of pepsin (PEP) and an ionic liquid (IL), 1-hexadecyl-3-methylimidazolium bromide, [C(16)mim]Br. The interfacial pressure and dilational rheology studies were performed to describe the formation of [C(16)mim]Br-pepsin complexes. The influence of the oscillating frequency and the bulk concentration of [C(16)mim]Br on the dilational properties were explored. The conformational changes were studied by monitoring the fluorescence and far UV-CD spectra. The results reveal that the globular structure of pepsin is one of the decisive factors controlling the nature of the interfacial film. The monotonous increase in the dilational elastic modulus of pepsin-[C(16)mim]Br solutions with the surface age indicates that no loops and tails had formed. Interestingly, with an increase in the concentration of [C(16)mim]Br, the εd-c curve first passes through a plateau value due to steric hindrance and the electrostatic barrier of already absorbed tenacious pepsin-[C(16)mim]Br complexes. With the further addition of [C(16)mim]Br, the remarkable decrease in dilational elastic modulus indicates that the compact structure is destroyed gradually. The results of the fluorescence spectra and far UV-CD spectra confirm that [C(16)mim]Br did not produce perceptible changes in pepsin at the concentrations studied in the dilational experiment. Possible schematic programs of the pepsin-[C(16)mim]Br interaction model at the interface and in bulk phase are proposed.
Galerkin finite element scheme for magnetostrictive structures and composites
NASA Astrophysics Data System (ADS)
Kannan, Kidambi Srinivasan
The ever increasing-role of magnetostrictives in actuation and sensing applications is an indication of their importance in the emerging field of smart structures technology. As newer, and more complex, applications are developed, there is a growing need for a reliable computational tool that can effectively address the magneto-mechanical interactions and other nonlinearities in these materials and in structures incorporating them. This thesis presents a continuum level quasi-static, three-dimensional finite element computational scheme for modeling the nonlinear behavior of bulk magnetostrictive materials and particulate magnetostrictive composites. Models for magnetostriction must deal with two sources of nonlinearities-nonlinear body forces/moments in equilibrium equations governing magneto-mechanical interactions in deformable and magnetized bodies; and nonlinear coupled magneto-mechanical constitutive models for the material of interest. In the present work, classical differential formulations for nonlinear magneto-mechanical interactions are recast in integral form using the weighted-residual method. A discretized finite element form is obtained by applying the Galerkin technique. The finite element formulation is based upon three dimensional eight-noded (isoparametric) brick element interpolation functions and magnetostatic infinite elements at the boundary. Two alternative possibilities are explored for establishing the nonlinear incremental constitutive model-characterization in terms of magnetic field or in terms of magnetization. The former methodology is the one most commonly used in the literature. In this work, a detailed comparative study of both methodologies is carried out. The computational scheme is validated, qualitatively and quantitatively, against experimental measurements published in the literature on structures incorporating the magnetostrictive material Terfenol-D. The influence of nonlinear body forces and body moments of magnetic origin, on the response of magnetostrictive structures to complex mechanical and magnetic loading conditions, is carefully examined. While monolithic magnetostrictive materials have been commercially-available since the late eighties, attention in the smart structures research community has recently focussed upon building and using magnetostrictive particulate composite structures for conventional actuation applications and novel sensing methodologies in structural health monitoring. A particulate magnetostrictive composite element has been developed in the present work to model such structures. This composite element incorporates interactions between magnetostrictive particles by combining a numerical micromechanical analysis based on magneto-mechanical Green's functions, with a homogenization scheme based upon the Mori-Tanaka approach. This element has been applied to the simulation of particulate actuators and sensors reported in the literature. Simulation results are compared to experimental data for validation purposes. The computational schemes developed, for bulk materials and for composites, are expected to be of great value to researchers and designers of novel applications based on magnetostrictives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mara, Nathan Allan; Bronkhorst, Curt Allan; Beyerlein, Irene Jane
2015-12-21
The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.
Modeling KBOs Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies
NASA Astrophysics Data System (ADS)
Malamud, U.; Prialnik, D.
2015-10-01
We use a one-dimensional adaptive-grid thermal evolution code to model intermediate sized Kuiper belt objects Charon, Orcus and Salacia and compare their measured bulk densities with those resulting from evolutionary calculations at the end of 4.6 Gyr. Our model assumes an initial homogeneous composition of mixed ice and rock, and follows the multiphase flow of water through the porous rocky medium, consequent differentiation and aqueous chemical alterations in the rock. Heating sources include long-lived radionuclides, serpentinization reactions, release of gravitational potential energy due to compaction, and crystallization of amorphous ice. The density profile is calculated by assuming hydrostatic equilibrium to be maintained through changes in composition, pressure and temperature. To this purpose, we construct an equation of state suitable for porous icy bodies with radii of a few hundred km, based on the best available empirical studies of ice and rock compaction, and on comparisons with rock porosities in Earth analog and Solar System silicates. We show that the observed bulk densities can be reproduced by assuming the same set of initial and physical parameters, including the same rock/ice mass ratio for all three bodies. We conclude that the mass of the object uniquely determines the evolution of porosity, and thus explains the observed differences in bulk density. The final structure of all three objects is differentiated, with an inner rocky core, and outer ice-enriched mantle. The degree of differentiation, too, is determined by the object's mass.
NASA Astrophysics Data System (ADS)
Malamud, Uri; Prialnik, Dina
2015-01-01
We use a one-dimensional adaptive-grid thermal evolution code to model Kuiper belt objects Charon, Orcus and Salacia and compare their measured bulk densities with those resulting from evolutionary calculations at the end of 4.6 Gyr. Our model assumes an initial homogeneous composition of mixed ice and rock, and follows the multiphase flow of water through the porous rocky medium, consequent differentiation and aqueous chemical alterations in the rock. Heating sources include long-lived radionuclides, serpentinization reactions, release of gravitational potential energy due to compaction, and crystallization of amorphous ice. The density profile is calculated by assuming hydrostatic equilibrium to be maintained through changes in composition, pressure and temperature. To this purpose, we construct an equation of state suitable for porous icy bodies with radii of a few hundred km, based on the best available empirical studies of ice and rock compaction, and on comparisons with rock porosities in Earth analog and Solar System silicates. We show that the observed bulk densities can be reproduced by assuming the same set of initial and physical parameters, including the same rock/ice mass ratio for all three bodies. We conclude that the mass of the object uniquely determines the evolution of porosity, and thus explains the observed differences in bulk density. The final structure of all three objects is differentiated, with an inner rocky core, and outer ice-enriched mantle. The degree of differentiation, too, is determined by the object's mass.
Effects of soil tillage on the microwave emission of soils
NASA Technical Reports Server (NTRS)
Jackson, T. J.; Koopman, G. J.; Oneill, P. E.; Wang, J. R.
1985-01-01
In order to understand the interactions of soil properties and microwave emission better, a series of field experiments were conducted in 1984. Small plots were measured with a truck-mounted passive microwave radiometer operating at 1.4 GHz. These data were collected concurrent with ground observations of soil moisture and bulk density. Treatment effects studied included different soil moisture contents and bulk densities. Evaluations of the data have shown that commonly used models of the dielectric properties of wet soils do not explain the observations obtained in these experiments. This conclusion was based on the fact that the roughness parameters determined through optimization were significantly larger than those observed in similar investigations. These discrepancies are most likely due to the soil structure. Commonly used models assume a homogeneous three phase mixture of soil solids, air and water. Under tilled conditions the soil is actually a two phase mixture of aggregates and voids. Appropriate dielectric models for this tilled condition were evaluated and found to explain the observations. These results indicate that previous conclusions concerning the effects of surface roughness in tilled fields may be incorrect, and they may explain some of the inconsistencies encountered in roughness modeling.
Numerical Modeling of Nanoelectronic Devices
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy
2003-01-01
Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.
NASA Technical Reports Server (NTRS)
Ferrier, Brad S.; Tao, Wei-Kuo; Simpson, Joanne
1991-01-01
The basic features of a new and improved bulk-microphysical parameterization capable of simulating the hydrometeor structure of convective systems in all types of large-scale environments (with minimal adjustment of coefficients) are studied. Reflectivities simulated from the model are compared with radar observations of an intense midlatitude convective system. Simulated reflectivities using the novel four-class ice scheme with a microphysical parameterization rain distribution at 105 min are illustrated. Preliminary results indicate that this new ice scheme works efficiently in simulating midlatitude continental storms.
The Casimir effect in rugby-ball type flux compactifications
NASA Astrophysics Data System (ADS)
Minamitsuji, M.
2008-04-01
We discuss volume stabilization in a 6D braneworld model based on 6D supergravity theory. The internal space is compactified by magnetic flux and contains codimension two 3-branes (conical singularities) as its boundaries. In general the external 4D spacetime is warped and in the unwrapped limit the shape of the internal space looks like a 'rugby ball'. The size of the internal space is not fixed due to the scale invariance of the supergravity theory. We discuss the possibility of volume stabilization by the Casimir effect for a massless, minimally coupled bulk scalar field. The main obstacle in studying this case is that the brane (conical) part of the relevant heat kernel coefficient (a6) has not been formulated. Thus as a first step, we consider the 4D analog model with boundary codimension two 1-branes. The spacetime structure of the 4D model is very similar to that of the original 6D model, where now the relevant heat kernel coefficient is well known. We derive the one-loop effective potential induced by a scalar field in the bulk by employing zeta function regularization with heat kernel analysis. As a result, the volume is stabilized for most possible choices of the parameters. Especially, for a larger degree of warping, our results imply that a large hierarchy between the mass scales and a tiny amount of effective cosmological constant can be realized on the brane. In the non-warped limit the ratio tends to converge to the same value, independently of the bulk gauge coupling constant. Finally, we will analyze volume stabilization in the original model 6D by employing the same mode-sum technique.
Song, Zilin; Zhang, Chao; Liu, Guobin; Qu, Dong; Xue, Sha
2015-01-01
The application of fractal geometry to describe soil structure is an increasingly useful tool for better understanding the performance of soil systems. Only a few studies, however, have focused on the structure of rhizospheric zones, where energy flow and nutrient recycling most frequently occur. We used fractal dimensions to investigate the characteristics of particle-size distribution (PSD) in the rhizospheres and bulk soils of six croplands abandoned for 1, 5, 10, 15, 20, and 30 years on the Loess Plateau of China and evaluated the changes over successional time. The PSDs of the rhizospheres and the fractal dimensions between rhizosphere soil and bulk soils during the natural succession differed significantly due to the influence of plant roots. The rhizospheres had higher sand (0.05–1.00 mm) contents, lower silt (<0.002 mm) contents, and lower fractal dimensions than the bulk soils during the early and intermediate successional stages (1–15 years). The fractal dimensions of the rhizosphere soil and bulk soil ranged from 2.102 to 2.441 and from 2.214 to 2.459, respectively, during the 30-year restoration. Rhizospheric clay and silt contents and fractal dimension tended to be higher and sand content tended to be lower as abandonment age increased, but the bulk soils had the opposite trend. Linear regression analysis indicated that the fractal dimensions of both the rhizospheres and bulk soils were significantly linearly correlated with clay, sand, organic-carbon, and total-nitrogen contents, with R 2 ranging from 0.526 to 0.752 (P<0.001). In conclusion, PSD differed significantly between the rhizosphere soil and bulk soil. The fractal dimension was a sensitive and useful index for quantifying changes in the properties of the different soil zones. This study will greatly aid the application of the fractal method for describing soil structure and nutrient status and the understanding of the performance of rhizospheric zones during ecological restoration. PMID:26368339
Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells
2014-01-01
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107
Superconductivity in Mesocrystalline Inverse Opal Structures
NASA Astrophysics Data System (ADS)
Lungu, Anca; Bleiweiss, Michael; Saygi, Salih; Amirzadeh, Jafar; Datta, Timir
2000-03-01
Mesocrystalline inverse opal structures were fabricated by the electrodeposition of metallic lead in synthetic opals. In these structures, the superconducting regions percolate in all directions through the voids in the artificial opals and their size is comparable to the coherence length for bulk lead. The inverse lead opals were proven superconducting, with a transition temperature close to that of bulk lead (between 7.2 K and 7.36 K) and broad transition regions. The magnetic behavior of the inverse opals was very different from that of bulk lead. Due to the reduced dimensonality of the superconducting regions, not surprisingly, the magnetic properties of our samples were found to be similar to those of type II superconductors. The critical magnetic field (or the field at which T_c<4.2 K) for these lead-opals was proven at least two times larger than that for bulk lead and (dT_c/dH) was observed 2.7 times smaller. We found a reversible ZFC-FC magnetic behavior in the temperature range between T* and T_c. We also performed magnetic relaxation measurements and studied the fluctuation diamagnetism above T_c.
Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.
Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo
2014-01-01
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.
Water in the presence of inert Lennard-Jones obstacles
NASA Astrophysics Data System (ADS)
Kurtjak, Mario; Urbic, Tomaz
2014-04-01
Water confined by the presence of a 'sea' of inert obstacles was examined. In the article, freely mobile two-dimensional Mercedes-Benz (MB) water put to a disordered, but fixed, matrix of Lennard-Jones disks was studied by the Monte Carlo computer simulations. For the MB water molecules in the matrix of Lennard-Jones disks, we explored the structures, hydrogen-bond-network formation and thermodynamics as a function of temperature and size and density of matrix particles. We found that the structure of model water is perturbed by the presence of the obstacles. Density of confined water, which was in equilibrium with the bulk water, was smaller than the density of the bulk water and the temperature dependence of the density of absorbed water did not show the density anomaly in the studied temperature range. The behaviour observed as a consequence of confinement is similar to that of increasing temperature, which can for a matrix lead to a process similar to capillary evaporation. At the same occupancy of space, smaller matrix molecules cause higher destruction effect on the absorbed water molecules than the bigger ones. We have also tested the hypothesis that at low matrix densities the obstacles induce an increased ordering and 'hydrogen bonding' of the MB model molecules, relative to pure fluid, while at high densities the obstacles reduce MB water structuring, as they prevent the fluid to form good 'hydrogen-bonding' networks. However, for the size of matrix molecules similar to that of water, we did not observe this effect.
Liquid structure of the urea-water system studied by dielectric spectroscopy.
Hayashi, Yoshihito; Katsumoto, Yoichi; Omori, Shinji; Kishii, Noriyuki; Yasuda, Akio
2007-02-08
Dielectric spectroscopy measurements for aqueous urea solutions were performed at 298 K through a concentration range from 0.5 to 9.0 M with frequencies between 200 MHz and 40 GHz. Observed dielectric spectra were well represented by the superposition of two Debye type relaxation processes attributable to the bulk-water clusters and the urea-water coclusters. Our quantitative analysis of the spectra shows that the number of hydration water molecules is approximately two per urea molecule for the lower concentration region below 5.0 M, while the previous molecular dynamics studies predicted approximately six water molecules. It was also indicated by those studies, however, that there are two types of hydration water molecule in urea solution, which are strongly and weakly associated to the urea molecule, respectively. Only the strongly associated water was distinguishable in our analysis, while the weakly associated water exhibited the same dynamic feature as bulk water. This implies that urea retains the weakly associated water in the tetrahedral structure and, thus, is not a strong structure breaker of water. We also verified the model of liquid water where water consists of two states: the icelike-ordered and dense-disordered phases. Our dielectric data did not agree with the theoretical prediction based on the two-phase model. The present work supports the argument that urea molecules can easily replace near-neighbor water in the hydrogen-bonding network and do not require the presence of the disordered phase of water to dissolve into water.
Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran
2014-12-15
Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.
Structure of amplitude correlations in open chaotic systems
NASA Astrophysics Data System (ADS)
Ericson, Torleif E. O.
2013-02-01
The Verbaarschot-Weidenmüller-Zirnbauer (VWZ) model is believed to correctly represent the correlations of two S-matrix elements for an open quantum chaotic system, but the solution has considerable complexity and is presently only accessed numerically. Here a procedure is developed to deduce its features over the full range of the parameter space in a transparent and simple analytical form preserving accuracy to a considerable degree. The bulk of the VWZ correlations are described by the Gorin-Seligman expression for the two-amplitude correlations of the Ericson-Gorin-Seligman model. The structure of the remaining correction factors for correlation functions is discussed with special emphasis of the rôle of the level correlation hole both for inelastic and elastic correlations.
Wrinkle-free design of thin membrane structures using stress-based topology optimization
NASA Astrophysics Data System (ADS)
Luo, Yangjun; Xing, Jian; Niu, Yanzhuang; Li, Ming; Kang, Zhan
2017-05-01
Thin membrane structures would experience wrinkling due to local buckling deformation when compressive stresses are induced in some regions. Using the stress criterion for membranes in wrinkled and taut states, this paper proposed a new stress-based topology optimization methodology to seek the optimal wrinkle-free design of macro-scale thin membrane structures under stretching. Based on the continuum model and linearly elastic assumption in the taut state, the optimization problem is defined as to maximize the structural stiffness under membrane area and principal stress constraints. In order to make the problem computationally tractable, the stress constraints are reformulated into equivalent ones and relaxed by a cosine-type relaxation scheme. The reformulated optimization problem is solved by a standard gradient-based algorithm with the adjoint-variable sensitivity analysis. Several examples with post-bulking simulations and experimental tests are given to demonstrate the effectiveness of the proposed optimization model for eliminating stress-related wrinkles in the novel design of thin membrane structures.
First-principles studies of the v7×v7R19.1° structure of sulfur on the Pd(1 1 1) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonso, D.R.
2007-11-01
Density functional theory is used to investigate the v7×v7R19.1° structure of sulfur on the Pd(111) surface. Among the different models that were considered, the densely packed mixed sulfur-metal overlayer structure proposed by Liu et al. [W. Liu, K.A.R. Mitchell, W. Berndt, Surf. Sci. 393 (1997) L119] was found to be the most energetically favorable. This model consists of arrangement of Pd triangles and pentagons on top of Pd(111) with the sulfur atoms at 3/7 monolayer coverage. The dominant mechanism for sulfur interaction with Pd in the overlayer region is the rehybridization of sulfur 3p and metal 4d bands. Simulated scanningmore » tunneling microscopy image for this structure shows some similarity with that obtained from experiment. Our study confirms that surface sulfide with no structural resemblance to its bulk counterparts can form on Pd(111).« less
Temperature dependence of the interband critical points of bulk Ge and strained Ge on Si
NASA Astrophysics Data System (ADS)
Fernando, Nalin S.; Nunley, T. Nathan; Ghosh, Ayana; Nelson, Cayla M.; Cooke, Jacqueline A.; Medina, Amber A.; Zollner, Stefan; Xu, Chi; Menendez, Jose; Kouvetakis, John
2017-11-01
Epitaxial Ge layers on a Si substrate experience a tensile biaxial stress due to the difference between the thermal expansion coefficients of the Ge epilayer and the Si substrate, which can be measured using asymmetric X-ray diffraction reciprocal space maps. This stress depends on temperature and affects the band structure, interband critical points, and optical spectra. This manuscripts reports careful measurements of the temperature dependence of the dielectric function and the interband critical point parameters of bulk Ge and Ge epilayers on Si using spectroscopic ellipsometry from 80 to 780 K and from 0.8 to 6.5 eV. The authors find a temperature-dependent redshift of the E1 and E1 + Δ1 critical points in Ge on Si (relative to bulk Ge). This redshift can be described well with a model based on thermal expansion coefficients, continuum elasticity theory, and the deformation potential theory for interband transitions. The interband transitions leading to E0‧ and E2 critical points have lower symmetry and therefore are not affected by the stress.
Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes
NASA Astrophysics Data System (ADS)
Montessori, A.; Amadei, C. A.; Falcucci, G.; Sega, M.; Vecitis, C. D.; Succi, S.
2016-12-01
The understanding of water transport in graphene oxide (GO) membranes stands out as a major theoretical problem in graphene research. Notwithstanding the intense efforts devoted to the subject in the recent years, a consolidated picture of water transport in GO membranes is yet to emerge. By performing mesoscale simulations of water transport in ultrathin GO membranes, we show that even small amounts of oxygen functionalities can lead to a dramatic drop of the GO permeability, in line with experimental findings. The coexistence of bulk viscous dissipation and spatially extended molecular friction results in a major decrease of both slip and bulk flow, thereby suppressing the fast water transport regime observed in pristine graphene nanochannels. Inspection of the flow structure reveals an inverted curvature in the near-wall region, which connects smoothly with a parabolic profile in the bulk region. Such inverted curvature is a distinctive signature of the coexistence between single-particle zero-temperature (noiseless) Langevin friction and collective hydrodynamics. The present mesoscopic model with spatially extended friction may offer a computationally efficient tool for future simulations of water transport in nanomaterials.
NASA Astrophysics Data System (ADS)
He, Yangkun; Coey, J. M. D.; Schaefer, Rudolf; Jiang, Chengbao
2018-01-01
The ground state of macroscopic samples of magnetically ordered materials is a domain state because of magnetostatic energy or entropy, yet we have limited experimental means for imaging the bulk domain structure and the magnetization process directly. The common methods available reveal the domains at the surface or in electron- or x-ray transparent lamellae, not those in the bulk. The magnetization curve just reflects the vector sum of the moments of all the domains in the sample, but magnetostriction curves are more informative. They are strongly influenced by the domain structure in the unmagnetized state and its evolution during the magnetization process in an applied field. Here we report a method of determining the bulk domain structure in a cubic magnetostrictive material by combining magneto-optic Kerr microscopy with magnetostriction and magnetization measurements on single crystals as a function of applied field. We analyze the magnetostriction of F e83G a17 crystals in terms of a domain structure that is greatly influenced by sample shape and heat treatment. Saturation magnetostriction measurements are used to determine the fraction of domains orientated along the three 〈100 〉 axes in the initial state. Domain wall motion and rotation process have characteristic signatures in the magnetostriction curves, including those associated with the Δ E effect and domain rotation through a 〈110 〉 auxetic direction.
Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid
2012-01-01
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity. PMID:22389373
Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid; Höfle, Manfred G
2012-05-01
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guille, Émilie; Vallverdu, Germain, E-mail: germain.vallverdu@univ-pau.fr; Baraille, Isabelle
2014-12-28
We present first-principle calculations of core-level binding energies for the study of insulating, bulk phase, compounds, based on the Slater-Janak transition state model. Those calculations were performed in order to find a reliable model of the amorphous Li{sub x}PO{sub y}N{sub z} solid electrolyte which is able to reproduce its electronic properties gathered from X-ray photoemission spectroscopy (XPS) experiments. As a starting point, Li{sub 2}PO{sub 2}N models were investigated. These models, proposed by Du et al. on the basis of thermodynamics and vibrational properties, were the first structural models of Li{sub x}PO{sub y}N{sub z}. Thanks to chemical and structural modifications appliedmore » to Li{sub 2}PO{sub 2}N structures, which allow to demonstrate the relevance of our computational approach, we raise an issue concerning the possibility of encountering a non-bridging kind of nitrogen atoms (=N{sup −}) in Li{sub x}PO{sub y}N{sub z} compounds.« less
Molecular engineering of colloidal liquid crystals using DNA origami
NASA Astrophysics Data System (ADS)
Siavashpouri, Mahsa; Wachauf, Christian; Zakhary, Mark; Praetorius, Florian; Dietz, Hendrik; Dogic, Zvonimir
Understanding the microscopic origin of cholesteric phase remains a foundational, yet unresolved problem in the field of liquid crystals. Lack of experimental model system that allows for the systematic control of the microscopic chiral structure makes it difficult to investigate this problem for several years. Here, using DNA origami technology, we systematically vary the chirality of the colloidal particles with molecular precision and establish a quantitative relationship between the microscopic structure of particles and the macroscopic cholesteric pitch. Our study presents a new methodology for predicting bulk behavior of diverse phases based on the microscopic architectures of the constituent molecules.
Delamination Defect Detection Using Ultrasonic Guided Waves in Advanced Hybrid Structural Elements
NASA Astrophysics Data System (ADS)
Yan, Fei; Qi, Kevin ``Xue''; Rose, Joseph L.; Weiland, Hasso
2010-02-01
Nondestructive testing for multilayered structures is challenging because of increased numbers of layers and plate thicknesses. In this paper, ultrasonic guided waves are applied to detect delamination defects inside a 23-layer Alcoa Advanced Hybrid Structural plate. A semi-analytical finite element (SAFE) method generates dispersion curves and wave structures in order to select appropriate wave structures to detect certain defects. One guided wave mode and frequency is chosen to achieve large in-plane displacements at regions of interest. The interactions of the selected mode with defects are simulated using finite element models. Experiments are conducted and compared with bulk wave measurements. It is shown that guided waves can detect deeply embedded damages inside thick multilayer fiber-metal laminates with suitable mode and frequency selection.
Dutta, Priyanka; Botlani, Mohsen; Varma, Sameer
2014-12-26
The dynamical properties of water at protein-water interfaces are unlike those in the bulk. Here we utilize molecular dynamics simulations to study water dynamics in interstitial regions between two proteins. We consider two natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2 and the other in which the same G protein binds to ephrin B3. While the two complexes are structurally similar, the two ephrins share only a modest sequence identity of ∼50%. X-ray crystallography also suggests that these interfaces are fairly extensive and contain exceptionally large amounts of waters. We find that while the interstitial waters tend to occupy crystallographic sites, almost all waters exhibit residence times of less than hundred picoseconds in the interstitial region. We also find that while the differences in the sequence of the two ephrins result in quantitative differences in the dynamics of interstitial waters, the trends in the shifts with respect to bulk values are similar. Despite the high wetness of the protein-protein interfaces, the dynamics of interstitial waters are considerably slower compared to the bulk-the interstitial waters diffuse an order of magnitude slower and have 2-3 fold longer hydrogen bond lifetimes and 2-1000 fold slower dipole relaxation rates. To understand the role of interstitial waters, we examine how implicit solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G conformational density. Ephrin-induced shifts in the G conformational density are critical to the allosteric activation of another viral protein that mediates fusion. We find that in comparison with the explicit solvent model, the implicit solvent model predicts a more compact G-B2 interface, presumably because of the absence of discrete waters at the G-B2 interface. Simultaneously, we find that the two models yield strikingly different induced changes in the G conformational density, even for those residues whose conformational densities in the apo state are unaffected by the treatment of the bulk solvent. Together, these results show that the explicit treatment of interstitial water molecules is necessary for a proper description of allosteric transitions.
Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects.
Titus, Michael S; Rhein, Robert K; Wells, Peter B; Dodge, Philip C; Viswanathan, Gopal Babu; Mills, Michael J; Van der Ven, Anton; Pollock, Tresa M
2016-12-01
It has long been known that solute segregation at crystalline defects can have profound effects on material properties. Nevertheless, quantifying the extent of solute segregation at nanoscale defects has proven challenging due to experimental limitations. A combined experimental and first-principles approach has been used to study solute segregation at extended intermetallic phases ranging from 4 to 35 atomic layers in thickness. Chemical mapping by both atom probe tomography and high-resolution scanning transmission electron microscopy demonstrates a markedly different composition for the 4-atomic-layer-thick phase, where segregation has occurred, compared to the approximately 35-atomic-layer-thick bulk phase of the same crystal structure. First-principles predictions of bulk free energies in conjunction with direct atomistic simulations of the intermetallic structure and chemistry demonstrate the breakdown of bulk thermodynamics at nanometer dimensions and highlight the importance of symmetry breaking due to the proximity of interfaces in determining equilibrium properties.
Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects
Titus, Michael S.; Rhein, Robert K.; Wells, Peter B.; Dodge, Philip C.; Viswanathan, Gopal Babu; Mills, Michael J.; Van der Ven, Anton; Pollock, Tresa M.
2016-01-01
It has long been known that solute segregation at crystalline defects can have profound effects on material properties. Nevertheless, quantifying the extent of solute segregation at nanoscale defects has proven challenging due to experimental limitations. A combined experimental and first-principles approach has been used to study solute segregation at extended intermetallic phases ranging from 4 to 35 atomic layers in thickness. Chemical mapping by both atom probe tomography and high-resolution scanning transmission electron microscopy demonstrates a markedly different composition for the 4–atomic-layer–thick phase, where segregation has occurred, compared to the approximately 35–atomic-layer–thick bulk phase of the same crystal structure. First-principles predictions of bulk free energies in conjunction with direct atomistic simulations of the intermetallic structure and chemistry demonstrate the breakdown of bulk thermodynamics at nanometer dimensions and highlight the importance of symmetry breaking due to the proximity of interfaces in determining equilibrium properties. PMID:28028543
Analysis of Surface and Bulk Behavior in Ni-Pd Alloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Rondald D.
2003-01-01
The most salient features of the surface structure and bulk behavior of Ni-Pd alloys have been studied using the BFS method for alloys. Large-scale atomistic simulations were performed to investigate surface segregation profiles as a function of temperature, crystal face, and composition. Pd enrichment of the first layer was observed in (111) and (100) surfaces, and enrichment of the top two layers occurred for (110) surfaces. In all cases, the segregation profile shows alternate planes enriched and depleted in Pd. In addition, the phase structure of bulk Ni-Pd alloys as a function of temperature and composition was studied. A weak ordering tendency was observed at low temperatures, which helps explain the compositional oscillations in the segregation profiles. Finally, based on atom-by-atom static energy calculations, a comprehensive explanation for the observed surface and bulk features will be presented in terms of competing chemical and strain energy effects.
Flores-Alsina, Xavier; Comas, Joaquim; Rodriguez-Roda, Ignasi; Gernaey, Krist V; Rosen, Christian
2009-10-01
The main objective of this paper is to demonstrate how including the occurrence of filamentous bulking sludge in a secondary clarifier model will affect the predicted process performance during the simulation of WWTPs. The IWA Benchmark Simulation Model No. 2 (BSM2) is hereby used as a simulation case study. Practically, the proposed approach includes a risk assessment model based on a knowledge-based decision tree to detect favourable conditions for the development of filamentous bulking sludge. Once such conditions are detected, the settling characteristics of the secondary clarifier model are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant performance. Particularly, during the periods when the conditions for the development of filamentous bulking sludge are favourable--leading to poor activated sludge compaction, low return and waste TSS concentrations and difficulties in maintaining the biomass in the aeration basins--a subsequent reduction in overall pollution removal efficiency is observed. Also, a scenario analysis is conducted to examine i) the influence of sludge retention time (SRT), the external recirculation flow rate (Q(r)) and the air flow rate in the bioreactor (modelled as k(L)a) as factors promoting bulking sludge, and ii) the effect on the model predictions when the settling properties are changed due to a possible proliferation of filamentous microorganisms. Finally, the potentially adverse effects of certain operational procedures are highlighted, since such effects are normally not considered by state-of-the-art models that do not include microbiology-related solids separation problems.
NASA Astrophysics Data System (ADS)
Lim, Yeunhwan; Holt, Jeremy W.
2017-06-01
We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters, especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability method to check the validity of the numerical solutions based on energy comparisons.
NASA Astrophysics Data System (ADS)
Yumnam, Nivedita; Hirwa, Hippolyte; Wagner, Veit
2017-12-01
Analysis of charge extraction by linearly increasing voltage is conducted on metal-insulator-semiconductor capacitors in a structure relevant to organic solar cells. For this analysis, an analytical model is developed and is used to determine the conductivity of the active layer. Numerical simulations of the transient current were performed as a way to confirm the applicability of our analytical model and other analytical models existing in the literature. Our analysis is applied to poly(3-hexylthiophene)(P3HT) : phenyl-C61-butyric acid methyl ester (PCBM) which allows to determine the electron and hole mobility independently. A combination of experimental data analysis and numerical simulations reveals the effect of trap states on the transient current and where this contribution is crucial for data analysis.
The Influence of Fuel Properties on Combustion Efficiency and the Partitioning of Pyrogenic Carbon
NASA Astrophysics Data System (ADS)
Urbanski, S. P.; Baker, S. P.; Lincoln, E.; Richardson, M.
2016-12-01
The partitioning of volatized pyrogenic carbon into CO2, CO, CH4, non-methane organic carbon, and particulate organic carbon (POC) and elemental carbon (PEC) depends on the combustion characteristics of biomass fires which are influenced by the moisture content, structure and arrangement of the fuels. Flaming combustion is characterized by efficient conversion of volatized carbon into CO2. In contrast, smoldering is less efficient and produces incomplete combustion products like CH4 and carbonaceous particles. This paper presents a laboratory study that has examined the relationship between the partitioning of volatized pyrogenic carbon and specific fuel properties. The study focused on fuel beds composed of simple fuel particles — ponderosa pine needles. Ponderosa pine was selected because it contains a common wildland fuel component, conifer needles, which can be easily arranged into fuel beds of variable structure (bulk density and depth) and moisture contents that are both representative of natural conditions and are easily replicated. Modified combustion efficiency (MCE, ΔCO2/[ΔCO2+ ΔCO]) and emission factors (EF) for CO2, CO, CH4, POC, and PEC were measured over a range of needle moisture content and fuel bed bulk density and depth representative of naturally occurring fuel beds. We found that, as expected, MCE decreases as the fuel bed bulk density increases and emissions of CO, CH4, PM2.5, and POC increased. However, fuel bed depth did not appear to have an effect on how effect on MCE or emission factors. Surprisingly, a consistent relationship between the needle moisture content and emissions was not identified. At the high bulk densities, moisture content had a strong influence on MCE which explained variability in EFCH4. However, moisture content appeared to have an influence EFPOC and EFPEC that was independent of MCE. These findings may have significant implications since many models of biomass burning assume that litter fuels, such as ponderosa pine needles, burn almost exclusively via flaming combustion with a high efficiency. Our results indicate that for fuel bed properties typical of many conifer forests, pollutants generated from fires will be higher than that predicted using standard biomass burning models.
Thermomechanical fatigue life prediction for several solders
NASA Astrophysics Data System (ADS)
Wen, Shengmin
Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for anisotropic small-scale (micron or nano scale) solder joints. More importantly, the theory is materials science based so that the parameters of the fatigue formula can be worked out by testing of bulk specimens while the formula can be applicable to small-scale structures. The theory suggests metallurgical control in the manufacturing process to optimize the fatigue life of solder structures.
The Structure and Properties of Silica Glass Nanostructures using Novel Computational Systems
NASA Astrophysics Data System (ADS)
Doblack, Benjamin N.
The structure and properties of silica glass nanostructures are examined using computational methods in this work. Standard synthesis methods of silica and its associated material properties are first discussed in brief. A review of prior experiments on this amorphous material is also presented. Background and methodology for the simulation of mechanical tests on amorphous bulk silica and nanostructures are later presented. A new computational system for the accurate and fast simulation of silica glass is also presented, using an appropriate interatomic potential for this material within the open-source molecular dynamics computer program LAMMPS. This alternative computational method uses modern graphics processors, Nvidia CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model select materials, this enhancement allows the addition of accelerated molecular dynamics simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal of this project is to investigate the structure and size dependent mechanical properties of silica glass nanohelical structures under tensile MD conditions using the innovative computational system. Specifically, silica nanoribbons and nanosprings are evaluated which revealed unique size dependent elastic moduli when compared to the bulk material. For the nanoribbons, the tensile behavior differed widely between the models simulated, with distinct characteristic extended elastic regions. In the case of the nanosprings simulated, more clear trends are observed. In particular, larger nanospring wire cross-sectional radii (r) lead to larger Young's moduli, while larger helical diameters (2R) resulted in smaller Young's moduli. Structural transformations and theoretical models are also analyzed to identify possible factors which might affect the mechanical response of silica nanostructures under tension. The work presented outlines an innovative simulation methodology, and discusses how results can be validated against prior experimental and simulation findings. The ultimate goal is to develop new computational methods for the study of nanostructures which will make the field of materials science more accessible, cost effective and efficient.
Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces
Hanke, Torben; Singh, Udai Raj; Cornils, Lasse; ...
2017-01-06
Here, establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe 1+yTe, the parent compound of Fe 1+ySe 1$-x$Tex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe 1+yTe and thin films grown on the topological insulator Bi 2Te 3 is canted out of the high-symmetry directionsmore » of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.« less
Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanke, Torben; Singh, Udai Raj; Cornils, Lasse
Here, establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe 1+yTe, the parent compound of Fe 1+ySe 1$-x$Tex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe 1+yTe and thin films grown on the topological insulator Bi 2Te 3 is canted out of the high-symmetry directionsmore » of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.« less
Kim, Beom Seo; Rhim, Jun-Won; Kim, Beomyoung; Kim, Changyoung; Park, Seung Ryong
2016-01-01
Monolayer MX2 (M = Mo, W; X = S, Se) has recently been drawn much attention due to their application possibility as well as the novel valley physics. On the other hand, it is also important to understand the electronic structures of bulk MX2 for material applications since it is very challenging to grow large size uniform and sustainable monolayer MX2. We performed angle-resolved photoemission spectroscopy and tight binding calculations to investigate the electronic structures of bulk 2H-MX2. We could extract all the important electronic band parameters for bulk 2H-MX2, including the band gap, direct band gap size at K (-K) point and spin splitting size. Upon comparing the parameters for bulk 2H-MX2 (our work) with mono- and multi-layer MX2 (published), we found that stacked layers, substrates for thin films, and carrier concentration significantly affect the parameters, especially the band gap size. The origin of such effect is discussed in terms of the screening effect. PMID:27805019
Nonlinear mesomechanics of composites with periodic microstructure
NASA Technical Reports Server (NTRS)
Walker, Kevin P.; Jordan, Eric H.; Freed, Alan D.
1989-01-01
This work is concerned with modeling the mechanical deformation or constitutive behavior of composites comprised of a periodic microstructure under small displacement conditions at elevated temperature. A mesomechanics approach is adopted which relates the microimechanical behavior of the heterogeneous composite with its in-service macroscopic behavior. Two different methods, one based on a Fourier series approach and the other on a Green's function approach, are used in modeling the micromechanical behavior of the composite material. Although the constitutive formulations are based on a micromechanical approach, it should be stressed that the resulting equations are volume averaged to produce overall effective constitutive relations which relate the bulk, volume averaged, stress increment to the bulk, volume averaged, strain increment. As such, they are macromodels which can be used directly in nonlinear finite element programs such as MARC, ANSYS and ABAQUS or in boundary element programs such as BEST3D. In developing the volume averaged or efective macromodels from the micromechanical models, both approaches will require the evaluation of volume integrals containing the spatially varying strain distributions throughout the composite material. By assuming that the strain distributions are spatially constant within each constituent phase-or within a given subvolume within each constituent phase-of the composite material, the volume integrals can be obtained in closed form. This simplified micromodel can then be volume averaged to obtain an effective macromodel suitable for use in the MARC, ANSYS and ABAQUS nonlinear finite element programs via user constitutive subroutines such as HYPELA and CMUSER. This effective macromodel can be used in a nonlinear finite element structural analysis to obtain the strain-temperature history at those points in the structure where thermomechanical cracking and damage are expected to occur, the so called damage critical points of the structure.
Periodic density functional theory calculations of bulk and the (010) surface of goethite
Kubicki, James D; Paul, Kristian W; Sparks, Donald L
2008-01-01
Background Goethite is a common and reactive mineral in the environment. The transport of contaminants and anaerobic respiration of microbes are significantly affected by adsorption and reduction reactions involving goethite. An understanding of the mineral-water interface of goethite is critical for determining the molecular-scale mechanisms of adsorption and reduction reactions. In this study, periodic density functional theory (DFT) calculations were performed on the mineral goethite and its (010) surface, using the Vienna Ab Initio Simulation Package (VASP). Results Calculations of the bulk mineral structure accurately reproduced the observed crystal structure and vibrational frequencies, suggesting that this computational methodology was suitable for modeling the goethite-water interface. Energy-minimized structures of bare, hydrated (one H2O layer) and solvated (three H2O layers) (010) surfaces were calculated for 1 × 1 and 3 × 3 unit cell slabs. A good correlation between the calculated and observed vibrational frequencies was found for the 1 × 1 solvated surface. However, differences between the 1 × 1 and 3 × 3 slab calculations indicated that larger models may be necessary to simulate the relaxation of water at the interface. Comparison of two hydrated surfaces with molecularly and dissociatively adsorbed H2O showed a significantly lower potential energy for the former. Conclusion Surface Fe-O and (Fe)O-H bond lengths are reported that may be useful in surface complexation models (SCM) of the goethite (010) surface. These bond lengths were found to change significantly as a function of solvation (i.e., addition of two extra H2O layers above the surface), indicating that this parameter should be carefully considered in future SCM studies of metal oxide-water interfaces. PMID:18477389
Perry, Nicola H.; Ishihara, Tatsumi
2016-01-01
Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic), and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS) with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance. PMID:28773978
Chantler, C T; Bourke, J D
2014-04-09
X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property-the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model.
Carbon nanotubes grown on bulk materials and methods for fabrication
Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN
2011-11-08
Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.
Catalytic Chemistry on Oxide Nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asthagiri, Aravind; Dixon, David A.; Dohnalek, Zdenek
2016-05-29
Metal oxides represent one of the most important and widely employed materials in catalysis. Extreme variability of their chemistry provides a unique opportunity to tune their properties and to utilize them for the design of highly active and selective catalysts. For bulk oxides, this can be achieved by varying their stoichiometry, phase, exposed surface facets, defect, dopant densities and numerous other ways. Further, distinct properties from those of bulk oxides can be attained by restricting the oxide dimensionality and preparing them in the form of ultrathin films and nanoclusters as discussed throughout this book. In this chapter we focus onmore » demonstrating such unique catalytic properties brought by the oxide nanoscaling. In the highlighted studies planar models are carefully designed to achieve minimal dispersion of structural motifs and to attain detailed mechanistic understanding of targeted chemical transformations. Detailed level of morphological and structural characterization necessary to achieve this goal is accomplished by employing both high-resolution imaging via scanning probe methods and ensemble-averaged surface sensitive spectroscopic methods. Three prototypical examples illustrating different properties of nanoscaled oxides in different classes of reactions are selected.« less
Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria
2016-08-15
Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP 2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL -) with a distinct second site is required for high PIP 2sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP 2sensitivity, even in the absence of PL -. Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP 2(2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domainmore » (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL -binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP 2site and explaining the positive allostery between PL -binding and PIP 2sensitivity.« less
Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.
Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria; Heyman, Sarah; Stary-Weinzinger, Anna; Yuan, Peng; Nichols, Colin G
2016-09-01
Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(-)) with a distinct second site is required for high PIP2 sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP2 sensitivity, even in the absence of PL(-) Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP2 (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(-) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP2 site and explaining the positive allostery between PL(-) binding and PIP2 sensitivity. © 2016 Lee et al.
Magnetic, Optical and Magneto-optical Properties of Ni2MnGe Alloy Films
NASA Astrophysics Data System (ADS)
Kim, R. J.; Kudryavtsev, Y. V.; Kim, K. W.
2005-03-01
The influence of atomic ordering on the magnetic, the optical and the magneto-optical (MO) properties of Ni2MnGe Heusler alloy (HA) films was investigated. The bulk Ni2MnGe HA was prepared by arc melting, and the films were deposited by flash evaporation onto glass substrates at several substrate temperatures from 150 to 730 K. The bulk Ni2MnGe HA exhibits the cubic L21 structure with a = b = c = 0.5761 nm, and the annealed (at 573 K) bulk alloy is in the tetragonal structure with a = b = 0.5720 nm and c = 0.5865 nm. While the films deposited at 720 K show a well-ordered L21 structure, the deposition at 150 K < T < 710 K results in the formation of a nanocrystalline or an amorphous microstructure. It was found the structural disorder in Ni2MnGe films induces lack of the ferromagnetic order and noticeable changes in the optical and MO response.
Jin, Wencan; Yeh, Po-Chun; Zaki, Nader; Zhang, Datong; Sadowski, Jerzy T; Al-Mahboob, Abdullah; van der Zande, Arend M; Chenet, Daniel A; Dadap, Jerry I; Herman, Irving P; Sutter, Peter; Hone, James; Osgood, Richard M
2013-09-06
We report on the evolution of the thickness-dependent electronic band structure of the two-dimensional layered-dichalcogenide molybdenum disulfide (MoS2). Micrometer-scale angle-resolved photoemission spectroscopy of mechanically exfoliated and chemical-vapor-deposition-grown crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, for the case of MoS2 having more than one layer, to the case of single-layer MoS2, as predicted by density functional theory. This evolution of the electronic structure from bulk to few-layer to monolayer MoS2 had earlier been predicted to arise from quantum confinement. Furthermore, one of the consequences of this progression in the electronic structure is the dramatic increase in the hole effective mass, in going from bulk to monolayer MoS2 at its Brillouin zone center, which is known as the cause for the decreased carrier mobility of the monolayer form compared to that of bulk MoS2.
Physical Modeling and Reliability Mechanisms in High Voltage AIGaN/GaN HFETs
2013-02-01
heterojunction field effect transistor speed and stability has been established. The observed dependence of the LO phonon lifetime on the bulk carrier...aggregate, the cumulative data clearly point to the benefits of operation at or near resonance of LO phonon frequency and Plasmon frequency. Heterojunction ...of the structure such as quantum wells as in the case of light emitting diodes and lasers, heterojunction bipolar transistors. The FET case is
Molecular orientation in a dielectric liquid-vapor interphase
NASA Astrophysics Data System (ADS)
Chacón, E.; Mederos, L.; Navascués, G.; Tarazona, P.
1985-04-01
The density functional theory of Chacón et al. is used to study the molecular orientation in an interphase of a weak dipolar fluid. Explicit expressions are obtained using standard perturbation techniques. Molecular orientation, local susceptibility, and the Gibbsean surface susceptibility are evaluated for a Stockmayer model of dipolar fluid. The effect of the surface structure on the bulk ferroelectric transition is discussed in the light of the present theory and the numerical results.
A structure-based extracellular matrix expansion mechanism of fibrous tissue growth
Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E
2015-01-01
Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis. DOI: http://dx.doi.org/10.7554/eLife.05958.001 PMID:25992598
NASA Astrophysics Data System (ADS)
van den Ende, D. A.; Maier, R. A.; van Neer, P. L. M. J.; van der Zwaag, S.; Randall, C. A.; Groen, W. A.
2013-01-01
In this work, the piezoelectric properties at high electric fields of dielectrophoretically aligned PZT—polymer composites containing high aspect ratio particles (such as short fibers) are presented. Polarization and strain as a function of electric field are evaluated. The properties of the composites are compared to those of PZT-polymer composites with equiaxed particles, continuous PZT fiber-polymer composites, and bulk PZT ceramics. From high-field polarization and strain measurements, the effective field dependent permittivity and piezoelectric charge constant in the poling direction are determined for dielectrophoresis structured PZT-polymer composites, continuous PZT fiber-polymer composites, and bulk PZT ceramics. The changes in dielectric properties of the inclusions and the matrix at high fields influence the dielectric and piezoelectric properties of the composites. It is found that the permittivity and piezoelectric charge constants increase towards a maximum at an applied field of around 2.5-5 kV/mm. The electric field at which the maximum occurs depends on the aspect ratio and degree of alignment of the inclusions. Experimental values of d33 at low and high applied fields are compared to a model describing the composites as a continuous polymer matrix containing PZT particles of various aspect ratios arranged into chains. Thickness mode coupling factors were determined from measured impedance data using fitted equivalent circuit model simulations. The relatively high piezoelectric strain constants, voltage constants, and thickness coupling factors indicate that such aligned short fiber composites could be useful as flexible large area transducers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, C.
1984-09-01
Using an approach similar to Abvikosov's theory of the vortex state near H/sub c/2, we have performed an exact, near-onset analysis of a spin-density-wave instability leading to the ''linearly polarized state'' of Greenside et al. in ferromagnetic superconductors. The approach is based on a generalized Ginzburg-Landau theory for such materials, as formulated by Blount and Varma. Two models have been considered. In the (..cap alpha..,..beta..) model, where the bulk magnetic energy is taken to be (1/2)..cap alpha../sub m/M/sup 2/+(1/4)..beta../sub m/M/sup 4/, we find the transition to be second order, and obtain explicit formulas for various physical quantities to leading ordermore » in the deviation from onset. We have also rigorously analyzed the most favored spatial structure just below onset, among all possibilities allowed by the instability, and have concluded that a plane-wave-like structure is favored in a physical limit considered. In the (..cap alpha..,..gamma..) model, where the bulk magnetic energy is taken to be (1/2)..cap alpha../sub m/M/sup 2/+(1/6)..gamma../sub m/M/sup 6/ as is supported by recent experiments for ErRh/sub 4/B/sub 4/, we find the transition to be first order. This approach is then confined to an unphysical branch, which does not permit us to calculate various physical quantities on the physical branch.« less
Tethers as Debris: Simulating Impacts of Kevlar Tethers on Shuttle Tiles
NASA Technical Reports Server (NTRS)
Evans, Steven W.
2004-01-01
In a previous paper I examined the effects of impacts of polymer tethers on aluminum plates using the SPHC hydrodynamic code. In this paper I apply tether models to a new target - models of Space Shuttle tiles developed during the STS 107 accident investigation. In this three-dimensional simulation, a short tether fragment strikes a single tile supported on an aluminum backing plate. A tile of the LI-900 material is modeled. Penetration and damage to the tile and the backwall are characterized for three normal impact velocities. The tether is modeled as a bundle of eight 1-mm strands, with the bundle having dimensions 2-mm x 4-mm x 20-cm. The bulk material properties used are those of Kevlar(TradeMark) 49, for which a Mie-Gruneisen multiphase equation of state (eos) is used. In addition, the strength model is applied in a linear sense, such that tensile loads along the strand length are supported, but there is no strength in the lateral directions. Tile models include the various layers making up the tile structure. The outermost layer is a relatively dense borosilicate glass, known as RCG, 0.5-mm thick. The RCG layer is present on the top and four sides of the tile. Below this coating is the bulk of the tile, 1.8- in thick, made of LI-900, a product consisting of rigidized fiberous silica with a density of 9 lWft3. Below the main insulating layer is a bottom layer of the same material that has been treated to increase its density by approximately 69% to improve its strength. This densified layer is bonded to a Strain Isolation Pad (SIP), modeled as a refractory felt fabric. The SIP is bonded to an aluminum 2024 wall 0.1-in thick. The tile and backwall materials use a Me-Gruneisen multiphase eos, with the exception of the SIP felt, which uses a fabric equation of state. Fabrics must be crushed to the full bulk material density before bulk material properties and a Mie-Gruneisen eos are applied. Tether fragment impact speeds of 3,7, and 10 km/s are simulated, with impact velocities normal to the tile face. Damage results are presented in tabular format.
Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing.
Yang, Qian; Li, Jian; Xu, Heng; Long, Shijun; Li, Xuefeng
2017-04-01
A rapid prototyping technology, formed by three-dimensional (3-D) printing and then crosslinked by spraying Ca 2+ solution, is developed to fabricate a sodium alginate (SA) hydrogel scaffold. The porosity, swelling ratio, and compression modulus of the scaffold are investigated. A friction mechanism is developed by studying the reproducible friction behavior. Our results show that the scaffold can have 3-D structure with a porosity of 52%. The degree of swelling of the SA hydrogel scaffold is 8.5, which is nearly the same as bulk SA hydrogel. SA hydrogel exhibits better compressive resilience than bulk hydrogel despite its lower compressive modulus compared to bulk hydrogel. The SA hydrogel scaffold exhibits a higher frictional force at low sliding velocity (10 -6 to 10 -3 m/s) compared to bulk SA hydrogel, and they are equal at high sliding velocity (10 -2 to 1 m/s). For a small pressure (0.3 kPa), the SA hydrogel scaffold shows good friction reproducibility. In contrast, bulk SA hydrogel shows poor reproducibility with respect to friction behavior. The differences in friction behaviors between the SA hydrogel scaffold and bulk SA hydrogel are related to the structure of the scaffold, which can keep a stable hydrated lubrication layer.
[Effect of sludge bulking on membrane fouling of MBR under low temperature].
Ren, Nan-qi; Liu, Jiao; Wang, Xiu-heng
2009-01-01
The performance and membrane fouling of submerged membrane bioreactor were studied in the case of active sludge bulking under low temperature. The factors contributing to membrane fouling were discussed from the microorganism aspect. The results showed that COD removal efficiencies of supernatant and permeate were 85% and 92% respectively and filamentous sludge bulking had little impact on them. The sludge settleability became bad and the filament index (FI) increased from 2 to 5 during the formation of filamentous sludge bulking under low temperature. The filamentous bacteria extending from the sludge flocs formed net structure. Membrane fouling changed with time in linear under low temperature and the operation period of MBR was 15 d. However, membrane fouling was more serious in the condition of filamentous sludge bulking at low temperature, shortening the operation period of MBR to 7 d. The extracellular polymeric substances (EPS) content of bulking sludge was three times as that of normal sludge and the relative hydrophobicity (RH) of sludge flocs was decreased as FI increased. The increase of EPS and RH may cause more materials to deposit on the membrane surface, thus the membrane fouling rate improved and the operation period of MBR became short. Further analysis indicated that the mixed liquid viscosity, Zeta potential and sludge floc structure were all important factors of membrane fouling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.
The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this wasmore » further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.« less
NASA Astrophysics Data System (ADS)
Singh, Prabhakar; Yang, Zhenguo; Viswanathan, Vish; Stevenson, Jeff W.
2004-06-01
The structural stability of silver (Ag) in dual atmosphere exposure conditions, which are representative of solid oxide fuel cell (SOFC) current collector and gas seals, has been examined in the 600 800 °C temperature range. Experiments conducted on Ag tubular sections exposed to flowing H2-3% H2O (inside the tube) and air (outside the tube) showed extensive porosity formation along the grain boundaries in the bulk metal. Similar tubular sections, when exposed to air only (both inside and outside the tube), showed no bulk porosity or structural changes. It is postulated that the porosity formation in the bulk metal is related to the formation of gaseous H2O bubbles due to simultaneous diffusion of hydrogen and oxygen followed by subsequent interaction resulting in the formation of steam. Thermochemical processes that are responsible for structural degradation are presented and discussed. Based on experimental observations, it is concluded that Ag metal may not provide adequate long-term structural stability under a dual-environment condition that is typical of interconnects or gas seals in intermediate temperature SOFCs.
Xu, Min
2017-01-01
Biological tissue has a complex structure and exhibits rich spectroscopic behavior. There has been no tissue model until now that has been able to account for the observed spectroscopy of tissue light scattering and its anisotropy. Here we present, for the first time, a plum pudding random medium (PPRM) model for biological tissue which succinctly describes tissue as a superposition of distinctive scattering structures (plum) embedded inside a fractal continuous medium of background refractive index fluctuation (pudding). PPRM faithfully reproduces the wavelength dependence of tissue light scattering and attributes the “anomalous” trend in the anisotropy to the plum and the powerlaw dependence of the reduced scattering coefficient to the fractal scattering pudding. Most importantly, PPRM opens up a novel venue of quantifying the tissue architecture and microscopic structures on average from macroscopic probing of the bulk with scattered light alone without tissue excision. We demonstrate this potential by visualizing the fine microscopic structural alterations in breast tissue (adipose, glandular, fibrocystic, fibroadenoma, and ductal carcinoma) deduced from noncontact spectroscopic measurement. PMID:28663913
Understanding Cultivar-Specificity and Soil Determinants of the Cannabis Microbiome
Winston, Max E.; Hampton-Marcell, Jarrad; Zarraonaindia, Iratxe; ...
2014-06-16
Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. In conclusion, the influence of soilmore » type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.« less
Understanding Cultivar-Specificity and Soil Determinants of the Cannabis Microbiome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winston, Max E.; Hampton-Marcell, Jarrad; Zarraonaindia, Iratxe
Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. In conclusion, the influence of soilmore » type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.« less
Multi-scale model for the hierarchical architecture of native cellulose hydrogels.
Martínez-Sanz, Marta; Mikkelsen, Deirdre; Flanagan, Bernadine; Gidley, Michael J; Gilbert, Elliot P
2016-08-20
The structure of protiated and deuterated cellulose hydrogels has been investigated using a multi-technique approach combining small-angle scattering with diffraction, spectroscopy and microscopy. A model for the multi-scale structure of native cellulose hydrogels is proposed which highlights the essential role of water at different structural levels characterised by: (i) the existence of cellulose microfibrils containing an impermeable crystalline core surrounded by a partially hydrated paracrystalline shell, (ii) the creation of a strong network of cellulose microfibrils held together by hydrogen bonding to form cellulose ribbons and (iii) the differential behaviour of tightly bound water held within the ribbons compared to bulk solvent. Deuterium labelling provides an effective platform on which to further investigate the role of different plant cell wall polysaccharides in cellulose composite formation through the production of selectively deuterated cellulose composite hydrogels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moho Depth and Bulk Crustal Properties in Northern Quebec and Labrador
NASA Astrophysics Data System (ADS)
Vervaet, F.; Darbyshire, F. A.
2016-12-01
Northern Quebec and Labrador lie at the heart of the Laurentian landmass and preserve over 3 billion years of continental evolution. In this region the Archean Superior and Nain cratons are surrounded by Paleoproterozoic orogens such as New-Quebec, Trans-Hudson and Torngat, as well as the younger Grenville orogen to the SE. Study of crustal structure in this region provides valuable information on the assembly of the North American continent. We use data from 8 seismic stations installed in summer 2011 as part of the QUiLLE (Quebec-Labrador Lithospheric Experiment) project to investigate crustal structure, using receiver function analysis. The data set covers 5 years (2011-2016) for most of the stations, comprising several hundred events of magnitude ≥5 and epicentral distance 30-90°. After initial data processing and quality control, several tens of events per station were used in an H-κ stacking analysis to estimate Moho depth and bulk crustal properties. Some stations show significant complexity in their receiver functions, leading to inconclusive H-κ results, but the majority show a consistent Moho signal from which crustal parameters are successfully extracted. Crustal thickness varies from 33 to 49 km, with the thickest crust associated with the Trans-Hudson orogen in the Ungava region of northernmost Quebec and the thinnest beneath the central Labrador coast. Vp/Vs ratios (κ) lie in the range 1.71-1.86, with the majority of values consistent with granite-gneiss-tonalite bulk crustal compositions. The receiver functions are combined with surface-wave group velocity data to model the crustal structures in more detail beneath each station, allowing us to investigate crustal layering, Moho complexity and lateral heterogeneity.
Computer simulation of the matrix-inclusion interphase in bulk metallic glass based nanocomposites
NASA Astrophysics Data System (ADS)
Kokotin, V.; Hermann, H.; Eckert, J.
2011-10-01
Atomistic models for matrix-inclusion systems are generated. Analyses of the systems show that interphase layers of finite thickness appear interlinking the surface of the nanocrystalline inclusion and the embedding amorphous matrix. In a first approximation, the interphase is characterized as an amorphous structure with a density slightly reduced compared to that of the matrix. This result holds for both monatomic hard sphere systems and a Cu47.5Zr47.5Al5 alloy simulated by molecular dynamics (MD). The elastic shear and bulk modulus of the interphase are calculated by simulated deformation of the MD systems. Both moduli diminish with decreasing density but the shear modulus is more sensitive against density reduction by one order of magnitude. This result explains recent observations of shear band initiation at the amorphous-crystalline interface during plastic deformation.
Selective cleavage of the C(α)-C(β) linkage in lignin model compounds via Baeyer-Villiger oxidation.
Patil, Nikhil D; Yao, Soledad G; Meier, Mark S; Mobley, Justin K; Crocker, Mark
2015-03-21
Lignin is an amorphous aromatic polymer derived from plants and is a potential source of fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise oxidation of lignin model compounds. Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared several lignin model compounds that possess structures, characteristic reactivity, and linkages closely related to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl groups, followed by Baeyer-Villiger oxidation of the resulting ketones, successfully cleaves the Cα-Cβ linkage in these model compounds.
Structure and Ferroelectric Properties of High Tc BiScO3-PbTiO3 Epitaxial Thin Films.
Wasa, Kiyotaka; Yoshida, Shinya; Hanzawa, Hiroaki; Adachi, Hideaki; Matsunaga, Toshiyuki; Tanaka, Shuji
2016-10-01
Piezoelectric ceramics of new composition with higher Curie temperature T c are extensively studied for better piezoelectric microelectromechanical systems (MEMS). Apart from the compositional research, enhanced T c could be achieved in a modified structure. We have considered that a designed laminated structure of Pb(Zr, Ti)O 3 (PZT)-based thin film, i.e., relaxed heteroepitaxial epitaxial thin film, is one of the promising modified structures to enhance T c . This structure exhibits an extraordinarily high T c , i.e., [Formula: see text] (bulk [Formula: see text]). In this paper, we have fabricated the designed laminated structure of high T c (1-x)BiScO 3 -xPbTiO 3 . T c of BS-0.8PT thin films was found to be extraordinarily high, i.e., [Formula: see text] (bulk T c , [Formula: see text]). Their ferroelectric performances were comparable to those of PZT-based thin films. The present BS-xPT thin films have a high potential for fabrication of high-temperature-stable piezoelectric MEMS. The mechanism of the enhanced T c is probably the presence of the mechanically stable interface to temperature in the laminated structure. We believe this designed laminated structure can extract fruitful properties of bulk ferroelectric ceramics.
Halpern, David; Gaver, Donald P.
2012-01-01
We investigate the influence of a soluble surfactant on the steady-state motion of a finger of air through a compliant channel. This study provides a basic model from which to understand the fluid–structure interactions and physicochemical hydrodynamics of pulmonary airway reopening. Airway closure occurs in lung diseases such as respiratory distress syndrome and acute respiratory distress syndrome as a result of fluid accumulation and surfactant insufficiency. This results in ‘compliant collapse’ with the airway walls buckled and held in apposition by a liquid occlusion that blocks the passage of air. Airway reopening is essential to the recovery of adequate ventilation, but has been associated with ventilator-induced lung injury because of the exposure of airway epithelial cells to large interfacial flow-induced pressure gradients. Surfactant replacement is helpful in modulating this deleterious mechanical stimulus, but is limited in its effectiveness owing to slow surfactant adsorption. We investigate the effect of surfactant on micro-scale models of reopening by computationally modelling the steady two-dimensional motion of a semi-infinite bubble propagating through a liquid-filled compliant channel doped with soluble surfactant. Many dimensionless parameters affect reopening, but we primarily investigate how the reopening pressure pb depends upon the capillary number Ca (the ratio of viscous to surface tension forces), the adsorption depth parameter λ (a bulk concentration parameter) and the bulk Péclet number Peb (the ratio of bulk convection to diffusion). These studies demonstrate a dependence of pb on λ, and suggest that a critical bulk concentration must be exceeded to operate as a low-surface-tension system. Normal and tangential stress gradients remain largely unaffected by physicochemical interactions – for this reason, further biological studies are suggested that will clarify the role of wall flexibility and surfactant on the protection of the lung from atelectrauma. PMID:22997476
NASA Astrophysics Data System (ADS)
Eliëns, I. S.; Ramos, F. B.; Xavier, J. C.; Pereira, R. G.
2016-05-01
We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations. The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk, but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model. For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective field theory are compared with numerical results obtained by time-dependent density matrix renormalization group (tDMRG) for both integrable and nonintegrable critical spin-S chains with S =1 /2 , 1, and 3 /2 .
Idealized simulation of the Colorado hailstorm case: comparison of bulk and detailed microphysics
NASA Astrophysics Data System (ADS)
Geresdi, I.
One of the purposes of the Fourth Cloud Modeling Workshop was to compare different microphysical treatments. In this paper, the results of a widely used bulk treatment and five versions of a detailed microphysical model are presented. Sensitivity analysis was made to investigate the effect of bulk parametrization, ice initiation technique, CCN concentration and collision efficiency of rimed ice crystal-drop collision. The results show that: (i) The mixing ratios of different species of hydrometeors calculated by bulk and one of the detailed models show some similarity. However, the processes of hail/graupel formation are different in the bulk and the detailed models. (ii) Using different ice initiation in the detailed models' different processes became important in the hail and graupel formation. (iii) In the case of higher CCN concentration, the mixing ratio of liquid water, hail and graupel were more sensitive to the value of collision efficiency of rimed ice crystal-drop collision. (iv) The Bergeron-Findeisen process does not work in the updraft core of a convective cloud. The vapor content was always over water saturation; moreover, the supersaturation gradually increased after the appearance of precipitation ice particles.
Vibrational spectroscopy of water at interfaces
Skinner, J. L.; Pieniazek, P. A.; Gruenbaum, S. M.
2011-01-01
Conspectus Recent experimental advances in vibrational spectroscopy, such as ultrafast pulses and heterodyne detection, have made it possible to probe the structure and dynamics of bulk and interfacial water in unprecedented detail. We consider three aqueous interfaces: the water liquid/vapor interface, the interface between water and the surfactant headgroups of reverse micelles, and the interface between water and the lipid headgroups of aligned multi-bilayers. In the first case, sum-frequency spectroscopy is used to probe the interface, while in the second and third cases, the confined water pools are sufficiently small that techniques of bulk spectroscopy such as FTIR, pump-probe, 2DIR, etc. can be used to probe the interfacial water. In this review, we discuss our attempts to model these three systems and interpret the existing experiments. In particular, for the water liquid/vapor interface we find that three-body interactions are essential for reproducing the experimental sum-frequency spectrum, and presumably for the structure of the interface as well. The observed spectrum is interpreted as arising from overlapping and cancelling positive and negative contributions from molecules in different hydrogen-bonding environments. For the reverse micelles, our theoretical models confirm that the experimentally observed blue shift of the water OD stretch (for dilute HOD in H2O) arises from weaker hydrogen bonding to sulfonate oxygens. We interpret the observed slow-down in water rotational dynamics as arising from curvature-induced frustration. For the water confined between lipid bilayers, our theoretical models confirm that the experimentally observed red shift of the water OD stretch arises from stronger hydrogen bonding to phosphate oxygens. We develop a model for heterogeneous vibrational lifetime distributions, and implement the model to calculate isotropic and anisotropic pump-probe decays, and compare with experiment. PMID:22032305
Imaging of surface spin textures on bulk crystals by scanning electron microscopy
NASA Astrophysics Data System (ADS)
Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru
2016-11-01
Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.
Dipole-allowed direct band gap silicon superlattices
Oh, Young Jun; Lee, In-Ho; Kim, Sunghyun; Lee, Jooyoung; Chang, Kee Joo
2015-01-01
Silicon is the most popular material used in electronic devices. However, its poor optical properties owing to its indirect band gap nature limit its usage in optoelectronic devices. Here we present the discovery of super-stable pure-silicon superlattice structures that can serve as promising materials for solar cell applications and can lead to the realization of pure Si-based optoelectronic devices. The structures are almost identical to that of bulk Si except that defective layers are intercalated in the diamond lattice. The superlattices exhibit dipole-allowed direct band gaps as well as indirect band gaps, providing ideal conditions for the investigation of a direct-to-indirect band gap transition. The fact that almost all structural portions of the superlattices originate from bulk Si warrants their stability and good lattice matching with bulk Si. Through first-principles molecular dynamics simulations, we confirmed their thermal stability and propose a possible method to synthesize the defective layer through wafer bonding. PMID:26656482
Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation
NASA Astrophysics Data System (ADS)
Wei, Na; Sun, Wan-Tong; Meng, Ying-Feng; Liu, An-Qi; Zhou, Shou-Wei; Guo, Ping; Fu, Qiang; Lv, Xin
2018-05-01
Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.
NASA Astrophysics Data System (ADS)
Pu, Zhaoxia; Lin, Chao; Dong, Xiquan; Krueger, Steven K.
2018-01-01
Mesoscale convective systems (MCSs) and their associated cloud properties are the important factors that influence the aviation activities, yet they present a forecasting challenge in numerical weather prediction. In this study, the sensitivity of numerical simulations of an MCS over the US Southern Great Plains to ice hydrometeors in bulk microphysics (MP) schemes has been investigated using the Weather Research and Forecasting (WRF) model. It is found that the simulated structure, life cycle, cloud coverage, and precipitation of the convective system as well as its associated cold pools are sensitive to three selected MP schemes, namely, the WRF single-moment 6-class (WSM6), WRF double-moment 6-class (WDM6, with the double-moment treatment of warm-rain only), and Morrison double-moment (MORR, with the double-moment representation of both warm-rain and ice) schemes. Compared with observations, the WRF simulation with WSM6 only produces a less organized convection structure with a short lifetime, while WDM6 can produce the structure and length of the MCS very well. Both simulations heavily underestimate the precipitation amount, the height of the radar echo top, and stratiform cloud fractions. With MORR, the model performs well in predicting the lifetime, cloud coverage, echo top, and precipitation amount of the convection. Overall results demonstrate the importance of including double-moment representation of ice hydrometeors along with warm-rain. Additional experiments are performed to further examine the role of ice hydrometeors in numerical simulations of the MCS. Results indicate that replacing graupel with hail in the MORR scheme improves the prediction of the convective structure, especially in the convective core region.
On the continuum mechanics approach for the analysis of single walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Chaudhry, M. S.; Czekanski, A.
2016-04-01
Today carbon nanotubes have found various applications in structural, thermal and almost every field of engineering. Carbon nanotubes provide great strength, stiffness resilience properties. Evaluating the structural behavior of nanoscale materials is an important task. In order to understand the materialistic behavior of nanotubes, atomistic models provide a basis for continuum mechanics modelling. Although the properties of bulk materials are consistent with the size and depends mainly on the material but the properties when we are in Nano-range, continuously change with the size. Such models start from the modelling of interatomic interaction. Modelling and simulation has advantage of cost saving when compared with the experiments. So in this project our aim is to use a continuum mechanics model of carbon nanotubes from atomistic perspective and analyses some structural behaviors of nanotubes. It is generally recognized that mechanical properties of nanotubes are dependent upon their structural details. The properties of nanotubes vary with the varying with the interatomic distance, angular orientation, radius of the tube and many such parameters. Based on such models one can analyses the variation of young's modulus, strength, deformation behavior, vibration behavior and thermal behavior. In this study some of the structural behaviors of the nanotubes are analyzed with the help of continuum mechanics models. Using the properties derived from the molecular mechanics model a Finite Element Analysis of carbon nanotubes is performed and results are verified. This study provides the insight on continuum mechanics modelling of nanotubes and hence the scope to study the effect of various parameters on some structural behavior of nanotubes.
NASA Astrophysics Data System (ADS)
Junquera, Javier; Aguado-Puente, Pablo
2013-03-01
At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.
Ab initio study of several static and dynamic properties of bulk liquid Ni near melting
NASA Astrophysics Data System (ADS)
del Rio, B. G.; González, L. E.; González, D. J.
2017-01-01
Several static and dynamic properties of bulk liquid Ni at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the static structure factor, which underlines a marked local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, and the calculated dynamic structure factors, S (q ,ω ) , show a good agreement with the inelastic x-ray scattering measurements. The obtained dispersion relation closely follows that obtained from the inelastic x-ray scattering measurements; moreover we analyze the possible reasons behind its discrepancy with respect to the dispersion relation derived from the inelastic neutron scattering data. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. We have found that the transverse current spectral functions exhibit some features which, so far, had previously been shown by high pressure liquid metals only. Furthermore, the calculated S (q ,ω ) show, within some q-range, the appearance of transverse-like excitation modes, similar to those recently found in other liquid metals. Finally, results are also reported for several transport coefficients.
Strain Phase Diagram of SrTiO3 Thin Films
NASA Astrophysics Data System (ADS)
He, Feizhou; Shapiro, S. M.
2005-03-01
SrTiO3 thin films were used as a model system to study the effects of strain and epitaxial constraint on structural phase transitions of oxide films. The basic phenomena revealed will apply to a variety of important structural transitions including the ferroelectric transition. Highly strained, epitaxial films of SrTiO3 were grown on different substrates. The structural phase transition temperature Tc increases from 105 K in bulk STO to 167 K for films under tensile strain and 330 K for films with compressive strain. The measured temperature-strain phase diagram is qualitatively consistent with theory [1], however the increase in Tc is much larger than predicted in all cases. The symmetry of the phases involved in the transition is different from the corresponding bulk structures largely because of epitaxial constraint, the clamping effect. Thus the shape of the STO unit cell is tetragonal at all temperatures. The possibility exists of a very unique low temperature phase with orthorhombic symmetry (Cmcm) but tetragonal unit cell shape. More generally, we have characterized at least three different manifestations of the clamping effect, showing it is much more subtle than usually recognized. This work is supported through NSF DMR-0239667, DMR-0132918, by the Research Corp, and at BNL by the US DOE DE-AC02-98CH10886. [1] N. A. Pertsev, A. K. Tagantsev and N. Setter, Phys. Rev. B61, R825 (2000).
Structural short-range order of the β-Ti phase in bulk Ti-Fe-(Sn) nanoeutectic composites
NASA Astrophysics Data System (ADS)
Das, J.; Eckert, J.; Theissmann, R.
2006-12-01
The authors report lattice distortion and "ω-like" structural short-range order (SRO) of the β-Ti phase in a Ti-Fe-(Sn) bulk nanoeutectic composite prepared by slow cooling from the melt. The nanoeuetctic phases are chemically homogeneous, but the addition of Sn releases the local lattice strain, modifies the structural SRO, and prevents the formation of stacking faults in the body centered cubic (bcc) β-Ti phase resulting in improved plastic deformability. The elastic properties and the structural SRO of the β-Ti phase are proposed to be important parameters for developing advanced high strength, ductile Ti-base nanocomposite alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boltynjuk, E. V., E-mail: boltynjuk@gmail.com; Ubyivovk, E. V.; Kshumanev, A. M.
2016-06-17
The structural properties of a Zr{sub 62}Cu{sub 22}Al{sub 10}Fe{sub 5}Dy{sub 1} bulk metallic glasses were investigated. Cylindrical rods of the Zr{sub 62}Cu{sub 22}Al{sub 10}Fe{sub 5}Dy{sub 1} BMG were subjected to high pressure torsion at temperatures of 20°C and 150°C. X-ray diffraction, transmission electron microscopy were used to determine peculiarities of the modified structure. Analysis of fracture surfaces, nanohardness measurements were conducted to investigate the influence of structural changes on mechanical behavior of processed samples.
Self-assembly Columnar Structure in Active Layer of Bulk Heterojunction Solar Cell
NASA Astrophysics Data System (ADS)
Pan, Cheng; Segui, Jennifer; Yu, Yingjie; Li, Hongfei; Akgun, Bulent; Satijia, Sushil. K.; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam
2012-02-01
Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. However, due to the disordered inner structure in active layer, the power conversion efficiency of BHJ solar cell is relatively low. Our research provides the method to produce ordered self-assembly columnar structure within active layer of bulk heterojunction (BHJ) solar cell by introducing polystyrene (PS) into the active layer. The blend thin film of polystyrene, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) at different ratio are spin coated on substrate and annealed in vacuum oven for certain time. Atomic force microscopy (AFM) images show uniform phase segregation on the surface of polymer blend thin film and highly ordered columnar structure is then proven by etching the film with ion sputtering. TEM cross-section technology is also used to investigate the column structure. Neutron reflectometry was taken to establish the confinement of PCBM at the interface of PS and P3HT. The different morphological structures formed via phase segregation will be correlated with the performance of the PEV cells to be fabricated at the BNL-CFN.
Formation mechanism of self-assembled polarization-dependent periodic nanostructures in β-Ga2O3
NASA Astrophysics Data System (ADS)
Nakanishi, Y.; Shimotsuma, Y.; Sakakura, M.; Shimizu, M.; Miura, K.
2018-02-01
We have successfully observed self-assembled periodic nanostructures inside Si single crystal and GaP crystal, by the femtosecond double-pulse irradiation. These results experimentally indicate that the self-assembly of the periodic nanostructures inside semiconductors triggered by ultrashort pulses irradiation are possibly associated with a direct or an indirect band gap. More recently we have also empirically classified the photoinduced bulk nanogratings into the following three types: (1) structural deficiency, (2) compressed structure, (3) partial crystallization. We have still a big question about what material properties are involved in the bulk nanograting structure formation. In this study, to expand the selectivity of the material for bulk nanograting formation, we have employed β-Ga2O3 crystals (indirect bandgap Eg 4.8 eV) as a sample for femtosecond laser irradiation. The nanograting structure inside β-Ga2O3 crystal was aligned perpendicular to the laser polarization direction. Such phenomenon is similar to the nanograting in SiO2 glass (Eg 9 eV). Moreover, to clarify the band structure, we have also investigate the photoinduced structure in Sn doped β-Ga2O3 crystals, which exhibit direct bandgap according to the first principle calculation.
NASA Astrophysics Data System (ADS)
Marchand, Gabriel; Soetens, Jean-Christophe; Jacquemin, Denis; Bopp, Philippe A.
2015-12-01
We demonstrate that different sets of Lennard-Jones parameters proposed for the Na+ ion, in conjunction with the empirical combining rules routinely used in simulation packages, can lead to essentially different equilibrium structures for a deprotonated poly-L-glutamic acid molecule (poly-L-glutamate) dissolved in a 0.3M aqueous NaCl solution. It is, however, difficult to discriminate a priori between these model potentials; when investigating the structure of the Na+-solvation shell in bulk NaCl solution, all parameter sets lead to radial distribution functions and solvation numbers in broad agreement with the available experimental data. We do not find any such dependency of the equilibrium structure on the parameters associated with the Cl- ion. This work does not aim at recommending a particular set of parameters for any particular purpose. Instead, it stresses the model dependence of simulation results for complex systems such as biomolecules in solution and thus the difficulties if simulations are to be used for unbiased predictions, or to discriminate between contradictory experiments. However, this opens the possibility of validating a model specifically in view of analyzing experimental data believed to be reliable.
Gbabode, Gabin; Dohr, Michael; Niebel, Claude; Balandier, Jean-Yves; Ruzié, Christian; Négrier, Philippe; Mondieig, Denise; Geerts, Yves H; Resel, Roland; Sferrazza, Michele
2014-08-27
A detailed structural study of the bulk and thin film phases observed for two potential high-performance organic semiconductors has been carried out. The molecules are based on [1]benzothieno[3,2-b]benzothiophene (BTBT) as conjugated core and octyl side groups, which are anchored either symmetrically at both sides of the BTBT core (C8-BTBT-C8) or nonsymmetrically at one side only (C8-BTBT). Thin films of different thickness (8-85 nm) have been prepared by spin-coating for both systems and analyzed by combining specular and grazing incidence X-ray diffraction. In the case of C8-BTBT-C8, the known crystal structure obtained from single-crystal investigations is observed within all thin films, down to a film thickness of 9 nm. In the case of C8-BTBT, the crystal structure of the bulk phase has been determined from X-ray powder diffraction data with a consistent matching of experimental and calculated X-ray diffraction patterns (Rwp = 5.8%). The packing arrangement of C8-BTBT is similar to that of C8-BTBT-C8, that is, consisting of a lamellar structure with molecules arranged in a "herringbone" fashion, yet with lamellae composed of two head-to-head (or tail-to-tail as the structure is periodic) superimposed molecules instead of only one molecule for C8-BTBT-C8. As for C8-BTBT-C8, we demonstrate that the same phase is observed in bulk and thin films for C8-BTBT whatever the film thickness investigated.
Megyes, Tünde; Bálint, Szabolcs; Grósz, Tamás; Radnai, Tamás; Bakó, Imre; Sipos, Pál
2008-01-28
To determine the structure of aqueous sodium hydroxide solutions, results obtained from x-ray diffraction and computer simulation (molecular dynamics and Car-Parrinello) have been compared. The capabilities and limitations of the methods in describing the solution structure are discussed. For the solutions studied, diffraction methods were found to perform very well in describing the hydration spheres of the sodium ion and yield structural information on the anion's hydration structure. Classical molecular dynamics simulations were not able to correctly describe the bulk structure of these solutions. However, Car-Parrinello simulation proved to be a suitable tool in the detailed interpretation of the hydration sphere of ions and bulk structure of solutions. The results of Car-Parrinello simulations were compared with the findings of diffraction experiments.
I Situ Surface X-Ray Diffraction Studies of Electrochemically Deposited Monolayers
NASA Astrophysics Data System (ADS)
Yee, Dennis
1995-01-01
In situ x-ray diffraction has been used to determine the detailed atomic structure of electrochemically deposited lead, thallium, and bismuth monolayers on the silver (111) electrode surface. A review of our previously published lead and thallium monolayer results and the first in situ surface x-ray crystallographic study of the bismuth monolayer structure is presented. The crystallographic analysis of the bismuth Bragg rod intensities and the interference between the bismuth Bragg rod and silver crystal truncation rod scattering were used to determine the detailed atomic structure of the bismuth on silver (111) system at the liquid-solid interface. Our previous in situ x-ray diffraction studies showed that the bismuth monolayer lattice is rectangular and uniaxially incommensurate with the underlying hexagonal silver surface. A crystallographic analysis of the measured structure factor magnitudes reveals that the monolayer forms chains of atoms on the silver surface, similar to the bulk Bi(110)_{rh} plane, with a near neighbor distance of 3.12 +/- 0.01 A and a bond angle of 93 +/- 1^circ, consistent with the bulk Bi(110) _{rh} plane values. The crystallographic refinement also shows that the bismuth monolayer atoms are anisotropically disordered with a rms disorder of 0.25 +/- 0.03 A in the incommensurate direction and 0.09 +/- 0.03 A rms in the commnensurate direction. The interference between the Bi(20) Bragg rod and the Ag(10L)_ {h} crystal truncation rod scattering reveals that one set of bismuth atoms is registered near the bridge sites of the silver (111) surface while another set is registered near the 3-fold hollow sites. In addition, the Bi-Ag d-spacing (3.1 +/- 0.1 A) is found to be consistent with the bulk bismuth near neighbor distance. The bismuth z-direction rms disorder (1.01 +/- 0.08 A) is found to be dominated by the roughness of the underlying silver (sigma_{Ag} = 0.9 +/- 0.1 A rms). Using the estimated bismuth-bismuth spring constant of 1.41 +/- 0.07 eV/A^2 from our measured bismuth two-dimensional compressibility, two simple models are used to try and understand the origin of the anisotropic disorder. A simple two-dimensional isotropic thermal fluctuation model shows that thermal fluctuations are not large enough to account for all of the measured excess disorder in the incommensurate direction. A simple one-dimensional Frenkel-Kontorova model shows that the substrate-induced disorder can account for the anisotropic disorder, assuming a substrate sinusoidal potential strength of 0.35 +/- 0.02 eV.
Influence of Bulk Carbonaceous Matter on Pluto's Structure and Evolution
NASA Astrophysics Data System (ADS)
McKinnon, W. B.; Stern, S. A.; Weaver, H. A., Jr.; Spencer, J. R.; Moore, J. M.; Young, L. A.; Olkin, C.
2017-12-01
The rock/ice mass ratio of the Pluto system is about 2/1 (McKinnon et al., Icarus 287, 2017) [1], though this neglects the potential role of bulk carbonaceous matter ("CHON"), an important cometary component and one likely important in the ancestral Kuiper belt. The wealth of measurements at comet 67P/Churyumov-Gerasimenko (a Jupiter-family comet and thus one formed in the same region of the outer Solar System as Pluto) by Rosetta are particularly instructive. E.g., Davidsson et al. (A&A 592, 2016) [2] propose in their "composition A" that 67P/Ch-G is 25% metal/sulfides, 42% rock/organics, and 32% ice by mass. For their assumed component densities, the overall grain density is 1820 kg/m3. Fulle et al. (MNRAS 462, 2016) [3] posit 5 ± 2 volume % Fe-sulfides of density 4600 kg/m3, 28 ± 5% Mg,Fe-olivines and -pyroxenes of density 3200 kg/m3, 52 ± 12% hydrocarbons of density 1200 kg/m3, and 15 ± 6% ices of 917 kg/m3. This composition yields a primordial grain density (dust + ice) of 1885 ± 240 kg/m3. Both of these cometary density estimates [2,3] are consistent with Pluto-Charon, especially as Pluto's uncompressed (STP) density is close to 1820 kg/m3 and that of the system as a whole is close to 1800 kg/m3 [1]. We consider the potential compositional and structural implications of these proposed 67P/Ch-G compositions when applied to Pluto and Charon. The amount of ice in model A of [2] is a good match to Pluto structural models. Their rock/organics component, however, is taken to be half graphite (2000 kg/m3) by volume. The composition in [3] is more divergent: very ice poor, and on the order of 50% light hydrocarbons by volume. Regardless of the differences between [2] and [3], the possibility of massive internal graphite or carbonaceous layers within Pluto is real. We discuss the possible consequences for Pluto's structure, rock/ice ratio, thermal and chemical evolution, and even interpretation of its gravity field from tectonics. For example, radiogenic heat flows could be lessened in comparison with pure ice+rock±ocean interior models. And could the inferred gravity high at Sputnik Planitia (Nimmo et al., Nature 540, 2016) actually be due to an uplifted graphite-rich layer? A bulk carbonaceous contribution to icy satellites is also possible, and may behind the rich organic chemistry in Enceladus' plume vapor (Waite et al., Nature 460, 2009).
NASA Astrophysics Data System (ADS)
Rahim, Alhan Farhanah Abd; Zainal Badri, Nur'Amirah; Radzali, Rosfariza; Mahmood, Ainorkhilah
2017-11-01
In this paper, an investigation of design and simulation of silicon germanium (SiGe) islands on silicon (Si) was presented for potential visible metal semiconductor metal (MSM) photodetector. The characterization of the performances in term of the structural, optical and electrical properties of the structures was analyzed from the simulation results. The project involves simulation using SILVACO Technology Computer Aided Design (TCAD) tools. The different structures of the silicon germanium (SiGe) island on silicon substrate were created, which were large SiGe, small SiGe, combination SiGe and bulk Ge. All the structures were tested for potential Metal Semiconductor Metal (MSM) photodetector. The extracted data such as current versus voltage characteristic, current gain and spectral response were obtained using ATLAS SILVACO tools. The performance of SiGe island structures and bulk Ge on Si substrate as (MSM) photodetector was evaluated by photo and dark current-voltage (I-V) characteristics. It was found that SiGe islands exhibited higher energy band gap compared to bulk Ge. The SiGe islands current-voltage characteristics showed improved current gain compared to bulk Ge. Specifically the enhancement of the islands gain was contributed by the enhanced photo currents and lower dark currents. The spectral responses of the SiGe islands showed peak response at 590 nm (yellow) which is at the visible wavelength. This shows the feasibility of the SiGe islands to be utilized for visible photodetections.
Wong, Dillon; Velasco, Jairo; Ju, Long; Lee, Juwon; Kahn, Salman; Tsai, Hsin-Zon; Germany, Chad; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael F
2015-11-01
Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors, semiconductors and ultrathin films, but such single-defect electronic characterization remains an elusive goal for intrinsic bulk insulators. Here, we show that individual native defects in an intrinsic bulk hexagonal boron nitride insulator can be characterized and manipulated using a scanning tunnelling microscope. This would typically be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by using a graphene/boron nitride heterostructure, which exploits the atomically thin nature of graphene to allow the visualization of defect phenomena in the underlying bulk boron nitride. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunnelling spectroscopy we obtain charge and energy-level information for these boron nitride defect structures. We also show that it is possible to manipulate the defects through voltage pulses applied to the scanning tunnelling microscope tip.
Structural and magnetic properties of Prussian blue analogue molecular magnet Fe1.5[Cr(CN)6].mH2O
NASA Astrophysics Data System (ADS)
Bhatt, Pramod; Meena, S. S.; Mukadam, M. D.; Yusuf, S. M.
2016-05-01
Molecular magnets, based on Prussian blue analogues, Fe1.5[Cr(CN)6].mH2O have been synthesized in the bulk as well as nanoparticle forms using a co-precipitation method, and their structural and magnetic properties have been investigated using x-ray diffraction (XRD) Mössbauer spectroscopy and dc magnetization. The XRD study confirms the single phase crystalline and nanoparticle nature of the compounds with a face centered cubic (fcc) structure of space group Fm3m. The values of lattice constant are found to be ~10.18(5) Å and ~9.98(9)Å, for the bulk and nanoparticle samples, respectively. The dc magnetization shows a Curie temperature (TC) of ~17 K and ~5 K for the bulk and nanopartcile samples, respectively. The Mossouber spectroscopy reveal that the compound shows spin flipping from the high spin (HS) Fe (CrIII-C≡N-FeII) to low spin (LS) FeII ions (CrIII-N≡C-FeII). Moreover, the TC and the HS state of the Fe ions decreases (converts to its LS states) with time as well as in the nanoparticle form compared to bulk.
The Impact of Internal Wave Seasonality on the Continental Shelf Energy Budget
NASA Astrophysics Data System (ADS)
Wihsgott, Juliane U.; Sharples, Jonathan; Hopkins, Joanne; Palmer, Matthew R.; Mattias Green, J. A.
2017-04-01
Heating-stirring models are widely used to simulate the timing and strength of stratification in continental shelf environments. Such models are based on bulk potential energy (PE) budgets: the loss of PE due to thermal stratification is balanced by wind and tidal mixing. The model often fails to accurately predict the observed vertical structure, as it only considers forces acting on the surface and bottom boundary of the water column. This highlights the need for additional internal energy sources to close this budget, and produce an accurate seasonal cycle of stratification. We present new results that test the impact of boundary layer and internal wave forcing on stratification and vertical density structure in continental shelves. A new series of continuous measurements of full water depth vertical structure, dynamics and meteorological data spanning 17 months (March'14-July'15) provide unprecedented coverage over a full seasonal cycle at a station 120 km north-east from the continental shelf break. We observe a highly variable but energetic internal wave field from the onset of stratification that suggests a continuous supply of internal PE. The heating-stirring model reproduces bulk characteristics of the seasonal cycle. While it accurately predicts the timing of the onset in spring and peak stratification in late summer there is a persistent 20 J m-3 positive offset between the model and observations throughout this period. By including a source of internal energy in the model we improve the prediction for the strength of stratification and the vertical distribution of heat. Yet a constant source of PE seems to result in a seasonal discrepancy resulting in too little mixing during strong stratification and too much mixing during transient periods. The discrepancy seen in the model is consistent with the seasonality observed in the internal wave field. We will establish the role that changing stratification (N2) exerts on the internal wave field and vice versa. Ultimately, we will demonstrate how the strength and vertical range of shear varies seasonally and what effect it has on supplying PE to midwater mixing.
Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study.
Romero-Hermida, M I; Romero-Enrique, J M; Morales-Flórez, V; Esquivias, L
2016-08-21
Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N2, CO2, and O2, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO2 concentrations and low temperatures, the CO2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.
Multi-scale simulations of apatite-collagen composites: from molecules to materials
NASA Astrophysics Data System (ADS)
Zahn, Dirk
2017-03-01
We review scale-bridging simulation studies for the exploration of atomicto-meso scale processes that account for the unique structure and mechanic properties of apatite-protein composites. As the atomic structure and composition of such complex biocomposites only partially is known, the first part (i) of our modelling studies is dedicated to realistic crystal nucleation scenarios of inorganic-organic composites. Starting from the association of single ions, recent insights range from the mechanisms of motif formation, ripening reactions and the self-organization of nanocrystals, including their interplay with growth-controlling molecular moieties. On this basis, (ii) reliable building rules for unprejudiced scale-up models can be derived to model bulk materials. This is exemplified for (enamel-like) apatite-protein composites, encompassing up to 106 atom models to provide a realistic account of the 10 nm length scale, whilst model coarsening is used to reach μm length scales. On this basis, a series of deformation and fracture simulation studies were performed and helped to rationalize biocomposite hardness, plasticity, toughness, self-healing and fracture mechanisms. Complementing experimental work, these modelling studies provide particularly detailed insights into the relation of hierarchical composite structure and favorable mechanical properties.
MacDonald, G; Mackenzie, J A; Nolan, M; Insall, R H
2016-03-15
In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk-surface reaction-diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulk-surface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane.
Interaction between adatoms on surfaces: Application to the system H/Ni(111)
NASA Astrophysics Data System (ADS)
Muscat, J. P.; Newns, D. M.
1981-04-01
The interaction of adatoms on a metal surface is looked at from a novel viewpoint, using the techniques of the embedded cluster model of chemisorption. Application is made to the problem of two hydrogen atoms on a free electron surface with simple derivation of the well known R-5 asymptotic behaviour for the interaction, at large inter-adatom distances R, compared to the corresponding R-3 behaviour for two impurities in a bulk free electron gas. Application of the free electron model to the case of H/Ni(111) does not reproduce the experimental observation of formation of a graphitic structure on the surface. Inclusion of the l = 2 nickel muffin tins corrects for this anomaly, and is seen to favour the formation of the above mentioned structure.
Structural Effects of Gating Poly(3-hexylthiophene) through an Ionic Liquid
Guardado, Jesus O.; Salleo, Alberto
2017-07-17
Ionic liquids are increasingly employed as dielectrics to generate high charge densities and enable low-voltage operation with organic semiconductors. But, effects on structure and morphology of the active material are not fully known, particularly for permeable semiconductors such as conjugated polymers, in which ions from the ionic liquid can enter and electrochemically dope the semicrystalline film. In order to understand when ions enter, where they go, and how they affect the film, thin films of the archetypal semiconducting polymer, poly(3-hexylthiophene), are electrochemically doped with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, the archetypal ionic liquid. High-resolution, ex situ X-ray diffraction measurements and complete pole figuresmore » reveal changes with applied voltage, cycling, and frequency in lattice spacing, crystallite orientation, and crystallinity in the bulk and at the buried interface. Dopant ions penetrate the film and enter the crystallites at sufficiently high voltages and low frequencies. Upon infiltrating crystallites, ions permanently expand lamellar stacking and contract pi-stacking. Cycling amplifies these effects, but higher frequencies mitigate the expansion of bulk crystallites as ions are hindered from entering crystallites. Furthermore, this mechanistic understanding of the structural effects of ion penetration will help develop models of the frequency and voltage impedance response of electrochemically doped conjugated polymers and advance electronic applications.« less
Ferreira, Ary R; Rino, José P
2017-08-24
Solid-state nuclear magnetic resonance (ssNMR) experimental 27 Al metallic shifts reported in the literature for bulk metallic glasses (BMGs) were revisited in the light of state-of-the-art atomistic simulations. In a consistent way, the Gauge-Including Projector Augmented-Wave (GIPAW) method was applied in conjunction with classical molecular dynamics (CMD). A series of Zr-Cu-Al alloys with low Al concentrations were selected as case study systems, for which realistic CMD derived structural models were used for a short- and medium-range order mining. That initial procedure allowed the detection of trends describing changes on the microstructure of the material upon Al alloying, which in turn were used to guide GIPAW calculations with a set of abstract systems in the context of ssNMR. With essential precision and accuracy, the ab initio simulations also yielded valuable trends from the electronic structure point of view, which enabled an overview of the bonding nature of Al-centered clusters as well as its influence on the experimental ssNMR outcomes. The approach described in this work might promote the use of ssNMR spectroscopy in research on glassy metals. Moreover, the results presented demonstrate the possibility to expand the applications of this technique, with deeper insight into nuclear interactions and less speculative assignments.
Surface structure evolution in a homologous series of ionic liquids.
Haddad, Julia; Pontoni, Diego; Murphy, Bridget M; Festersen, Sven; Runge, Benjamin; Magnussen, Olaf M; Steinrück, Hans-Georg; Reichert, Harald; Ocko, Benjamin M; Deutsch, Moshe
2018-02-06
Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation's alkyl chain length [Formula: see text] from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present here such a study of the liquid-air interface for [Formula: see text], using angstrom-resolution X-ray methods. For [Formula: see text], a typical "simple liquid" monotonic surface-normal electron density profile [Formula: see text] is obtained, like those of water and organic solvents. For [Formula: see text], increasingly more pronounced nanoscale self-segregation of the molecules' charged moieties and apolar chains yields surface layering with alternating regions of headgroups and chains. The layering decays into the bulk over a few, to a few tens, of nanometers. The layering periods and decay lengths, their linear [Formula: see text] dependence, and slopes are discussed within two models, one with partial-chain interdigitation and the other with liquid-like chains. No surface-parallel long-range order is found within the surface layer. For [Formula: see text], a different surface phase is observed above melting. Our results also impact general liquid-phase issues like supramolecular self-aggregation and bulk-surface structure relations.
Structural Effects of Gating Poly(3-hexylthiophene) through an Ionic Liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guardado, Jesus O.; Salleo, Alberto
Ionic liquids are increasingly employed as dielectrics to generate high charge densities and enable low-voltage operation with organic semiconductors. But, effects on structure and morphology of the active material are not fully known, particularly for permeable semiconductors such as conjugated polymers, in which ions from the ionic liquid can enter and electrochemically dope the semicrystalline film. In order to understand when ions enter, where they go, and how they affect the film, thin films of the archetypal semiconducting polymer, poly(3-hexylthiophene), are electrochemically doped with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, the archetypal ionic liquid. High-resolution, ex situ X-ray diffraction measurements and complete pole figuresmore » reveal changes with applied voltage, cycling, and frequency in lattice spacing, crystallite orientation, and crystallinity in the bulk and at the buried interface. Dopant ions penetrate the film and enter the crystallites at sufficiently high voltages and low frequencies. Upon infiltrating crystallites, ions permanently expand lamellar stacking and contract pi-stacking. Cycling amplifies these effects, but higher frequencies mitigate the expansion of bulk crystallites as ions are hindered from entering crystallites. Furthermore, this mechanistic understanding of the structural effects of ion penetration will help develop models of the frequency and voltage impedance response of electrochemically doped conjugated polymers and advance electronic applications.« less
Efficiency of bulk-heterojunction organic solar cells
Scharber, M.C.; Sariciftci, N.S.
2013-01-01
During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787
Particle models for discrete element modeling of bulk grain properties of wheat kernels
USDA-ARS?s Scientific Manuscript database
Recent research has shown the potential of discrete element method (DEM) in simulating grain flow in bulk handling systems. Research has also revealed that simulation of grain flow with DEM requires establishment of appropriate particle models for each grain type. This research completes the three-p...