Science.gov

Sample records for bulk viscosity drive

  1. Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe

    NASA Astrophysics Data System (ADS)

    Avelino, Arturo; Nucamendi, Ulises

    2010-08-01

    We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by a pressureless fluid with bulk viscosity of the form ζ = ζ0+ζ1H where ζ0 and ζ1 are constants and H is the Hubble parameter. The pressureless fluid characterizes both the baryon and dark matter components. We study the behavior of the Universe according to this model analyzing the scale factor as well as some curvature scalars and the matter density. On the other hand, we compute the best estimated values of ζ0 and ζ1 using the type Ia Supernovae (SNe Ia) probe. We find that from all the possible scenarios for the Universe, the preferred one by the best estimated values of (ζ0,ζ1) is that of an expanding Universe beginning with a Big-Bang, followed by a decelerated expansion at early times, and with a smooth transition in recent times to an accelerated expansion epoch that is going to continue forever. The predicted age of the Universe is a little smaller than the mean value of the observational constraint coming from the oldest globular clusters but it is still inside of the confidence interval of this constraint. A drawback of the model is the violation of the local second law of thermodynamics in redshifts zgtrsim1. However, when we assume ζ1 = 0, the simple model ζ = ζ0 evaluated at the best estimated value for ζ0 satisfies the local second law of thermodynamics, the age of the Universe is in perfect agreement with the constraint of globular clusters, and it also has a Big-Bang, followed by a decelerated expansion with the smooth transition to an accelerated expansion epoch in late times, that is going to continue forever.

  2. Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the Universe

    SciTech Connect

    Avelino, Arturo; Nucamendi, Ulises E-mail: ulises@ifm.umich.mx

    2010-08-01

    We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by a pressureless fluid with bulk viscosity of the form ζ = ζ{sub 0}+ζ{sub 1}H where ζ{sub 0} and ζ{sub 1} are constants and H is the Hubble parameter. The pressureless fluid characterizes both the baryon and dark matter components. We study the behavior of the Universe according to this model analyzing the scale factor as well as some curvature scalars and the matter density. On the other hand, we compute the best estimated values of ζ{sub 0} and ζ{sub 1} using the type Ia Supernovae (SNe Ia) probe. We find that from all the possible scenarios for the Universe, the preferred one by the best estimated values of (ζ{sub 0},ζ{sub 1}) is that of an expanding Universe beginning with a Big-Bang, followed by a decelerated expansion at early times, and with a smooth transition in recent times to an accelerated expansion epoch that is going to continue forever. The predicted age of the Universe is a little smaller than the mean value of the observational constraint coming from the oldest globular clusters but it is still inside of the confidence interval of this constraint. A drawback of the model is the violation of the local second law of thermodynamics in redshifts z∼>1. However, when we assume ζ{sub 1} = 0, the simple model ζ = ζ{sub 0} evaluated at the best estimated value for ζ{sub 0} satisfies the local second law of thermodynamics, the age of the Universe is in perfect agreement with the constraint of globular clusters, and it also has a Big-Bang, followed by a decelerated expansion with the smooth transition to an accelerated expansion epoch in late times, that is going to continue forever.

  3. Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe?

    SciTech Connect

    Avelino, Arturo; Nucamendi, Ulises E-mail: ulises@ifm.umich.mx

    2009-04-15

    We test a cosmological model which the only component is a pressureless fluid with a constant bulk viscosity as an explanation for the present accelerated expansion of the universe. We classify all the possible scenarios for the universe predicted by the model according to their past, present and future evolution and we test its viability performing a Bayesian statistical analysis using the SCP ''Union'' data set (307 SNe Ia), imposing the second law of thermodynamics on the dimensionless constant bulk viscous coefficient {zeta}-tilde and comparing the predicted age of the universe by the model with the constraints coming from the oldest globular clusters. The best estimated values found for {zeta}-tilde and the Hubble constant H{sub 0} are: {zeta}-tilde = 1.922{+-}0.089 and H{sub 0} = 69.62{+-}0.59 (km/s)Mpc{sup -1} with a {chi}{sup 2}{sub min} = 314 ({chi}{sup 2}{sub d.o.f} = 1.031). The age of the universe is found to be 14.95{+-}0.42 Gyr. We see that the estimated value of H{sub 0} as well as of {chi}{sup 2}{sub d.o.f} are very similar to those obtained from {Lambda}CDM model using the same SNe Ia data set. The estimated age of the universe is in agreement with the constraints coming from the oldest globular clusters. Moreover, the estimated value of {zeta}-tilde is positive in agreement with the second law of thermodynamics (SLT). On the other hand, we perform different forms of marginalization over the parameter H{sub 0} in order to study the sensibility of the results to the way how H{sub 0} is marginalized. We found that it is almost negligible the dependence between the best estimated values of the free parameters of this model and the way how H{sub 0} is marginalized in the present work. Therefore, this simple model might be a viable candidate to explain the present acceleration in the expansion of the universe.

  4. Anomalous - viscosity current drive

    DOEpatents

    Stix, Thomas H.; Ono, Masayuki

    1988-01-01

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  5. Anomalous-viscosity current drive

    DOEpatents

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  6. Bulk viscosity of superfluid hyperon stars

    SciTech Connect

    Gusakov, Mikhail E.; Kantor, Elena M.

    2008-10-15

    We calculate the bulk viscosity due to nonequilibrium weak processes in superfluid nucleon-hyperon matter of neutron stars. For that, the dissipative relativistic hydrodynamics, formulated eariler [M. E. Gusakov, Phys. Rev. D 76, 083001 (2007).] for superfluid mixtures, is extended to the case when both nucleons and hyperons are superfluid. It is demonstrated that in the most general case (when neutrons, protons, {lambda}, and {sigma}{sup -} hyperons are superfluid), nonequilibrium weak processes generate 16 bulk viscosity coefficients, with only three of them being independent. In addition, we correct an inaccuracy in a widely used formula for the bulk viscosity of nonsuperfluid nucleon-hyperon matter.

  7. Cosmological two-fluid bulk viscosity

    NASA Astrophysics Data System (ADS)

    van den Horn, L. J.; Salvati, G. A. Q.

    2016-04-01

    A simple two-fluid model of cosmological bulk viscosity, in which small deviations from thermal equilibrium account for the viscous bulk pressure, is substantiated by kinetic theory. Some peculiar issues regarding its relation to the radiative fluid model are discussed. The microphysical picture underlying the viscous dissipation is made precise. We also consider a reactive `cross' viscosity associated with deviations from detailed balance, which includes the so-called creation pressure of the cosmological fluid. For collisional interactions between the fluid components, the reactive viscous pressure is not an independent mechanism for entropy production. Entropy from cross effects may be generated through an effective isentropic particle source. In both instances new results are obtained for the reactive viscosity, and applied to a representative case of non-equilibrium decay.

  8. Bulk viscosity effects on ultrasonic thermoacoustic instability

    NASA Astrophysics Data System (ADS)

    Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus

    2016-11-01

    We have carried out unstructured fully-compressible Navier-Stokes simulations of a minimal-unit traveling-wave ultrasonic thermoacoustic device in looped configuration. The model comprises a thermoacoustic stack with 85% porosity and a tapered area change to suppress the fundamental standing-wave mode. A bulk viscosity model, which accounts for vibrational and rotational molecular relaxation effects, is derived and implemented via direct modification of the viscous stress tensor, τij ≡ 2 μSij +λ/2 μ ∂uk/∂xk δij , where the bulk viscosity is defined by μb ≡ λ +2/3 μ . The effective bulk viscosity coefficient accurately captures acoustic absorption from low to high ultrasonic frequencies and matches experimental wave attenuation rates across five decades. Using pressure-based similitude, the model was downscaled from total length L = 2 . 58 m to 0 . 0258 m, corresponding to the frequency range f = 242 - 24200 Hz, revealing the effects of bulk viscosity and direct modification of the thermodynamic pressure. Simulations are carried out to limit cycle and exhibit growth rates consistent with linear stability analyses, based on Rott's theory.

  9. Numerical estimates for the bulk viscosity of ideal gases

    NASA Astrophysics Data System (ADS)

    Cramer, M. S.

    2012-06-01

    We estimate the bulk viscosity of a selection of well known ideal gases. A relatively simple formula is combined with published values of rotational and vibrational relaxation times. It is shown that the bulk viscosity can take on a wide variety of numerical values and variations with temperature. Several fluids, including common diatomic gases, are seen to have bulk viscosities which are hundreds or thousands of times larger than their shear viscosities. We have also provided new estimates for the bulk viscosity of water vapor in the range 380-1000 K. We conjecture that the variation of bulk viscosity with temperature will have a local maximum for most fluids. The Lambert-Salter correlation is used to argue that the vibrational contribution to the bulk viscosities of a sequence of fluids having a similar number of hydrogen atoms at a fixed temperature will increase with the characteristic temperature of the lowest vibrational mode.

  10. Warm-Polytropic Cosmology with and Without Bulk Viscosity

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2014-12-01

    In this paper we consider warm-polytropic cosmology including bulk viscosity and study cosmological parameters. We can obtain effect of viscosity on the important cosmological parameters such as Hubble expansion, deceleration and scale factor parameters. We compare our results with observational data and fix our solution. We find that the bulk viscosity increases both energy density and Hubble expansion parameter.

  11. Quadratic bulk viscosity and the topology of space time.

    NASA Astrophysics Data System (ADS)

    Wolf, C.

    1997-12-01

    By considering a homogeneous isotropic universe admitting quadratic bulk viscosity the author shows that if the bulk viscosity coefficient is large the effective topology of space time attains an antiintuitive interpretation in the sense that a positive curvature space time is ever-expanding. This is true for all cosmologies studied except in the case of small quadratic bulk viscosity (3γ+1-kβ ≥ 0, 3γ+1 > 0).

  12. Hyperon Bulk Viscosity in the Presence of Antikaon Condensate

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debarati; Bandyopadhyay, Debades

    2008-06-01

    We investigate the hyperon bulk viscosity due to the nonleptonic process n + prightleftharpoons p + Λ in K- condensed matter and its effect on the r-mode instability in neutron stars. We find that the hyperon bulk viscosity coefficient in the presence of antikaon condensate is suppressed compared with the case without the condensate. The suppressed hyperon bulk viscosity in the superconducting phase is still an efficient mechanism to damp the r-mode instability in neutron stars.

  13. Bulk viscosity of anisotropically expanding hot QCD plasma

    SciTech Connect

    Chandra, Vinod

    2011-11-01

    The bulk viscosity, {zeta} and its ratio with the shear viscosity, {zeta}/{eta} have been studied in an anisotropically expanding pure glue plasma in the presence of turbulent color fields. It has been shown that the anisotropy in the momentum distribution function of gluons, which has been determined from a linearized transport equation eventually leads to the bulk viscosity. For the isotropic (equilibrium) state, a recently proposed quasiparticle model of pure SU(3) lattice QCD equation of state has been employed where the interactions are encoded in the effective fugacity. It has been argued that the interactions present in the equation of state, significantly contribute to the bulk viscosity. Its ratio with the shear viscosity is significant even at 1.5T{sub c}. Thus, one needs to take in account the effects of the bulk viscosity while studying the hydrodynamic expansion of quark-gluon plasma in the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  14. Effect of bulk viscosity on a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Emanuel, George

    1992-03-01

    The bulk viscosity mu(b) is generally set equal to zero (Stokes' hypothesis). For certain gases, such as CO2, mu(b)/mu exceeds 1000, where mu is the shear viscosity. In this circumstance, the bulk viscosity may substantially alter a hypersonic boundary layer. A general, nonsimilar, laminar, boundary-layer formulation is provided in which the bulk viscosity terms are included as a correction. To obtain explicit results, flow over a flat plate is considered. In addition to the heat transfer, the transverse pressure gradient inside the boundary layer is not zero, whereas the skin friction is unaltered by the bulk viscosity. This analysis is relevant to aerogravity-assisted maneuvers in planetary atmospheres that largely consist of CO2.

  15. Effect of bulk viscosity on a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Emanuel, George

    1992-03-01

    The bulk viscosity μb is generally set equal to zero (Stokes' hypothesis). For certain gases, such as CO2, μb/μ exceeds 103, where μ is the shear viscosity. In this circumstance, the bulk viscosity may substantially alter a hypersonic boundary layer. A general, nonsimilar, laminar, boundary-layer formulation is provided in which the bulk viscosity terms are included as a correction. To obtain explicit results, flow over a flat plate is considered. In addition to the heat transfer, the transverse pressure gradient inside the boundary layer is not zero, whereas the skin friction is unaltered by the bulk viscosity. This analysis is relevant to aerogravity-assisted maneuvers in planetary atmospheres that largely consist of CO2.

  16. Bulk viscosity of accretion disks around non rotating black holes

    NASA Astrophysics Data System (ADS)

    Moeen Moghaddas, M.

    2017-01-01

    In this paper, we study the Keplerian, relativistic accretion disks around the non rotating black holes with the bulk viscosity. Many of authors studied the relativistic accretion disks around the black holes, but they ignored the bulk viscosity. We introduce a simple method to calculate the bulk in these disks. We use the simple form for the radial component of the four velocity in the Schwarzschild metric, then the other components of the four velocity and the components of the shear and the bulk tensor are calculated. Also all components of the bulk viscosity, the shear viscosity and stress tensor are calculated. It is seen that some components of the bulk tensor are comparable with the shear tensor. We calculate some of the thermodynamic quantities of the relativistic disks. Comparison of thermodynamic quantities shows that in some states influences of the bulk viscosity are important, especially in the inner radiuses. All calculations are done analytically and we do not use the boundary conditions. Finally, we find that in the relativistic disks around the black holes, the bulk viscosity is non-negligible in all the states.

  17. Modified Chaplygin gas cosmology with bulk viscosity

    NASA Astrophysics Data System (ADS)

    Benaoum, H. B.

    2014-09-01

    In this paper, we investigate the viscous modified Chaplygin gas cosmological model. Solutions for different values of the viscosity parameter are obtained using both analytical and numerical methods. We have calculated the deceleration and defined newly statefinder {r, s} pair in D dimensions. It is shown that when D = 4, the usual statefinder parameters are recovered. Furthermore, we apply the statefinder diagnostic to the MCG model with and without viscosity in D dimensions and explore these parameters graphically.

  18. Bulk viscosity of strange quark matter: Urca versus nonleptonic processes

    SciTech Connect

    Sa'd, Basil A.; Shovkovy, Igor A.; Rischke, Dirk H.

    2007-06-15

    A general formalism for calculating the bulk viscosity of strange quark matter is developed. Contrary to the common belief that the nonleptonic processes alone give the dominant contribution to the bulk viscosity, the inclusion of the Urca processes is shown to play an important role at intermediate densities when the characteristic r-mode oscillation frequencies are not too high. The interplay of nonleptonic and Urca processes is analyzed in detail.

  19. Singularities and Entropy in Bulk Viscosity Dark Energy Model

    NASA Astrophysics Data System (ADS)

    Meng, Xin-He; Dou, Xu

    2011-11-01

    In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ0 + λ1(1 + z)n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ΛCDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r, s} as axes where the fixed point represents the ΛCDM model. The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling.

  20. Dark goo: bulk viscosity as an alternative to dark energy

    SciTech Connect

    Gagnon, Jean-Sebastien; Lesgourgues, Julien E-mail: julien.lesgourgues@cern.ch

    2011-09-01

    We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an 'effective' pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles must be in local equilibrium today for viscous effects to be important.

  1. Bulk viscosity, interaction and the viability of phantom solutions

    NASA Astrophysics Data System (ADS)

    Leyva, Yoelsy; Sepúlveda, Mirko

    2017-06-01

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w<-1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data.

  2. Metastable Lennard-Jones fluids. III. Bulk viscosity.

    PubMed

    Baidakov, Vladimir G; Protsenko, Sergey P

    2014-09-21

    The method of equilibrium molecular-dynamics simulation in combination with the Green-Kubo formula has been used to calculate the bulk viscosity of a Lennard-Jones fluid. Calculations have been made at temperatures 0.4 ≤ k(B)T/ɛ ≤ 2.0 and densities 0.0075 ≤ ρσ(3) ≤ 1.2 at 116 stable and 106 metastable states of liquid and gas. The depth of penetration into the region of metastable states was limited by spontaneous nucleation. In the region of stable states the data obtained are compared with the results of previous investigations. It has been established that the system transition across the lines of liquid-gas and liquid-crystal phase equilibrium and penetration into the metastable regions of liquid and gas are connected with increasing bulk viscosity. The behavior of bulk viscosity close to the spinodal of a superheated liquid and supersaturated vapor is discussed.

  3. Bulk viscosity in 2SC and CFL quark matter

    SciTech Connect

    Alford, Mark G.; Schmitt, Andreas

    2007-11-19

    The bulk viscosities of two color-superconducting phases, the color-flavor locked (CFL) phase and the 2SC phase, are computed and compared to the result for unpaired quark matter. In the case of the CFL phase, processes involving kaons and the superfluid mode give the largest contribution to the bulk viscosity since all fermionic modes are gapped. In the case of the 2SC phase, ungapped fermionic modes are present and the process u+d{r_reversible}u+s provides the dominant contribution. In both cases, the bulk viscosity can become larger than that of the unpaired phase for sufficiently large temperatures (T > or approx. 1 MeV for CFL, T > or approx. 0.1 MeV for 2SC). Bulk viscosity (as well as shear viscosity) is important for the damping of r-modes in compact stars and thus can potentially be used as an indirect signal for the presence or absence of color-superconducting quark matter.

  4. Stress tensor and bulk viscosity in relativistic nuclear collisions

    SciTech Connect

    Fries, Rainer J.; Mueller, Berndt; Schaefer, Andreas

    2008-09-15

    We discuss the influence of different initial conditions for the stress tensor and the effect of bulk viscosity on the expansion and cooling of the fireball created in relativistic heavy ion collisions. In particular, we explore the evolution of longitudinal and transverse components of the pressure and the extent of dissipative entropy production in the one-dimensional, boost-invariant hydrodynamic model. We find that a bulk viscosity consistent with recent estimates from lattice QCD further slows the equilibration of the system; however, it does not significantly increase the entropy produced.

  5. Radiating gravitational collapse with shearing motion and bulk viscosity

    NASA Astrophysics Data System (ADS)

    Chan, R.

    2001-03-01

    A model is proposed of a collapsing radiating star consisting of a shearing fluid with bulk viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the bulk viscosity the pressure becomes more and more anisotropic. The behavior of the density, pressure, mass, luminosity, the effective adiabatic index and the Kretschmann scalar is analyzed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6 Msun.

  6. Bulk viscosity of low-temperature strongly interacting matter

    NASA Astrophysics Data System (ADS)

    Dobado, Antonio; Llanes-Estrada, Felipe J.; Torres-Rincon, Juan M.

    2011-08-01

    We study the bulk viscosity of a pion gas in unitarized Chiral Perturbation Theory at low and moderate temperatures, below any phase transition to a quark-gluon plasma phase. We argue that inelastic processes are irrelevant and exponentially suppressed at low temperatures. Since the system falls out of chemical equilibrium upon expansion, a pion chemical potential must be introduced, so we extend the existing theories that include it. We control the zero modes of the collision operator and Landau's conditions of fit when solving the Boltzmann equation with the elastic collision kernel. The dependence of the bulk viscosity with temperature is reminiscent of the findings of Fernández-Fraile and Gómez Nicola (2009) [1], while the numerical value is closer to that of Davesne (1996) [2]. In the zero-temperature limit we correctly recover the vanishing viscosity associated to a non-relativistic monoatomic gas.

  7. Shear and bulk viscosities for pure glue matter

    SciTech Connect

    Khvorostukhin, A. S.; Toneev, V. D.; Voskresensky, D. N.

    2011-03-15

    Shear {eta} and bulk {zeta} viscosities are calculated in a quasiparticle model within a relaxation-time approximation for pure gluon matter. Below T{sub c}, the confined sector is described within a quasiparticle glueball model. The constructed equation of state reproduces the first-order phase transition for the glue matter. It is shown that with this equation of state, it is possible to describe the temperature dependence of the shear viscosity to entropy ratio {eta}/s and the bulk viscosity to entropy ratio {zeta}/s in reasonable agreement with available lattice data, but absolute values of the {zeta}/s ratio underestimate the upper limits of this ratio in the lattice measurements typically by an order of magnitude.

  8. Effect of Varying Bulk Viscosity on Generalized Chaplygin Gas

    NASA Astrophysics Data System (ADS)

    Saadat, H.; Pourhassan, B.

    2014-04-01

    In this paper, viscous generalized Chaplygin gas as a model of dark energy considered. We assume non-constant bulk viscous coefficient and study dark energy density. We consider several cases of density-dependent viscosities. We find that, in the special case, the viscous generalized Chaplygin gas is corresponding to modified Chaplygin gas.

  9. Ferroelectric film bulk acoustic wave resonators for liquid viscosity sensing

    NASA Astrophysics Data System (ADS)

    Vorobiev, A.; Gevorgian, S.

    2013-08-01

    A concept of accurate liquid viscosity sensing, using bulk acoustic wave (BAW) resonators, is proposed. The proposed BAW resonators use thin ferroelectric films with the dc field induced piezoelectric effect allowing for generation of pure longitudinal acoustic waves in the thickness excitation mode. This makes it possible to utilize exclusively shear liquid particle displacement at the resonator side walls and, therefore, accurate viscosity evaluation. The BAW resonators with the dc field induced piezoelectric effect in 0.67BiFeO3-0.33BaTiO3 ferroelectric films are fabricated and their liquid viscosity sensing properties are characterized. The resonator response is analyzed using simple model of a harmonic oscillator damped by a viscous force. It is shown that the resonator Q-factor is inversely proportional to the square root of the viscosity-density product. The viscosity measurement resolution is estimated to be as high as 0.005 mPa.s, which is 0.5% of the water viscosity.

  10. Accelerating Cosmological Expansion from Shear and Bulk Viscosity

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-03-01

    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  11. An estimate of the bulk viscosity of the hadronic medium

    NASA Astrophysics Data System (ADS)

    Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane

    2017-05-01

    The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.

  12. Extended Chaplygin gas equation of state with bulk and shear viscosities

    NASA Astrophysics Data System (ADS)

    Naji, Jalil

    2014-03-01

    In this note extended Chaplygin gas equation of state includes bulk and shear viscosities suggested. Bulk viscosity assumed as power law form of density and shear viscosity considered as a constant. We study evolution of dark energy density numerically for several forms of scale factor, and analytically under some assumptions corresponding to early universe. We found our model is stable for infinitesimal viscous parameters.

  13. Bulk viscosity of stirred xenon near the critical point

    NASA Astrophysics Data System (ADS)

    Gillis, K. A.; Shinder, I. I.; Moldover, M. R.

    2005-11-01

    We deduce the thermophysical properties of near-critical xenon from measurements of the frequencies and half-widths of the acoustic resonances of xenon maintained at its critical density in centimeter-sized cavities. In the reduced temperature range 1×10-3<(T-Tc)/Tc<7×10-6 , we measured the resonance frequency and quality factor (Q) for each of six modes spanning a factor of 27 in frequency. As Tc was approached, the frequencies decreased by a factor of 2.2 and the Q ’s decreased by as much as a factor of 140. Remarkably, these results are predicted (within ±2% of the frequency and within a factor of 1.4 of Q ) by a model for the resonator and a model for the frequency-dependent bulk viscosity ζ(ω) that uses no empirically determined parameters. The resonator model is based on a theory of acoustics in near-critical fluids developed by Gillis, Shinder, and Moldover [Phys. Rev. E 70, 021201 (2004)]. In addition to describing the present low-frequency data (from 120Hzto7.5kHz ), the model for ζ(ω) is consistent with ultrasonic (0.4-7MHz) velocity and attenuation data from the literature. However, the model predicts a peak in the temperature dependence of the dissipation in the boundary layer that we did not detect. This suggests that the model overestimates the effect of the bulk viscosity on the thermal boundary layer. In this work, the acoustic cavities were heated from below to stir the xenon, thereby reducing the density stratification resulting from Earth’s gravity. The stirring reduced the apparent equilibration time from several hours to a few minutes, and it reduced the effective temperature resolution from 60mK to approximately 2mK , which corresponds to (T-Tc)/Tc≈7×10-6 .

  14. The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Johnsen, Eric; Pan, Shaowu

    2016-11-01

    The practice of neglecting bulk viscosity in studies of compressible turbulence is widespread. While exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, this assumption is not justifiable for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g., CO2). To understand the mechanisms by which bulk viscosity and the associated phenomena affect compressible turbulence, we conduct DNS of freely decaying compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0-1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; while enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by an order of magnitude within the two eddy turnover time. Via a Helmholtz decomposition of the flow, we determined that bulk viscosity damps the dilatational velocity and reduces dilatational-solenoidal exchanges, as well as pressure-dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal modes.

  15. Bulk viscosity due to kaons in color-flavor-locked quark matter

    SciTech Connect

    Alford, Mark G.; Braby, Matt; Reddy, Sanjay; Schaefer, Thomas

    2007-05-15

    We calculate the bulk viscosity of color-superconducting quark matter in the color-flavor-locked (CFL) phase. We assume that the lightest bosons are the superfluid mode H and the kaons K{sup 0} and K{sup +}, and that there is no kaon condensate. We calculate the rate of strangeness-equilibrating processes that convert kaons into superfluid modes, and the resultant bulk viscosity. We find that for oscillations with a timescale of milliseconds, at temperatures T<1 MeV, the CFL bulk viscosity is much less than that of unpaired quark matter, but at higher temperatures the bulk viscosity of CFL matter can become larger.

  16. Effect of Shear and Bulk Viscosities on Interacting Modified Chaplygin Gas Cosmology

    NASA Astrophysics Data System (ADS)

    Naji, J.; Pourhassan, B.; Amani, Ali R.

    2014-12-01

    In this paper, we study interacting modified Chaplygin gas (MCG) which has shear and bulk viscosities. We consider sign-changeable interaction between MCG and matter, then investigate the effects of shear and bulk viscosities on the cosmological parameters such as energy, density, Hubble expansion parameter, scale factor and deceleration parameter.

  17. Phenomenological consequences of enhanced bulk viscosity near the QCD critical point

    NASA Astrophysics Data System (ADS)

    Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi

    2017-03-01

    In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. This work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 +1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening the equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. The observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.

  18. Acoustic Experiment to Measure the Bulk Viscosity of Near-Critical Xenon in Microgravity

    NASA Technical Reports Server (NTRS)

    Gillis, K. A.; Shinder, I.; Moldover, M. R.; Zimmerli, G. A.

    2002-01-01

    We plan a rigorous test of the theory of dynamic scaling by accurately measuring the bulk viscosity of xenon in microgravity 50 times closer to the critical temperature T(sub c) than previous experiments. The bulk viscosity zeta (or "second viscosity" or "dilational viscosity") will be determined by measuring the attenuation length of sound alpha lambda and also measuring the frequency-dependence of the speed of sound. For these measurements, we developed a unique Helmholtz resonator and specialized electro-acoustic transducers. We describe the resonator, the transducers, their performance on Earth, and their expected performance in microgravity.

  19. v-USPhydro: Bulk Viscosity Effects on Event-by-Event Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Noronha-Hostler, Jacquelyn; Denicol, Gabriel S.; Noronha, Jorge; Andrade, Rone P. G.; Grassi, Frédérique

    2013-08-01

    v-USPhydro is a new relativistic 2+1 Lagrangian hydrodynamic code that incorporates the effects of bulk viscous hydrodynamics using Smoothed Particle Hydrodynamics (SPH) and is applicable to heavy ion collisions. Within this framework the bulk viscosity effects on collective flow harmonics i.e. v2 - v5 are studied on an event-by-event basis. We discuss which corrections to the Cooper Frye model are most appropriate when bulk viscosity is considered. An enhancement of all the Fourier harmonics is seen when bulk viscosity correction to the Cooper Frye is considered even when the bulk viscosity to entropy density ratio, ζ/s, is significantly smaller than 1/(4π).

  20. Bulk viscosity for pion and nucleon thermal fluctuation in the hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabyasachi; Chatterjee, Sandeep; Mohanty, Bedangadas

    2016-10-01

    We have calculated microscopically bulk viscosity of hadronic matter, where equilibrium thermodynamics for all hadrons in medium are described by the hadron resonance gas (HRG) model. Considering pions and nucleons as abundant medium constituents, we have calculated their thermal widths, which inversely control the strength of bulk viscosities for respective components and represent their in-medium scattering probabilities with other mesonic and baryonic resonances, present in the medium. Our calculations show that bulk viscosity increases with both temperature and baryon chemical potential, whereas viscosity to entropy density ratio decreases with temperature and with baryon chemical potential, the ratio increases first and then decreases. The decreasing nature of the ratio with temperature has been observed in most of the earlier investigations with few exceptions. We find that the temperature dependence of bulk viscosity crucially depends on the structure of the relaxation time. Along the chemical freeze-out line in nucleus-nucleus collisions with increasing collision energy, bulk viscosity as well as the bulk viscosity to entropy density ratio decreases, which also agrees with earlier references. Our results indicate the picture of a strongly coupled hadronic medium.

  1. Bulk viscosity of two-flavor quark matter from the Kubo formalism

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Arus; Sedrakian, Armen

    2017-08-01

    We study the bulk viscosity of quark matter in the strong coupling regime within the two-flavor Nambu-Jona-Lasinio model. The dispersive effects that lead to nonzero bulk viscosity arise from quark-meson fluctuations above the Mott transition temperature, where meson decay into two quarks is kinematically allowed. We adopt the Kubo-Zubarev formalism and compute the equilibrium imaginary-time correlation function for pressure in the O (1 /Nc) power counting scheme. The bulk viscosity of matter is expressed in terms of the Lorentz components of the quark spectral function and includes multiloop contributions which arise via resummation of infinite geometrical series of loop diagrams. We show that the multiloop contributions dominate the single-loop contribution close to the Mott line, whereas at high temperatures the one-loop contribution is dominant. The multiloop bulk viscosity dominates the shear viscosity close to the Mott temperature by factors 5 to 20, but, with increasing temperature, the shear viscosity becomes the dominant dissipation mechanism of stresses as the one-loop contribution becomes the main source of bulk viscosity.

  2. Interplay of shear and bulk viscosity in generating flow in heavy-ion collisions

    SciTech Connect

    Song, Huichao; Heinz, Ulrich

    2010-02-15

    We perform viscous hydrodynamic calculations in 2+1 dimensions to investigate the influence of bulk viscosity on the viscous suppression of elliptic flow in noncentral heavy-ion collisions at Relativistic Heavy Ion Collider energies. Bulk and shear viscous effects on the evolution of radial and elliptic flow are studied with different model assumptions for the transport coefficients. We find that the temperature dependence of the relaxation time for the bulk viscous pressure, especially its critical slowing-down near the quark-hadron phase transition at T{sub c}, partially offsets effects from the strong growth of the bulk viscosity itself near T{sub c} and that even small values of the specific shear viscosity eta/s of the fireball matter can be extracted without large uncertainties from poorly controlled bulk viscous effects.

  3. Bulk viscosity of spin-one color superconductors with two quark flavors

    SciTech Connect

    Sa'd, Basil A.; Shovkovy, Igor A.; Rischke, Dirk H.

    2007-03-15

    We consider the contribution of the Urca-type processes to the bulk viscosity of several spin-one color-superconducting phases of dense two-flavor quark matter. In the so-called transverse phases which are suggested to be energetically favorable at asymptotic densities, the presence of ungapped quasiparticle modes prevents that spin-one color superconductivity has a large effect on the bulk viscosity. When all modes are gapped, as for one particular color-spin-locked phase, the effect on the viscosity can be quite large, which may have important phenomenological implications.

  4. Progress on Acoustic Measurements of the Bulk Viscosity of Near-Critical Xenon (BVX)

    NASA Technical Reports Server (NTRS)

    Gillis, Keith A.; Shinder, Iosif I.; Moldover, Michael R.; Zimmerli, Gregory A.

    2004-01-01

    We plan to determine the bulk viscosity of xenon 10 times closer [in reduced temperature tau = (T-Tc)/Tc] to its liquid-vapor critical point than ever before. (Tc is the critical temperature.) To do so, we must measure the dispersion and attenuation of sound at frequencies 1/100 of those used previously. In general, sound attenuation has contributions from the bulk viscosity acting throughout the volume of the xenon as well as contributions from the thermal conductivity and the shear viscosity acting within thin thermoacoustic boundary layers at the interface between the xenon and the solid walls of the resonator. Thus, we can determine the bulk viscosity only when the boundary layer attenuation is small and well understood. We present a comparison of calculations and measurements of sound attenuation in the acoustic boundary layer of xenon near its liquid-vapor critical point.

  5. Effect of Viscosity on the Microformability of Bulk Amorphous Alloy in Supercooled Liquid Region

    SciTech Connect

    Cheng Ming; Zhang Shihong; Wang Ruixue

    2010-06-15

    Previously published results have shown that viscosity greatly influences on the deformation behavior of the bulk amorphous alloy in supercooled liquid region during microforming process. And viscosity is proved to be a component of the evaluation index which indicating microformability. Based on the fluid flow theory and assumptions, bulk amorphous alloy can be regarded as the viscous materials with a certain viscosity. It is helpful to understand how the viscosity plays an important role in viscous materials with various viscosities by numerical simulation on the process. Analysis is carried out by linear state equation in FEM with other three materials, water, lubricant oil and polymer melt, whose viscosities are different obviously. The depths of the materials flow into the U-shaped groove during the microimprinting process are compared in this paper. The result shows that the deformation is quite different when surface tension effect is not considered in the case. With the lowest viscosity, water can reach the bottom of micro groove in a very short time. Lubricant oil and polymer melt slower than it. Moreover bulk amorphous alloys in supercooled liquid state just flow into the groove slightly. Among the alloys of different systems including Pd-, Mg- and Zr-based alloy, Pd-based alloy ranks largest in the depth. Mg-based alloy is the second. And Zr-based alloy is the third. Further more the rank order of the viscosities of the alloys is Pd-, Mg- and Zr-based. It agrees well with the results of calculation. Therefore viscosity plays an important role in the microforming of the bulk amorphous alloy in the supercooled liquid state.

  6. Phenomenological consequences of enhanced bulk viscosity near the QCD critical point

    DOE PAGES

    Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi

    2017-03-06

    In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less

  7. Bulk and shear viscosities of matter created in relativistic heavy-ion collisions

    SciTech Connect

    Bozek, Piotr

    2010-03-15

    We study the effects of shear and bulk viscosities in the hadronic phase on the expansion of the fireball and on particle production in relativistic heavy-ion collisions. Comparing simulation with versus without viscosity in hadronic matter, we find that elliptic flow observables are strongly dependent on dissipative effects in the late stage. On the contrary, interferometry radii are sensitive, through early transverse flow, to the viscosity value at high temperatures. We present first calculations including the effects of bulk viscosity on the hadronic phase and on hadron emission. We find them to be important in obtaining a low freeze-out temperature consistent with the measured transverse momentum spectra and elliptic flow of identified particles.

  8. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions.

    PubMed

    Jung, Gerhard; Schmid, Friederike

    2016-05-28

    Exact values for bulk and shear viscosity are important to characterize a fluid, and they are a necessary input for a continuum description. Here we present two novel methods to compute bulk viscosities by non-equilibrium molecular dynamics simulations of steady-state systems with periodic boundary conditions - one based on frequent particle displacements and one based on the application of external bulk forces with an inhomogeneous force profile. In equilibrium simulations, viscosities can be determined from the stress tensor fluctuations via Green-Kubo relations; however, the correct incorporation of random and dissipative forces is not obvious. We discuss different expressions proposed in the literature and test them at the example of a dissipative particle dynamics fluid.

  9. Depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-03-31

    The purpose of this study was to investigate the depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites. Depth of cure and flexural properties were determined according to ISO 4049, and volumetric shrinkage was measured using a dilatometer. The depths of cure of giomers were significantly lower than those of resin composites, regardless of photo polymerization times. No difference in flexural strength and modulus was found among either high or low viscosity bulk fill materials. Volumetric shrinkage of low and high viscosity bulk-fill resin composites was significantly less than low and high viscosity giomers. Depth of cure of both low and high viscosity bulk-fill materials is time dependent. Flexural strength and modulus of high viscosity or low viscosity bulk-fill giomer or resin composite materials are not different for their respective category. Resin composites exhibited less polymerization shrinkage than giomers.

  10. Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions.

    PubMed

    Ryu, S; Paquet, J-F; Shen, C; Denicol, G S; Schenke, B; Jeon, S; Gale, C

    2015-09-25

    We investigate the consequences of a nonzero bulk viscosity coefficient on the transverse momentum spectra, azimuthal momentum anisotropy, and multiplicity of charged hadrons produced in heavy ion collisions at LHC energies. The agreement between a realistic 3D hybrid simulation and the experimentally measured data considerably improves with the addition of a bulk viscosity coefficient for strongly interacting matter. This paves the way for an eventual quantitative determination of several QCD transport coefficients from the experimental heavy ion and hadron-nucleus collision programs.

  11. Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions

    SciTech Connect

    Ryu, S.; Paquet, J. -F.; Shen, C.; Denicol, G. S.; Schenke, B.; Jeon, S.; Gale, C.

    2015-09-22

    In this study, we investigate the consequences of a nonzero bulk viscosity coefficient on the transverse momentum spectra, azimuthal momentum anisotropy, and multiplicity of charged hadrons produced in heavy ion collisions at LHC energies. The agreement between a realistic 3D hybrid simulation and the experimentally measured data considerably improves with the addition of a bulk viscosity coefficient for strongly interacting matter. Lastly, this paves the way for an eventual quantitative determination of several QCD transport coefficients from the experimental heavy ion and hadron-nucleus collision programs.

  12. Bulk viscosity of quark-gluon matter in a magnetic field

    SciTech Connect

    Agasian, N. O.

    2013-11-15

    On the basis of low-energy QCD theorems, the bulk viscosity {zeta}(T, Micro-Sign , H) is expressed in terms of basic thermodynamic quantities that characterizes quark-gluon matter at finite temperature and a finite baryon density in a magnetic field. Various limiting cases are considered.

  13. Torque Transient of Magnetically Drive Flow for Viscosity Measurement

    NASA Technical Reports Server (NTRS)

    Ban, Heng; Li, Chao; Su, Ching-Hua; Lin, Bochuan; Scripa, Rosalia N.; Lehoczky, Sandor L.

    2004-01-01

    Viscosity is a good indicator of structural changes for complex liquids, such as semiconductor melts with chain or ring structures. This paper discusses the theoretical and experimental results of the transient torque technique for non-intrusive viscosity measurement. Such a technique is essential for the high temperature viscosity measurement of high pressure and toxic semiconductor melts. In this paper, our previous work on oscillating cup technique was expanded to the transient process of a magnetically driven melt flow in a damped oscillation system. Based on the analytical solution for the fluid flow and cup oscillation, a semi-empirical model was established to extract the fluid viscosity. The analytical and experimental results indicated that such a technique has the advantage of short measurement time and straight forward data analysis procedures

  14. Bulk viscosity of the Lennard-Jones system at the triple point by dynamical nonequilibrium molecular dynamics.

    PubMed

    Palla, Pier Luca; Pierleoni, Carlo; Ciccotti, Giovanni

    2008-08-01

    Nonequilibrium molecular dynamics (NEMD) calculations of the bulk viscosity of the triple point Lennard-Jones fluid are performed with the aim of investigating the origin of the observed disagreement between Green-Kubo estimates and previous NEMD data. We show that a careful application of the Doll's perturbation field, the dynamical NEMD method, the instantaneous form of the perturbation and the "subtraction technique" provides a NEMD estimate of the bulk viscosity at zero field in full agreement with the value obtained by the Green-Kubo formula. As previously reported for the shear viscosity, we find that the bulk viscosity exhibits a large linear regime with the field intensity.

  15. Nonlinear bulk viscosity and the stability of accelerated expansion in FRW spacetime

    NASA Astrophysics Data System (ADS)

    Acquaviva, G.; Beesham, A.

    2014-07-01

    In the context of dark energy solutions, we consider a Friedmann—Robertson—Walker spacetime filled with a noninteracting mixture of dust and a viscous fluid, for which the bulk viscosity is governed by the nonlinear model proposed in [R. Maartens and V. Méndez, Phys. Rev. D 55, 1937 (1997)]. Through a phase-space analysis of the equivalent dynamical system, the existence and stability of critical solutions are established, and the respective scale factors are computed. The results point toward the possibility of describing the current accelerated expansion of the Universe by means of the above-mentioned nonlinear model for viscosity.

  16. Bulk viscosity coefficients due to phonons and kaons in superfluid color-flavor locked quark matter

    NASA Astrophysics Data System (ADS)

    Bierkandt, Robert; Manuel, Cristina

    2011-07-01

    We evaluate the three bulk viscosity coefficients ζ1, ζ2 and ζ3 in the color-flavor locked superfluid phase due to phonons and kaons, which are the lightest modes in that system. We first show that the computation is rather analogous to the computation of the same coefficients in superfluid He4, as due to phonons and rotons. For astrophysical applications, we also find the value of the viscosities when there is a periodic disturbance, and the viscosities also depend on the frequency of the disturbance. In a temperature regime that might be of astrophysical relevance, we find that the contributions of both the phonons and kaons should be considered, and that ζ2 is much less that the same coefficient in unpaired quark matter.

  17. Bulk viscosities of a cold relativistic superfluid: Color-flavor locked quark matter

    NASA Astrophysics Data System (ADS)

    Mannarelli, Massimo; Manuel, Cristina

    2010-02-01

    We consider the phonon contribution to the bulk viscosities ζ1, ζ2 and ζ3 of a cold relativistic superfluid. We assume the low temperature T regime and that the transport properties of the system are dominated by the phonons. We use kinetic theory in the relaxation time approximation and the low energy effective field theory of the corresponding system. The parametric dependence of the bulk viscosity coefficients is fixed once the equation of state is specified, and the phonon dispersion law to cubic order in momentum is known. We first present a general discussion, valid for any superfluid, then we focus on the color-flavor locked superfluid because all the parameters needed in the analysis can be computed in the high density limit of QCD, and also because of the possible astrophysical applications. For the three independent bulk viscosity coefficients we find that they scale with the temperature as ζi˜1/T, and that in the conformal limit only the third coefficient ζ3 is nonzero.

  18. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  19. Thermodynamics and Bulk Viscosity of Approximate Black Hole Duals to Finite Temperature Quantum Chromodynamics

    SciTech Connect

    Gubser, Steven S.; Nellore, Abhinav; Pufu, Silviu S.; Rocha, Fabio D.

    2008-09-26

    We consider classes of translationally invariant black hole solutions whose equations of state closely resemble that of QCD at zero chemical potential. We use these backgrounds to compute the ratio {zeta}/s of bulk viscosity to entropy density. For a class of black holes that exhibits a first-order transition, we observe a sharp rise in {zeta}/s near T{sub c}. For constructions that exhibit a smooth crossover, like QCD does, the rise in {zeta}/s is more modest. We conjecture that divergences in {zeta}/s for black hole horizons are related to extrema of the entropy density as a function of temperature.

  20. Nonlinear scaling of surface water diffusion with bulk water viscosity of crowded solutions.

    PubMed

    Franck, John M; Scott, John A; Han, Songi

    2013-03-20

    The translational hydration dynamics within 0.5-1.5 nm of the surface of a DPPC liposome, a model biomacromolecular surface, is analyzed by the recently developed Overhauser dynamic nuclear polarization (ODNP) technique. We find that dramatic changes to the bulk solvent cause only weak changes in the surface hydration dynamics. Specifically, both a >10-fold increase in bulk viscosity and the restriction of diffusion by confinement on a multiple nm length-scale change the local translational diffusion coefficient of the surface water surrounding the lipid bilayer by <2.5-fold. By contrast, previous ODNP studies have shown that changes to the biomacromolecular surface induced by folding, binding, or aggregation can cause local hydration dynamics to vary by factors of up to 30. We suggest that the surface topology and chemistry at the ≤1.5 nm scale, rather than the characteristics of the solvent, nearly exclusively determine the macromolecule's surface hydration dynamics.

  1. Anomalous bulk viscosity of two-phase fluids and implications for planetary interiors

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1983-01-01

    The irreversible entropy production is calculated for the imposition of a pressure perturbation on a two-phase medium composed of a dilute suspension of droplets (or snowflakes) and a liquid phase of other materials. An absence of metastability is assumed, allowing the relaxation to be dominated by the solute finite diffusivity. The fluid medium was found to display a behavior suggestive of a bulk viscosity near 10 trillion P, a finding that is significant for studies of dissipation in planetary cores for tidal or seismic disturbances. A minimum quality factor for acoustic or tidal pressure oscillations and the accompanying frequency are calculated. An example is provided in terms of helium rain clouds in the deep interiors of giant planets. Additionally, a tidal quality factor of 10 to the 15th is found necessary to account for Io volcanism and resurfacing on Enceladus.

  2. Neutrino emissivities and bulk viscosity in neutral two-flavor quark matter

    NASA Astrophysics Data System (ADS)

    Berdermann, J.; Blaschke, D.; Fischer, T.; Kachanovich, A.

    2016-12-01

    We study thermodynamic and transport properties for the isotropic color-spin-locking (iso-CSL) phase of two-flavor superconducting quark matter under compact star constraints within a Nambu-Jona-Lasinio-type chiral quark model. Chiral symmetry breaking and the phase transition to superconducting quark matter leads to a density dependent change of quark masses, chemical potentials, and diquark gap. A self-consistent treatment of these physical quantities influences the microscopic calculations of transport properties. We present results for the iso-CSL direct URCA emissivities and bulk viscosities, which fulfil the constraints on quark matter derived from cooling and rotational evolution of compact stars. We compare our results with the phenomenologically successful, but yet heuristic 2 SC +X phase. We show that the microscopically founded iso-CSL phase can replace the purely phenomenological 2 SC +X phase in modern simulations of the cooling evolution for compact stars with color-superconducting quark matter interior.

  3. A comparative study on two different approaches of bulk viscosity in the Polyakov-Nambu-Jona-Lasinio model

    NASA Astrophysics Data System (ADS)

    Saha, Kinkar; Upadhaya, Sudipa; Ghosh, Sabyasachi

    2017-02-01

    We have gone through a comparative study on two different kinds of bulk viscosity expressions by using a common dynamical model. The Polyakov-Nambu-Jona-Lasinio (PNJL) model in the realm of mean-field approximation, including up to eight quark interactions for 2+1 flavor quark matter, is treated for this common dynamics. We have probed the numerical equivalence as well as discrepancy of two different expressions for bulk viscosity at vanishing quark chemical potential. Our estimation of bulk viscosity to entropy density ratio follows a decreasing trend with temperature, which is observed in most of the earlier investigations. We have also extended our estimation for finite values of quark chemical potential.

  4. Thermal conductivity, shear and bulk viscosities for a relativistic binary mixture

    NASA Astrophysics Data System (ADS)

    Moratto, Valdemar; Kremer, Gilberto M.

    2016-11-01

    In the present work, we deal with a binary mixture of diluted relativistic gases within the framework of the kinetic theory. The analysis is made within the framework of the Boltzmann equation. We assume that the gas is under the influence of an isotropic Schwarzschild metric and is composed of particles with speeds comparable with the light speed. Taking into account the constitutive equations for the laws of Fourier and Navier-Stokes, we obtain expressions for the thermal conductivity, the shear, and bulk viscosities. To evaluate the integrals we assume a hard-sphere interaction along with non-disparate masses for the particles of each component. We show the analytical expressions and the behavior of the transport coefficients with respect to a relativistic parameter which gives the ratio of the rest energy of the particles to the thermal energy of the gas. We also determine the dependence of the transport coefficients with respect to the gravitational potential and demonstrate that the corresponding one component limit is recovered by considering particles with equal masses, in accordance with the kinetic theory of a single fluid.

  5. Renormalization group flow, stability, and bulk viscosity in a large N thermal QCD model

    NASA Astrophysics Data System (ADS)

    Dasgupta, Keshav; Emelin, Maxim; Gale, Charles; Richard, Michael

    2017-04-01

    The ultraviolet completion of a large N QCD model requires introducing new degrees of freedom at certain scale so that the UV behavior may become asymptotically conformal with no Landau poles and no UV divergences of Wilson loops. These UV degrees of freedom are represented by certain antibranes arranged on the blown-up sphere of a warped resolved conifold in a way that they are separated from the other set of branes that control the IR behavior of the theory. This separation of the branes and the antibranes creates instability in the theory. Further complications arise from the curvature of the ambient space. We show that, despite these analytical hurdles, stability may still be achieved by switching on appropriate world-volume fluxes on the branes. The UV degrees of freedom, on the other hand, modify the RG flow in the model. We discuss this in details by evaluating the flow from IR confining to UV conformal. Finally we lay down a calculational scheme to study bulk viscosity which, in turn, would signal the inherent nonconformality in this model.

  6. Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics

    SciTech Connect

    Huang Xuguang; Rischke, Dirk H.; Kodama, Takeshi; Koide, Tomoi

    2011-02-15

    The microscopic formulas of the bulk viscosity {zeta} and the corresponding relaxation time {tau}{sub {Pi}} in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and {tau}{sub {Pi}} and {zeta} are related as {tau}{sub {Pi}={zeta}}/[{beta}{l_brace}(1/3-c{sub s}{sup 2})({epsilon}+P)-2({epsilon}-3P)/9{r_brace}], where {epsilon}, P, and c{sub s} are the energy density, pressure, and velocity of sound, respectively. The predicted {zeta} and {tau}{sub {Pi}} should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.

  7. Connecting Bulk Viscosity Measurements to Kinetic Limitations on Attaining Equilibrium for a Model Aerosol Composition

    NASA Astrophysics Data System (ADS)

    Topping, D. O.; Murphy, B.; Riipinen, I.; Percival, C.; Booth, A.

    2014-12-01

    The growth, composition, and evolution of secondary organic aerosol (SOA) are governed by properties of individual compounds and ensemble mixtures that affect partitioning between the vapor and condensed phase. There has been considerable recent interest in the idea that SOA can form highly viscous particles where the diff usion of either water or semivolatile organics within the particle is suffi ciently hindered to aff ect evaporation and growth. Despite numerous indirect inferences of viscous behavior from SOA evaporation or " bounce" within aerosol instruments, there have been no bulk measurements of the viscosity of well-constrained model aerosol systems of atmospheric signifi cance. Here the viscous behavior of a well-defi ned model system of 9 dicarboxylic acids is investigated directly with complementary measurements and model predictions used to infer phase state. Results not only allow us to discuss the atmospheric implications for SOA formation through this representative mixture, but also the potential impact of current methodologies used for probing this aff ect in both the laboratory and from a modeling perspective. We show, quantitatively, that the physical state transformation from liquid-like to amorphous semisolid can substantially increase the importance of mass transfer limitations within particles by 7 orders of magnitude for 100 nm diameter particles. Recommendations for future research directions are given.

  8. Microstructure and magnetic viscosity of bulk amorphous Nd60Fe20Al5Co10B5 alloy

    NASA Astrophysics Data System (ADS)

    Tan, X. H.; Xu, H.; Man, H.; Tang, Y. J.; Yang, L. P.; Bai, Q.

    2011-04-01

    The microstructure and magnetic viscosity of bulk amorphous Nd60Fe20Al5Co10B5,prepared by suction casting the molten alloy into a copper mold under an argon atmosphere, have been investigated. The results show that clusters with size 3-5 nm are found to be embedded in the amorphous matrix of as-cast bulk amorphous Nd60Fe20Al5Co10B5 alloy. The Nd60Fe20Al5Co10B5 alloy shows hard magnetic behavior at room temperature, with an intrinsic coercivity of 360 kA/m and a remanence of 69.39 mT. The magnetic viscosity of bulk amorphous Nd60Fe20Al5Co10B5 has been investigated on the major hysteresis loop, and simple logarithmic time dependence is observed. A value for the fluctuation field of 8.24 kA/m is obtained. Analysis based on a Henkel plot is used to confirm the existence of magnetic interaction among clusters. The coercivity mechanism responsible for the hard magnetic behavior of bulk amorphous Nd60Fe20Al5Co10B5 alloy is also discussed.

  9. Kubo formulas for the shear and bulk viscosity relaxation times and the scalar field theory shear τπ calculation

    NASA Astrophysics Data System (ADS)

    Czajka, Alina; Jeon, Sangyong

    2017-06-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.

  10. Mantle viscosity - A comparison of models from postglacial rebound and from the geoid, plate driving forces, and advected heat flux

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1991-01-01

    Models of the radial variation of effective viscosity inferred from the earth's response to surface loads associated with Pleistocene deglaciation are compared to structures inferred from models of geodynamic phenomena associated with convection: the geoid, plate-driving forces, and advected heat flux. While observations of the earth's response to surface loads do not have sufficient resolution to justify more than two viscous layers, adequately matching the observed long-wavelength geoid anomalies associated with density contrasts in the lower mantle (inferred from seismic tomography) and in the upper mantle (inferred from a model of subducted slabs) requires more structure. It is possible to explain the geoid, observed plate velocities, the advected heat flux in the lower mantle, and relative sea-level variations in oceanic regions, all with a mantle with a high-viscosity/elastic lid, an asthenospheric channel of 2 x 10 exp 19 Pa s from 100 to 400-km depth, a 6 x 10 exp 20 Pa s transition zone, and a lower mantle of 6 x 10 exp 21 Pa s. The uplift history of Australia, Fennoscandia, and Laurentia can be explained with an asthenospheric viscosity less than a factor of 10 higher. Lateral variations in lower mantle viscosity are not required. Transient creep appears to be unimportant for the recent response-to-surface loads from Pleistocene deglaciation.

  11. Dataset for acrylate/silica nanoparticles formulations and photocured composites: Viscosity, filler dispersion and bulk Poisson׳s ratio.

    PubMed

    Gojzewski, Hubert; Sadej, Mariola; Andrzejewska, Ewa; Kokowska, Martyna

    2017-06-01

    UV-curable polymer composites are of importance in industry, biomedical applications, scientific fields, and daily life. Outstanding physical properties of polymer composites were achieved with nanoparticles as filler, primarily in enhancing mechanical strength or barrier properties. Structure-property relationships of the resulting nanocomposites are dictated by the polymer-filler molecular architecture, i.e. interactions between polymer matrix and filler, and high surface area to volume ratio of the filler particles. Among monomers, acrylates and methacrylates attracted wide attention due to their ease of polymerization and excellent physicochemical and mechanical properties of the derived polymers. We prepared and photopolymerized two series of formulations containing hydrophobized silica nanofiller (Aerosil R7200) dispersed in 2-hydroxyethyl acrylate (HEA) or polyethylene glycol diacrylate (PEGDA) monomers. We compared selected physical properties of the formulations, both before and after photocuring; specifically the viscosity of formulations and dispersion of the filler in the polymer matrices. Additionally, we estimated the bulk Poisson׳s ratio of the investigated nanocomposites. This article contains data related to the research article entitled "Nanoscale Young׳s modulus and surface morphology in photocurable polyacrylate/nanosilica composites" (Gojzewski et al., 2017) [1].

  12. Shear and bulk viscosities of quark matter from quark-meson fluctuations in the Nambu-Jona-Lasinio model

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabyasachi; Peixoto, Thiago C.; Roy, Victor; Serna, Fernando E.; Krein, Gastão

    2016-04-01

    We have calculated the temperature dependence of shear η and bulk ζ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-π and quark-σ loops at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses and quark-meson couplings are obtained in the Nambu-Jona-Lasinio model. We found a nontrivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios η /s and ζ /s , where s is the entropy density (also determined in the Nambu-Jona-Lasinio model in the quasiparticle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for η /s has a minimum very close to the quantum lower bound, η /s =1 /4 π .

  13. ITER ECH launcher options for start-up assist, bulk heating, and EC current drive experiments

    SciTech Connect

    Bigelow, T.S.

    1994-03-01

    Electron Cyclotron Heating (ECH) is proposed for providing plasma start-up, bulk heating, current drive, and other applications on the International Tokamak Experimental Reactor (ITER) project. The requirements for ECH power launching systems for ITER have been investigated, and several possible configurations that have been devised are described in this report. The proposed launcher designs use oversized circular corrugated waveguides that make small penetrations through the blanket modules and radiate into the plasma. The criteria used for the design calls for minimum blanket penetration area, maximum reliability, and optimum launched beam quality. The effects of the harsh plasma edge environment on the launcher are discussed. Power generation systems, windows, and other components of the ECH systems are also investigated. The designs presented are believed to be capable of operating reliably and are relatively easy to maintain remotely.

  14. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics

    PubMed Central

    Elbaum-Garfinkle, Shana; Kim, Younghoon; Szczepaniak, Krzysztof; Chen, Carlos Chih-Hsiung; Eckmann, Christian R.; Myong, Sua; Brangwynne, Clifford P.

    2015-01-01

    P granules and other RNA/protein bodies are membrane-less organelles that may assemble by intracellular phase separation, similar to the condensation of water vapor into droplets. However, the molecular driving forces and the nature of the condensed phases remain poorly understood. Here, we show that the Caenorhabditis elegans protein LAF-1, a DDX3 RNA helicase found in P granules, phase separates into P granule-like droplets in vitro. We adapt a microrheology technique to precisely measure the viscoelasticity of micrometer-sized LAF-1 droplets, revealing purely viscous properties highly tunable by salt and RNA concentration. RNA decreases viscosity and increases molecular dynamics within the droplet. Single molecule FRET assays suggest that this RNA fluidization results from highly dynamic RNA–protein interactions that emerge close to the droplet phase boundary. We demonstrate than an N-terminal, arginine/glycine rich, intrinsically disordered protein (IDP) domain of LAF-1 is necessary and sufficient for both phase separation and RNA–protein interactions. In vivo, RNAi knockdown of LAF-1 results in the dissolution of P granules in the early embryo, with an apparent submicromolar phase boundary comparable to that measured in vitro. Together, these findings demonstrate that LAF-1 is important for promoting P granule assembly and provide insight into the mechanism by which IDP-driven molecular interactions give rise to liquid phase organelles with tunable properties. PMID:26015579

  15. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics.

    PubMed

    Elbaum-Garfinkle, Shana; Kim, Younghoon; Szczepaniak, Krzysztof; Chen, Carlos Chih-Hsiung; Eckmann, Christian R; Myong, Sua; Brangwynne, Clifford P

    2015-06-09

    P granules and other RNA/protein bodies are membrane-less organelles that may assemble by intracellular phase separation, similar to the condensation of water vapor into droplets. However, the molecular driving forces and the nature of the condensed phases remain poorly understood. Here, we show that the Caenorhabditis elegans protein LAF-1, a DDX3 RNA helicase found in P granules, phase separates into P granule-like droplets in vitro. We adapt a microrheology technique to precisely measure the viscoelasticity of micrometer-sized LAF-1 droplets, revealing purely viscous properties highly tunable by salt and RNA concentration. RNA decreases viscosity and increases molecular dynamics within the droplet. Single molecule FRET assays suggest that this RNA fluidization results from highly dynamic RNA-protein interactions that emerge close to the droplet phase boundary. We demonstrate than an N-terminal, arginine/glycine rich, intrinsically disordered protein (IDP) domain of LAF-1 is necessary and sufficient for both phase separation and RNA-protein interactions. In vivo, RNAi knockdown of LAF-1 results in the dissolution of P granules in the early embryo, with an apparent submicromolar phase boundary comparable to that measured in vitro. Together, these findings demonstrate that LAF-1 is important for promoting P granule assembly and provide insight into the mechanism by which IDP-driven molecular interactions give rise to liquid phase organelles with tunable properties.

  16. Roles of bulk viscosity on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sengupta, Aditi; Sharma, Nidhi; Sengupta, Soumyo; Bhole, Ashish; Shruti, K. S.

    2016-09-01

    Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximation commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes' hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes' hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes' hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.

  17. Roles of bulk viscosity on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts

    SciTech Connect

    Sengupta, Tapan K. Bhole, Ashish; Shruti, K. S.; Sengupta, Aditi; Sharma, Nidhi; Sengupta, Soumyo

    2016-09-15

    Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximation commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes’ hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes’ hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes’ hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.

  18. Hall viscosity

    NASA Astrophysics Data System (ADS)

    Read, Nicholas

    2015-03-01

    Viscosity is a transport coefficient relating to transport of momentum, and usually thought of as the analog of friction that occurs in fluids and solids. More formally, it is the response of the stress to the gradients of the fluid velocity field, or to the rate of change of strain (derivatives of displacement from a reference state). In general, viscosity is described by a fourth-rank tensor. Invoking rotation invariance, it reduces to familiar shear and bulk viscosity parts, which describe dissipation, but it can also contain an antisymmetric part, analogous to the Hall conductivity part of the conductivity tensor. In two dimensions this part is a single number, the Hall viscosity. Symmetry of the system under time reversal (or, in two dimensions, reflections) forces it to vanish. In quantum fluids with a gap in the bulk energy spectrum and which lack both time reversal and reflection symmetries the Hall viscosity can be nonzero even at zero temperature. For integer quantum Hall states, it was first calculated by Avron, Seiler, and Zograf, using a Berry curvature approach, analogous to the Chern number for Hall conductivity. In 2008 this was extended by the present author to fractional quantum Hall states and to BCS states in two dimensions. I found that the general result is given by a simple formula ns / 2 , where n is the particle number density, and s is the ``orbital spin'' per particle. The spin s is also related to the shift S, which enters the relation between particle number and magnetic flux needed to put the ground state on a surface of non-trivial topology with introducing defect excitations, by S = 2 s ; the connection was made by Wen and Zee. The values of s and S are rational numbers, and are robust--unchanged under perturbations that do not cause the bulk energy gap to collapse--provided rotation as well as translation symmetry are maintained. Hall viscosity can be measured in principle, though a simple way to do so is lacking. It enters various

  19. Surface dilatational viscosity of Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    Lopez, Juan; Vogel, Michael; Hirsa, Amir

    2003-11-01

    With increased interest in microfluidic systems, interfacial phenomena is receiving more attention. As the length scales of fluid problems decrease, the surface to volume ratio increases and the coupling between interfacial flow and bulk flow becomes increasingly dominated by effects due to intrinsic surface viscosities (shear and dilatational), in comparison to elastic effects (due to surface tension gradients). The surface shear viscosity is well-characterized, as cm-scale laboratory experiments are able to isolate its effects from other interfacial processes (e.g., in the deep-channel viscometer). The same is not true for the dilatational viscosity, because it acts in the direction of surface tension gradients. Their relative strength scale with the capillary number, and for cm-scale laboratory flows, surface tension effects tend to dominate. In microfluidic scale flows, the scaling favors viscosity. We have devised an experimental apparatus which is capable of isolating and enhancing the effects of dilatational viscosity at the cm scales by driving the interface harmonically in time, while keeping the interface flat. In this talk, we shall present both the theory for how this works as well as experimental measurements of surface velocity from which we deduce the dilatational viscosity of several monolayers on the air-water interface over a substantial range of surface concentrations. Anomalous behavior over some range of concentration, which superficially indicates negative viscosity, maybe explained in terms of compositional effects due to large spatial and temporal variations in concentration and corresponding viscosity.

  20. The detection of lubricating oil viscosity changes in gearbox transmission systems driven by sensorless variable speed drives using electrical supply parameters

    NASA Astrophysics Data System (ADS)

    Abusaad, S.; Brethee, K.; Assaeh, M.; Zhang, R.; Gu, F.; Ball, A. D.

    2015-07-01

    Lubrication oil plays a decisive role to maintain a reliable and efficient operation of gear transmissions. Many offline methods have been developed to monitor the quality of lubricating oils. This work focus on developing a novel online method to diagnose oil degradation based on the measurements from power supply system to the gearbox. Experimental studies based on an 10kW industrial gearbox fed by a sensorless variable speed drive (VSD) shows that measurable changes in both static power and dynamic behaviour are different with lube oils tested. Therefore, it is feasible to use the static power feature to indicate viscosity changes at low and moderate operating speeds. In the meantime, the dynamic feature can separate viscosity changes for all different tested cases.

  1. Lagrangian numerical techniques for modelling multicomponent flow in the presence of large viscosity contrasts: Markers-in-bulk versus Markers-in-chain

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Dabrowski, Marcin; Steinberger, Bernhard

    2015-04-01

    Many problems in geodynamic applications may be described as viscous flow of chemically heterogeneous materials. Examples include subduction of compositionally stratified lithospheric plates, folding of rheologically layered rocks, and thermochemical convection of the Earth's mantle. The associated time scales are significantly shorter than that of chemical diffusion, which justifies the commonly featured phenomena in geodynamic flow models termed contact discontinuities. These are spatially sharp interfaces separating regions of different material properties. Numerical modelling of advection of fields with sharp interfaces is challenging. Typical errors include numerical diffusion, which arises due to the repeated action of numerical interpolation. Mathematically, a material field can be represented by discrete indicator functions, whose values are interpreted as logical statements (e.g. whether or not the location is occupied by a given material). Interpolation of a discrete function boils down to determining where in the intermediate node-positions one material ends, and the other begins. The numerical diffusion error thus manifests itself as an erroneous location of the material-interface. Lagrangian advection-schemes are known to be less prone to numerical diffusion errors, compared to their Eulerian counterparts. The tracer-ratio method, where Lagrangian markers are used to discretize the bulk of materials filling the entire domain, is a popular example of such methods. The Stokes equation in this case is solved on a separate, static grid, and in order to do it - material properties must be interpolated from the markers to the grid. This involves the difficulty related to interpolation of discrete fields. The material distribution, and thus material-properties like viscosity and density, seen by the grid is polluted by the interpolation error, which enters the solution of the momentum equation. Errors due to the uncertainty of interface-location can be

  2. INEFFICIENT DRIVING OF BULK TURBULENCE BY ACTIVE GALACTIC NUCLEI IN A HYDRODYNAMIC MODEL OF THE INTRACLUSTER MEDIUM

    SciTech Connect

    Reynolds, Christopher S.; Balbus, Steven A.; Schekochihin, Alexander A.

    2015-12-10

    Central jetted active galactic nuclei (AGNs) appear to heat the core regions of the intracluster medium (ICM) in cooling-core galaxy clusters and groups, thereby preventing a cooling catastrophe. However, the physical mechanism(s) by which the directed flow of kinetic energy is thermalized throughout the ICM core remains unclear. We examine one widely discussed mechanism whereby the AGN induces subsonic turbulence in the ambient medium, the dissipation of which provides the ICM heat source. Through controlled inviscid three-dimensional hydrodynamic simulations, we verify that explosive AGN-like events can launch gravity waves (g-modes) into the ambient ICM, which in turn decays to volume-filling turbulence. In our model, however, this process is found to be inefficient, with less than 1% of the energy injected by the AGN activity actually ending up in the turbulence of the ambient ICM. This efficiency is an order of magnitude or more too small to explain the observations of AGN-feedback in galaxy clusters and groups with short central cooling times. Atmospheres in which the g-modes are strongly trapped/confined have an even lower efficiency since, in these models, the excitation of turbulence relies on the g-modes’ ability to escape from the center of the cluster into the bulk ICM. Our results suggest that, if AGN-induced turbulence is indeed the mechanism by which the AGN heats the ICM core, its driving may rely on physics beyond that captured in our ideal hydrodynamic model.

  3. Pulmonary deposition of fine particles in man while breathing gases of different kinematic viscosity: a means of studying the bulk transport of particles in the lung

    SciTech Connect

    Carpin, J.C.

    1986-01-01

    To investigate the effect of convective forces along particle deposition, measurements were made successively in gases of different kinematic viscosities (air, a Heliox mixture (HeO) and a sulfur-hexafluoride-oxygen mixture (SfO)) under identical breathing conditions. The experimental method enabled a change in convective transport without changing tidal volume or frequency. Intrinsic particle motion was made essentially the same in the three gas mixtures by the appropriate choice of particle size. Steady state deposition measurements were performed in three male subjects at two breathing rates and two tidal volumes and for all three carrier gases. Deposition was found to vary little with the type of gas mixture inhaled at the 15 bpm - 1 liter conditions despite the fact that there was a 11-fold change in kinematic viscosity.

  4. Dissipative random quantum spin chain with boundary-driving and bulk-dephasing: magnetization and current statistics in the non-equilibrium-steady-state

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2017-04-01

    The Lindblad dynamics with dephasing in the bulk and magnetization-driving at the two boundaries is studied for the quantum spin chain with random fields h j and couplings J j (that can be either uniform or random). In the regime of strong disorder in the random fields, or in the regime of strong bulk-dephasing, the effective dynamics can be mapped onto a classical simple symmetric exclusion process with quenched disorder in the diffusion coefficient associated to each bond. The properties of the corresponding non-equilibrium-steady-state in each disordered sample between the two reservoirs are studied in detail by extending the methods that have been previously developed for the symmetric exclusion process without disorder. Explicit results are given for the magnetization profile, for the two-point correlations, for the mean current and for the current fluctuations, in terms of the random fields and couplings defining the disordered sample.

  5. Imaging aerosol viscosity

    NASA Astrophysics Data System (ADS)

    Pope, Francis; Athanasiadis, Thanos; Botchway, Stan; Davdison, Nicholas; Fitzgerald, Clare; Gallimore, Peter; Hosny, Neveen; Kalberer, Markus; Kuimova, Marina; Vysniauskas, Aurimas; Ward, Andy

    2017-04-01

    Organic aerosol particles play major roles in atmospheric chemistry, climate, and public health. Aerosol particle viscosity is important since it can determine the ability of chemical species such as oxidants, organics or water to diffuse into the particle bulk. Recent measurements indicate that OA may be present in highly viscous states; however, diffusion rates of small molecules such as water appear not to be limited by these high viscosities. We have developed a technique for measuring viscosity that allows for the imaging of aerosol viscosity in micron sized aerosols through use of fluorescence lifetime imaging of viscosity sensitive dyes which are also known as 'molecular rotors'. These rotors can be introduced into laboratory generated aerosol by adding minute quantities of the rotor to aerosol precursor prior to aerosolization. Real world aerosols can also be studied by doping them in situ with the rotors. The doping is achieved through generation of ultrafine aerosol particles that contain the rotors; the ultrafine aerosol particles deliver the rotors to the aerosol of interest via impaction and coagulation. This work has been conducted both on aerosols deposited on microscope coverslips and on particles that are levitated in their true aerosol phase through the use of a bespoke optical trap developed at the Central Laser Facility. The technique allows for the direct observation of kinetic barriers caused by high viscosity and low diffusivity in aerosol particles. The technique is non-destructive thereby allowing for multiple experiments to be carried out on the same sample. It can dynamically quantify and track viscosity changes during atmospherically relevant processes such oxidation and hygroscopic growth (1). This presentation will focus on the oxidation of aerosol particles composed of unsaturated and saturated organic species. It will discuss how the type of oxidant, oxidation rate and the composition of the oxidized products affect the time

  6. Comparing near-infrared conventional diffuse reflectance spectroscopy and hyperspectral imaging for determination of the bulk properties of solid samples by multivariate regression: determination of Mooney viscosity and plasticity indices of natural rubber.

    PubMed

    Juliano da Silva, Carlos; Pasquini, Celio

    2015-01-21

    Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample

  7. Fluid viscosity under confined conditions

    NASA Astrophysics Data System (ADS)

    Rudyak, V. Ya.; Belkin, A. A.

    2014-12-01

    Closed equations of fluid transfer in confined conditions are constructed in this study using ab initio methods of nonequilibrium statistical mechanics. It is shown that the fluid viscosity is not determined by the fluid properties alone, but becomes a property of the "fluid-nanochannel walls" system as a whole. Relations for the tensor of stresses and the interphase force, which specifies the exchange by momentum of fluid molecules with the channel-wall molecules, are derived. It is shown that the coefficient of viscosity is now determined by the sum of three contributions. The first contribution coincides with the expression for the coefficient of the viscosity of fluid in the bulk being specified by the interaction of fluid molecules with each other. The second contribution has the same structure as the first one but is determined by the interaction of fluid molecules with the channel-wall molecules. Finally, the third contribution has no analog in the usual statistical mechanics of transport processes of a simple fluid. It is associated with the correlation of intermolecular forces of the fluid and the channel walls. Thus, it is established that the coefficient of viscosity of fluid in sufficiently small channels will substantially differ from its bulk value.

  8. Non-Newtonian Viscosity of Escherichia coli Suspensions

    NASA Astrophysics Data System (ADS)

    Gachelin, Jérémie; Miño, Gastón; Berthet, Hélène; Lindner, Anke; Rousselet, Annie; Clément, Éric

    2013-06-01

    The viscosity of an active suspension of E. coli bacteria is determined experimentally as a function of the shear rate using a Y-shaped microfluidic channel. From the relative suspension viscosity, we identify rheological thickening and thinning regimes as well as situations at low shear rate where the viscosity of the bacteria suspension can be lower than the viscosity of the suspending fluid. In addition, bacteria concentration and velocity profiles in the bulk are directly measured in the microchannel.

  9. Viscosity-dependent protein dynamics.

    PubMed

    Finkelstein, Ilya J; Massari, Aaron M; Fayer, M D

    2007-05-15

    Spectrally resolved stimulated vibrational echo spectroscopy is used to investigate the dependence of fast protein dynamics on bulk solution viscosity at room temperature in four heme proteins: hemoglobin, myoglobin, a myoglobin mutant with the distal histidine replaced by a valine (H64V), and a cytochrome c552 mutant with the distal methionine replaced by an alanine (M61A). Fructose is added to increase the viscosity of the aqueous protein solutions over many orders of magnitude. The fast dynamics of the four globular proteins were found to be sensitive to solution viscosity and asymptotically approached the dynamical behavior that was previously observed in room temperature sugar glasses. The viscosity-dependent protein dynamics are analyzed in the context of a viscoelastic relaxation model that treats the protein as a deformable breathing sphere. The viscoelastic model is in qualitative agreement with the experimental data but does not capture sufficient system detail to offer a quantitative description of the underlying fluctuation amplitudes and relaxation rates. A calibration method based on the near-infrared spectrum of water overtones was constructed to accurately determine the viscosity of small volumes of protein solutions.

  10. An acoustic transmission sensor for the longitudinal viscosity of fluids.

    PubMed

    Antlinger, Hannes; Clara, Stefan; Beigelbeck, Roman; Cerimovic, Samir; Keplinger, Franz; Jakoby, Bernhard

    2013-11-01

    Physical fluid parameters like viscosity, mass density and sound velocity can be determined utilizing ultrasonic sensors. We introduce the concept of a recently devised transmission based sensor utilizing pressure waves to determine the longitudinal viscosity, bulk viscosity, and second coefficient of viscosity of a sample fluid in a test chamber. A model is presented which allows determining these parameters from measurement values by means of a fit. The setup is particularly suited for liquids featuring higher viscosities for which measurement data are scarcely available to date. The setup can also be used to estimate the sound velocity in a simple manner from the phase of the transfer function.

  11. An acoustic transmission sensor for the longitudinal viscosity of fluids

    PubMed Central

    Antlinger, Hannes; Clara, Stefan; Beigelbeck, Roman; Cerimovic, Samir; Keplinger, Franz; Jakoby, Bernhard

    2013-01-01

    Physical fluid parameters like viscosity, mass density and sound velocity can be determined utilizing ultrasonic sensors. We introduce the concept of a recently devised transmission based sensor utilizing pressure waves to determine the longitudinal viscosity, bulk viscosity, and second coefficient of viscosity of a sample fluid in a test chamber. A model is presented which allows determining these parameters from measurement values by means of a fit. The setup is particularly suited for liquids featuring higher viscosities for which measurement data are scarcely available to date. The setup can also be used to estimate the sound velocity in a simple manner from the phase of the transfer function. PMID:25844023

  12. Anisotropic eddy viscosity models

    NASA Technical Reports Server (NTRS)

    Carati, D.; Cabot, W.

    1996-01-01

    A general discussion on the structure of the eddy viscosity tensor in anisotropic flows is presented. The systematic use of tensor symmetries and flow symmetries is shown to reduce drastically the number of independent parameters needed to describe the rank 4 eddy viscosity tensor. The possibility of using Onsager symmetries for simplifying further the eddy viscosity is discussed explicitly for the axisymmetric geometry.

  13. Hydrophilicity and the viscosity of interfacial water.

    PubMed

    Goertz, Matthew P; Houston, J E; Zhu, X-Y

    2007-05-08

    We measure the viscosity of nanometer-thick water films at the interface with an amorphous silica surface. We obtain viscosity values from three different measurements: friction force in a water meniscus formed between an oxide-terminated W tip and the silica surface under ambient conditions; similar measurements for these interfaces under water; and the repulsive "drainage" force as the two surfaces approach at various speeds in water. In all three cases, we obtain effective viscosities that are approximately 10(6) times greater than that of bulk water for nanometer-scale interfacial separations. This enhanced viscosity is not observed when we degrade the hydrophilicity of the surface by terminating it with -H or -CH3. In view of recent results from other interfaces, we conclude that the criterion for the formation of a viscous interphase is the degree of hydrophilicity of the interfacial pair.

  14. Driving vertical phase separation in a bulk-heterojunction by inserting a poly(3-hexylthiophene) layer for highly efficient organic solar cells

    SciTech Connect

    Oh, Jin Young; Jang, Woo Soon; Lee, Tae Il; Myoung, Jae-Min; Baik, Hong Koo

    2011-01-10

    A desirable vertical phase separation of a bulk-heterojunction was achieved by inserting a P3HT layer between the blend layer and the poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) layer. According to the high (PEDOT:PSS) and low (P3HT) surface energies of substrate, it might be possible to modulate the vertical phase separation in the bulk-heterojunction. The result of vertical phase separation was determined using time-of-flight secondary-ion mass spectroscopy analysis. A controlled thickness of 50 nm for the inserted P3HT layer prevented undesirable light absorption and the power conversion efficiency of this condition was increased by 44% compared to that of a reference device.

  15. Dynamics of charged bulk viscous collapsing cylindrical source with heat flux

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Abbas, G.

    2017-04-01

    In this paper, we have explored the effects of dissipation on the dynamics of charged bulk viscous collapsing cylindrical source which allows the out-flow of heat flux in the form of radiations. The Misner-Sharp formalism has been implemented to drive the dynamical equation in terms of proper time and radial derivatives. We have investigated the effects of charge and bulk viscosity on the dynamics of collapsing cylinder. To determine the effects of radial heat flux, we have formulated the heat transport equations in the context of Müller-Israel-Stewart theory by assuming that thermodynamics viscous/heat coupling coefficients can be neglected within some approximations. In our discussion, we have introduced the viscosity by the standard (non-causal) thermodynamics approach. The dynamical equations have been coupled with the heat transport equation; the consequences of the resulting coupled heat equation have been analyzed in detail.

  16. Effect of Fluid Viscosity on the Cilia-Generated Flow on a Mouse Tracheal Lumen.

    PubMed

    Kikuchi, Kenji; Haga, Tomofumi; Numayama-Tsuruta, Keiko; Ueno, Hironori; Ishikawa, Takuji

    2017-04-01

    Mucous flow in a tracheal lumen is generated by the beat motion of ciliated cells to provide a clearance function by discharging harmful dust particles and viruses. Due to its physiological importance, the cilia-generated flow and the rheological properties of mucus have been investigated intensively. The effects of viscosity on the cilia-generated flow, however, have not been fully clarified. In this study, we measured bulk background velocity of ciliary flow using a micro particle tracking velocimetry method under various viscosity conditions in mice. The results showed that the flow velocity decreased as the increase with viscosity of ambient fluid. Moreover, no previous study has clarified the pump power generated by cilia, which provides important information with regard to understanding the molecular motor properties of cilia. Measurements of both the ciliary flow and the ciliary motion were conducted to determine the cilia pump power. Our results indicated that the cilia pump during the effective stroke did not drive the ciliary flow efficiently under high viscosity conditions; these findings are necessary to resolve the clearance function.

  17. Optical viscosity sensor

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Ling; Peyroux, Juliette; Perez, Alex; Tsui, Chi-Leung; Wang, Wei-Chih

    2009-03-01

    Viscosity measurement by bend loss of fiber is presented. The sensing principle makes use of the damping characteristic of a vibrating optical fiber probe with fix-free end configuration. By measuring the displacement of the fiber probe, the viscosity can be determined by matching the probe's displacement with the displacement built in the database obtained by either experimental method or Finite element calculation. Experimental results are presented by measuring the sucrose and glycerol solutions of different concentrations with a viscosity varying from 1 to 15 cP. Stokes' flow assumption is utilized to attenuate the mass density effect and simplify the viscosity measurement.

  18. Viscosity of a nanoconfined liquid during compression

    NASA Astrophysics Data System (ADS)

    Khan, Shah H.; Kramkowski, Edward L.; Ochs, Peter J.; Wilson, David M.; Hoffmann, Peter M.

    2014-01-01

    The viscous behavior of liquids under nanoconfinement is not well understood. Using a small-amplitude atomic force microscope, we found bulk-like viscosity in a nanoconfined, weakly interacting liquid. A further decrease in viscosity was observed at confinement sizes of a just few molecular layers. Overlaid over the continuum viscous behavior, we measured non-continuum stiffness and damping oscillations. The average stiffness of the confined liquid was found to scale linearly with the size of the confining tip, while the damping scales with the radius of curvature of the tip end.

  19. Viscosity and Solvation

    ERIC Educational Resources Information Center

    Robertson, C. T.

    1973-01-01

    Discusses theories underlying the phenomena of solution viscosities, involving the Jones and Dole equation, B-coefficient determination, and flickering cluster model. Indicates that viscosity measurements provide a basis for the study of the structural effects of ions in aqueous solutions and are applicable in teaching high school chemistry. (CC)

  20. Viscosity measuring using microcantilevers

    DOEpatents

    Oden, Patrick Ian

    2001-01-01

    A method for the measurement of the viscosity of a fluid uses a micromachined cantilever mounted on a moveable base. As the base is rastered while in contact with the fluid, the deflection of the cantilever is measured and the viscosity determined by comparison with standards.

  1. Viscosity and Solvation

    ERIC Educational Resources Information Center

    Robertson, C. T.

    1973-01-01

    Discusses theories underlying the phenomena of solution viscosities, involving the Jones and Dole equation, B-coefficient determination, and flickering cluster model. Indicates that viscosity measurements provide a basis for the study of the structural effects of ions in aqueous solutions and are applicable in teaching high school chemistry. (CC)

  2. Drop spreading with random viscosity

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Jensen, Oliver E.

    2016-10-01

    We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid's viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop's motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop's effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated viscosity within the precursor film to hinder spreading. A low-order model provides explicit predictions of the variances in spreading rate and drop location, which are validated against simulations.

  3. Drop spreading with random viscosity

    PubMed Central

    2016-01-01

    We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid’s viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop’s motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop’s effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated viscosity within the precursor film to hinder spreading. A low-order model provides explicit predictions of the variances in spreading rate and drop location, which are validated against simulations. PMID:27843398

  4. CASEIN VISCOSITY STUDIES

    PubMed Central

    Zoller, Harper F.

    1921-01-01

    1. Viscosity and pH curves of casein dissolved in NaOH, KOH, LiOH, and NH4OH are shown and it is found that a maximum viscosity occurs at about the same pH point with each alkali; i.e., 9.1 to 9.25. The magnitude of the viscosity is largest in ammonia solutions. 2. The maximum viscosity occurs in 8 to 10 per cent solutions of casein in alkalies when about 98 x 10–5 gram equivalents of base are combined with 1 gram of casein. 3. A maximum viscosity occurs in the same region (pH 9.1 to 9.25) when casein is dissolved in Na2CO3, Na3AsO4, Na2SO3, NaF, and Na2PO3. 4. The maximum viscosity obtained with borax solutions of casein occurs at 8.15 to 8.2 pH. It is suggested that casein acts like mannitol, glycerol, etc., in increasing the dissociation of boric acid. 5. The flattening of the viscosity curves of casein solutions, following the decline from maximum, is shown to be due to alkaline hydrolysis whence casein no longer exists as such but is cleaved into a major protein containing no phosphorus or sulfur and less nitrogen. This cleavage commences at pH 10.0 to 10.5. 6. When casein is prepared from solutions that have been subjected to high temperatures (60°C. and above) or has otherwise been heated during its preparation, it yields solutions in alkalies of high viscosity. PMID:19871893

  5. Viscosity near Earth's solid inner core

    PubMed

    Smylie

    1999-04-16

    Anomalous splitting of the two equatorial translational modes of oscillation of Earth's solid inner core is used to estimate the effective viscosity just outside its boundary. Superconducting gravimeter observations give periods of 3.5822 +/- 0.0012 (retrograde) and 4.0150 +/- 0.0010 (prograde) hours. With the use of Ekman layer theory to estimate viscous drag forces, an inferred single viscosity of 1.22 x 10(11) Pascal seconds gives calculated periods of 3.5839 and 4.0167 hours for the two modes, close to the observed values. The large effective viscosity is consistent with a fluid, solid-liquid mixture surrounding the inner core associated with the "compositional convection" that drives Earth's geodynamo.

  6. Effective viscosity of dilute bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Haines, Brian M.

    This dissertation explores the bulk (volume averaged) properties of suspensions of microswimmers in a fluid. A microswimmer is a microscopic object that propels itself through a fluid. A common example of a microswimmer is a bacterium, such as Bacillus subtilis. Our particular interest is the bulk rheological properties of suspensions of bacteria -- that is, studying how such a suspension deforms under the application of an external force. In the simplest case, the rheology of a fluid can be described by a scalar effective viscosity. The goal of this dissertation is to find explicit formulae for the effective viscosity in terms of known geometric and physical parameters characterizing bacteria and use them to explain experimental observations. Throughout the dissertation, we consider bacterial suspensions in the dilute limit, where bacteria are assumed to be so far apart that interactions between them are negligible. This simplifies calculations significantly and is the regime in which the most striking experimental results have been observed. We first study suspensions of self-propelled particles using a two-dimensional (2D) Partial Differential Equation (PDE) model. A bacterium is modeled as a disk in 2D with self-propulsion provided by a point force in the fluid. A formula is obtained for the effective viscosity of such suspensions in the dilute limit. This formula includes the two terms that are found in the 2D version of Einstein's classical result for a passive suspension of spheres. To this, our main contribution is added, an additional term due to self-propulsion which depends on the physical and geometric properties of the suspension. This work demonstrates how bacterial self-propulsion can alter the viscosity of a fluid and highlights the importance of bacterial orientation. Next, we present a more realistic PDE model for dilute suspensions of swimming bacteria in a three-dimensional fluid. In this work, a bacterium is modeled as a prolate spheroid with

  7. Viscosity in Saturn's rings

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Shu, F. H.; Cuzzi, J. N.

    1982-01-01

    The technique of estimating the viscosity in Saturn's rings from the damping rate of waves observed to be propagating within the rings is discussed. The wavetrains of attempts using spiral density waves as a diagnostic suffer significant complications that compromise the interpretations. A method that considers the damping of spiral bending waves was used to deduce a kinematic viscosity of 260 (+150, -100) sqcm/sec for the middle of the A ring where bending waves are excited by the 5:3 vertical resonance with Mimas. This value implies upper limits on the particle velocity dispersion and local ring thickness of 0.4 cm/sec and 30 m, respectively.

  8. Role of surface in apparent viscosity of glasses

    NASA Astrophysics Data System (ADS)

    Avramov, I.

    2014-03-01

    Two problems have intrigued experts for a long time: The one is within the context of the legend of flowing cathedral glass windows and the second is the inaccuracy appearing in very old thermometers of famous scientists. We relate this with the role of the surface on the apparent viscosity of glasses. The apparent viscosity could deviate from the bulk viscosity if the fraction w of the surface molecules, of small samples, is sufficiently large. The effect is more prominent at low temperatures, correspondingly at high viscosities. The interpretation is within the Avramov and Milchev viscosity model, combined with the predictions of the change of heat capacity for extremely small samples. We find that the apparent glass transition temperature could depend on the sample size, in agreement with experimental observations existing in the literature. In addition to glasses, the present results could be of importance for thin films and foams.

  9. Role of surface in apparent viscosity of glasses.

    PubMed

    Avramov, I

    2014-03-01

    Two problems have intrigued experts for a long time: The one is within the context of the legend of flowing cathedral glass windows and the second is the inaccuracy appearing in very old thermometers of famous scientists. We relate this with the role of the surface on the apparent viscosity of glasses. The apparent viscosity could deviate from the bulk viscosity if the fraction w of the surface molecules, of small samples, is sufficiently large. The effect is more prominent at low temperatures, correspondingly at high viscosities. The interpretation is within the Avramov and Milchev viscosity model, combined with the predictions of the change of heat capacity for extremely small samples. We find that the apparent glass transition temperature could depend on the sample size, in agreement with experimental observations existing in the literature. In addition to glasses, the present results could be of importance for thin films and foams.

  10. Damping of drop oscillations by surfactants and surface viscosity

    NASA Technical Reports Server (NTRS)

    Rush, Brian M.; Nadim, Ali

    1999-01-01

    An energy equation is derived for the general case of a viscous drop suspended in a viscous medium with surfactants contaminating the interface. It contains terms that clearly identify dissipation contributions from the viscous effects in the bulk fluids, surface shear and dilatational viscosity effects at the interface, and surfactant transport. An efficient boundary integral method is developed which incorporates the effects of a constant surface dilatational viscosity in simulations of an oscillating two-dimensional inviscid drop. Surface dilatational viscosity is shown to have a significant damping effect on the otherwise undamped inviscid oscillations.

  11. Viscosity of colloidal suspensions

    SciTech Connect

    Cohen, E.G.D.; Schepper, I.M. de

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  12. Viscosity of Campi Flregrei (Italy) magmas

    NASA Astrophysics Data System (ADS)

    Misiti, Valeria; Vetere, Francesco; Scarlato, Piergiorgio; Behrens, Harald; Mangiacapra, Annarita; Freda, Carmela

    2010-05-01

    Viscosity is an important factor governing both intrusive and volcanic processes. The most important parameters governing silicate melts viscosity are bulk composition of melt and temperature. Pressure has only minor effect at crustal depths, whereas crystals and bubbles have significant influence. Among compositional parameters, the water content is critical above all in terms of rheological behaviour of melts and explosive style of an eruption. Consequently, without an appropriate knowledge of magma viscosity depending on the amount of dissolved volatiles, it is not possible to model the processes (i.e., magma ascent, fragmentation, and dispersion) required to predict realistic volcanic scenarios and thus forecast volcanic hazards. The Campi Flegrei are a large volcanic complex (~150 km2) located west of the city of Naples, Italy, that has been the site of volcanic activity for more than 60 ka and represents a potential volcanic hazard owing to the large local population. In the frame of a INGV-DPC (Department of Civil Protection) project devoted to design a multidisciplinary system for short-term volcano hazard evaluation, we performed viscosity measurements, under dry and hydrous conditions, of primitive melt compositions representative of two Campi Flegrei eruptions (Minopoli-shoshonite and Fondo Riccio-latite). Viscosity of the two melts have been investigated in the high temperature/low viscosity range at atmospheric pressure in dry samples and at 0.5 GPa in runs having water content from nominally anhydrous to about 3 wt%. Data in the low temperature/high viscosity range were obtained near the glass transition temperature at atmospheric pressure on samples whose water contents vary from 0.3 up to 2.43 wt%. The combination of high- and low-viscosity data permits a general description of the viscosity as a function of temperature and water content using a modified Tamman-Vogel-Fulcher equation. logν = a+ --b--+ --d--×exp(g × w-) (T - c) (T - e) T (1) where

  13. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  14. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  15. Bulk undercooling

    NASA Technical Reports Server (NTRS)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  16. Photoacoustic measurement of liquid viscosity

    NASA Astrophysics Data System (ADS)

    Lou, Cunguang; Xing, Da

    2010-05-01

    In this letter, we report on the use of photoacoustic method to measure the viscosity of viscous liquids. The theoretical and experimental study was performed on the influence of viscosity effects on photoacoustic generation. We provide evidence that the frequency spectrum of photoacoustic signal is precisely related to the viscosity. Measurements are validated on different water-glycerol mixtures. Good agreement between theoretical and experimental results is obtained. This present method provides an insight into in situ viscosity measurements, which has potential for noninvasive detection of blood viscosity.

  17. Constraints on Crustal Viscosity from Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Houseman, Gregory

    2015-04-01

    Laboratory measurements of the ductile deformation of crustal rocks demonstrate a range of crystal deformation mechanisms that may be represented by a viscous deformation law, albeit one in which the effective viscosity may vary by orders of magnitude, depending on temperature, stress, grain size, water content and other factors. In such measurements these factors can be separately controlled and effective viscosities can be estimated more or less accurately, though the measured deformation occurs on much shorter time scales and length scales than are typical of geological deformation. To obtain bulk measures of the in situ crustal viscosity law for actual geological processes, estimated stress differences are balanced against measured surface displacement or strain rates: at the continental scale, surface displacement and strain rates can be effectively measured using GPS, and stress differences can be estimated from the distribution of gravitational potential energy; this method has provided constraints on a depth-averaged effective viscosity for the lithosphere as a whole in regions that are actively deforming. Another technique measures the post-seismic displacements that are interpreted to occur in the aftermath of a large crustal earthquake. Stress-differences here are basically constrained by the co-seismic deformation and the elastic rigidity (obtained from seismic velocity) and the strain rates are again provided by GPS. In this technique the strain is a strong function of position relative to the fault, so in general the interpretation of this type of data depends on a complex calculation in which various simplifying assumptions must be made. The spatial variation of displacement history on the surface in this case contains information about the spatial variation of viscosity within the crust. Recent post-seismic studies have shown the potential for obtaining measurements of both depth variation and lateral variation of viscosity in the crust beneath

  18. Crustal Viscosity Structure Estimated from Multi-Phase Mixing Theory

    NASA Astrophysics Data System (ADS)

    Shinevar, W. J.; Behn, M. D.; Hirth, G.

    2014-12-01

    Estimates of lower crustal viscosity are typically constrained by analyses of isostatic rebound, post seismic creep, and laboratory-derived flow laws for crustal rocks and minerals. Here we follow a new approach for calculating the viscosity structure of the lower continental crust. We use Perple_X to calculate mineral assemblages for different crustal compositions. Effective viscosity is then calculated using the rheologic mixing model of Huet et al. (2014) incorporating flow laws for each mineral phase. Calculations are performed along geotherms appropriate for the Basin and Range, Tibetan Plateau, Colorado Plateau, and the San Andreas Fault. To assess the role of crustal composition on viscosity, we examined two compositional gradients extending from an upper crust with ~67 wt% SiO2 to a lower crust that is either: (i) basaltic with ~53 wt% SiO2 (Rudnick and Gao, 2003), or (ii) andesitic with ~64% SiO2 (Hacker et al., 2011). In all cases, the middle continental crust has a viscosity that is 2-3 orders of magnitude greater than that inferred for wet quartz, a common proxy for mid-crustal viscosities. An andesitic lower crust results in viscosities of 1020-1021 Pa-s and 1021-1022 Pa-s for hotter and colder crustal geotherms, respectively. A mafic lower crust predicts viscosities that are an order of magnitude higher for the same geotherm. In all cases, the viscosity calculated from the mixing model decreases less with depth compared to single-phase estimates. Lastly, for anhydrous conditions in which alpha quartz is stable, we find that there is a strong correlation between Vp/Vs and bulk viscosity; in contrast, little to no correlation exists for hydrous conditions.

  19. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Because xenon near the critical point will collapse under its own weight, experiments on Earth (green line) are limited as they get closer (toward the left) to the critical point. CVX in the microgravity of space (red line) moved into unmeasured territory that scientists had not been able to reach.

  20. Viscosity Destabilizes Sonoluminescing Bubbles

    NASA Astrophysics Data System (ADS)

    Toegel, Ruediger; Luther, Stefan; Lohse, Detlef

    2006-03-01

    In single-bubble sonoluminescence (SBSL) microbubbles are trapped in a standing sound wave, typically in water or water-glycerol mixtures. However, in viscous liquids such as glycol, methylformamide, or sulphuric acid it is not possible to trap the bubble in a stable position. This is very peculiar as larger viscosity normally stabilizes the dynamics. Suslick and co-workers call this new mysterious state of SBSL “moving-SBSL.” We identify the history force (a force nonlocal in time) as the origin of this destabilization and show that the instability is parametric. A force balance model quantitatively accounts for the observed quasiperiodic bubble trajectories.

  1. Viscosity destabilizes sonoluminescing bubbles.

    PubMed

    Toegel, Ruediger; Luther, Stefan; Lohse, Detlef

    2006-03-24

    In single-bubble sonoluminescence (SBSL) microbubbles are trapped in a standing sound wave, typically in water or water-glycerol mixtures. However, in viscous liquids such as glycol, methylformamide, or sulphuric acid it is not possible to trap the bubble in a stable position. This is very peculiar as larger viscosity normally stabilizes the dynamics. Suslick and co-workers call this new mysterious state of SBSL "moving-SBSL." We identify the history force (a force nonlocal in time) as the origin of this destabilization and show that the instability is parametric. A force balance model quantitatively accounts for the observed quasiperiodic bubble trajectories.

  2. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The sample cell at the heart of CVX-2 will sit inside a thermostat providing three layers of insulation. The cell itself comprises a copper body that conducts heat efficiently and smoothes out thermal variations that that would destroy the xenon's uniformity. Inside the cell, the oscillating screen viscometer element is supported between two pairs of electrodes that deflect the screen and then measure screen motion.

  3. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2001 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure that is placed inside a pressure canister. A similar canister holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD. This is a detail view of MSFC 0100143.

  4. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Because xenon near the critical point will collapse under its own weight, experiments on Earth (green line) are limited as they get closer (toward the left) to the critical point. CVX in the microgravity of space (red line) moved into unmeasured territory that scientists had not been able to reach.

  5. Experimental understanding of the viscosity reduction ability of TLCPs with different PEs

    NASA Astrophysics Data System (ADS)

    Tang, Youhong; Zuo, Min; Gao, Ping

    2014-08-01

    In this study, two thermotropic liquid crystalline polyesters (TLCPs) synthesized by polycondensation of p-hydroxybenzoic acid /hydroquinone/ poly dicarboxylic acid were used as viscosity reduction agents for polyethylene (PE). The TLCPs had different thermal, rheological and other physical properties that were quantitatively characterized. The two TLCPs were blended with high density PE (HDPE) and high molecular mass PE (HMMPE) by simple twin screw extrusion under the same weight ratio of 1.0 wt% and were each rheologically characterized at 190°C. The TLCPs acted as processing modifiers for the PEs and the bulk viscosity of the blends decreased dramatically. However, the viscosity reduction ability was not identical: one TLCP had obviously higher viscosity reduction ability on the HDPE, with a maximum viscosity reduction ratio of 68.1%, whereas the other TLCP had higher viscosity reduction ability on the HMMPE, with a maximum viscosity reduction ratio of 98.7%. Proposed explanations for these differences are evaluated.

  6. Viscosity of the earth's core.

    NASA Technical Reports Server (NTRS)

    Gans, R. F.

    1972-01-01

    Calculation of the viscosity of the core at the boundary of the inner and outer core. It is assumed that this boundary is a melting transition and the viscosity limits of the Andrade (1934,1952) hypothesis (3.7 to 18.5 cp) are adopted. The corresponding kinematic viscosities are such that the precessional system explored by Malkus (1968) would be unstable. Whether it would be sufficiently unstable to overcome a severely subadiabatic temperature gradient cannot be determined.

  7. Viscosity of the earth's core.

    NASA Technical Reports Server (NTRS)

    Gans, R. F.

    1972-01-01

    Calculation of the viscosity of the core at the boundary of the inner and outer core. It is assumed that this boundary is a melting transition and the viscosity limits of the Andrade (1934,1952) hypothesis (3.7 to 18.5 cp) are adopted. The corresponding kinematic viscosities are such that the precessional system explored by Malkus (1968) would be unstable. Whether it would be sufficiently unstable to overcome a severely subadiabatic temperature gradient cannot be determined.

  8. Viscosity measuring instrument

    NASA Technical Reports Server (NTRS)

    Feinstein, S. P. (Inventor)

    1980-01-01

    A method and apparatus are provided for enabling the measurement of the viscosity of substances, especially those containing volatiles at elevated temperatures, with greater accuracy and at less cost than before. The apparatus includes a cylinder with a narrow exit opening at one end and a piston which closely slides within the cylinder to apply force against a sample in the cylinder to force the sample through the exit opening. In order to more rapidly heat a sample the ends of the cylinder and piston are tapered and the sample is correspondingly tapered, to provide a large surface to volume ratio. A corresponding coal sample is formed by compressing particles of coal under high pressure in a mold of appropriate shape.

  9. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of liquid xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Resembling a tiny bit of window screen, the oscillator at the heart of CVX-2 will vibrate between two pairs of paddle-like electrodes. The slight bend in the shape of the mesh has no effect on the data. What counts are the mesh's displacement in the xenon fluid and the rate at which the displacement dampens. The unit shown here is encased in a small test cell and capped with a sapphire windown to contain the xenon at high pressure.

  10. Shear viscosity of inhomogeneous fluids.

    PubMed

    Hoang, Hai; Galliero, Guillaume

    2012-03-28

    Using molecular dynamics simulations on inhomogeneous fluids, we have studied the effects of strong density inhomogeneities of varying wavelengths on the shear viscosity computed locally. For dense fluids, the local average density model combined with an adequate weight function yields a good description of the viscosity profiles obtained by simulations. However, for low density inhomogeneous fluids, the local average density model is unable to describe correctly the viscosity profiles obtained by simulations. It is shown that this weakness can be overcome by taking into account the density inhomogeneity in the local translational contribution to the viscosity using a density gradient like approach.

  11. Negative-viscosity lattice gases

    SciTech Connect

    Rothman, D.H. )

    1989-08-01

    A new irreversible collision rule is introduced for lattice-gas automata. The rule maximizes the flux of momentum in the direction of the local momentum gradient, yielding a negative shear viscosity. Numerically results in 2D show that the negative viscosity leads to the spontaneous ordering of the velocity field, with vorticity resolvable down to one lattice-link length. The new rule may be used in conjunction with previously proposed collision rules to yield a positive shear viscosity lower than the previous rules provide. In particular, Poiseuille flow tests demonstrate a decrease in viscosity by more than a factor of 2.

  12. FRW bulk viscous cosmology with modified cosmic Chaplygin gas

    NASA Astrophysics Data System (ADS)

    Saadat, H.; Pourhassan, B.

    2013-03-01

    In this paper we study FRW bulk viscous cosmology in presence of modified cosmic Chaplygin gas. We obtain generalized Friedmann equations due to bulk viscosity and modified cosmic Chaplygin gas. Then, we calculate time-dependent energy density and discuss Hubble expansion parameter.

  13. Analytical shear viscosity in hyperscaling violating black brane

    NASA Astrophysics Data System (ADS)

    Kuang, Xiao-Mei; Wu, Jian-Pin

    2017-10-01

    In this letter, with the use of matching method, we investigate the shear viscosity in a non-relativistic boundary filed theory without hyperscaling symmetry, which is dual to a bulk charged hyperscaling violating black brane. By matching the solutions to the inner region and outer region at the matching region, we analytically obtain that the ratio of shear viscosity and the entropy density is alway 1 / 4 π at zero temperature and finite temperatures. Our results satisfy the Kovtun-Starinets-Son (KSS) bound.

  14. Effective Viscosity Coefficient of Nanosuspensions

    NASA Astrophysics Data System (ADS)

    Rudyak, V. Ya.; Belkin, A. A.; Egorov, V. V.

    2008-12-01

    Systematic calculations of the effective viscosity coefficient of nanosuspensions have been performed using the molecular dynamics method. It is established that the viscosity of a nanosuspension depends not only on the volume concentration of the nanoparticles but also on their mass and diameter. Differences from Einstein's relation are found even for nanosuspensions with a low particle concentration.

  15. Low viscosity oils. [oxidation resistance

    SciTech Connect

    Harris, S.W.; Schaap, L.A.; Udelhofen, J.H.

    1981-08-04

    An improved low viscosity (I.E.) 5 W to 7 1/2 W engine oil resistant to oxidation and consumption comprising a major portion of a lubricating oil stock, a sulfurized oil, a dispersant, an anti-corrosion agent, an anti-rust agent, a detergent, an antioxidant, and a viscosity index improver.

  16. Viscosity range from one test

    SciTech Connect

    Singh, B.; Mutyala, S.; Puttagunta, V.R. )

    1990-09-01

    A simple and general correlation predicts viscosity of crude oils or their fractions by identifying the sensitivity of viscosity to changes of temperature as follows: (log({eta}) + C)/log({eta}{sub 0}) + C = (T{sub 0}/T){sup s} where {eta} = Kinematic viscosity, centistokes (cS); T = absolute temperature, {degrees}K; C = 0,86860, when the log base is 10; S = 0.28008*log({eta}{sub 0}) + 1.8616, when T{sub 0} = 310.93{degrees}K (100{degrees}F). The unique feature of this correlation is that an oil's viscosity can be predicted over a wide range of temperatures by having only a single viscosity measurement, {eta}{sub 0}, at some convenient temperature, T{sub 0}. In this case, the coefficients for S are given for T{sub 0} = 100{degrees}F. However, examples are given to show how to use the equation when the measured reference viscosity is at some other temperature. The predicted viscosity is at some other temperature. The predicted viscosity should be relatively precise, since an overall average absolute deviation of only 0.82% was determined using published experimental data.

  17. Volatiles Which Increase Magma Viscosity

    NASA Astrophysics Data System (ADS)

    Webb, S.

    2015-12-01

    The standard model of an erupting volcano is one in which the viscosity of a decompressing magma increases as the volatiles leave the melt structure to form bubbles. It has now been observed that the addition of the "volatiles" P, Cl and F result in an increase in silicate melt viscosity. This observation would mean that the viscosity of selected degassing magmas would decrease rather than increase. Here we look at P, Cl and F as three volatiles which increase viscosity through different structural mechanisms. In all three cases the volatiles increase the viscosity of peralkaline composition melts, but appear to always decrease the viscosity of peraluminous melts. Phosphorus causes the melt to unmix into a Na-P rich phase and a Na-poor silicate phase. Thus as the network modifying Na (or Ca) are removed to the phosphorus-rich melt, the matrix melt viscosity increases. With increasing amounts of added phosphorus (at network modifying Na ~ P) the addition of further phosphorus causes a decrease in viscosity. The addition of chlorine to Fe-free aluminosilicate melts results in an increase in viscosity. NMR data on these glass indicates that the chlorine sits in salt-like structures surrounded by Na and/or Ca. Such structures would remove network-modifying atoms from the melt structure and thus result in an increase in viscosity. The NMR spectra of fluorine-bearing glasses shows that F takes up at least 5 different structural positions in peralkaline composition melts. Three of these positions should result in a decrease in viscosity due to the removal of bridging oxygens. Two of the structural positons of F, however, should result in an increase in viscosity as they require the removal of network-modifying atoms from the melt structure (with one of the structures being that observed for Cl). This would imply that increasing amounts of F might result in an increase in viscosity. This proposed increase in viscosity with increasing F has now been experimentally confirmed.

  18. Detection of liposome membrane viscosity perturbations with ratiometric molecular rotors.

    PubMed

    Nipper, Matthew E; Dakanali, Marianna; Theodorakis, Emmanuel; Haidekker, Mark A

    2011-06-01

    Molecular rotors are a form of fluorescent intramolecular charge-transfer complexes that can undergo intramolecular twisting motion upon photoexcitation. Twisted-state formation leads to non-radiative relaxation that competes with fluorescence emission. In bulk solutions, these molecules exhibit a viscosity-dependent quantum yield. On the molecular scale, the fluorescence emission is a function of the local free volume, which in turn is related to the local micro-viscosity. Membrane viscosity, and the inverse; fluidity, are characteristic terms used to describe the ease of movement withing the membrane. Often, changes in membrane viscosity govern intracellular processes and are indicative of a disease state. Molecular rotors have been used to investigate viscosity changes in liposomes and cells, but accuracy is affected by local concentration gradients and sample optical properties. We have developed self-calibrating ratiometric molecular rotors to overcome this challenge and integrated the new molecules into a DLPC liposome model exposed to the membrane-fluidizing agent propanol. We show that the ratiometric emission intensity linearly decreases with the propanol exposure and that the ratiometric intensity is widely independent of the total liposome concentration. Conversely, dye concentration inside liposomes influences the sensitivity of the system. We suggest that the new self-calibrating dyes can be used for real-time viscosity sensing in liposome systems with the advantages of lifetime measurements, but with low-cost steady-state instrumentation.

  19. Conservative smoothing versus artificial viscosity

    SciTech Connect

    Guenther, C.; Hicks, D.L.; Swegle, J.W.

    1994-08-01

    This report was stimulated by some recent investigations of S.P.H. (Smoothed Particle Hydrodynamics method). Solid dynamics computations with S.P.H. show symptoms of instabilities which are not eliminated by artificial viscosities. Both analysis and experiment indicate that conservative smoothing eliminates the instabilities in S.P.H. computations which artificial viscosities cannot. Questions were raised as to whether conservative smoothing might smear solutions more than artificial viscosity. Conservative smoothing, properly used, can produce more accurate solutions than the von Neumann-Richtmyer-Landshoff artificial viscosity which has been the standard for many years. The authors illustrate this using the vNR scheme on a test problem with known exact solution involving a shock collision in an ideal gas. They show that the norms of the errors with conservative smoothing are significantly smaller than the norms of the errors with artificial viscosity.

  20. Calculator program predicts liquid viscosities

    SciTech Connect

    Arnold, V.E.

    1984-01-01

    In the absence of experimental data, the prediction of liquid viscosities for petroleum fractions can be a very difficult problem. In light of the complex nature of petroleum fractions and the difficulty of even identifying the components present in such a mixture, the standard methods generally used for estimating liquid viscosities from pure component data are not applicable. Yet some prediction method is necessary since fluid flow and heat transfer calculations depend on accurate viscosity estimates. Watson, et al., provided the pioneering work to fill this need by developing correlations capable of predicting viscosities at two or more temperatures solely from common petroleum fraction characterizing parameters. The API Data Book presents a convenient nomograph for determining the kinematic viscosity of petroleum fractions at 100/sup 0/ F. and 210/sup 0/ F. when only the Watson characterization factor and API of the cut are known. This nomograph is essentially a replotting of Watson's graphs in a more usable format.

  1. Plasma viscosity: a forgotten variable.

    PubMed

    Késmárky, Gábor; Kenyeres, Péter; Rábai, Miklós; Tóth, Kálmán

    2008-01-01

    Evaluation of plasma viscosity has been underutilized in the clinical practice. Plasma viscosity is determined by water-content and macromolecular components. Plasma is a highly concentrated protein solution, therefore weak protein-protein interactions can play a role that is not characterized by electrophoresis. The effect of a protein on plasma viscosity depends on its molecular weight and structure. The less spheroid shape, the higher molecular weight, the higher aggregating capacity, and the higher temperature or pH sensitivity a protein has, the higher plasma viscosity results. Plasma is a Newtonian fluid, its viscosity does not depend on flow characteristics, therefore it is simple to measure, especially in capillary viscosimeters. Its normal value is 1.10-1.30 mPa s at 37 degrees C and independent of age and gender. The measurement has high stability and accuracy, thus little alterations may be pathologically important. Inflammations, tissue injuries resulting in plasma protein changes can increase its value with high sensitivity, though low specificity. It can increase in parallel with erythrocyte sedimentation rate (ESR), but it is not influenced by hematocrit (anemia, polycytemia), or time to analysis. Based on these favorable features, in 1942 plasma viscosity was recommended to substitute ESR. In hyperviscosity syndromes plasma viscosity is better in follow-up than ESR. In rheumatoid arthritis, its sensitivity and specificity are better than that of ESR or C-reactive protein. Plasma fibrinogen concentration and plasma viscosity are elevated in unstable angina pectoris and stroke and their higher values are associated with higher rate of major adverse clinical events. Elevation of plasma viscosity correlates to the progression of coronary and peripheral artery diseases. In conclusion, plasma viscosity should be measured routinely in medical practice.

  2. Slippage and viscosity predictions in carbon micropores and their influence on CO2 and CH4 transport

    NASA Astrophysics Data System (ADS)

    Firouzi, Mahnaz; Wilcox, Jennifer

    2013-02-01

    Non-equilibrium molecular dynamics simulations of pure carbon dioxide and methane and their equimolar mixtures have been carried out with an external driving force imposed on carbon slit pores to investigate gas slippage and Klinkenberg effects. Simulations were conducted to determine the effect of pore size and exposure to an external potential on the velocity profile and slip-stick boundary conditions. The simulations indicate that molecule-wall collisions influence the velocity profile, which deviates significantly from the Navier-Stokes hydrodynamic prediction for micro- and mesopores. Also, the shape of the velocity profile is found to be independent of the applied pressure gradient in micropores. The results indicate that the velocity profile is uniform for pore sizes less than 2 nm (micropores) where the transport is mainly due to molecular streaming or Knudsen diffusion and, to a lesser extent, molecular diffusion. As pore sizes increase to 10 nm, parabolic profiles are observed due to the reduced interaction of gas molecules with the pore walls. A 3D pore network, representative of porous carbon-based materials, has been generated atomistically using the Voronoi tessellation method. Simulations have been carried out to determine the effect of the pore structure and modeled viscosity on permeability and Klinkenberg parameters. The use of the bulk-phase viscosity for estimating the permeability of CO2 in units of Darcy in a 3D micropore network is not an appropriate assumption as it significantly underestimates the CO2 permeability. On the other hand, since the transport properties of CH4 are less influenced by the pore walls compared with CO2, the use of the bulk-phase CH4 viscosity estimates are a reasonable assumption.

  3. Viscosity behavior of carbon dioxide treated Cut Bank crude oil

    SciTech Connect

    Cady, G.V.; Mosawi, H.

    1995-12-31

    Carbon dioxide injection, either by huff and puff or displacement operations, results in a crude oil viscosity reduction at pressures below the miscibility conditions. Carbon dioxide miscibility occurs in reservoirs at miscible temperature and pressure, but these conditions are not possible in shallow reservoirs. Improved oil recovery in a shallow reservoir depends on the degree of viscosity reduction at the reservoir temperature and pressure. A recovery project`s success depends on the interaction between the carbon dioxide and the reservoir system. A research project carried out at Montana Tech to study the viscosity reduction and carbon dioxide solubility in Cut Bank crude oil at the reservoir`s prevailing temperature and near fracture pressure shows a viscosity reduction ratio (crude-carbon dioxide mixture to original dead oil viscosity) of 0.22 at a pressure of 1,000 psig and 90 F. An original mobility of 20 Md/cp improves to 91 Md/cp under a carbon dioxide recovery process at or near the reservoir`s fracture pressure. Based on the authors` research, improved oil recovery operations in the Cut Bank Field, Montana, is viable when using a commercial on site carbon dioxide recovery or generating system to minimize the cost of CO{sub 2} transportation. The major benefits are oil viscosity reduction, mobility ratio improvement, gas drive, and crude oil swelling.

  4. ZBLAN Viscosity Instrumentation

    NASA Technical Reports Server (NTRS)

    Kaukler, William

    2001-01-01

    The past year's contribution from Dr. Kaukler's experimental effort consists of these 5 parts: a) Construction and proof-of-concept testing of a novel shearing plate viscometer designed to produce small shear rates and operate at elevated temperatures; b) Preparing nonlinear polymeric materials to serve as standards of nonlinear Theological behavior; c) Measurements and evaluation of above materials for nonlinear rheometric behavior at room temperature using commercial spinning cone and plate viscometers available in the lab; d) Preparing specimens from various forms of pitch for quantitative comparative testing in a Dynamic Mechanical Analyzer, Thermal Mechanical Analyzer; and Archeological Analyzer; e) Arranging to have sets of pitch specimens tested using the various instruments listed above, from different manufacturers, to form a baseline of the viscosity variation with temperature using the different test modes offered by these instruments by compiling the data collected from the various test results. Our focus in this project is the shear thinning behavior of ZBLAN glass over a wide range of temperature. Experimentally, there are no standard techniques to perform such measurements on glasses, particularly at elevated temperatures. Literature reviews to date have shown that shear thinning in certain glasses appears to occur, but no data is available for ZBLAN glass. The best techniques to find shear thinning behavior require the application of very low rates of shear. In addition, because the onset of the thinning behavior occurs at an unknown elevated temperature, the instruments used in this study must provide controlled low rates of shear and do so for temperatures approaching 600 C. In this regard, a novel shearing parallel plate viscometer was designed and a prototype built and tested.

  5. Viscosity Measurement for Tellurium Melt

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  6. Fluid Merging Viscosity Measurement (FMVM)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronaut Mike Fincke places droplets of honey onto the strings for the Fluid Merging Viscosity Measurement (FMVM) investigation onboard the International Space Station (ISS). The FMVM experiment measures the time it takes for two individual highly viscous fluid droplets to coalesce or merge into one droplet. Different fluids and droplet size combinations were tested in the series of experiments. By using the microgravity environment, researchers can measure the viscosity or 'thickness' of fluids without the influence of containers and gravity using this new technique. Understanding viscosity could help scientists understand industrially important materials such as paints, emulsions, polymer melts and even foams used to produce pharmaceutical, food, and cosmetic products.

  7. Viscosity Measurement for Tellurium Melt

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  8. Fluid Merging Viscosity Measurement (FMVM)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronaut Mike Fincke places droplets of honey onto the strings for the Fluid Merging Viscosity Measurement (FMVM) investigation onboard the International Space Station (ISS). The FMVM experiment measures the time it takes for two individual highly viscous fluid droplets to coalesce or merge into one droplet. Different fluids and droplet size combinations were tested in the series of experiments. By using the microgravity environment, researchers can measure the viscosity or 'thickness' of fluids without the influence of containers and gravity using this new technique. Understanding viscosity could help scientists understand industrially important materials such as paints, emulsions, polymer melts and even foams used to produce pharmaceutical, food, and cosmetic products.

  9. Critical Viscosity of Xenon investigators

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Dr. Robert F. Berg (right), principal investigator and Dr. Micheal R. Moldover (left), co-investigator, for the Critical Viscosity of Xenon (CVX/CVX-2) experiment. They are with the National Institutes of Standards and Technology, Gaithersburg, MD. The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of chemicals.

  10. Local viscosity and environment on the nanometer scale

    NASA Astrophysics Data System (ADS)

    Jeon, Sangmin

    2002-01-01

    fluorescence measurements, it was shown that the motions of DNA and polystyrene at the surface were more retarded than those in bulk. Also, local viscosity of the pluronic polymer which shows sol to gel phase transition was compared to the bulk viscosity near the transition temperature and the local viscosity change is much smaller than bulk viscosity. With the combination of dielectric measurement, the motion of polymer chains and local viscosity were separately measured for the ion conductive polypropylene oxide.

  11. Molecular rotors--fluorescent biosensors for viscosity and flow.

    PubMed

    Haidekker, Mark A; Theodorakis, Emmanuel A

    2007-06-07

    Viscosity is a measure of the resistance of a fluid against gradients in flow (shear rate). Both flow and viscosity play an important role in all biological systems from the microscopic (e.g., cellular) to the systemic level. Many methods to measure viscosity and flow have drawbacks, such as the tedious and time-consuming measurement process, expensive instrumentation, or the restriction to bulk sample sizes. Fluorescent environment-sensitive dyes are known to show high sensitivity and high spatial and temporal resolution. Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer (TICT) states upon photoexcitation and therefore exhibit two competing deexcitation pathways: fluorescence emission and non-radiative deexcitation from the TICT state. Since TICT formation is viscosity-dependent, the emission intensity of molecular rotors depends on the solvent's viscosity. Furthermore, shear-stress dependency of the emission intensity was recently described. Although the photophysical processes are widely explored, the practical application of molecular rotors as sensors for viscosity and the fluid flow introduce additional challenges. Intensity-based measurements are influenced by fluid optical properties and dye concentration, and solvent-dye interaction requires calibration of the measurement system to a specific solvent. Ratiometric dyes and measurement systems help solve these challenges. In addition, the combination of molecular rotors with specific recognition groups allows them to target specific sites, for example the cell membrane or cytoplasm. Molecular rotors are therefore emerging as new biosensors for both bulk and local microviscosity, and for flow and fluid shear stress on a microscopic scale and with real-time response.

  12. Dark matter perturbations and viscosity: A causal approach

    NASA Astrophysics Data System (ADS)

    Acquaviva, Giovanni; John, Anslyn; Pénin, Aurélie

    2016-08-01

    The inclusion of dissipative effects in cosmic fluids modifies their clustering properties and could have observable effects on the formation of large-scale structures. We analyze the evolution of density perturbations of cold dark matter endowed with causal bulk viscosity. The perturbative analysis is carried out in the Newtonian approximation and the bulk viscosity is described by the causal Israel-Stewart (IS) theory. In contrast to the noncausal Eckart theory, we obtain a third-order evolution equation for the density contrast that depends on three free parameters. For certain parameter values, the density contrast and growth factor in IS mimic their behavior in Λ CDM when z ≥1 . Interestingly, and contrary to intuition, certain sets of parameters lead to an increase of the clustering.

  13. Jet momentum balance independent of shear viscosity

    NASA Astrophysics Data System (ADS)

    Neufeld, R. B.

    2012-03-01

    Jet momentum balance measurements, such as those recently performed by the CMS collaboration, provide an opportunity to quantify the energy transferred from a parton shower to the underlying medium in heavy-ion collisions. Specifically, I argue that the Cooper-Frye freeze-out distribution associated with the energy and momentum deposited by the parton shower is controlled to a significant extent by the distribution of the underlying bulk matter and independent of the details of how deposited energy is redistributed in the medium, which is largely determined by transport coefficients such as shear viscosity. Thus, by matching the distribution of momentum associated with the secondary jet in such measurements to the thermal distribution of the underlying medium, one can obtain a model-independent estimate on the amount of parton shower energy deposited.

  14. Viscosity of particle laden films

    NASA Astrophysics Data System (ADS)

    Timounay, Yousra; Rouyer, Florence

    2017-06-01

    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  15. Viscosity Depressants for Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.

    1983-01-01

    Proposed process modification incorporates viscosity depressants to prevent coal from solidifying during liquefaction. Depressants reduce amount of heat needed to liquefy coal. Possible depressants are metallic soaps, such as stearate, and amides, such as stearamide and dimer acid amides.

  16. Viscosity Depressants for Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.

    1983-01-01

    Proposed process modification incorporates viscosity depressants to prevent coal from solidifying during liquefaction. Depressants reduce amount of heat needed to liquefy coal. Possible depressants are metallic soaps, such as stearate, and amides, such as stearamide and dimer acid amides.

  17. Evaluation of Viscosity Characteristics of Spin-Coated UV Nanoimprint Resin

    NASA Astrophysics Data System (ADS)

    Atobe, Hidemasa; Hiroshima, Hiroshi; Wang, Qing

    2010-06-01

    The viscosity of a UV-curable resin used in UV nanoimprint is one of the key parameters to determine the process speed of resin filling in the recesses of a mold. We have developed an apparatus to measure the viscosity of a spin-coated thin liquid film on a wafer. With this viscosity measuring apparatus we examined the effect of the film thickness, exposure of resin to atmosphere, and temperature of resin on the viscosity of PAK-01, which is a UV-curable resin commonly employed in UV nanoimprint. The viscosity of this resin with its film thickness larger than 2.3 µm showed a constant value of 83 mPa·s, which is almost the same as that of the bulk PAK-01. At below 2.3 µm, the viscosity seemed to increase with decreasing film thickness. The viscosity of the spin-coated resin was also found to increase with the duration of its exposure to atmosphere; for a 30 min exposure to atmosphere, the viscosity reached up to 461 mPa·s. It is considered that during the prolonged exposure, the volatile component of the resin evaporated. When subjected to heat treatment, the viscosity of the UV-curable resin did not seem to depend on film thickness and maintained a steady value of 385 mPa·s. It was found that as the film thickness decreased the viscosity approached the value obtained by heat treatment.

  18. Evaluation of Viscosity Characteristics of Spin-Coated UV Nanoimprint Resin

    NASA Astrophysics Data System (ADS)

    Hidemasa Atobe,; Hiroshi Hiroshima,; Qing Wang,

    2010-06-01

    The viscosity of a UV-curable resin used in UV nanoimprint is one of the key parameters to determine the process speed of resin filling in the recesses of a mold. We have developed an apparatus to measure the viscosity of a spin-coated thin liquid film on a wafer. With this viscosity measuring apparatus we examined the effect of the film thickness, exposure of resin to atmosphere, and temperature of resin on the viscosity of PAK-01, which is a UV-curable resin commonly employed in UV nanoimprint. The viscosity of this resin with its film thickness larger than 2.3 μm showed a constant value of 83 mPa\\cdots, which is almost the same as that of the bulk PAK-01. At below 2.3 μm, the viscosity seemed to increase with decreasing film thickness. The viscosity of the spin-coated resin was also found to increase with the duration of its exposure to atmosphere; for a 30 min exposure to atmosphere, the viscosity reached up to 461 mPa\\cdots. It is considered that during the prolonged exposure, the volatile component of the resin evaporated. When subjected to heat treatment, the viscosity of the UV-curable resin did not seem to depend on film thickness and maintained a steady value of 385 mPa\\cdots. It was found that as the film thickness decreased the viscosity approached the value obtained by heat treatment.

  19. Hydrodynamic Viscosity in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Duschl, Wolfgang J.; Strittmatter, Peter A.; Biermann, Peter L.

    We propose a generalized accretion disk viscosity prescription based on hydrodynamically driven turbulence at the critical effective Reynolds number. This approach is consistent with recent re-analysis by Richard & Zahn (1999) of experimental results on turbulent Couette-Taylor flows. This new β-viscosity formulation applies to both selfgravitating and non-selfgravitating disks and is shown to yield the standard α-disk prescription in the case of shock dissipation limited, non-selfgravitating disks.

  20. Global scaling symmetry, Noether charge, and universality of shear viscosity

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Shan

    2016-05-01

    Recently, it was established in Einstein-Maxwell-Dilaton gravity that the Kovtun-Son-Starinets viscosity/entropy ratio associated with anti-de Sitter planar black holes can be viewed as the boundary dual to the generalized Smarr relation of the black holes in the bulk. In this paper, we establish this relation in Einstein gravity with general minimally coupled matter and also in theories with an additional nonminimally coupled scalar field. We consider two examples for explicit demonstrations.

  1. iDriving (Intelligent Driving)

    SciTech Connect

    Malikopoulos, Andreas

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in responses to actual driving conditions to improve fuel efficiency.

  2. Do Clustering Monoclonal Antibody Solutions Really Have a Concentration Dependence of Viscosity?

    PubMed Central

    Pathak, Jai A.; Sologuren, Rumi R.; Narwal, Rojaramani

    2013-01-01

    Protein solution rheology data in the biophysics literature have incompletely identified factors that govern hydrodynamics. Whereas spontaneous protein adsorption at the air/water (A/W) interface increases the apparent viscosity of surfactant-free globular protein solutions, it is demonstrated here that irreversible clusters also increase system viscosity in the zero shear limit. Solution rheology measured with double gap geometry in a stress-controlled rheometer on a surfactant-free Immunoglobulin solution demonstrated that both irreversible clusters and the A/W interface increased the apparent low shear rate viscosity. Interfacial shear rheology data showed that the A/W interface yields, i.e., shows solid-like behavior. The A/W interface contribution was smaller, yet nonnegligible, in double gap compared to cone-plate geometry. Apparent nonmonotonic composition dependence of viscosity at low shear rates due to irreversible (nonequilibrium) clusters was resolved by filtration to recover a monotonically increasing viscosity-concentration curve, as expected. Although smaller equilibrium clusters also existed, their size and effective volume fraction were unaffected by filtration, rendering their contribution to viscosity invariant. Surfactant-free antibody systems containing clusters have complex hydrodynamic response, reflecting distinct bulk and interface-adsorbed protein as well as irreversible cluster contributions. Literature models for solution viscosity lack the appropriate physics to describe the bulk shear viscosity of unstable surfactant-free antibody solutions. PMID:23442970

  3. Viscosity and scale invariance in the unitary Fermi gas

    SciTech Connect

    Enss, Tilman; Haussmann, Rudolf; Zwerger, Wilhelm

    2011-03-15

    We compute the shear viscosity of the unitary Fermi gas above the superfluid transition temperature, using a diagrammatic technique that starts from the exact Kubo formula. The formalism obeys a Ward identity associated with scale invariance which guarantees that the bulk viscosity vanishes identically. For the shear viscosity, vertex corrections and the associated Aslamazov-Larkin contributions are shown to be crucial to reproduce the full Boltzmann equation result in the high-temperature, low fugacity limit. The frequency dependent shear viscosity {eta}({omega}) exhibits a Drude-like transport peak and a power-law tail at large frequencies which is proportional to the Tan contact. The weight in the transport peak is given by the equilibrium pressure, in agreement with a sum rule due to Taylor and Randeria. Near the superfluid transition the peak width is of the order of 0.5T{sub F}, thus invalidating a quasiparticle description. The ratio {eta}/s between the static shear viscosity and the entropy density exhibits a minimum near the superfluid transition temperature whose value is larger than the string theory bound h/(4{pi}k{sub B}) by a factor of about seven.

  4. Detection of Liposome Membrane Viscosity Perturbations with Ratiometric Molecular Rotors

    PubMed Central

    Nipper, Matthew E.; Dakanali, Marianna; Theodorakis, Emmanuel

    2011-01-01

    Molecular rotors are a form of fluorescent intramolecular charge-transfer complexes that can undergo intramolecular twisting motion upon photoexcitation. Twisted-state formation leads to non-radiative relaxation that competes with fluorescence emission. In bulk solutions, these molecules exhibit a viscosity-dependent quantum yield. On the molecular scale, the fluorescence emission is a function of the local free volume, which in turn is related to the local microviscosity. Membrane viscosity, and the inverse; fluidity, are characteristic terms used to describe the ease of movement withing the membrane. Often, changes in membrane viscosity govern intracellular processes and are indicative of a disease state. Molecular rotors have been used to investigate viscosity changes in liposomes and cells, but accuracy is affected by local concentration gradients and sample optical properties. We have developed self-calibrating ratiometric molecular rotors to overcome this challenge and integrated the new molecules into a DLPC liposome model exposed to the membrane-fluidizing agent propanol. We show that the ratiometric emission intensity linearly decreases with the pentanol exposure and that the ratiometric intensity is widely independent of the total liposome concentration. Conversely, dye concentration inside liposomes influences the sensitivity of the system. We suggest that the new self-calibrating dyes can be used for real-time viscosity sensing in liposome systems with the advantages of lifetime measurements, but with low-cost steady-state instrumentation. PMID:21354253

  5. Impaired Driving

    MedlinePlus

    Impaired driving is dangerous. It's the cause of more than half of all car crashes. It means operating a ... texting Having a medical condition which affects your driving For your safety and the safety of others, ...

  6. Demonstrating the Importance of Bubbles and Viscosity on Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Namiki, A.

    2005-12-01

    The behavior of bubbles (exsolved volatile from magma) and viscosity of magma are important parameters that influence volcanic eruptions. Exsolved volatiles increase the volume of magma and reduce its density so that magma has sufficient volume and buoyancy force to erupt. Volatiles exsolve through nucleation and growth by diffusion and bubbles can expand as pressure is reduced. The time scale of diffusion depends on the viscosity of surrounding magma, and the expansion time scale of a bubble is also depends on the viscosity of magma. These control the time scale for volume change. If bubbles segregate from magma and collapse, the magma might not able to expand sufficiently to erupt violently. Whether a bubble can segregate from the liquid part of magma is also depends on viscosity of magma. In this poster, I introduce a straightforward demonstration to show the importance of bubbles and viscosity of magma on volcanic eruptions. To make bubbles, I use baking soda (NaHCO3) and citric acid. Reaction between them generates carbon dioxide (CO2) to make bubbles. I make citric acid solution gel by using agar at the bottom of a transparent glass and pour baking soda disolved corn syrup on top of the agar. This situation is a model of basally heated magma chamber. When water disolved magma (baking soda disolved corn syrup) receives sufficient heat (citric acid) bubbles are generated. I can change viscosity of corn syrup by varying the concentration of water. This demonstration shows how viscosity controls the time scale of volume change of bubbly magma and the distribution of bubbles in the fluid. In addition it helps to understand the important physical processes in volcanic eruption: bubble nucleation, diffusion grows, expansion, and bubble driving convection. I will perform a live demonstration at the site of the poster.

  7. The Viscosity-Temperature-Dependence of Liquids,

    DTIC Science & Technology

    The viscosity-temperature- dependence of liquids of different types can be represented by the formula lg kinematic viscosity = A/T to the x power + B...if A has a constant value, only one viscosity measurement at one temperature is necessary for the characterization of the viscosity-temperature- dependence . Examples for each different case are given. (Author)

  8. Viscosities of aqueous blended amines

    SciTech Connect

    Hsu, C.H.; Li, M.H.

    1997-07-01

    Solutions of alkanolamines are an industrially important class of compounds used in the natural gas, oil refineries, petroleum chemical plants, and synthetic ammonia industries for the removal of acidic components like CO{sub 2} and H{sub 2}S from gas streams. The viscosities of aqueous mixtures of diethanolamine (DEA) + N-methyldiethanolamine (MDEA), DEA + 2-amino-2-methyl-1-propanol (AMP), and monoethanolamine (MEA) + 2-piperidineethanol (2-PE) were measured from 30 C to 80 C. A Redlich-Kister equation for the viscosity deviation was applied to represent the viscosity. On the basis of the available viscosity data for five ternary systems, MEA + MDEA + H{sub 2}O, MEA + AMP + H{sub 2}O, DEA + MDEA + H{sub 2}O, DEA + AMP + H{sub 2}O, and MEA + 2-PE + H{sub 2}O, a generalized set of binary parameters were determined. For the viscosity calculation of the systems tested, the overall average absolute percent deviation is about 1.0% for a total of 499 data points.

  9. Viscosity of liquid undercooled tungsten

    NASA Astrophysics Data System (ADS)

    Paradis, Paul-François; Ishikawa, Takehiko; Yoda, Shinichi

    2005-05-01

    Knowledge of the viscosity and its temperature dependence is essential to improve metallurgical processes as well as to validate theoretical and empirical models of liquid metals. However, data for metals with melting points above 2504K could not be determined yet due to contamination and containment problems. Here we report the viscosity of tungsten, the highest melting point metal (3695K), measured by a levitation technique. Over the 3350-3700-K temperature range, which includes the undercooled region by 345K, the viscosity data could be fitted as η(T )=0.108exp[1.28×105/(RT)](mPas). At the melting point, the datum agrees with the proposed theoretical and empirical models of liquid metals but presents atypical temperature dependence, suggesting a basic change in the mechanism of momentum transfer.

  10. Hypoxic viscosity and diabetic retinopathy.

    PubMed Central

    Rimmer, T; Fleming, J; Kohner, E M

    1990-01-01

    Diabetic and sickle retinopathy have features in common--for example, venous dilatation, microaneurysms, and capillary closure preceding neovascularisation. Bearing in mind that haemoglobin in poorly controlled diabetes is abnormal and that extremely low oxygen tensions (known to cause sickling) exist in the healthy cat retina, we wished to explore the possibility that diabetic blood, like that of sickle cell disease, may become more viscous when deoxygenated. To do this we measured whole blood viscosity, under oxygenated and deoxygenated conditions, of 23 normal persons, 23 diabetic patients without retinopathy, and 34 diabetic patients with retinopathy. The shear rate used was 230 s-1, which is similar to that thought to prevail in the major retinal veins. The viscosity of blood from normal persons, corrected for packed cell volume, did not change significantly on deoxygenation: mean 4.54 (SD 0.38) cps, versus, 4.57 (0.39) paired t test, p = 0.66. Similarly the blood from diabetics without retinopathy showed no change: 4.42 (0.45) versus 4.42 (0.30), p = 0.98; whereas the blood from patients with retinopathy changed from 4.82 (0.48) to 4.95 (0.63), p = 0.027. The hypoxic viscosity ratio (deoxygenated divided by oxygenated viscosity) correlated with total serum cholesterol (r = 0.44, p = 0.018) but not with HbA1, serum glucose, triglycerides, or age. A disproportionate increase in venous viscosity relative to arterial viscosity would lead to increased intraluminal and transmural pressure and therefore exacerbate leakage across capillary walls. PMID:2378855

  11. Hypoxic viscosity and diabetic retinopathy.

    PubMed

    Rimmer, T; Fleming, J; Kohner, E M

    1990-07-01

    Diabetic and sickle retinopathy have features in common--for example, venous dilatation, microaneurysms, and capillary closure preceding neovascularisation. Bearing in mind that haemoglobin in poorly controlled diabetes is abnormal and that extremely low oxygen tensions (known to cause sickling) exist in the healthy cat retina, we wished to explore the possibility that diabetic blood, like that of sickle cell disease, may become more viscous when deoxygenated. To do this we measured whole blood viscosity, under oxygenated and deoxygenated conditions, of 23 normal persons, 23 diabetic patients without retinopathy, and 34 diabetic patients with retinopathy. The shear rate used was 230 s-1, which is similar to that thought to prevail in the major retinal veins. The viscosity of blood from normal persons, corrected for packed cell volume, did not change significantly on deoxygenation: mean 4.54 (SD 0.38) cps, versus, 4.57 (0.39) paired t test, p = 0.66. Similarly the blood from diabetics without retinopathy showed no change: 4.42 (0.45) versus 4.42 (0.30), p = 0.98; whereas the blood from patients with retinopathy changed from 4.82 (0.48) to 4.95 (0.63), p = 0.027. The hypoxic viscosity ratio (deoxygenated divided by oxygenated viscosity) correlated with total serum cholesterol (r = 0.44, p = 0.018) but not with HbA1, serum glucose, triglycerides, or age. A disproportionate increase in venous viscosity relative to arterial viscosity would lead to increased intraluminal and transmural pressure and therefore exacerbate leakage across capillary walls.

  12. Viscosity measurements on clear liquids

    SciTech Connect

    Walker, D.D.

    1993-02-09

    During the ITP cold chemical testing program, the efficiency of the benzene strippers will be measured and evaluated. Since the stripping efficiency is partially dependent upon the dynamic viscosity of the liquid phase, this property must be measured on samples taken during the test program. A procedure to measure the dynamic viscosity of salt solutions was developed from standard American Society of Testing and materials (ASTM) methods. The SRS procedure differs from the ASTM procedure and, therefore, a test program was initiated to determine its accuracy and precision. The results of these statistically designed tests are reported elsewhere, but supporting information on the experimental procedures, standards, and equipment are given in this report.

  13. Viscosity of hadron matter within relativistic mean-field-based model with scaled hadron masses and couplings

    SciTech Connect

    Khvorostukhin, A. S. Toneev, V. D.; Voskresensky, D. N.

    2011-04-15

    The shear ({eta}) and bulk ({zeta}) viscosities are calculated in a quasiparticle relaxation-time approximation for a hadron matter described within the relativistic mean-field-based model with scaled hadron masses and couplings. Comparison with results of other models is presented. We demonstrate that a small value of the shear viscosity to entropy density ratio required for explaining a large elliptic flow observed at RHIC may be reached in the hadron phase. Relatively large values of the bulk viscosity are noted in the case of a baryon-enriched matter.

  14. Concentration-dependent, temperature-dependent non-Newtonian viscosity of lung surfactant dispersions.

    PubMed

    King, D M; Wang, Z; Kendig, J W; Palmer, H J; Holm, B A; Notter, R H

    2001-07-01

    The bulk shear viscosities of aqueous dispersions of lavaged calf lung surfactant (LS) and its chloroform:methanol extract (CLSE) were measured as a function of concentration, shear rate and temperature. At 10-mg phospholipid per milliliter, dispersions of LS and vortexed CLSE in 0.15 M NaCl (saline) had low viscosities near 1 cp over a range of shear rates from 225 to 1125 s(-1). Lung surfactant viscosity increased with phospholipid concentration and became strongly non-Newtonian with higher values at low shear rates. At 37 degrees C and 40 mg/ml, LS and vortexed CLSE in saline had viscosities of 38 and 34 cp (77 s(-1)) and 12 and 7 cp (770 s(-1)), respectively. Viscosity values for LS and CLSE were dependent on temperature and, at fixed shear, were lower at 23 degrees C than at 37 or 10 degrees C. Hysteresis was also present in viscosity measurements depending on whether shear rate was successively increased or decreased during study. Addition of 5 mM Ca(2+) at 37 degrees C markedly reduced CLSE viscosity at all shear rates and decreased LS viscosity at low shear rates. Dispersion by sonication rather than vortexing increased the viscosity of CLSE at fixed shear, while synthetic phospholipids dispersed by either method had low, relatively Newtonian viscosities. The complex viscous behavior of dispersions of LS and CLSE in saline results from their heterogeneous aggregated microstructure of phospholipids and apoproteins. Viscosity is influenced not only by the aggregate surface area under shear, but also by phospholipid-apoprotein interactions and aggregate structure/deformability. Similar complexities likely affect the viscosities of biologically-derived exogenous surfactant preparations administered to patients in clinical surfactant therapy.

  15. The Effects of Preeruptive Magma Viscosity on Eruption Styles and Magma Eruption Rates

    NASA Astrophysics Data System (ADS)

    Tomiya, A.; Koyaguchi, T.; Kozono, T.; Takeuchi, S.

    2014-12-01

    We have collected data on magma eruption rate, which is one of the most fundamental parameters for a volcanic eruption. There are several compilations on eruption rates, for example, for Plinian eruptions (Carey and Sigurdsson, 1989), basaltic eruptions (Wadge, 1981), lava dome eruptions (Newhall and Melson, 1983), and all combined (Tomiya and Koyaguchi, 1998; Pyle, 2000). However, they did not quantitatively discuss the effects of magma viscosity, which must control eruption rates. Here, we discuss the effects of magma viscosity on eruption rates, by using 'preeruptive magma viscosities', which are important measures of magma eruptibility (Takeuchi, 2011). Preeruptive magma viscosity is the viscosity of magma (melt, dissolved water, and crystals) in the magma chamber at the preeruptive conditions, and can be approximately obtained only by the bulk rock SiO2 and phenocryst content, using an empirical formula (Takeuchi, 2010). We have found some interesting relationships, such as (1) eruption styles and rates are correlated to preeruptive magma viscosity but not correlated to bulk rock composition, and (2) the gap (ratio) in eruption rates between explosive and effusive phases in a series of eruptions is proportional to preeruptive magma viscosity. We also propose, by combining (1) and (2), that (3) the radius (or width) of volcanic conduit is positively correlated with preeruptive magma viscosity. Our data also show that the eruptive magmas are divided into two types. One is the low-viscosity type (basalt ~ phenocryst-poor andesite), characterized by lava flow and sub-Plinian eruptions. The other is the high-viscosity type (phenocryst-rich andesite ~ rhyolite), characterized by lava dome and Plinian eruptions. The boundary is at about 104 Pa s. These two types may be closely linked to the magma generation processes (fractional/batch crystallization vs. extraction from a mushy magma chamber).

  16. Viscosity Formulations and the Effect of Uncertain Parameters

    NASA Astrophysics Data System (ADS)

    Wasiliev, J. M.

    2015-12-01

    The development of detailed models of the interior of the Earth and other terrestrial planets is frequently hampered by poorly constrained compositional parameters, namely Activation Energy and Volume, which are necessary to define Arrhenius viscosity. This results in the values of said parameters varying considerably to suit the needs of individual investigations. A computational exploration of the effects of Activation Energy and Volume on the Earth's mantle was thus conducted, with a view to developing a robust and versatile method for obtaining a first-degree approximation for the parameter values, and providing some context for future studies. A wide range of plausible mantle configurations was examined in both one and two dimensions, with the latter case utilising the modelling program ASPECT to generate a series of simple Earth-like planets which were allowed to evolve until a steady state was achieved. A comprehensive statistical analysis was then performed, allowing for suitable parameter values to be more effectively constrained for numerous given viscosity formulations. Activation Energy was seen to exhibit considerable influence over the bulk magnitude of viscosity values, while Activation Volume heavily impacted the viscosity contrast between the upper and lower mantle. This behaviour stems from the parameters controlling the temperature and pressure dependency of viscosity within the calculation. Results were found to be highly dependent on the minimum and maximum values imposed on the viscosity, reinforcing the need for a fuller understanding of the formulation. A notable impact on stress profiles, and hence tectonic regime, was also observed. As such similar calculations were performed on directly scaled Super-Earths, with the intention of providing some insight into scenarios conducive to particular tectonic regimes in planets outside our solar system.

  17. Light Effect on Water Viscosity: Implication for ATP Biosynthesis.

    PubMed

    Sommer, Andrei P; Haddad, Mike Kh; Fecht, Hans-Jörg

    2015-07-08

    Previous work assumed that ATP synthase, the smallest known rotary motor in nature, operates at 100% efficiency. Calculations which arrive to this result assume that the water viscosity inside mitochondria is constant and corresponds to that of bulk water. In our opinion this assumption is not satisfactory for two reasons: (1) There is evidence that the water in mitochondria prevails to 100% as interfacial water. (2) Laboratory experiments which explore the properties of interfacial water suggest viscosities which exceed those of bulk water, specifically at hydrophilic interfaces. Here, we wish to suggest a physicochemical mechanism which assumes intramitochondrial water viscosity gradients and consistently explains two cellular responses: The decrease and increase in ATP synthesis in response to reactive oxygen species and non-destructive levels of near-infrared (NIR) laser light, respectively. The mechanism is derived from the results of a new experimental method, which combines the technique of nanoindentation with the modulation of interfacial water layers by laser irradiation. Results, including the elucidation of the principle of light-induced ATP production, are expected to have broad implications in all fields of medicine.

  18. Light Effect on Water Viscosity: Implication for ATP Biosynthesis

    PubMed Central

    Sommer, Andrei P.; Haddad, Mike Kh.; Fecht, Hans-Jörg

    2015-01-01

    Previous work assumed that ATP synthase, the smallest known rotary motor in nature, operates at 100% efficiency. Calculations which arrive to this result assume that the water viscosity inside mitochondria is constant and corresponds to that of bulk water. In our opinion this assumption is not satisfactory for two reasons: (1) There is evidence that the water in mitochondria prevails to 100% as interfacial water. (2) Laboratory experiments which explore the properties of interfacial water suggest viscosities which exceed those of bulk water, specifically at hydrophilic interfaces. Here, we wish to suggest a physicochemical mechanism which assumes intramitochondrial water viscosity gradients and consistently explains two cellular responses: The decrease and increase in ATP synthesis in response to reactive oxygen species and non-destructive levels of near-infrared (NIR) laser light, respectively. The mechanism is derived from the results of a new experimental method, which combines the technique of nanoindentation with the modulation of interfacial water layers by laser irradiation. Results, including the elucidation of the principle of light-induced ATP production, are expected to have broad implications in all fields of medicine. PMID:26154113

  19. Pile Driving

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  20. Magnetic microrheometer for in situ characterization of coating viscosity.

    PubMed

    Song, Jin-Oh; Henry, Robert M; Jacobs, Ryan M; Francis, Lorraine F

    2010-09-01

    A magnetic microrheometer has been designed to characterize the local viscosity of liquid-applied coatings in situ during solidification. The apparatus includes NdFeB magnets mounted on computer-controlled micropositioners for the manipulation of ∼1 μm diameter superparamagnetic particles in the coating. Magnetic field gradients at 20-70 T/m are generated by changing magnet size and the gap distance between the magnets. A specimen stage located between two magnets is outfitted with a heater and channels to control process conditions (temperature and air flow), and a digital optical microscope lens above the stage is used to monitor the probe particle position. Validation studies with glycerol and polyimide precursor solution showed that microrheometry results match traditional bulk rheometry within an error of 5%. The viscosities of polyvinyl alcohol (PVA) solution and polyimide precursor solution coatings were measured at different shear rates (0.01-5 s(-1)) by adjusting the magnetic field gradient. The effect of proximity to the substrate on the particle motion was characterized and compared with theoretical predictions. The magnetic microrheometer was used to characterize the time-viscosity profile of PVA coatings during drying at several temperatures. The viscosity range measured by the apparatus was 0.1-20 Pa s during drying of coatings at temperatures between room temperature and 80 °C.

  1. Both protein adsorption and aggregation contribute to shear yielding and viscosity increase in protein solutions.

    PubMed

    Castellanos, Maria Monica; Pathak, Jai A; Colby, Ralph H

    2014-01-07

    A combination of sensitive rotational rheometry and surface rheometry with a double-wall ring were used to identify the origins of the viscosity increase at low shear rates in protein solutions. The rheology of two high molecular weight proteins is discussed: Bovine Serum Albumin (BSA) in a Phosphate Buffered Saline solution and an IgG1 monoclonal antibody (mAb) in a formulation buffer containing small quantities of a non-ionic surfactant. For surfactant-free BSA solutions, the interfacial viscosity dominates the low shear viscosity measured in rotational rheometers, while the surfactant-laden mAb solution has an interfacial viscosity that is small compared to that from aggregation in the bulk. A viscoelastic film forms at the air/water interface in the absence of surfactant, contributing to an apparent yield stress (thus a low shear viscosity increase) in conventional bulk rheology measurements. Addition of surfactant eliminates the interfacial yield stress. Evidence of a bulk yield stress arising from protein aggregation is presented, and correlated with results from standard characterization techniques used in the bio-pharmaceutical industry. The protein film at the air/water interface and bulk aggregates both lead to an apparent viscosity increase and their contributions are quantified using a dimensionless ratio of the interfacial and total yield stress. While steady shear viscosities at shear rates below ∼1 s(-1) contain rich information about the stability of protein solutions, embodied in the measured yield stress, such low shear rate data are regrettably often not measured and reported in the literature.

  2. Dynamic heterogeneity controls diffusion and viscosity near biological interfaces.

    PubMed

    Pronk, Sander; Lindahl, Erik; Kasson, Peter M

    2014-01-01

    At a nanometre scale, the behaviour of biological fluids is largely governed by interfacial physical chemistry. This may manifest as slowed or anomalous diffusion. Here we describe how measures developed for studying glassy systems allow quantitative measurement of interfacial effects on water dynamics, showing that correlated motions of particles near a surface result in a viscosity greater than anticipated from individual particle motions. This effect arises as a fundamental consequence of spatial heterogeneity on nanometre length scales and applies to any fluid near any surface. Increased interfacial viscosity also causes the classic finding that large solutes such as proteins diffuse much more slowly than predicted in bulk water. This has previously been treated via an empirical correction to the solute size: the hydrodynamic radius. Using measurements of quantities from theories of glass dynamics, we can now calculate diffusion constants from molecular details alone, eliminating the empirical correction factor.

  3. Dynamic heterogeneity controls diffusion and viscosity near biological interfaces

    NASA Astrophysics Data System (ADS)

    Pronk, Sander; Lindahl, Erik; Kasson, Peter M.

    2014-01-01

    At a nanometre scale, the behaviour of biological fluids is largely governed by interfacial physical chemistry. This may manifest as slowed or anomalous diffusion. Here we describe how measures developed for studying glassy systems allow quantitative measurement of interfacial effects on water dynamics, showing that correlated motions of particles near a surface result in a viscosity greater than anticipated from individual particle motions. This effect arises as a fundamental consequence of spatial heterogeneity on nanometre length scales and applies to any fluid near any surface. Increased interfacial viscosity also causes the classic finding that large solutes such as proteins diffuse much more slowly than predicted in bulk water. This has previously been treated via an empirical correction to the solute size: the hydrodynamic radius. Using measurements of quantities from theories of glass dynamics, we can now calculate diffusion constants from molecular details alone, eliminating the empirical correction factor.

  4. Neoclassical viscosity effects on resistive magnetohydrodynamic modes in toroidal geometry

    SciTech Connect

    Yang, J.G.; Oh, Y.H.; Choi, D.I. ); Kim, J.Y.; Horton, W. )

    1992-03-01

    The flux-surface-averaged linearized resistive magnetohydrodynamic (MHD) boundary-layer equations including the compressibility, diamagnetic drift, and neoclassical viscosity terms are derived in toroidal geometry. These equations describe the resistive layer dynamics of resistive MHD modes over the collisionality regime between the banana plateau and the Pfirsch--Schlueter. From the resulting equations, the effects of neoclassical viscosity on the stability of the tearing and resistive ballooning modes are investigated numerically. Also, a study is given for the problem of how the neoclassical resistive MHD mode is generated as the collisionality is reduced. It is shown that the neoclassical viscosity terms give a significant destabilizing effect for the tearing and resistive ballooning modes. This destabilization comes mainly from the reduction of the stabilizing effect of the parallel ion sound compression by the ion neoclassical viscosity. In the banana-plateau collisionality limit, where the compressibility is negligible, the dispersion relations of the tearing and resistive ballooning modes reduce to the same form, with the threshold value of the driving force given by {Delta}{sub {ital c}}=0. On the other hand, with the finite neoclassical effect it is found that the neoclassical resistive MHD instability is generated in agreement with previous results. Furthermore, it is shown that this later instability can be generated in a wide range of the collisionality including near the Pfirsch--Schlueter regime as well as the banana-plateau regime, suggesting that this mode is a probable cause of anomalous transport.

  5. Surface tensions, viscosities, and diffusion constants in mixed component single aerosol particles

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan; Marshall, Frances; Song, Young-Chul; Haddrell, Allen; Reid, Jonathan

    2016-04-01

    Surface tension and viscosity are important aerosol properties but are challenging to measure on individual particles owing to their small size and mass. Aerosol viscosity impacts semivolatile partitioning from the aerosol phase, molecular diffusion in the bulk of the particle, and reaction kinetics. Aerosol surface tension impacts how particles activate to serve as cloud condensation nuclei. Knowledge of these properties and how they change under different conditions hinders accurate modelling of aerosol physical state and atmospheric impacts. We present measurements made using holographic optical tweezers to directly determine the viscosity and surface tension of optically trapped droplets containing ~1-4 picolitres of material (corresponding to radii of ~5-10 micrometres). Two droplets are captured in the experimental setup, equilibrated to a relative humidity, and coalesced through manipulation of the relative trap positions. The moment of coalescence is captured using camera imaging as well as from elastically backscattered light connected to an oscilloscope. For lower viscosity droplets, the relaxation in droplet shape to a sphere follows the form of a damped oscillator and gives the surface tension and viscosity. For high viscosity droplets, the relaxation results in a slow merging of the two droplets to form a sphere and the timescale of that process permits determination of viscosity. We show that droplet viscosity and surface tension can be quantitatively determined to within <10% of the expected value for low viscosity droplets and to better than 1 order of magnitude for high viscosity droplets. Examples illustrating how properties such as surface tension can change in response to environmental conditions will be discussed. Finally, a study of the relationship between viscosity, diffusion constants, vapour pressures, and reactive uptake coefficients for a mixed component aerosol undergoing oxidation and volatilisation will be discussed.

  6. Rotary bulk solids divider

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  7. ROTARY BULK SOLIDS DIVIDER

    DOEpatents

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  8. Viscosity of the earth's core

    NASA Technical Reports Server (NTRS)

    Hide, R.

    1972-01-01

    Estimates of the coefficient of kinematical viscosity nu of the earth's liquid metallic core that are given in the geophysical literature range from approximately 0.001 sq cm/s, the viscosity of molten iron at ordinary pressures, to approximately less than 10 to the 8th power sq cm/s, based on the observation that compressional waves traverse the core without suffering serious attenuation. Bumps on the core-mantle boundary with typical horizontal dimensions up to a few thousand km and vertical dimensions h of a few km would produce the topographic coupling between the core and mantle that is evidently implied by the observed decade variations in the length of the day (unless the coupling is due to the presence of rapidly fluctuating magnetic fields in the core).

  9. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites.

    PubMed

    Kim, Ryan Jin-Young; Kim, Yu-Jin; Choi, Nak-Sam; Lee, In-Bog

    2015-04-01

    The aim of the present study was to measure the polymerization shrinkage, modulus, and shrinkage stress of bulk-fill and conventional composites during polymerization and to investigate the relationship between tooth-composite interfacial debonding and shrinkage stress of the composites. Polymerization shrinkage, dynamic modulus, and shrinkage stress of two high-viscosity bulk-fill (SonicFill (SF)/Tetric N-Ceram Bulk-Fill (TNB)) and two low-viscosity bulk-fill composites (Filtek Bulk-Fill (FB)/SureFil SDR Flow (SDR)) as well as one high-viscosity conventional (Filtek Z250 (Z250)) and one low-viscosity conventional composite (Filtek Z350 XT Flowable (Z350F)) were measured using custom-made instruments. Acoustic emission (AE) analysis was performed to evaluate the tooth-composite interfacial debonding during polymerization of the composites in Class 1 cavities on extracted third molars. The low-viscosity composites exhibited higher shrinkage and lower modulus than the high-viscosity composites. Polymerization shrinkage at 10 min ranged between 2.05% (SF) and 3.53% (Z350F). Polymerization shrinkage stress values at 10 min ranged between 1.68MPa (SDR) and 3.51MPa (Z350F). The number of AE events was highest in Z350F and lowest in SDR. Composites that exhibited greater polymerization shrinkage stress generated more tooth-composite interfacial debonding. In contrast to similar outcomes among the high-viscosity composites (conventional: Z250, bulk-fill: TNB and SF), the low-viscosity bulk-fill composites (FB and SDR) demonstrated better results in terms of polymerization shrinkage stress and tooth-composite interfacial debonding than did the low-viscosity conventional composite (Z350F). Despite the better performance by some of the bulk-fill composites, clinicians should be aware that the bulk-fill composites are not perfect substitutes for conventional composites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Shear viscosity of nuclear matter

    NASA Astrophysics Data System (ADS)

    Magner, A. G.; Gorenstein, M. I.; Grygoriev, U. V.; Plujko, V. A.

    2016-11-01

    Shear viscosity η is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective overdamped motion. In the frequent-collision regime, the shear viscosity depends on the particle-number density n through the mean-field parameter a , which describes attractive forces in the VDW equation. In the temperature region T =15 -40 MeV, a ratio of the shear viscosity to the entropy density s is smaller than 1 at the nucleon number density n =(0.5 -1.5 ) n0 , where n0=0.16 fm-3 is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the η /s ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of η /s ≫1 are, however, found in both the low-density, n ≪n0 , and high-density, n >2 n0 , regions. This makes the ideal hydrodynamic approach inapplicable for these densities.

  11. Viscosity Index Improvers and Thickeners

    NASA Astrophysics Data System (ADS)

    Stambaugh, R. L.; Kinker, B. G.

    The viscosity index of an oil or an oil formulation is an important physical parameter. Viscosity index improvers, VIIs, are comprised of five main classes of polymers: polymethylmethacrylates (PMAs), olefin copolymers (OCPs), hydrogenated poly(styrene-co-butadiene or isoprene) (HSD/SIP/HRIs), esterified polystyrene-co-maleic anhydride (SPEs) and a combination of PMA/OCP systems. The chemistry, manufacture, dispersancy and utility of each class are described. The comparative functions, properties, thickening ability, dispersancy and degradation of VIIs are discussed. Permanent and temporary shear thinning of VII-thickened formulations are described and compared. The end-use performance and choice of VI improvers is discussed in terms of low- and high-temperature viscosities, journal bearing oil film thickness, fuel economy, oil consumption, high-temperature pumping efficiency and deposit control. Discussion of future developments concludes that VI improvers will evolve to meet new challenges of increased thermal-oxidative degradation from increased engine operating temperatures, different base stocks of either synthetic base oils or vegetable oil-based, together with alcohol- or vegetable oil-based fuels. VI improvers must also evolve to deal with higher levels of fuel dilution and new types of sludge and also enhanced low-temperature requirements.

  12. Density and viscosity of lipids under pressure

    USDA-ARS?s Scientific Manuscript database

    There is a lack of data for the viscosity of lipids under pressure. The current report is a part of the effort to fill this gap. The viscosity, density, and elastohydrodynamic film thicknesses of vegetable oil (HOSuO) were investigated. Pressure–viscosity coefficients (PVC) of HOSuO at different tem...

  13. Electron viscosity, current vortices and negative nonlocal resistance in graphene

    NASA Astrophysics Data System (ADS)

    Levitov, Leonid; Falkovich, Gregory

    2016-07-01

    Quantum-critical strongly correlated electron systems are predicted to feature universal collision-dominated transport resembling that of viscous fluids. However, investigation of these phenomena has been hampered by the lack of known macroscopic signatures of electron viscosity. Here we identify vorticity as such a signature and link it with a readily verifiable striking macroscopic d.c. transport behaviour. Produced by the viscous flow, vorticity can drive electric current against an applied field, resulting in a negative nonlocal voltage. We argue that the latter may play the same role for the viscous regime as zero electrical resistance does for superconductivity. Besides offering a diagnostic that distinguishes viscous transport from ohmic currents, the sign-changing electrical response affords a robust tool for directly measuring the viscosity-to-resistivity ratio. A strongly interacting electron-hole plasma in high-mobility graphene affords a unique link between quantum-critical electron transport and the wealth of fluid mechanics phenomena.

  14. Impaired Driving

    MedlinePlus

    ... people were killed in alcohol-impaired driving crashes, accounting for nearly one-third (31%) of all traffic- ... promotion efforts into practice that influence economic, organizational, policy, and school/community action. 13,14 Using community- ...

  15. Distracted Driving

    MedlinePlus

    ... other distractions. 3 At 55 mph, the average text takes your eyes off the road long enough ... risk behaviors among high school students, including sending texts while driving. 6,7 In 2013, more than ...

  16. Bulk Superconductors in Mobile Application

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  17. Pile driving

    SciTech Connect

    Merjan, S.

    1988-02-16

    Process for producing in the ground a driven composite pile is described having (a) a lower pipe stem having an upper part having a top, the lower pipe stem being capable of withstanding pile driving blows applied to the top and (b) an upper corrugated shell stem incapable of withstanding pile driving blows, the corrugated shell stem having a lower end, which process comprises driving the lower pipe stem into the ground fitting to the top of the lower pipe stem a splicer. The splicer comprises a plate having a top face and a bottom face, an integral body portion depending from the plate and surrounding the upper part of the pipe stem and, welded to the top face of the plate, an upwardly extending corrugated shell stub up to about three feet long, screwing the lower end of the upper corrugated shell stem to the shell stub after driving the lower pipe stem into the ground, placing a non-expanding pipe mandrel into the shell stem with the bottom of the mandrel resting on the plate, striking pile-driving blows on the top of the mandrel to drive the composite pile into the ground, and filling the shell stem and pipe stem with concrete from above.

  18. Effect of high-viscosity interphases on drainage between hydrophilic surfaces.

    SciTech Connect

    Feibelman, Peter Julian

    2004-10-01

    Drainage of water from the region between an advancing probe tip and a flat sample is reconsidered under the assumption that the tip and sample surfaces are both coated by a thin water 'interphase' (of width {approx}a few nm) whose viscosity is much higher than the bulk liquid's. A formula derived by solving the Navier-Stokes equations allows one to extract an interphase viscosity of {approx}59 KPa-sec (or {approx}6.6x10{sup 7} times the viscosity of bulk water at 25C) from Interfacial Force Microscope measurements with both tip and sample functionalized hydrophilic by OH-terminated tri(ethylene glycol) undecylthiol, self-assembled monolayers.

  19. Interacting Modified Cosmic Chaplygin Gas with Variable Cosmological Constant and Viscosity

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2014-12-01

    In this paper we study interaction between modified cosmic Chaplygin gas and pressureless matter in presence of both bulk and shear viscosities as a model of our Universe. Also we consider variable cosmological constant and investigate some cosmological parameters such as sound speed and time-dependent density. We investigate stability of model by using first order linear perturbation.

  20. Superparamagnetic nanoparticle-based viscosity test

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Liu, Jinming; Wang, Yi; Ye, Clark; Feng, Yinglong; Wang, Jian-Ping

    2015-08-01

    Hyperviscosity syndrome is triggered by high blood viscosity in the human body. This syndrome can result in retinopathy, vertigo, coma, and other unanticipated complications. Serum viscosity is one of the important factors affecting whole blood viscosity, which is regarded as an indicator of general health. In this letter, we propose and demonstrate a Brownian relaxation-based mixing frequency method to test human serum viscosity. This method uses excitatory and detection coils and Brownian relaxation-dominated superparamagnetic nanoparticles, which are sensitive to variables of the liquid environment such as viscosity and temperature. We collect the harmonic signals produced by magnetic nanoparticles and estimate the viscosity of unknown solutions by comparison to the calibration curves. An in vitro human serum viscosity test is performed in less than 1.5 min.

  1. Viscosity Prescription for Gravitationally Unstable Accretion Disks

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2015-05-01

    Gravitationally unstable accretion disks emerge in a variety of astrophysical contexts—giant planet formation, FU Orioni outbursts, feeding of active galactic nuclei, and the origin of Pop III stars. When a gravitationally unstable disk is unable to cool rapidly, it settles into a quasi-stationary, fluctuating gravitoturbulent state, in which its Toomre Q remains close to a constant value {{Q}0}∼ 1. Here we develop an analytical formalism describing the evolution of such a disk, which is based on the assumptions of Q={{Q}0} and local thermal equilibrium. Our approach works in the presence of additional sources of angular momentum transport (e.g., MRI), as well as external irradiation. Thermal balance dictates a unique value of the gravitoturbulent stress {{α }gt} driving disk evolution, which is a function of the local surface density and angular frequency. We compare this approach with other commonly used gravitoturbulent viscosity prescriptions, which specify the explicit dependence of stress {{α }gt} on Toomre Q in an ad hoc fashion, and identify the ones that provide consistent results. We nevertheless argue that our Q={{Q}0} approach is more flexible, robust, and straightforward and should be given preference in applications. We illustrate this with a couple of analytical calculations—locations of the snow line and of the outer edge of the dead zone in a gravitoturbulent protoplanetary disk—which clearly show the simplicity and versatility of the Q={{Q}0} approach.

  2. Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers

    NASA Astrophysics Data System (ADS)

    Shih, Wan Y.; Li, Xiaoping; Gu, Huiming; Shih, Wei-Heng; Aksay, Ilhan A.

    2001-01-01

    We have examined both experimentally and theoretically a piezoelectric unimorph cantilever as a liquid viscosity-and-density sensor. The fabricated piezoelectric unimorph consisted of a PbOṡZrO2ṡTiO2 (PZT) layer on a thin stainless-steel plate. In addition to a driving electrode, a sensing electrode was placed on top of the PZT layer, permitting the direct measurement of the resonance frequency. The cantilever was tested using water-glycerol solutions of different compositions. In all three of the tested modes, the resonance frequency decreased while the width of the resonance peak increased with increasing glycerol content. To account for the liquid effect, we consider the cantilever as a sphere of radius R oscillating in a liquid. By including the high and low frequency terms in the induced mass and the damping coefficient of the liquid, we show that for a given liquid density and viscosity the oscillating-sphere model predicts a resonance frequency and peak width that closely agree with experiment. Furthermore, the viscosity and the density of a liquid have been determined simultaneously using the experimentally measured resonance frequency and peak width as inputs to the oscillating-sphere model. The calculated liquid viscosity and density closely agreed with the known values, indicating that our cantilever-based sensor is effective in determining viscosity and density, simultaneously. We also show that scaling analysis predicts an increase in the width of the resonance peak with decreasing cantilever size, an observation in agreement with the large peak widths observed for microcantilevers.

  3. FRW bulk viscous cosmology with modified Chaplygin gas in flat space

    NASA Astrophysics Data System (ADS)

    Saadat, H.; Pourhassan, B.

    2013-02-01

    In this paper we study FRW bulk viscous cosmology in presence of modified Chaplygin gas. We write modified Friedmann equations due to bulk viscosity and Chaplygin gas and obtain time-dependent energy density for the special case of flat space.

  4. Method of adaptive artificial viscosity

    NASA Astrophysics Data System (ADS)

    Popov, I. V.; Fryazinov, I. V.

    2011-09-01

    A new finite-difference method for the numerical solution of gas dynamics equations is proposed. This method is a uniform monotonous finite-difference scheme of second-order approximation on time and space outside of domains of shock and compression waves. This method is based on inputting adaptive artificial viscosity (AAV) into gas dynamics equations. In this paper, this method is analyzed for 2D geometry. The testing computations of the movement of contact discontinuities and shock waves and the breakup of discontinuities are demonstrated.

  5. Effective Viscosity of Microswimmer Suspensions

    NASA Astrophysics Data System (ADS)

    Rafaï, Salima; Jibuti, Levan; Peyla, Philippe

    2010-03-01

    The measurement of a quantitative and macroscopic parameter to estimate the global motility of a large population of swimming biological cells is a challenge. Experiments on the rheology of active suspensions have been performed. Effective viscosity of sheared suspensions of live unicellular motile microalgae (Chlamydomonas Reinhardtii) is far greater than for suspensions containing the same volume fraction of dead cells. In addition, suspensions show shear thinning behavior. We relate these macroscopic measurements to the orientation of individual swimming cells under flow and discuss our results in the light of several existing models.

  6. Effective viscosity of microswimmer suspensions.

    PubMed

    Rafaï, Salima; Jibuti, Levan; Peyla, Philippe

    2010-03-05

    The measurement of a quantitative and macroscopic parameter to estimate the global motility of a large population of swimming biological cells is a challenge. Experiments on the rheology of active suspensions have been performed. Effective viscosity of sheared suspensions of live unicellular motile microalgae (Chlamydomonas Reinhardtii) is far greater than for suspensions containing the same volume fraction of dead cells. In addition, suspensions show shear thinning behavior. We relate these macroscopic measurements to the orientation of individual swimming cells under flow and discuss our results in the light of several existing models.

  7. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (left) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  8. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (left) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  9. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  10. Viscosity Dependence of Some Protein and Enzyme Reaction Rates: Seventy-Five Years after Kramers.

    PubMed

    Sashi, Pulikallu; Bhuyan, Abani K

    2015-07-28

    Kramers rate theory is a milestone in chemical reaction research, but concerns regarding the basic understanding of condensed phase reaction rates of large molecules in viscous milieu persist. Experimental studies of Kramers theory rely on scaling reaction rates with inverse solvent viscosity, which is often equated with the bulk friction coefficient based on simple hydrodynamic relations. Apart from the difficulty of abstraction of the prefactor details from experimental data, it is not clear why the linearity of rate versus inverse viscosity, k ∝ η(-1), deviates widely for many reactions studied. In most cases, the deviation simulates a power law k ∝ η(-n), where the exponent n assumes fractional values. In rate-viscosity studies presented here, results for two reactions, unfolding of cytochrome c and cysteine protease activity of human ribosomal protein S4, show an exceedingly overdamped rate over a wide viscosity range, registering n values up to 2.4. Although the origin of this extraordinary reaction friction is not known at present, the results indicate that the viscosity exponent need not be bound by the 0-1 limit as generally suggested. For the third reaction studied here, thermal dissociation of CO from nativelike cytochrome c, the rate-viscosity behavior can be explained using Grote-Hynes theory of time-dependent friction in conjunction with correlated motions intrinsic to the protein. Analysis of the glycerol viscosity-dependent rate for the CO dissociation reaction in the presence of urea as the second variable shows that the protein stabilizing effect of subdenaturing amounts of urea is not affected by the bulk viscosity. It appears that a myriad of factors as diverse as parameter uncertainty due to the difficulty of knowing the exact reaction friction and both mode and consequences of protein-solvent interaction work in a complex manner to convey as though Kramers rate equation is not absolute.

  11. Drop Spreading with Random Viscosity

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  12. Scientific Objectives of the Critical Viscosity Experiment

    NASA Technical Reports Server (NTRS)

    Berg, R. F.; Moldover, M. R.

    1993-01-01

    In microgravity, the Critical Viscosity Experiment will measure the viscosity of xenon 15 times closer to the critical point than is possible on earth. The results are expected to include the first direct observation of the predicted power-law divergence of viscosity in a pure fluid and they will test calculations of the value of the exponent associated with the divergence. The results, when combined with Zeno's decay-rate data, will strengthen the test of mode coupling theory. Without microgravity viscosity data, the Zeno test will require an extrapolation of existing 1-g viscosity data by as much as factor of 100 in reduced temperature. By necessity, the extrapolation would use an incompletely verified theory of viscosity crossover. With the microgravity viscosity data, the reliance on crossover models will be negligible allowing a more reliable extrapolation. During the past year, new theoretical calculations for the viscosity exponent finally achieved consistency with the best experimental data for pure fluids. This report gives the justification for the proposed microgravity Critical Viscosity Experiment in this new context. This report also combines for the first time the best available light scattering data with our recent viscosity data to demonstrate the current status of tests of mode coupling theory.

  13. Foamed Bulk Metallic Glass (Foam) Investigation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This soldering iron has an evacuated copper capsule at the tip that contains a pellet of Bulk Metallic Glass (BMG) aboard the International Space Station (ISS). Prior to flight, researchers sealed a pellet of bulk metallic glass mixed with microscopic gas-generating particles into the copper ampoule under vacuum. Once heated in space, such as in this photograph, the particles generated gas and the BMG becomes a viscous liquid. The released gas made the sample foam within the capsule where each microscopic particle formed a gas-filled pore within the foam. The inset image shows the oxidation of the sample after several minutes of applying heat. Although hidden within the brass sleeve, the sample retained the foam shape when cooled, because the viscosity increased during cooling until it was solid.

  14. Bulk viscous cosmology with causal transport theory

    SciTech Connect

    Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried E-mail: fabris@pq.cnpq.br

    2011-05-01

    We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10{sup −11} || cb{sup 2} ∼< 10{sup −8}.

  15. Negative viscosity from negative compressibility and axial flow shear stiffness in a straight magnetic field

    DOE PAGES

    Li, J. C.; Diamond, P. H.

    2017-03-23

    Here, negative compressibility ITG turbulence in a linear plasma device (CSDX) can induce a negative viscosity increment. However, even with this negative increment, we show that the total axial viscosity remains positive definite, i.e. no intrinsic axial flow can be generated by pure ITG turbulence in a straight magnetic field. This differs from the case of electron drift wave (EDW) turbulence, where the total viscosity can turn negative, at least transiently. When the flow gradient is steepened by any drive mechanism, so that the parallel shear flow instability (PSFI) exceeds the ITG drive, the flow profile saturates at a level close to the value above which PSFI becomes dominant. This saturated flow gradient exceeds the PSFI linear threshold, and grows withmore » $$\

  16. Optimization of drug viscosity used in gas-powered liquid jet injectors.

    PubMed

    Portaro, Rocco; Nakayama, Haruka; Ng, Hoi Dick

    2015-01-01

    This paper describes the effect of drug viscosity on the performance of gas powered liquid jet injectors. The analysis is accomplished utilizing a Computational Fluid Dynamics (CFD) model that obtains the stagnation pressure at the nozzle outlet. The technique is based on previous work used to predict gas power driven injector piston velocity with time. The results depict the variation in average and peak injector stagnation pressure for three different driven pressures; driving injections which vary from 0.2 cP to 87 cP in viscosity. Furthermore, a numerical representation of jet shape is also obtained to verify the effect of viscosity on jet geometry. These results demonstrate that increasing viscosity by 10 times that of water produces only a slight decrease in injector stagnation pressure and produces jets with greater confinement, which will display better characteristics for puncturing the skin.

  17. Disk Drives

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A new material known as AlBeMet, developed by Brush Wellman for research applications in the National Aero-Space Plane (NASP) program, is now used for high performance disk drives. AlBeMet is a compression of aluminum, beryllium metal matrix composite. It reduces system weight and its high thermal conductivity can effectively remove heat and increase an electrical system's lifetime. The lighter, stiffer AlBeMet (AlBeMet 160) used in the disk drive means heads can be moved faster, improving disk performance.

  18. EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS

    SciTech Connect

    Dr. Jorge Gabitto; Maria Barrufet

    2003-05-01

    The USA deposits of heavy oils and tar sands contain significant energy reserves. Thermal methods, particularly steam drive and steam soak, are used to recover heavy oils and bitumen. Thermal methods rely on several displacement mechanisms to recover oil, but the most important is the reduction of crude viscosity with increasing temperature. The main objective of this research is to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes. First, we reviewed critically the existing literature choosing the most promising models for viscosity determination. Then, we modified an existing viscosity correlation, based on the corresponding states principle in order to fit more than two thousand commercial viscosity data. We collected data for compositional and black oil samples (absence of compositional data). The data were screened for inconsistencies resulting from experimental error. A procedure based on the monotonic increase or decrease of key variables was implemented to carry out the screening process. The modified equation was used to calculate the viscosity of several oil samples where compositional data were available. Finally, a simple procedure was proposed to calculate black oil viscosity from common experimental information such as, boiling point, API gravity and molecular weight.

  19. Linear Back-Drive Differentials

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Linear back-drive differentials have been proposed as alternatives to conventional gear differentials for applications in which there is only limited rotational motion (e.g., oscillation). The finite nature of the rotation makes it possible to optimize a linear back-drive differential in ways that would not be possible for gear differentials or other differentials that are required to be capable of unlimited rotation. As a result, relative to gear differentials, linear back-drive differentials could be more compact and less massive, could contain fewer complex parts, and could be less sensitive to variations in the viscosities of lubricants. Linear back-drive differentials would operate according to established principles of power ball screws and linear-motion drives, but would utilize these principles in an innovative way. One major characteristic of such mechanisms that would be exploited in linear back-drive differentials is the possibility of designing them to drive or back-drive with similar efficiency and energy input: in other words, such a mechanism can be designed so that a rotating screw can drive a nut linearly or the linear motion of the nut can cause the screw to rotate. A linear back-drive differential (see figure) would include two collinear shafts connected to two parts that are intended to engage in limited opposing rotations. The linear back-drive differential would also include a nut that would be free to translate along its axis but not to rotate. The inner surface of the nut would be right-hand threaded at one end and left-hand threaded at the opposite end to engage corresponding right- and left-handed threads on the shafts. A rotation and torque introduced into the system via one shaft would drive the nut in linear motion. The nut, in turn, would back-drive the other shaft, creating a reaction torque. Balls would reduce friction, making it possible for the shaft/nut coupling on each side to operate with 90 percent efficiency.

  20. Viscosity dictates metabolic activity of Vibrio ruber

    PubMed Central

    Borić, Maja; Danevčič, Tjaša; Stopar, David

    2012-01-01

    Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase (GPD) increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment. PMID:22826705

  1. Saybolt universal viscosity converted to kinematic

    SciTech Connect

    Anaya, C.; Bermudez, O.

    1987-09-21

    This article describes a program for personal and handheld computers, written in Basic, which has been developed for the conversion of Saybolt universal viscosity in Saybolt Universal Seconds (SSU or SUS) to kinematic viscosity in centistokes (cSt), at any selected temperature. It was developed using the mathematical relationship presented in the American Society for Testing and Materials (ASTM) standard D2161-82. In the standard, an equation is presented to convert kinematic viscosity to Saybolt universal viscosity, but nothing is presented to convert from Saybolt to kinematic because it is necessary to find the roots of a nonexplicit function. There are several numerical methods that can be used to determine the roots of the nonexplicit function, and therefore, convert Saybolt universal viscosity to kinematic viscosity. In the program, the first iteration of the second-order Newton-Raphson method is followed by the Wegstein method as a convergence accelerator.

  2. Bulk Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-09-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  3. Bacterial accumulation in viscosity gradients

    NASA Astrophysics Data System (ADS)

    Waisbord, Nicolas; Guasto, Jeffrey

    2016-11-01

    Cell motility is greatly modified by fluid rheology. In particular, the physical environments in which cells function, are often characterized by gradients of viscous biopolymers, such as mucus and extracellular matrix, which impact processes ranging from reproduction to digestion to biofilm formation. To understand how spatial heterogeneity of fluid rheology affects the motility and transport of swimming cells, we use hydrogel microfluidic devices to generate viscosity gradients in a simple, polymeric, Newtonian fluid. Using video microscopy, we characterize the random walk motility patterns of model bacteria (Bacillus subtilis), showing that both wild-type ('run-and-tumble') cells and smooth-swimming mutants accumulate in the viscous region of the fluid. Through statistical analysis of individual cell trajectories and body kinematics in both homogeneous and heterogeneous viscous environments, we discriminate passive, physical effects from active sensing processes to explain the observed cell accumulation at the ensemble level.

  4. Turbulent viscosity. [in accretion disks

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.; Chasnov, J.

    1988-01-01

    A model for fully developed turbulence is proposed whose predictions compare favorably with those of the direct interaction approximation (DIA) model and whose main equations are easy to handle. Four different expressions for the turbulent viscosity are derived which contain no free parameters. Two of the expressions are given in terms of properties of the turbulent fluid itself; the other two are given in terms of the instability that generated the turbulence and of the properties of the mean flow. The numerical coefficients entering these relations are evaluated and found to be in good agreement with previous theoretical estimates based on Kraichnan's DIA, the renormalization group method, and turbulence modeling. In the case of shear in the mean flow, the Shakura-Sunyaev alpha parameter is shown to be less than 0.01. The four expressions can be generalized to include the effect of rotation and/or magnetic fields.

  5. From viscosity and surface tension to marangoni flow in melts

    NASA Astrophysics Data System (ADS)

    Sun, Shouyi; Zhang, Ling; Jahanshahi, Sharif

    2003-10-01

    This article covers some of our recent work on slag viscosity, the surface tension of liquid Cu-O alloys, and the relative role of Marangoni and bulk flow on refractory wear in iron-silicate slags. A viscosity model developed for slags containing SiO2, Al2O3, Fe2O3, CaO, MgO, MnO, FeO, PbO, NiO, Cu2O, ZnO, CoO, and TiO2 is capable of representing the effects of temperature, silica, and network-modifier cations within a wide range of temperatures and compositions. It forms a useful part of a computational package for multiphase-equilibrium (MPE) calculations and for predicting slag viscosities. The models are well applicable to a range of industrial slags (blast furnace, new iron making, base-metal and Platinum Group Metals (PGM) smelting, and coal-ash slags). The package has also some capability of predicting the viscosity of slags containing suspended solids. The surface tension of liquid copper-oxygen alloys has also been analyzed. The adsorption behavior of oxygen in liquid copper is well represented by the combined Langmuir-Gibbs isotherm. According to the rate data for silica-rod dissolution in liquid iron-silicate slags at 1573 K, the preferential attack at the slag line diminishes as the linear velocity of flow at the surface of the rotating silica rod reaches 9 to 16 cm/s. A tentative analysis gives the critical condition, that relates the critical Reynolds (Re) and Marangoni (Ma) number by the equation Re*2=0.13 Ma*.

  6. Viscosity undulations in the lower mantle: The dynamical role of iron spin transition

    NASA Astrophysics Data System (ADS)

    Justo, J. F.; Morra, G.; Yuen, D. A.

    2015-07-01

    A proper determination of the lower-mantle viscosity profile is fundamental to understanding Earth geodynamics. Based on results coming from different sources, several models have been proposed to constrain the variations of viscosity as a function of pressure, stress and temperature. While some models have proposed a relatively modest viscosity variation across the lower mantle, others have proposed variations of several orders of magnitude. Here, we have determined the viscosity of ferropericlase, a major mantle mineral, and explored the role of the iron high-to-low spin transition. Viscosity was described within the elastic strain energy model, in which the activation parameters are obtained from the bulk and shear wave velocities. Those velocities were computed combining first principles total energy calculations and the quasi-harmonic approximation. As a result of a strong elasticity softening across the spin transition, there is a large reduction in the activation free energies of the materials creep properties, leading to viscosity undulations. These results suggest that the variations of the viscosity across the lower mantle, resulting from geoid inversion and postglacial rebound studies, may be caused by the iron spin transition in mantle minerals. Implications of the undulated lower mantle viscosity profile exist for both, down- and up-wellings in the mantle. We find that a viscosity profile characterized by an activation free energy of G* (z0) ˜ 300- 400 kJ /mol based on diffusion creep and dilation factor δ = 0.5 better fits the observed high velocity layer at mid mantle depths, which can be explained by the stagnation and mixing of mantle material. Our model also accounts for the growth of mantle plume heads up to the size necessary to explain the Large Igneous Provinces that characterize the start of most plume tracks.

  7. Viscosity effects in foam drainage: Newtonian and non-newtonian foaming fluids.

    PubMed

    Safouane, M; Saint-Jalmes, A; Bergeron, V; Langevin, D

    2006-02-01

    We have studied the drainage of foams made from Newtonian and non-Newtonian solutions of different viscosities. Forced-drainage experiments first show that the behavior of Newtonian solutions and of shear-thinning ones (foaming solutions containing either Carbopol or Xanthan) are identical, provided one considers the actual viscosity corresponding to the shear rate found inside the foam. Second, for these fluids, a drainage regime transition occurs as the bulk viscosity is increased, illustrating a coupling between surface and bulk flow in the channels between bubbles. The properties of this transition appear different from the ones observed in previous works in which the interfacial viscoelasticity was varied. Finally, we show that foams made of solutions containing long flexible PolyEthylene Oxide (PEO) molecules counter-intuitively drain faster than foams made with Newtonian solutions of the same viscosity. Complementary experiments made with fluids having all the same viscosity but different responses to elongational stresses (PEO-based Boger fluids) suggest an important role of the elastic properties of the PEO solutions on the faster drainage.

  8. Viscosity of strongly interacting quantum fluids: Spectral functions and sum rules

    SciTech Connect

    Taylor, Edward; Randeria, Mohit

    2010-05-15

    The viscosity of strongly interacting systems is a topic of great interest in diverse fields. We focus here on the bulk and shear viscosities of nonrelativistic quantum fluids, with particular emphasis on strongly interacting ultracold Fermi gases. We use Kubo formulas for the bulk and shear viscosity spectral functions, {zeta}({omega}) and {eta}({omega}), respectively, to derive exact, nonperturbative results. Our results include a microscopic connection between the shear viscosity {eta} and the normal-fluid density {rho}{sub n}; sum rules for {zeta}({omega}) and {eta}({omega}) and their evolution through the BCS-BEC crossover (where BEC denotes Bose-Einstein condensate); and universal high-frequency tails for {eta}({omega}) and the dynamic structure factor S(q,{omega}). We use our sum rules to show that, at unitarity, {zeta}({omega}) is identically zero and thus relate {eta}({omega}) to density-density correlations. We predict that frequency-dependent shear viscosity {eta}({omega}) of the unitary Fermi gas can be experimentally measured using Bragg spectroscopy.

  9. Viscosity of a sheared correlated (near-critical) model fluid in confinement

    NASA Astrophysics Data System (ADS)

    Rohwer, Christian M.; Gambassi, Andrea; Krüger, Matthias

    2017-08-01

    Second-order phase transitions are characterized by a divergence of the spatial correlation length of the order parameter fluctuations. For confined systems, this is known to lead to remarkable equilibrium physical phenomena, including finite-size effects and critical Casimir forces. We explore here some non-equilibrium aspects of these effects in the stationary state resulting from the action of external forces: by analyzing a model of a correlated fluid under shear, spatially confined by two parallel plates, we study the resulting viscosity within the setting of (Gaussian) Landau-Ginzburg theory. Specifically, we introduce a model in which the hydrodynamic velocity field (obeying the Stokes equation) is coupled to an order parameter with dissipative dynamics. The well-known Green-Kubo relation for bulk systems is generalized for confined systems. This is shown to result in a non-local Stokes equation for the fluid flow, due to the correlated fluctuations. The resulting effective shear viscosity shows universal as well as non-universal contributions, which we study in detail. In particular, the deviation from the bulk behavior is universal, depending on the ratio of the correlation length and the film thickness L. In addition, at the critical point the viscosity is proportional to \\ell /L , where \\ell is a dynamic length scale. These findings are expected to be experimentally observable, especially for systems where the bulk viscosity is affected by critical fluctuations.

  10. The experimental viscosity and calculated relative viscosity of liquid In Sn allcoys

    NASA Astrophysics Data System (ADS)

    Wu, A. Q.; Guo, L. J.; Liu, C. S.; Jia, E. G.; Zhu, Z. G.

    2007-04-01

    The experimental measured viscosity of liquid pure Sn, In 20Sn 80 and In 80Sn 20 alloys was studied, and to make a comparison, the calculated relative viscosity based on the pair distribution functions, g( r), has also been studied. There is one peak in each experimental viscosity and calculated relative-viscosity curve of liquid pure Sn about 1000 °C. One valley appears in each experimental viscosity and calculated viscosity curve of liquid In 20Sn 80 alloy about 700 °C. There is no abnormal behavior on In 80Sn 20 alloy. The behavior of experimental viscosity and calculated relative viscosity is coincident with each other. Those results conformed that the temperature-induced structure anomalies reported before did take place.

  11. Structural rejuvenation in bulk metallic glasses

    DOE PAGES

    Tong, Yang; Iwashita, T.; Dmowski, Wojciech; ...

    2015-01-05

    Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.

  12. Structural rejuvenation in bulk metallic glasses

    SciTech Connect

    Tong, Yang; Iwashita, T.; Dmowski, Wojciech; Bei, Hongbin; Yokoyama, Y.; Egami, Takeshi

    2015-01-05

    Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.

  13. Large area bulk superconductors

    DOEpatents

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  14. Layer with reduced viscosity at water-oil interfaces probed by fluorescence correlation spectroscopy.

    PubMed

    Wang, Dapeng; Pevzner, Leonid; Li, Chen; Peneva, Kalina; Li, Christopher Y; Chan, Derek Y C; Müllen, Klaus; Mezger, Markus; Koynov, Kaloian; Butt, Hans-Jürgen

    2013-01-01

    The two-dimensional diffusion of isolated molecular tracers at the water-n-alkane interface was studied with fluorescence correlation spectroscopy. The interfacial diffusion coefficients of larger tracers with a hydrodynamic radius of 4.0 nm agreed well with the values calculated from the macroscopic viscosities of the two bulk phases. However, for small molecule tracers with hydrodynamic radii of only 1.0 and 0.6 nm, notable deviations were observed, indicating the existence of an interfacial region with reduced effective viscosity and increased mobility.

  15. STUDIES ON THE ANOMALOUS VISCOSITY AND FLOW-BIREFRINGENCE OF PROTEIN SOLUTIONS

    PubMed Central

    Lawrence, A. S. C.; Needham, Joseph; Shen, Shih-Chang

    1944-01-01

    1. A coaxial viscosimeter which permits the simultaneous determination of relative and anomalous viscosity and of flow-birefringence is described. Flow-anomaly and flow-birefringence are regarded as characteristic of elongated micelles and molecules. 2. Such methods have been applied to dilute solutions of proteins. The conditions under which the coaxial (Couette) viscosimeter measures the viscosity of the bulk phase and the surface film phase respectively have been investigated and are described. 3. The general behaviour of protein solutions subjected to shear is summarised. PMID:19873384

  16. Reducing blood viscosity with magnetic fields

    NASA Astrophysics Data System (ADS)

    Tao, R.; Huang, K.

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ˜1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells’ normal function. This technology has much potential for physical therapy.

  17. Reducing blood viscosity with magnetic fields.

    PubMed

    Tao, R; Huang, K

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ~1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells' normal function. This technology has much potential for physical therapy.

  18. THE VISCOSITY OF HELIUM-CESIUM MIXTURES,

    DTIC Science & Technology

    The viscosities of helium-cesium mixtures having mole fractions of cesium from zero to unity were evaluated using a Lennard - Jones 6-12 interaction potential for all encounters in the Enskog Chapman expressions for the viscosity of a binary mixture. (Author)

  19. Viscosity test standards for engine oils

    SciTech Connect

    Not Available

    1990-01-01

    This report presents a compilation of 10 ASTM standards that cover both low and high temperature viscosity tests for automotive engine oils, with respect to low temperature flow properties and performance requirements under high temperature, high shear rate conditions. Society of Automotive Engineer's Engine Oil Viscosity Classification SAE J300 is included to provide low temperature high shear rate method.

  20. Plasma viscosity elevations with simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Martin, D. G.; Convertino, V. A.; Goldwater, D.; Ferguson, E. W.; Schoomaker, E. B.

    1986-01-01

    A hypothesis correlating an increase in blood viscosity during bed rest to a decrease in aerobic capacity during simulated weightlessness is tested. Eight human subjects were studied on the sixth day of bed rest during two consecutive 10-d bed rest periods separated by a 14-d recovery interval designed to simulate the flight-layover schedule of Shuttle astronauts. Plasma viscosity and volume were measured, together with maximal aerobic capacity (VO2max). An increase in hematocrit, plasma protein, and fibrinogen concentrations was found, contributing to an elevation in plasma viscosity. VO2max decreased significantly in the first, but not the second bed rest cycle, and though many individuals exhibited a decrease in plasma volume and aerobic capacity coupled with elevated plasma viscosity, correlations between these variables were lacking. It is concluded that the decrease in VO2max observed following simulated weightlessness cannot be attributed to alterations in muscle blood flow resulting from increased blood viscosity.

  1. Plasma viscosity elevations with simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Martin, D. G.; Convertino, V. A.; Goldwater, D.; Ferguson, E. W.; Schoomaker, E. B.

    1986-01-01

    A hypothesis correlating an increase in blood viscosity during bed rest to a decrease in aerobic capacity during simulated weightlessness is tested. Eight human subjects were studied on the sixth day of bed rest during two consecutive 10-d bed rest periods separated by a 14-d recovery interval designed to simulate the flight-layover schedule of Shuttle astronauts. Plasma viscosity and volume were measured, together with maximal aerobic capacity (VO2max). An increase in hematocrit, plasma protein, and fibrinogen concentrations was found, contributing to an elevation in plasma viscosity. VO2max decreased significantly in the first, but not the second bed rest cycle, and though many individuals exhibited a decrease in plasma volume and aerobic capacity coupled with elevated plasma viscosity, correlations between these variables were lacking. It is concluded that the decrease in VO2max observed following simulated weightlessness cannot be attributed to alterations in muscle blood flow resulting from increased blood viscosity.

  2. Anomalous magnetic viscosity in relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Lin, Fujun; Liu, Sanqiu; Li, Xiaoqing

    2013-07-01

    It has been proved that the self-generated magnetic fields by transverse plasmons in the relativistic regime are modulationally unstable, leading to a self-similar collapse of the magnetic flux tubes and resulting in local magnetic structures; highly spatially intermittent flux is responsible for generating the anomalous viscosity. We derive the anomalous magnetic viscosity coefficient, in accretion disks around compact objects, such as black holes, pulsars and quasars, where the plasmas are relativistic, in order to help clarify the nature of viscosity in the theory of accretion disks. The results indicate that, the magnetic viscosity is modified by the relativistic effects of plasmas, and its' strength would be 1015 stronger than the molecular viscosity, which may be helpful in explaining the observations.

  3. Eruptive viscosity and volcano morphology

    NASA Technical Reports Server (NTRS)

    Posin, Seth B.; Greeley, Ronald

    1988-01-01

    Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology.

  4. Relaxation Behavior of Ca-Based Bulk Metallic Glasses (Postprint)

    DTIC Science & Technology

    2009-09-03

    DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) April 2014 Interim 19 March 2014 – 31 March 2014 4. TITLE AND SUBTITLE RELAXATION...liquids.[2 4] Almost all bulk metallic glasses show intermediate fragile behavior.[ 5 ] Slow kinet- ics of crystallization due to high viscosity/high...on u is used to calculate the activation enthalpy of structural relax- ation, DHg, at the glass transition: [17] DHg ¼ R d lnu d 1 . Tcalg ½ 5

  5. Macroscopic and direct light propulsion of bulk graphene material

    NASA Astrophysics Data System (ADS)

    Zhang, Tengfei; Chang, Huicong; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-07-01

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work the direct light propulsion of matter is observed on a macroscopic scale using a bulk graphene-based material. The unique structure and properties of graphene, and the novel morphology of the bulk three-dimensional linked graphene material make it capable not only of absorbing light at various wavelengths but also of emitting energetic electrons efficiently enough to drive the bulk material, following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk-scale light manipulation with the potential to realize long-sought applications in areas such as the solar sail and space transportation driven directly by sunlight.

  6. Viscosity measurement techniques in Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  7. Comparative evaluation of aqueous humor viscosity.

    PubMed

    Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric

    2015-01-01

    To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P < 0.0001). The aqueous humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.

  8. A Study of Oil Viscosity Mental Model

    NASA Astrophysics Data System (ADS)

    Albaiti; Liliasari; Sumarna, Omay; Abdulkadir Martoprawiro, Muhamad

    2017-02-01

    There is no study regarding on how to learn viscosity of the liquid (e.g. oil) by interconnecting macroscopic, sub-microscopic and symbolic levels. Therefore, the purpose of this research was to study the mental model of the oil viscosity. Intermolecular attractive force of oil constituent on the sub-microscopic level is depicted in the form of mental models. In this research, the viscosity data for some types of oil was measured by using Hoppler method. Viscosity of mineral oil SAE 20W-50, mineral oil SAE 15W-40 and synthetic oil SAE 10W-40 were 1.75, 1.31, and 1.03 Pa s, and the densities of these oils were 908.64, 885.04, and 877.02 kg/m3, respectively. The results showed that the greater density of the mineral oil that is assumed to be composed of linear chains of hydrocarbons, the longer the chain of hydrocarbon linear. Consequently, there are stronger the London force and greater the oil viscosity. The density and viscosity of synthetic oil are lower than that of both mineral oils. Synthetic oil structurally forms polymers with large branching. This structure affects a lower synthetic oil viscosity. This study contributes to construct a mental model of pre-service chemistry teachers.

  9. Viscosity of high-temperature iodine

    NASA Technical Reports Server (NTRS)

    Kang, Steve H.; Kunc, Joseph A.

    1991-01-01

    The viscosity coefficient of iodine in the temperature range 500 - 3000 K is calculated. Because of the low dissociation energy of the I2 molecules, the dissociation degree of the gas increases quickly with temperature, and I + I2 and I + I collisions must be taken into account in calculation of viscosity at temperatures greater than 1000 deg. Several possible channels for atom-atom interaction are considered, and the resulting collision integrals are averaged over all the important channels. It is also shown that the rigid-sphere model is inaccurate in predictions of the viscosity.

  10. Viscosity of high-temperature iodine

    NASA Technical Reports Server (NTRS)

    Kang, Steve H.; Kunc, Joseph A.

    1991-01-01

    The viscosity coefficient of iodine in the temperature range 500 - 3000 K is calculated. Because of the low dissociation energy of the I2 molecules, the dissociation degree of the gas increases quickly with temperature, and I + I2 and I + I collisions must be taken into account in calculation of viscosity at temperatures greater than 1000 deg. Several possible channels for atom-atom interaction are considered, and the resulting collision integrals are averaged over all the important channels. It is also shown that the rigid-sphere model is inaccurate in predictions of the viscosity.

  11. Viscosity studies of water based magnetite nanofluids

    SciTech Connect

    Anu, K.; Hemalatha, J.

    2016-05-23

    Magnetite nanofluids of various concentrations have been synthesized through co-precipitation method. The structural and topographical studies made with the X-Ray Diffractometer and Atomic Force Microscope are presented in this paper. The density and viscosity studies for the ferrofluids of various concentrations have been made at room temperature. The experimental viscosities are compared with theoretical values obtained from Einstein, Batchelor and Wang models. An attempt to modify the Rosensweig model is made and the modified Rosensweig equation is reported. In addition, new empirical correlation is also proposed for predicting viscosity of ferrofluid at various concentrations.

  12. Viscoseal performance with rarefied-gas sealant

    NASA Technical Reports Server (NTRS)

    Milligan, M. W.

    1973-01-01

    A fundamental study of viscoseals having a rarefied gas as the sealant was conducted. Both experimental and analytical investigations are reported. Three different analytical models were formulated and are described in detail. An experimental investigation was conducted on multiple grooved two-inch diameter viscoseals over a wide range of gas densities and shaft speeds up to 30,000 rpm. Comparisons are presented between actual viscoseal performance and the theoretical predictions for both sealing coefficient and net leakage parameters as functions of the degree of gas rarefication. Recommendations are presented for the use of the analytical models.

  13. Shear viscosity in the postquasistatic approximation

    SciTech Connect

    Peralta, C.; Rosales, L.; Rodriguez-Mueller, B.; Barreto, W.

    2010-05-15

    We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of anisotropic nonadiabatic radiating and dissipative distributions in general relativity. Dissipation is described by viscosity and free-streaming radiation, assuming an equation of state to model anisotropy induced by the shear viscosity. We match the interior solution, in noncomoving coordinates, with the Vaidya exterior solution. Two simple models are presented, based on the Schwarzschild and Tolman VI solutions, in the nonadiabatic and adiabatic limit. In both cases, the eventual collapse or expansion of the distribution is mainly controlled by the anisotropy induced by the viscosity.

  14. Viscosity studies of water based magnetite nanofluids

    NASA Astrophysics Data System (ADS)

    Anu, K.; Hemalatha, J.

    2016-05-01

    Magnetite nanofluids of various concentrations have been synthesized through co-precipitation method. The structural and topographical studies made with the X-Ray Diffractometer and Atomic Force Microscope are presented in this paper. The density and viscosity studies for the ferrofluids of various concentrations have been made at room temperature. The experimental viscosities are compared with theoretical values obtained from Einstein, Batchelor and Wang models. An attempt to modify the Rosensweig model is made and the modified Rosensweig equation is reported. In addition, new empirical correlation is also proposed for predicting viscosity of ferrofluid at various concentrations.

  15. Vortex lattices and defect-mediated viscosity reduction in active liquids

    NASA Astrophysics Data System (ADS)

    Slomka, Jonasz; Dunkel, Jorn

    2016-11-01

    Generic pattern-formation and viscosity-reduction mechanisms in active fluids are investigated using a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, defect-mediated low-viscosity phases and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.

  16. Seesaw in the Bulk

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Yoshioka, K.

    2011-01-01

    A five-dimensional seesaw framework is analyzed with the lepton-number-violating propagator of bulk right-handed neutrinos. That can bypass summing up the effects of heavy Majorana particles whose masses and wavefunctions are not exactly known. The propagator method makes it easier to evaluate the seesaw-induced neutrino mass for various boundary conditions of bulk neutrinos and in a general background geometry, including the warped extra dimension. It is also found that the higher-dimensional seesaw gives a natural framework for the inverse seesaw suppression of low-energy neutrino masses.

  17. Viscosity of Sheared Helical filament Suspensions

    NASA Astrophysics Data System (ADS)

    Sartucci, Matthew; Urbach, Jeff; Blair, Dan; Schwenger, Walter

    The viscosity of suspensions can be dramatically affected by high aspect ratio particles. Understanding these systems provides insight into key biological functions and can be manipulated for many technological applications. In this talk, the viscosity as a function of shear rate of suspensions of helical filaments is compared to that of suspensions of straight rod-like filaments. Our goal is to determine the impact of filament geometry on low volume fraction colloidal suspensions in order to identify strategies for altering viscosity with minimal volume fraction. In this research, the detached flagella of the bacteria Salmonella Typhimurium are used as a model system of helical filaments and compared to mutated straight flagella of the Salmonella. We compare rheological measurements of the suspension viscosity in response to shear flow and use a combination of the rheology and fluorescence microscopy to identify the microstructural changes responsible for the observed rheological response.

  18. Neoclassical Viscosities and Anomalous Flows in Stellarators

    NASA Astrophysics Data System (ADS)

    Ware, A. S.; Spong, D. A.; Breyfogle, M.; Marine, T.

    2009-05-01

    We present initial work to use neoclassical viscosities calculated with the PENTA code [1] in a transport model that includes Reynolds stress generation of flows [2]. The PENTA code uses a drift kinetic equation solver to calculate neoclassical viscosities and flows in general three-dimensional geometries over a range of collisionalities. The predicted neoclassical viscosities predicted by PENTA can be flux-surfaced average and applied in a 1-D transport model that includes anomalous flow generation. This combination of codes can be used to test the impact of stellarator geometry on anomalous flow generation. As a test case, we apply the code to modeling flows in the HSX stellarator. Due to variations in the neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).

  19. Quartz resonator fluid density and viscosity monitor

    DOEpatents

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-01-01

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  20. Sludge based Bacillus thuringiensis biopesticides: viscosity impacts.

    PubMed

    Brar, S K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2005-08-01

    Viscosity studies were performed on raw, pre-treated (sterilised and thermal alkaline hydrolysed or both types of treatment) and Bacillus thuringiensis (Bt) fermented sludges at different solids concentration (10-40 g/L) for production of biopesticides. Correlations were established among rheological parameter (viscosity), solids (total and dissolved) concentration and entomotoxicity (Tx) of Bt fermented sludges. Exponential and power laws were preferentially followed by hydrolysed fermented compared to raw fermented sludge. Soluble chemical oxygen demand variation corroborated with increase in dissolved solids concentration on pre-treatments, contributing to changes in viscosity. Moreover, Tx was higher for hydrolysed fermented sludge in comparison to raw fermented sludge owing to increased availability of nutrients and lower viscosity that improved oxygen transfer. The shake flask results were reproducible in fermenter. This study will have major impact on selecting fermentation, harvesting and formulation techniques of Bt fermented sludges for biopesticide production.

  1. Hydrodynamic Electron Flow and Hall Viscosity

    NASA Astrophysics Data System (ADS)

    Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P.; Moore, Joel E.

    2017-06-01

    In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.

  2. Second coefficient of viscosity in air

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Zuckerwar, Allan J.; Zheng, Zhonquan

    1991-01-01

    Acoustic attenuation measurements in air were analyzed in order to estimate the second coefficient of viscosity. Data over a temperature range of 11 C to 50 C and at relative humidities between 6 percent and 91 percent were used. This analysis showed that the second coefficient of viscosity varied between 1900 and 20,000 times larger than the dynamic or first coefficient of viscosity over the temperature and humidity range of the data. In addition, the data showed that the molecular relaxation effects, which are responsible for the magnitude of the second coefficient of viscosity, place severe limits on the use of time-independent, thermodynamic equations of state. Compressible flows containing large streamwise velocity gradients, like shock waves, which cause significant changes in particle properties to occur during time intervals shorter than hundredths of seconds, must be modeled using dynamic equations of state. The dynamic model approach is described briefly.

  3. Length-Scale Dependent Viscosity in Semidilute Polyelectrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Poling-Skutvik, Ryan; Krishnamoorti, Ramanan; Conrad, Jacinta

    2015-03-01

    Using optical microscopy and particle tracking algorithms, we measured the mean-squared displacements (MSDs) of fluorescent polystyrene particles with diameters ranging from 300 nm to 2 μm suspended in semidilute solutions of high molecular weight partially hydrolyzed polyacrylamide. The solutions had polymer concentrations ranging from 0.67 to 67c*, where c* is the overlap concentration, and estimated correlation lengths of ~ 100 to 900 nm. At short times, the particles exhibited subdiffusive behavior characterized by MSD ~tα with α < 1 . On long time scales, the particles transitioned to Fickian diffusion (α = 1) and their diffusivity was calculated from the slope of the MSD. Whereas the large particles agreed with predictions using the Stokes-Einstein equation and bulk zero-shear viscosity, the smaller particles diffused much faster than predicted. The relative diffusivities do not collapse onto a single curve, but rather form a continuum that varies with particle size. This indicates that the particles experience a size-dependent effective viscosity mediated by the ratio of particle diameter to characteristic length scales in the polymer solution.

  4. Viscosity and dissipative hydrodynamics from effective field theory

    NASA Astrophysics Data System (ADS)

    Grozdanov, Sašo; Polonyi, Janos

    2015-05-01

    With the goal of deriving dissipative hydrodynamics from an action, we study classical actions for open systems, which follow from the generic structure of effective actions in the Schwinger-Keldysh closed-time-path (CTP) formalism with two time axes and a doubling of degrees of freedom. The central structural feature of such effective actions is the coupling between degrees of freedom on the two time axes. This reflects the fact that from an effective field theory point of view, dissipation is the loss of energy of the low-energy hydrodynamical degrees of freedom to the integrated-out, UV degrees of freedom of the environment. The dynamics of only the hydrodynamical modes may therefore not possess a conserved stress-energy tensor. After a general discussion of the CTP effective actions, we use the variational principle to derive the energy-momentum balance equation for a dissipative fluid from an effective Goldstone action of the long-range hydrodynamical modes. Despite the absence of conserved energy and momentum, we show that we can construct the first-order dissipative stress-energy tensor and derive the Navier-Stokes equations near hydrodynamical equilibrium. The shear viscosity is shown to vanish in the classical theory under consideration, while the bulk viscosity is determined by the form of the effective action. We also discuss the thermodynamics of the system and analyze the entropy production.

  5. The direct viscosity enhancement of carbon dioxide

    SciTech Connect

    Iezzi, A.; Enick, R.; Brady, J. . Dept. of Chemistry)

    1988-01-01

    A high pressure viscometer has been constructed for use over a wide range of temperatures and pressures, including near-critical and supercritical conditions. An aluminum cylinder falls through a tube containing a stationary column of fluid, enabling viscosities to be determined from terminal velocity measurements. Preliminary results are presented on the search for an additive which can enhance the viscosity of carbon dioxide when present in low (less than 1%) concentrations.

  6. Eddy viscosity measurements in a rectangular jet

    NASA Technical Reports Server (NTRS)

    Swan, David H.; Morrison, Gerald L.

    1988-01-01

    The flow field of a rectangular jet with a 2:1 aspect ratio was studied at a Reynolds number of 100,000 (Mach number 0.09) using three-dimensional laser Doppler velocimetry (LDV). Velocity gradients, Reynolds stress tensor components, and scalar eddy viscosities are presented for the major and minor axis planes of the jet. The eddy viscosity model was found to be applicable only in the direction of maximum mean velocity gradient.

  7. Effects of heat conduction on artificial viscosity methods for shock capturing

    DOE PAGES

    Cook, Andrew W.

    2013-12-01

    Here we investigate the efficacy of artificial thermal conductivity for shock capturing. The conductivity model is derived from artificial bulk and shear viscosities, such that stagnation enthalpy remains constant across shocks. By thus fixing the Prandtl number, more physical shock profiles are obtained, only on a larger scale. The conductivity model does not contain any empirical constants. It increases the net dissipation of a computational algorithm but is found to better preserve symmetry and produce more robust solutions for strong-shock problems.

  8. Effects of heat conduction on artificial viscosity methods for shock capturing

    SciTech Connect

    Cook, Andrew W.

    2013-12-01

    Here we investigate the efficacy of artificial thermal conductivity for shock capturing. The conductivity model is derived from artificial bulk and shear viscosities, such that stagnation enthalpy remains constant across shocks. By thus fixing the Prandtl number, more physical shock profiles are obtained, only on a larger scale. The conductivity model does not contain any empirical constants. It increases the net dissipation of a computational algorithm but is found to better preserve symmetry and produce more robust solutions for strong-shock problems.

  9. Validity of Taylor's Dissipation-Viscosity Independence Postulate in Variable-Viscosity Turbulent Fluid Mixtures

    NASA Astrophysics Data System (ADS)

    Lee, Kurnchul; Girimaji, Sharath S.; Kerimo, Johannes

    2008-08-01

    G. I. Taylor’s postulate [Proc. R. Soc. APRLAAZ0080-4630 151, 421 (1935)10.1098/rspa.1935.0158] that dissipation is independent of viscosity at high Reynolds numbers is the foundation of many single-fluid turbulence theories and closure models. The validity of this key postulate in an important class of flows, turbulent mixtures, is not yet clearly established. We devise a simple numerical experiment of decaying turbulence in a mixture of two fluids of vastly different viscosities to examine dissipation scaling. Initially, the two fluids are segregated, and dissipation is directly proportional to viscosity. As turbulence evolves and fluids mix, the velocity gradients rapidly adapt to the viscosity field, and within one-half eddy turnover time, dissipation-viscosity independence is established. Viscosity-weighted velocity-gradient skewness is shown to be constant, leading to the validity of Taylor’s postulate in turbulent mixtures.

  10. A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells

    PubMed Central

    Su, Dongdong; Teoh, Chai Lean; Gao, Nengyue; Xu, Qing-Hua; Chang, Young-Tae

    2016-01-01

    Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY)-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM). PMID:27589762

  11. Kantowski-Sacks Bulk Viscous String Cosmological Models in the Presence of Zero-Mass Scalar Fields

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, R.; Satish, J.

    2014-06-01

    The Kantowski-Sachs cosmological solutions of massive strings have been studied in the presence of zero-mass scalar field coupled with bulk viscosity. It is assumed that the coefficient of bulk viscosity is a power function of energy density of massive strings. Further we have considered the cosmological parameter as a function of cosmic time. We obtained the general solution of the field equations in polynomial and exponential forms respectively. The behaviors of these models are also discussed in the presence as well as in the absence of bulk.

  12. Viscosity effects in wind wave generation

    NASA Astrophysics Data System (ADS)

    Paquier, A.; Moisy, F.; Rabaud, M.

    2016-12-01

    We investigate experimentally the influence of the liquid viscosity on the problem of the generation of waves by a turbulent wind at the surface of a liquid, extending the results of Paquier et al. [A. Paquier et al., Phys. Fluids 27, 122103 (2015), 10.1063/1.4936395] over nearly three decades of viscosity. The surface deformations are measured with micrometer accuracy using the free-surface synthetic schlieren method. We recover the two regimes of surface deformations previously identified: the wrinkle regime at small wind velocity, resulting from the viscous imprint on the liquid surface of the turbulent fluctuations in the boundary layer, and the regular wave regime at large wind velocity. Below the wave threshold, we find that the characteristic amplitude of the wrinkles scales as ν-1 /2u*3 /2 over nearly the whole range of viscosities, whereas their size is essentially unchanged. We propose a simple model for this scaling, which compares well with the data. We show that the critical friction velocity u* for the onset of regular waves slowly increases with viscosity as ν0.2. Whereas the transition between wrinkles and waves is smooth at low viscosity, including for water, it becomes rather abrupt at high viscosity. A third wave regime is found at ν >(100 -200 ) ×10-6m2s-1 , characterized by a slow, nearly periodic emission of large-amplitude isolated fluid bumps.

  13. Effects of surface roughness on shear viscosity.

    PubMed

    Papanikolaou, Michail; Frank, Michael; Drikakis, Dimitris

    2017-03-01

    This paper investigates the effect of surface roughness on fluid viscosity using molecular dynamics simulations. The three-dimensional model consists of liquid argon flowing between two solid walls whose surface roughness was modeled using fractal theory. In tandem with previously published experimental work, our results show that, while the viscosity in smooth channels remains constant across the channel width, in the presence of surface roughness it increases close to the walls. The increase of the boundary viscosity is further accentuated by an increase in the depth of surface roughness. We attribute this behavior to the increased momentum transfer at the boundary, a result of the irregular distribution of fluid particles near rough surfaces. Furthermore, although the viscosity in smooth channels has previously been shown to be independent of the strength of the solid-liquid interaction, here we show that in the presence of surface roughness, the boundary viscosity increases with the solid's wettability. The paper concludes with an analytical description of the viscosity as a function of the distance from the channel walls, the walls' surface roughness, and the solid's wetting properties. The relation can potentially be used to adjust the fluid dynamics equations for a more accurate description of microfluidic systems.

  14. Effects of surface roughness on shear viscosity

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Michail; Frank, Michael; Drikakis, Dimitris

    2017-03-01

    This paper investigates the effect of surface roughness on fluid viscosity using molecular dynamics simulations. The three-dimensional model consists of liquid argon flowing between two solid walls whose surface roughness was modeled using fractal theory. In tandem with previously published experimental work, our results show that, while the viscosity in smooth channels remains constant across the channel width, in the presence of surface roughness it increases close to the walls. The increase of the boundary viscosity is further accentuated by an increase in the depth of surface roughness. We attribute this behavior to the increased momentum transfer at the boundary, a result of the irregular distribution of fluid particles near rough surfaces. Furthermore, although the viscosity in smooth channels has previously been shown to be independent of the strength of the solid-liquid interaction, here we show that in the presence of surface roughness, the boundary viscosity increases with the solid's wettability. The paper concludes with an analytical description of the viscosity as a function of the distance from the channel walls, the walls' surface roughness, and the solid's wetting properties. The relation can potentially be used to adjust the fluid dynamics equations for a more accurate description of microfluidic systems.

  15. Viscosity of mafic magmas at high pressures

    NASA Astrophysics Data System (ADS)

    Cochain, B.; Sanloup, C.; Leroy, C.; Kono, Y.

    2017-01-01

    While it is accepted that silica-rich melts behave anomalously with a decrease of their viscosity at increased pressures (P), the viscosity of silica-poor melts is much less constrained. However, modeling of mantle melts dynamics throughout Earth's history, including the magma ocean era, requires precise knowledge of the viscous properties of silica-poor magmas. We extend here our previous measurements on fayalite melt to natural end-members pyroxenite melts (MgSiO3 and CaSiO3) using in situ X-ray radiography up to 8 GPa. For all compositions, viscosity decreases with P, rapidly below 5 GPa and slowly above. The magnitude of the viscosity decrease is larger for pyroxene melts than for fayalite melt and larger for the Ca end-member within pyroxene melts. The anomalous viscosity decrease appears to be a universal behavior for magmas up to 13 GPa, while the P dependence of viscosity beyond this remains to be measured. These results imply that mantle melts are very pervasive at depth.

  16. Effect of hemodialysis on whole blood viscosity.

    PubMed

    Vaisman, S; Kensey, K; Cho, Y I

    2009-06-01

    The purpose of the present study was to examine the effect of hemodialysis procedures on the hemoconcentration status of end-stage renal disease (ESRD) patients. We measured whole blood viscosity (WBV) of 30 ESRD patients using a scanning-capillary-tube viscometer before and after hemodialysis. The blood sample size required for WBV measurements was approximately 3 mL. Pre-dialysis specimens for viscosity measurements were obtained via the fistula needle or Perma catheter prior to initiating hemodialysis, and post-dialysis specimens were drawn from the arterial sample port of the hemodialysis line 3.5 hours after initiation of dialysis treatment. Changes in WBV were measured at high and low shear rates: 80% of patients showed an increased high shear viscosity, whereas 73% of patients demonstrated an increased low shear viscosity. The actual percentage increase in WBV observed after hemodialysis at high and low shear rate ranges varied broadly in the 30 patients. The observed increase in the WBV of ESRD patients over hemodialysis procedures indicates that a segment of patients experience increased flow resistance, particularly at the microcirculatory level. In addition, for the segment of patients experiencing marked increases in WBV during hemodialysis, the vessel wall at the dialysis fistula is exposed to blood with a higher viscosity than at the beginning of the process. The higher blood viscosity at the dialysis fistula is directly related to increased kinetic force and shear stress on the vessel wall, which may be playing a role in increasing the risk of stenosis.

  17. Improving transaxle performance at low temperature with reduced-viscosity automatic transmission fluids

    SciTech Connect

    Linden, J.L.; Kemp, S.P.

    1987-01-01

    The effects of automatic transmission fluid viscosity on the low-temperature performance of a front-wheel-drive transaxle were determined in a cold room maintained at a temperature of -20/sup 0/F (-28.9/sup 0/C), using both a cranking apparatus and a vehicle. Cranking and vehicle tests were conducted to determine the effects of fluid viscosity on the power required to crack a transaxle and on transaxle performance under low-temperature transient operation, respectively. Four automatic transmission fluids were tested, ranging in viscosity from 2 600 to 16 000 cP at - 20/sup 0/F. All test fluids contained the same additive package and were blended using the same types of base oils.

  18. Viscosity of Anhydrous and Hydrous Basalt Melts at High Pressures

    NASA Astrophysics Data System (ADS)

    Tinker, D.; Lesher, C. E.; Baxter, G. M.; Uchida, T.; Wang, Y.; Zhao, Y.

    2004-12-01

    We performed in situ falling-sphere experiments to determine the viscosity of anhydrous and hydrous basaltic (48 wt% SiO2) melts from 1.5 to 5.3 GPa between 1600 and 1840 K, using the T-25 MA8 multianvil apparatus at the GSECARS 13-ID-D beamline at the Advanced Photon Source, Argonne National Lab. These falling-sphere experiments included monitoring the simultaneous settling of Pt and Mo spheres, an approach that provides redundant viscosity measurements for individual experiments and offers the opportunity to recover simultaneously melt density. Our results show that the viscosity of anhydrous basalt melt decreases with pressure up to 5.3 GPa, with an activation volume for viscous flow of -8.1 to -9.5 cm3/mol between 2 and 5.3 GPa. The addition of a few wt. % water reduces melt viscosity by roughly 0.5 log units; however, there is no resolvable influence on activation volume. This negative pressure dependence is consistent with previous results for basaltic melts up to 3 GPa [1, 2], while the activation volume at low pressure is indistinguishable from the activation volume for O self-diffusion in the same bulk composition [3]. Application of the Eyring equation using O self-diffusion data for basaltic melt [3] predicts anhydrous melt viscosities that are 30-90% of the values determined in this study. This result is in stark contrast with our recent results for dacitic melt (68 wt% SiO2) melt [4], in which the Eyring equation overestimates viscosity by as much as 40% at pressures < 5 GPa. The limited utility of the Eyring equation for naturally-occurring silicate melts illustrates the difficulties in relating O self-diffusion to viscous flow in polymerized liquids. Adam-Gibbs theory [5] provides a means for addressing structural controls on these transport properties. The negative pressure dependence for anhydrous and hydrous basalt viscosity suggests that the extraction of partial melts from mantle source regions will be enhanced with pressure to 5.3 GPa. Future

  19. Effective viscosity of bacterial suspensions: a three-dimensional PDE model with stochastic torque.

    SciTech Connect

    Haines, B. M.; Aranson, I. S.; Berlyand, L.; Karpeev, D. A.

    2012-01-01

    We present a PDE model for dilute suspensions of swimming bacteria in a three-dimensional Stokesian fluid. This model is used to calculate the statistically-stationary bulk deviatoric stress and effective viscosity of the suspension from the microscopic details of the interaction of an elongated body with the background flow. A bacterium is modeled as an impenetrable prolate spheroid with self-propulsion provided by a point force, which appears in the model as an inhomogeneous delta function in the PDE. The bacterium is also subject to a stochastic torque in order to model tumbling (random reorientation). Due to a bacterium's asymmetric shape, interactions with prescribed generic planar background flows, such as a pure straining or planar shear flow, cause the bacterium to preferentially align in certain directions. Due to the stochastic torque, the steady-state distribution of orientations is unique for a given background flow. Under this distribution of orientations, self-propulsion produces a reduction in the effective viscosity. For sufficiently weak background flows, the effect of self-propulsion on the effective viscosity dominates all other contributions, leading to an effective viscosity of the suspension that is lower than the viscosity of the ambient fluid. This is in qualitative agreement with recent experiments on suspensions of Bacillus subtilis.

  20. Magnetic viscosity: outbursts and outflows in accretion driven systems

    NASA Astrophysics Data System (ADS)

    Meintjes, P. J.; Breedt, E.

    In this paper magnetic viscosity is investigated in magnetized accretion discs. It will be shown that the effective coupling between the magnetic field of a slow-rotator and an accretion disc, can be a very effective mechanism to drive episodes of high mass accretion onto the surface of a compact object. Outside the corotation radius, angular momentum is effectively transferred outwards through a propeller-type process from the magnetospheric field and magnetic bubbles that are formed as a result of a Kelvin-Helmholtz instability, which can result in a centrifugal barrier and accumulation of disc matter outside the corotation radius which will become unstable at some point, triggering enhanced inward mass advection as a result of a magneto-gravitational instability. This may lead to periods of enhanced mass accretion and associated disc brightening, which may explain the dwarf novae phenomenon in certain disc accreting cataclysmic variables. This may be accompanied by mass outflows from the disc and possible non-thermal emission. The description of magnetic viscosity presented in this paper will rely on the values of two constants, i.e. the Hartmann and Reynolds numbers of the magnetized disc plasma. For both these numbers above unity, magnetic stresses in the disc can play a very important role in the kinematics of the plasma in disc accreting systems.

  1. Influence of fluid viscosity and wetting on multiscale viscoelastic lubrication in soft tribological contacts.

    PubMed

    Selway, Nichola; Chan, Vincent; Stokes, Jason R

    2017-02-22

    Friction (and lubrication) between soft contacts is prevalent in many natural and engineered systems and plays a crucial role in determining their functionality. The contribution of viscoelastic hysteresis losses to friction in these systems has been well-established and defined for dry contacts; however, the influence of fluid viscosity and wetting on these components of friction has largely been overlooked. We provide systematic experimental evidence of the influence of lubricant viscosity and wetting on lubrication across multiple regimes within a viscoelastic contact. These effects are investigated for comparatively smooth and rough elastomeric contacts (PTFE-PDMS and PDMS-PDMS) lubricated by a series of Newtonian fluids with systematically controlled viscosity and static wetting properties, using a ball-on-disc tribometer. The distinct tribological behaviour, characterised generally by a decrease in the friction coefficient with increasing fluid viscosity and wettability, is explained in terms of lubricant dewetting and squeeze-out dynamics and their impact on multi-scale viscoelastic dissipation mechanisms at the bulk-, asperity-, sub-asperity- and molecular-scale. It is proposed that lubrication within the (non-molecularly) smooth contact is governed by localised fluid entrapment and molecular-scale (interfacial) viscoelastic effects, while additional rubber hysteresis stimulated by fluid-asperity interactions, combined with rapid fluid drainage at low speeds within the rough contact, alter the general shape of the Stribeck curve. This fluid viscosity effect is in some agreement with theoretical predictions. Conventional methods for analysing and interpreting tribological data, which typically involve scaling sliding velocity with lubricant viscosity, need to be revised for viscoelastic contacts with consideration of these indirect viscosity effects.

  2. Magnetostrictive Roller-Drive Stepping Motor

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1993-01-01

    Proposed motor based on magnetostrictive effect provides stepped angular motion with angular increments of order of 100 microradians. Driven to repeat stepping cycle rapidly enough to achieve maximum speed of about 20 rpm, provides torque an order of magnitude greater than electric motors, and brakes itself when power turned off. Magnetostrictive rods in electromagnet coils push against drive plate, causing it to rotate slightly. This slight rotation jams conical rollers between cam surfaces on outer drive ring and split drum, so rollers transmit rotation to drum. Suitable for precise, high-torque, fail-safe-braking, direct drive of robot joint, without bulk and weight of additional brake mechanism and gear train.

  3. Thickness Dependent Effective Viscosity of a Polymer Solution near an Interface Probed by a Quartz Crystal Microbalance with Dissipation Method

    PubMed Central

    Fang, Jiajie; Zhu, Tao; Sheng, Jie; Jiang, Zhongying; Ma, Yuqiang

    2015-01-01

    The solution viscosity near an interface, which affects the solution behavior and the molecular dynamics in the solution, differs from the bulk. This paper measured the effective viscosity of a dilute poly (ethylene glycol) (PEG) solution adjacent to a Au electrode using the quartz crystal microbalance with dissipation (QCM-D) technique. We evidenced that the effect of an adsorbed PEG layer can be ignored, and calculated the zero shear rate effective viscosity to remove attenuation of high shear frequency oscillations. By increasing the overtone n from 3 to 13, the thickness of the sensed polymer solution decreased from ~70 to 30 nm. The zero shear rate effective viscosity of the polymer solution and longest relaxation time of PEG chains within it decrease with increasing solution thickness. The change trends are independent of the relation between the apparent viscosity and shear frequency and the values of the involved parameter, suggesting that the polymer solution and polymer chains closer to a solid substrate have a greater effective viscosity and slower relaxation mode, respectively. This method can study the effect of an interface presence on behavior and phenomena relating to the effective viscosity of polymer solutions, including the dynamics of discrete polymer chains. PMID:25684747

  4. Viscosity of Xenon Examined in Microgravity

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.

    1999-01-01

    Why does water flow faster than honey? The short answer, that honey has a greater viscosity, merely rephrases the question. The fundamental answer is that viscosity originates in the interactions between a fluid s molecules. These interactions are so complicated that, except for low-density gases, the viscosity of a fluid cannot be accurately predicted. Progress in understanding viscosity has been made by studying moderately dense gases and, more recently, fluids near the critical point. Modern theories predict a universal behavior for all pure fluids near the liquid-vapor critical point, and they relate the increase in viscosity to spontaneous fluctuations in density near this point. The Critical Viscosity of Xenon (CVX) experiment tested these theories with unprecedented precision when it flew aboard the Space Shuttle Discovery (STS-85) in August 1997. Near the critical point, xenon is a billion times more compressible than water, yet it has about the same density. Because the fluid is so "soft," it collapses under its own weight when exposed to the force of Earth s gravity - much like a very soft spring. Because the CVX experiment is conducted in microgravity, it achieves a very uniform fluid density even very close to the critical point. At the heart of the CVX experiment is a novel viscometer built around a small nickel screen. An oscillating electric field forces the screen to oscillate between pairs of electrodes. Viscosity, which dampens the oscillations, can be calculated by measuring the screen motion and the force applied to the screen. So that the fluid s delicate state near the critical point will not be disrupted, the screen oscillations are set to be both slow and small.

  5. Estimating the Kinematic Viscosity of Petroleum Fractions

    NASA Astrophysics Data System (ADS)

    AlMulla, Hessa A.; Albahri, Tareq A.

    2017-04-01

    Kinematic viscosity correlation has been developed for liquid petroleum fractions at 37.78°C and 98.89°C (100 and 210°F) standard temperatures using a large variety of experimental data. The only required inputs are the specific gravity and the average boiling point temperature. The accuracy of the correlation was compared with several other correlations available in the literature. The proposed correlations proved to be more accurate in predicting the viscosity at 37.78°C and 98.89°C with average absolute deviations of 0.39 and 0.72 mm2/s, respectively. Another objective was to develop a relation for the variation of viscosity with temperature to predict the viscosity of petroleum fraction at a certain temperature from the knowledge of the viscosity for the same liquid at two other temperatures. The newly developed correlation represents a wide array of temperatures from 20°C to 150°C and viscosities from 0.14 mm2/s to 343.64 mm2/s. The results have been validated with experimental data consisting of 9558 data points, yielding an overall deviation of 0.248 mm2/s and R2 of 0.998. In addition, new formulas were developed to interconvert the viscosity of petroleum fractions from one unit of measure to another based on finding the best fit for a set of experimental data from the literature with R2 as high as 1.0 for many cases. Detailed analysis showed good agreement between the predicted values and the experimental data.

  6. The viscosity of hydrous dacitic liquids: implications for the rheology of evolving silicic magmas

    NASA Astrophysics Data System (ADS)

    Whittington, Alan G.; Hellwig, Bridget M.; Behrens, Harald; Joachim, Bastian; Stechern, André; Vetere, Francesco

    2009-03-01

    The viscosity of a series of six synthetic dacitic liquids, containing up to 5.04 wt% dissolved water, was measured above the glass transition range by parallel-plate viscometry. The temperature of the 1011 Pa s isokom decreases from 1065 K for the anhydrous liquid, to 864 K and 680 K for water contents of 0.97 and 5.04 wt% H2O. Including additional measurements at high temperatures by concentric-cylinder and falling-sphere viscometry, the viscosity ( η) can be expressed as a function of temperature and water content w according to: log _{10} {text{ }}η = - 4.43 + ( {7618.3 - 17.25{log _{10} [ {w + 0.26} ]} )} ({7618.3 - 17.25{log _{10} [ {w + 0.26} ] )} ( {T - {406.1 - 292.6{log_{10} {[ {w + 0.26} ]} }} } ( {T - {406.1 - 292.6{log _{10} {[ w + 0.26} ]} } )} where η is in Pa s, T is temperature in K, and w is in weight percent. Within the conditions of measurement, this parameterization reproduces the 76 viscosity data with a root-mean square deviation (RMSD) of 0.16 log units in viscosity, or 7.8 K in temperature. The measurements show that water decreases the viscosity of the dacitic liquids more than for andesitic liquids, but less than for rhyolites. At low temperatures and high water contents, andesitic liquids are more viscous than the dacitic liquids, which are in turn more viscous than rhyolitic liquids, reversing the trend seen for high temperatures and low water contents. This suggests that the relative viscosity of different melts depends on temperature and water content as much as on bulk melt composition and structure. At magmatic temperatures, rhyolites are orders of magnitude more viscous than dacites, which are slightly more viscous than andesites. During degassing, all three liquids undergo a rapid viscosity increase at low water contents, and both dacitic and andesitic liquids will degas more efficiently than rhyolitic liquids. During cooling and differentiation, changing melt chemistry, decreasing temperature and increasing crystal content all

  7. Models for viscosity and shear localization in bubble-rich magmas

    NASA Astrophysics Data System (ADS)

    Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia

    2016-09-01

    Bubble content influences magma rheology and, thus, styles of volcanic eruption. Increasing magma vesicularity affects the bulk viscosity of the bubble-melt suspension and has the potential to promote non-Newtonian behavior in the form of shear localization or brittle failure. Here, we present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. The starting materials are cores of natural rhyolitic obsidian synthesized to have variable vesicularity (ϕ = 0- 66%). The foamed cores were deformed isothermally (T = 750 °C) at atmospheric conditions using a high-temperature uniaxial press under constant displacement rates (strain rates between 0.5- 1 ×10-4 s-1) and to total strains of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods to establish a baseline for experiments on the vesicle rich cores. At the experimental conditions, rising vesicle content produces a marked decrease in bulk viscosity that is best described by a two-parameter empirical equation: log10 ⁡ηBulk =log10 ⁡η0 - 1.47[ ϕ / (1 - ϕ) ] 0.48. Our parameterization of the bubble-melt rheology is combined with Maxwell relaxation theory to map the potential onset of non-Newtonian behavior (shear localization) in magmas as a function of melt viscosity, vesicularity, and strain rate. For low degrees of strain (i.e. as in our study), the rheological properties of vesicular magmas under different flow types (pure vs. simple shear) are indistinguishable. For high strain or strain rates where simple and pure shear viscosity values may diverge, our model represents a maximum boundary condition. Vesicular magmas can behave as non-Newtonian fluids at lower strain rates than unvesiculated melts, thereby, promoting shear localization and (explosive or non-explosive) magma fragmentation. The extent of shear localization in magma influences outgassing efficiency

  8. High Pressure and Temperature Effects on the Viscosity, Density, and Bulk Modulus of Four Liquid Lubricants.

    DTIC Science & Technology

    1978-01-01

    stainless—steel sheath which is silver— brazed to an air-quenched tool- steel plug. Six conductors, four iron and two constantan, are containec in the 0.63...intermittent short circuit between coils and had tr ~e rep laced . The new coil was heat treated and then pressure aged to minimize drift during...N cm cm —St —St C-~ C- ’ . SN C” ‘ -tO C —1 C..) —I N. -.1- cm r i U’ 0 ‘0 C ft (N cm U) N. N. cm. -ft -C U’ N. ‘0 N. — i f’ U’ Cl) El — U) —St U

  9. Shear-free spherically symmetric inhomogeneous cosmological model with heat flow and bulk viscosity

    SciTech Connect

    Deng, Y.; Mannheim, P.D. )

    1990-07-15

    An exact solution to the Einstein equations with a shear-free imperfect-fluid source is obtained. The solution approaches a locally flat Robertson-Walker one in the large-{ital t} limit and thus serves as a viable candidate for a realistic cosmological model. The model built out of this solution is found to be free of horizon, entropy, and flatness problems.

  10. Modified Alternan: A Novel Microbial Gum with Potential as a Low-Viscosity Bulking Agent

    USDA-ARS?s Scientific Manuscript database

    Alternan is a microbial gum produced by rare strains of the GRAS lactic acid bacterium, Leuconostoc mesenteroides. The unique alternating alpha-(1,6) and alpha-(1,3) linkage pattern of this glucan imparts high solubility and resistance to most digestive enzymes. Previously, we invented a bioconver...

  11. A Quantitative Study of Bulk Stresses in Nonlinear Microrheology

    NASA Astrophysics Data System (ADS)

    Depuit, Ryan; Squires, Todd

    2010-11-01

    We investigate the nonlinear microrheology of a simple model system - a spherical probe translating through a dilute suspension of rigid rods - to elucidate a variety of issues inherent in the interpretation of nonlinear microrheology. We have developed a computational system to quantitatively examine the issues present in interpretation of nonlinear microrheology, as originally discussed by Squires (Langmuir, 2008). Following recent work emphasizing the importance of the microstructural behavior in the bulk (Sriram et. al, 2009), we focus our attention on the bulk microstructural deformation, and examine the significance of its (Lagrangian) transient nature, as well as the consequences of the mixed and inhomogeneous flows inherent to nonlinear microrheology. From this quantitative study, we pose solutions for the current theoretical issues facing nonlinear microrheology in interpretation and comparison of the microviscosity with the shear viscosity from traditional bulk rheometry.

  12. Setting the pace of microswimmers: when increasing viscosity speeds up self-propulsion

    NASA Astrophysics Data System (ADS)

    Pande, Jayant; Merchant, Laura; Krüger, Timm; Harting, Jens; Smith, Ana-Sunčana

    2017-05-01

    It has long been known that some microswimmers seem to swim counter-intuitively faster when the viscosity of the surrounding fluid is increased, whereas others slow down. This conflicting dependence of the swimming velocity on the viscosity is poorly understood theoretically. Here we explain that any mechanical microswimmer with an elastic degree of freedom in a simple Newtonian fluid can exhibit both kinds of response to an increase in the fluid viscosity for different viscosity ranges, if the driving is weak. The velocity response is controlled by a single parameter Γ, the ratio of the relaxation time of the elastic component of the swimmer in the viscous fluid and the swimming stroke period. This defines two velocity-viscosity regimes, which we characterize using the bead-spring microswimmer model and analyzing the different forces acting on the parts of this swimmer. The analytical calculations are supported by lattice-Boltzmann simulations, which accurately reproduce the two velocity regimes for the predicted values of Γ.

  13. Flow-induced agitations create a granular fluid: effective viscosity and fluctuations.

    PubMed

    Nichol, Kiri; van Hecke, Martin

    2012-06-01

    We fluidize a granular medium with localized stirring in a split-bottom shear cell. We probe the mechanical response of quiescent regions far from the main flow by observing the vertical motion of cylindrical probes rising, sinking, and floating in the grains. First, we find that the probe motion suggests that the granular material behaves in a liquid-like manner: high-density probes sink and low-density probes float at the depth given by Archimedes' law. Second, we observe that the drag force on moving probes scales linearly with their velocity, which allows us to define an effective viscosity for the system. This effective viscosity is inversely proportional to the rotation rate of the disk which drives the split bottom flow. Moreover, the apparent viscosity depends on radius and mass of the probe: despite the linear dependence of the drag forces on sinking speed of the probe, the granular medium is not simply Newtonian, but exhibits a more complex rheology. The decrease of viscosity with filling height of the cell, combined with the poor correlation between local strain rate and viscosity, suggests that the fluid-like character of the material is set by agitations generated in the stirred region: the relation between applied stress and observed strain rate in one location depends on the strain rate in another location. We probe the nature of the granular fluctuations that we believe mediates these nonlocal interactions by characterizing the small and random up and down motion that the probe experiences. These Gaussian fluctuations exhibit a mix of diffusive and subdiffusive behavior at short times and saturate at a value of roughly 1/10th of a grain diameter longer times, consistent with the picture of a random walker in a potential well. The product of crossover time and effective viscosity is constant, evidencing a direct link between fluctuations and viscosity.

  14. Mechanism and nature of the different viscosity sensitivities of hemicyanine dyes with various heterocycles.

    PubMed

    Cao, Jianfang; Hu, Chong; Liu, Fei; Sun, Wen; Fan, Jiangli; Song, Fengling; Sun, Shiguo; Peng, Xiaojun

    2013-06-03

    A series of hemicyanine derivatives are excellent fluorescent viscosity sensors in live cells and in imaging of living tissues due to their low quantum yields in solution but large fluorescence enhancements in viscous environments. Herein, three carbazole-based hemicyanine dyes with different heterocycles are studied. They have different background quantum yields, and hence different sensitivities to viscosity detection, large Stokes shifts, and high sensitivity. Better understanding of the structure-property relationships for viscosity sensitivity could benefit the design of improved dyes. Computational studies on these dyes reveal the mechanism of viscosity sensitivity of fluorescent molecular rotors and the nature of the difference in viscosity sensitivity of the three dyes. The results show that the greatly raised HOMO and greatly lowered LUMO in the S1 state compared with the S0 state are responsible for the large Stokes shift of the three dyes. The heterocyclic moieties have the primary influence on the LUMO levels of the three hemicyanine dyes. Rotation about the C-C bond adjacent to the carbazole moiety of the three dyes drives the molecule toward a small energy gap between the ground state and the first excited state, which causes mainly nonradiative deactivation. The oscillator strengths in the lowest singlet excited state drop rapidly with increasing rotation between 0 and 95°, which leads to a dark state for these dyes when fully twisted at 95°. We draw a mechanistic picture at the molecular level to illustrate how these dyes work as viscosity-sensitive fluorescent probes. The activation barriers and energy gaps of C-C bond rotation strongly depend on the choice of heterocycle, which plays a major role in reducing fluorescence quantum yield in the free state and provides high sensitivity to viscosity detection in viscous environments for the carbazole-based hemicyanine dyes.

  15. Manual Skill Generalization Enhanced by Negative Viscosity

    PubMed Central

    Patton, James L.; Mussa-Ivaldi, Ferdinando A.

    2010-01-01

    Recent human-machine interaction studies have suggested that movement augmented with negative viscosity can enhance performance and can even promote better motor learning. To test this, we investigated how negative viscosity influences motor adaptation to an environment where forces acted only in one axis of motion. Using a force-feedback device, subjects performed free exploratory movements with a purely inertia generating forces proportional to hand acceleration, negative viscosity generating destabilizing forces proportional to hand velocity, or a combination of the acceleration and velocity fields. After training, we evaluated each subject's ability to perform circular movements in only the inertial field. Combined training resulted in lowest error and revealed similar responses as inertia training in catch trials. These findings are remarkable because negative viscosity, available only during training, evidently enhanced learning when combined with inertia. This success in generalization is consistent with the ability of the nervous system to decompose the perturbing forces into velocity and acceleration dependent components. Compared with inertia, the combined group exhibited a broader range of speeds along the direction of maximal perturbing force. Broader exploration was also correlated with better performance in subsequent evaluation trials; this suggests that negative viscosity improved performance by enhancing identification of each force field. These findings shed light on a new way to enhance sensorimotor adaptation through robot-applied augmentation of mechanics. PMID:20660429

  16. Entropy viscosity method applied to Euler equations

    SciTech Connect

    Delchini, M. O.; Ragusa, J. C.; Berry, R. A.

    2013-07-01

    The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)

  17. Predicting slag viscosity from coal ash composition

    SciTech Connect

    Laumb, J.; Benson, S.A.; Katrinak, K.A.; Schwalbe, R.; McCollor, D.P.

    1999-07-01

    Management of slag flow from cyclone-fired utility boilers requires accurate prediction of viscosity. Cyclones tend to build up slag when the cyclone combustion temperature is less than the temperature required to melt and tap the ash from the coal being fired. Cyclone-fired boilers designed for lignite are equipped with predry systems, which remove 6-9% of the moisture from the coal. Cyclones tend to slag when the as-received heating value of the fuel is less than 6350 Btu/lb and T250 (temperature where viscosity equals 250 poise) is greater than 2350 F. The T250 value, as well as the rest of the viscosity-temperature relationship, can be predicted using models based on coal ash composition. The focus of this work is to evaluate several models in terms of their agreement with measured viscosities. Viscosity measurements were made for ten samples, including nine lignite coals and one lignite-derived slag. Model performance is related to the SiO{sub 2}, CaO, and Fe{sub 2}O{sub 3} contents of the slag. The Sage and McIlroy and Kalmanovitch models worked best for high SiO{sub 2} and low Fe{sub 2}O{sub 3} fuels. The Senior model worked best when Fe{sub 2}O{sub 3} content was moderate to high.

  18. Viscosity Measurement Using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin C.; Maxwell, Daniel; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We present in here validation studies of a new method for application in microgravity environment which measures the viscosity of highly viscous undercooled liquids using drop coalescence. The method has the advantage of avoiding heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Homogeneous nucleation can also be avoided due to the rapidity of the measurement using this method. The technique relies on measurements from experiments conducted in near zero gravity environment as well as highly accurate analytical formulation for the coalescence process. The viscosity of the liquid is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity for two coalescing drops. Results are presented from two sets of validation experiments for the method which were conducted on board aircraft flying parabolic trajectories. In these tests the viscosity of a highly viscous liquid, namely glycerin, was determined at different temperatures using the drop coalescence method described in here. The experiments measured the free surface velocity of two glycerin drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The liquid viscosity was determined by adjusting the computed free surface velocity values to the measured experimental data. The results of these experiments were found to agree reasonably well with the known viscosity for the test liquid used.

  19. Viscosity and electric properties of water aerosols

    NASA Astrophysics Data System (ADS)

    Shavlov, A. V.; Sokolov, I. V.; Dzhumandzhi, V. A.

    2016-09-01

    The flow of water mist in a narrow duct has been studied experimentally. The profile of the velocity of drops has been measured, and the viscosity of the mist has been calculated using the Navier-Stokes equation. It has been found that at low gradients of the rate of shear the viscosity of the mist can exceed that of clean air by tens and even hundreds of times. The electric charge of the drops has been measured. It has been found that the viscosity of the mist differs from that of clean air at gradients of the rate of shear that are less than the frequency of the establishment of electric equilibrium between the drops. A comparative analysis of the viscosities of the mist and a drop cluster has been carried out, and the dependence of the viscosity of the water aerosol on the radius and the charge of the drops has been predicted. The possible role of aerosols that contain submicron drops in the known "clear air turbulence" problem has been shown.

  20. Neoclassical Viscosities and Anomalous Flows in Stellarators

    NASA Astrophysics Data System (ADS)

    Ware, A. S.; Spong, D. A.

    2008-11-01

    We discuss initial work to use neoclassical viscosities calculated with the PENTA code [1,2] in a transport model that includes Reynolds stress generation of flows [3]. The PENTA code uses a drift kinetic equation solver to calculate neoclassical viscosities and flows in general three-dimensional geometries over a range of collisionalities. The predicted neoclassical viscosities predicted by PENTA can be flux-surfaced average and applied in a 1-D transport model that includes anomalous flow generation. This combination of codes can be used to test the impact of stellarator geometry on anomalous flow generation. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. A. Spong, Fusion Sci. Technology 50, 343 (2006). [3] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).

  1. Diffusion, Viscosity and Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Myerson, Allan S.

    1996-01-01

    The diffusivity of TriGlycine Sulfate (TGS), Potassium Dihydrogen Phosphate (KDP), Ammonium Dihydrogen Phosphate (ADF) and other compounds of interest to microgravity crystal growth, in supersaturated solutions as a function of solution concentration, 'age' and 'history was studied experimentally. The factors that affect the growth of crystals from water solutions in microgravity have been examined. Three non-linear optical materials have been studied, potassium dihydrogen phosphate (KDP), ammonium dihydrogen phosphate (ADP) and triglycine sulfate (TGC). The diffusion coefficient and viscosity of supersaturated water solutions were measured. Also theoretical model of diffusivity and viscosity in a metastable state, model of crystal growth from solution including non-linear time dependent diffusivity and viscosity effect and computer simulation of the crystal growth process which allows simulation of the microgravity crystal growth were developed.

  2. Polyfunctional dispersants for controlling viscosity of phyllosilicates

    DOEpatents

    Chaiko, David J.

    2006-07-25

    This invention provides phyllosilicates and polyfunctional dispersants which can be manipulated to selectively control the viscosity of phyllosilicate slurries. The polyfunctional dispersants used in the present invention, which include at least three functional groups, increase the dispersion and exfoliation of phyllosilicates in polymers and, when used in conjunction with phyllosilicate slurries, significantly reduce the viscosity of slurries having high concentrations of phyllosilicates. The functional groups of the polyfunctional dispersants are capable of associating with multivalent metal cations and low molecular weight organic polymers, which can be manipulated to substantially increase or decrease the viscosity of the slurry in a concentration dependent manner. The polyfunctional dispersants of the present invention can also impart desirable properties on the phyllosilicate dispersions including corrosion inhibition and enhanced exfoliation of the phyllosilicate platelets.

  3. Viscosity jump in Earth's mid-mantle.

    PubMed

    Rudolph, Maxwell L; Lekić, Vedran; Lithgow-Bertelloni, Carolina

    2015-12-11

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle plumes, settling of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Based on a reanalysis of the long-wavelength nonhydrostatic geoid, we infer viscous layering of the mantle using a method that allows us to avoid a priori assumptions about its variation with depth. We detect an increase in viscosity at 800- to 1200-kilometers depth, far greater than the depth of the mineral phase transformations that define the mantle transition zone. The viscosity increase is coincident in depth with regions where seismic tomography has imaged slab stagnation, plume deflection, and changes in large-scale structure and offers a simple explanation of these phenomena. Copyright © 2015, American Association for the Advancement of Science.

  4. Viscosity of fluids in subduction zones.

    PubMed

    Audétat, Andreas; Keppler, Hans

    2004-01-23

    The viscosities of aqueous fluids with 10 to 80 weight percent dissolved silicates have been measured at 600 degrees to 950 degrees C and 1.0 to 2.0 gigapascals by in situ observation of falling spheres in the diamond anvil cell. The viscosities at 800 degrees C range from 10(-4) to 10(0.5) pascal seconds. The combination of low viscosities with a favorable wetting angle makes silicate-rich fluid an efficient agent for material transport at low-volume fractions. Our results therefore suggest that there may be a direct relationship between the position of the volcanic front and the onset of complete miscibility between water and silicate melt in the subducting slab.

  5. Universal Viscosity Behavior of Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Kalathi, Jagannathan T.; Grest, Gary S.; Kumar, Sanat K.

    2012-11-01

    Nonequilibrium molecular dynamics simulations are used to show that the shear viscosity of a polymer melt can be significantly reduced when filled with small energetically neutral nanoparticles, apparently independent of the polymer’s chain length. Analogous to solvent molecules, small nanoparticles act akin to plasticizers and reduce the viscosity of a polymer melt. This effect, which persists for particles whose sizes are as large as the chain size or the entanglement mesh size, whichever is smaller, can be overcome by making the chain-nanoparticle interactions significantly attractive. Our simulations allow us to systematically organize the viscosity data of filled polymer melts, and thus provide a strong basis from which to predict the flow behavior of these commercially important class of materials.

  6. Evaluation of SpectroVisc Q3000 for Viscosity Determination

    DTIC Science & Technology

    2013-11-14

    The Navy routinely measures the viscosity of lubricating oils and hydraulic fluids. Viscosity measurements typically are conducted in a land based...BACKGROUND The Navy routinely measures the viscosity of lubricating oils and hydraulic fluids. Viscosity measurements that are lower than expected... viscosity at 40°C in lubricating oils and hydraulic fluids. 3.0 APPROACH The accuracy and repeatability of the SpectroVisc Q3000 was evaluated using

  7. Viscosity properties of sodium borophosphate glasses

    SciTech Connect

    Gaylord, S.; Tincher, B.; Petit, L. Richardson, K.

    2009-05-06

    The viscosity behavior of (1 - x)NaPO{sub 3}-xNa{sub 2}B{sub 4}O{sub 7} glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na{sub 2}B{sub 4}O{sub 7}. The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO{sub 4} units) to mixed BO{sub 4}/BO{sub 3} structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network.

  8. Viscosity Meaurement Technique for Metal Fuels

    SciTech Connect

    Ban, Heng; Kennedy, Rory

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  9. Belt conveyors for bulk materials. 6th ed.

    SciTech Connect

    2007-07-01

    The 16 chapters are entitled: Belt conveyor general applications economics; Design considerations; Characteristics and conveyability of bulk materials; Capacities, belt widths and speeds; Belt conveyor idlers; Belt tension and power engineering; Belt selection; Pulleys and shafts; Curves; Steep angle conveying; Belt cleaners and accessories; Transfer points; Conveyor motor drives and controls; Operation, maintenance and safety; Belt takeups; and Emerging technologies. 6 apps.

  10. Decorrelation-based viscosity measurement using phase-sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Blackburn, Brecken J.; Gu, Shi; Jenkins, Michael W.; Rollins, Andrew M.

    2017-02-01

    A robust method to measure viscosity of microquantities of biological samples, such as blood and mucus, could lead to a better understanding and diagnosis of diseases. Microsamples have presented persistent challenges to conventional rheology, which requires bulk quantities of a sample. Alternatively, fluid viscosity can be probed by monitoring microscale motion of particles. Here, we present a decorrelation-based method using M-mode phase-sensitive optical coherence tomography (OCT) to measure particle Brownian motion. This is similar to previous methods using laser speckle decorrelation but with sensitivity to nanometer-scale displacement. This allows for the measurement of decorrelation in less than 1 millisecond and significantly decreases sensitivity to bulk motion, thereby potentially enabling in vivo and in situ applications. From first principles, an analytical method is established using M-mode images obtained from a 47 kHz spectral-domain OCT system. A g(1) first-order autocorrelation is calculated from windows containing several pixels over a time frame of 200-1000 microseconds. Total imaging time is 500 milliseconds for averaging purposes. The autocorrelation coefficient over this short time frame decreases linearly and at a rate proportional to the diffusion constant of the particles, allowing viscosity to be calculated. In verification experiments using phantoms of microbeads in 200 µL glycerol-water mixtures, this method showed insensitivity to 2 mm/s lateral bulk motion and accurate viscosity measurements over a depth of 400 µm. In addition, the method measured a significant decrease of the apparent diffusion constant of soft tissue after formalin fixation, suggesting potential applications in mapping tissue stiffness.

  11. Gravimetric capillary method for kinematic viscosity measurements

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  12. Low shear viscosity of dilute polymer solutions

    SciTech Connect

    Chiou, C.S.; Gordon, R.J.

    1980-09-01

    A modification of a viscometer originally proposed by Zimm and Crothers is studied, which may be used to measure ultra low shear viscosity for highly dilute polymer solutions. This may provide useful information on polymer coil dimensions and relaxation time. Use of the low shear viscosity data leads to large value of relaxation time induced by polymer addition to a concentration of only 2 to 3 ppM by wt. This finding is consistent with the marked viscoelastic effects exhibited by these solutions.

  13. Gravimetric capillary method for kinematic viscosity measurements

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  14. Apparatus and method for measuring viscosity

    DOEpatents

    Murphy, R.J. Jr.

    1986-02-25

    The present invention is directed to an apparatus and method for measuring the viscosity of a fluid. This apparatus and method is particularly useful for the measurement of the viscosity of a liquid in a harsh environment characterized by high temperature and the presence of corrosive or deleterious gases and vapors which adversely affect conventional ball or roller bearings. The apparatus and method of the present invention employ one or more flexural or torsional bearings to suspend a bob capable of limited angular motion within a rotatable sleeve suspended from a stationary frame. 7 figs.

  15. Measuring Viscosities of Gases at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  16. Shock capturing by the spectral viscosity method

    NASA Technical Reports Server (NTRS)

    Tadmor, Eitan

    1989-01-01

    A main disadvantage of using spectral methods for nonlinear conservation laws lies in the formation of Gibbs phenomenon, once spontaneous shock discontinuities appear in the solution. The global nature of spectral methods than pollutes the unstable Gibbs oscillations overall the computational domain, and the lack of entropy dissipation prevents convergences in these cases. The Spectral Viscosity method, which is based on high frequency dependent vanishing viscosity regularization of the classical spectral methods is discussed. It is shown that this method enforces the convergence of nonlinear spectral approximations without sacrificing their overall spectral accuracy.

  17. Shear Viscosity in a Gluon Gas

    SciTech Connect

    Xu Zhe; Greiner, Carsten

    2008-05-02

    The relation of the shear viscosity coefficient to the recently introduced transport rate is derived within relativistic kinetic theory. We calculate the shear viscosity over entropy ratio {eta}/s for a gluon gas, which involves elastic gg{yields}gg perturbative QCD (PQCD) scatterings as well as inelastic gg{r_reversible}ggg PQCD bremsstrahlung. For {alpha}{sub s}=0.3 we find {eta}/s=0.13 and for {alpha}{sub s}=0.6, {eta}/s=0.076. The small {eta}/s values, which suggest strongly coupled systems, are due to the gluon bremsstrahlung incorporated.

  18. ANTI-INFLAMMATORY ACTIVITY OF DODONAEA VISCOSE

    PubMed Central

    Mahadevan, N.; Venkatesh, Sama; Suresh, B.

    1998-01-01

    Dodonaea viscose, Linn is a widely grown plant of Nilgiris district of Tamil and is commonly used by the tribals of Nilgiris as a traditional medicine for done fracture and joint sprains. Since it is generally believed tat fractures are accompanied by either some degree of injury or inflammations, it was felt desirable to carry our anti inflammatory activity of Dodonaea viscose. Anti-inflammatory activity of the plant was carried out by carrageenin induced paw edema method in Wister albino rats. PMID:22556883

  19. Apparatus and method for measuring viscosity

    DOEpatents

    Murphy, Jr., Robert J.

    1986-01-01

    The present invention is directed to an apparatus and method for measuring the viscosity of a fluid. This apparatus and method is particularly useful for the measurement of the viscosity of a liquid in a harsh environment characterized by high temperature and the presence of corrosive or deleterious gases and vapors which adversely affect conventional ball or roller bearings. The apparatus and method of the present invention employ one or more flexural or torsional bearings to suspend a bob capable of limited angular motion within a rotatable sleeve suspended from a stationary frame.

  20. Shear viscosity coefficient of liquid lanthanides

    SciTech Connect

    Patel, H. P. Thakor, P. B. Prajapati, A. V.; Sonvane, Y. A.

    2015-05-15

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.

  1. Kinematic viscosity and density of engine oils

    SciTech Connect

    Porai-Koshits, A.B.; Penkina, N.V.; Ovchinnikova, R.A.; Ashkinazi, L.A.

    1987-08-10

    In order to determine the loss of engine power due to internal friction and to estimate the performance of engine oil it is necessary to know its kinematic viscosity and density in a wide temperature range. The authors studied experimentally these physicochemical properties of a number of engine oils at temperatures from 18 to 90/sup 0/ with the aid of VPZh-2 capillary viscosimeters and single-neck pycnometers; the average errors of the measurements were about 1.5% in the case of viscosity and below 0.5% in the case of density.

  2. Viscosity of dysphagia-oriented cold-thickened beverages: effect of setting time at refrigeration temperature.

    PubMed

    Kim, Sung-Gun; Yoo, Byoungseung

    2015-01-01

    Although extensive literature is available on the viscosity of thickened beverages with food thickeners, no attempt has been made to study the effect of setting time on the viscosity of pudding-like cold-thickened beverages with xanthan gum (XG)-based thickeners by using a rheometer. In particular, it is of considerable practical importance to investigate the effect of setting time on their viscosity at 5°C because some cold-thickened beverages will be prepared in the kitchen in bulk and stored at 5°C before serving or consuming rather than serving immediately upon mixing with thickeners. To examine the effect of different setting times (15-120 min) on the viscosity of cold-thickened beverages prepared with various XG-based food thickeners, and also to compare the viscosity differences among the various cold beverages and XG-based food thickeners in beverage-thickener mixture systems. Four commercially available XG-based food thickeners (A-D) and three cold beverages (water, orange juice and milk) were used for the preparation of cold-thickened beverages. The thickened sample was portioned into six samples for the designated setting times and then stored at 5°C over setting time. Their apparent viscosity (η(a,50)) at 50 s(-1) was measured using a rheometer. The largest increases in η(a,50) values for thickened beverages, except for water, were observed at 15 min (p < 0.05), showing a pudding-like fluid, and at longer time periods their η(a,50) values gradually increased or were constant with an increase in setting time. The percentage increase in viscosity values at different setting times (15-120 min) as compared with the control (0 min) was less pronounced in the thickened orange juice and milk samples with thickener A over setting time, indicating that the thickened beverages with thickener A had more stable structure compared with those with other thickeners (B-D) over time. Statistical analysis showed that changes in the viscosity of cold

  3. Spiders Tune Glue Viscosity to Maximize Adhesion.

    PubMed

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.

  4. Commensurability Effects in Viscosity of Nanoconfined Water.

    PubMed

    Neek-Amal, Mehdi; Peeters, Francois M; Grigorieva, Irina V; Geim, Andre K

    2016-03-22

    The rate of water flow through hydrophobic nanocapillaries is greatly enhanced as compared to that expected from macroscopic hydrodynamics. This phenomenon is usually described in terms of a relatively large slip length, which is in turn defined by such microscopic properties as the friction between water and capillary surfaces and the viscosity of water. We show that the viscosity of water and, therefore, its flow rate are profoundly affected by the layered structure of confined water if the capillary size becomes less than 2 nm. To this end, we study the structure and dynamics of water confined between two parallel graphene layers using equilibrium molecular dynamics simulations. We find that the shear viscosity is not only greatly enhanced for subnanometer capillaries, but also exhibits large oscillations that originate from commensurability between the capillary size and the size of water molecules. Such oscillating behavior of viscosity and, consequently, the slip length should be taken into account in designing and studying graphene-based and similar membranes for desalination and filtration.

  5. Viscosity in accretion discs. [for binary stars

    NASA Technical Reports Server (NTRS)

    Katz, J. I.

    1980-01-01

    Both HerX-1 and SS433 may contain accretion disks slaved to a precessing companion star. If so, it is possible to bound the effective viscosity in these disks. The results, in terms of the disk parameter alpha, are lower bounds of 0.01 for HerX-1 and of 0.1 for SS433.

  6. Modeling the Viscosity of Aluminosilicate Melts

    NASA Astrophysics Data System (ADS)

    Decterov, Sergei A.; Grundy, A. Nicholas; Jung, In-Ho; Pelton, Arthur D.

    2007-12-01

    Silicate systems are of fundamental importance for many metallurgical processes, for the glass industry and also for many aspects of geology. In addition to the phase relations, there are many properties of the liquid phase such as molar volume, surface tension, absorption coefficient, thermal conductivity and viscosity that are important for understanding, simulating and modeling processes involving silicate liquids. Over the past several years, through critical evaluation of all available thermodynamic and phase equilibrium data, we have developed a quantitative thermodynamic description of multicomponent silicate melts using the Modified Quasichemical Model for short-range ordering. We find that the local structure of the liquid, in terms of the bridging behavior of oxygen, calculated using our thermodynamic description allows us to link the viscosity and the thermodynamics of the silicate liquid. We can thus simultaneously calculate phase relations, thermodynamics and viscosity of the liquid over a wide composition and temperature range. In the present work we outline the viscosity model using selected binary and ternary systems as examples. The model has successfully been applied to melts in the multicomponent Na2O-K2O-MgO-CaO-MnO-FeO-ZnO-PbO-Al2O3-SiO2 system and more elements are currently being added to the database.

  7. Viscosity-dependent Janus particle chain dynamics.

    PubMed

    Ren, Bin; Kretzschmar, Ilona

    2013-12-03

    Iron oxide (Fe3O4) Janus particles assemble into staggered chains parallel to the field lines in an ac electric field. Subsequent application of an external magnetic field leads to contraction of the staggered chains into double chains. The relation between the viscosity of the surrounding solution and the contraction rate of the iron oxide Janus particle chains is studied. Further, the influence of particle size and chain length (i.e., number of particles in chain) on the contraction rate is investigated. The base material for the Janus structure is silica (SiO2) with particle sizes of 1, 2, and 4 μm, and the cap material is Fe3O4. Addition of increasing amounts of glycerol to the aqueous system reveals that the contraction dynamics strongly correlate with the viscosity of the solution. The average chain contraction rate for each particle size can be fitted in the low viscosity range from 1 to 30 mPa·s with a power function of the form A/μ(0.9) - B/μ, in which the coefficients A and B are particle size, electric field, and magnetic-field-dependent constants. Using this function, the viscosity of an unknown solution can be determined, thereby pointing to the potential application of these Janus particle chain assemblies as in situ microviscometers.

  8. Viscosity Measurement using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    We present in here details of a new method, using drop coalescence, for application in microgravity environment for determining the viscosity of highly viscous undercooled liquids. The method has the advantage of eliminating heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Also, due to the rapidity of the measurement, homogeneous nucleation would be avoided. The technique relies on both a highly accurate solution to the Navier-Stokes equations as well as on data gathered from experiments conducted in near zero gravity environment. The liquid viscosity is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity of two coalescing drops. Results are presented from two validation experiments of the method which were conducted recently on board the NASA KC-135 aircraft. In these tests the viscosity of a highly viscous liquid, such as glycerine at different temperatures, was determined to reasonable accuracy using the liquid coalescence method. The experiments measured the free surface velocity of two glycerine drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The free surface velocity was then compared with the computed values obtained from different viscosity values. The results of these experiments were found to agree reasonably well with the calculated values.

  9. Effect of Viscosity on Liquid Curtain Stability

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Francis, Lorraine; Carvalho, Marcio; Dow Chemical Company Collaboration; PUC Rio Collaboration; University of Minnesota, Twin Cities Collaboration

    2016-11-01

    The effect of viscosity on the stability of Newtonian liquid curtains was explored by high-speed visualization. Glycerol/water solutions with viscosity ranging from 19.1 to 210 mPa.s were used as coating liquids. The experimental set-up used a slide die delivery and steel tube edge guides. The velocity along curtain at different positions was measured by tracking small particles at different flow conditions. The measurements revealed that away from edge guides, velocity is well described by free fall effect. However, close to edge guides, liquid moves slower, revealing formation of a viscous boundary layer. The size of boundary layer and velocity near edge guides are strong function of viscosity. The critical condition was determined by examining flow rate below which curtain broke. Curtain failure was initiated by growth of a hole within liquid curtain, close to edge guides. Visualization results showed that the hole forms in a circular shape then becomes elliptical as it grows faster in vertical direction compared to horizontal direction. As viscosity rises, minimum flow rate for destabilization of curtain increased, indicating connection between interaction with edge guides and curtain stability. We would like to acknowledge the financial support from the Dow Chemical Company.

  10. Heat flux viscosity in collisional magnetized plasmas

    SciTech Connect

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  11. Pressure-viscosity coefficient of biobased lubricants

    USDA-ARS?s Scientific Manuscript database

    Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...

  12. Sensor for Viscosity and Shear Strength Measurement

    SciTech Connect

    Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.

    1998-10-20

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation.

  13. Bulk viscous matter-dominated Universes: asymptotic properties

    SciTech Connect

    Avelino, Arturo; García-Salcedo, Ricardo; Gonzalez, Tame; Nucamendi, Ulises; Quiros, Israel E-mail: rigarcias@ipn.mx E-mail: ulises@ifm.umich.mx

    2013-08-01

    By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

  14. Investigating the temperature dependence of the viscosity of a non-Newtonian fluid within lithographically defined microchannels.

    PubMed

    Girardo, Salvatore; Cingolani, Roberto; Pisignano, Dario

    2007-10-28

    We present a study of the rheological phenomenology of a non-Newtonian glass former within hybrid microchannels above the vitrification region. We determined the temperature behavior of the viscosity, which is well fitted by a Vogel-Fulcher-Tamman law for shear rates between 4 x 10(-2) and 9 x 10(-1) s(-1). The microflow viscosity was compared with previously reported conductivity data of the investigated molecular system. Our findings provide an insight into the coupling between the structural dynamics in the bulk and that within the microchannels, suggesting lithographically defined microfluidic systems as promising tools for the investigation of the rheological properties of complex liquids.

  15. Asynchonous Binaries, Energy Dissipation and Turbulent Viscosity

    NASA Astrophysics Data System (ADS)

    Koenigsberger, G.; Brott, I.; Moreno, E.

    2015-07-01

    Stars in binary systems are generally modeled under the assumption that they are in an equilibrium configuration and, in particular, that the stellar rotation angular velocity equals the orbital angular velocity. However, asynchronous rotation is more common than generally recognized. All eccentric systems undergo asynchronous rotation and the angular velocity of rotation of many stars in circular orbits differs from that of the orbital angular velocity. Combined with the external gravitational potential, this asynchronous rotation causes shearing motions in the stellar layers and, given that the stellar material is not inviscid, kinetic energy is dissipated into heat. In 1968, Zdeněk Kopal addressed the question of whether the tidal shear energy dissipation rates, Ė, in asynchronous binaries can lead to an internal stellar structure that differs from that in an analogous single star. His calculation, based on the assumption that the viscosity is purely molecular, led him to conclude that Ė is insignificant and therefore has no effect on the internal stellar structure. However, Kopal also pointed out the important caveat that if turbulent viscosity prevailed, then larger values of Ė would obtain. We have revisited the question of the magnitude of Ė using the TIDES code (Moreno 2011) and examined its dependence on viscosity for several layers of a ZAMS 30 M⊙ star with a 20 M⊙ companion in a 6-day eccentric orbit. We find that conditions for turbulent viscosity are favored when the star expands after leaving the main sequence. For example, when the 30 M⊙ star is 5 Myr old and rotating near its corrotation speed, turbulent viscosity might be expected to appear in all layers at distances greater than 60% of the maximum stellar radius. As a consequence, tidal shear energy dissipation may constitute a non-negligible effect in a large number of close binary systems, with possibly interesting consequences for their internal structure and evolution.

  16. Reference Correlation for the Viscosity of Ethane

    NASA Astrophysics Data System (ADS)

    Vogel, Eckhard; Span, Roland; Herrmann, Sebastian

    2015-12-01

    A new representation of the viscosity for the fluid phase of ethane includes a zero-density correlation and a contribution for the critical enhancement, initially both developed separately, but based on experimental data. The higher-density contributions are correlated as a function of the reduced density δ = ρ/ρc and of the reciprocal reduced temperature τ = Tc/T (ρc—critical density and Tc—critical temperature). The final formulation contains 14 coefficients obtained using a state-of-the-art linear optimization algorithm. The evaluation and choice of the selected primary data sets is reviewed, in particular with respect to the assessment used in earlier viscosity correlations. The new viscosity surface correlation makes use of the reference equation of state for the thermodynamic properties of ethane by Bücker and Wagner [J. Phys. Chem. Ref. Data 35, 205 (2006)] and is valid in the fluid region from the melting line to temperatures of 675 K and pressures of 100 MPa. The viscosity in the limit of zero density is described with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 290 < T/K < 625, increasing to 1.0% at temperatures down to 212 K. The uncertainty of the correlated values is 1.5% in the range 290 < T/K < 430 at pressures up to 30 MPa on the basis of recent measurements judged to be very reliable as well as 4.0% and 6.0% in further regions. The uncertainty in the near-critical region (1.001 < 1/τ < 1.010 and 0.8 < δ < 1.2) increases with decreasing temperature up to 3.0% considering the available reliable data. Tables of the viscosity calculated from the correlation are listed in an appendix for the single-phase region, for the vapor-liquid phase boundary, and for the near-critical region.

  17. Explosive bulk charge

    DOEpatents

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  18. Bulk amorphous materials

    SciTech Connect

    Schwarz, R.B.; Archuleta, J.I.; Sickafus, K.E.

    1998-12-01

    This is the final report for a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work was to develop the competency for the synthesis of novel bulk amorphous alloys. The authors researched their synthesis methods and alloy properties, including thermal stability, mechanical, and transport properties. The project also addressed the development of vanadium-spinel alloys for structural applications in hostile environments, the measurement of elastic constants and thermal expansion in single-crystal TiAl from 300 to 750 K, the measurement of elastic constants in gallium nitride, and a study of the shock-induced martensitic transformations in NiTi alloys.

  19. Bulk material handling system

    DOEpatents

    Kleysteuber, William K.; Mayercheck, William D.

    1979-01-01

    This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.

  20. Bulk muscles, loose cables

    PubMed Central

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-01-01

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. PMID:25326558

  1. Bulk Site Reference Materials

    SciTech Connect

    Barich, J.J. III; Jones, R.R. Sr.

    1996-12-31

    The selection, manufacture and use of Bulk Site Reference Materials (BSRMs) at hazardous waste sites is discussed. BSRMs are useful in preparing stabilization/solidification (S/S) formulations for soils, ranking competing S/S processes, comparing S/S alternatives to other technologies, and in interpreting data from different test types. BSRMs are large volume samples that are representative of the physical and chemical characteristics of a site soil, and that contain contaminants at reasonably high levels. A successful BSRM is extremely homogeneous and well-characterized. While not representative of any point on the site, they contain the contaminants of the site in the matrices of the site. Design objectives for a BSRM are to produce a material that (1) maintains good fidelity to site matrices and contaminants, and (2) exhibits the lowest possible relative standard deviation.

  2. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  3. Effect of interfacial viscoelasticity on the bulk linear viscoelastic moduli of globular protein solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhuan; Barman, Sourav; Christopher, Gordon F.

    2014-05-01

    The role of interfacial rheology on the bulk linear viscoelastic moduli of low concentration bovine albumin solutions is probed. Previously reported soft gel properties of these systems were attributed to either protein aggregation or organization within the bulk. Instead, these behaviors are shown to be attributable to the measurement error caused by interfacial rheology due to adsorption of bovine serum albumin to the air and water interface. Even at low bulk concentrations, fast interfacial adsorption results in erroneous measurements. When these effects are removed, the solutions are viscous dominated with a dynamic viscosity slightly larger than water.

  4. Structure–property reduced order model for viscosity prediction in single-component CO 2 -binding organic liquids

    SciTech Connect

    Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.; Heldebrant, David J.; Zheng, Feng; Freeman, Charles J.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2016-01-01

    CO2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structure-property relationships that enable molecular design. In this work, we describe such a model that quantitatively predicts viscosities of CO2 binding organic liquids (CO2BOLs) based solely on molecular structure and the amount of bound CO2. The functional form of the model correlates the viscosity with the CO2 loading and an electrostatic term describing the charge distribution between the CO2-bearing functional group and the proton-receiving amine. Molecular simulations identify the proton shuttle between these groups within the same molecule to be the critical indicator of low viscosity. The model, developed to allow for quick screening of solvent libraries, paves the way towards the rational design of low viscosity non-aqueous solvent systems for post-combustion CO2 capture. Following these theoretical recommendations, synthetic efforts of promising candidates and viscosity measurement provide experimental validation and verification.

  5. Conditions of viscosity measurement for detecting irradiated peppers

    NASA Astrophysics Data System (ADS)

    Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru

    1995-04-01

    Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as a type of viscometer, shear rate and temperature.

  6. Evaluation of the synergistic effects of milk proteins in a rapid viscosity analyzer.

    PubMed

    Stephani, Rodrigo; Borges de Souza, Alisson; Leal de Oliveira, Marcone Augusto; Perrone, Ítalo Tuler; Fernandes de Carvalho, Antônio; Cappa de Oliveira, Luiz Fernando

    2015-12-01

    Protein systems (PS) are routinely used by companies from Brazil and around the globe to improve the texture, yield, and palatability of processed foods. Understanding the synergistic behavior among the different protein structures of these systems during thermal treatment under the influence of pH can help to better define optimum conditions for products and processes. The interpretation of the reactions and interactions that occur simultaneously among the protein constituents of these systems as dispersions during thermal processing is still a major challenge. Here, using a rapid viscosity analyzer, we observed the rheological changes in the startup viscosities of 5 PS obtained by combining varying proportions of milk protein concentrate and whey protein concentrate under different conditions of pH (5.0, 6.5, and 7.0) and heat processing (85°C/15min and 95°C/5min). The solutions were standardized to 25% of total solids and 17% of protein. Ten analytical parameters were used to characterize each of the startup-viscosity ramps for 35 experiments conducted in a 2×3 × 5 mixed planning matrix, using principal component analysis to interpret behavioral similarities. The study showed the clear influence of pH 5.5 in the elevation of the initial temperature of the PS startup viscosity by at least 5°C, as well as the effect of different milk protein concentrate:whey protein concentrate ratios above 15:85 at pH 7.0 on the viscographic profile curves. These results suggested that the primary agent driving the changes was the synergism among the reactions and interactions of casein with whey proteins during processing. This study reinforces the importance of the rapid viscosity analyzer as an analytical tool for the simulation of industrial processes involving PS, and the use of the startup viscosity ramp as a means of interpreting the interactions of system components with respect to changes related to the treatment temperature.

  7. Dynamic acid/base equilibrium in single component switchable ionic liquids and consequences on viscosity

    SciTech Connect

    Cantu, David C.; Lee, Juntaek; Lee, Mal -Soon; Heldebrant, David J.; Koech, Phillip K.; Freeman, Charles J.; Rousseau, Roger; Glezakou, Vassiliki -Alexandra

    2016-03-28

    The deployment of transformational non-aqueous CO2-capture solvent systems is encumbered by high viscosity even at intermediate uptakes. Using single-molecule CO2 binding organic liquids as a prototypical example, we identify the key molecular features controlling bulk liquid viscosity and CO2 uptake kinetics. Fast uptake kinetics arise from close proximity of the alcohol and amine sites that are involved in CO2 binding. This process results in the concerted formation of a Zwitterion containing both an alkylcarbonate and a protonated amine. The hydrogen bonding between the two functional groups ultimately determines the solution viscosity. Based on molecular simulation, this work reveals options to significantly reduce viscosity with molecular modifications that shift the proton transfer equilibrium towards a neutral acid/amine species as opposed to the ubiquitously accepted Zwitterionic state. Lastly, the molecular design concepts proposed here, for the alkyl-carbonate systems, are readily extensible to other CO2 capture technologies, such as the carbamate- or imidazole-based solvent chemistries.

  8. Dynamic acid/base equilibrium in single component switchable ionic liquids and consequences on viscosity

    DOE PAGES

    Cantu, David C.; Lee, Juntaek; Lee, Mal -Soon; ...

    2016-03-28

    The deployment of transformational non-aqueous CO2-capture solvent systems is encumbered by high viscosity even at intermediate uptakes. Using single-molecule CO2 binding organic liquids as a prototypical example, we identify the key molecular features controlling bulk liquid viscosity and CO2 uptake kinetics. Fast uptake kinetics arise from close proximity of the alcohol and amine sites that are involved in CO2 binding. This process results in the concerted formation of a Zwitterion containing both an alkylcarbonate and a protonated amine. The hydrogen bonding between the two functional groups ultimately determines the solution viscosity. Based on molecular simulation, this work reveals options tomore » significantly reduce viscosity with molecular modifications that shift the proton transfer equilibrium towards a neutral acid/amine species as opposed to the ubiquitously accepted Zwitterionic state. Lastly, the molecular design concepts proposed here, for the alkyl-carbonate systems, are readily extensible to other CO2 capture technologies, such as the carbamate- or imidazole-based solvent chemistries.« less

  9. Dynamic Acid/Base Equilibrium in Single Component Switchable Ionic Liquids and Consequences on Viscosity.

    PubMed

    Cantu, David C; Lee, Juntaek; Lee, Mal-Soon; Heldebrant, David J; Koech, Phillip K; Freeman, Charles J; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2016-05-05

    The deployment of transformational nonaqueous CO2-capture solvent systems is encumbered by high viscosities even at intermediate uptakes. Using single-molecule CO2 binding organic liquids as a prototypical example, we present key molecular features that control bulk viscosity. Fast CO2-uptake kinetics arise from close proximity of the alcohol and amine sites involved in CO2 binding in a concerted fashion, resulting in a Zwitterion containing both an alkyl-carbonate and a protonated amine. The population of internal hydrogen bonds between the two functional groups determines the solution viscosity. Unlike the ion pair interactions in ionic liquids, these observations are novel and specific to a hydrogen-bonding network that can be controlled by chemically tuning single molecule CO2 capture solvents. We present a molecular design strategy to reduce viscosity by shifting the proton transfer equilibrium toward a neutral acid/amine species, as opposed to the ubiquitously accepted zwitterionic state. The molecular design concepts proposed here are readily extensible to other CO2 capture technologies.

  10. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    NASA Astrophysics Data System (ADS)

    Gržinić, G.; Bartels-Rausch, T.; Berkemeier, T.; Türler, A.; Ammann, M.

    2015-08-01

    The heterogeneous loss of dinitrogen pentoxide (N2O5) to aerosol particles has a significant impact on the night time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short lived radioactive tracer method we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH). The results show that citric acid exhibits lower reactivity than similar di- and polycarboxylic acids, with uptake coefficients between ~ 3 × 10-4-~ 3 × 10-3 depending on humidity (17-70 % RH). This humidity dependence can be explained by a changing viscosity and, hence, diffusivity in the organic matrix. Since the viscosity of highly concentrated citric acid solutions is not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics may be limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  11. Online measurement of viscosity for biological systems in stirred tank bioreactors.

    PubMed

    Schelden, Maximilian; Lima, William; Doerr, Eric Will; Wunderlich, Martin; Rehmann, Lars; Büchs, Jochen; Regestein, Lars

    2016-11-14

    One of the most critical parameters in chemical and biochemical processes is the viscosity of the medium. Its impact on mixing, as well as on mass and energy transfer is substantial. An increase of viscosity with reaction time can be caused by the formation of biopolymers like xanthan or by filamentous growth of microorganisms. In either case the properties of fermentation broth are changing and frequently non-Newtonian behavior are observed, resulting in major challenges for the measurement and control of mixing and mass transfer. This study demonstrates a method for the online determination of the viscosity inside a stirred tank reactor. The presented method is based on online measurement of heat transfer capacity from the bulk medium to the jacket of the reactor. To prove the feasibility of the method, fermentations with the xanthan producing bacterium Xanthomonas campestris pv. campestris B100 as model system were performed. Excellent correlation between offline measured apparent viscosity and online determined heat transfer capacity were found. The developed tool should be applicable to any other process with formation of biopolymers and filamentous growth. Biotechnol. Bioeng. 2016;9999: 1-8. © 2016 Wiley Periodicals, Inc.

  12. Shear-Limited Diffusion and Viscosity: Experiments and Theory

    NASA Astrophysics Data System (ADS)

    Driscoll, C. Fred

    2001-10-01

    Experiments and theory on collisional diffusion and viscosity demonstrate enhanced transport in the 2D bounce-averaged regime, limited by shear in the plasma rotation. The experiments are performed on relatively quiescent pure-ion or pure electron plasma columns, where the shear in the drift rotation ωE (r) can be controlled accurately. For long plasma columns, we measure test particle diffusion(F. Anderegg, et al.), Phys. Rev. Lett. 78, 2128 (1997). and bulk viscosity(J.M. Kriesel and C.F. Driscoll, submitted to Phys. Rev. Lett. (2001).) coefficients which quantitatively agree with recent 3D theories(D.H.E. Dubin, Phys. Plasmas 5), 1688 (1998). of E × B drift collisions with impact parameters in the range rc < ρ < λ_D. In general, this transport is substantially greater than would be expected for velocity-scattering collisions with ρ < r_c. For finite plasma length L_p, thermal particles may bounce axially many times before rotational shear separates them in θ and this number of bounces Nb ≡ ( barv / 2L_p) / (r ; partial ωE / partial r) characterizes the approach to the 2D bounce-averaged regime. Experiments measuring electron viscosity coefficients and separate experiments measuring tagged ion diffusion coefficients each show transport enhancements up to 100×, scaling quantitatively as Nb over the range 1 < Nb < 10^2. In the zero-shear limit of Nb arrow ∞ , theory treats the particles as z-averaged rods of charge undergoing 2D E × B drift dynamics. For this case, Taylor and McNamara showed that Bohm-like diffusion results from large-scale thermally-excited ``Dawson-Okuda'' vortices. More recently, Dubin(D.H.E. Dubin and D.Z. Jin, Phys. Lett. A 284), 112 (2001). analyzed the 2D test-particle diffusion with applied background shear, showing that the particle diffusion decreases with increasing shear. Overall, this new theory gives fair quantitative agreement with the diffusion experiments from the 3D (or high shear) regime with Nb <= 1 to the 2D (or

  13. Coaxial Redundant Drives

    NASA Technical Reports Server (NTRS)

    Brissette, R.

    1983-01-01

    Harmonic drives allow redundancy and high out put torque in small package. If main drive fails, standby drive takes over and produces torque along same axis as main drive. Uses include power units in robot for internal pipeline inspection, manipulators in deep submersible probes or other applications in which redundancy protects against costly failures.

  14. Cardiac mechanoenergetic cost of elevated plasma viscosity after moderate hemodilution.

    PubMed

    Chatpun, Surapong; Cabrales, Pedro

    2010-01-01

    The purpose of this study was to investigate how plasma viscosity affects cardiac and vascular function during moderate hemodilution. Twelve anesthetized hamsters were hemodiluted by 40% of blood volume with two different viscosity plasma expanders. Experimental groups were based on the plasma expander viscosity, namely: high viscosity plasma expander (HVPE, 6.3 mPa · s) and low viscosity plasma expander (LVPE, 2.2 mPa · s). Left ventricular (LV) function was intracardiacally measured with a high temporal resolution miniaturized conductance catheter and concurrent pressure-volume results were used to calculate different LV indices. Independently of the plasma expander, hemodilution decreased hematocrit to 28% in both groups. LVPE hemodilution reduced whole blood viscosity by 40% without changing plasma viscosity, while HVPE hemodilution reduced whole blood viscosity by 23% and almost doubled plasma viscosity relative to baseline. High viscosity plasma expander hemodilution significantly increased cardiac output, stroke volume and stroke work compared to baseline, whereas LVPE hemodilution did not. Furthermore, an increase in plasma viscosity during moderate hemodilution produced a higher energy transfer per unit volume of ejected blood. Systemic vascular resistance decreased after hemodilution in both groups. Counter-intuitively, HVPE hemodilution showed lower vascular resistance and vascular hindrance than LVPE hemodilution. This result suggests that geometrical changes in the circulatory system are induced by the increase in plasma viscosity. In conclusion, an increase in plasma viscosity after moderate hemodilution directly influenced cardiac and vascular function by maintaining hydraulic power and reducing systemic vascular resistance through vasodilation.

  15. Central Mexican Subduction zone evolution controlled by a low viscosity mantle wedge

    NASA Astrophysics Data System (ADS)

    Manea, V. C.; Gurnis, M.

    2006-12-01

    It is generally accepted that dehydration of subducting lithosphere transport fluids into the mantle wedge. Such dehydration of the slab may ultimately cause a decrease in the mantle wedge viscosity. Such decreasing in viscosity can form a well-defined low viscosity wedge (LVW) on top of the subducting slab. Using numerical models, we study the effect of a LVW on time-dependent subduction. The modeling results show a substantial influence on slab evolution. For example, an order of magnitude reduction of wedge viscosity leads on an increase in slab dip from an initial 30° to 50° after 10 Myr of convergence. Also, the slab overthickening observed in previously published dynamic models due to slab attachment to the overriding plate, is eliminated by introducing a LVW for models with or without trench rollback. Our study shows two end member states, depending on the maximum depth extent of the LVW (for a viscosity reduction factor of 10). Models with a LVW extending down to 400 km depth show a steep slab geometry (dip > 50°), whereas a shallow LVW produces flat slabs, including perfectly flat slabs (dips = 0°). Assuming that slab and sediment dehydration are responsible for lowering the mantle viscosity, the maximum depth extent of the LVW is mainly controlled by the age of the incoming plate and convergence rate. Thus, large variations in LVW geometry and viscosity have significant impact on the slab geometry and volcanic arc evolution through time. We apply these results to the Central Mexican subduction zone, an unusually shallow (~40-45 km depth) and nearly perfectly flat slab associated with a distant volcanic arc. According to geochronological data, the onset of the flat slab took place ~15-20 Ma, after the Farallon plate broke into the smaller Cocos plate (~24 Ma). The much younger Cocos plate could have shifted the bulk of slab dehydration to shallower depths. A dynamic model incorporating a shrinking LVW through time and space, with a viscosity at least

  16. Single wall carbon nanotubes as viscosity modifiers in polypropylene matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Simien, Daneesh Olivia

    Single wall carbon nanotubes (SWNTs) were studied as low shear rate viscosity modifiers in the polypropylene matrix of nanocomposites. To create nanocomposites which did not demonstrate increased low shear rate viscosity when nanotubes were added into the polymer melt, this work focused on modifying the sidewall profile of the SWNTs and manipulating their configuration in the polymer matrix before subjecting them to rheological testing. Fluorinated single-walled nanotubes (F-SWNTs) played a critical part in evaluating how functionalizations could affect the viscosity of the polymer melt. Fibers made from weight percents ranging from 2.5wt% to 10wt% of F-SWNTs in isotactic polypropylene, with Mw = 250,000 g/mol (iPP250,000), were shown to have lower complex viscosity profiles than the neat iPP250,000 sample at low shear rates. These fibers demonstrated decreases in the complex viscosities, in the low frequency range, of 36.5%, 27.8% and 37.5%, for the 2.5wt.%, 5wt.% and 10wt.% fiber samples respectively. F-SWNTs were shown to stimulate in situ initiated reactions in the polymer melt where free radials generated, as a result of spontaneously dissociated fluorine atoms which scavenge hydrogen from the surrounding polymer chains, facilitate the covalent bonding of nanotubes directly to the polypropylene chains. These covalently bonded nanotubes were then forced to align themselves, along with the polymer chains when the bulk composite is spun into a small diameter fiber (dia.130mum). Another method used to create low shear rate viscosity nanocomposites was to capitalize on the low viscosity properties of low molecular weight isotactic polypropylene (Mw = 12,000g/mol) by creating a hybrid nanocomposite system in the iPP250,000 matrix. In these systems, benzoyl peroxide was used as the free radical initiator which could facilitate the covalent bonding of single walled nanotubes to the polymer chains in the melt. Both non-functionalized and functionalized hybrid

  17. Nonuniform viscosity in the solar nebula and large masses of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2004-08-01

    I report a novel theory that nonuniform viscous frictional force in the solar nebula accounts for the largest mass of Jupiter and Saturn and their largest amount of H and He among the planets, two outstanding facts that are unsolved puzzles in our understanding of origin of the Solar System. It is shown that the nebula model of uniform viscosity does not match the present planet masses. By studying current known viscosity mechanisms, I show that viscosity is more efficient in the inner region inside Mercury and the outer region outside Jupiter-Saturn than the intermediate region. The more efficient viscosity drives faster radial inflow of material during the nebula evolution. Because the inflow in the outer region is faster than the intermediate region, the material tends to accumulate in Jupiter-Saturn region which is between the outer and intermediate region. It is demonstrated that the gas trapping time of Jovian planets is longer than the inflow time in the outer region. Therefore the gas already flows to Jupiter-Saturn region before Uranus and Neptune can capture significant gas. But the inflow in the Jupiter-Saturn region is so slow that they can capture large amount of gas before the gas can flow further inward. Hence they have larger masses with larger H and He content than Uranus and Neptune. I also extend the discussion to the masses of the terrestrial planets, especially low mass of Mercury. The advantages of this theory are discussed.

  18. Viscosity function in polymer-modified asphalts.

    PubMed

    Stastna, J; Zanzotto, L; Vacin, O J

    2003-03-01

    Asphalt is a multidisperse micellar system with rheological behavior resembling that of a low-molecular-weight polymer. Nowadays, asphalt is frequently modified by blending it with various polymers. Such modified asphalt has rheological properties that differ from the properties of the base asphalt. It is quite common to study asphalt in dynamic experiments. Such studies, however useful, cannot reveal all characteristic features of polymer-modified asphalts. Asphalt modification by polymers is strongly manifested in the region of transitions from a viscoelastic fluid to the Newtonian fluid. The viscosity study in this region can reveal behavior characteristic of the used polymer modifier, thus complementing the dynamic studies of these materials. The viscosity of base asphalt modified by styrene-butadiene-styrene and by ethylene-vinyl acetate polymers (in several concentrations) is studied and discussed in this note.

  19. Prediction of viscosity of dense fluid mixtures

    NASA Astrophysics Data System (ADS)

    Royal, Damian D.; Vesovic, Velisa; Trusler, J. P. Martin; Wakeham, William. A.

    The Vesovic-Wakeham (VW) method of predicting the viscosity of dense fluid mixtures has been improved by implementing new mixing rules based on the rigid sphere formalism. The proposed mixing rules are based on both Lebowitz's solution of the Percus-Yevick equation and on the Carnahan-Starling equation. The predictions of the modified VW method have been compared with experimental viscosity data for a number of diverse fluid mixtures: natural gas, hexane + hheptane, hexane + octane, cyclopentane + toluene, and a ternary mixture of hydrofluorocarbons (R32 + R125 + R134a). The results indicate that the proposed improvements make possible the extension of the original VW method to liquid mixtures and to mixtures containing polar species, while retaining its original accuracy.

  20. A brief review on viscosity of nanofluids

    NASA Astrophysics Data System (ADS)

    Mishra, Purna Chandra; Mukherjee, Sayantan; Nayak, Santosh Kumar; Panda, Arabind

    2014-10-01

    Since the past decade, rapid development in nanotechnology has produced several aspects for the scientists and technologists to look into. Nanofluid is one of the incredible outcomes of such advancement. Nanofluids (colloidal suspensions of metallic and nonmetallic nanoparticles in conventional base fluids) are best known for their remarkable change to enhanced heat transfer abilities. Earlier research work has already acutely focused on thermal conductivity of nanofluids. However, viscosity is another important property that needs the same attention due to its very crucial impact on heat transfer. Therefore, viscosity of nanofluids should be thoroughly investigated before use for practical heat transfer applications. In this contribution, a brief review on theoretical models is presented precisely. Furthermore, the effects of nanoparticles' shape and size, temperature, volume concentration, pH, etc. are organized together and reviewed.

  1. Viscosity in a magnetized plasma - Physical interpretation

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.

    1985-01-01

    The viscosity of a fully ionized H plasma in a magnetic field is investigated theoretically, revising the derivation proposed by Braginskii (1965) for the viscous-stress-tensor viscosity coefficient eta(0). It is shown that eta(0) terms can be attributed to the tendency of the plasma to produce small thermal anisotropies during its evolution, and hence that they are fully incorporated in the gyrotropic diagonal pressure tensor, neglecting the off-diagonal terms. The role of collisions in preventing anisotropy production (and thus causing irreversible heating) is explored, and the implications of the eta(0) terms for the physics of 1000-10,000-km-scale structures in the solar corona are indicated.

  2. Molten Composition B Viscosity at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zerkle, David K.; Núñez, Marcel P.; Zucker, Jonathan M.

    2016-10-01

    A shear-thinning viscosity model is developed for molten Composition B at elevated temperature from analysis of falling ball viscometer data. Results are reported with the system held at 85, 110, and 135°C. Balls of densities of 2.7, 8.0, and 15.6 g/cm3 are dropped to generate a range of strain rates in the material. Analysis of video recordings gives the speed at which the balls fall. Computer simulation of the viscometer is used to determine parameters for a non-Newtonian model calibrated to measured speeds. For the first time, viscosity is shown to be a function of temperature and strain rate-dependent maximum RDX (cyclotrimethylenetrinitramine) particle volume fraction.

  3. Nonadiabatic bulk-surface oscillations in driven topological insulators

    NASA Astrophysics Data System (ADS)

    Kolodrubetz, Michael; Fregoso, Benjamin M.; Moore, Joel E.

    2016-11-01

    Recent theoretical and experimental work has suggested the tantalizing possibility of opening a topological gap upon driving the surface states of a three-dimensional strong topological insulator (TI) with circularly polarized light. With this motivation, we study the response of TIs to a driving field that couples to states near the surface. We unexpectedly find coherent oscillations between the surface and the bulk and trace their appearance to unavoidable resonances caused by photon absorption from the drive. We show how these resonant oscillations may be captured by the Demkov-Osherov model of multilevel Landau-Zener physics, leading to nontrivial consequences such as the loss of adiabaticity upon slow ramping of the amplitude. We numerically demonstrate that these oscillations are observable in the time-dependent Wigner distribution, which is directly measurable in time-resolved angle-resolved photoemission spectroscopy (ARPES) experiments. Our results apply to any system with surface states in the presence of a gapped bulk, and thus suggest experimental signatures of a generic surface-bulk coupling mechanism that is fundamental for proposals to engineer nontrivial states by periodic driving.

  4. Computing the viscosity of supercooled liquids.

    PubMed

    Kushima, Akihiro; Lin, Xi; Li, Ju; Eapen, Jacob; Mauro, John C; Qian, Xiaofeng; Diep, Phong; Yip, Sidney

    2009-06-14

    We describe an atomistic method for computing the viscosity of highly viscous liquids based on activated state kinetics. A basin-filling algorithm allowing the system to climb out of deep energy minima through a series of activation and relaxation is proposed and first benchmarked on the problem of adatom diffusion on a metal surface. It is then used to generate transition state pathway trajectories in the potential energy landscape of a binary Lennard-Jones system. Analysis of a sampled trajectory shows the system moves from one deep minimum to another by a process that involves high activation energy and the crossing of many local minima and saddle points. To use the trajectory data to compute the viscosity we derive a Markov Network model within the Green-Kubo formalism and show that it is capable of producing the temperature dependence in the low-viscosity regime described by molecular dynamics simulation, and in the high-viscosity regime (10(2)-10(12) Pa s) shown by experiments on fragile glass-forming liquids. We also derive a mean-field-like description involving a coarse-grained temperature-dependent activation barrier, and show it can account qualitatively for the fragile behavior. From the standpoint of molecular studies of transport phenomena this work provides access to long relaxation time processes beyond the reach of current molecular dynamics capabilities. In a companion paper we report a similar study of silica, a representative strong liquid. A comparison of the two systems gives insight into the fundamental difference between strong and fragile temperature variations.

  5. Effective viscosity of magnetic nanofluids through capillaries.

    PubMed

    Patel, Rajesh

    2012-02-01

    The simultaneous effect of magnetic field and temperature on the capillary viscosity of magnetic nanofluid is an important parameter for a new class of applications such as nanoduct flow, nanomotors, micro- and nanofluidic devices, for transformer cooling, magnetic targeted drug delivery, etc. The effective viscosity of a nanofluid is explained based on the rotation of the particles and the effect of torque on it due to an externally applied magnetic field. Two types of fluids are used here, temperature-sensitive and non-temperature-sensitive magnetic nanofluids. In both types of fluids, decrease in effective viscosity with temperature is observed, but in both cases the mechanism for the decrement is quite different. One is due to temperature dependence of the magnetic moment and the other is due to removal of the secondary surfactant. For temperature-sensitive magnetic nanofluids, a Curie temperature of ~80 °C is extracted from this study. For non-temperature-sensitive magnetic nanofluids ~65% of the secondary surfactant is removed for a change in temperature, ΔT = 40 °C. This is analogous with removal of a drug from magnetic particles for targeted drug delivery. Further, a linear dependence of effective viscosity with different capillary size and ξ (angle between magnetic field and flow direction, ξε[0,π/2]) is also observed. This linear dependence can also be a good approximation for the study of magnetic drug targeting, as in the human body the capillaries are of different sizes, and the externally applied magnetic field is not always parallel or perpendicular to the drug flow direction.

  6. Effective viscosity of magnetic nanofluids through capillaries

    NASA Astrophysics Data System (ADS)

    Patel, Rajesh

    2012-02-01

    The simultaneous effect of magnetic field and temperature on the capillary viscosity of magnetic nanofluid is an important parameter for a new class of applications such as nanoduct flow, nanomotors, micro- and nanofluidic devices, for transformer cooling, magnetic targeted drug delivery, etc. The effective viscosity of a nanofluid is explained based on the rotation of the particles and the effect of torque on it due to an externally applied magnetic field. Two types of fluids are used here, temperature-sensitive and non-temperature-sensitive magnetic nanofluids. In both types of fluids, decrease in effective viscosity with temperature is observed, but in both cases the mechanism for the decrement is quite different. One is due to temperature dependence of the magnetic moment and the other is due to removal of the secondary surfactant. For temperature-sensitive magnetic nanofluids, a Curie temperature of ˜80 ∘C is extracted from this study. For non-temperature-sensitive magnetic nanofluids ˜65% of the secondary surfactant is removed for a change in temperature, ΔT = 40 ∘C. This is analogous with removal of a drug from magnetic particles for targeted drug delivery. Further, a linear dependence of effective viscosity with different capillary size and ξ (angle between magnetic field and flow direction, ξ∈[0,π/2]) is also observed. This linear dependence can also be a good approximation for the study of magnetic drug targeting, as in the human body the capillaries are of different sizes, and the externally applied magnetic field is not always parallel or perpendicular to the drug flow direction.

  7. Developing bulk exchange spring magnets

    DOEpatents

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  8. Anisotropic Shear Viscosity of Photoaligned Liquid Crystal Confined in Submicrometer-to-Nanometer-Scale Gap Widths Revealed with Simultaneously Measured Molecular Orientation.

    PubMed

    Itoh, Shintaro; Imura, Yuuichi; Fukuzawa, Kenji; Zhang, Hedong

    2015-10-20

    In the context of the use of liquid crystals (LCs) as lubricants and lubricant additives, this study investigates the anisotropic shear viscosity of LCs confined in nanometer-sized gap widths subject to both shearing and photoalignment. The photoalignment is achieved using anisotropically dimerized polyvinyl cinnamate (PVCi) films coated on substrates. We simultaneously measure the viscosity and order parameter of a liquid crystal (4-cyano-4'-pentylbiphenyl) confined and sheared in the gap range of 500 nm down to a few nm. We achieve this simultaneous measurement using an original method that combines a highly sensitive viscosity measurement and a sensitive birefringence measurement. When the LC is sheared in the same direction as the photoalignment (parallel shearing), the order parameter, which is around 0.3 in the bulk state, increases up to around 0.4 at a gap width of less than 50 nm and the viscosity is smaller than half the bulk viscosity. We consider that this increase in the order parameter is due to the highly ordered photoaligned LC layer near the PVCi film, and the viscosity decrease is due to shear thinning of this layer enhanced by both confinement and molecular ordering. In addition, we observe a gradual decrease in viscosity starting at a gap of less than around 300 nm in the parallel shearing. Based on the apparent slip model, we show that the LC layer near the PVCi film can also cause this gradual viscosity decrease. In contrast, when the LC is sheared in the direction perpendicular to the photoalignment direction (perpendicular shearing), the viscosity increases as the gap decreases. We speculate that this is due to the rotational motion of the LC molecules caused by the competing effect of shear alignment and photoalignment. We believe our findings can significantly contribute to a better understanding of the confined LCs utilized for lubrication.

  9. The Effect of Exercise on Salivary Viscosity

    PubMed Central

    Ligtenberg, Antoon J. M.; Liem, Erwin H. S.; Brand, Henk S.; Veerman, Enno C. I.

    2016-01-01

    A common experience after exercise is the presence of a thick and sticky saliva layer on the oral surfaces, which causes a feeling of a dry mouth. Since the salivary mucin MUC5B is responsible for the visco-elastic behavior of saliva, in the present study we explored the effect of exercise on both the salivary viscosity and the secretion of MUC5B in saliva. Twenty healthy dental students performed an aerobic exercise by cycling for 15 min on cycle-ergometers at a heart rate of 130–140 beats per minute. Saliva was collected at three time points: before exercise, immediately after exercise and after 30 min recovery. Salivary flow rate, viscosity, amylase activity, total protein, carbohydrate and MUC5B concentration were determined. Salivary flow rate, protein and amylase did not change significantly. Immediately after exercise, the salivary viscosity and carbohydrate concentration were significantly higher than at baseline and after 30 min recovery. Immediately after exercise, the MUC5B concentration was significantly higher than after 30 min recovery. It is concluded that the presence of thick saliva after exercise is at least partially due to an increased secretion of MUC5B. PMID:27854320

  10. Magnetic viscosity studies in hard magnetic materials

    SciTech Connect

    Singleton, E.W.; Hadjipanayis, G.C. )

    1990-05-01

    The magnetic viscosity behavior has been studied in several hard magnets with different magnetization reversal mechanisms including barium ferrite powders, Cu-Mn-Al, ferrite magnets, Nd-Fe-B, and SmCo{sub 5}, Sm{sub 2}(Co,Fe,Cu,Zr){sub 17}. The measurements were made with a vibrating sample magnetometer for times up to 60 s and a SQUID magnetometer for longer times in the range of 60--2300 s. For most of the samples the magnetization was found to vary logarithmically with time. The field and temperature dependence of the magnetic viscosity coefficient {ital S} was studied. Here, {ital S} was found to vary with the applied field and it usually peaked around the coercive field {ital H}{sub {ital c}}. The measured values of {ital S}{sub max} at 10 K range from 0.004 to 1.853 emu/g for Cu-Mn-Al and Sm{sub 2}(Co,Fe,Cu,Zr){sub 17}, respectively. The magnetic viscosity coefficient was used together with the magnetic susceptibility to determine the activation volume.

  11. Vapor-phase viscosity of phenol

    NASA Astrophysics Data System (ADS)

    Vogel, E.; Neumann, A.-K.

    1993-07-01

    New measurements of the vapor-phase viscosity of phenol were performed from 437 up to 624 K and for densities between 0.006 and 0.023 mol · L-1 in an all-quartz oscillating-disk viscometer with small gaps. Thus, including our own measurements reported earlier, experimental data are available in the temperature range between 376 and 639 K and in the density range from 0.001 up to 0.023 mol · L-1. The data were evaluated with a density series for the viscosity in which only a linear density contribution is included. The values of the second viscosity virial coefficient obtained for phenol as well as for benzene, toluene, and p-xylene were compared with results of the Rainwater-Friend theory and of the modified Enskog theory on the basis of the Lennard-Jones 12-6 potential. The agreement is reasonable, when the potential parameter ratios determined by Bich and Vogel are used. The influence of bound dimers seems to be already taken into account in the three-monomer contribution according to Hoffman and Curtiss.

  12. Viscosity stratified fluids in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Soldati, Alfredo; Ahmadi, Somayeh; Roccon, Alessio; Zonta, Francesco

    2016-11-01

    Direct Numerical Simulation (DNS) is used to study the turbulent Poiseuille flow of two immiscible liquid layers inside a rectangular channel. A thin liquid layer (fluid 1) flows on top of a thick liquid layer (fluid 2), such that their thickness ratio is h1 /h2 = 1 / 9 . The two liquid layers have the same density but different viscosities (viscosity-stratified fluids). In particular, we consider three different values of the viscosity ratio λ =ν1 /ν2 : λ = 1 , λ = 0 . 875 and λ = 0 . 75 . Numerical Simulations are based on a Phase Field method to describe the interaction between the two liquid layers. Compared with the case of a single phase flow, the presence of a liquid-liquid interface produces a remarkable turbulence modulation inside the channel, since a significant proportion of the kinetic energy is subtracted from the mean flow and converted into work to deform the interface. This induces a strong turbulence reduction in the proximity of the interface and causes a substantial increase of the volume-flowrate. These effects become more pronounced with decreasing λ.

  13. RELAP-7 Numerical Stabilization: Entropy Viscosity Method

    SciTech Connect

    R. A. Berry; M. O. Delchini; J. Ragusa

    2014-06-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.

  14. Surface folding and viscosity of rhyolite flows

    NASA Astrophysics Data System (ADS)

    Fink, Jonathan

    1980-05-01

    Regularly spaced ridges on rhyolite flows are analyzed through the use of a surface-folding model that was first applied to ropy structures on pahoehoe basalt flows. The requirement that there be a strong folding instability to produce regularly spaced ridges places constraints on three dimensionless parameters related to the properties of the lava and the geometry of the channel: R > 35,S < 0.02, and Ldγ > 28. R is the ratio of surface to interior viscosities, S is a ratio between the stress due to the weight of the lava and the compressive stress due to folding, and Ldγ is a dimensionless form of the ridge spacing. Estimates of strain rates and measurements of ridge spacings and thicknesses of thermal boundary layers of flows allow these three parameters to be calculated independently for a given flow lobe. For the Big Glass Mountain rhyolitic obsidian flow in northern California, R ≅ 104, S < 6.5 × 10-3, and Ldγ > 44. This compatibility between theory and observation supports the folding interpretation for ridges. Furthermore, the model allows calculation of the minimum viscosity of many flows for which such data are otherwise unavailable. The viscosities of a dacite flow in Chile and of a. possible lava flow on Mars are calculated as examples. *Present address: Department of Geology, Arizona State University, Tempe, Arizona 85281

  15. Shear & Compression Plasma Viscosity In Spherical ICF

    NASA Astrophysics Data System (ADS)

    Morse, Richard

    2003-10-01

    In (1) the exceptional viscosity of DT plasmas (Braginskii) was estimated to reduce by orders of magnitude growth rates of the most threatening m=0 modes in liner implosions of cylindrical Z-pinch plasmas that reach a thermonuclear T=10keV. Here in spherical B=0 implosions shear viscosity is estimated, by numerical(2)(implicit in t) & analytic(Chandrasekhar) methods, to reduce similarly the growth of R-T modes in DT plasmas reaching 10keV, where μ ˜5.E4 poise, or higher T. Surface plasma interactions with the confining pusher shell(3) & Knudsen(large mfp) limitation of the viscous effects are discussed. Compression viscosity(Zel'dovich) adds noticeably to irreversible heating(reduced to quadratures) in such systems, esp. with final T>10keV &/or implosion velocities >10E7cm/s. Here double implosions, as suggested in (4), can increase significantly entropy production prior to final implosion &, consequently, heating efficiency. (1)Bull. APS 44-7 Nov99 BP189 (2)McCrory et. al. Nuc.Sci.. 64,163(77) & references (3)Montierth et al., PFB 4(4) Ap92 & references (4)Two Stage Heating Of Theta Pinches, Freidberg & Morse, Proc. '71 Garching Conf. On High β Plasmas

  16. Probing bulk viscous matter-dominated models with gamma-ray bursts

    SciTech Connect

    Montiel, A.; Bretón, N. E-mail: nora@fis.cinvestav.mx

    2011-08-01

    In this paper we extend the range of consistency of a constant bulk viscosity model to redshifts up to z ∼ 8.1. In this model the dark sector of the cosmic substratum is a viscous fluid with pressure p = −ζθ, where θ is the fluid-expansion scalar and ζ is the coefficient of bulk viscosity. Using the sample of 59 high-redshift GRBs reported by Wei (2010), we calibrate GRBs at low redshifts with the Union 2 sample of SNe Ia, thus avoiding the circularity problem. Testing the constant bulk viscosity model with GRBs we found the best fit for the viscosity parameter ζ-tilde in the range 0 < ζ-tilde < 3, so that it be consistent with previous probes; we also determined the deceleration parameter q{sub 0} and the redshift of transition to accelerated expansion. Besides, we present an updated analysis of the model with CMB5-year data and CMB7-year data, as well as with the baryon acoustic peak BAO. From the statistics with CMB it turns out that the model does not describe in a feasible way to such a far epoch of recombination of the universe, but is in very good concordance for epochs as far as z ∼ 8.1 till present.

  17. Determination of the distance-dependent viscosity of mixtures in parallel slabs using non-equilibrium molecular dynamics.

    PubMed

    Pařez, Stanislav; Předota, Milan

    2012-03-14

    We generalize a technique for determination of the shear viscosity of mixtures in planar slabs using non-equilibrium computer simulations by applying an external force parallel to the surface generating Poiseuille flow. The distance-dependent viscosity of the mixture, given as a function of the distance from the surface, is determined by analysis of the resulting velocity profiles of all species. We present results for a highly non-ideal water + methanol mixture in the whole concentration range between rutile (TiO(2)) walls. The bulk results are compared to the existing equilibrium molecular dynamics and experimental data while the inhomogeneous viscosity profiles at the interface are interpreted using the structural data and information on hydrogen bonding.

  18. DNA-RNA transcription as an impact of viscosity

    NASA Astrophysics Data System (ADS)

    Zdravković, Slobodan; Satarić, Miljko V.; Hadžievski, Ljupčo

    2010-12-01

    The impact of viscosity on DNA dynamics is studied both analytically and numerically. It is assumed that the viscosity exists at the segments where DNA molecule is surrounded by RNA polymerase. We demonstrate that the frictional forces destroy the modulation of the incoming solitonic wave. We show that viscosity, crucial for demodulation, is essential for DNA-RNA transcription.

  19. Reference Correlation for the Viscosity of Ethane

    SciTech Connect

    Vogel, Eckhard; Span, Roland; Herrmann, Sebastian

    2015-12-15

    A new representation of the viscosity for the fluid phase of ethane includes a zero-density correlation and a contribution for the critical enhancement, initially both developed separately, but based on experimental data. The higher-density contributions are correlated as a function of the reduced density δ = ρ/ρ{sub c} and of the reciprocal reduced temperature τ = T{sub c}/T (ρ{sub c}—critical density and T{sub c}—critical temperature). The final formulation contains 14 coefficients obtained using a state-of-the-art linear optimization algorithm. The evaluation and choice of the selected primary data sets is reviewed, in particular with respect to the assessment used in earlier viscosity correlations. The new viscosity surface correlation makes use of the reference equation of state for the thermodynamic properties of ethane by Bücker and Wagner [J. Phys. Chem. Ref. Data 35, 205 (2006)] and is valid in the fluid region from the melting line to temperatures of 675 K and pressures of 100 MPa. The viscosity in the limit of zero density is described with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 290 < T/K < 625, increasing to 1.0% at temperatures down to 212 K. The uncertainty of the correlated values is 1.5% in the range 290 < T/K < 430 at pressures up to 30 MPa on the basis of recent measurements judged to be very reliable as well as 4.0% and 6.0% in further regions. The uncertainty in the near-critical region (1.001 < 1/τ < 1.010 and 0.8 < δ < 1.2) increases with decreasing temperature up to 3.0% considering the available reliable data. Tables of the viscosity calculated from the correlation are listed in an appendix for the single-phase region, for the vapor–liquid phase boundary, and for the near-critical region.

  20. Phobos: Observed bulk properties

    NASA Astrophysics Data System (ADS)

    Pätzold, Martin; Andert, Tom; Jacobson, Robert; Rosenblatt, Pascal; Dehant, Véronique

    2014-11-01

    This work is a review of the mass determinations of the Mars moon Phobos by spacecraft close flybys, by solving for the Martian gravity field and by the analysis of secular orbit perturbations. The absolute value and accuracy is sensitive on the knowledge and accuracy of the Phobos ephemeris, of the spacecraft orbit, other perturbing forces acting on the spacecraft and the resolution of the Martian gravity field besides the measurement accuracy of the radio tracking data. The mass value and its error improved from spacecraft mission to mission or from the modern analysis of “old” tracking data but these solutions depend on the accuracy of the ephemeris at the time of observation. The mass value seems to settle within the range of GMPh=(7.11±0.09)×10-4 km3 s-2 which covers almost all mass values from close flybys and “distant” encounters within its 3-σ error (1.5%). Using the volume value determined from MEX HRSC imaging, the bulk density is (1873±31) kg m-3 (3-σ error or 1.7%), a low value which suggests that Phobos is either highly porous, is composed partially of light material or both. The determination of the gravity coefficients C20 and C22 from the Mars Express 2010 close flyby does not allow to draw conclusion on the internal structure. The large errors do not distinguish whether Phobos is homogeneous or not. In view of theories of the Phobos' origin, one possibility is that Phobos is not a captured asteroid but accreted from a debris disk in Mars orbit as a second generation solar system object.

  1. Power semiconductor controlled drives

    NASA Astrophysics Data System (ADS)

    Dubey, Gopal K.

    This book presents power semiconductor controlled drives employing dc motors, induction motors, and synchronous motors. The dynamics of motor and load systems are covered. Open-loop and closed-loop drives are considered, and thyristor, power transistor, and GTO converters are discussed. In-depth coverage is given to ac drives, particularly those fed by voltage and current source inverters and cycloconverters. Full coverage is given to brushless and commutatorless dc drives, including load-commuted synchronous motor drives. Rectifier-controlled dc drives are presented in detail.

  2. Flow fields in soap films: Relating viscosity and film thickness

    NASA Astrophysics Data System (ADS)

    Prasad, V.; Weeks, Eric R.

    2009-08-01

    We follow the diffusive motion of colloidal particles in soap films with varying h/d , where h is the thickness of the film and d is the diameter of the particles. The hydrodynamics of these films are determined by looking at the correlated motion of pairs of particles as a function of separation R . The Trapeznikov approximation [A. A. Trapeznikov, Proceedings of the 2nd International Congress on Surface Activity (Butterworths, London, 1957), p. 242] is used to model soap films as an effective two-dimensional (2D) fluid in contact with bulk air phases. The flow fields determined from correlated particle motions show excellent agreement with what is expected for the theory of 2D fluids for all our films where 0.6≤h/d≤14.3 , with the 2D shear viscosity matching that predicted by Trapeznikov. However, the parameters of these flow fields change markedly for thick films (h/d>7±3) . Our results indicate that three-dimensional effects become important for these thicker films, despite the flow fields still having a 2D character.

  3. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.

    PubMed

    Xue, Zheng; Worthen, Andrew; Qajar, Ali; Robert, Isaiah; Bryant, Steven L; Huh, Chun; Prodanović, Maša; Johnston, Keith P

    2016-01-01

    To date, relatively few examples of ultra-high internal phase supercritical CO2-in-water foams (also referred to as macroemulsions) have been observed, despite interest in applications including "waterless" hydraulic fracturing in energy production. The viscosities and stabilities of foams up to 0.98 CO2 volume fraction were investigated in terms of foam bubble size, interfacial tension, and bulk and surface viscosity. The foams were stabilized with laurylamidopropyl betaine (LAPB) surfactant and silica nanoparticles (NPs), with and without partially hydrolyzed polyacrylamide (HPAM). For foams stabilized with mixture of LAPB and NPs, fine ∼70 μm bubbles and high viscosities on the order of 100 cP at>0.90 internal phase fraction were stabilized for hours to days. The surfactant reduces interfacial tension, and thus facilitates bubble generation and decreases the capillary pressure to reduce the drainage rate of the lamella. The LAPB, which is in the cationic protonated form, also attracts anionic NPs (and anionic HPAM in systems containing polymer) to the interface. The adsorbed NPs at the interface are shown to slow down Ostwald ripening (with or without polymer added) and increase foam stability. In systems with added HPAM, the increase in the bulk and surface viscosity of the aqueous phase further decreases the lamella drainage rate and inhibits coalescence of foams. Thus, the added polymer increases the foam viscosity by threefold. Scaling law analysis shows the viscosity of 0.90 volume fraction foams is inversely proportional to the bubble size.

  4. Influence of blood lipids on plasma and blood viscosity.

    PubMed

    Irace, Concetta; Carallo, Claudio; Scavelli, Faustina; Esposito, Teresa; De Franceschi, Maria Serena; Tripolino, Cesare; Gnasso, Agostino

    2014-01-01

    The relationship between hyperlipidemia and blood and plasma viscosity is not completely clear. While increasing viscosity is often reported with increasing blood lipids, lipid-lowering treatments are often unable to normalize the viscosity values. Aim of this study is to try to clarify the relationship between blood lipids and viscosity. Apparently healthy subjects were enrolled (n = 410). Smokers, diabetics, obese, and hypertriglyceridemic (above 400 mg/dl) were excluded. Blood (at shear rate 225/s) and plasma viscosity were measured at 37°C. Erythrocyte rigidity (Tk) was calculated according to Dintenfass. Blood lipids and glucose were measured by routine methods. Hyperlipidemic subjects (n = 315) had higher values of plasma viscosity (1.44 ± 0.13 vs. 1.40 ± 0.12 cP, p = 0.007), and blood viscosity (4.51 ± 0.54 vs. 4.35 ± 0.55 cP, p = 0.013), compared to normolipidemic subjects (n = 95). In simple correlation analysis, plasma viscosity was directly associated with LDL cholesterol, and inversely with Tk and HDL cholesterol. In multiple regression analysis the association with LDL and HDL was strengthened, though these two variables as a whole accounted for only 5% (adjusted R2) of the variability of plasma viscosity. Blood viscosity was significantly associated with haematocrit, plasma viscosity, Tk and all considered variables but age in simple correlation analysis, but only with haematocrit, plasma viscosity and Tk in multiple regression analysis. LDL cholesterol and HDL cholesterol influence plasma viscosity, but not blood viscosity. Triglycerides up to values of 400 mg/dl do not seem to have important effects, at least in apparently healthy subjects and at the shear rates used in the present study. The contribution of LDL and HDL cholesterol to plasma viscosity seems however quite limited.

  5. Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance'

    PubMed Central

    Tassieri, Manlio; Giudice, Francesco Del; Robertson, Emma J.; Jain, Neena; Fries, Bettina; Wilson, Rab; Glidle, Andrew; Greco, Francesco; Netti, Paolo Antonio; Maffettone, Pier Luca; Bicanic, Tihana; Cooper, Jonathan M.

    2015-01-01

    We present a straightforward method for measuring the relative viscosity of fluids via a simple graphical analysis of the normalised position autocorrelation function of an optically trapped bead, without the need of embarking on laborious calculations. The advantages of the proposed microrheology method are evident when it is adopted for measurements of materials whose availability is limited, such as those involved in biological studies. The method has been validated by direct comparison with conventional bulk rheology methods, and has been applied both to characterise synthetic linear polyelectrolytes solutions and to study biomedical samples. PMID:25743468

  6. Predicted Optimum Composition for the Glass-Forming Ability of Bulk Amorphous Alloys: Application to Cu-Zr-Al.

    PubMed

    An, Qi; Samwer, Konrad; Goddard, William A; Johnson, William L; Jaramillo-Botero, Andres; Garret, Glenn; Demetriou, Marios D

    2012-11-01

    Metallic glasses have been established to have unique properties such as ductility, toughness, and soft magnetism with promising engineering applications. However, the glass-forming ability (GFA) has not been sufficient to synthesize the bulk metallic glasses (BMGs) required for many engineering applications. Attempts to develop the understanding of the GFA required to predict the optimum alloys have not yet been proven successful. We develop here a computational model based on molecular dynamics simulations that explains the dramatic change of GFA with alloying small amounts of Al into Cu-Zr. We find that the high GFA to form BMGs depends on a combination of three factors, (a) a low thermodynamic driving force for crystallization, (b) a high melt viscosity, and (c) large ratios of icosahedral structures in the liquid phase. These computational methods to predict these factors that suppress formation of crystal nuclei and slow the dynamic motions in the liquids are practical for in silico prediction of new alloys with optimal GFA.

  7. The role of viscosity in TATB hot spot ignition

    NASA Astrophysics Data System (ADS)

    Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.

    2012-03-01

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

  8. Reduction of viscosity in suspension of swimming bacteria.

    SciTech Connect

    Aranson, I. S.; Sokolov, A.; Chen, L.; Jin, Q.; Materials Science Division

    2009-09-29

    Measurements of the shear viscosity in suspensions of swimming Bacillus subtilis in free-standing liquid films have revealed that the viscosity can decrease by up to a factor of 7 compared to the viscosity of the same liquid without bacteria or with nonmotile bacteria. The reduction in viscosity is observed in two complementary experiments: one studying the decay of a large vortex induced by a moving probe and another measuring the viscous torque on a rotating magnetic particle immersed in the film. The viscosity depends on the concentration and swimming speed of the bacteria.

  9. Reduction of viscosity in suspension of swimming bacteria.

    SciTech Connect

    Sokolov, A.; Aranson, I. S.; Materials Science Division; Illinois Inst. of Tech.

    2009-01-01

    Measurements of the shear viscosity in suspensions of swimming Bacillus subtilis in free-standing liquid films have revealed that the viscosity can decrease by up to a factor of 7 compared to the viscosity of the same liquid without bacteria or with nonmotile bacteria. The reduction in viscosity is observed in two complementary experiments: one studying the decay of a large vortex induced by a moving probe and another measuring the viscous torque on a rotating magnetic particle immersed in the film. The viscosity depends on the concentration and swimming speed of the bacteria.

  10. The Role of Viscosity in TATB Hot Spot Ignition

    SciTech Connect

    Fried, L E; Zepeda-Ruis, L; Howard, W M; Najjar, F; Reaugh, J E

    2011-08-02

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

  11. Dementia and driving

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000028.htm Dementia and driving To use the sharing features on this page, ... their independence is being taken away. Signs That Driving May No Longer be Safe People with signs ...

  12. Ocular disease and driving.

    PubMed

    Wood, Joanne M; Black, Alex A

    2016-09-01

    As the driving population ages, the number of drivers with visual impairment resulting from ocular disease will increase given the age-related prevalence of ocular disease. The increase in visual impairment in the driving population has a number of implications for driving outcomes. This review summarises current research regarding the impact of common ocular diseases on driving ability and safety, with particular focus on cataract, glaucoma, age-related macular degeneration, hemianopia and diabetic retinopathy. The evidence considered includes self-reported driving outcomes, driving performance (on-road and simulator-based) and various motor vehicle crash indices. Collectively, this review demonstrates that driving ability and safety are negatively affected by ocular disease; however, further research is needed in this area. Older drivers with ocular disease need to be aware of the negative consequences of their ocular condition and in the case where treatment options are available, encouraged to seek these earlier for optimum driving safety and quality of life benefits.

  13. Impaired Driving - Multiple Languages

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Impaired Driving URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Impaired Driving - Multiple Languages To use the sharing features on ...

  14. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.

    1999-01-01

    very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion

  15. Gear bearing drive

    NASA Technical Reports Server (NTRS)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  16. Evaluation of cervical marginal and internal adaptation using newer bulk fill composites: An in vitro study

    PubMed Central

    Agarwal, Rolly Shrivastav; Hiremath, Hemlatha; Agarwal, Jatin; Garg, Ashish

    2015-01-01

    Objective: To evaluate the cervical marginal and internal adaptation of posterior bulk fill resin composites of different viscosities, before and after thermo-cycling (TMC). Materials and Methods: Eighty box-only class II cavities were prepared in 40 extracted human premolars with the distal proximal box beneath the enamel-cementum junction (CEJ). The teeth in the experimental groups were restored with bulk fill resin composite restorations (Gr. I- Sonic Fill, Gr. II- SDR, Gr. III- Tetric N Ceram Bulk Fill or a conventional composite designed for 2-mm increments (Gr. IV- Tetric N Flow along with Tetric N Ceram). Before and after thermal cycling, the gap-free marginal length was analyzed using SEM of epoxy resin replicas. After thermal cycling, specimens were cut longitudinally in order to investigate internal dentine adaptation by epoxy replicas under SEM (500 × magnification). Results: Statistical analysis was performed using the ANOVA and Tukey Post Hoc tests (P < 0.05). In enamel, high percentages of gap-free margins were initially identified for all the groups, which declined after thermal cycling. However, no significant differences were identified among any of the groups (P > 0.05). In dentine, bulk fill groups performed at par with the incremental placement; for both marginal and internal adaptation (P < 0.05), for all materials except Tetric N Ceram Bulk Fill. Conclusions: Viscosity of the bulk fill restorative material influenced the proportion of gap-free marginal interface and the internal adaptation in dentin. PMID:25657529

  17. Electron treatment of wood pulp for the viscose process

    NASA Astrophysics Data System (ADS)

    Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.

    2000-03-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.

  18. Imaging tumor microscopic viscosity in vivo using molecular rotors

    PubMed Central

    Shimolina, Lyubov’ E.; Izquierdo, Maria Angeles; López-Duarte, Ismael; Bull, James A.; Shirmanova, Marina V.; Klapshina, Larisa G.; Zagaynova, Elena V.; Kuimova, Marina K.

    2017-01-01

    The microscopic viscosity plays an essential role in cellular biophysics by controlling the rates of diffusion and bimolecular reactions within the cell interior. While several approaches have emerged that have allowed the measurement of viscosity and diffusion on a single cell level in vitro, the in vivo viscosity monitoring has not yet been realized. Here we report the use of fluorescent molecular rotors in combination with Fluorescence Lifetime Imaging Microscopy (FLIM) to image microscopic viscosity in vivo, both on a single cell level and in connecting tissues of subcutaneous tumors in mice. We find that viscosities recorded from single tumor cells in vivo correlate well with the in vitro values from the same cancer cell line. Importantly, our new method allows both imaging and dynamic monitoring of viscosity changes in real time in live animals and thus it is particularly suitable for diagnostics and monitoring of the progress of treatments that might be accompanied by changes in microscopic viscosity. PMID:28134273

  19. Combustion of bulk titanium in oxygen

    NASA Technical Reports Server (NTRS)

    Clark, A. F.; Moulder, J. C.; Runyan, C. C.

    1975-01-01

    The combustion of bulk titanium in one atmosphere oxygen is studied using laser ignition and several analytical techniques. These were high-speed color cinematography, time and space resolved spectra in the visible region, metallography (including SEM) of specimens quenched in argon gas, X-ray and chemical product analyses, and a new optical technique, the Hilbert transform method. The cinematographic application of this technique for visualizing phase objects in the combustion zone is described. The results indicate an initial vapor phase reaction immediately adjacent to the molten surface but as the oxygen uptake progresses the evaporation approaches the point of congruency and a much reduced evaporation rate. This and the accumulation of the various soluble oxides soon drive the reaction zone below the surface where gas formation causes boiling and ejection of particles. The buildup of rutile cuts off the oxygen supply and the reaction ceases.

  20. Substrate viscosity enhances correlation in epithelial sheet movement.

    PubMed

    Murrell, Michael; Kamm, Roger; Matsudaira, Paul

    2011-07-20

    The movement of the epithelium plays vital roles in the development and renewal of complex tissues, from the separation of tissues in the early embryo, to turnover in the homeostasis of the gastrointestinal mucosa. Yet, despite its importance, a clear interpretation of the mechanism for collective motion in epithelial sheets remains elusive. This interpretation is prohibited by the lack of understanding of the relationship between motion and cell-cell contact, and their mediation by the mechanical properties of the underlying substrate. To better mimic physiological substrates that have inherent viscosity, we probe this relationship using polydimethylsiloxane, a substrate whose mechanical properties can be tuned from predominantly elastic to viscous by altering its cross-linking content. We therefore characterize the comparative spatiotemporal correlations in cell velocity during the movement of an epithelial monolayer as a function of the viscoelasticity of the substrate. Our results show that high correlation in cell velocity is achieved when the substrate G''(ω) is ~0.4 × G'(ω). This correlation is driven by a balance between cell-cell contact and the adhesion and contraction of the extracellular matrix. For G'(ω) > G'(ω), this balance shifts, and contraction of the tissue drives the substrate to flow, further elevating the correlation in movement.

  1. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.

    1999-01-01

    very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion

  2. Grieving while Driving

    ERIC Educational Resources Information Center

    Rosenblatt, Paul C.

    2004-01-01

    Secondary analysis of data from 84 people in 2 interview studies shows that some bereaved people grieve actively while driving. The grief can be intense, even years after a death. Grief while driving may erupt spontaneously or be set off by a wide range of reminders. Some bereaved people seem to save their grieving for times when they drive,…

  3. Sequential Dependencies in Driving

    ERIC Educational Resources Information Center

    Doshi, Anup; Tran, Cuong; Wilder, Matthew H.; Mozer, Michael C.; Trivedi, Mohan M.

    2012-01-01

    The effect of recent experience on current behavior has been studied extensively in simple laboratory tasks. We explore the nature of sequential effects in the more naturalistic setting of automobile driving. Driving is a safety-critical task in which delayed response times may have severe consequences. Using a realistic driving simulator, we find…

  4. Sequential Dependencies in Driving

    ERIC Educational Resources Information Center

    Doshi, Anup; Tran, Cuong; Wilder, Matthew H.; Mozer, Michael C.; Trivedi, Mohan M.

    2012-01-01

    The effect of recent experience on current behavior has been studied extensively in simple laboratory tasks. We explore the nature of sequential effects in the more naturalistic setting of automobile driving. Driving is a safety-critical task in which delayed response times may have severe consequences. Using a realistic driving simulator, we find…

  5. Magnetic drive coupling

    NASA Technical Reports Server (NTRS)

    Carter, Edward L. (Inventor)

    1987-01-01

    The driving and driven members of a magnetic drive are separated by en enlarged gap to provide clearance for a conduit or other member. Flux pins in the gap maintain the torque transmitting capability of the drive. The spacing between two of the flux pins is increased to provide space for the conduit.

  6. New Formulation for the Viscosity of Propane

    NASA Astrophysics Data System (ADS)

    Vogel, Eckhard; Herrmann, Sebastian

    2016-12-01

    A new viscosity formulation for propane, using the reference equation of state for its thermodynamic properties by Lemmon et al. [J. Chem. Eng. Data 54, 3141 (2009)] and valid in the fluid region from the triple-point temperature to 650 K and pressures up to 100 MPa, is presented. At the beginning, a zero-density contribution and one for the critical enhancement, each based on the experimental data, were independently generated in parts. The higher-density contributions are correlated as a function of the reciprocal reduced temperature τ = Tc/T and of the reduced density δ = ρ/ρc (Tc—critical temperature, ρc—critical density). The final formulation includes 17 coefficients inferred by applying a state-of-the-art linear optimization algorithm. The evaluation and choice of the primary data sets are detailed due to its importance. The viscosity at low pressures p ≤ 0.2 MPa is represented with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 273 ≤ T/K ≤ 625. The expanded uncertainty in the vapor phase at subcritical temperatures T ≥ 273 K as well as in the supercritical thermodynamic region T ≤ 423 K at pressures p ≤ 30 MPa is assumed to be 1.5%. In the near-critical region (1.001 < 1/τ < 1.010 and 0.8 < δ < 1.2), the expanded uncertainty increases with decreasing temperature up to 3.0%. It is further increased to 4.0% in regions of less reliable primary data sets and to 6.0% in ranges in which no primary data are available but the equation of state is valid. Tables of viscosity computed for the new formulation are given in an Appendix for the single-phase region, for the vapor-liquid phase boundary, and for the near-critical region.

  7. Glymphatic solute transport does not require bulk flow

    PubMed Central

    Asgari, Mahdi; de Zélicourt, Diane; Kurtcuoglu, Vartan

    2016-01-01

    Observations of fast transport of fluorescent tracers in mouse brains have led to the hypothesis of bulk water flow directed from arterial to venous paravascular spaces (PVS) through the cortical interstitium. At the same time, there is evidence for interstitial solute transport by diffusion rather than by directed bulk fluid motion. It has been shown that the two views may be consolidated by intracellular water flow through astrocyte networks combined with mainly diffusive extracellular transport of solutes. This requires the presence of a driving force that has not been determined to date, but for which arterial pulsation has been suggested as the origin. Here we show that arterial pulsation caused by pulse wave propagation is an unlikely origin of this hypothetical driving force. However, we further show that such pulsation may still lead to fast para-arterial solute transport through dispersion, that is, through the combined effect of local mixing and diffusion in the para-arterial space. PMID:27929105

  8. Glymphatic solute transport does not require bulk flow

    NASA Astrophysics Data System (ADS)

    Asgari, Mahdi; de Zélicourt, Diane; Kurtcuoglu, Vartan

    2016-12-01

    Observations of fast transport of fluorescent tracers in mouse brains have led to the hypothesis of bulk water flow directed from arterial to venous paravascular spaces (PVS) through the cortical interstitium. At the same time, there is evidence for interstitial solute transport by diffusion rather than by directed bulk fluid motion. It has been shown that the two views may be consolidated by intracellular water flow through astrocyte networks combined with mainly diffusive extracellular transport of solutes. This requires the presence of a driving force that has not been determined to date, but for which arterial pulsation has been suggested as the origin. Here we show that arterial pulsation caused by pulse wave propagation is an unlikely origin of this hypothetical driving force. However, we further show that such pulsation may still lead to fast para-arterial solute transport through dispersion, that is, through the combined effect of local mixing and diffusion in the para-arterial space.

  9. Collective excitations and viscosity in liquid Bi

    NASA Astrophysics Data System (ADS)

    Ropo, Matti; Akola, Jaakko; Jones, R. O.

    2016-11-01

    The analysis of extensive density functional/molecular dynamics simulations (over 500 atoms, up to 100 ps) of liquid bismuth at four temperatures between 573 K and 1023 K has provided details of the dynamical structure factors, the dispersion of longitudinal and transverse collective modes, and related properties (power spectrum, viscosity, and sound velocity). Agreement with available inelastic x-ray and neutron scattering data and with previous simulations is generally very good. The results show that density functional/molecular dynamics simulations can give dynamical information of good quality without the use of fitting functions, even at long wavelengths.

  10. A transport equation for eddy viscosity

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.; Yang, Z.

    1992-01-01

    A transport equation for eddy viscosity is proposed for wall bounded turbulent flows. The proposed model reduces to a quasi-homogeneous form far from surfaces. Near to a surface, the nonhomogeneous effect of the wall is modeled by an elliptic relaxation model. All the model terms are expressed in local variables and are coordinate independent; the model is intended to be used in complex flows. Turbulent channel flow and turbulent boundary layer flows with/without pressure gradient are calculated using the present model. Comparisons between model calculations and direct numerical simulation or experimental data show good agreement.

  11. Viscosity of many-component glasses

    SciTech Connect

    Hrma, Pavel R.; Arrigoni, Benjamin M.; Schweiger, Michael J.

    2009-06-01

    The effect of composition on the viscosity of multicomponent glasses was expressed as a function of temperature and composition for three composition regions containing various subsets of Al2O3, B2O3, Bi2O3, CaO, Cr2O3, F, Fe2O3, K2O, Li2O, MgO, MnO, Na2O, NiO, P2O5, SiO2, UO2, and ZrO2. Limits of applicability of the composition models are discussed.

  12. Viscosity in the edge of tokamak plasmas

    SciTech Connect

    Stacey, W.M.

    1993-05-01

    A fluid representation of viscosity has been incorporated into a set of fluid equations that are maximally ordered in the ``short-radial-gradient-scale-length`` (srgsl) ordering that is appropriate for the edge of tokamak plasmas. The srgsl ordering raises viscous drifts and other viscous terms to leading order and fundamentally alters the character of the fluid equations. A leasing order viscous drift is identified. Viscous-driven radial particle and energy fluxes in the scrape-off layer and divertor channel are estimated to have an order unity effect in reducing radial peaking of energy fluxes transported along the field lines to divertor collector plates.

  13. Viscosity in the edge of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    1993-05-01

    A fluid representation of viscosity has been incorporated into a set of fluid equations that are maximally ordered in the 'short radial gradient scale length' (srgsl) ordering that is appropriate for the edge of tokamak plasmas. The srgsl ordering raises viscous drifts and other viscous terms to leading order and fundamentally alters the character of the fluid equations. A leasing order viscous drift is identified. Viscous-driven radial particle and energy fluxes in the scrape-off layer and divertor channel are estimated to have an order unity effect in reducing radial peaking of energy fluxes transported along the field lines to divertor collector plates.

  14. Soy protein isolate molecular level contributions to bulk adhesive properties

    NASA Astrophysics Data System (ADS)

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  15. Syncope and Driving.

    PubMed

    Guzman, Juan C; Morillo, Carlos A

    2015-08-01

    The occurrence of syncope while driving has obvious implications for personal and public safety. Neurally mediated syncope is the most common type of syncope in general and, thereby, also while driving. The presence of structural heart disease (reduced ejection fraction, previous myocardial infarction, significant congenital heart disease) potentially leads to high risk and should determine driving restrictions pending clarification of underlying heart disease and etiology of syncope. The clinical approach to syncope evaluation and recommendations for driving should not differ, whether or not the syncopal spell occurred while driving.

  16. Enhancing bulk superconductivity by engineering granular materials

    NASA Astrophysics Data System (ADS)

    Mayoh, James; García García, Antonio

    2014-03-01

    The quest for higher critical temperatures is one of the main driving forces in the field of superconductivity. Recent theoretical and experimental results indicate that quantum size effects in isolated nano-grains can boost superconductivity with respect to the bulk limit. Here we explore the optimal range of parameters that lead to an enhancement of the critical temperature in a large three dimensional array of these superconducting nano-grains by combining mean-field, semiclassical and percolation techniques. We identify a broad range of parameters for which the array critical temperature, TcArray, can be up to a few times greater than the non-granular bulk limit, Tc 0. This prediction, valid only for conventional superconductors, takes into account an experimentally realistic distribution of grain sizes in the array, charging effects, dissipation by quasiparticles and limitations related to the proliferation of thermal fluctuations for sufficiently small grains. For small resistances we find the transition is percolation driven. Whereas at larger resistances the transition occurs above the percolation threshold due to phase fluctuations. JM acknowledes support from an EPSRC Ph.D studentship, AMG acknowledges support from EPSRC, grant No. EP/I004637/1, FCT, grant PTDC/FIS/111348/2009 and a Marie Curie International Reintegration Grant PIRG07-GA-2010-268172.

  17. Surface shear viscosity as a macroscopic probe of amyloid fibril formation at a fluid interface.

    PubMed

    Balaraj, Vignesh S; Zeng, Philip C H; Sanford, Sean P; McBride, Samantha A; Raghunandan, Aditya; Lopez, Juan M; Hirsa, Amir H

    2017-03-01

    Amyloidogenesis of proteins is of wide interest because amyloid structures are associated with many diseases, including Alzheimer's and type II diabetes. Dozens of different proteins of various sizes are known to form amyloid fibrils. While there are numerous studies on the fibrillization of insulin induced by various perturbations, shearing at fluid interfaces has not received as much attention. Here, we present a study of human insulin fibrillization at room temperature using a deep-channel surface viscometer. The hydrodynamics of the bulk flow equilibrates in just over a minute, but the proteins at the air-water interface exhibit a very slow development during which the surface (excess) shear viscosity deduced from a Newtonian surface model increases slightly over a period of a day and a half. Then, there is a very rapid increase in the surface shear viscosity to effectively unbounded levels as the interface becomes immobilized. Atomic force microscopy shows that fibrils appear at the interface after it becomes immobilized. Fibrillization in the bulk does not occur until much later. This has been verified by concurrent atomic force microscopy and circular dichroism spectroscopy of samples from the bulk. The immobilized interface has zero in-plane shear rate, however due to the bulk flow, there is an increase in the strength of the normal component of the shear rate at the interface, implicating this component of shear in the fibrillization process ultimately resulting in a thick weave of fibrils on the interface. Real-time detection of fibrillization via interfacial rheology may find utility in other studies of proteins at sheared interfaces.

  18. Reconfigurable Drive Current System

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable drive current system includes drive stages, each of which includes a high-side transistor and a low-side transistor in a totem pole configuration. A current monitor is coupled to an output of each drive stage. Input channels are provided to receive input signals. A processor is coupled to the input channels and to each current monitor for generating at least one drive signal using at least one of the input signals and current measured by at least one of the current monitors. A pulse width modulation generator is coupled to the processor and each drive stage for varying the drive signals as a function of time prior to being supplied to at least one of the drive stages.

  19. Methods of Viscosity Measurements in Sealed Ampoules

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    1999-01-01

    Viscosity of semiconductor and metallic melts is usually measured by oscillating cup method. This method utilizes the melts contained in vacuum sealed silica ampoules, thus the problems related to volatility, contamination, and high temperature and pressure can be alleviated. In a typical design, the time required for a single measurement is of the order of one hour. In order to reduce this time to a minute range, a high resolution (0.05 arc.sec) angular detection system is implemented in our design of the viscometer. Furthermore, an electromagnet generating a rotational magnetic field (RMF) is incorporated into the apparatus. This magnetic field can be used to remotely and non intrusively measure the electrical conductivity of the melt. It can also be used to induce a well controlled rotational flow in the system. The transient behavior of this flow can potentially yield the viscosity of the fluid. Based on RMF implementation, two novel viscometry methods are proposed in this work: a) the transient torque method, b) the resonance method. A unified theoretical approach to the three methods (oscillating cup, transient torque, and resonance) is presented along with the initial test results of the constructed apparatus. Advantages of each of the method are discussed.

  20. Predicting human blood viscosity in silico

    SciTech Connect

    Fedosov, Dmitry A.; Pan, Wenxiao; Caswell, Bruce; Gompper, Gerhard; Karniadakis, George E.

    2011-07-05

    Cellular suspensions such as blood are a part of living organisms and their rheological and flow characteristics determine and affect majority of vital functions. The rheological and flow properties of cell suspensions are determined by collective dynamics of cells, their structure or arrangement, cell properties and interactions. We study these relations for blood in silico using a mesoscopic particle-based method and two different models (multi-scale/low-dimensional) of red blood cells. The models yield accurate quantitative predictions of the dependence of blood viscosity on shear rate and hematocrit. We explicitly model cell aggregation interactions and demonstrate the formation of reversible rouleaux structures resulting in a tremendous increase of blood viscosity at low shear rates and yield stress, in agreement with experiments. The non-Newtonian behavior of such cell suspensions (e.g., shear thinning, yield stress) is analyzed and related to the suspension’s microstructure, deformation and dynamics of single cells. We provide the flrst quantitative estimates of normal stress differences and magnitude of aggregation forces in blood. Finally, the flexibility of the cell models allows them to be employed for quantitative analysis of a much wider class of complex fluids including cell, capsule, and vesicle suspensions.

  1. Methods of Viscosity Measurements in Sealed Ampoules

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    1999-01-01

    Viscosity of semiconductor and metallic melts is usually measured by oscillating cup method. This method utilizes the melts contained in vacuum sealed silica ampoules, thus the problems related to volatility, contamination, and high temperature and pressure can be alleviated. In a typical design, the time required for a single measurement is of the order of one hour. In order to reduce this time to a minute range, a high resolution (0.05 arc.sec) angular detection system is implemented in our design of the viscometer. Furthermore, an electromagnet generating a rotational magnetic field (RMF) is incorporated into the apparatus. This magnetic field can be used to remotely and non intrusively measure the electrical conductivity of the melt. It can also be used to induce a well controlled rotational flow in the system. The transient behavior of this flow can potentially yield the viscosity of the fluid. Based on RMF implementation, two novel viscometry methods are proposed in this work: a) the transient torque method, b) the resonance method. A unified theoretical approach to the three methods (oscillating cup, transient torque, and resonance) is presented along with the initial test results of the constructed apparatus. Advantages of each of the method are discussed.

  2. Viscosity bound versus the universal relaxation bound

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-10-01

    For gauge theories with an Einstein gravity dual, the AdS/CFT correspondence predicts a universal value for the ratio of the shear viscosity to the entropy density, η / s = 1 / 4 π. The holographic calculations have motivated the formulation of the celebrated KSS conjecture, according to which all fluids conform to the lower bound η / s ≥ 1 / 4 π. The bound on η / s may be regarded as a lower bound on the relaxation properties of perturbed fluids and it has been the focus of much recent attention. In particular, it was argued that for a class of field theories with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, η / s, could violate the conjectured KSS bound. In the present paper we argue that the proposed violations of the KSS bound are strongly constrained by Bekenstein's generalized second law (GSL) of thermodynamics. In particular, it is shown that physical consistency of the Gauss-Bonnet theory with the GSL requires its coupling constant to be bounded by λGB ≲ 0 . 063. We further argue that the genuine physical bound on the relaxation properties of physically consistent fluids is ℑω(k > 2 πT) > πT, where ω and k are respectively the proper frequency and the wavenumber of a perturbation mode in the fluid.

  3. [Blood viscosity in ischemic heart disease].

    PubMed

    Malkun Paz, C; Alvarado Molina, M; Hurtado Figueroa, R; Vargas Cuellar, A; Elizalde Moreno, J

    1987-01-01

    Through a capillary viscometer we measured venous and arterial blood viscosity (BV) in 25 patients with the diagnosis of ischemic heart disease (IHD); 10 of them with unstable angor pectoris (UA) and 15 with acute myocardial infarction (MI). The control group consisted of 100 normal individuals in whom the normal values were 2.70 +/- 0.10 centipoises, where as in patients with AU the values were 4.03 +/- 1.40 centipoises and in the group with MI was 3.65 +/- 1.20 centipoises. Statistically, we correlated the BV obtained in both groups with the following parameters: coronary risk factors, cell blood count; serum glucose, cholesterol and triglycerides as well as the number of coronary arteries involved. The levels of venous and arterial BV were elevated in both groups of patients in comparison with the control group. We concluded that arterial and venous BV is elevated in patients with IHD independently of the hematocrit. This suggest the probability of some other factors such as plasmatic viscosity and platelets aggregation could play a role in the BV elevation of this group of patients.

  4. Drill drive mechanism

    DOEpatents

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  5. VISCOSITY IN PLANETARY RINGS WITH SPINNING SELF-GRAVITATING PARTICLES

    SciTech Connect

    Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi

    2012-05-15

    Using local N-body simulation, we examine viscosity in self-gravitating planetary rings. We investigate the dependence of viscosity on various parameters in detail, including the effects of particle surface friction. In the case of self-gravitating rings with low optical depth, viscosity is determined by particle random velocity. Inclusion of surface friction slightly reduces both random velocity and viscosity when particle random velocity is determined by inelastic collisions, while surface friction slightly increases viscosity when gravitational encounters play a major role in particle velocity evolution, so that viscous heating balances with increased energy dissipation at collisions due to surface friction. We find that including surface friction changes viscosity in dilute rings up to a factor of about two. In the case of self-gravitating dense rings, viscosity is significantly increased due to the effects of gravitational wakes, and we find that varying restitution coefficients also change viscosity in such dense rings by a factor of about two. We confirm that our numerical results for viscosity in dense rings with gravitational wakes can be well approximated by a semianalytic expression that is consistent with a previously obtained formula. However, we find that this formula seems to overestimate viscosity in dense rings far from the central planet, where temporary gravitational aggregates form. We derive semianalytic expressions that reproduce our numerical results well for the entire range of examined parameters.

  6. Standard recommended practice for viscosity system for industrial fluid lubricants

    SciTech Connect

    Not Available

    1980-01-01

    This system is applicable to all petroleum-base fluid lubricants and nonpetroleum materials which may be readily blended to produce fluid lubricants of a desired viscosity, that is, lubricants for bearings, gears, compressor cylinders, hydraulic fluids, etc. This system is applicable to fluids ranging in kinematic viscosity from 2 to 1500 cSt (mm/sup 2//s) as measured at a reference temperature of 40/sup 0/C. Expressed in approximate equivalents, the range would be 32 to 7000 SUS. In the category of petroleum-base fluids, this covers the range from kerosine to heavy cylinder oils. The purpose of this system is twofold: to establish a series of definite viscosity levels so that lubricant suppliers, lubricant users, ad equipment designers will have a uniform and common basis for designating, specifying, or selecting the viscosity of industrial fluid lubricants; and to eliminate unjustified intermediate viscosities, thereby reducing the total number of viscosity grades used in the lubrication of industrial equipment. This system provides a suitable number of viscosity grades, a uniform reference temperature, a uniform viscosity tolerance, and a nomenclature system for identifying the viscosity characteristics of each grade. It implies no evaluation of lubricant quality and applies to no property of a fluid other than its viscosity at the reference temperature. It does not apply to those lubricants used primarily with automotive equipment and identified with an SAE number.

  7. Importance of Mantle Viscosity in Interseismic Deformation

    NASA Astrophysics Data System (ADS)

    Wang, K.; He, J.; Hu, Y.

    2012-12-01

    The role of mantle viscosity in subduction earthquake cycles was postulated when the plate tectonics theory had just gained wide acceptance. The process was described using Elsasser's 1-D model for diffusion of stress from the subduction boundary to the plate interior. Main features of interseismic surface deformation predicted by this elegantly simple model were later verified by GPS observations following giant subduction earthquakes. However, and intriguingly, the vast majority of interseismic deformation models developed in the era of space geodesy assume an elastic Earth, incorrectly regarding interseismic deformation as a subdued mirror image of coseismic deformation. The reason is four-fold. (1) The 1-D model and subsequent 2-D viscoelastic models failed to recognize the role of rupture length in the strike direction and could not self-consistently explain deformation following medium and small earthquakes. (2) Based on global mantle viscosity models derived from glacial isostatic adjustment studies, the viscoelastic mantle should indeed behave elastically in earthquake cycles of a few hundred years. (3) The effect of viscous mantle deformation can often be equivalently described by deep fault creep in a purely elastic Earth. (4) The use of an elastic model provides convenience in inverting geodetic data to determine fault locking and creep. Here we use 3D finite element models to show that the main characteristics of surface deformation following subduction earthquakes of all sizes can be explained with a viscoelastic Earth in which the mantle wedge is less viscous than global upper-mantle average of 1020 - 1021 Pa s by one to two orders of magnitude. Following giant earthquakes, such as 1700 Cascadia, 1960 Chile, 1964 Alaska, 2004 Sumatra, and 2011 Japan, upper-plate land deformation undergoes phases of wholesale seaward motion, opposing motion of coastal and inland areas, and wholesale landward motion. The "speed" of the evolution scales inversely with

  8. Cylindrical Micro Ultrasonic Motor Utilizing Bulk Lead Zirconate Titanate (PZT)

    NASA Astrophysics Data System (ADS)

    Morita, Takeshi; Kurosawa, Minoru; Higuchi, Toshiro

    1999-05-01

    Ultrasonic motors are expected to be used as microactuatorsbecause of their high torque, low speed and simple construction. Wehave already reported cylindrical-shaped micro ultrasonic motors whichutilized a lead zirconate titanate (PZT) thin film. In this paper, wediscuss a micro ultrasonic motor composed of bulk PZT. The statortransducer had dimensions of 2.4 mm in diameter and 10 mmlength. The maximum revolution speed was 650 rpm and the maximumoutput torque was 0.22 mNm with the condition of 100 Vp-pinput voltage. The driving frequency was 85 kHz. The comparisonbetween the bulk PZT stator transducer and the previous PZT thin filmtransducer was considered. From this consideration, the e31piezoelectric factor was determined to be the main factor fordifferent output torques. The bulk PZT motor wasapplied to robot hands which was a simple procedure. A two axes hands application was successfully operated with a step motion and carried up to a 10 g load.

  9. Analytical Sensor Response Function of Viscosity Sensors Based on Layered Piezoelectric Thickness Shear Resonators

    NASA Astrophysics Data System (ADS)

    Benes, Ewald; Nowotny, Helmut; Braun, Stefan; Radel, Stefan; Gröschl, Martin

    Resonant piezoelectric sensors based on bulk acoustic wave (BAW) thickness shear resonators are promising for the inline measurement of fluid viscosity, e.g., in industrial processes. The sensor response function can be derived from the general rigorous transfer matrix description of one-dimensional layered structures consisting of piezoelectric and non-piezoelectric layers of arbitrary number. This model according to Nowotny et al. provides a complete analytical description of the electrical and mechanical behaviour of such structures with two electrodes and arbitrary acoustic termination impedances (Rig-1d-Model). We apply this model to derive the sensor response functions and the mechanical displacement curves of the following configurations appropriate for viscosity sensors: An AT cut quartz crystal plate in contact with vacuum at the backside plane and with the liquid under investigation at the front side plane (QL). An AT cut quartz crystal in contact with the liquid under investigation at both sides (LQL). It is shown that in the QL case the originally only heuristically introduced and well established sensor response function according to Kanasawa can be derived from the Rig-1d-Model by introducing minor approximations. Experimental results are presented for the LQL configuration using an N1000 viscosity reference oil as test fluid.

  10. Bulking agents in sludge composting

    SciTech Connect

    De Bertoldi, M.; Citernesi, U.; Griselli, M.

    1980-01-01

    Composting is one of the most effective ways of disposing of sludge in agriculture. Three bulking agents were studied: (1) the organic fraction of solid wastes, (2) solid agricultural and forestry waste (straw, maize cobs, sawdust, cork, pine cones, etc.), and (3) recyclable inert substrates (polystyrene or polyethylene balls, porous clay balls, etc.). The sole purpose of the inert bulking agent is to aid in the aeration and drying of the composting material.

  11. Oil strategies benefits over different driving cycles using numerical simulation

    NASA Astrophysics Data System (ADS)

    Sara, Hanna; Chalet, David; Cormerais, Mickaël; Hetet, Jean-François

    2017-08-01

    95 g/km is the allowed quantity of CO2 emission normalized to NEDC to be set in 2020. In addition, NEDC will be replaced by more severe driving cycles and will be united worldwide. To respond to those criteria, automotive industries are working on every possible field. Thermal management has been proved to be effective in reducing fuel consumption. Cold start is a primordial reason of overconsumption, as the engine highest efficiency is at its optimal temperature. At cold start, the engine's oil is at its lowest temperature and thus its higher viscosity level. A high viscosity oil generates more friction, which is one of the most important heat losses in the engine. In this paper, hot oil storage is studied. Numerical simulations on GT-suite model were done. The model consists of a 4-cylinder turbocharged Diesel engine using a storage volume of 1 liter of hot oil. Ambient temperature variation were taken into consideration as well as different driving cycles. Furthermore, different configurations of the thermal strategy (multifunction oil sump) were proposed and evaluated. Lubricant temperature and viscosity profiles are presented in the article as well as fuel consumption savings for different configurations, driving cycles and ambient temperatures.

  12. Isomorphic Viscosity Equation of State for Binary Fluid Mixtures.

    PubMed

    Behnejad, Hassan; Cheshmpak, Hashem; Jamali, Asma

    2015-01-01

    The thermodynamic behavior of the simple binary mixtures in the vicinity of critical line has a universal character and can be mapped from pure components using the isomorphism hypothesis. Consequently, based upon the principle of isomorphism, critical phenomena and similarity between P-ρ-T and T-η-(viscosity)-P relationships, the viscosity model has been developed adopting two cubic, Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR), equations of state (EsoS) for predicting the viscosity of the binary mixtures. This procedure has been applied to the methane-butane mixture and predicted its viscosity data. Reasonable agreement with the experimental data has been observed. In conclusion, we have shown that the isomorphism principle in conjunction with the mapped viscosity EoS suggests a reliable model for calculating the viscosity of mixture of hydrocarbons over a wide pressure range up to 35 MPa within the stated experimental errors.

  13. New constitutive equation for the volume viscosity in fluids

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Ash, Robert L.

    1994-01-01

    The traditional volume viscosity, Stokes' hypothesis, and acoustical relaxation are reviewed. The lossy Navier-Stokes Equation is applied to periodic (acoustic) flow, and it is shown that the traditional volume viscosity leads to a result which contradicts that describing acoustical relaxation. It is demonstrated that the addition of a second volume viscosity term to the constitutive equation, to account for pressure relaxation, resolves the conflict, and leads to a direct correspondence between the volume viscosity parameters and the acoustical relaxation parameters. The representation of volume viscosity is formulated for the case of multiple relaxations, as occur in air. Finally, an application of the new constitutive equation to a simple convective compressible flow, namely a linearly accelerating flow, demonstrates the impact of volume viscosity upon the flow and the physical conditions for which it is important.

  14. Dependence of neoclassical toroidal viscosity on the poloidal spectrum of applied nonaxisymmetric fields

    SciTech Connect

    Logan, Nikolas C.; Park, Jong -Kyu; Paz-Soldan, Carloa; Lanctot, Matthew J.; Smith, Sterling P.; Burrell, K. H.

    2016-02-05

    This paper presents a single mode model that accurately predicts the coupling of applied nonaxisymmetric fields to the plasma response that induces neoclassical toroidal viscosity (NTV) torque in DIII-D H-mode plasmas. The torque is measured and modeled to have a sinusoidal dependence on the relative phase of multiple nonaxisymmetric field sources, including a minimum in which large amounts of nonaxisymmetric drive is decoupled from the NTV torque. This corresponds to the coupling and decoupling of the applied field to a NTV-driving mode spectrum. Modeling using the perturbed equilibrium nonambipolar transport (PENT) code confirms an effective single mode coupling between the applied field and the resultant torque, despite its inherent nonlinearity. Lastly, the coupling to the NTV mode is shown to have a similar dependence on the relative phasing as that of the IPEC dominant mode, providing a physical basis for the efficacy of this linear metric in predicting error field correction optima in NTV dominated regimes.

  15. Non-invasive fluid density and viscosity measurement

    DOEpatents

    Sinha, Dipen N [Los Alamos, NM

    2012-05-01

    The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.

  16. Impact of Viscosity on Filling the Injection Mould Cavity

    NASA Astrophysics Data System (ADS)

    Satin, Lukáš; Bílik, Jozef

    2016-09-01

    The aim of this paper is to look closer at the rheological properties of plastics and their impact on technology in the plastics processing industry. The paper focuses on the influence of viscosity of the material on filling the mould cavity. Four materials were tested with the settings of process parameters with different viscosity. Using simulation software of Moldex3D, we can see the effect of change in viscosity in the material to be filled.

  17. Viscosity Difference Measurements for Normal and Para Liquid Hydrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Webeler, R.; Bedard, F.

    1961-01-01

    The absence of experimental data in the literature concerning a viscosity difference for normal and equilibrium liquid hydrogen may be attributed to the limited reproducibility of "oscillating disk" measurements in a liquid-hydrogen environment. Indeed, there is disagreement over the viscosity values for equilibrium liquid hydrogen even without proton spin considerations. Measurements presented here represent the first application of the piezoelectric alpha quartz torsional oscillator technique to liquid-hydrogen viscosity measurements.

  18. The effects of filling techniques and a low-viscosity composite liner on bond strength to class II cavities.

    PubMed

    Figueiredo Reis, André; Giannini, Marcelo; Ambrosano, Gláucia Maria Bovi; Chan, Daniel C N

    2003-01-01

    The aim of this study was to test the hypothesis that the effects of filling technique, cavity configuration and use of a low-viscosity composite liner influence resin bond strength to the dentin of class II cavities gingival floor; and analyze the failure modes of fractured specimens. Standardized class II cavities were prepared in the proximal surfaces of freshly extracted third molars, which were randomly assigned to 10 experimental groups. All prepared surfaces were acid-etched, bonded with Single Bond adhesive system and restored with TPH composite, according to each technique: G1 and G2-horizontal layering, G3 and G4-faciolingual layering, G5 and G6-oblique layering, G7 and G8-bulk filling, G9 and G10-control (flat dentin surfaces). Groups were tested, with or without a low-viscosity composite liner (Tetric Flow Chroma). After storage in water for 24h, teeth were vertically serially sectioned to yield a series of 0.8mm thick slabs. Each slab was trimmed into an hourglass shape of approximately 0.8mm(2) area at the gingival resin-dentin interface. Specimens were tested in tension at 0.5mm/min until failure. Fractured specimens were analyzed in an SEM to determine the failure modes. No significant difference was found between groups restored with and without a low-viscosity composite liner (p>0.05). Among filling techniques, the bulk filling groups presented the lowest bond strength values (p<0.05), while incremental filling groups did not differ from control (flat dentin surfaces). Failure modes varied significantly among groups restored with and without the low-viscosity composite liner. Bond strengths were not improved when a low-viscosity composite liner was applied, but it remarkably influenced the failure modes. Incremental techniques improved bond strength.

  19. Hybrid drive arrangement

    SciTech Connect

    Oetting, H.; Heidemeyer, P.

    1985-02-19

    The invention concerns a hybrid drive arrangement for vehicles, with an engine drive and with a flywheel storage drive, which includes a storage flywheel supported concentrically relative to the crankshaft for storing kinetic energy during such operations as braking operations of the vehicle. Both drives can be connected with the driving wheels of the vehicle by means of a common, preferably continuously variable, transmission. In order to obtain a faster response of the engine drive on suddenly occurring power demands and in order to achieve a more favorable design of the storage flywheel, there is to be provided in accordance with the invention, in addition to a storage flywheel, an engine flywheel associated with the reciprocating-piston internal combustion engine, which compensates for torque irregularities of the engine. The engine flywheel can be connected with a crankshaft by means of a first clutch and with the storage flywheel by means of at least one further clutch.

  20. Real viscosity effects in inertial confinement fusion target deuterium–tritium micro-implosions

    SciTech Connect

    Mason, R. J. Kirkpatrick, R. C.; Faehl, R. J.

    2014-02-15

    We report on numerical studies of real viscous effects on the implosion characteristics of imploded DT micro-targets. We use the implicit ePLAS code to perform 2D simulations of spherical and slightly ellipsoidal DT shells on DT gas filled ∼40 μm diameter voids. Before their final implosions the shells have been nearly adiabatically compressed up to 10{sup 2} or 10{sup 3} g/cm{sup 3} densities. While the use of conventional artificial viscosity can lead to high central densities for initially spherical shells, we find that a real physical viscosity from ion-ion collisions can give a high (>20 keV) central temperature but severely reduced central density (<200 g/cm{sup 3}), while the elliptical shells evidence p = 2 distortion of the heated central fuel region. These results suggest that the general use of artificial viscosities in Inertial Confinement Fusion (ICF) modeling may have lead to overly optimistic yields for current NIF targets and that polar direct drive with more energy for the imploding capsule may be needed for ultimate ICF success.

  1. Real viscosity effects in inertial confinement fusion target deuterium-tritium micro-implosions

    NASA Astrophysics Data System (ADS)

    Mason, R. J.; Kirkpatrick, R. C.; Faehl, R. J.

    2014-02-01

    We report on numerical studies of real viscous effects on the implosion characteristics of imploded DT micro-targets. We use the implicit ePLAS code to perform 2D simulations of spherical and slightly ellipsoidal DT shells on DT gas filled ˜40 μm diameter voids. Before their final implosions the shells have been nearly adiabatically compressed up to 102 or 103 g/cm3 densities. While the use of conventional artificial viscosity can lead to high central densities for initially spherical shells, we find that a real physical viscosity from ion-ion collisions can give a high (>20 keV) central temperature but severely reduced central density (<200 g/cm3), while the elliptical shells evidence p = 2 distortion of the heated central fuel region. These results suggest that the general use of artificial viscosities in Inertial Confinement Fusion (ICF) modeling may have lead to overly optimistic yields for current NIF targets and that polar direct drive with more energy for the imploding capsule may be needed for ultimate ICF success.

  2. Role of liquid compressional viscosity in the dynamics of a sonoluminescing bubble

    NASA Astrophysics Data System (ADS)

    Moshaii, A.; Sadighi-Bonabi, R.

    2004-07-01

    The well-known Rayleigh-Plesset (RP) equation is the basis of almost all hydrodynamical descriptions of single-bubble sonoluminescence (SBSL) . A major deficiency of the RP equation is that it accounts for viscosity of an incompressible liquid and compressibility, separately. By removing this approximation, a new modification of the RP equation is presented considering effect of compressional viscosity of the liquid. This modification leads to addition of a new viscous term to the traditional bubble boundary equation. Influence of this new term in the dynamics of a sonoluminescing bubble has numerically been studied considering effects of heat transfer at the bubble wall, nonequilibrium evaporation and condensation of water vapor, chemical reactions, and diffusion of the reactions products in the liquid. The results show that the new term has a significant damping role in the bubble motion at the end of collapse and during the rebounds, so that its consideration dramatically reduces amplitude of the afterbounces. Dependence of this new damping mechanism on the driving pressure amplitude and on the ambient radius has been investigated. The results indicate that the more intense the collapse, the more important the damping of the liquid compressional viscosity.

  3. Role of liquid compressional viscosity in the dynamics of a sonoluminescing bubble.

    PubMed

    Moshaii, A; Sadighi-Bonabi, R

    2004-01-01

    The well-known Rayleigh-Plesset ( RP ) equation is the basis of almost all hydrodynamical descriptions of single-bubble sonoluminescence ( SBSL ). A major deficiency of the RP equation is that it accounts for viscosity of an incompressible liquid and compressibility, separately. By removing this approximation, a new modification of the RP equation is presented considering effect of compressional viscosity of the liquid. This modification leads to addition of a new viscous term to the traditional bubble boundary equation. Influence of this new term in the dynamics of a sonoluminescing bubble has numerically been studied considering effects of heat transfer at the bubble wall, nonequilibrium evaporation and condensation of water vapor, chemical reactions, and diffusion of the reactions products in the liquid. The results show that the new term has a significant damping role in the bubble motion at the end of collapse and during the rebounds, so that its consideration dramatically reduces amplitude of the afterbounces. Dependence of this new damping mechanism on the driving pressure amplitude and on the ambient radius has been investigated. The results indicate that the more intense the collapse, the more important the damping of the liquid compressional viscosity.

  4. Quantification of Viscosity and Capillary Pressure Anomalies for Polar Liquids in 2D Hydrophilic Nano-Confinements

    NASA Astrophysics Data System (ADS)

    Kelly, S. A.; Torres-Verdin, C.; Balhoff, M.

    2014-12-01

    Interest in liquid and interfacial behavior within nano-confinements spans many disciplines. Geophysical interest originates from a desire to understand flow mechanisms through hydrocarbon-rich nano-porous shale media, especially communication between fractures and the adjacent nano-porous matrix (imbibition). This work investigates the extent of boundary layer nucleation during polar liquid flows in hydrophilic nano-confinements via discrepancies seen in viscosity and capillary pressure from their bulk values. We perform our experiments in two-dimensional nanochannels of varying size and as small as 30 nm x 60 nm in cross section and still obtain visual data with reflected differential interference contrast (DIC) microscopy. The simple geometry of the nanochannels enables the comparison against analytical transport solutions. By designing a nanochannel experiment that allows us to monitor the rate of fluid imbibition and volume loss of a trapped air pocket the liquid is imbibing into, we are able to decouple capillary pressure and viscosity from imbibition data, as well as gain information about gas partitioning at the meniscus interface. Our current experiments are performed with organic solvents within siliceous nanochannels and the results of the decoupling scheme indicate that for rectangular nanochannels with heights of 60 nm and varying widths, effective viscosity is consistently between 4-12 times higher than the bulk value and capillary pressure is around 50% less than the macroscopic Young-Laplace equation prediction. These results equate to the nucleation of wall boundary layers on the order of tens of molecular layers thick. Structured boundary layers have an inherently increased viscosity compared to the liquid bulk value, resulting in a significant reduction in imbibition efficacy. This presence of approximately 15 nm boundary layers in on the threshold of two different theories - thin bimolecular boundary layers and exclusion zones (thick boundary

  5. Comment on "nonlinear viscosity and Grad's method".

    PubMed

    Eu, Byang Chan

    2002-03-01

    In their recent paper [Phys. Rev. E 60, 4052 (1999)] Uribe and García-Colín suggest that the stress tensor associated with the nonlinear viscosity formula eta=eta(0)sinh (-1)kappa/kappa (kappa=a Rayleigh dissipation function) vanishes asymptotically as the magnitude of the velocity gradient increases. In this Comment, it is pointed out that their remark is invalid, because the stress tensor asymptotically exhibits a logarithmic kappa dependence. It is also pointed out that their evolution equations for the stress tensor components are missing the terms containing the velocity gradients in the transversal directions and, as a consequence, give rise to a vanishing shear stress, contrary to the experimental evidence of gas flow in a tube.

  6. Comment on ``nonlinear viscosity and Grad's method''

    NASA Astrophysics Data System (ADS)

    Eu, Byang Chan

    2002-03-01

    In their recent paper [Phys. Rev. E 60, 4052 (1999)] Uribe and García-Colín suggest that the stress tensor associated with the nonlinear viscosity formula η=η0sinh -1κ/κ (κ=a Rayleigh dissipation function) vanishes asymptotically as the magnitude of the velocity gradient increases. In this Comment, it is pointed out that their remark is invalid, because the stress tensor asymptotically exhibits a logarithmic κ dependence. It is also pointed out that their evolution equations for the stress tensor components are missing the terms containing the velocity gradients in the transversal directions and, as a consequence, give rise to a vanishing shear stress, contrary to the experimental evidence of gas flow in a tube.

  7. Viscosity of the lithosphere of Enceladus

    NASA Technical Reports Server (NTRS)

    Passey, Q. R.

    1983-01-01

    Regions of the Enceladus surface are shown by high resolution Voyager II images to be highly cratered, as if by heavy bombardment, with crater forms similar to those of fresh lunar surfaces but often shallower in depth. The flattening of these craters and the bowing up of their floors indicate viscous relaxation of the topography. Viscosity at the top of the lithosphere is suggested by crater form analysis to lie between 10 to the 24th and 10 to the 25th P. The zones where flattened craters occur may be regions of past or present heat flow that is higher than in adjacent terrains. Encedalus probably has a mixture of ammonia ice and water ice in the lithosphere, while the lithospheres of Ganymede and Callisto are primarily composed of water ice

  8. Critical dynamic viscosities in a binary mixture

    NASA Astrophysics Data System (ADS)

    Izumi, Y.; Sawano, H.; Sato, H.; Miyake, Y.; Kono, R.; Yoshizaki, H.

    1989-03-01

    Ultrasonic shear measurements were conducted on polystyrene-cyclohexane solutions at 3, 51, and 252 kHz using the crystal fork and torsion methods. The real and imaginary parts of the complex shear modulus above the critical point are compared with modified theoretical expressions derived within the framework of the decoupled-mode theory. For this comparison, a background part was assumed to be described by a scaling form proposed by de Gennes. Numerical analysis of the data shows a satisfactory agreement between the theory and the experiments for ultrasonic shear data over a wide range of reduced frequency ω ... In addition, it is shown that the description of the simple viscosity dynamical scaling function is broken at a high-frequency limit.

  9. Effective Viscosity of a Periodic Suspension,

    DTIC Science & Technology

    1984-01-01

    6D-fl148 483 EFFECTIVE VISCOSITY OF A PERIODIC SUSPENSION(U) / STANFORD UNIV CA KC C NUNAN ET AL. 1984 UNCLASSIFIED F/G 28/4 ML lii1.5 i&121111=Ś...sin(2wSa’x)ykJ~kx)dAx = - A~x)(62) *~ .fsin2wSay),Vj~ky) dA (y) and we can show that ( Nunan , 1983) f sint.x)xPx2x3’ dA(x) = (-1)8- 1 4wb 2P+1 (63) bh...WeL 5, 168 Nunan , K. C., 1983 Effective Properties of Composite Media Containing Periodic Arrays of Spheres, Ph.D. thesis, Stanford University Zick, A

  10. Viscosity of glass-forming liquids

    PubMed Central

    Mauro, John C.; Yue, Yuanzheng; Ellison, Adam J.; Gupta, Prabhat K.; Allan, Douglas C.

    2009-01-01

    The low-temperature dynamics of ultraviscous liquids hold the key to understanding the nature of glass transition and relaxation phenomena, including the potential existence of an ideal thermodynamic glass transition. Unfortunately, existing viscosity models, such as the Vogel–Fulcher–Tammann (VFT) and Avramov–Milchev (AM) equations, exhibit systematic error when extrapolating to low temperatures. We present a model offering an improved description of the viscosity–temperature relationship for both inorganic and organic liquids using the same number of parameters as VFT and AM. The model has a clear physical foundation based on the temperature dependence of configurational entropy, and it offers an accurate prediction of low-temperature isokoms without any singularity at finite temperature. Our results cast doubt on the existence of a Kauzmann entropy catastrophe and associated ideal glass transition. PMID:19903878

  11. Viscosity of the lithosphere of Enceladus

    NASA Technical Reports Server (NTRS)

    Passey, Q. R.

    1983-01-01

    Regions of the Enceladus surface are shown by high resolution Voyager II images to be highly cratered, as if by heavy bombardment, with crater forms similar to those of fresh lunar surfaces but often shallower in depth. The flattening of these craters and the bowing up of their floors indicate viscous relaxation of the topography. Viscosity at the top of the lithosphere is suggested by crater form analysis to lie between 10 to the 24th and 10 to the 25th P. The zones where flattened craters occur may be regions of past or present heat flow that is higher than in adjacent terrains. Encedalus probably has a mixture of ammonia ice and water ice in the lithosphere, while the lithospheres of Ganymede and Callisto are primarily composed of water ice

  12. Eddy Viscosity in Dense Granular Flows

    NASA Astrophysics Data System (ADS)

    Miller, T.; Rognon, P.; Metzger, B.; Einav, I.

    2013-08-01

    We present a seminal set of experiments on dense granular flows in the stadium shear geometry. The advantage of this geometry is that it produces steady shear flow over large deformations, in which the shear stress is constant. The striking result is that the velocity profiles exhibit an S shape, and are not linear as local constitutive laws would predict. We propose a model that suggests this is a result of wall perturbations which span through the system due to the nonlocal behavior of the material. The model is analogous to that of eddy viscosity in turbulent boundary layers, in which the distance to the wall is introduced to predict velocity profiles. Our findings appear pivotal in a number of experimental and practical situations involving dense granular flows next to a boundary. They could further be adapted to other similar materials such as dense suspensions, foams, or emulsions.

  13. Effective kinematic viscosity of turbulent He II

    SciTech Connect

    Chagovets, T. V.; Gordeev, A. V.; Skrbek, L.

    2007-08-15

    The temperature dependence of the effective kinematic viscosity of turbulent He II, {nu}{sub eff}(T), is deduced from second sound attenuation data using the late stage of decay of thermally induced counterflow He II turbulence in two channels of square cross section. It is shown to qualitatively agree with the published data for {nu}{sub eff}(T) calculated based on experiments on decaying-grid-generated He II turbulence [Niemela et al., J. Low Temp. Phys. 138, 537 (2005)]. Corrections to these data due to the 'sine squared' law that describes attenuation of the second sound wave propagating along an arbitrary direction with respect to the direction of the core of a quantized vortex in turbulent He II are discussed and applied.

  14. Effect of temperature on the viscosities of mixed micellar solutions

    NASA Astrophysics Data System (ADS)

    Prasad, C. Durga; Kumar, D. Sudheer; Sarma, G. V. S.; Ramesh, K. V.

    2017-07-01

    The effect of addition of Triton X-100 (TX-100) on the viscosities of Sodium dodecyl sulphate (SDS) micellar solution containingNaCl and Cetyltrimethylammonium bromide (CTAB) micellar solution containingKBr at various temperatures are presented. The viscosity of SDS micellar solution is found to increase on addition of TX-100 at all temperatures (25 to 45 °C). However the increase in viscosity is large up to certain % of TX-100, after that the increase in viscosity is found to be small. Where as in CTAB micelles, at lower temperatures, the viscosity of micellar solution decreased up to certain composition of TX-100 and with further addition of TX-100 the viscosity got increaed. At higher temperatures viscosity of CTAB micellar solution increased on addition of TX-100. Depending on the nature of surfactant system and temperature, the viscosity of micellar solution may increase or decrease on addition of TX-100. The thermodynamic parameters for the viscous flow of micellar solutions in the presence of TX-100 are also determined. The effect of TX-100 on the viscosity and the activation enthalpy for viscous flow of anionic micelles is tremendously large as compared to cationic micelles. This is due to transition of micellar shape from rod to elongated rod or to sphere in the presence of added TX-100.

  15. Measurement and interpretation of shear viscosities at high pressures

    NASA Astrophysics Data System (ADS)

    Abramson, Evan

    2013-06-01

    High pressures employed in the study of fluids allow density and temperature to be used as independent, experimental variables, providing extensive and clear comparison with theory. Measurements of the viscosities of simple fluids in the diamond-anvil cell have allowed confirmation of a hypothesized relation between viscosity and entropy, and a more general exploration of ``isomorphs'' as well as fluid-mixing rules. Densities and temperatures at which viscosities can be measured statically overlap those achievable by dynamic compression; inferences of viscosity from observations using, e.g., shock compression can thus be tested for accuracy.

  16. Kinematic viscosity of therapeutic pulmonary surfactants with added polymers

    PubMed Central

    Lu, Karen W.; Pérez-Gil, Jesús; Taeusch, H. William

    2009-01-01

    The addition of various polymers to pulmonary surfactants improves surface activity in experiments both in vitro and in vivo. Although the viscosity of surfactants has been investigated, the viscosity of surfactant polymer mixtures has not. In this study, we have measured the viscosities of Survanta and Infasurf with and without the addition of polyethylene glycol, dextran or hyaluronan. The measurements were carried out over a range of surfactant concentrations using two concentrations of polymers at two temperatures. Our results indicate that at lower surfactant concentrations, the addition of any polymers increased the viscosity. However, the addition of polyethylene glycol and dextran to surfactants at clinically used concentrations can substantially lower viscosity. Addition of hyaluronan at clinical surfactant concentrations slightly increased Infasurf viscosity and produced little change in Survanta viscosity. Effects of polymers on viscosity correlate with changes in size and distribution of surfactant aggregates and the apparent free volume of liquid as estimated by light microscopy. Aggregation of surfactant vesicles caused by polymers may therefore not only improve surface activity as previously shown, but may also affect viscosity in ways that could improve surfactant distribution in vivo. PMID:19366601

  17. Viscosity of Mixtures of α-Tocopherol Acetate + Mesitylene

    NASA Astrophysics Data System (ADS)

    Szwajczaka, Elżbieta; Stagraczyński, Ryszard; Herba, Henryk; Świergielb, Jolanta; Jadżyn, Jan

    2009-08-01

    The paper presents results of the share viscosity measurements performed as a function of temperature and concentration for mixtures of α-tocopherol acetate (vitamine E acetate) and mesitylene, two liquids of essentially different viscosity (four order of magnitude difference at 280 K). The viscosity/ temperature dependence for pure α-tocopherol acetate as well as for the mixtures studied can be well described with the Vogel-Fulcher-Tammann equation. The viscosities of the mixtures exhibit a strong negative deviation from the rule of additive dependence on concentration and for increasing temperature the maximum value of the deviation shows an exponential decreasing.

  18. Kinematic viscosity of therapeutic pulmonary surfactants with added polymers.

    PubMed

    Lu, Karen W; Pérez-Gil, Jesús; Taeusch, H William

    2009-03-01

    The addition of various polymers to pulmonary surfactants improves surface activity in experiments both in vitro and in vivo. Although the viscosity of surfactants has been investigated, the viscosity of surfactant polymer mixtures has not. In this study, we have measured the viscosities of Survanta and Infasurf with and without the addition of polyethylene glycol, dextran or hyaluronan. The measurements were carried out over a range of surfactant concentrations using two concentrations of polymers at two temperatures. Our results indicate that at lower surfactant concentrations, the addition of any polymers increased the viscosity. However, the addition of polyethylene glycol and dextran to surfactants at clinically used concentrations can substantially lower viscosity. Addition of hyaluronan at clinical surfactant concentrations slightly increased Infasurf viscosity and produced little change in Survanta viscosity. Effects of polymers on viscosity correlate with changes in size and distribution of surfactant aggregates and the apparent free volume of liquid as estimated by light microscopy. Aggregation of surfactant vesicles caused by polymers may therefore not only improve surface activity as previously shown, but may also affect viscosity in ways that could improve surfactant distribution in vivo.

  19. Precision assessment of biofluid viscosity measurements using molecular rotors.

    PubMed

    Akers, Walter J; Haidekker, Mark A

    2005-06-01

    Blood viscosity changes with many pathologic conditions, but its importance has not been fully investigated because the current methods of measurement are poorly suited for clinical applications. The use of viscosity-sensitive fluorescent molecular rotors to determine fluid viscosity in a nonmechanical manner has been investigated recently, but it is unknown how the precision of the fluorescence-based method compares to established mechanical viscometry. Human blood plasma viscosity was modulated with high-viscosity plasma expanders, dextran, pentastarch, and hetastarch. The samples were divided into a calibration and a test set. The relationship between fluorescence emission and viscosity was established using the calibration set. Viscosity of the test set was determined by fluorescence and by cone-and-plate viscometer, and the precision of both methods compared. Molecular rotor fluorescence intensity showed a power law relationship with solution viscosity. Mechanical measurements deviated from the theoretical viscosity value by less than 7.6%, while fluorescence-based measurements deviated by less than 6%. The average coefficient of variation was 6.9% (mechanical measurement) and 3.4% to 3.8% (fluorescence-based measurement, depending on the molecular rotor used). Fluorescence-based viscometry exhibits comparable precision to mechanical viscometry. Fluorescence viscometry does not apply shear and is therefore more practical for biofluids which have apparent non-Newtonian properties. In addition, fluorescence instrumentation makes very fast serial measurements possible, thus promising new areas of application in laboratory and clinical settings.

  20. Fluorescence-based Broad Dynamic Range Viscosity Probes.

    PubMed

    Dragan, Anatoliy; Graham, August E; Geddes, Chris D

    2014-03-01

    We introduce two new fluorescent viscosity probes, SYBR Green (SG) and PicoGreen (PG), that we have studied over a broad range of viscosity and in collagen solutions. In water, both dyes have low quantum yields and excited state lifetimes, while in viscous solvents or in complex with DNA both parameters dramatically (300-1000-fold) increase. We show that in log-log scale the dependence of the dyes' quantum yield vs. viscosity is linear, the slope of which is sensitive to temperature. Application of SG and PG, as a fluorescence-based broad dynamic range viscosity probes, to the life sciences is discussed.

  1. DWPF STARTUP FRIT VISCOSITY MEASUREMENT ROUND ROBIN RESULTS

    SciTech Connect

    Crum, Jarrod V.; Edwards, Tommy B.; Russell, Renee L.; Workman, Phyllis J.; Schweiger, Michael J.; Schumacher, Ray F.; Smith, Donald E.; Peeler, David K.; Vienna, John D.

    2012-07-31

    A viscosity standard is needed to replace the National Institute of Standards and Technology (NIST) glasses currently being used to calibrate viscosity measurement equipment. The current NIST glasses are either unavailable or less than ideal for calibrating equipment to measure the viscosity of high-level waste glasses. This report documents the results of a viscosity round robin study conducted on the Defense Waste Processing Facility (DWPF) startup frit. DWPF startup frit was selected because its viscosity-temperature relationship is similar to most DWPF and Hanford high-level waste glass compositions. The glass underwent grinding and blending to homogenize the large (100 lb) batch. Portions of the batch were supplied to the laboratories (named A through H) for viscosity measurements following a specified temperature schedule with a temperature range of 1150 C to 950 C and with an option to measure viscosity at lower temperatures if their equipment was capable of measuring at the higher viscosities. Results were used to fit the Vogel-Tamman-Fulcher and Arrhenius equations to viscosity as a function of temperature for the entire temperature range of 460 C through 1250 C as well as the limited temperature interval of approximately 950 C through 1250 C. The standard errors for confidence and prediction were determined for the fitted models.

  2. Inference of mantle viscosity for depth resolutions of GIA observations

    NASA Astrophysics Data System (ADS)

    Nakada, Masao; Okuno, Jun'ichi

    2016-11-01

    Inference of the mantle viscosity from observations for glacial isostatic adjustment (GIA) process has usually been conducted through the analyses based on the simple three-layer viscosity model characterized by lithospheric thickness, upper- and lower-mantle viscosities. Here, we examine the viscosity structures for the simple three-layer viscosity model and also for the two-layer lower-mantle viscosity model defined by viscosities of η670,D (670-D km depth) and ηD,2891 (D-2891 km depth) with D-values of 1191, 1691 and 2191 km. The upper-mantle rheological parameters for the two-layer lower-mantle viscosity model are the same as those for the simple three-layer one. For the simple three-layer viscosity model, rate of change of degree-two zonal harmonics of geopotential due to GIA process (GIA-induced J˙2) of -(6.0-6.5) × 10-11 yr-1 provides two permissible viscosity solutions for the lower mantle, (7-20) × 1021 and (5-9) × 1022 Pa s, and the analyses with observational constraints of the J˙2 and Last Glacial Maximum (LGM) sea levels at Barbados and Bonaparte Gulf indicate (5-9) × 1022 Pa s for the lower mantle. However, the analyses for the J˙2 based on the two-layer lower-mantle viscosity model only require a viscosity layer higher than (5-10) × 1021 Pa s for a depth above the core-mantle boundary (CMB), in which the value of (5-10) × 1021 Pa s corresponds to the solution of (7-20) × 1021 Pa s for the simple three-layer one. Moreover, the analyses with the J˙2 and LGM sea level constraints for the two-layer lower-mantle viscosity model indicate two viscosity solutions: η670,1191 > 3 × 1021 and η1191,2891 ˜ (5-10) × 1022 Pa s, and η670,1691 > 1022 and η1691,2891 ˜ (5-10) × 1022 Pa s. The inferred upper-mantle viscosity for such solutions is (1-4) × 1020 Pa s similar to the estimate for the simple three-layer viscosity model. That is, these analyses require a high viscosity layer of (5-10) × 1022 Pa s at least in the deep mantle, and suggest

  3. Modelling of bulk superconductor magnetization

    NASA Astrophysics Data System (ADS)

    Ainslie, M. D.; Fujishiro, H.

    2015-05-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet-superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed.

  4. Sensor for viscosity and shear strength measurement

    SciTech Connect

    Ebadian, M.A.; Dillion, J.; Moore, J.; Jones, K.

    1998-01-01

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. Two different viscometer techniques are being investigated in this study, based on: magnetostrictive pulse generated acoustic waves; and an oscillating cylinder. Prototype sensors have been built and tested which are based on both techniques. A base capability instrumentation system has been designed, constructed, and tested which incorporates both of these sensors. It requires manual data acquisition and off-line calculation. A broad range of viscous media has been tested using this system. Extensive test results appear in this report. The concept for each technique has been validated by these test results. This base capability system will need to be refined further before it is appropriate for field tests. The mass of the oscillating system structure will need to be reduced. A robust acoustic probe assembly will need to be developed. In addition, in March 1997 it was made known for the first time that the requirement was for a deliverable automated viscosity instrumentation system. Since then such a system has been designed, and the hardware has been constructed so that the automated concept can be proved. The rest of the hardware, which interfaced to a computer, has also been constructed and tested as far as possible. However, for both techniques the computer software for automated data acquisition, calculation, and logging had not been completed before funding and time ran out.

  5. Marihuana and driving.

    PubMed

    Moskowitz, H

    1985-08-01

    A review was performed of the marihuana and driving literature, both epidemiological and experimental. It was noted that epidemiological studies face considerable difficulties in obtaining estimates of risks involved for drivers utilizing marihuana due to the rapid decline in blood levels of tetrahydrocannabinol. On the other hand, experimental studies examining the relationship between administered marihuana dose and performance have identified many driving-related areas as exhibiting impairment. Areas impaired include coordination, tracking, perception, vigilance and performance in both driving simulators and on the road. Other behavioral areas of lesser importance for driving also exhibited evidence of impairment by marihuana. Areas for further research are suggested.

  6. Vehicle drive system

    SciTech Connect

    Kurata, N.

    1986-08-19

    A vehicle is described having driving wheels both on the left and right sides of the chassis frame thereof comprising: a power unit including an engine and a transmission system for transmitting the power from an output shaft of the engine to the driving wheels independently. The power unit has a casing constructed as a rigid member for supporting the driving wheels and pivotally connected through a pivot shaft to the chassis frame so as to permit vertical movement of the driving wheels, the transmission system including a differential gear means having a case connected through speed reduction gears to the output shaft. The differential gear means include left and right side output gears, the transmission system including left and right input drive shafts extending laterally from the left and right side output gears of the differential gear means. The transmission system includes left and right output sections to which the input drive shafts are drivingly connected and output shafts connected to the respective driving wheels, and the output section including V-belt type automatic transmissions connected between the input drive shafts and the output shafts.

  7. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    NASA Astrophysics Data System (ADS)

    Gržinić, G.; Bartels-Rausch, T.; Berkemeier, T.; Türler, A.; Ammann, M.

    2015-12-01

    The heterogeneous loss of dinitrogen pentoxide (N2O5) to aerosol particles has a significant impact on the night-time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short-lived radioactive tracer method, we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH). The results show that citric acid exhibits lower reactivity than similar dicarboxylic and polycarboxylic acids, with uptake coefficients between ∼ 3 × 10-4-∼ 3 × 10-3 depending on humidity (17-70 % RH). At RH above 50 %, the magnitude and the humidity dependence can be best explained by the viscosity of citric acid as compared to aqueous solutions of simpler organic and inorganic solutes and the variation of viscosity with RH and, hence, diffusivity in the organic matrix. Since the diffusion rates of N2O5 in highly concentrated citric acid solutions are not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity of H2O. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics is most likely limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  8. Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity

    SciTech Connect

    Renbaum-Wolff, Lindsay; Grayson, James W.; Bateman, Adam P.; Kuwata, Mikinori; Sellier, Mathieu; Murray, Benjamin J.; Shilling, John E.; Martin, Scot T.; Bertram, Allan K.

    2013-05-14

    Particles composed of secondary organic material (SOM) are abundant in the lower troposphere and play important roles in climate, air quality, and health. The viscosity of these particles is a fundamental property that is presently poorly quantified for conditions relevant to the lower troposphere. Using two new techniques, namely a bead-mobility technique and a poke-flow technique, in conjunction with simulations of fluid flow, we measure the viscosity of the watersoluble component of SOM produced by α-pinene ozonolysis. The viscosity is comparable to that of honey at 90% relative humidity (RH), comparable to that of peanut butter at 70% RH and greater than or comparable to that of bitumen for ≤ 30% RH, implying that the studied SOM ranges from liquid to semisolid/solid at ambient relative humidities. With the Stokes-Einstein relation, the measured viscosities further imply that the growth and evaporation of SOM by the exchange of organic molecules between the gas and condensed phases may be confined to the surface region when RH ≤ 30%, suggesting the importance of an adsorption-type mechanism for partitioning in this regime. By comparison, for RH ≥ 70% partitioning of organic molecules may effectively occur by an absorption mechanism throughout the bulk of the particle. Finally, the net uptake rates of semi-reactive atmospheric oxidants such as O3 are expected to decrease by two to five orders of magnitude for a change in RH from 90% to ≤ 30% RH, with possible implications for the rates of chemical aging of SOM particles in the atmosphere.

  9. Hierarchical viscosity of aqueous solution of tilapia scale collagen investigated via dielectric spectroscopy between 500 MHz and 2.5 THz

    PubMed Central

    Kawamata, H.; Kuwaki, S.; Mishina, T.; Ikoma, T.; Tanaka, J.; Nozaki, R.

    2017-01-01

    Aqueous solutions of biomolecules such as proteins are very important model systems for understanding the functions of biomolecules in actual life processes because interactions between biomolecules and the surrounding water molecules are considered to be important determinants of biomolecules’ functions. Globule proteins have been extensively studied via dielectric spectroscopy; the results indicate three relaxation processes originating from fluctuations in the protein molecule, the bound water and the bulk water. However, the characteristics of aqueous solutions of collagens have rarely been investigated. In this work, based on broadband dielectric measurements between 500 MHz and 2.5 THz, we demonstrate that the high viscosity of a collagen aqueous solution is due to the network structure being constructed of rod-like collagen molecules surrounding free water molecules and that the water molecules are not responsible for the viscosity. We determine that the macroscopic viscosity is related to the mean lifetime of the collagen-collagen interactions supporting the networks and that the local viscosity of the water surrounded by the networks is governed by the viscosity of free water as in the bulk. This hierarchical structure in the dynamics of the aqueous solution of biomolecules has been revealed for the first time. PMID:28345664

  10. Hierarchical viscosity of aqueous solution of tilapia scale collagen investigated via dielectric spectroscopy between 500 MHz and 2.5 THz

    NASA Astrophysics Data System (ADS)

    Kawamata, H.; Kuwaki, S.; Mishina, T.; Ikoma, T.; Tanaka, J.; Nozaki, R.

    2017-03-01

    Aqueous solutions of biomolecules such as proteins are very important model systems for understanding the functions of biomolecules in actual life processes because interactions between biomolecules and the surrounding water molecules are considered to be important determinants of biomolecules’ functions. Globule proteins have been extensively studied via dielectric spectroscopy; the results indicate three relaxation processes originating from fluctuations in the protein molecule, the bound water and the bulk water. However, the characteristics of aqueous solutions of collagens have rarely been investigated. In this work, based on broadband dielectric measurements between 500 MHz and 2.5 THz, we demonstrate that the high viscosity of a collagen aqueous solution is due to the network structure being constructed of rod-like collagen molecules surrounding free water molecules and that the water molecules are not responsible for the viscosity. We determine that the macroscopic viscosity is related to the mean lifetime of the collagen-collagen interactions supporting the networks and that the local viscosity of the water surrounded by the networks is governed by the viscosity of free water as in the bulk. This hierarchical structure in the dynamics of the aqueous solution of biomolecules has been revealed for the first time.

  11. Reading Text While Driving

    PubMed Central

    Horrey, William J.; Hoffman, Joshua D.

    2015-01-01

    Objective In this study, we investigated how drivers adapt secondary-task initiation and time-sharing behavior when faced with fluctuating driving demands. Background Reading text while driving is particularly detrimental; however, in real-world driving, drivers actively decide when to perform the task. Method In a test track experiment, participants were free to decide when to read messages while driving along a straight road consisting of an area with increased driving demands (demand zone) followed by an area with low demands. A message was made available shortly before the vehicle entered the demand zone. We manipulated the type of driving demands (baseline, narrow lane, pace clock, combined), message format (no message, paragraph, parsed), and the distance from the demand zone when the message was available (near, far). Results In all conditions, drivers started reading messages (drivers’ first glance to the display) before entering or before leaving the demand zone but tended to wait longer when faced with increased driving demands. While reading messages, drivers looked more or less off road, depending on types of driving demands. Conclusions For task initiation, drivers avoid transitions from low to high demands; however, they are not discouraged when driving demands are already elevated. Drivers adjust time-sharing behavior according to driving demands while performing secondary tasks. Nonetheless, such adjustment may be less effective when total demands are high. Application This study helps us to understand a driver’s role as an active controller in the context of distracted driving and provides insights for developing distraction interventions. PMID:25850162

  12. Viscosity to entropy ratio of QGP in relativistic heavy ion collisions: The second-order viscose hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mehrabi Pari, Sharareh; Taghavi Shahri, Fatemeh; Javidan, Kurosh

    2016-10-01

    The nuclear suppression factor RAA and elliptic flow ν2 are calculated by considering the effects of shear viscosity to the entropy density ratio η/s, using the viscose hydrodynamics at the first- and second-orders of approximation and considering temperature dependent coupling αs(T). It is shown that the second-order viscose hydrodynamics (varying shear viscosity to entropy ratio) with averaged value of 4πη/s = 1.5 ± 0.1 gives the best results of RAA and ν2 in comparison to the experimental data.

  13. Green stabilization of microscale iron particles using guar gum: bulk rheology, sedimentation rate and enzymatic degradation.

    PubMed

    Gastone, Francesca; Tosco, Tiziana; Sethi, Rajandrea

    2014-05-01

    Guar gum can be used to effectively improve stability and mobility of microscale zerovalent iron particles (MZVI) used in groundwater remediation. Guar gum is a food-grade, environment friendly natural polysaccharide, which is often used as thickening agent in a broad range of food, pharmaceutical and industrial applications. Guar gum solutions are non-Newtonian, shear thinning fluids, characterized by high viscosity in static conditions and low viscosity in dynamic conditions. In particular, the high zero shear viscosity guarantees the MZVI dispersion stability, reducing the sedimentation rate of the particles thus enabling its storage and field operations. In this work, a comprehensive rheological characterization of guar gum-based slurries of MZVI particles is provided. First, we derived a model to link the bulk shear viscosity to the concentration of guar gum and then we applied it for the derivation of a modified Stokes law for the prediction of the sedimentation rate of the iron particles. The influence of the preparation procedure (cold or hot dissolution and high shear processing) on the viscosity and on the stability of the suspensions was then assessed. Finally, the dosage and concentration of enzymes - an environment friendly breaker--were studied for enhancing and controlling the degradation kinetics of the suspensions. The derived empirical relationships can be used for the implementation of an iron slurry flow and transport model and for the design of full scale injection interventions.

  14. Rheology and tribology of lubricants with polymeric viscosity modifiers

    NASA Astrophysics Data System (ADS)

    Babak, LotfizadehDehkordi

    Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the

  15. Beyond baking soda: Demonstrating the link between volcanic eruptions and viscosity to all ages

    NASA Astrophysics Data System (ADS)

    Smithka, I. N.; Walters, R. L.; Harpp, K. S.

    2014-12-01

    Public interest in volcanic eruptions and societal relevance of volcanic hazards provide an excellent basis for successful earth science outreach. During a museum-based earth science outreach event free and open to the public, we used two new interactive experiments to illustrate the relationship between gas content, magma viscosity, and eruption style. Learning objectives for visitors are to understand: how gas drives volcanic eruptions, the differences between effusive and explosive eruption styles, viscosity's control on gas pressure within a magma reservoir, and the role of gas pressure on eruption style. Visitors apply the scientific method by asking research questions and testing hypotheses by conducting the experiments. The demonstrations are framed with real life examples of volcanic eruptions (e.g., Mt. St. Helens eruption in 1980), providing context for the scientific concepts. The first activity demonstrates the concept of fluid viscosity and how gas interacts with fluids of different viscosities. Visitors blow bubbles into water and corn syrup. The corn syrup is so viscous that bubbles are trapped, showing how a more viscous material builds up higher gas pressure. Visitors are asked which kind of magma (high or low viscosity) will produce an explosive eruption. To demonstrate an explosive eruption, visitors add an Alka-Seltzer tablet to water in a snap-top film canister. The reaction rapidly produces carbon dioxide gas, increasing pressure in the canister until the lid pops off and the canister launches a few meters into the air (tinyurl.com/nzsgfoe). Increasing gas pressure in the canister is analogous to gas pressure building within a magma reservoir beneath a volcano. The lid represents high-viscosity magma that prevents degassing, causing gas pressure to reach explosive levels. This interactive activity is combined with a display of an effusive eruption: add vinegar to baking soda in a model volcano to produce a quick-flowing eruption. These

  16. Looking for a bulk point

    DOE PAGES

    Maldacena, Juan; Simmons-Duffin, David; Zhiboedov, Alexander

    2017-01-03

    Here, we consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We also argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at thesemore » locations. Finally, we prove this statement in 1+1 dimensions by CFT methods.« less

  17. Looking for a bulk point

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan; Simmons-Duffin, David; Zhiboedov, Alexander

    2017-01-01

    We consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at these locations. We prove this statement in 1+1 dimensions by CFT methods.

  18. 19 CFR 149.4 - Bulk and break bulk cargo.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Importers must still report 24 hours in advance of loading any containerized or non-qualifying break bulk... this chapter that a cargo declaration be filed with Customs and Border Protection (CBP) 24 hours before... Border Protection (CBP) 24 hours before such cargo is laden aboard the vessel at the foreign port,...

  19. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  20. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  1. Electric vehicles: Driving range

    NASA Astrophysics Data System (ADS)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  2. Viscosity of bubble- and crystal- bearing magmas: Analogue results

    NASA Astrophysics Data System (ADS)

    Namiki, A.; Manga, M.

    2006-12-01

    Natural magmas often include both phenocrysts and bubbles. Such magmas can be regarded as suspensions including particles and bubbles and should have a viscosity different from the particle- and bubble- free melt. Viscosity is one of the key physical properties that affects eruption dynamics and magma flow. To understand the relation between the viscosity and the volume fraction of bubbles and particles, we directly measure the viscosity of suspensions with both particles and bubbles. Measurements are performed with the 4 degree cone-and-plate type rheometer (Thermo HAAKE Rheoscope 1), which allows us to observe the samples in situ during the measurement. The suspending fluid is corn syrup whose viscosity is 1.7 Pa·s at 23 °C. Particles are Techpolymer (polymethylmethacrylate) 40 μm diameter spheres. Bubbles are made by dissolving baking soda and citric acid; reaction between them generates carbon dioxide. No surfactant is added. The Peclet number is sufficiently large that Brownian motion does not influence our results. The measured viscosity for the suspensions with particles, and with both particles and bubbles, show strong shear thinning. The measured viscosities during increasing and decreasing shear rate differ from each other, indicating that the microstructure is modified by flow. When the deformation of bubbles is not significant, the measured viscosity with bubbles is higher than that without bubbles, and vice versa.

  3. The Temperature Dependence of the Viscosity of Simple Liquids,

    DTIC Science & Technology

    The purpose of the work is investigation of the temperature dependence of the viscosity of simple liquids on the basis of the molecular-kinetic...theory. In literature there is vast experimental material on the investigation of the viscosity of liquids and its temperature dependence both based on the

  4. Critical exponent for the viscosity of four binary liquids

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.

    1988-01-01

    The viscosity of the following binary mixtures was measured near their consolute points: (1) methanol + cyclohexane, (2) isobutyric acid + water, (3) nitroethane + 3-methylpentane, and (4) 2-butoxyethanol + water. It is shown that the multiplicative hypothesis is valid for these mixtures. It is also found that the concentration closest to critical has the largest viscosity enhancement.

  5. Note: Precision viscosity measurement using suspended microchannel resonators

    SciTech Connect

    Lee, I.; Lee, J.; Park, K.

    2012-11-15

    We report the characterization of a suspended microchannel resonator (SMR) for viscosity measurements in a low viscosity regime (<10 mPa s) using two measurement schemes. First, the quality factor (Q-factor) of the SMR was characterized with glycerol-water mixtures. The measured Q-factor at 20 Degree-Sign C exhibits a bilinear behavior with the sensitivity of 1281 (mPa s){sup -1} for a lower (1-4 mPa s) and 355 (mPa s){sup -1} for a higher viscosity range (4-8 mPa s), respectively. The second scheme is the vibration amplitude monitoring of the SMR running in a closed loop feedback. When compared in terms of the measurement time, the amplitude-based measurement takes only 0.1 {approx} 1 ms while the Q-factor-based measurement takes {approx}30 s. However, the viscosity resolution of the Q-factor-based measurement is at least three times better than the amplitude-based measurement. By comparing the Q-factors of heavy water and 9.65 wt.% glycerol-water mixture that have very similar viscosities but different densities, we confirmed that the SMR can measure the dynamic viscosity without the density correction. The obtained results demonstrate that the SMR can measure the fluid viscosity with high precision and even real-time monitoring of the viscosity change is possible with the amplitude-based measurement scheme.

  6. On the shear viscosity of 3D Yukawa liquids

    SciTech Connect

    Donko, Z.; Hartmann, P.

    2008-09-07

    We report calculations of the shear viscosity of three-dimensional strongly-coupled Yukawa liquids, based on two different non-equilibrium molecular dynamics methods. The present simulations intend to improve the accuracy of shear viscosity data, compared to those obtained in earlier studies.

  7. Viscosity Reduction in Liquid Suspensions by Electric or Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Tao, R.; Xu, X.

    Reducing the viscosity of liquid suspensions is of great importance in science and engineering. We present a theory and experiments that a suitable electric or magnetic field pulse can effectively reduce the viscosity for several hours with no appreciable change of temperature. Positive experimental results with magnetorheological fluids and crude oil suggest a broad range of practical applications.

  8. Note: precision viscosity measurement using suspended microchannel resonators.

    PubMed

    Lee, I; Park, K; Lee, J

    2012-11-01

    We report the characterization of a suspended microchannel resonator (SMR) for viscosity measurements in a low viscosity regime (<10 mPa s) using two measurement schemes. First, the quality factor (Q-factor) of the SMR was characterized with glycerol-water mixtures. The measured Q-factor at 20 °C exhibits a bilinear behavior with the sensitivity of 1281 (mPa s)(-1) for a lower (1-4 mPa s) and 355 (mPa s)(-1) for a higher viscosity range (4-8 mPa s), respectively. The second scheme is the vibration amplitude monitoring of the SMR running in a closed loop feedback. When compared in terms of the measurement time, the amplitude-based measurement takes only 0.1 ~ 1 ms while the Q-factor-based measurement takes ~30 s. However, the viscosity resolution of the Q-factor-based measurement is at least three times better than the amplitude-based measurement. By comparing the Q-factors of heavy water and 9.65 wt.% glycerol-water mixture that have very similar viscosities but different densities, we confirmed that the SMR can measure the dynamic viscosity without the density correction. The obtained results demonstrate that the SMR can measure the fluid viscosity with high precision and even real-time monitoring of the viscosity change is possible with the amplitude-based measurement scheme.

  9. Note: Precision viscosity measurement using suspended microchannel resonators

    NASA Astrophysics Data System (ADS)

    Lee, I.; Park, K.; Lee, J.

    2012-11-01

    We report the characterization of a suspended microchannel resonator (SMR) for viscosity measurements in a low viscosity regime (<10 mPa s) using two measurement schemes. First, the quality factor (Q-factor) of the SMR was characterized with glycerol-water mixtures. The measured Q-factor at 20 °C exhibits a bilinear behavior with the sensitivity of 1281 (mPa s)-1 for a lower (1-4 mPa s) and 355 (mPa s)-1 for a higher viscosity range (4-8 mPa s), respectively. The second scheme is the vibration amplitude monitoring of the SMR running in a closed loop feedback. When compared in terms of the measurement time, the amplitude-based measurement takes only 0.1 ˜ 1 ms while the Q-factor-based measurement takes ˜30 s. However, the viscosity resolution of the Q-factor-based measurement is at least three times better than the amplitude-based measurement. By comparing the Q-factors of heavy water and 9.65 wt.% glycerol-water mixture that have very similar viscosities but different densities, we confirmed that the SMR can measure the dynamic viscosity without the density correction. The obtained results demonstrate that the SMR can measure the fluid viscosity with high precision and even real-time monitoring of the viscosity change is possible with the amplitude-based measurement scheme.

  10. Viscosity of human bile sampled from the common bile duct.

    PubMed

    Reinhart, Walter H; Näf, Gabriela; Werth, Baseli

    2010-01-01

    Cholestasis is a frequent gastroenterological problem, which is tackled by endoscopic procedures. Little is known about bile viscosity, a major determinant of its flow. We measured the viscosity of bile from the common bile duct during endoscopic retrograde cholangiography. Bile was aspirated immediately after cannulation of the papilla and deep-frozen. Viscosity was measured with a rotational viscometer at 37 degrees C and a broad range of shear rates (0.08-69.5 s(-1)). The majority of the 138 patients (64.5%) had bile viscosities between water (0.7 mPa.s) and the lower limit of plasma (1.1 mPa.s). In 20 patients (14.5%) it was above that of plasma (>1.4 mPa.s), and showed a non-Newtonian behaviour, i.e. the viscosity increased exponentially with decreasing shear rate. Cholecystectomized patients had a lower bile viscosity. Bile viscosities did not differ between patient groups with either choledocholithiasis, sludge, cholangitis, biliary pancreatitis, pancreatic carcinoma, or cholangiocarcinoma. We conclude that bile viscosity in the common bile duct is usually lower than that of plasma, in 15% it is higher and increases exponentially with decreasing flow rate, which may lead to a vicious cycle.

  11. Viscosity of concentrated suspensions of sphere/rod mixtures

    SciTech Connect

    Mor, R.; Gottlieb, M.; Graham, A.L.; Mondy, L.A.

    1996-05-01

    This paper discusses the viscosity of concentrated suspensions of sphere/rod mixtures by adopting the Thomas relations for spheres and Milliken`s for randomly oriented rods with aspect ratio of 20. The relative viscosity of a mixed suspension may now be calculated for any combination of rods (of aspect ratio 20) and spheres.

  12. Viscosity over entropy ratio in a quark plasma

    NASA Astrophysics Data System (ADS)

    Czerski, P.; Alberico, W. M.; Chiacchiera, S.; DePace, A.; Hansen, H.; Molinari, A.; Nardi, M.

    2009-02-01

    The quark viscosity in the quark-gluon plasma is evaluated in the hard thermal loop (HTL) approximation. The different contributions to the viscosity arising from the various components of the quark spectral function are discussed. The calculation is extended to finite values of the chemical potential.

  13. Heritability and Seasonal Changes in Viscosity of Slash Pine Oleoresin

    Treesearch

    Robert D. McReynolds

    1971-01-01

    Oleoresin viscosity was measured in slash pine (Pinus elliottii var. elliottii) trees of known genetic origin over a 1-year period. A strong broad-sense heritability of this trait was found. Seasonal variation followed a definite pattern, with the highest viscosities occurring in early spring and a gradual decline occurring in...

  14. Multipoint viscosity measurements in microfluidic channels using optical tweezers.

    PubMed

    Keen, Stephen; Yao, Alison; Leach, Jonathan; Di Leonardo, Roberto; Saunter, Chris; Love, Gordon; Cooper, Jonathan; Padgett, Miles

    2009-07-21

    We demonstrate the technique of multipoint viscosity measurements incorporating the accurate calibration of micron sized particles. We describe the use of a high-speed camera to measure the residual motion of particles trapped in holographic optical tweezers, enabling us to calculate the fluid viscosity at multiple points across the field-of-view of the microscope within a microfluidic system.

  15. Nucleoplasmic viscosity of living cells investigated by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Lifang; Xing, Da; Chen, Tongshen; Pei, Yihui

    2007-11-01

    Fluorescence correlation spectroscopy (FCS) is a new kind of real-time, high-speed and single-molecule technique. It is used to detect the kinetic characteristics of fluorescent dye such as diffusion coefficient in the aqueous solution. Combined with confocal microscope optics, it has been now widely applied in cell biological research. Through a time correlation analysis of spontaneous intensity fluctuations, this technique with EGFP as a probe is capable of determining viscosity of fluids according to Stokes-Einstein equation. Nucleoplasmic viscosity is an important physical parameter to quantify the rheological characteristics of the nucleoplasm. Investigation on nucleoplasmic viscosity plays an important role in further understanding intranuclear environment. In this paper, FCS is introduced to noninvasively investigate nucleoplasmic viscosity of living cells. The results show that nucleoplasmic viscosity of lung adenocarcinoma (ASTC-a-1) cells is 2.55+/-0.61 cP and nucleoplasmic viscosity is larger than cytoplasmic viscosity at 37 °C (pH 7.4). In addition, significant changes in nucleoplasmic viscosity are detected by FCS when cells are exposed to hyper or hypotonic medium. Our study suggests that FCS can be used to detect the kinetic characteristics of biomolecules in living cells and thus helps to investigate the dynamic changes of the microenvironment in the cell.

  16. The viscosity of magmatic silicate liquids: A model for calculation

    NASA Technical Reports Server (NTRS)

    Bottinga, Y.; Weill, D. F.

    1971-01-01

    A simple model has been designed to allow reasonably accurate calculations of viscosity as a function of temperature and composition. The problem of predicting viscosities of anhydrous silicate liquids has been investigated since such viscosity numbers are applicable to many extrusive melts and to nearly dry magmatic liquids in general. The fluidizing action of water dissolved in silicate melts is well recognized and it is now possible to predict the effect of water content on viscosity in a semiquantitative way. Water was not incorporated directly into the model. Viscosities of anhydrous compositions were calculated, and, where necessary, the effect of added water and estimated. The model can be easily modified to incorporate the effect of water whenever sufficient additional data are accumulated.

  17. Quantitative characterization of the viscosity of a microemulsion

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Huang, John S.

    1987-01-01

    The viscosity of the three-component microemulsion water/decane/AOT has been measured as a function of temperature and droplet volume fraction. At temperatures well below the phase-separation temperature the viscosity is described by treating the droplets as hard spheres suspended in decane. Upon approaching the two-phase region from low temperature, there is a large (as much as a factor of four) smooth increase of the viscosity which may be related to the percolation-like transition observed in the electrical conductivity. This increase in viscosity is not completely consistent with either a naive electroviscous model or a simple clustering model. The divergence of the viscosity near the critical point (39 C) is superimposed upon the smooth increase. The magnitude and temperature dependence of the critical divergence are similar to that seen near the critical points of binary liquid mixtures.

  18. Quantitative characterization of the viscosity of a microemulsion

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Huang, John S.

    1987-01-01

    The viscosity of the three-component microemulsion water/decane/AOT has been measured as a function of temperature and droplet volume fraction. At temperatures well below the phase-separation temperature the viscosity is described by treating the droplets as hard spheres suspended in decane. Upon approaching the two-phase region from low temperature, there is a large (as much as a factor of four) smooth increase of the viscosity which may be related to the percolation-like transition observed in the electrical conductivity. This increase in viscosity is not completely consistent with either a naive electroviscous model or a simple clustering model. The divergence of the viscosity near the critical point (39 C) is superimposed upon the smooth increase. The magnitude and temperature dependence of the critical divergence are similar to that seen near the critical points of binary liquid mixtures.

  19. Viscosity and compressibility of diacylglycerol under high pressure

    NASA Astrophysics Data System (ADS)

    Malanowski, Aleksander; Rostocki, A. J.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Kościesza, R.; Tarakowski, R.; Ptasznik, S.; Siegoczyński, R. M.

    2013-03-01

    The influence of high pressure on viscosity and compressibility of diacylglycerol (DAG) oil has been presented in this paper. The investigated DAG oil was composed of 82% of DAGs and 18% TAGs (triacylglycerols). The dynamic viscosity of DAG was investigated as a function of the pressure up to 400 MPa. The viscosity was measured by means of the surface acoustic wave method, where the acoustic waveguides were used as sensing elements. As the pressure was rising, the larger ultrasonic wave attenuation was observed, whereas amplitude decreased with the liquid viscosity augmentation. Measured changes of physical properties were most significant in the pressure range near the phase transition. Deeper understanding of DAG viscosity and compressibility changes versus pressure could shed more light on thermodynamic properties of edible oils.

  20. Viscosity model effects of Gas Jet Nose Tip flowfields

    NASA Astrophysics Data System (ADS)

    Cavalleri, Robert; Tiarn, Weihnurng; Posey, Stan; Raymond, Phil

    1992-01-01

    Thermal protection of leading edges or reentry vehicles is required at hypersonic speeds. An active cooling technique that has been considered to achieve high speed thermal protection is a Gas Jet Nose Tip (GJNT). Previous studies of GJNTs have employed either inviscid CFD codes or laminar viscous flow codes. Data presented in prior work indicate that a laminar viscosity model does not fully predict the measured heat transfer characteristics. The effectiveness of the thermal barrier is affected by viscosity, since the viscosity determines how rapidly the low enthalpy injectant mixes with the high enthalpy free stream. A study was performed using a typical turbulent viscosity model to determine the effects of viscosity on the flowfield and the heat transfer characteristics into the body. Two different axisymmetric configurations were used. Predicted results for one of the configurations were compared to experimental data.