Science.gov

Sample records for bulk vitrification technology

  1. BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect

    ARD KE

    2011-04-11

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  2. DEMONSTRATION BULK VITRIFICATION SYSTEM (DBVS) EXTERNAL REVIEW

    SciTech Connect

    HONEYMAN, J.O.

    2007-02-08

    The Hanford mission to retrieve and immobilize 53 million gallons of radioactive waste from 177 underground storage tanks will be accomplished using a combination of processing by the waste treatment plant currently under construction, and a supplemental treatment that would process low-activity waste. Under consideration for this treatment is bulk vitrification, a versatile joule-heated melter technology which could be deployed in the tank farms. The Department proposes to demonstrate this technology under a Research, Development and Demonstration (RD and D) permit issued by the Washington State Department of Ecology using both non-radioactive simulant and blends of actual tank waste. From the demonstration program, data would be obtained on cost and technical performance to enable a decision on the potential use of bulk vitrification as the supplemental treatment technology for Hanford. An independent review by sixteen subject matter experts was conducted to assure that the technical basis of the demonstration facility design would be adequate to meet the objectives of the Demonstration Bulk Vitrification System (DBVS) program. This review explored all aspects of the program, including flowsheet chemistry, project risk, vitrification, equipment design and nuclear safety, and was carried out at a time when issues can be identified and corrected. This paper describes the mission need, review approach, technical recommendations and follow-on activities for the DBVS program.

  3. Waste Form Qualification Compliance Strategy for Bulk Vitrification

    SciTech Connect

    Bagaasen, Larry M.; Westsik, Joseph H.; Brouns, Thomas M.

    2005-01-03

    The Bulk Vitrification System is being pursued to assist in immobilizing the low-activity tank waste from the 53 million gallons of radioactive waste in the 177 underground storage tanks on the Hanford Site. To demonstrate the effectiveness of the bulk vitrification process, a research and development facility known as the Demonstration Bulk Vitrification System (DBVS) is being built to demonstrate the technology. Specific performance requirements for the final packaged bulk vitrification waste form have been identified. In addition to the specific product-performance requirements, performance targets/goals have been identified that are necessary to qualify the waste form but do not lend themselves to specifications that are easily verified through short-term testing. Collectively, these form the product requirements for the DBVS. This waste-form qualification (WFQ) strategy document outlines the general strategies for achieving and demonstrating compliance with the BVS product requirements. The specific objectives of the WFQ activities are discussed, the bulk vitrification process and product control strategy is outlined, and the test strategy to meet the WFQ objectives is described. The DBVS product performance targets/goals and strategies to address those targets/goals are described. The DBVS product-performance requirements are compared to the Waste Treatment and Immobilization Plant immobilized low-activity waste product specifications. The strategies for demonstrating compliance with the bulk vitrification product requirements are presented.

  4. A COMPREHENSIVE TECHNICAL REVIEW OF THE DEMONSTRATION BULK VITRIFICATION SYSTEM

    SciTech Connect

    SCHAUS, P.S.

    2006-09-29

    In May 2006, CH2M Hill Hanford Group, Inc. chartered an Expert Review Panel (ERP) to review the current status of the Demonstration Bulk Vitrification System (DBVS). It is the consensus of the ERP that bulk vitrification is a technology that requires further development and evaluation to determine its potential for meeting the Hanford waste stabilization mission. No fatal flaws (issues that would jeopardize the overall DBVS mission that cannot be mitigated) were found, given the current state of the project. However, a number of technical issues were found that could significantly affect the project's ability to meet its overall mission as stated in the project ''Justification of Mission Need'' document, if not satisfactorily resolved. The ERP recognizes that the project has changed from an accelerated schedule demonstration project to a formally chartered project that must be in full compliance with DOE 413.3 requirements. The perspective of the ERP presented herein, is measured against the formally chartered project as stated in the approved Justification of Mission Need document. A justification of Mission Need document was approved in July 2006 which defined the objectives for the DBVS Project. In this document, DOE concluded that bulk vitrification is a viable technology that requires additional development to determine its potential applicability to treatment of a portion of the Hanford low activity waste. The DBVS mission need statement now includes the following primary objectives: (1) process approximately 190,000 gallons of Tank S-109 waste into fifty 100 metric ton boxes of vitrified product; (2) store and dispose of these boxes at Hanford's Integrated Disposal Facility (IDF); (3) evaluate the waste form characteristics; (4) gather pilot plant operability data, and (5) develop the overall life cycle system performance of bulk vitrification and produce a comparison of the bulk vitrification process to building a second LAW Immobilization facility or other

  5. Bulk Vitrification Castable Refractory Block Protection Study

    SciTech Connect

    Hrma, Pavel R.; Bagaasen, Larry M.; Beck, Andrew E.; Brouns, Thomas M.; Caldwell, Dustin D.; Elliott, Michael L.; Matyas, Josef; Minister, Kevin BC; Schweiger, Michael J.; Strachan, Denis M.; Tinsley, Bronnie P.; Hollenberg, Glenn W.

    2005-05-01

    Bulk vitrification (BV) was selected for a pilot-scale test and demonstration facility for supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the Hanford U.S. DOE Site. During engineering-scale (ES) tests, a small fraction of radioactive Tc (and Re, its nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the castable refractory block (CRB). Laboratory experiments were undertaken to understand the mechanisms of the transport Tc/Re into the CRB during vitrification and to evaluate various means of CRB protection against the deposition of leachable Tc/Re. The tests used Re as a chemical surrogate for Tc. The tests with the baseline CRB showed that the molten LAW penetrates into CRB pores before it converts to glass, leaving deposits of sulfates and chlorides when the nitrate components decompose. Na2O from the LAW reacts with the CRB to create a durable glass phase that may contain Tc/Re. Limited data from a single CRB sample taken from an ES experiment indicate that, while a fraction of Tc/Re is present in the CRB in a readily leachable form, most of the Tc/Re deposited in the refractory is retained in the form of a durable glass phase. In addition, the molten salts from the LAW, mainly sulfates, chlorides, and nitrates, begin to evaporate from BV feeds at temperatures below 800 C and condense on solid surfaces at temperatures below 530 C. Three approaches aimed at reducing or preventing the deposition of soluble Tc/Re within the CRB were proposed: metal lining, sealing the CRB surface with a glaze, and lining the CRB with ceramic tiles. Metal liners were deemed unsuitable because evaluations showed that they can cause unacceptable distortions of the electric field in the BV system. Sodium silicate and a low-alkali borosilicate glaze were selected for testing. The glazes slowed down molten salt condensate penetration, but did little to reduce the

  6. Vitrification assistance program: international co-operation on vitrification technology

    SciTech Connect

    Penrice, Ch.; McGowan, B.; Garth, B.; Reed, J.; Prod'homme, A.; Sartelet, S.; Guerif, H.N.; Hollebecque, J.F.; Flament, T.; Prod'homme, A.

    2008-07-01

    With 10 vitrification lines in operation (3 on WVP in Sellafield, 1 on AVM in Marcoule and 6 on AVH in La Hague), Sellafield Ltd and Areva NC benefit from the most in-depth experience worldwide in the vitrification of highly active liquors within a framework of commercial operations. Based on the two-step process design, using a calciner and an induction-heated hot melter, which was initially deployed in Marcoule in 1978, core vitrification equipment has been continuously improved by the independent development programmes of the two companies. In March 2005, Sellafield Ltd and Areva NC signed the Vitrification Assistance Program (hereafter referred to as VAP); a co-operative project lasting 4 years during which Areva NC is to share some areas of their experience and expertise with Sellafield Ltd. Now at the halfway point of this project, this paper summarises the work performed by the VAP team to date, highlighting the early benefits and lessons learned. The following points will be developed: - Equipment delivery and preparation for implementation on WVP - Training organization and dissemination to WVP teams - Lessons learned from the early changes implemented in operations (Calciner, Melter, Dust Scrubber and Primary off gas system), and initial feedback from the first campaign using a VAP equipped line. In conclusion: The vitrification process and technology implemented at Sellafield and at La Hague, based on the two-step process, have proved to be efficient in treating high active liquor of various types. Ten lines based on this principle have been successfully operated for more than 15 years in France and in the UK. The process has also been demonstrated to be sufficiently versatile to benefit from continuous improvement and development programmes. VAP, as a complete package to support vitrification technology and knowledge transfer from AREVA NC to Sellafield Ltd, has provided the framework for fruitful technical exchanges and discussions between the two

  7. Feed Variability and Bulk Vitrification Glass Performance Assessment

    SciTech Connect

    Mahoney, Lenna A.; Vienna, John D.

    2005-01-10

    The supplemental treatment (ST) bulk vitrification process will obtain its feed, consisting of low-activity waste (LAW), from more than one source. One purpose of this letter report is to describe the compositional variability of the feed to ST. The other is to support the M-62-08 decision by providing a preliminary assessment of the effectiveness of bulk vitrification (BV), the process that has been selected to perform supplemental treatment, in handling the ST feed envelope. Roughly nine-tenths of the ST LAW feed will come from the Waste Treatment Plant (WTP) pretreatment. This processed waste is expected to combine (1) a portion of the same LAW feed sent to the WTP melters and (2) a dilute stream that is the product of the condensate from the submerged-bed scrubber (SBS) and the drainage from the electrostatic precipitator (WESP), both of which are part of the LAW off-gas system. The manner in which the off-gas-product stream is concentrated to reduce its volume, and the way in which the excess LAW and off-gas product streams are combined, are part of the interface between WTP and ST and have not been determined. This letter report considers only one possible arrangement, in which half of the total LAW is added to the off-gas product stream, giving an estimated ST feed stream from WTP. (Total LAW equals that portion of LAW sent to the WTP LAW vitrification plant (WTP LAW) plus the LAW not currently treatable in the LAW vitrification plant due to capacity limitations (excess)).

  8. Thermal Flammable Gas Production from Bulk Vitrification Feed

    SciTech Connect

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.

    2008-05-21

    The baseline bulk-vitrification (BV) process (also known as in-container vitrification ICV™) includes a mixer/dryer to convert liquid low-activity waste (LAW) into a dried, blended feed for vitrification. Feed preparation includes blending LAW with glass-forming minerals (GFMs) and cellulose and drying the mixture to a suitable dryness, consistency, and particle size for transport to the ICVTM container. The cellulose is to be added to the BV feed at a rate sufficient to destroy 75% of the nitrogen present as nitrate or nitrite. Concern exists that flammable gases may be produced during drying operations at levels that could pose a risk. The drying process is conducted under vacuum in the temperature range of 60 to 80°C. These flammable gases could be produced either through thermal decomposition of cellulose or waste organics or as a by-product of the reaction of cellulose and/or waste organics with nitrate or the postulated small amount of nitrite present in the waste. To help address the concern about flammable gas production during drying, the Pacific Northwest National Laboratory (PNNL) performed studies to identify the gases produced at dryer temperatures and at possible process upset conditions. Studies used a thermogravimetric analyzer (TGA) up to 525°C and isothermal testing up to 120°C to determine flammable gas production resulting from the cellulose and organic constituents in bulk vitrification feed. This report provides the results of those studies to determine the effects of cellulose and waste organics on flammable gas evolution

  9. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    SciTech Connect

    Bacon, Diana H.; Pierce, Eric M.; Wellman, Dawn M.; Strachan, Denis M.; Josephson, Gary B.

    2006-07-31

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc

  10. SITE TECHNOLOGY CAPSULE: GEOSAFE CORPORATION IN SITU VITRIFICATION TECHNOLOGY

    EPA Science Inventory

    The Geosafe In Situ Vitrification (ISV) Technology is designed to treat soils, sludges, sediments, and mine tallings contaminated with organic, inorganic, and radioactive compounds. The organic compounds are pyrolyzed and reduced to simple gases which are collected under a treatm...

  11. Vitrification technology for Hanford Site tank waste

    SciTech Connect

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy`s (DOE) Hanford Site has an inventory of 217,000 m{sup 3} of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing.

  12. Innovative technology summary report: Transportable vitrification system

    SciTech Connect

    1998-09-01

    At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

  13. GEOSAFE CORPORATION IN SITU VITRIFICATION: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the findings associated with a Demonstration of the Geosafe Corporation (Geosafe) In Situ Vitrification (ISV) Process. The Geosafe ISV Technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program in conjuction with remedi...

  14. GEOSAFE CORPORATION IN SITU VITRIFICATION: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the findings associated with a Demonstration of the Geosafe Corporation (Geosafe) In Situ Vitrification (ISV) Process. The Geosafe ISV Technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program in conjuction with remedi...

  15. EMERGING TECHNOLOGY BULLETIN: WASTE VITRIFICATION THROUGH ELECTRIC MELTING

    EPA Science Inventory

    The objective of vitrification technology is to convert contaminated soils, sludges, and sediments into an oxide glass, rendering them suitable for landfilling as a nonhazardous material. The technology uses joule heating to melt the waste matrix, destroying organic compounds in ...

  16. EMERGING TECHNOLOGY BULLETIN: WASTE VITRIFICATION THROUGH ELECTRIC MELTING

    EPA Science Inventory

    The objective of vitrification technology is to convert contaminated soils, sludges, and sediments into an oxide glass, rendering them suitable for landfilling as a nonhazardous material. The technology uses joule heating to melt the waste matrix, destroying organic compounds in ...

  17. DEVELOPMENT OF THE BULK VITRIFICATION TREATMENT PROCESS FOR THE LOW ACTIVITY FRACTION OF HANFORD SINGLE SHELL TANK WASTES

    SciTech Connect

    Thompson, L.E.; Lowery, P.S.; Arrowsmith, H.W.; Snyder, T.; McElroy, J.L.

    2003-02-27

    AMEC Earth & Environmental, Inc. and RWE NUKEM Corporation have teamed to develop and apply a waste pre-treatment and bulk vitrification process for low activity waste (LAW) from Hanford Single Shell Tanks (SSTs). The pretreatment and bulk vitrification process utilizes technologies that have been successfully deployed to remediate both radioactive and chemically hazardous wastes at nuclear power plants, DOE sites, and commercial waste sites in the US and abroad. The process represents an integrated systems approach. The proposed AMEC/NUKEM process follow the extraction and initial segregation activities applied to the tank wastes carried out by others. The first stage of the process will utilize NUKEM's concentrate dryer (CD) system to concentrate the liquid waste stream. The concentrate will then be mixed with soil or glass formers and loaded into refractory-lined steel containers for bulk vitrification treatment using AMEC's In-Container Vitrification (ICV) process. Following the vitrification step, a lid will be placed on the container of cooled, solidified vitrified waste, and the container transported to the disposal site. The container serves as the melter vessel, the transport container and the disposal container. AMEC and NUKEM participated in the Mission Acceleration Initiative Workshop held in Richland, Washington in April 2000 [1]. An objective of the workshop was to identify selected technologies that could be combined into viable treatment options for treatment of the LAW fraction from selected Hanford waste tanks. AMEC's ICV process combined with NUKEM's CD system and other remote operating capabilities were presented as an integrated solution. The Team's proposed process received some of the highest ratings from the Workshop's review panel. The proposed approach compliments the Hanford Waste Treatment Plant (WTP) by reducing the amount of waste that the WTP would have to process. When combined with the capabilities of the WTP, the proposed approach

  18. STATUS & DIRECTION OF THE BULK VITRIFICATION PROGRAM FOR THE SUPPLEMENTAL TREATMENT OF LOW ACTIVITY TANK WASTE AT HANFORD

    SciTech Connect

    RAYMOND, R.E.

    2005-01-12

    The DOE Office of River Protection (ORP) is managing a program at the Hanford site that will retrieve and treat more than 200 million liters (53 million gal.) of radioactive waste stored in underground storage tanks. The waste was generated over the past 50 years as part of the nation's defense programs. The project baseline calls for the waste to be retrieved from the tanks and partitioned to separate the highly radioactive constituents from the large volumes of chemical waste. These highly radioactive components will be vitrified into glass logs in the Waste Treatment Plant (WTP), temporarily stored on the Hanford Site, and ultimately disposed of as high-level waste in the offsite national repository. The less radioactive chemical waste, referred to as low-activity waste (LAW), is also planned to be vitrified by the WTP, and then disposed of in approved onsite trenches. However, additional treatment capacity is required in order to complete the pretreatment and immobilization of the tank waste by 2028, which represents a Tri-Party Agreement milestone. To help ensure that the treatment milestones will be met, the Supplemental Treatment Program was undertaken. The program, managed by CH2M HILL Hanford Group, Inc., involves several sub-projects each intended to supplement part of the treatment of waste being designed into the WTP. This includes the testing, evaluation, design, and deployment of supplemental LAW treatment and immobilization technologies, retrieval and treatment of mixed TRU waste stored in the Hanford Tanks, and supplemental pre-treatment. Applying one or more supplemental treatment technologies to the LAW has several advantages, including providing additional processing capacity, reducing the planned loading on the WTP, and reducing the need for double-shell tank space for interim storage of LAW. In fiscal year 2003, three potential supplemental treatment technologies were evaluated including grout, steam reforming and bulk vitrification using AMEC

  19. Vitrification

    NASA Astrophysics Data System (ADS)

    A. Takahashi, Tsuneo

    Vitrification is an alternative to customary approaches to cryopreserve cell, tissue and organ. In this method, ice formation can be prevented by a combination of high solute concentration and rapid cooling, a solution become glassy without ice crystalline formation at temperatures below-115°C. The cell and tissue damage associated with ice formation is avoided, but thawing should be rapid enough to prevent ice growth during warming and they should be equilibrated with the vitrification medium without injury. This approach has been extensively studied in the past few years, and has the potential to be an alternative approach to the cryopreservation of a wide range of biological systems.

  20. LFCM vitrification technology. Quarterly progress report, October-December 1985

    SciTech Connect

    Burkholder, H.C.; Jarrett, J.H.; Minor, J.E.

    1986-09-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to document progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1986 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies.

  1. LFCM vitrification technology. Quarterly progress report, July-September 1985

    SciTech Connect

    Burkholder, H.C.; Jarrett, J.H.; Minor, J.E.

    1986-05-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to document progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the fourth quarter of FY 1985 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies.

  2. Vitrification Increased Vacuolization of Human Spematozoa: Application of MSOME Technology.

    PubMed

    Taherzadeh, Sara; Khalili, Mohammad Ali; Agha-Rahimi, Azam; Anbari, Fateme; Ghazali, Shahin; Macchiarelli, Guido

    2017-01-01

    Sperm vitrification is a technique of ice and cryoprotectant free cryopreservation by direct plunging of sperm suspension into liquid nitrogen (LN2). The aim of this study was to investigate the influence of cryoprotectant free-vitrification on human sperm fine structure by MSOME technology and the fertility potential by zona binding assay (ZBA). 20 normo-ejaculates were prepared by swim up technique, and supernatants were divided into two parts of fresh and vitrified groups. For vitrification, sperm was dropped into LN2. Sperm motility, morphology, viability and MSOME were evaluated for each sample. In MSOM morphologically normal sperm (class 1), ≤2 small vacuoles (class 2), and one large vacuole or >2 small vacuoles (class 3) were evaluated. Also, fertility potential was evaluated by zona binding assay. Data was analyzed using paired t-test or Willcoxon's test and p-value <0.05 was considered significant. Vitrification significantly reduced both progressive motility, viability and morphology. Also, normal morphology of spermatozoa decreased significantly after vitrification. In MSOME evaluation, normal motile spermatozoa (Class 1) decreased from 23.00±12.44 to 16.00.56±10.79 after vitrification (p=0.008). Although spermatozoa classes 2 and 3 were increased, the difference was not significant. Moreover, fertility potential of motile spermatozoa was reduced after vitrification (9.0±13.87 vs. 13.40±22.73; p=0.07). Vitrification increased the rate of vacuolization in motile sperm head. Therefore, MSOME technology is recommended for assessment of sperm fine morphology in ICSI program used cryopreserved spermatozoa.

  3. Site technology capsule: Geosafe Corporation in situ vitrification technology

    SciTech Connect

    1994-11-01

    The Geosafe In Situ Vitrification Technology is designed to treat soils, sludges, sediments, and mine tailings contaminated with organic, inorganic, and radioactive compounds. The organic compounds are pyrolyzed and reduced to simple gases which are collected under a treatment hood and processed prior to their emission to the atmosphere. Inorganic and radioactive contaminants are encapsulated in the molten soil which hardens to a vitrified mass similar to volcanic obsidian. This mobile technology was evaluated under the SITE Program on approximately 330 yd of contaminated soil at the Parsons Chemical site.

  4. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  5. LFCM vitrification technology: Quarterly progress report, July-September 1987

    SciTech Connect

    Brouns, R.A.; Allen, C.R.; Powell, J.A.; Bates, S.O.; Bray, L.A.; Budden, M.J.; Dierks, R.D.; Elliott, M.L.; Elmore, M.R.; Faletti, D.W.; Farnsworth, R.K.; Holton, L.K. Jr.; Kuhn, W.L.; Mellinger, G.B.; Nakaoka, R.K.; Peterson, M.E.; Piepel, G.F.; Powell, J.A.; Pulsipher, B.A.; Reimus, M.A.H.; Surma, J.E.; Wiemers, K.D.

    1988-09-01

    This report describes the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the fourth quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, canister filling and handling systems, and process/product modeling and control.

  6. Evaluation of Exothermic Reactions from Bulk-Vitrification Melter Feeds Containing Cellulose

    SciTech Connect

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.; Bos, Stanley J.; Kozelisky, Anne E.; Berry, Pam

    2007-06-25

    PNNL has demonstrated that cellulose effectively reduces the amount of molten ionic salt during Bulk Vitrification of simulated Hanford Low Level Waste (LLW). To address concerns about the potential reactivity of cellulose-LLW, PNNL used thermogravimetric analysis, differential thermal analysis, and accelerating rate calorimetry to determine in these preliminary studies that these mixtures will support a self-sustaining reaction if heated to 110°C at adiabatic conditions. Additional testing is recommended.

  7. Emerging technologies in medical applications of minimum volume vitrification

    PubMed Central

    Zhang, Xiaohui; Catalano, Paolo N; Gurkan, Umut Atakan; Khimji, Imran; Demirci, Utkan

    2011-01-01

    Cell/tissue biopreservation has broad public health and socio-economic impact affecting millions of lives. Cryopreservation technologies provide an efficient way to preserve cells and tissues targeting the clinic for applications including reproductive medicine and organ transplantation. Among these technologies, vitrification has displayed significant improvement in post-thaw cell viability and function by eliminating harmful effects of ice crystal formation compared to the traditional slow freezing methods. However, high cryoprotectant agent concentrations are required, which induces toxicity and osmotic stress to cells and tissues. It has been shown that vitrification using small sample volumes (i.e., <1 μl) significantly increases cooling rates and hence reduces the required cryoprotectant agent levels. Recently, emerging nano- and micro-scale technologies have shown potential to manipulate picoliter to nanoliter sample sizes. Therefore, the synergistic integration of nanoscale technologies with cryogenics has the potential to improve biopreservation methods. PMID:21955080

  8. Vitrification of ion exchange materials. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    Ion exchange is a process that safely and efficiently removes radionuclides from tank waste. Cesium and strontium account for a large portion of the radioactivity in waste streams from US Department of Energy (DOE) weapons production. Crystalline silicotitanate (CST) is an inorganic sorbent that strongly binds cesium, strontium, and several other radionuclides. Developed jointly by Sandia National Laboratory and Texas A and M University, CST was commercialized through a cooperative research and development agreement with an industrial partner. Both an engineered (mesh pellets) and powdered forms are commercially available. Cesium removal is a baseline in HLW treatment processing. CST is very effective at removing cesium from HLW streams and is being considered for adoption at several sites. However, CST is nonregenerable, and it presents a significant secondary waste problem. Treatment options include vitrification of the CST, vitrification of the CST coupled with HLW, direct disposal, and low-temperature processes such as grouting. The work presented in this report demonstrates that it is effective to immobilize CST using a baseline technology such as vitrification. Vitrification produces a durable waste form. CST vitrification was not demonstrated before 1996. In FY97, acceptable glass formulations were developed using cesium-loaded CST obtained from treating supernatants from Oak Ridge Reservation (ORR) tanks, and the CST was vitrified in a research melter at the Savannah River Technology Center (SRTC). In FY98, SRS decided to reevaluate the use of in-tank precipitation using tetraphenylborate to remove cesium from tank supernatant and to consider other options for cesium removal, including CST. Hanford and Idaho National Engineering and Environmental Laboratory also require radionuclide removal in their baseline flowsheets.

  9. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  10. Bulk Vitrification Performance Enhancement: Refractory Lining Protection Against Molten Salt Penetration

    SciTech Connect

    Hrma, Pavel R.; Bagaasen, Larry M.; Schweiger, Michael J.; Evans, Michael B.; Smith, Benjamin T.; Arrigoni, Benjamin M.; Kim, Dong-Sang; Rodriguez, Carmen P.; Yokuda, Satoru T.; Matyas, Josef; Buchmiller, William C.; Gallegos, Autumn B.; Fluegel, Alexander

    2007-08-06

    Bulk vitrification (BV) is a process that heats a feed material that consists of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. This study supports the BV design and operations by exploring various methods aimed at reducing the quantities of soluble Tc in the castable refractory block portion of the refractory lining, which limits the effectiveness of the final waste form.

  11. Analysis of Soluble Re Concentrations in Refractory from Bulk Vitrification Full-Scale Test 38B

    SciTech Connect

    Cooley, Scott K.; Pierce, Eric M.; Bagaasen, Larry M.; Schweiger, Michael J.

    2006-06-30

    The capacity of the waste treatment plant (WTP) being built at the Hanford Site is not sufficient to process all of the tank waste accumulated from more than 40 years of nuclear materials production. Bulk vitrification can accelerate tank waste treatment by providing some supplemental low-activity waste (LAW) treatment capacity. Bulk vitrification combines LAW and glass-forming chemicals in a large metal container and melts the contents using electrical resistance heating. A castable refractory block (CRB) is used along with sand to insulate the container from the heat generated while melting the contents into a glass waste form. This report describes engineering-scale (ES) and full-scale (FS) tests that have been conducted. Several ES tests showed that a small fraction of soluble Tc moves in the CRB and results in a groundwater peak different than WTP glass. The total soluble Tc-99 fraction in the FS CRB is expected to be different than that determined in the ES tests, but until FS test results are available, the best-estimate soluble Tc-99 fraction from the ES tests has been used as a conservative estimate. The first FS test results are from cold simulant tests that have been spiked with Re. An estimated scale-up factor extrapolates the Tc-99 data collected at the ES to the FS bulk vitrification waste package. Test FS-38A tested the refractory design and did not have a Re spike. Samples were taken and analyzed to help determine Re CRB background concentrations using a Re-spiked, six-tank composite simulant mixed with soil and glass formers to produce the waste feed. Although this feed is not physically the same as the Demonstration Bulk Vitrification System feed , the chemical make-up is the same. Extensive sampling of the CRB was planned, but difficulties with the test prevented completion of a full box. An abbreviated plan is described that looks at duplicate samples taken from refractory archive sections, a lower wall sample, and two base samples to gain early

  12. Destruction and Vitrification of Asbestos Using Plasma Arc Technology (Construction Productivity Advancement Research (CPAR) Program)

    DTIC Science & Technology

    1993-09-01

    economic viability of ACM vitrification processes based on conventional technologies. Existing ACM vitrification processes generally require one or more of...asbestos using plasma arc technology, the economic viability of the process must be proven if the process is to be commercialized. Three areas must...disposal costs for the purpose of evaluating the economic viability of this plasma arc destruction and vitrification process. b. Projected Cost of

  13. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  14. GEOTECH, INC., COLD TOP EX-SITU VITRIFICATION SYSTEM; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    A Superfund Innovative Technology Evaluation (SITE) technology demonstration was conducted in February and March 1997 to evaluate the Geotech Development Corporation (Geotech) Cold Top ex-situ vitrification technology in chromium-contaminated soils. The demonstration was conduct...

  15. GEOTECH, INC., COLD TOP EX-SITU VITRIFICATION SYSTEM; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    A Superfund Innovative Technology Evaluation (SITE) technology demonstration was conducted in February and March 1997 to evaluate the Geotech Development Corporation (Geotech) Cold Top ex-situ vitrification technology in chromium-contaminated soils. The demonstration was conduct...

  16. SITE TECHNOLOGY CAPSULE: GEOTECH DEVELOPMENT CORPORATION COLD TOP EX-SITU VITRIFICATION TECHNOLOGY

    EPA Science Inventory

    A SITE technology demonstration was conducted in 1997 to evaluate the potential applicability and effectiveness of the Geotech Cold Top ex-situ vitrification technology on chromium-contaminated soils. The primary objective was to develop test data to evaluate whether the waste a...

  17. TECHNOLOGY DEMONSTRATION SUMMARY. BABCOCK AND WILCOX CYCLONE FURNACE VITRIFICATION TECHNOLOGY (EPA/540/SR-92/017)

    EPA Science Inventory

    A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock & Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock & Wilcox (B&W) Alliance Research Center (ARC) in Alliance, OH. The B&W cyc...

  18. TECHNOLOGY DEMONSTRATION SUMMARY. BABCOCK AND WILCOX CYCLONE FURNACE VITRIFICATION TECHNOLOGY (EPA/540/SR-92/017)

    EPA Science Inventory

    A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock & Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock & Wilcox (B&W) Alliance Research Center (ARC) in Alliance, OH. The B&W cyc...

  19. Chapter 6 Technology of Aseptic Cryoprotectant-Free Vitrification of Human ICSI Spermatozoa.

    PubMed

    Isachenko, Vladimir; Sanchez, Raul; Mallmann, Peter; Rahimi, Gohar; Isachenko, Evgenia

    2017-01-01

    The aim of this chapter was to describe the standardized aseptic technology of permeable cryoprotectant-free vitrification of human spermatozoa in capillaries (for ICSI or IVF in microvolume). Spermatozoa, vitrified by this technology, are free from seminal plasma owing to swim-up procedure preceding vitrification and are free from permeable cryoprotectants. They are ready for further use immediately after warming without any additional treatment.

  20. Investigation of Tc Migration Mechanism During Bulk Vitrification Process Using Re Surrogate

    SciTech Connect

    Kim, Dong-Sang; Bagaasen, Larry M.; Crum, Jarrod V.; Fluegel, Alex; Gallegos, Autumn B.; Martinez, Baudelio; Matyas, Josef; Meyer, Perry A.; Paulsen, Dan; Riley, Brian J.; Schweiger, Michael J.; Stewart, Charles W.; Swoboda, Robert G.; Yeager, John D.

    2006-12-04

    As a part of Bulk vitrification (BV) performance enhancement tasks, Laboratory scoping tests were performed in FY 2004-2005 to explore possible ways to reduce the amount of soluble Tc in the BV waste package. Theses scoping tests helped identify which mechanisms play an important role in the migration of Tc in the BV process (Hrma et al. 2005 and Kim et al. 2005). Based on the results from these scoping tests, additional tests were identified that will improve the understanding of Tc migration and to clearly identify the dominant mechanisms. The additional activities identified from previous studies were evaluated and prioritized for planning for Tasks 29 and 30 conducted in FY2006. Task 29 focused on the improved understanding of Tc migration mechanisms, and Task 30 focused on identifying the potential process changes that might reduce Tc/Re migration into the castable refractory block (CRB). This report summarizes the results from the laboratory- and crucible-scale tests in the lab for improved Tc migration mechanism understanding utilizing Re as a surrogate performed in Task 29.

  1. PNL vitrification technology development project glass formulation strategy for LLW vitrification

    SciTech Connect

    Kim, D.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    This Glass Formulation Strategy describes development approaches to optimize glass compositions for Hanford`s low-level waste vitrification between now and the projected low-level waste facility start-up in 2005. The objectives of the glass formulation task are to develop optimized glass compositions with satisfactory long-term durability, acceptable processing characteristics, adequate flexibility to handle waste variations, maximize waste loading to practical limits, and to develop methodology to respond to further waste variations.

  2. DESIGN OF THE DEMOSNTRATION BULK VITRIFICATION SYSTEM FOR THE SUPPLEMENTAL TREATMENT OF LOW ACTIVITY TANK WASTE AT HANFORD

    SciTech Connect

    VAN BEEK JE

    2008-02-14

    In June 2004, the Demonstration Bulk Vitrification System (DBVS) was initiated with the intent to design, construct, and operate a full-scale bulk vitrification pilot-plant to treat low-activity tank waste from Hanford Tank 241-S-109. The DBVS facility uses In-Container Vitrification{trademark} (ICV{trademark}) at the core of the treatment process. The basic process steps combine liquid low-activity waste (LAW) and glassformers; dry the mixture; and then vitrify the mixture in a batch feed-while-melt process in a refractory lined steel container. Off-gases are processed through a state-of-the-art air pollution control system including sintered-metal filtration, thermal oxidation, acid gas scrubbing, and high-efficiency particulate air (HEPA) and high-efficiency gas adsorber (HEGA) filtration. Testing has focused on development and validation of the waste dryer, ICV, and sintered-metal filters (SMFs) equipment, operations enhancements, and glass formulation. With a parallel testing and design process, testing has allowed improvements to the DBVS equipment configuration and operating methodology, since its original inception. Design improvements include optimization of refractory panels in the ICV, simplifying glassformer addition equipment, increasing the number of waste feed chutes to the ICV, and adding capability for remote clean-out of piping, In addition, the U.S. Department of Energy (DOE) has provided an independent review of the entire DBVS process. While the review did not find any fatal flaws, some technical issues were identified that required a re-evaluation of the DBVS design and subsequent changes to the design. A 100 percent design package for the pilot plant will be completed and submitted to DOE for review in early 2008 that incorporates process improvements substantiated through testing and reviews. This paper provides a description of the bulk vitrification process and a discussion of major equipment design changes that have occurred based on full

  3. LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, January--March 1987

    SciTech Connect

    Brouns, R. A.; Allen, C. R.; Powell, J. A.

    1988-05-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to describe the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the second quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, and process/product modeling. 23 refs., 14 figs., 10 tabs.

  4. Transport of Technetium and Rhenium into Refractory Materials during Bulk Vitrification

    SciTech Connect

    Bagaasen, L.M.; Brouns, T.M.; Elliott, M.L.; Hrma, P.R.; Kim, D.S.; Matyas, J.; Pierce, E.M.; McGrail, B.P.; Schweiger, M.J.; Beck, A.E.; Campbell, B.E.

    2006-07-01

    Bulk vitrification (BV) was selected as a potential supplemental waste treatment process to support the commitment for cleanup of low-activity waste (LAW) stored in large waste storage tanks at the U.S. Department of Energy's Hanford Site. In the BV process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed within a castable refractory block (CRB) and sand, all within a metal box. Electric current, supplied through two graphite electrodes in the box, melts the waste feed and produces a durable glass waste form. During engineering-scale tests of By, a small fraction of radioactive technetium-99 (Tc) and rhenium (Re) (a nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass and deposited on the surface and within the pores of the CRB. Tc is a primary risk driver for long-term performance of immobilized LAW; therefore, even small fractions of Tc present in a readily leachable form rather than immobilized in a glass matrix can impact long-term performance of the immobilized waste. Laboratory and engineering-scale studies were undertaken to reduce or eliminate the readily leachable Tc in the CRB. These studies focused on 1) understanding the mechanisms of the transport of Tc/Re into the CRB during vitrification, and 2) evaluating various means of protecting the CRB against the deposition of leachable Tc/Re. The tests used either Re as a chemical surrogate for Tc, or Re and Tc together. A conceptual Tc/Re transport model was developed based on observed laboratory experiments to attempt to explain the transport behavior seen in engineering-scale tests. At temperatures below 650 deg. C, molten ionic salt (MIS) containing Tc and Re penetrates by capillarity from the feed into the CRB open porosity. At approximately 650 to 750 deg. C, the MIS decomposes through the loss of NO{sub x}, leaving mainly sulfate and chloride salts. The Na{sub 2}O formed during decomposition of the nitrates reacts with insoluble grains in the

  5. Fabrication of cesium-137 brachytherapy sources using vitrification technology.

    PubMed

    Dash, Ashutosh; Varma, R N; Ram, Ramu; Saxena, S K; Mathakar, A R; Avhad, B G; Sastry, K V S; Sangurdekar, P R; Venkatesh, Meera

    2009-08-01

    137Cs source in solid matrix encapsulated in stainless-steel at MBq (mCi) levels are widely used as brachytherapy sources for the treatment of carcinoma of cervix uteri. This article describes the large-scale preparation of such sources. The process of fabrication includes vitrification of 137Cs-sodium borosilicate glass, its transformation into spheres of 5-6 mm diameter, casting of glass spheres into a cylinder of 1.5 mm (varphi) x 80 mm (l) in a platinum mould, cutting of the moulds into 5-mm-long pieces, silver coating on the sources, and finally, encapsulation in stainless steel capsules. Development of safety precautions used to trap 137Cs escaping during borosilicate glass preparation is also described. The leach rates of the radioactive sources prepared by the above technology were within permissible limits, and the sources could be used for encapsulation in stainless steel capsules and supplied for brachytherapy applications. This development was aimed at promoting the potential utility of 137Cs-brachytherapy sources in the country and reducing the user's reliance on imported sources. Since its development, more than 1000 such sources have been made by using 4.66 TBq(126 Ci) of 137Cs.

  6. Melter system technology testing for Hanford Site low-level tankwaste vitrification

    SciTech Connect

    Wilson, C.N.

    1996-05-03

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission.

  7. LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, October-December 1986

    SciTech Connect

    Brouns, R.A.; Allen, C.R.; Powell, J.A.

    1987-09-01

    This report describes the progress in developing, testing, applying, and documenting liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1987 is discussed. Topics include melting process chemistry and glass development, feed preparation and transfer systems, melter systems, off-gas systems, canister filling and handling systems, and process/product modeling.

  8. Technology status report: In situ vitrification applied to buried wastes

    SciTech Connect

    Thompson, L.E. ); Bates, S.O. ); Hansen, J.E. )

    1992-09-01

    This document is a technical status report on In Situ Vitrification (ISV) as applied to buried waste; the report takes both technical and institutional concerns into perspective. The ISV process involves electrically melting such contaminated solid media as soil, sediment, sludge, and mill tailings. The resultant product is a high-quality glass-and-crystalline waste form that possesses high resistance to corrosion and leaching and is capable of long-term environmental exposure without significant degradation. The process also significantly reduces the volume of the treated solid media due to the removal of pore spaces in the soil.

  9. Vitrification of Simulated LILW Using Induction Cold Crucible Melter Technology

    SciTech Connect

    Kim, C.W.; Park, J.K.; Shin, S.W.; Hwang, T.W.; Ha, J.H.; Song, M.J.

    2006-07-01

    Vitrification destroys hazardous organics, and immobilizes heavy metals and radioactive elements to form a chemically durable and highly leach-resistant vitrified form. The vitrification process provides exceptional volume reduction and is attractive for minimizing disposal volume. A pilot plant test using an induction Cold Crucible Melter (CCM) fitted with an off-gas treatment system (OGTS) has been conducted to vitrify a simulated low-and intermediate-level radioactive waste (LILW) generated from Korean nuclear power plants. The CCM process is based on the use of a water-cooled metallic structure assembled in sectors which is transparent to the electromagnetic field supplied by a high-frequency generator. A solidified glass layer because of the water-cooled structure of the CCM protects the structure against corrosion. By creating the solidified glass auto-crucible on the inner surface of the wall, corrosion damage to the steel in contact with the molten glass is prevented. In order to start-up the CCM, the glass frits were loaded in the CCM. The glass melting was initiated by heating of a short-circuited titanium ring in an electromagnetic field followed by ring burnout and incorporation of the titania in the glass frits. The melter has one drain that exits through the bottom. It is a direct bottom drain from the floor of the melt tank. It is sealed by the solidified glass layer and can be activated by removing the water cooling system. This drain is used if it is desired to drain the melter. The melter employs oxygen bubbling to promote mixing and to increase the melting rate. The bubblers are desired to produce a curtain of bubbles rising from the melter floor. In addition to mixing, the bubbling of oxygen tends to keep the melt well oxidized. The top of the melter is equipped with a number of ports. These provide access for feed, viewing, off-gas discharge, etc. The normal method of feeding is dry feeding through a feed pipe mounted through the top of the

  10. Development of the vitrification compositional envelope to support complex-wide application of MAWS technology

    SciTech Connect

    Mazer, J.J.; Muller, I.S.; Gan, H.; Buechele, A.C.; Lai, S.T.; Pegg, I.L. |

    1996-09-01

    This report presents the results from a study of the application of the Minimum Additive Waste Stabilization (MAWS) approach using vitrification as a treatment technology to a variety of waste streams across the DOE complex. This work has involved both experimental vitrification work using actual mixed wastes and surrogate waste streams from several DOE sites (Hanford, Idaho, and Oak Ridge) as well as the development of a computer-based, integrated glass property-composition database. The long-term objective is that this data base will assist glass formulation studies with single waste streams or combinations of waste streams subject to a variety of user-imposed constraints including waste stream usage priorities, process related constraints (e.g., melt viscosity, electrical conductivity, etc.), and waste form performance related constraints (e.g., TCLP and PCT leaching results). 79 refs., 143 figs., 65 tabs.

  11. Vitrification technologies for Weldon Spring raffinate sludges and contaminated soils - Phase 2 Report: Screening of Alternatives

    SciTech Connect

    Koegler, S.S.; Nakaoka, R.K.; Farnsworth, R.K.; Bates, S.O.

    1989-11-01

    This report is intended to aid the Weldon Spring Project Management Contractor in screening two vitrification technologies developed by Pacific Northwest Laboratory (PNL) for the remediation of raffinate sludges and contaminated soils at the Weldon Spring site in St. Charles County, Missouri. A previous report (Koegler, Oma, and Perez 1988) described the joule-heated ceramic melter (JHCM) and in situ vitrification (ISV) processes and their applicability to remediation of the Weldon Spring site based on existing information and previous PNL experience with similar wastes. Subsequent treatability tests and product analysis were conducted by PNL to further evaluate the JHCM and ISV processes. The treatability tests involved laboratory and bench-scale tests with actual raffinate sludge and uncontaminated soil from the Weldon Spring site. The vitrified product from the JHCM and ISV treatability tests was analyzed for a wide range of characteristics, including durability (leach resistance), strength, and toxicity. Both the process performance test and product quality were used to assess the two PNL vitrification technologies to determine their effectiveness, implementability, and cost. 11 refs., 16 figs., 23 tabs.

  12. In situ vitrification: Technology status and a survey of new applications

    SciTech Connect

    Thompson, L.E.

    1992-02-01

    Pacific Northwest Laboratory (PNL) is developing a thermal treatment process called in situ vitrification (ISV) for remediating contaminated soils, underground structures such as tanks, and buried wastes. ISV was initially developed for contaminated soil applications in 1980 and has since become a mature technology for these applications. Relatively new applications of ISV to underground structures and buried wastes are currently in the development stages. This paper will outline the development progress of the ISV technology, including the results of demonstrations and other field-scale testing performed to date, and examine the key remaining issues associated with new ISV applications. Progress on issues attendant to waste form performance and economics will be addressed.

  13. BABCOCK & WILCOX CYCLONE VITRIFICATION TECHNOLOGY FOR CONTAMINATED SOIL

    EPA Science Inventory

    The Babcock & Wilcox 6 million Btu/hr pilot cyclone furnace was successfully used in a 2-yr Superfund Innovative Technology Evaluation (SITE) Emerging Technology project to melt and vitrify an EPA Synthetic Soil Matrix (SSM) spiked with 7,000 ppm lead, 1,000 ppm cadmium, and 1,5...

  14. BABCOCK & WILCOX CYCLONE VITRIFICATION TECHNOLOGY FOR CONTAMINATED SOIL

    EPA Science Inventory

    The Babcock & Wilcox 6 million Btu/hr pilot cyclone furnace was successfully used in a 2-yr Superfund Innovative Technology Evaluation (SITE) Emerging Technology project to melt and vitrify an EPA Synthetic Soil Matrix (SSM) spiked with 7,000 ppm lead, 1,000 ppm cadmium, and 1,5...

  15. Innovative Vitrification for Soil Remediation

    SciTech Connect

    Hnat, James G.; Patten, John S.; Jetta, Norman W.

    1996-12-31

    Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

  16. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    SciTech Connect

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. )

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

  17. The effect of vitrification technology on waste loading

    SciTech Connect

    Hrma, P.R.; Smith, P.A.

    1994-08-01

    Radioactive wastes on the Hanford Site are going to be permanently disposed of by incorporation into a durable glass. These wastes will be separated into low and high-level portions, and then vitrified. The low-level waste (LLW) is water soluble. Its vitrifiable part (other than off-gas) contains approximately 80 wt% Na{sub 2}O, the rest being Al{sub 2}O{sub 3}, P{sub 2}O{sub 5}, K{sub 2}O, and minor components. The challenge is to formulate durable LLW glasses with as high Na{sub 2}O content as possible by optimizing the additions of SiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}, CaO, and ZrO{sub 2}. This task will not be simple, considering the non-linear and interactive nature of glass properties as a function of composition. Once developed, the LLW glass, being similar in composition to commercial glasses, is unlikely to cause major processing problems, such as crystallization or molten salt segregation. For example, inexpensive LLW glass can be produced in a high-capacity Joule-heated melter with a cold cap to minimize volatilization. The high-level waste (HLW) consists of water-insoluble sludge (Fe{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, ZrO{sub 2}, Cr{sub 2}O{sub 3}, NiO, and others) and a substantial water-soluble residue (Na{sub 2}O). Most of the water-insoluble components are refractory; i.e., their melting points are above the glass melting temperature. With regard to product acceptability, the maximum loading of Hanford HLW in the glass is limited by product durability, not by radiolytic heat generation. However, this maximum may not be achievable because of technological constraints imposed by melter feed rheology, frit properties, and glass melter limits. These restrictions are discussed in this paper. 38 refs.

  18. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    SciTech Connect

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  19. New technology for vitrification and field (microscope-free) warming and transfer of small ruminant embryos.

    PubMed

    Isachenko, Vladimir; Alabart, Jose Luis; Dattena, Maria; Nawroth, Frank; Cappai, Pietro; Isachenko, Eugenia; Cocero, Maria Jesus; Olivera, Julio; Roche, Alberto; Accardo, Carla; Krivokharchenko, Alexander; Folch, Jose

    2003-03-01

    This study was designed to test the efficiency of recently developed vitrification technology followed by microscope-free thawing and transfer of sheep embryos. In a first set of experiments, in vivo derived embryos at the morula to blastocyst stage were frozen in an automated freezer in ethylene glycol, and after thawing and removal of cryoprotectants, were transferred to recipient ewes according to a standard protocol (control group). A second group of embryos were loaded into open-pulled straws (OPS) and plunged into liquid nitrogen after exposure at room temperature to the media: 10% glycerol (G) for 5 min, 10% G+20% ethylene glycol (EG) for 5 min, 25% G+25% EG for 30s; or 10% EG+10% DMSO for 3 min, 20% EG+20% DMSO+0.3M trehalose for 30s. The OPS were thawed by plunging into tubes containing 0.5M trehalose. After this rapid thawing, the embryos were directly transferred using OPS as the catheter for the transplantation process. In a second set of experiments, in vivo derived and in vitro produced expanded blastocysts were vitrified in OPS and then transferred as described above. The lambing rates recorded (59% for the conventionally cryopreserved in vivo derived embryos, 56% for the vitrified in vivo derived embryos, and 20% for the vitrified in vitro produced embryos), suggest the suitability of the vitrification technique for the transfer of embryos obtained both in vivo and in vitro. This simple technology gives rise to a high embryo survival rate and will no doubt have applications in rearing sheep or other small ruminants.

  20. Non-Traditional In Situ Vitrification - A Technology Demonstration at Los Alamos National Laboratory

    SciTech Connect

    Coel-Roback, B.; Springer, M.; Lowery, P.; Thompson, L.; Huddleston, G.

    2003-02-25

    The Department of Energy (DOE) Subsurface Contamination Focus Area (SCFA) sponsored a technology demonstration of non-traditional in situ vitrification (NTISV) at Los Alamos National Laboratory (LANL). The project team for this demonstration included MSE Technology Applications, Inc., Geosafe Corporation, and LANL. The technology demonstration involved the performance of two large-scale test melts. The first, referred to as the ''cold'' test, was performed on a simulated absorption bed that contained surrogate contaminants. The cold test was conducted in April 1999. The second demonstration, referred to as the ''hot'' test, took place at LANL's Material Disposal Area (MDA) V in April 2000. The hot test was conducted on a portion of an absorption bed that received radionuclide and metal-contaminated wastewater from a laundry facility and a research laboratory from the mid-1940s to the early 1960s. This paper presents the results of drilling and sampling following the hot test at LANL's MDA V. The objectives of the sample collection were to characterize the vitrified mass and the effects of the hot test on the surrounding bedrock. Glass samples were analyzed for total radionuclide and metal content by standard EPA methods, and leachable radionuclide and metal content using Toxicity Characteristic Leaching Procedure (TCLP) and Product Consistency Test (PCT) methods.

  1. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    SciTech Connect

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  2. Innovative fossil fuel fired vitrification technology for soil remediation. Phase 1

    SciTech Connect

    Not Available

    1994-01-01

    Vortec has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conservation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment-as confirmed by both ANS 16.1 and Toxicity Characteristic Leaching Procedure (TCLP) testing. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and did not leach to the environment as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC subsystem design.

  3. EMERGING TECHNOLOGY SUMMARY: VITRIFICATION OF SOILS CONTAMINATED BY HAZARDOUS AND/OR RADIOACTIVE WASTES

    EPA Science Inventory

    A performance summary of an advanced multifuel-capable combustion and melting system (CMS) for the vitrification of hazardous wastes is presented. Vortex Corporation has evaluated its patented CMS for use in the remediation of soils contaminated with heavy metals and radionuclid...

  4. EMERGING TECHNOLOGY SUMMARY: VITRIFICATION OF SOILS CONTAMINATED BY HAZARDOUS AND/OR RADIOACTIVE WASTES

    EPA Science Inventory

    A performance summary of an advanced multifuel-capable combustion and melting system (CMS) for the vitrification of hazardous wastes is presented. Vortex Corporation has evaluated its patented CMS for use in the remediation of soils contaminated with heavy metals and radionuclid...

  5. The role of Tetronics plasma vitrification technology in the management and conditioning of nuclear waste

    SciTech Connect

    Deegan, David; Scales, Charlie

    2007-07-01

    Plasma Arc Technology is finding wider application in the treatment of hazardous waste materials an area which has a lot of synergy with radioactive waste management. It is being stimulated by the increasing demands of regulatory and economic drivers; currently, within the Integrated Waste Management (IWM) sector, there is a climate of rising costs, limited numbers of technological solutions, restricted access to traditional disposal based solutions and a significant levels of market consolidation. Traditionally, the IWM sector has operated with basic mixing technology solutions: e.g. physiochemical consolidation, physiochemical separation, neutralisation and basic material bulking, with ultimate reliance on landfill, cement based encapsulation and high temperature incineration (HTI). The impact of national statutes, the value of national liabilities and infra-structural deficiencies is demanding constant technological advancement for continued regulatory compliance. This paper presents information on Tetronics' plasma based solution, for the treatment of Asbestos Containing Materials (ACM) and Plutonium Containing Material (PCM). (authors)

  6. A Method for Determining Bulk Density, Material Density, and Porosity of Melter Feed During Nuclear Waste Vitrification

    SciTech Connect

    Hilliard, Zachary; Hrma, Pavel; Vance, E.

    2015-09-24

    Abstract Glass making efficiency largely depends on heat transfer to reacting glass batch (melter feed), which in turn is influenced by the bulk density (ρb) and porosity (Φ) as functions of temperature (T). Neither b(T) nor Φ(T) functions are readily accessible to direct measurement, but they can be determined based on monitoring the profile area of heated glass batch pellets and material density of batches quenched at various stages of conversion via pycnometry. For the determination of Φb, the bulk volume must be calculated as a function of temperature. This is done via a program constructed in MATLAB which takes an image of a pellet profile at a given temperature and calculates the volume of said pellet. The quenched density measured by pycnometry must be converted to the density at heat treatment temperature. This is done by taking into account the volume change due to thermal expansion/contraction.

  7. The potential for modification in cloning and vitrification technology to enhance genetic progress in beef cattle in Northern Australia.

    PubMed

    Taylor-Robinson, Andrew W; Walton, Simon; Swain, David L; Walsh, Kerry B; Vajta, Gábor

    2014-08-01

    Recent advances in embryology and related research offer considerable possibilities to accelerate genetic improvement in cattle breeding. Such progress includes optimization and standardization of laboratory embryo production (in vitro fertilization - IVF), introduction of a highly efficient method for cryopreservation (vitrification), and dramatic improvement in the efficiency of somatic cell nuclear transfer (cloning) in terms of required effort, cost, and overall outcome. Handmade cloning (HMC), a simplified version of somatic cell nuclear transfer, offers the potential for relatively easy and low-cost production of clones. A potentially modified method of vitrification used at a centrally located laboratory facility could result in cloned offspring that are economically competitive with elite animals produced by more traditional means. Apart from routine legal and intellectual property issues, the main obstacle that hampers rapid uptake of these technologies by the beef cattle industry is a lack of confidence from scientific and commercial sources. Once stakeholder support is increased, the combined application of these methods makes a rapid advance toward desirable traits (rapid growth, high-quality beef, optimized reproductive performance) a realistic goal. The potential impact of these technologies on genetic advancement in beef cattle herds in which improvement of stock is sought, such as in northern Australia, is hard to overestimate. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Hanford Waste Vitrification Plant technical background document for toxics best available control technology demonstration

    SciTech Connect

    1992-10-01

    This document provides information on toxic air pollutant emissions to support the Notice of Construction for the proposed Hanford Waste Vitrification Plant (HWVP) to be built at the the Department of Energy Hanford Site near Richland, Washington. Because approval must be received prior to initiating construction of the facility, state and federal Clean Air Act Notices of construction are being prepared along with necessary support documentation.

  9. Vitrification as a low-level radioactive mixed waste treatment technology at Argonne National Laboratory

    SciTech Connect

    Mazer, J.J.; No, Hyo J.

    1995-08-01

    Argonne National Laboratory-East (ANL-E) is developing plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated onsite. The ultimate objective of this project is to install a full-scale vitrification system at ANL-E capable of processing the annual generation and historic stockpiles of selected LLMW streams. This project is currently in the process of identifying a range of processible glass compositions that can be produced from actual mixed wastes and additives, such as boric acid or borax. During the formulation of these glasses, there has been an emphasis on maximizing the waste content in the glass (70 to 90 wt %), reducing the overall final waste volume, and producing a stabilized low-level radioactive waste glass. Crucible glass studies with actual mixed waste streams have produced alkali borosilicate glasses that pass the Toxic Characteristic Leaching Procedure (TCLP) test. These same glass compositions, spiked with toxic metals well above the expected levels in actual wastes, also pass the TCLP test. These results provide compelling evidence that the vitrification system and the glass waste form will be robust enough to accommodate expected variations in the LLMW streams from ANL-E. Approximately 40 crucible melts will be studied to establish a compositional envelope for vitrifying ANL-E mixed wastes. Also being determined is the identity of volatilized metals or off-gases that will be generated.

  10. Safeguardability of the vitrification option for disposal of plutonium

    SciTech Connect

    Pillay, K.K.S.

    1996-05-01

    Safeguardability of the vitrification option for plutonium disposition is rather complex and there is no experience base in either domestic or international safeguards for this approach. In the present treaty regime between the US and the states of the former Soviet Union, bilaterial verifications are considered more likely with potential for a third-party verification of safeguards. There are serious technological limitations to applying conventional bulk handling facility safeguards techniques to achieve independent verification of plutonium in borosilicate glass. If vitrification is the final disposition option chosen, maintaining continuity of knowledge of plutonium in glass matrices, especially those containing boron and those spike with high-level wastes or {sup 137}Cs, is beyond the capability of present-day safeguards technologies and nondestructive assay techniques. The alternative to quantitative measurement of fissile content is to maintain continuity of knowledge through a combination of containment and surveillance, which is not the international norm for bulk handling facilities.

  11. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  12. Survival rate of human oocytes and pregnancy outcome after vitrification using slush nitrogen in assisted reproductive technologies.

    PubMed

    Yoon, Tae Ki; Lee, Dong Ryul; Cha, Soo Kyung; Chung, Hyung Min; Lee, Woo Sik; Cha, Kwang Yul

    2007-10-01

    To report the survival rate of oocytes and the rate of successful pregnancies obtained from super-rapid cooling of oocytes using slush nitrogen (SN(2)). Prospective clinical research. A university-affiliated hospital. Twenty-eight infertile women who underwent 30 cycles of IVF-ET using previously vitrified oocytes. Oocytes were vitrified by super-rapid cooling using SN(2). Morphological normality of thawed oocytes and clinical outcome. In 30 cycles of ovarian stimulation for IVF, 364 surplus oocytes from 28 patients were vitrified using SN(2). Three hundred two (85.1% +/- 2.9%) of the oocytes survived after warming. Fertilization and cleavage rates were 77.4% +/- 3.5% (168/218) and 94.3% +/- 2.1% (158/168), respectively. Thirteen pregnancies (43.3%) resulted from 30 uterine transfers of 120 embryos with an implantation rate of 14.2% (17/120). There were no differences between the pregnancy rate after vitrification/warming and that obtained from routine noncryopreserved oocytes. The present report suggests that super-rapid cooling may improve the clinical efficacy of human oocyte vitrification and may be a valuable tool for human assisted reproductive technologies.

  13. Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans

    SciTech Connect

    Tixier, J.S.; Powell, T.D.; Spalding, B.P.; Jacobs, G.K.

    1993-05-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a relatively inert, leach-resistant, vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of 9OSr in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in mobility of more than 2 orders of magnitude. The paper also presents the current plans for continued collaboration on a two setting treatability test on one portion of an old seepage pit at ORNL.

  14. Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans

    SciTech Connect

    Tixier, J.S.; Powell, T.D. ); Spalding, B.P.; Jacobs, G.K. )

    1993-02-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a durable, leach-resistant. vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of [sup 90]r in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in potential environmental mobility of more than two orders of magnitude. The paper also presents the current plans for continued collaboration on a two-setting treatability test on one portion of an old seepage pit at ORNL.

  15. Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans

    SciTech Connect

    Tixier, J.S.; Powell, T.D. ); Spalding, B.P.; Jacobs, G.K. )

    1993-01-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a relatively inert, leach-resistant, vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of 9OSr in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in mobility of more than 2 orders of magnitude. The paper also presents the current plans for continued collaboration on a two setting treatability test on one portion of an old seepage pit at ORNL.

  16. Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans

    SciTech Connect

    Tixier, J.S.; Powell, T.D.; Spalding, B.P.; Jacobs, G.K.

    1993-02-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a durable, leach-resistant. vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of {sup 90}r in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in potential environmental mobility of more than two orders of magnitude. The paper also presents the current plans for continued collaboration on a two-setting treatability test on one portion of an old seepage pit at ORNL.

  17. Innovative vitrification for soil remediation

    SciTech Connect

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  18. Georgia Tech Final Report Demonstration In Situ Plasma Vitrification Technology for Savannah River Site Contaminated Soils (U)

    SciTech Connect

    Schumacher, R.F.

    1996-12-01

    Previous experience with in-situ (Joule-heated) vitrification (ISV) of Savannah River site (SRS) highly weathered soil, has shown that the SRS soil is very refractory and a poor electrical conductor. These findings bring into question the likelihood of utilizing the Joule-heat type of vitrification treatment for waste sites and basins at SRS. An alternative approach may be in-situ plasma vitrification (ISPV). The ISPV approach provides a similar vitrified product and also has a safety advantage in that the melting is initiated at the bottom of a borehole compared to top-down melting for Joule heated ISV.

  19. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    SciTech Connect

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  20. Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes

    SciTech Connect

    McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N.

    1994-10-20

    This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

  1. Hydroxypropyl cellulose as an option for supplementation of cryoprotectant solutions for embryo vitrification in human assisted reproductive technologies.

    PubMed

    Mori, Chiemi; Yabuuchi, Akiko; Ezoe, Kenji; Murata, Nana; Takayama, Yuko; Okimura, Tadashi; Uchiyama, Kazuo; Takakura, Kei; Abe, Hiroyuki; Wada, Keiko; Okuno, Takashi; Kobayashi, Tamotsu; Kato, Keiichi

    2015-06-01

    Hydroxypropyl cellulose (HPC) was investigated as a replacement for serum substitute supplement (SSS) for use in cryoprotectant solutions for embryo vitrification. Mouse blastocysts from inbred (n = 1056), hybrid (n = 128) strains, and 121 vitrified blastocysts donated by infertile patients (n = 102) were used. Mouse and human blastocysts, with or without zona pellucida, were vitrified and warmed in either 1% or 5% HPC or in 5% or 20% SSS-supplemented media using the Cryotop (Kitazato BioPharma Co. Ltd, Fuji, Japan) method, and the survival and oxygen consumption rates were assessed. Viscosity of each vitrification solution was compared. Survival rates of mouse hybrid blastocysts and human zona pellucida-intact blastocysts were comparable among the groups. Mouse and human zona pellucida-free blastocysts, which normally exhibit poor cryoresistance, showed significantly higher survival rates in 5% HPC than 5% SSS (P < 0.05). The 5% HPC-supplemented vitrification solution showed a significantly higher viscosity (P < 0.05). The blastocysts were easily detached from the Cryotop strip during warming when HPC-supplemented vitrification solution was used. The oxygen consumption rates were similar between non-vitrified and 5% HPC groups. The results suggest possible use of HPC for supplementation of cryoprotectant solutions and provide useful information to improve vitrification protocols. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  2. Environmental Management vitrification activities

    SciTech Connect

    Krumrine, P.H.

    1996-05-01

    Both the Mixed Waste and Landfill Stabilization Focus Areas as part of the Office of Technology Development efforts within the Department of Energy`s (DOE) Environmental Management (EM) Division have been developing various vitrification technologies as a treatment approach for the large quantities of transuranic (TRU), TRU mixed and Mixed Low Level Wastes that are stored in either landfills or above ground storage facilities. The technologies being developed include joule heated, plasma torch, plasma arc, induction, microwave, combustion, molten metal, and in situ methods. There are related efforts going into development glass, ceramic, and slag waste form windows of opportunity for the diverse quantities of heterogeneous wastes needing treatment. These studies look at both processing parameters, and long term performance parameters as a function of composition to assure that developed technologies have the right chemistry for success.

  3. Innovative fossil fuel fired vitrification technology for soil remediation. Volume 1, Phase 1: Annual report, September 28, 1992--August 31, 1993

    SciTech Connect

    Not Available

    1993-08-01

    Vortex has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program with the Department of Energy (DOE) Morgantown Energy Technology Center (METC). The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conversation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and will not leach to the environment--as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC system design. This topical report will present a summary of the activities conducted during Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The report includes the detail technical data generated during the experimental program and the design and cost data for the preliminary Phase 2 plant.

  4. Digital microfluidic processing of mammalian embryos for vitrification.

    PubMed

    Pyne, Derek G; Liu, Jun; Abdelgawad, Mohamed; Sun, Yu

    2014-01-01

    Cryopreservation is a key technology in biology and clinical practice. This paper presents a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual micro droplets manipulated on the microfluidic device were used as micro-vessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  5. Plasma vitrification of asbestos fibers

    SciTech Connect

    Camacho, S.L.

    1995-12-31

    Asbestos is a mineral in the form of long, thread-like fibers. Asbestos fibers have been among the best insulators of pipes, boilers, ducts, tanks, etc., in buildings, ships, and industrial furnaces. Over 150,000 metric tons of asbestos were consumed in the United States in 1984. The Environmental Protection Agency has declared asbestos fibers a known human carcinogen. And today, asbestos insulators are being replaced by manmade non-hazardous fibers. Millions of tons of replaced asbestos fiber insulators are in storage, awaiting the demonstration of effective alternative disposal technologies. Plasma vitrification has been demonstrated during May, June and July 1995 as a viable, cost-effective, safe technology for asbestos fiber disposal. A low-mass plasma arc heater is submerged under the waste asbestos insulating materials, and the intense heat of the plasma flame heats and melts the fibers. The by-product is dark, non-hazardous glass pellets. The vitrification process renders the asbestos waste safe for use as road construction aggregates or other fill materials. This paper will describe the results of start-up of a 1 ton-per-hour Plasma Mobile Asbestos Vitrification (MAV) Plant at a DOD Site in Port Clinton, Ohio. The Plasma MAV Plant is being demonstrated for the on-site disposal of 1.5 million pounds of Amosite asbestos fibers.

  6. Vitrification and waste glass compositional limits

    SciTech Connect

    Chapman, C.C.; Whittington, K.F.; Peters, R.D.

    1994-08-01

    The most important issue when evaluating the suitability of a waste stream for vitrification is the composition of the waste. Appropriate analytical data are required to ensure that adequate information is available for evaluating and implementing the technology. Although vitrification can be used to immobilize almost any waste stream through dilution of the waste with glass formers, it may be too costly for certain limiting conditions. This report provides guidelines of these limit sand the consequent analytical requirements that are necessary for appropriate qualitative cost estimates.

  7. World first in high level waste vitrification - A review of French vitrification industrial achievements

    SciTech Connect

    Brueziere, J.; Chauvin, E.; Piroux, J.C.

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process was implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.

  8. In Situ Vitrification Treatability Study Work Plan

    SciTech Connect

    Charboneau, B.L.; Landon, J.L.

    1989-03-01

    The Buried Waste Program was established in October, 1987 to accelerate the studies needed to develop a recommended long-term management plan for the buried mixed waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The In Situ Vitrification Project is being conducted in a Comprehensive Environmental Response, Compensation, and Liability Act Feasibility Study format to identify methods for the long-term management of the mixed waste buried. This In Situ Vitrification Treatability Study Work Plan gives a brief description of the site, work breakdown structure, and project organization: the in situ vitrification technology; the purpose of the tests and demonstrations; and the equipment and materials required for the tests and demonstration. 5 refs., 6 figs., 3 tabs.

  9. Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    SciTech Connect

    Higley, B.A.

    1995-03-15

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

  10. Vitrification of asbestos wastes

    SciTech Connect

    Blary, F.; Rollin, M.

    1995-12-31

    In 1990, EDF decided to test the use of the plasma torch in waste destruction processes. These tests facilitated the creation of a mobile industrial plant for the vitrification of asbestos waste. Asbestos is valued for its insulating properties and its resistance to fire, but has the formidable drawback that its inhalation causes serious respiratory diseases (cancer) in man. Nowadays therefore this waste, most often originating from the renovation or demolition of contaminated buildings, has to be disposed of. The process developed by INERTAM is vitrification by plasma torch: i.e. high temperature thermal treatment (T > 1,600 C) which fuses and homogenizes materials. INERTAM thus carries out the total destruction of the asbestos fibers by fusion and achieves a significant reduction in specific volume (80%) of the waste and an inert, stable material (the ``vitrificate`` or fusion residue) able to be re-used in road techniques.

  11. Thermodynamic aspects of vitrification.

    PubMed

    Wowk, Brian

    2010-02-01

    Vitrification is a process in which a liquid begins to behave as a solid during cooling without any substantial change in molecular arrangement or thermodynamic state variables. The physical phenomenon of vitrification is relevant to both cryopreservation by freezing, in which cells survive in glass between ice crystals, and cryopreservation by vitrification in which a whole sample is vitrified. The change from liquid to solid behavior is called the glass transition. It is coincident with liquid viscosity reaching 10(13) Poise during cooling, which corresponds to a shear stress relaxation time of several minutes. The glass transition can be understood on a molecular level as a loss of rotational and translational degrees of freedom over a particular measurement timescale, leaving only bond vibration within a fixed molecular structure. Reduced freedom of molecular movement results in decreased heat capacity and thermal expansivity in glass relative to the liquid state. In cryoprotectant solutions, the change from liquid to solid properties happens over a approximately 10 degrees C temperature interval centered on a glass transition temperature, typically near -120 degrees C (+/-10 degrees C) for solutions used for vitrification. Loss of freedom to quickly rearrange molecular position causes liquids to depart from thermodynamic equilibrium as they turn into a glass during vitrification. Residual molecular mobility below the glass transition temperature allows glass to very slowly contract, release heat, and decrease entropy during relaxation toward equilibrium. Although diffusion is practically non-existent below the glass transition temperature, small local movements of molecules related to relaxation have consequences for cryobiology. In particular, ice nucleation in supercooled vitrification solutions occurs at remarkable speed until at least 15 degrees C below the glass transition temperature. Copyright 2009 Elsevier Inc. All rights reserved.

  12. Vitrification Demonstration with Argentine Ion Exchange Material in the Stir-Melter

    SciTech Connect

    Cicero-Herman, C.A.

    2002-06-28

    The Savannah River Technology Center (SRTC) is investigating the viability of vitrification treatment of Argentine ion exchange material as part of a Department of Energy (DOE) - Office of Science and Technology Development Task Plan. Bench-scale studies were performed by the SRTC to define the necessary vitrification process for this material. However, the process had to be demonstrated in a melter system before vitrification could be considered a viable treatment option.

  13. Prospects for vitrification of mixed wastes at ANL-E

    SciTech Connect

    Mazer, J.; No, Hyo

    1993-12-01

    This report summarizes a study evaluating the prospects for vitrification of some of the mixed wastes at ANL-E. This project can be justified on the following basis: Some of ANL-E`s mixed waste streams will be stabilized such that they can be treated as a low-level radioactive waste. The expected volume reduction that results during vitrification will significantly reduce the overall waste volume requiring disposal. Mixed-waste disposal options currently used by ANL-E may not be permissible in the near future without treatment technologies such as vitrification.

  14. Review of FY2001 Development Work for Vitrification of Sodium Bearing Waste

    SciTech Connect

    Barnes, C.M.; Taylor, D.D.

    2002-09-09

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  15. Review of FY 2001 Development Work for Vitrification of Sodium Bearing Waste

    SciTech Connect

    Taylor, Dean Dalton; Barnes, Charles Marshall

    2002-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  16. Treatment of Spent Argentine Ion Exchange Resin Using Vitrification - Results of FY01 Testing at the Savannah River Technology Center

    SciTech Connect

    Crawford, C.L.

    2002-08-14

    Under the Science and Technology Implementing Arrangement for Cooperation on Radioactive and Mixed Waste Management (JCCRM), the Department of Energy (DOE) is helping to transfer waste treatment technology to international atomic energy commissions. In 1996, as part of the JCCRM, DOE established a collaborative research agreement with Argentina's Comision Nacional de Energia Atomica (CNEA). A primary mission of the CNEA is to direct waste management activities for Argentina's nuclear industry.

  17. Hanford low-level vitrification melter testing -- Master list of data submittals

    SciTech Connect

    Hendrickson, D.W.

    1995-03-15

    The Westinghouse Hanford Company (WHC) is conducting a two-phased effort to evaluate melter system technologies for vitrification of liquid low-level radioactive waste (LLW) streams. The evaluation effort includes demonstration testing of selected glass melter technologies and technical reports regarding the applicability of the glass melter technologies to the vitrification of Hanford LLW tank waste. The scope of this document is to identify and list vendor document submittals in technology demonstration support of the Hanford Low-Level Waste Vitrification melter testing program. The scope of this document is limited to those documents responsive to the Statement of Work, accepted and issued by the LLW Vitrification Program. The purpose of such a list is to maintain configuration control of vendor supplied data and to enable ready access to, and application of, vendor supplied data in the evaluation of melter technologies for the vitrification of Hanford low-level tank wastes.

  18. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Herbst, Alan Keith

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  19. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Herbst, Alan K.

    2002-01-02

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  20. Worst-Case" Simulant for INTEC Soduim-Bearing Waste Vitrification Tests

    SciTech Connect

    Christian, Jerry Dale; Batcheller, Thomas Aquinas

    2001-09-01

    species of concern that will be present in current and future wastes from different tanks. Because most of the species of concern are at small concentrations relative to the bulk components that are fairly constant, maximizing them individually into a single waste composition does not substantially affect the general vitrification chemistry. The evaluation and results are reported here. This simulant is suitable for performing laboratory and pilot-scale tests in order to develop the vitrification technology.

  1. Waste Vitrification Projects Throughout the US Initiated by SRS

    SciTech Connect

    Jantzen, C.M.; Whitehouse, J.C.; Smith, M.E.; Pickett, J.B.; Peeler, D.K.

    1998-05-01

    Technologies are being developed by the U. S. Department of Energy`s (DOE) Nuclear Facility sites to convert high-level, low-level, and mixed wastes to a solid stabilized waste form for permanent disposal. Vitrification is one of the most important and environmentally safest technologies being developed. The Environmental Protection Agency (EPA) has declared vitrification the best demonstrated available technology for high-level radioactive waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The Defense Waste Processing Facility being tested at will soon start vitrifying the high-level waste at. The DOE Office of Technology Development has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Vitrification produces durable waste forms at volume reductions up to 97%. Large reductions in volume minimize long-term storage costs making vitrification cost effective on a life cycle basis.

  2. Appendix A: Cryotech(®) Vitrification Thawing.

    PubMed

    Gandhi, Goral; Kuwayama, Masashige; Kagalwala, Sakina; Pangerkar, Priyanka

    2017-01-01

    In the last 15-20 years, many centers are using vitrification as a method of choice for cryopreservation of human oocytes and embryos. As vitrification technologies have improved their success profiles, new applications seem to have emerged, making IVF treatments more successful and more flexible.This appendix describes the Cryotech(®) method, which is the latest "minimal volume approach" method, suitable for cryopreservation of oocytes and embryos of any developmental stage, including blastocysts. Dr. Masashige Kuwayama, who has introduced major advances in oocyte and embryo cryopreservation, has developed this method. A detailed protocol has been described with finer tips for the accurate use of the method for perfect survival and safety.

  3. Vitrification of plutonium at Rocky Flats the argument for a pilot plant

    SciTech Connect

    Moore, L.

    1996-05-01

    Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

  4. Remedition case studies: Thermal desorption, soil washing, and in situ vitrification

    SciTech Connect

    1995-03-01

    The purpose of this report is to provide case studies of site cleanup projects utilizing thermal desorption, soil washing, and in situ vitrification. This volume contains reports on projects using thermal desorption, including six completed applications at sites contaminated with PCBs, pesticides, or chlorinated aliphatics. Two projects in this volume used soil washing and in situ vitrification technologies.

  5. Vitrification of copper flotation waste.

    PubMed

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  6. Vitrification of waste

    DOEpatents

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  7. Vitrification of waste

    DOEpatents

    Wicks, George G.

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  8. Vitrification publication bibliography

    SciTech Connect

    Schmieman, E.; Johns, W.E.

    1996-02-01

    This document was compiled by a group of about 12 graduate students in the Department of Mechanical Engineering and Material Science at Washington State University and was funded by the U.S. Department of Energy. The literature search resulting in the compilation of this bibliography was designed to be an exhaustive search for research and development work involving the vitrification of mixed wastes, published by domestic and foreign researchers, primarily during 1989-1994. The search techniques were dominated by electronic methods and this bibliography is also available in electronic format, Windows Reference Manager.

  9. Vitrification: Destroying and immobilizing hazardous wastes

    SciTech Connect

    Chapman, C.C.; Peters, R.D.; Perez, J.M.

    1994-04-01

    Researchers at the US Department of Energy`s Pacific Northwest Laboratory (PNL) have led the development of vitrification a versatile adaptable process that transforms waste solutions, slurries, moist powder and/or dry solids into a chemically durable glass form. The glass form can be safely disposed or used for other purposes, such as construction material if non-radioactive. The feed used in the process can be either combustible or non-combustible. Organic compounds are decomposed in the melters` plenum, while the inorganic residue melts into a molten glass pool. The glass produced by this process is a chemically durable material comparable to natural obsidian. Its properties typically allow it to pass the EPA Toxicity (TCLP) test as non-hazardous. To date, no glass produced by vitrification has failed the TCLP test. Vitrification is thus an ideal method of treating DOE`s mixed waste because of its ability to destroy organic compounds and bind toxic or radioactive elements. This article provides an overview of the technology.

  10. Genetically engineered peptides for inorganics: study of an unconstrained bacterial display technology and bulk aluminum alloy.

    PubMed

    Adams, Bryn L; Finch, Amethist S; Hurley, Margaret M; Sarkes, Deborah A; Stratis-Cullum, Dimitra N

    2013-09-06

    The first-ever peptide biomaterial discovery using an unconstrained engineered bacterial display technology is reported. Using this approach, we have developed genetically engineered peptide binders for a bulk aluminum alloy and use molecular dynamics simulation of peptide conformational fluctuations to demonstrate sequence-dependent, structure-function relationships for metal and metal oxide interactions.

  11. Innovative vitrification for soil remediation

    SciTech Connect

    Jetta, N.W.; Patten, J.S.; Hnat, J.G.

    1996-03-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  12. Innovative vitrification for soil remediation

    SciTech Connect

    Jetta, N.W.; Patten, J.S.; Hnat, J.G.

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  13. PNL vitrification technology development project high-waste loaded high-level waste glasses for high-temperature melter: Letter report

    SciTech Connect

    Kim, D.; Hrma, P.R.

    1996-02-01

    For vitrification of high-level wastes (HLW) at the Hanford Site, a Joule-heated overflow type melter with bottom draining capability and capable of operating at temperatures up to 1500{degrees}C is being developed. The original proposed Hanford Waste Vitrification Plant (HWVP) melter used a 1150{degrees}C processing temperature and was tested using glasses with up to 28 wt% waste oxide loading for NCAW (Neutralized Current Acid Waste). The goal of the high-temperature melter (HTM) is the volume reduction of the final product and increase of the waste processing rate by processing high-waste loaded glasses at higher temperatures. This would dramatically decrease waste disposal and processing costs. The aim of glass development for the HTM is to determine compositions and melting temperatures for processible and acceptable glasses with a high waste loading. Glass property/composition models for viscosity and liquidus temperature developed in the Glass Envelope Definition (GED) study were used. The results of glass formulation and experimental testing are presented for NCAW and DST/SST (Double-Shell Tank/Single-Shell Tank) Blend waste. Although the purpose of this report was to summarize the glass development study with Blend waste only, the results with NCAW were needed because glass development with Blend waste was based on the results from the glass development study with NCAW.

  14. Functional description of the West Valley Demonstration Project Vitrification Facility

    SciTech Connect

    Borisch, R.R.; McMahon, C.L.

    1990-07-01

    The primary objective of the West Valley Demonstration Project (WVDP) is the solidification of approximately 2.1 million liters (560,000 gallons) of high-level radioactive waste (HLW) which resulted from the operation of a nuclear fuel reprocessing plant. Since the original plant was not built to accommodate the processing of waste beyond storage in underground tanks, HLW solidification by vitrification presented numerous engineering challenges. Existing facilities required redesign and conversion to meet their new purpose. Vitrification technology and systems needed to be created and then tested. Equipment modifications, identified from cold test results, were incorporated into the final equipment configuration to be used for radioactive (hot) operations. Cold operations have defined the correct sequence and optimal functioning of the equipment to be used for vitrification and have verified the process by which waste will be solidified into borosilicate glass.

  15. Feasibility Study for Vitrification of Sodium-Bearing Waste

    SciTech Connect

    J. J. Quigley; B. D. Raivo; S. O. Bates; S. M. Berry; D. N. Nishioka; P. J. Bunnell

    2000-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated under a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is the complete calcination (i.e., treatment) of all SBW by December 31, 2012. One of the proposed options for treatment of SBW is vitrification. This study will examine the viability of SBW vitrification. This study describes the process and facilities to treat the SBW, from beginning waste input from INTEC Tank Farm to the final waste forms. Schedules and cost estimates for construction and operation of a Vitrification Facility are included. The study includes a facility layout with drawings, process description and flow diagrams, and preliminary equipment requirements and layouts.

  16. High-Level Waste Vitrification Facility Feasibility Study

    SciTech Connect

    D. A. Lopez

    1999-08-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035.

  17. Recent advances in in situ vitrification

    SciTech Connect

    Bonner, W.F.; Luey, Ja-Kael.

    1992-05-01

    In Situ Vitrification (ISV) is an innovative mobile remediation technology for soils and other underground contamination: Developed by the US Department of Energy's Pacific Northwest Laboratory (PNL), ISV has advanced during the past decade from a laboratory concept to a remediation technology commercially available for contaminated soils. ISV technology is currently being developed for remediation of DOE waste sites at Hanford, Oak Ridge National Laboratory (ORNL) Idaho National Laboratory (INEL), and other sites. The incentives for application of ISV can convert contaminated sites to a solid, highly durable block similar to naturally occurring obsidian. The ISV product has been shown capable of passing US Environmental Protection Agency (EPA) tests such as the Toxic Characteristic Leach Procedure (TCLP). Retrieval, handling and transport of untreated hazardous material would normally not be required after application of ISV. Therefore, costs, exposure to personnel, risk of releases to the environment, and generation of secondary wastes are greatly reduced compared with remove-and-treat technologies.

  18. Recent advances in in situ vitrification

    SciTech Connect

    Bonner, W.F.; Luey, Ja-Kael

    1992-05-01

    In Situ Vitrification (ISV) is an innovative mobile remediation technology for soils and other underground contamination: Developed by the US Department of Energy`s Pacific Northwest Laboratory (PNL), ISV has advanced during the past decade from a laboratory concept to a remediation technology commercially available for contaminated soils. ISV technology is currently being developed for remediation of DOE waste sites at Hanford, Oak Ridge National Laboratory (ORNL) Idaho National Laboratory (INEL), and other sites. The incentives for application of ISV can convert contaminated sites to a solid, highly durable block similar to naturally occurring obsidian. The ISV product has been shown capable of passing US Environmental Protection Agency (EPA) tests such as the Toxic Characteristic Leach Procedure (TCLP). Retrieval, handling and transport of untreated hazardous material would normally not be required after application of ISV. Therefore, costs, exposure to personnel, risk of releases to the environment, and generation of secondary wastes are greatly reduced compared with remove-and-treat technologies.

  19. In situ vitrification: application analysis for stabilization of transuranic waste

    SciTech Connect

    Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

    1982-09-01

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10/sup -5/ parts per year. 32 figures, 30 tables.

  20. Vitrification: a simple and successful method for cryostorage of human blastocysts.

    PubMed

    Liebermann, Juergen

    2015-01-01

    Cryopreservation is one of the keystones in clinical infertility treatment. Especially vitrification has become a well-established and widely used routine procedure that allows important expansion of therapeutic strategies when in vitro fertilization (IVF) is used to treat infertility. Vitrification of human blastocysts allows us to maximize the potential for conception from any one in vitro fertilization cycle and prevents wastage of embryos. This goes even further toward to best utilize a patient's supernumerary oocytes after retrieval, maximizing the use of embryos from a single stimulation cycle. The technology may even be used to eliminate fresh embryo transfers for reasons of convenience, uterine receptivity, fertility preservation, preimplantation genetic diagnosis, or emergency management. In this chapter, the application of vitrification technology for cryopreserving human blastocyst will be revealed through step-by-step protocols. The results that are presented using the described protocols underscore the robustness of the vitrification technology for embryo cryopreservation.

  1. Chloride removal from vitrification offgas

    SciTech Connect

    Slaathaug, E.J.

    1995-06-01

    This study identified and investigated techniques of selectively purging chlorides from the low-level waste (LLW) vitrification process with the purge stream acceptable for burial on the Hanford Site. Chlorides will be present in high concentration in several individual feeds to the LLW Vitrification Plant. The chlorides are highly volatile in combustion type melters and are readily absorbed by wet scrubbing of the melter offgas. The Tank Waste Remediation System (TWRS) process flow sheets show that the resulting chloride rich scrub solution is recycled back to the melter. The chlorides must be purged from the recycle loop to prevent the buildup of excessively high chloride concentrations.

  2. Pretreatment of americium/curium solutions for vitrification

    SciTech Connect

    Rudisill, T.S.

    1996-03-18

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to the heavy isotope programs at Oak Ridge National Laboratory. Prior to vitrification, an in-tank oxalate precipitation and a series of oxalic/nitric acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Pretreatment development experiments were performed to understand the behavior of the lanthanides and the metal impurities during the oxalate precipitation and properties of the precipitate slurry. The results of these experiments will be used to refine the target glass composition allowing optimization of the primary processing parameters and design of the solution transfer equipment.

  3. Selecting a plutonium vitrification process

    SciTech Connect

    Jouan, A.

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing of plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.

  4. Vitrification for reclaiming spent alkaline batteries.

    PubMed

    Kuo, Yi-Ming; Chang, Juu-En; Jin, Cheng-Han; Lin, Jian-Yu; Chang-Chien, Guo-Ping

    2009-07-01

    The object of this study is to stabilize spent alkaline batteries and to recover useful metals. A blend of dolomite, limestone, and cullet was added to act as a reductant and a glass matrix former in vitrification. Specimens were vitrified using an electrical heating furnace at 1400 degrees C and the output products included slag, ingot, flue gas, and fly ash. The major constituents of the slag were Ca, Mn, and Si, and the results of the toxicity leaching characteristics met the standards in Taiwan. The ingot was a good material for use in production of stainless steel, due to being mainly composed of Fe and Mn. For the fly ash, the high level of Zn makes it economical to recover. The distribution of metals indicated that most of Co, Cr, Cu, Fe, Mn, and Ni moved to the ingot, while Al, Ca, Mg, and Si stayed in the slag; Hg vaporized as gas phase into the flue gas; and Cd, Pb, and Zn were predominately in the fly ash. Recovery efficiency for Fe and Zn was >90% and the results show that vitrification is a promising technology for reclaiming spent alkaline batteries.

  5. The Vitrification and Determination of the Crystallization Time Scales of a Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 Bulk Metallic Glass Forming Liquid

    NASA Technical Reports Server (NTRS)

    Hays, C. C.; Schroers, J.; Johnson, W. L.; Rathz, T. J.; Hyers, R. W.; Rogers, J. R.; Robinson, M. B.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Zr58.5Nb2.8Cul5.6Nil2.8All0.3 is the first bulk glass forming liquid that does not contain beryllium to be vitrified by purely radiative cooling in the containerless electrostatic levitation process. The measured critical cooling rate is 1.75 K/s. The sluggish crystallization kinetics enable the determination of the time-temperature-transformation (TTT) diagram between the liquidus and the glass transition temperatures. At the nose of the TTT diagram, the shortest time to reach crystallization in an isothermal experiment is 32 seconds. In contrast to other bulk metallic glasses the scatter in the crystallization onset times are small at both high and low temperatures.

  6. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    SciTech Connect

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams.

  7. Development of a remote bushing for actinide vitrification

    SciTech Connect

    Schumacher, R.F.; Ramsey, W.G.; Johnson, F.M.

    1996-12-31

    The Savannah River Site (SRS) and the Savannah River Technology Center (SRTC) are combining their existing experience in handling highly radioactive, special nuclear materials with commercial glass fiberization technology in order to assemble a small vitrification system for radioactive actinide solutions. The vitrification system or {open_quotes}brushing{close_quotes}, is fabricated from platinum-rhodium alloy and is based on early marble remelt fiberization technology. Advantages of this unique system include its relatively small size, reliable operation, geometrical safety (nuclear criticality), and high temperature capability. The bushing design should be capable of vitrifying a number of the actinide nuclear materials, including solutions of americium/curium, neptunium, and possibly plutonium. State of the art, mathematical and oil model studies are being combined with basic engineering evaluations to verify and improve the thermal and mechanical design concepts.

  8. Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology.

    PubMed

    Qi, Jianping; Lu, Y I; Wu, Wei

    2015-01-01

    Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.

  9. Bio-inspired Cryo-ink Preserves Red Blood Cell Phenotype and Function during Nanoliter Vitrification

    PubMed Central

    Assal, Rami El; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyber, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M.W.; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan

    2014-01-01

    Current red blood cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red blood cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bio-printing approach. PMID:25047246

  10. Development of a novel vitrification method for chondrocyte sheets

    PubMed Central

    2013-01-01

    Background There is considerable interest in using cell sheets for the treatment of various lesions as part of regenerative medicine therapy. Cell sheets can be prepared in temperature-responsive culture dishes and applied to injured tissue. For example, cartilage-derived cell sheets are currently under preclinical testing for use in treatment of knee cartilage injuries. The additional use of cryopreservation technology could increase the range and practicality of cell sheet therapies. To date, however, cryopreservation of cell sheets has proved impractical. Results Here we have developed a novel and effective method for cryopreserving fragile chondrocyte sheets. We modified the vitrification method previously developed for cryopreservation of mammalian embryos to vitrify a cell sheet through use of a minimum volume of vitrification solution containing 20% dimethyl sulfoxide, 20% ethylene glycol, 0.5 M sucrose, and 10% carboxylated poly-L-lysine. The principal feature of our method is the coating of the cell sheet with a viscous vitrification solution containing permeable and non-permeable cryoprotectants prior to vitrification in liquid nitrogen vapor. This method prevented fracturing of the fragile cell sheet even after vitrification and rewarming. Both the macro- and microstructures of the vitrified cell sheets were maintained without damage or loss of major components. Cell survival in the vitrified sheets was comparable to that in non-vitrified samples. Conclusions We have shown here that it is feasible to vitrify chondrocyte cell sheets and that these sheets retain their normal characteristics upon thawing. The availability of a practical cryopreservation method should make a significant contribution to the effectiveness and range of applications of cell sheet therapy. PMID:23886356

  11. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  12. Plasma vitrification of fly ash

    SciTech Connect

    Beudin, V.; Guihard, B.; Pineau, D.; Labrot, M.; Soler, G.; Favier, J.M.; Boudeau, A.

    1995-12-31

    This paper presents the plasma vitrification of fly-ash produced by a Municipal Waste Incinerator, as programmed by Europlasma Company in France. It describes the main assumptions, technical and economical data and regulations taken into account to build and operate the first industrial pilot plant from 1995, near Bordeaux (France), using a non transferred plasma torch of 500 kW operated with air.

  13. High temperature vitrification of surrogate Savannah River Site (SRS) mixed waste materials

    SciTech Connect

    Applewhite-Ramsey, A.; Schumacher, R.F.; Spatz, T.L.; Newsom, R.A.; Circeo, L.J.; Danjaji, M.B.

    1995-11-01

    The Savannah River Technology Center (SRTC) has been funded through the DOE Office of Technology Development (DOE-OTD) to investigate high-temperature vitrification technologies for the treatment of diverse low-level and mixed wastes. High temperature vitrification is a likely candidate for processing heterogeneous solid wastes containing low levels of activity. Many SRS wastes fit into this category. Plasma torch technology is one high temperature vitrification method. A trial demonstration of plasma torch processing is being performed at the Georgia Institute of Technology on surrogate SRS wastes. This effort is in cooperation with the Engineering Research and Development Association of Georgia Universities (ERDA) program. The results of phase 1 of these plasma torch trials will be presented.

  14. Vitrification of actinide solutions in SRS separations facilities

    SciTech Connect

    Minichan, R.L.; Ramsey, W.G.

    1995-09-01

    The actinide vitrification system being developed at SRS provides the capability to convert specialized or unique forms of nuclear material into a stable solid glass product that can be safely shipped, stored or reprocessed according to the DOE complex mission. This project is an application of technology developed through funds from the Office of Technology Development (OTD). This technology is ideally suited for vitrifying relatively small quantities of fissile or special nuclear material since it is designed to be critically safe. Successful demonstration of this system to safely vitrify radioactive material could open up numerous opportunities for transferring this technology to applications throughout the DOE complex.

  15. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    SciTech Connect

    Huff, Georgianne; Tong, Nellie; Fioravanti, Richard; Gordon, Paul; Markel, Larry; Agrawal, Poonum; Nourai, Ali

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  16. Advances in III-V bulk and superlattice-based high operating temperature MWIR detector technology

    NASA Astrophysics Data System (ADS)

    Sharifi, H.; Roebuck, M.; Terterian, S.; Jenkins, J.; Tu, B.; Strong, W.; De Lyon, T. J.; Rajavel, R. D.; Caulfield, J.; Curzan, J. P.

    2017-02-01

    Barrier detectors based on III-V materials have recently been developed to realize substantial improvements in the performance of mid-wave infrared (MWIR) detectors, enabling FPA performance at high operating temperatures. The relative ease of processing the III-V materials into large-format, small-pitch FPAs offers a cost-effective solution for tactical imaging applications in the MWIR band as an attractive alternative to HgCdTe detectors. In addition, small pixel (5-10μm pitch) detector technology enables a reduction in size of the system components, from the detector and ROIC chips to the focal length of the optics and lens size, resulting in an overall compactness of the sensor package, cooling and associated electronics. To exploit the substantial cost advantages, scalability to larger format (2kx2k/10μm) and superior wafer quality of large-area GaAs substrates, we have fabricated antimony based III-V bulk detectors that were metamorphically grown by MBE on GaAs substrates. The electro-optical characterization of fabricated 2kx2k/10μm FPAs shows low median dark current (3 x 10-5 A/cm2 with λco = 5.11μm or 2.2 x 10-6 A/cm2 with λco = 4.6μm) at 150K, high NEdT operability (3x median value) >99.8% and >60% quantum efficiency (non-ARC). In addition, we report our initial result in developing small pixel (5μm pitch), high definition (HD) MWIR detector technology based on superlattice III-V absorbing layers grown by MBE on GaSb substrates. The FPA radiometric result is showing low median dark current (6.3 x 10-6 A/cm2 at 150K with λco = 5.0μm) with 50% quantum efficiency (non-ARC), and low NEdT of 20mK (with averaging) at 150K. The detector and FPA test results that validate the viability of Sb-based bulk and superlattice high operating temperature MWIR FPA technology will be discussed during the presentation.

  17. Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization.

    PubMed

    Kang, Hongkyu; Kim, Geunjin; Kim, Junghwan; Kwon, Sooncheol; Kim, Heejoo; Lee, Kwanghee

    2016-09-01

    The past two decades of vigorous interdisciplinary approaches has seen tremendous breakthroughs in both scientific and technological developments of bulk-heterojunction organic solar cells (OSCs) based on nanocomposites of π-conjugated organic semiconductors. Because of their unique functionalities, the OSC field is expected to enable innovative photovoltaic applications that can be difficult to achieve using traditional inorganic solar cells: OSCs are printable, portable, wearable, disposable, biocompatible, and attachable to curved surfaces. The ultimate objective of this field is to develop cost-effective, stable, and high-performance photovoltaic modules fabricated on large-area flexible plastic substrates via high-volume/throughput roll-to-roll printing processing and thus achieve the practical implementation of OSCs. Recently, intensive research efforts into the development of organic materials, processing techniques, interface engineering, and device architectures have led to a remarkable improvement in power conversion efficiencies, exceeding 11%, which has finally brought OSCs close to commercialization. Current research interests are expanding from academic to industrial viewpoints to improve device stability and compatibility with large-scale printing processes, which must be addressed to realize viable applications. Here, both academic and industrial issues are reviewed by highlighting historically monumental research results and recent state-of-the-art progress in OSCs. Moreover, perspectives on five core technologies that affect the realization of the practical use of OSCs are presented, including device efficiency, device stability, flexible and transparent electrodes, module designs, and printing techniques.

  18. Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices

    NASA Astrophysics Data System (ADS)

    Baoping, He; Zujun, Wang; Jiangkun, Sheng; Shaoyan, Huang

    2016-12-01

    In this paper, total ionizing dose effect of NMOS transistors in advanced CMOS technology are examined. The radiation tests are performed at 60Co sources at the dose rate of 50 rad (Si)/s. The investigation's results show that the radiation-induced charge buildup in the gate oxide can be ignored, and the field oxide isolation structure is the main total dose problem. The total ionizing dose (TID) radiation effects of field oxide parasitic transistors are studied in detail. An analytical model of radiation defect charge induced by TID damage in field oxide is established. The I - V characteristics of the NMOS parasitic transistors at different doses are modeled by using a surface potential method. The modeling method is verified by the experimental I - V characteristics of 180 nm commercial NMOS device induced by TID radiation at different doses. The model results are in good agreement with the radiation experimental results, which shows the analytical model can accurately predict the radiation response characteristics of advanced bulk CMOS technology device. Project supported by the National Natural Science Foundation of China (No. 11305126).

  19. Vitrification for stability of scrap and residue

    SciTech Connect

    Forsberg, C.W.

    1996-05-01

    A conference breakout discussion was held on the subject of vitrification for stabilization of plutonium scrap and residue. This was one of four such sessions held within the vitrification workshop for participants to discuss specific subjects in further detail. The questions and issues were defined by the participants.

  20. ECONOMIC ASSESSMENT ON VITRIFICATION FACILITY OF LOW-AND INTERMEDIATE-LEVEL RADIOACTIVE WASTES IN KOREA

    SciTech Connect

    Kim, Sung Il; Lee, Kun Jai; Ji, Pyung Kook; Park, Jong Kil; Ha, Jong Hyun; Song, Myung Jae

    2003-02-27

    The usefulness of vitrification technology for low-and intermediate-level radioactive wastes was demonstrated with high volume reduction capability and good mechanical and chemical stability of final waste forms, and commercial vitrification facility is expected to be constructed at Ulchin site of Korean Nuclear Power Plant Ulchin Unit 5 and 6. Hence, overall economic assessment was necessary to find out the economic advantage of the vitrification facility and to predict the construction and operation costs of the facility on the preliminary bases. Additionally, the generation characteristics of radioactive wastes were investigated. The results of the cost analysis showed that the disposal cost of radioactive wastes treated by vitrification facility reduced to 85 percent compared with that by current waste treatment system. And the present worth analysis was performed through the cost-benefit analysis method for the commercial vitrification facility. The results showed that the vitrification facility combining cold crucible melter (CCM) for treatment of combustible DAW, spent resin, and borated liquid waste concentrate and plasma torch melter (PTM) for non-combustible DAW and spent filter is more economical than current waste treatment system when the escalation rate of disposal cost of more than 10 percent per year was applied.

  1. Improved low-CPA vitrification of mouse oocytes using quartz microcapillary.

    PubMed

    Choi, Jung Kyu; Huang, Haishui; He, Xiaoming

    2015-06-01

    Cryopreservation by low-cryoprotectant (CPA) vitrification has the potential to combine all the advantages of the conventional high-CPA vitrification and slow-freezing approaches while avoiding their drawbacks. However, current low-CPA vitrification protocol for cryopreservation of oocytes requires a lengthy and multi-step procedure for unloading CPAs. In this study, we report a much-simplified procedure of using quartz microcapillary (QMC) for low-CPA vitrification of mouse oocytes with only one step for unloading CPAs. The immediate viability of oocytes after the improved low-CPA vitrification was determined to be more than 90%. Moreover, no significant difference was observed in terms of embryonic development from the two-cell to blastocyst stages between the fresh and vitrified oocytes after in vitro fertilization (IVF). This improved low-CPA vitrification technology has the potential for efficient cryopreservation of oocytes to preserve the fertility of mammals including humans for assisted reproductive medicine, maintenance of animal resource and endangered species, and livestock management.

  2. Vitrification testing of soil fines from contaminated Hanford 100 Area and 300 Area soils

    SciTech Connect

    Ludowise, J.D.

    1994-05-01

    The suitability of Hanford soil for vitrification is well known and has been demonstrated extensively in other work. The tests reported here were carried out to confirm the applicability of vitrification to the soil fines (a subset of the Hanford soil potentially different in composition from the bulk soil) and to provide data on the performance of actual, vitrified soil fines. It was determined that the soil fines were generally similar in composition to the bulk Hanford soil, although the fraction <0.25 mm in the 100 Area soil sample appears to differ somewhat from the bulk soil composition. The soil fines are readily melted into a homogeneous glass with the simple additions of CaO and/or Na{sub 2}O. The vitrified waste (plus additives) occupies only 60% of the volume of the initial untreated waste. Leach testing has shown the glasses made from the soil fines to be very durable relative to natural and man-made glasses and has demonstrated the ability of the vitrified waste to greatly reduce the release of radionuclides to the environment. Viscosity and electrical conductivity measurements indicate that the soil fines will be readily processable, although with levels of additives slightly greater than used in the radioactive melts. These tests demonstrate the applicability of vitrification to the contaminated soil fines and the exceptional performance of the waste form resulting from the vitrification of contaminated Hanford soils.

  3. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    SciTech Connect

    Cicero-Herman, C.A.; Workman, P.; Poole, K.; Erich, D.; Harden, J.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification process utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.

  4. Independent engineering review of the Hanford Waste Vitrification System

    SciTech Connect

    Not Available

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  5. Preliminary hazards analysis -- vitrification process

    SciTech Connect

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  6. DEMONSTRATION BULLETIN: COLD TOP EX-SITU VITRIFICATION PROCESS - GEOTECH DEVELOPMENT CORPORATION

    EPA Science Inventory

    The Cold Top Vitrification process, developed by Geotech Development Corporation, is an ex-situ, submerged-electrode, resistance-melting technology. The technology is designed to transform heavy metal contaminated soil into a glassy, amorphous, non-leachable mass composed of inte...

  7. DEMONSTRATION BULLETIN: COLD TOP EX-SITU VITRIFICATION PROCESS - GEOTECH DEVELOPMENT CORPORATION

    EPA Science Inventory

    The Cold Top Vitrification process, developed by Geotech Development Corporation, is an ex-situ, submerged-electrode, resistance-melting technology. The technology is designed to transform heavy metal contaminated soil into a glassy, amorphous, non-leachable mass composed of inte...

  8. An update on the quality assurance for the waste vitrification plants

    SciTech Connect

    Caplinger, W.H.; Shugars, D.L.; Carlson, M.K.

    1990-01-01

    Immobilization of high-level defense production wastes is an important step in environmental restoration. The best available technology for immobilization of this waste currently is by incorporation into borosilicate glass, i.e., vitrification. Three US sites are active in the design, construction, or operation of vitrification facilities. The status, facility description and Quality Assurance (QA) development for each facility was presented at the 1989 Energy Division Conference. This paper presents the developments since that time. The West Valley Demonstration Project (WVDP) in northwestern New York State has demonstrated the technology. At the Savannah River Site (SRS) in South Carolina the Defense Waste Processing Facility (DWPF) has completed design, construction is essentially complete, and preparation for operation is underway. The Hanford Waste Vitrification Plant (HWVP) in Washington State is in initial Detailed Design. 4 refs.

  9. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages. Erratum

    SciTech Connect

    Smith, Gary L.

    2016-09-06

    This report refers to or contains Kg values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected Kg values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  10. Hanford waste vitrification systems risk assessment

    SciTech Connect

    Miller, W.C.; Hamilton, D.W.; Holton, L.K.; Bailey, J.W.

    1991-09-01

    A systematic Risk Assessment was performed to identify the technical, regulatory, and programmatic uncertainties and to quantify the risks to the Hanford Site double-shell tank waste vitrification program baseline (as defined in December 1990). Mitigating strategies to reduce the overall program risk were proposed. All major program elements were evaluated, including double-shell tank waste characterization, Tank Farms, retrieval, pretreatment, vitrification, and grouting. Computer-based techniques were used to quantify risks to proceeding with construction of the Hanford Waste Vitrification Plant on the present baseline schedule. Risks to the potential vitrification of single-shell tank wastes and cesium and strontium capsules were also assessed. 62 refs., 38 figs., 26 tabs.

  11. Vitrification of heart valve tissues.

    PubMed

    Brockbank, Kelvin G M; Chen, Zhenzhen; Greene, Elizabeth D; Campbell, Lia H

    2015-01-01

    Application of the original vitrification protocol used for pieces of heart valves to intact heart valves has evolved over time. Ice-free cryopreservation by Protocol 1 using VS55 is limited to small samples where relatively rapid cooling and warming rates are possible. VS55 cryopreservation typically provides extracellular matrix preservation with approximately 80 % cell viability and tissue function compared with fresh untreated tissues. In contrast, ice-free cryopreservation using VS83, Protocols 2 and 3, has several advantages over conventional cryopreservation methods and VS55 preservation, including long-term preservation capability at -80 °C; better matrix preservation than freezing with retention of material properties; very low cell viability, reducing the risks of an immune reaction in vivo; reduced risks of microbial contamination associated with use of liquid nitrogen; improved in vivo functions; no significant recipient allogeneic immune response; simplified manufacturing process; increased operator safety because liquid nitrogen is not used; and reduced manufacturing costs.

  12. Single Event Upset Sensitivity of D-Flip Flop: Comparison of PDSOI With Bulk Si at 130 nm Technology Node

    NASA Astrophysics Data System (ADS)

    Zhang, Leqing; Xu, Jialing; Fan, Shuang; Dai, Lihua; Bi, Dawei; Lu, Jian; Hu, Zhiyuan; Zhang, Mengying; Zhang, Zhengxuan

    2017-01-01

    Single-event upsets are studied in digital storage cells in 130nm CMOS bulk Si and PDSOI technologies. The sensitivity of SEU to different technologies and hardening approaches is explored by using heavy-ion radiation experiments. Error numbers in D flip-flop chains are used to determine the impact of various cell designs and PDSOI hardening technique on upset sensitivity. Various flip-flops are designed and connected as shift-register chains, and the error numbers induced by irradiation are recorded to examine the effectiveness of the PDSOI technology. It was found that PDSOI technology has better performance in terms of upset robustness versus bulk Si at the 130nm technology node. The same design structure implemented in PDSOI technology has higher SEU threshold LET and much lower saturation cross section due to its full dielectric isolation structure which does not allow the charge generated in the substrate to be collected by the electrically active junctions in the thin top region of the device and reduces the sensitive volume of p-n junctions in the transistor. As shown in the experiment result, NRH_SOI (not radiation hardening SOI) saves about 25% area while having much lower SER versus DICE_Si, which means PDSOI still has obvious advantage at reducing SEU rate, even though its necessary body contact has to consume certain extra area.

  13. In situ vitrification: Process and products

    SciTech Connect

    Kindle, C.; Koegler, S.

    1991-06-01

    In situ vitrification (ISV) is an electrically powered thermal treatment process that converts soil into a chemically inert and stable glass and crystalline product. It is similar in concept to bringing a simplified glass manufacturing process to a site and operating it in the ground, using the soil as a glass feed stock. Gaseous emissions are contained, scrubbed, and filtered. When the process is completed, the molten volume cools producing a block of glass and crystalline material that resembles natural obsidian commingled with crystalline phases. The product passes US Environmental Protection Agency (EPA) leach resistance tests, and it can be classified as nonhazardous from a chemical hazard perspective. ISV was developed by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for application to contaminated soils. It is also being adapted for applications to buried waste, underground tanks, and liquid seepage sites. ISV's then-year development period has included tests on many different site conditions. As of January 1991 there have been 74 tests using PNL's ISV equipment; these tests have ranged from technology development tests using nonhazardous conditions to hazardous and radioactive tests. 2 refs., 6 figs., 7 tabs.

  14. Time domain reflectometry (TDR) instrumentation used for in-situ plasma vitrification

    SciTech Connect

    Tarpley, J.

    1997-09-08

    An application of TDR (Time Domain Reflectometry) was developed and demonstrated for use with the in-situ plasma vitrification (ISPV) environmental restoration project. The technique was simple, using an inexpensive sacrificial TDR probe made out of ordinary coaxial cable. This technique proved its viability for field operation in support of the vitrification process. This presentation will detail the design, construction, operation and field results of the TDR instrumentation that was developed and used in this project. Other practical applications of this technology will be suggested.

  15. Extending Fuzzy System Concepts for Control of a Vitrification Melter

    SciTech Connect

    Whitehouse, J.C.; Sorgel, W.; Garrison, A.; Schalkoff, R.J.

    1995-08-16

    Fuzzy systems provide a mathematical framework to capture uncertainty. The complete description of real, complex systems or situations often requires far more detail and information than could ever be obtained (or understood). Fuzzy approaches are an alternative technology for both system control and information processing and management. In this paper, we present the design of a fuzzy control system for a melter used in the vitrification of hazardous waste. Design issues, especially those related to melter shutdown and obtaining smooth control surfaces, are addressed. Several extensions to commonly-applied fuzzy techniques, notably adaptive defuzzification and modified rule structures are developed.

  16. The role of frit in nuclear waste vitrification

    SciTech Connect

    Vienna, J.D.; Smith, P.A.; Dorn, D.A.; Hrma, P.

    1994-12-31

    Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202) and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plan.

  17. Subsidence above in situ vitrification: Evaluation for Hanford applications

    SciTech Connect

    Dershowitz, W.S.; Plum, R.L.; Luey, J.

    1995-08-01

    Pacific Northwest Laboratory (PNL)is evaluating methods to extend the applicability of the in situ vitrification (ISV) process. One method being evaluated is the initiation of the ISV process in the soil subsurface rather than the traditional start from the surface. The subsurface initiation approach will permit extension of the ISV treatment depth beyond that currently demonstrated and allow selective treatment of contamination in a geologic formation. A potential issue associated with the initiation of the ISV process in the soil subsurface is the degree of subsidence and its effect on the ISV process. The reduction in soil porosity caused by the vitrification process will result in a volume decrease for the vitrified soils. Typical volume reduction observed for ISV melts initiated at the surface are on the order of 20% to 30% of the melt thickness. Movement of in-situ materials into the void space created during an ISV application in the soil subsurface could result in surface settlements that affect the ISV process and the processing equipment. Golder Associates, Inc., of Redmond, Washington investigated the potential for subsidence events during application of ISV in the soil subsurface. Prediction of soil subsidence above an ISV melt required the following analyses: the effect of porosity reduction during ISV, failure of fused materials surrounding the ISV melt, bulking of disturbed materials above the melt, and propagation of strains to the surface.

  18. Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification.

    PubMed

    El Assal, Rami; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyler, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M W; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan

    2014-09-03

    Current red-blood-cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red-blood-cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bioprinting approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Am/Cm Vitrification Process: Vitrification Material Balance Calculations

    SciTech Connect

    Smith, F.G.

    2000-08-15

    This report documents material balance calculations for the Americium/Curium vitrification process and describes the basis used to make the calculations. The material balance calculations reported here start with the solution produced by the Am/Cm pretreatment process as described in ``Material Balance Calculations for Am/Cm Pretreatment Process (U)'', SRT-AMC-99-0178 [1]. Following pretreatment, small batches of the product will be further treated with an additional oxalic acid precipitation and washing. The precipitate from each batch will then be charged to the Am/Cm melter with glass cullet and vitrified to produce the final product. The material balance calculations in this report are designed to provide projected compositions of the melter glass and off-gas streams. Except for decanted supernate collected from precipitation and precipitate washing, the flowsheet neglects side streams such as acid washes of empty tanks that would go directly to waste. Complete listings of the results of the material balance calculations are provided in the Appendices to this report.

  20. Vitrification darkening of rock powders - Implications for optical properties of the lunar surface

    NASA Technical Reports Server (NTRS)

    Nash, D. B.; Conel, J. E.

    1973-01-01

    Laboratory experiments show that albedoes as low as those on the moon can be produced by vacuum vitrification and associated chemical fractionation of ordinary terrestrial basaltic material. Vitrification is established as an unequivocal process that can account for the low albedo and apparent local darkening with age of the lunar surface. The spectral reflectance curves of glass powders are significantly different than those of the parent rock mineralogy; thus, the presence of ubiquitous glass in lunar surface material complicates compositional determinations by interpretation of spectral reflectance curves. Vitrification of rocks on the moon may highly modify the chemical composition of the resulting glass; thus, glass fragments found in lunar fines cannot be assumed to represent bulk parent rock material. Progressive impact vitrification of lunar surface material throughout the moon's history may have led to a fine-grain, opaque, refractory-rich material we call 'ultimate glass.' This unidentified and, at this point, hypothetical component may exist in dark regolith material; if found, it may be a useful indicator of regolith maturity.

  1. La Hague Continuous Improvement Program: Enhancement of the Vitrification Throughput

    SciTech Connect

    Petitjean, V.; De Vera, R.; Hollebecque, J.F.; Tronche, E.; Flament, T.; Pereira Mendes, F.; Prod'homme, A.

    2006-07-01

    The vitrification of high-level liquid waste produced from nuclear fuel reprocessing has been carried out industrially for over 25 years by AREVA/COGEMA, with two main objectives: containment of the long lived fission products and reduction of the final volume of waste. At the 'La Hague' plant, in the 'R7' and 'T7' facilities, vitrified waste is obtained by first evaporating and calcining the nitric acid feed solution-containing fission products in calciners. The product-named calcinate- is then fed together with glass frit into induction-heated metallic melters to produce the so-called R7/T7 glass, well known for its excellent containment properties. Both facilities are equipped with three processing lines. In the near future the increase of the fuel burn-up will influence the amount of fission product solutions to be processed at R7/T7. As a consequence, in order to prepare these changes, it is necessary to feed the calciner at higher flow-rates. Consistent and medium-term R and D programs led by CEA (French Atomic Energy Commission, the AREVA/COGEMA's R and D and R and T provider), AREVA/COGEMA (Industrial Operator) and AREVA/SGN (AREVA/COGEMA's Engineering), and associated to the industrial feed back of AREVA/COGEMA operations, have allowed continuous improvement of the process since 1998: - The efficiency and limitation of the equipment have been studied and solutions for technological improvements have been proposed whenever necessary, - The increase of the feeding flow-rate has been implemented on the improved CEA test rig (so called PEV, Evolutional Prototype of Vitrification) and adapted by AREVA/SGN for the La Hague plant using their modeling studies; the results obtained during this test confirmed the technological and industrial feasibility of the improvements achieved, - After all necessary improved equipments have been implemented in R7/T7 facilities, and a specific campaign has been performed on the R7 facility by AREVA/COGEMA. The flow-rate to the

  2. Vitrification development and experiences at Fernald, Ohio

    SciTech Connect

    Gimpel, R.F.; Paine, D.; Roberts, J.L.; Akgunduz, N.

    1998-09-01

    Vitrification of radioactive wastes products have proven to produce an extremely stable waste form. Vitrification involves the melting of wastes with a mixture of glass-forming additives at high temperatures; when cooled, the wastes are incorporated into a glass that is analogous to obsidian. Obsidian is a volcanic glass-like rock, commonly found in nature. A one-metric ton/day Vitrification Pilot Plant (VITPP) at Fernald, Ohio, simulated the vitrification of radium and radon bearing silo residues using representative non-radioactive surrogates. These non-radioactive surrogates contained high concentrations of lead, sulfates, and phosphates. The vitrification process was carried out at temperatures of 1150 to 1350 C. Laboratory and bench-scale treatability studies were conducted before initiation of the VITPP. Development of the glass formulas, containing up to 90% waste, will be discussed in the paper. The VITPP processed glass for seven months, until a breach of the melter containment vessel suspended operations. More than 70,000 pounds of good surrogate glass were produced by the VITPP. Experiences, lessons learned, and the planned path forward will be presented.

  3. Vitrification Facility integrated system performance testing report

    SciTech Connect

    Elliott, D.

    1997-05-01

    This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process.

  4. [Testicular tissue vitrification: evolution or revolution?].

    PubMed

    Wyns, C; Abu-Ghannam, G; Poels, J

    2013-09-01

    Preservation of reproductive health is a major concern for patient long-term quality of life. While sperm freezing has proven to be effective to preserve fertility after puberty, cryopreservation of immature testicular tissue (ITT) is emerging as a promising approach for fertility preservation in young boys. Slow-freezing (SF) is the conventional method used to preserve ITT and has resulted in the birth of mice offspring. In humans, methods to preserve ITT are still at the research stage. Controlled SF using dimethyl sulfoxide showed preservation of proliferative spermatogonia after thawing in a xenotransplantation model used to evaluate the efficiency of freezing and thawing procedures. However, spermatogonial recovery was low and normal differentiation could not be achieved. Both freezing/thawing and the environment of the xenotransplantation model may be implicated. Indeed, with SF, ice crystal formation could damage tissue and cells. For this reason, vitrification, leading to solidification of a liquid without crystallization, may be a promising alternative. ITT vitrification has been investigated in different species and shown spermatogonial survival and differentiation to the round or elongated spermatids stage. Offspring were also recently obtained after vitrification and allotransplantation in avians, confirming the potential of vitrification for fertility preservation. In humans, vitrification appears to be as efficient as SF in terms of spermatogonial survival and initiation of differentiation after xenotransplantation. However, before validation of such fertility preservation methods, completion of normal spermatogenesis and the fertilization capacity of sperm retrieved from cryopreserved and transplanted tissue should be fully investigated.

  5. In situ vitrification: A review

    SciTech Connect

    Cole, L.L.; Fields, D.E.

    1989-11-01

    The in situ vitrification process (ISV) converts contaminated soils and sludges to a glass and crystalline product. The process appears to be ideally suited for on site treatment of both wet and dry wastes. Basically, the system requires four molybdenum electrodes, an electrical power system for vitrifying the soil, a hood to trap gaseous effluents, an off-gas treatment system, an off-gas cooling system, and a process control station. Mounted in three transportable trailers, the ISV process can be moved from site to site. The process has the potential for treating contaminated soils at most 13 m deep. The ISV project has won a number of outstanding achievement awards. The process has also been patented with exclusive worldwide rights being granted to Battelle Memorial Institute for nonradioactive applications. While federal applications still belong to the Department of Energy, Battelle transferred the rights of ISV for non-federal government, chemical hazardous wastes to a separate corporation in 1989 called Geosafe. This report gives a review of the process including current operational behavior and applications.

  6. Implementation of in situ vitrification for contaminated soils

    SciTech Connect

    Luey, J.; Roberts, J.S.; Timmerman, C.L.

    1993-08-01

    Geosafe Corporation will be implementing the in situ vitrification (ISV) technology commercially at a Superfund site in Michigan. In preparation for the Michigan site, Geosafe Corporation performed two operational acceptance tests (OATs) at the Geosafe Test Site in Richland, Washington. The objectives were to test the performance of the equipment and to train operating personnel. In addition, Geosafe cooperated with the Pacific Northwest Laboratory and the US Department of Energy, Office of Technology Development in a full-scale field data collection effort to obtain data characterizing the dynamic conditions in the soil created by the advancing ISV melt. This full-scale information provides empirical data to support the current understanding of the ISV technology for contaminated soil applications and provides verification of the accuracy of computational modeling tools being used to evaluate the applicability of the ISV technology to different soil sites.

  7. Cost performance assessment of in situ vitrification

    SciTech Connect

    Showalter, W.E.; Letellier, B.C.; Booth, S.R.; Barnes-Smith, P.

    1992-09-01

    In situ vitrification (ISV) is a thermal treatment technology with promise for the destruction or immobilization of hazardous materials in contaminated soils. It has developed over the past decade to a level of maturity where meaningful cost effectiveness studies may be performed. The ISV process melts 4 to 25 m{sup 2} of undisturbed soil to a maximum depth of 6 m into an obsidian-like glass waste form by applying electric current (3750 kill) between symmetrically spaced electrodes. Temperatures of approximately 2000{degree}C drive off and destroy complex organics which are captured in an off-gas treatment system, while radio-nuclides are incorporated into the homogeneous glass monolith. A comparative life-cycle cost evaluation between mobile rotary kiln incineration and ISV was performed to quantitatively identify appropriate performance regimes and components of cost which are sensitive to the implementation of each technology. Predictions of melt times and power consumption were obtained from an ISV performance model over ranges of several parameters including electrode spacing, soil moisture, melt depth, electrical resistivity, and soil density. These data were coupled with manpower requirements, capitalization costs, and a melt placement optimization routine to allow interpolation over a wide variety of site characteristics. For the purpose of this study, a single site scenario representative of a mixed waste evaporation pond was constructed. Preliminary comparisons between ISV and incineration show that while operating costs are comparable, ISV avoids secondary treatment and monitored storage of radioactive waste that would be required following conventional incineration. It is the long term storage of incinerated material that is the most expensive component.

  8. Cost performance assessment of in situ vitrification

    SciTech Connect

    Showalter, W.E.; Letellier, B.C.; Booth, S.R. ); Barnes-Smith, P. )

    1992-01-01

    In situ vitrification (ISV) is a thermal treatment technology with promise for the destruction or immobilization of hazardous materials in contaminated soils. It has developed over the past decade to a level of maturity where meaningful cost effectiveness studies may be performed. The ISV process melts 4 to 25 m{sup 2} of undisturbed soil to a maximum depth of 6 m into an obsidian-like glass waste form by applying electric current (3750 kill) between symmetrically spaced electrodes. Temperatures of approximately 2000{degree}C drive off and destroy complex organics which are captured in an off-gas treatment system, while radio-nuclides are incorporated into the homogeneous glass monolith. A comparative life-cycle cost evaluation between mobile rotary kiln incineration and ISV was performed to quantitatively identify appropriate performance regimes and components of cost which are sensitive to the implementation of each technology. Predictions of melt times and power consumption were obtained from an ISV performance model over ranges of several parameters including electrode spacing, soil moisture, melt depth, electrical resistivity, and soil density. These data were coupled with manpower requirements, capitalization costs, and a melt placement optimization routine to allow interpolation over a wide variety of site characteristics. For the purpose of this study, a single site scenario representative of a mixed waste evaporation pond was constructed. Preliminary comparisons between ISV and incineration show that while operating costs are comparable, ISV avoids secondary treatment and monitored storage of radioactive waste that would be required following conventional incineration. It is the long term storage of incinerated material that is the most expensive component.

  9. Conventional slow freezing, vitrification and open pulled straw (OPS) vitrification of rabbit embryos.

    PubMed

    Naik, B R; Rao, B S; Vagdevi, R; Gnanprakash, M; Amarnath, D; Rao, V H

    2005-04-01

    Three different methods of cryopreservation viz., conventional slow freezing, vitrification and open pulled straw vitrification were compared for their ability to support post thaw in vitro and in vivo development of rabbit embryos. Morula stage rabbit embryos were collected from super-ovulated donor does. They were randomly allocated to different freezing methods and stored up to 3 months in liquid nitrogen. After thawing and removal of cryoprotectants, embryos exhibiting intact zona pellucida and uniform blastomeres were considered suitable for in vitro culture and/or transfer. Three to five cryopreserved embryos placed in approximately 1 ml of culture medium (TCM 199 supplemented with foetal calf serum and antibiotics) were incubated for up to 72 h under humidified atmosphere of 5% CO2 in air at 39 degrees C. Development to hatched blastocyst stage was considered the initial indicator of success of cryopreservation of embryos. Of the embryos cryopreserved by programmed freezing, open pulled straw vitrification, vitrification-55 h pc and vitrification-72 h pc 55, 71, 17 and 48%, respectively, developed into hatched blastocysts. Similarly 19, 29, and 4% of embryos cryopreserved by programmed freezing, open pulled straw vitrification and vitrification -72 h pc developed into live offspring on transfer to recipient does. This is the first report on open pulled straw vitrification of rabbit embryos. Present results, suggest that (a) open pulled straw vitrification supports better in vitro survival of frozen thawed rabbit morulae; (b) both programmed freezing and OPS are similar but superior to vitirification in supporting in vivo survival of frozen thawed rabbit embryos.

  10. Underground tank vitrification: A pilot-scale in situ vitrification test of a tank containing a simulated mixed waste sludge

    SciTech Connect

    Thompson, L.E.; Powell, T.D.; Tixier, J.S.; Miller, M.C.; Owczarski, P.C.

    1993-09-01

    This report documents research on sludge vitrification. The first pilot scale in-situ vitrification test of a simulated underground tank was successfully completed by researchers at Pacific Northwest Laboratory. The vitrification process effectively immobilized the vast majority of radionuclides simulants and toxic metals were retained in the melt and uniformly distributed throughout the monolith.

  11. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  12. Cryopreservation of mouse embryos by ethylene glycol-based vitrification.

    PubMed

    Mochida, Keiji; Hasegawa, Ayumi; Taguma, Kyuichi; Yoshiki, Atsushi; Ogura, Atsuo

    2011-11-18

    Cryopreservation of mouse embryos is a technological basis that supports biomedical sciences, because many strains of mice have been produced by genetic modifications and the number is consistently increasing year by year. Its technical development started with slow freezing methods in the 1970s(1), then followed by vitrification methods developed in the late 1980s(2). Generally, the latter technique is advantageous in its quickness, simplicity, and high survivability of recovered embryos. However, the cryoprotectants contained are highly toxic and may affect subsequent embryo development. Therefore, the technique was not applicable to certain strains of mice, even when the solutions are cooled to 4°C to mitigate the toxic effect during embryo handling. At the RIKEN BioResource Center, more than 5000 mouse strains with different genetic backgrounds and phenotypes are maintained(3), and therefore we have optimized a vitrification technique with which we can cryopreserve embryos from many different strains of mice, with the benefits of high embryo survival after vitrifying and thawing (or liquefying, more precisely) at the ambient temperature(4). Here, we present a vitrification method for mouse embryos that has been successfully used at our center. The cryopreservation solution contains ethylene glycol instead of DMSO to minimize the toxicity to embryos(5). It also contains Ficoll and sucrose for prevention of devitrification and osmotic adjustment, respectively. Embryos can be handled at room temperature and transferred into liquid nitrogen within 5 min. Because the original method was optimized for plastic straws as containers, we have slightly modified the protocol for cryotubes, which are more easily accessible in laboratories and more resistant to physical damages. We also describe the procedure of thawing vitrified embryos in detail because it is a critical step for efficient recovery of live mice. These methodologies would be helpful to researchers and

  13. In-situ vitrification of waste materials

    SciTech Connect

    Powell, James R.; Reich, Morris; Barletta, Robert

    1997-11-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed.

  14. In-situ vitrification of waste materials

    DOEpatents

    Powell, J.R.; Reich, M.; Barletta, R.

    1997-10-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs.

  15. Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory

    SciTech Connect

    Shaw, P.; Anderson, B.; Davis, D.

    1993-07-01

    INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program.

  16. Vitrification of radioactive contaminated soil by means of microwave energy

    NASA Astrophysics Data System (ADS)

    Yuan, Xun; Qing, Qi; Zhang, Shuai; Lu, Xirui

    2017-03-01

    Simulated radioactive contaminated soil was successfully vitrified by microwave sintering technology and the solidified body were systematically studied by Raman, XRD and SEM-EDX. The Raman results show that the solidified body transformed to amorphous structure better at higher temperature (1200 °C). The XRD results show that the metamictization has been significantly enhanced by the prolonged holding time at 1200 °C by microwave sintering, while by conventional sintering technology other crystal diffraction peaks, besides of silica at 2θ = 27.830°, still exist after being treated at 1200 °C for much longer time. The SEM-EDX discloses the micro-morphology of the sample and the uniform distribution of Nd element. All the results show that microwave technology performs vitrification better than the conventional sintering method in solidifying radioactive contaminated soil.

  17. High-temperature vitrification of low-level radioactive and hazardous wastes

    SciTech Connect

    Schumacher, R.F.; Kielpinski, A.L.; Bickford, D.F.; Cicero, C.A.; Applewhite-Ramsey, A.; Spatz, T.L.; Marra, J.C.

    1995-12-01

    The US Department of Energy (DOE) weapons complex has numerous radioactive waste streams which cannot be easily treated with joule-heated vitrification systems. However, it appears these streams could be treated With certain robust, high-temperature, melter technologies. These technologies are based on the use of plasma torch, graphite arc, and induction heating sources. The Savannah River Technology Center (SRTC), with financial support from the Department of Energy, Office of Technology Development (OTD) and in conjunction with the sites within the DOE weapons complex, has been investigating high-temperature vitrification technologies for several years. This program has been a cooperative effort between a number of nearby Universities, specific sites within the DOE complex, commercial equipment suppliers and the All-Russian Research Institute of Chemical Technology. These robust vitrification systems appear to have advantages for the waste streams containing inorganic materials in combination with significant quantities of metals, organics, salts, or high temperature materials. Several high-temperature technologies were selected and will be evaluated and employed to develop supporting technology. A general overview of the SRTC ``High-Temperature Program`` will be provided.

  18. Hanford Waste Vitrification Plant technical manual

    SciTech Connect

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  19. Transportable Vitrification System: Operational experience gained during vitrification of simulated mixed waste

    SciTech Connect

    Whitehouse, J.C.; Burket, P.R.; Crowley, D.A.; Hansen, E.K.; Jantzen, C.M.; Smith, M.E.; Singer, R.P.; Young, S.R.; Zamecnik, J.R.; Overcamp, T.J.; Pence, I.W. Jr.

    1996-11-21

    The Transportable Vitrification System (TVS) is a large-scale, fully-integrated, transportable, vitrification system for the treatment of low-level nuclear and mixed wastes in the form of sludges, soils, incinerator ash, and similar waste streams. The TVS was built to demonstrate the vitrification of actual mixed waste at U. S. Department of Energy (DOE) sites. Currently, Westinghouse Savannah River Company (WSRC) is working with Lockheed Martin Energy Systems (LMES) to apply field scale vitrification to actual mixed waste at Oak Ridge Reservation`s (ORR) K-25 Site. Prior to the application of the TVS to actual mixed waste it was tested on simulated K-25 B and C Pond waste at Clemson University. This paper describes the results of that testing and preparations for the demonstration on actual mixed waste.

  20. Improvement of vitrification of in vitro produced buffalo embryos with special reference to sex ratio following vitrification

    PubMed Central

    Mahmoud, K. Gh. M; Scholkamy, T. H; Darwish, S. F

    2015-01-01

    Cryopreservation and sexing of embryos are integrated into commercial embryo transfer technologies. To improve the effectiveness of vitrification of in vitro produced buffalo embryos, two experiments were conducted. The first evaluated the effect of exposure time (2 and 3 min) and developmental stage (morula and blastocysts) on the viability and development of vitrified buffalo embryos. Morphologically normal embryos and survival rates (re-expansion) significantly increased when vitrified morulae were exposed for 2 min compared to 3 min (P<0.001). On the other hand, morphologically normal and survival rates of blastocysts significantly increased when exposed for 3 min compared to 2 min (P<0.001). However, there were no significant differences between the two developmental stages (morulae and blastocystes) in the percentages of morphologically normal embryos and re-expansion rates after a 24 h culture. The second experiment aimed to evaluate the effect of viability on the sex ratio of buffalo embryos after vitrification and whether male and female embryos survived vitrification differently. A total number of 61 blastocysts were vitrified for 3 min with the same cryoprotectant as experiment 1. Higher percentages of males were recorded for live as compared to dead embryos; however, this difference was not significant. In conclusion, the post-thaw survival and development of in vitro produced morulae and blastocysts were found to be affected by exposure time rather than developmental stage. Survivability had no significant effect on the sex ratio of vitrified blastocysts; nevertheless, the number of surviving males was higher than dead male embryos. PMID:27175197

  1. Evaluation of Vitrification Processing Step for Rocky Flats Incinerator Ash

    SciTech Connect

    Wigent, W.L.; Luey, J.K.; Scheele, R.D.; Li, H.

    1999-04-08

    In 1997, Pacific Northwest National Laboratory (PNNL) staff developed a processing option for incinerator ash at the Rocky Flats Environmental Technology Sites (RFETS). This work was performed with support from Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC). A description of the remediation needs for the RFETS incinerator ash is provided in a report summarizing the recommended processing option for treatment of the ash (Lucy et al. 1998). The recommended process flowsheet involves a calcination pretreatment step to remove carbonaceous material followed by a vitrification processing step for a mixture of glass tit and calcined incinerator ash. Using the calcination pretreatment step to remove carbonaceous material reduced process upsets for the vitrification step, allowed for increased waste loading in the final product, and improved the quality of the final product. Figure 1.1 illustrates the flow sheet for the recommended processing option for treatment of RFETS incinerator ash. In 1998, work at PNNL further developed the recommended flow sheet through a series of studies to better define the vitrification operating parameters and to address secondary processing issues (such as characterizing the offgas species from the calcination process). Because a prototypical rotary calciner was not available for use, studies to evaluate the offgas from the calcination process were performed using a benchtop rotary calciner and laboratory-scale equipment (Lucy et al. 1998). This report focuses on the vitrification process step after ash has been calcined. Testing with full-scale containers was performed using ash surrogates and a muffle furnace similar to that planned for use at RFETS. Small-scale testing was performed using plutonium-bearing incinerator ash to verify performance of the waste form. Ash was not obtained from RFETS because of transportation requirements to calcine the incinerator ash prior to shipment of the material. Because part of

  2. Development of alternative plant vitrification solutions in droplet-vitrification procedures.

    PubMed

    Kim, Haeng-Hoon; Lee, Yoon-Geol; Shin, Dong-Jin; Ko, Ho-Cheol; Gwag, Jae-Gyun; Cho, Eun-Gi; Engelmann, Florent

    2009-01-01

    This study aimed at developing alternative vitrification solutions, modified either from the original PVS2 vitrification solution by increasing glycerol and sucrose and/or decreasing dimethylsulfoxide and ethylene glycol concentration, or from the original PVS3 vitrification solution by decreasing glycerol and sucrose concentration. The application of these vitrification solutions to two model species, i.e. garlic and chrysanthemum in a droplet-vitrification procedure, revealed that PVS3 and variants were superior to PVS2 and variants and that most PVS2 variants were comparable to the original PVS2. Both species were sensitive to chemical toxicity of permeating cryoprotectants and chrysanthemum was also sensitive to osmotic stress. The lower recovery of cryopreserved garlic shoot apices dehydrated with PVS2 and variants compared with those dehydrated with PVS3 and variants seemed attributed to cytotoxicity of the vitrification solutions tested as well as to insufficient protection against freezing injury. Chrysanthemum shoot tips were very sensitive to both chemical toxicity and osmotic stress and therefore, induction of cytotoxity tolerance during preconditioning was required for successful cryopreservation. The present study revealed that some of the PVS2 variants tested which have increased glycerol and sucrose and/or decreased dimethylsulfoxide and ethylene glycol concentration can be applied when explants are of medium size, tolerant to chemical toxicity and moderately sensitive to osmotic stress. PVS3 and variants can be used widely when samples are heterogeneous, of large size and/or very sensitive to chemical toxicity and tolerant to osmotic stress.

  3. DEMONSTRATION BULLETIN: IN SITU VITRIFICATION - GEOSAFE CORPORATION

    EPA Science Inventory

    in Situ Vitrification (ISV) is designed to treat soils, sludges, sediments, and mine tailings contaminated with organic and inorganic compounds. The process uses electrical current to heat (mett) and vitrify the soil in place. Organic contaminants are decomposed by the extreme h...

  4. In Situ Vitrification software requirements specification

    SciTech Connect

    Grush, W.H.; Marwil, E.S.

    1990-09-01

    This report describes the Software Requirements Specification for the Electrical Resistance Heating and Thermal Energy Transport models of the In-Situ Vitrification (ISV) process. It contains the Data Flow Diagrams, Process Specifications, Data Structure Diagrams, and the Data Dictionary. 5 refs.

  5. Porcine sperm vitrification I: cryoloops method.

    PubMed

    Arraztoa, C C; Miragaya, M H; Chaves, M G; Trasorras, V L; Gambarotta, M C; Péndola, C H; Neild, D M

    2016-09-29

    The aims of this study were to evaluate porcine sperm vitrification in cryoloops, with and without two different cryoprotectants and assess two warming procedures. Extended (n = 3; r = 4) and raw (n = 5; r = 2) semen was diluted in media without and with cryoprotectants (4% dimethylformamide and 4% glycerol) to a final concentration of 20 × 10(6) spermatozoa ml(-1) and vitrified using the cryoloops method. Two warming procedures were evaluated: rapid method (30 s at 37°C) and an ultra-rapid method (7 s at 75°C, followed by 30 s at 37°C). Total motility (phase contrast), sperm viability (6-carboxifluorescein diacetate and propidium iodide stain), membrane function (hypo-osmotic swelling test), acrosome integrity (phase contrast), chromatin condensation (toluidine blue stain) and chromatin susceptibility to acid denaturation (acridine orange stain) were evaluated before and after vitrification and analysed using Friedman's test. In all media, the only seminal parameters that were maintained after vitrification were chromatin condensation and integrity. Vitrification of porcine spermatozoon using cryoloops, both in the presence or absence of cryoprotectants and independent of the warming procedure used, permits conservation of sperm chromatin condensation and integrity. It would be interesting to further verify this by producing porcine embryos using vitrified spermatozoon with intracytoplasmic sperm injection.

  6. ENGINEERING BULLETIN: IN SITU VITRIFICATION TREATMENT

    EPA Science Inventory

    In situ vitrification (ISV) uses electrical power to heat and melt soil, sludge, mine tailings, buried wastes, and sediments contaminated with organic, inorganic, and metal-bearing hazardous wastes. The molten material cools to form a hard, monolithic, chemically inert, stable...

  7. DEMONSTRATION BULLETIN: IN SITU VITRIFICATION - GEOSAFE CORPORATION

    EPA Science Inventory

    in Situ Vitrification (ISV) is designed to treat soils, sludges, sediments, and mine tailings contaminated with organic and inorganic compounds. The process uses electrical current to heat (mett) and vitrify the soil in place. Organic contaminants are decomposed by the extreme h...

  8. Parametric melting studies for in situ vitrification

    SciTech Connect

    Fryer, M.O.; Hawkes, G.L.; Murray, P.E.

    1991-11-01

    This report describes a series of simulation studies which examine heat conduction and electric heating during in situ vitrification (ISV). The simulation studies determine the effects of soil parameter changes on the ISV process. Changes in heat capacity, thermal conductivity and electrical conductivity are considered. The results of these studies provide a basis for experimental measurement accuracy requirements.

  9. ENGINEERING BULLETIN: IN SITU VITRIFICATION TREATMENT

    EPA Science Inventory

    In situ vitrification (ISV) uses electrical power to heat and melt soil, sludge, mine tailings, buried wastes, and sediments contaminated with organic, inorganic, and metal-bearing hazardous wastes. The molten material cools to form a hard, monolithic, chemically inert, stable...

  10. The role of frit in nuclear waste vitrification

    SciTech Connect

    Vienna, J.D.; Smith, P.A.; Dorn, D.A.; Hrma, P.

    1994-04-01

    Vitrification of nuclear waste requires additives which are often vitrified independently to form a frit. Frit composition is formulated to meet the needs of glass composition and processing. The effects of frit on melter feed and melt processing, glass acceptance, and waste loading is of practical interest in understanding the trade-offs associated with the competing demands placed on frit composition. Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202) and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plant.

  11. Radiological characterization of a vitrification facility for decommissioning

    SciTech Connect

    Asou, M.

    2007-07-01

    Cleanup operations in the Marcoule Vitrification Facility (AVM) will start in 2007. This plant includes 20 highly irradiating storage tanks for high-level liquid waste before vitrification. The objective of the cleanup phase is to significantly decrease the amount of highly radioactive waste resulting from dismantling. A comprehensive radiological survey of the plant was initiated in 2000. Most of the tanks were characterized using advanced technologies: gamma imaging, CdZnTe gamma spectroscopy, dose rate measurements and 3D calculations codes. At the same time, inspections were conducted to develop 3D geometrical models of the tanks. The techniques used and the main results obtained are described as well as lessons learned from these operations. The rinsing program was defined in 2006. Decontamination operations are expected to begin in 2007, and radiological surveys will be followed up to monitor the efficiency of the decontamination process. Specific rinsing of all tanks and equipment will be carried out from 2007 to 2009. Concentrated liquid solutions will be vitrified between 2008 and 2010; the decommissioning of AVM will be delayed until the end of 2010. This strategy aims at producing less than 5% 'B' type (long-lived intermediate-level) waste from the decommissioning operations, as well as reducing the dose rate and risks by simplified remote dismantling. The paper reviews the main options selected for decontamination, as well as the radiological characterization strategy. Some cost-related aspects will also be analyzed. (authors)

  12. Underground tank vitrification: Engineering-scale test results

    SciTech Connect

    Campbell, B.E.; Timmerman, C.L.; Bonner, W.F.

    1990-06-01

    Contamination associated with underground tanks at US Department of Energy sites and other sites may be effectively remediated by application of in situ vitrification (ISV) technology. In situ vitrification converts contaminated soil and buried wastes such as underground tanks into a glass and crystalline block, similar to obsidian with crystalline phases. A radioactive engineering-scale test performed at Pacific Northwest Laboratory in September 1989 demonstrated the feasibility of using ISV for this application. A 30-cm-diameter (12-in.-diameter) buried steel and concrete tank containing simulated tank sludge was vitrified, producing a solid block. The tank sludge used in the test simulated materials in tanks at Oak Ridge National Laboratory. Hazardous components of the tank sludge were immobilized or removed and captured in the off-gas treatment system. The steel tank was converted to ingots near the bottom of the block and the concrete walls were dissolved into the resulting glass and crystalline block. Although one of the four moving electrodes froze'' in place about halfway into the test, operations were able to continue. The test was successfully completed and all the tank sludge was vitrified. 7 refs., 12 figs., 5 tabs.

  13. In situ vitrification of soil from the Savannah River Site

    SciTech Connect

    Campbell, B.E.; Buelt, J.L.

    1990-08-01

    Contamination associated with seepage basins and other underground structures at US Department of Energy sites may be effectively remediated by application of in situ vitrification (ISV) technology. In situ vitrification converts contaminated soil and buried wastes into a glass and crystalline block, similar to obsidian commingled with crystalline phases. Two bench-scale tests performed at Pacific Northwest Laboratory (PNL) in September 1989 demonstrated the feasibility of applying ISV to seepage basin soils at the Savannah River Site (SRS) in South Carolina. The two tests were performed on soils spiked with heavy metal and organic contaminants as well as stable radioactive simulants. These soils contain extremely low concentrations of alkali fluxes such as sodium and potassium oxides, which are necessary charge carriers for the ISV process. Tests performed on the low flux-containing soil indicate the soil can be vitrified with special application of the ISV process. Tests showed the hazardous and radioactive simulants were successfully bound in the vitrified product and the organics were mostly destroyed. Additional larger scale testing and evaluation are recommended to further study the feasibility of treating contaminated SRS soil by the ISV process. 13 refs., 12 figs., 7 tabs.

  14. Corrosion assessment of refractory materials for high temperature waste vitrification

    SciTech Connect

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-11-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.

  15. Vitrification of human immature oocytes before and after in vitro maturation: a review.

    PubMed

    Khalili, Mohammad Ali; Shahedi, Abbas; Ashourzadeh, Sareh; Nottola, Stefania Annarita; Macchiarelli, Guido; Palmerini, Maria Grazia

    2017-08-18

    The use of immature oocytes subjected to in vitro maturation (IVM) opens interesting perspectives for fertility preservation where ovarian reserves are damaged by pathologies or therapies, as in PCO/PCOS and cancer patients. Human oocyte cryopreservation may offer some advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation and postponing childbirth. It also eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In addition, a successful oocyte cryopreservation program could eliminate the need for donor and recipient menstrual cycle synchronization. Recent advances in vitrification technology have markedly improved the oocyte survival rate after warming, with fertilization and implantation rates comparable with those of fresh oocytes. Healthy live births can be achieved from the combination of IVM and vitrification, even if vitrification of in vivo matured oocytes is still more effective. Recently, attention is given to highlight whether vitrification procedures are more successful when performed before or after IVM, on immature GV-stage oocytes, or on in vitro matured MII-stage oocytes. In this review, we emphasize that, even if there are no differences in survival rates between oocytes vitrified prior to or post-IVM, reduced maturation rates of immature oocytes vitrified prior to IVM can be, at least in part, explained by underlying ultrastructural and biomolecular alterations.

  16. Hanford tank waste simulants specification and their applicability for the retrieval, pretreatment, and vitrification processes

    SciTech Connect

    GR Golcar; NG Colton; JG Darab; HD Smith

    2000-04-04

    A wide variety of waste simulants were developed over the past few years to test various retrieval, pretreatment and waste immobilization technologies and unit operations. Experiments can be performed cost-effectively using non-radioactive waste simulants in open laboratories. This document reviews the composition of many previously used waste simulants for remediation of tank wastes at the Hanford reservation. In this review, the simulants used in testing for the retrieval, pretreatment, and vitrification processes are compiled, and the representative chemical and physical characteristics of each simulant are specified. The retrieval and transport simulants may be useful for testing in-plant fluidic devices and in some cases for filtration technologies. The pretreatment simulants will be useful for filtration, Sr/TRU removal, and ion exchange testing. The vitrification simulants will be useful for testing melter, melter feed preparation technologies, and for waste form evaluations.

  17. Vitrification preserves proliferation capacity in human spermatogonia.

    PubMed

    Poels, Jonathan; Van Langendonckt, Anne; Many, Marie-Christine; Wese, François-Xavier; Wyns, Christine

    2013-03-01

    Does vitrification of human immature testicular tissue (ITT) have potential benefits for future fertility preservation? Does vitrification of human ITT have potential benefits in an in vivo murine xenotransplantation model? Vitrification is able to maintain proliferation capacity in spermatogonial cells after 6 months of xenografting. Controlled slow-freezing is the procedure currently applied for ITT cryobanking in clinical practice. Vitrification has been proposed as a promising technique for long-term storage of ITT, with a view to preserving spermatogonial stem cells (SSCs) for future fertility restoration in young boys suffering from cancer. After vitrification of ITT, in vitro survival of SSCs was demonstrated, but their functionality was not evaluated. Ten ITT pieces issuing from 10 patients aged 2-12 years were used. Fragments of fresh tissue (serving as controls) and fresh, frozen-thawed and vitrified-warmed testicular pieces xenografted to the scrotum of nude mice for 6 months were compared. Upon graft removal, histological and immunohistochemical analyses were performed to evaluate spermatogonia (SG) (MAGE-A4), intratubular proliferation (Ki67), proliferating SG and Leydig cells (3β-HSD). The entire piece of grafted tissue was assessed in each case. Seminiferous tubules showed good integrity after cryopreservation and xenografting for 6 months in all three groups. Survival of SG and their ability to proliferate was observed by immunohistochemistry in all grafted groups. SG were able to initiate spermatogenesis, but blockage at the pachytene stage was observed. The recovery rate of SG was 3.4 ± 3.8, 4.1 ± 7.3 and 7.3 ± 6.3%, respectively, for fresh, slow-frozen and vitrified-warmed tissue after 6 months of xenografting. The study is limited by the low availability of ITT samples of human origin. The mouse xenotransplantation model needs to be refined to study human spermatogenesis. The findings of the present study have potential implications for

  18. Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon.

    PubMed

    Rigante, Sara; Scarbolo, Paolo; Wipf, Mathias; Stoop, Ralph L; Bedner, Kristine; Buitrago, Elizabeth; Bazigos, Antonios; Bouvet, Didier; Calame, Michel; Schönenberger, Christian; Ionescu, Adrian M

    2015-05-26

    Field-effect transistors (FETs) form an established technology for sensing applications. However, recent advancements and use of high-performance multigate metal-oxide semiconductor FETs (double-gate, FinFET, trigate, gate-all-around) in computing technology, instead of bulk MOSFETs, raise new opportunities and questions about the most suitable device architectures for sensing integrated circuits. In this work, we propose pH and ion sensors exploiting FinFETs fabricated on bulk silicon by a fully CMOS compatible approach, as an alternative to the widely investigated silicon nanowires on silicon-on-insulator substrates. We also provide an analytical insight of the concept of sensitivity for the electronic integration of sensors. N-channel fully depleted FinFETs with critical dimensions on the order of 20 nm and HfO2 as a high-k gate insulator have been developed and characterized, showing excellent electrical properties, subthreshold swing, SS ∼ 70 mV/dec, and on-to-off current ratio, Ion/Ioff ∼ 10(6), at room temperature. The same FinFET architecture is validated as a highly sensitive, stable, and reproducible pH sensor. An intrinsic sensitivity close to the Nernst limit, S = 57 mV/pH, is achieved. The pH response in terms of output current reaches Sout = 60%. Long-term measurements have been performed over 4.5 days with a resulting drift in time δVth/δt = 0.10 mV/h. Finally, we show the capability to reproduce experimental data with an extended three-dimensional commercial finite element analysis simulator, in both dry and wet environments, which is useful for future advanced sensor design and optimization.

  19. Spontaneous vitrification in an immiscible Fe-Cu system

    NASA Astrophysics Data System (ADS)

    Huang, L. J.; Liu, B. X.

    1990-10-01

    Spontaneous vitrification was observed in the equilibrium immiscible Fe-Cu system. The metastable phase before vitrification was an icosahedral incommensurate phase which was formed by an ion beam mixing of Fe-Cu multilayer films at room temperature and subsequent high-temperature thermal annealing. The electrical and magnetic properties of the icosahedral phase are also reported, and the relation with spontaneous vitrification is discussed.

  20. Demonstration plasma gasification/vitrification system for effective hazardous waste treatment.

    PubMed

    Moustakas, K; Fatta, D; Malamis, S; Haralambous, K; Loizidou, M

    2005-08-31

    Plasma gasification/vitrification is a technologically advanced and environmentally friendly method of disposing of waste, converting it to commercially usable by-products. This process is a drastic non-incineration thermal process, which uses extremely high temperatures in an oxygen-starved environment to completely decompose input waste material into very simple molecules. The intense and versatile heat generation capabilities of plasma technology enable a plasma gasification/vitrification facility to treat a large number of waste streams in a safe and reliable manner. The by-products of the process are a combustible gas and an inert slag. Plasma gasification consistently exhibits much lower environmental levels for both air emissions and slag leachate toxicity than other thermal technologies. In the framework of a LIFE-Environment project, financed by Directorate General Environment and Viotia Prefecture in Greece, a pilot plasma gasification/vitrification system was designed, constructed and installed in Viotia Region in order to examine the efficiency of this innovative technology in treating industrial hazardous waste. The pilot plant, which was designed to treat up to 50kg waste/h, has two main sections: (i) the furnace and its related equipment and (ii) the off-gas treatment system, including the secondary combustion chamber, quench and scrubber.

  1. Vitrification of ion-exchange (IEX) resins: Advantages and technical challenges

    SciTech Connect

    Jantzen, C.M.; Peeler, D.K.; Cicero, C.A.

    1995-12-31

    Technologies are being developed by the US Department of Energy`s (DOE) Savannah River Site (SRS) in conjunction with the Electric Power Research Institute (EPRI) and the commercial sector to convert low-level radioactive ion exchange (IEX) resin wastes from the nuclear utilities to solid stabilized waste forms for permanent disposal. One of the alternative waste stabilization technologies is vitrification of the resin into glass. Wastes can be vitrified at elevated temperatures by thermal treatment. One alternative thermal treatment is conventional Joule heated melting. Vitrification of wastes into glass is an attractive option because it atomistically bonds both hazardous and radioactive species in the glass structure, and volume reduces the wastes by 70-80%. The large volume reductions allow for large associated savings in disposal and/or long term storage costs.

  2. Crystallization and Vitrification in Cryoprotected Aqueous Systems.

    DTIC Science & Technology

    1987-08-01

    Kadiyala, D. R. MacFarlane, and C. A. Angell, Microemulsions : vitrification of simple liquids and electron microscope probing of droplet-packing modes." J...crystallization of a liquid or its binary solutions will occur at moderate cooling rates are discussed, with emphasis on the case of aqueous solutions. ThE...Lafayette, Indiana 47907 SUMMARY Some key ideas, and experimental findings concerning the probability that cry- stallization of a liquid or its binary

  3. Vitrification of zebrafish embryo blastomeres in microvolumes.

    PubMed

    Cardona-Costa, J; García-Ximénez, F

    2007-01-01

    Cryopreservation of fish embryos may play an important role in biodiversity preservation and in aquaculture, but it is very difficult. In addition, the cryopreservation of fish embryo blastomeres makes conservation strategies feasible when they are used in germ-line chimaerism, including interspecific chimaerism. Fish embryo blastomere cryopreservation has been achieved by equilibrium procedures, but to our knowledge, no data on vitrification procedures are available. In the present work, zebrafish embryo blastomeres were successfully vitrified in microvolumes: a number of 0.25 microl drops, sufficient to contain all the blastomeres of an embryo at blastula stage (from 1000-cell stage to oblong stage), were placed over a 2.5 cm loop of nylon filament. In this procedure, where intracellular cryoprotectant permeation is not required, blastomeres were exposed to cryoprotectants for a maximum of 25 sec prior vitrification. The assayed cryoprotectants (ethylene glycol, propylene glycol, dimethyl sulphoxide, glycerol and methanol) are all frequently used in fish embryo and blastomere cryopreservation. Methanol was finally rejected because of the excessive concentration required for the vitrification (15M). All other cryoprotectants were prepared (individually) at 5 M in Hanks' buffered salt solution (sigma) plus 20% FBS (vitrification solutions: vs). After direct thawing in Hanks' buffered salt solution plus 20% FBS, acceptable survival rates were obtained with ethylene glycol: 82.8%, propylene glycol: 87.7%, dimethyl sulphoxide: 93.4%, and glycerol: 73.9% (p < 0.05). Dimethyl sulphoxide showed the highest blastomere survival rate and allowed the rescue of as much as 20% of the total blastomeres from each zebrafish blastula embryo.

  4. Technical baseline description for in situ vitrification laboratory test equipment

    SciTech Connect

    Beard, K.V.; Bonnenberg, R.W.; Watson, L.R.

    1991-09-01

    IN situ vitrification (ISV) has been identified as possible waste treatment technology. ISV was developed by Pacific Northwest Laboratory (PNL), Richland, Washington, as a thermal treatment process to treat contaminated soils in place. The process, which electrically melts and dissolves soils and associated inorganic materials, simultaneously destroys and/or removes organic contaminants while incorporating inorganic contaminants into a stable, glass-like residual product. This Technical Baseline Description has been prepared to provide high level descriptions of the design of the Laboratory Test model, including all design modifications and safety improvements made to data. Furthermore, the Technical Baseline Description provides a basic overview of the interface documents for configuration management, program management interfaces, safety, quality, and security requirements. 8 figs.

  5. UK Full-Scale Non-Active vitrification development and implementation of research findings onto the waste vitrification plant

    SciTech Connect

    Bradshaw, K.; Gribble, N.R.; Hughes, D.O.; Riley, A.D.

    2007-07-01

    This paper describes the historic and current status of inactive research in support of UK Highly Active (HA) waste vitrification. Experimental work performed to date on the UK's inactive vitrification research facility is summarised along with estimates of the potential impact of this research work on the reduction of HA Liquor (HAL) stocks stored in the UK at Sellafield. The current position regarding implementation of research learning onto the UK's operational vitrification plants is described. (authors)

  6. Porcine sperm vitrification II: Spheres method.

    PubMed

    Arraztoa, C C; Miragaya, M H; Chaves, M G; Trasorras, V L; Gambarotta, M C; Neild, D M

    2016-11-10

    Owing to current problems in boar sperm cryopreservation, this study proposes to evaluate vitrification in spheres as an alternative cryopreservation procedure, comparing the use or not of permeable cryoprotectants and two warming methods. Extended (n = 3; r = 4) and raw (n = 5; r = 2) porcine spermatozoa were diluted in media, in the absence or presence of either 4% dimethylformamide or 4% glycerol, to a final concentration of 5 × 10(6)  spermatozoa/ml and vitrified using the spheres method. Two warming procedures were evaluated: a rapid method (30 s at 37°C) and an ultrarapid method (7 s at 75°C, followed by 30 s at 37°C). Percentages of total motility (phase contrast), membrane function (hypo-osmotic swelling test), acrosome integrity (phase contrast), sperm viability (6-carboxyfluorescein diacetate and propidium iodide stain), chromatin condensation (toluidine blue stain) and chromatin susceptibility to acid denaturation (acridine orange stain) were evaluated in the samples before and after vitrification. Results, analysed using Friedman's test, suggest that rapid warming of raw porcine spermatozoa vitrified without permeable cryoprotectants may preserve DNA condensation and integrity better than the other processing methods studied in this work. Hence, porcine sperm vitrification using spheres could be used to produce embryos with ICSI to further validate this method.

  7. Successful ongoing pregnancies after vitrification of oocytes.

    PubMed

    Lucena, Elkin; Bernal, Diana Patricia; Lucena, Carolina; Rojas, Alejandro; Moran, Abby; Lucena, Andrés

    2006-01-01

    To demonstrate the efficiency of vitrifying mature human oocytes for different clinical indications. Descriptive case series. Cryobiology laboratory, Centro Colombiano de Fertilidad y Esterilidad-CECOLFES LTDA. (Bogotá, Colombia). Oocyte vitrification was offered as an alternative management for patients undergoing infertility treatment because of ovarian hyperstimulation syndrome, premature ovarian failure, natural ovarian failure, male factor, poor response, or oocyte donation. Mature oocytes were obtained from 33 donor women and 40 patients undergoing infertility treatment. Oocytes were retrieved by ultrasound-guided transvaginal aspiration and vitrified with the Cryotops method, with 30% ethylene glycol, 30% dimethyl sulfoxide, and 0.5 mol/L sucrose. Viability was assessed 3 hours after thawing. The surviving oocytes were inseminated by intracytoplasmic sperm injection. Fertilization was evaluated after 24 hours. The zygotes were further cultured in vitro for up to 72 hours until time of embryo transfer. Recovery, viability, fertilization, and pregnancy rates. Oocyte vitrification with the Cryotop method resulted in high rates of recovery, viability, fertilization, cleavage, and ongoing pregnancy. Vitrification with the Cryotop method is an efficient, fast, and economical method for oocyte cryopreservation that offers high rates of survival, fertilization, embryo development, and ongoing normal pregnancies, providing a new alternative for the management of female infertility.

  8. Aqueous dissolution of laboratory and field samples from the in-situ vitrification process

    SciTech Connect

    McGrail, B.P. ); Bates, S.O. )

    1991-08-01

    In-situ vitrification (ISV) is being evaluated in several countries as a remediation technology for immobilizing both hazardous and radioactive buried wastes. A combination of laboratory data and modeling results are presented that establishes the scientific basis for predicting the long-term stability of an ISV glass in the environment. Laboratory experiments included tests with ISV samples obtained from pilot- and intermediate-scale field tests, a nuclear waste glass, and a natural obsidian. 8 refs.

  9. Development of Vitrification Process and Glass Formulation for Nuclear Waste Conditioning

    SciTech Connect

    Petitjean, V.; Fillet, C.; Boen, R.; Veyer, C.; Flament, T.

    2002-02-26

    The vitrification of high-level waste is the internationally recognized standard to minimize the impact to the environment resulting from waste disposal as well as to minimize the volume of conditioned waste to be disposed of. COGEMA has been vitrifying high-level waste industrially for over 20 years and is currently operating three commercial vitrification facilities based on a hot metal crucible technology, with outstanding records of safety, reliability and product quality. To further increase the performance of vitrification facilities, CEA and COGEMA have been developing the cold crucible melter technology since the beginning of the 1980s. This type of melter is characterized by a virtually unlimited equipment service life and a great flexibility in dealing with various types of waste and allowing development of high temperature matrices. In complement of and in parallel with the vitrification process, a glass formulation methodology has been developed by the CEA in order to tailor matrices for the wastes to be conditioned while providing the best adaptation to the processing technology. The development of a glass formulation is a trade-off between material properties and qualities, technical feasibility, and disposal safety criteria. It involves non-radioactive and radioactive laboratories in order to achieve a comprehensive matrix qualification. Several glasses and glass ceramics have thus been studied by the CEA to be compliant with industrial needs and waste characteristics: glasses or other matrices for a large spectrum of fission products, or for high contents of specifics elements such as sodium, phosphate, iron, molybdenum, or actinides. New glasses or glass-ceramics designed to minimize the final wasteform volume for solutions produced during the reprocessing of high burnup fuels or to treat legacy wastes are now under development and take benefit from the latest CEA hot-laboratories and technology development. The paper presents the CEA state

  10. Programmatic challenges and the value of testing on the West Valley Demonstration Project`s vitrification facility design

    SciTech Connect

    Borisch, R.R.

    1990-10-01

    This paper discusses the solidification of approximately 2.1 million liters (560 thousand gallons) of high-level waste (HLW) which has resulted from the operation of a nuclear fuel reprocessing plant. Existing facilities` requirement of redesign and conversion to meet their new purpose are addressed. Vitrification technology and systems creation are presented.

  11. SRS vitrification studies in support of the U.S. program for disposition of excess plutonium

    SciTech Connect

    Wicks, G.G.; McKibben, J.M.; Plodinec, M.J.; Ramsey, W.G.

    1995-09-01

    Many thousands of nuclear weapons are being retired in the U.S. and Russian as a result of nuclear disarmament activities. These efforts are expected to produce a surplus of about 50 MT of weapons grade plutonium (Pu) in each country. In addition to this inventory, the U.S. Department of Energy (DOE) has more than 20 MT of Pu scrap, residue, etc., and Russian is also believed to have at least as much of this type of material. The entire surplus Pu inventories in the U.S. and Russian present a clear and immediate danger to national and international security. It is important that a solution be found to secure and manage this material effectively and that such an effort be implemented as quickly as possible. One option under consideration is vitrification of Pu into a safe, durable, accountable and proliferation-resistant form. As a result of decades to experience within the DOE community involving vitrification of a variety of hazardous and radioactive wastes, this existing technology can now be expanded to include mobilization of large amounts of Pu. This technology can then be implemented rapidly using the many existing resources currently available. An overall strategy to vitrify many different types of Pu will be already developed throughout the waste management community can be used in a staged Pu vitrification effort. This approach uses the flexible vitrification technology already available and can even be made portable so that it may be brought to the source and ultimately, used to produce a consistent and common borosilicate glass composition for the vitrified Pu. The final composition of this product can be made similar to nationally and internationally accepted HLW glasses.

  12. Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zarnescu, Livia; Leung, Michael C.; Abeyta, Michael; Sudkamp, Helge; Baer, Thomas; Behr, Barry; Ellerbee, Audrey K.

    2015-09-01

    Vitrification is an increasingly popular method of embryo cryopreservation that is used in assisted reproductive technology. Although vitrification has high post-thaw survival rates compared to other freezing techniques, its long-term effects on embryo development are still poorly understood. We demonstrate an application of full-field optical coherence tomography (FF-OCT) to visualize the effects of vitrification on live single-cell (2 pronuclear) mouse embryos without harmful labels. Using FF-OCT, we observed that vitrification causes a significant increase in the aggregation of structures within the embryo cytoplasm, consistent with reports in literature based on fluorescence techniques. We quantify the degree of aggregation with an objective metric, the cytoplasmic aggregation (CA) score, and observe a high degree of correlation between the CA scores of FF-OCT images of embryos and of fluorescence images of their mitochondria. Our results indicate that FF-OCT shows promise as a label-free assessment of the effects of vitrification on embryo mitochondria distribution. The CA score provides a quantitative metric to describe the degree to which embryos have been affected by vitrification and could aid clinicians in selecting embryos for transfer.

  13. A pilot-scale radioactive test using in situ vitrification

    SciTech Connect

    Timmerman, C.L.; Oma, K.M.

    1985-11-01

    Pacific Northwest Laboratory is developing in situ vitrification (ISV) as a potential remedial action technique for previously disposed radioactive liquid drain sites. The process melts the contaminated soil to produce a durable glass and crystalline waste form and encapsulates the radionuclides. The development of this alternative technology is being performed for the US Department of Energy. The results of an ISV pilot-scale test conducted in June 1983 are discussed in which soils contaminated with actual radioactive transuranic and mixed fission product elements were vitrified. The test successfully demonstrated the containment of radionuclides during processing, both within the vitrified mass and in the off-gas system. No environmental release of radioactive material was detectable during testing operations. The vitrified soil retained >99% of all radionuclides. Losses to the offgas system varied from less than or equal to 0.03% for particulate materials (plutonium and strontium) to 0.8% for cesium, which is a more volatile element. The off-gas system effectively contained both volatile and entrained radioactive materials. Analysis of the vitrified soil revealed that all radionuclides were distributed throughout the vitrified zone, some more uniformly than others. Analysis of soil samples taken adjacent to the block indicated that no migration of radionuclides outside the vitrification zone occurred. Leaching studies have shown that the ISV process generates a highly durable waste form, comparable to Pyrex and granite. Based on geologic data from the hydration of obsidian, which is chemically similar to the ISV glass, the hydration or weathering rate is predicted to be much less than 1 mm in 10,000 yr.

  14. Konjac-based oil bulking system for development of improved-lipid pork patties: technological, microbiological and sensory assessment.

    PubMed

    Salcedo-Sandoval, Lorena; Cofrades, Susana; Ruiz-Capillas, Claudia; Carballo, José; Jiménez-Colmenero, Francisco

    2015-03-01

    Improved-lipid pork patties were manufactured following two different reformulation strategies: fat reduction by replacement of pork backfat with konjac gel (KG), and fat reduction/lipid improvement by replacement of pork backfat with an improved oil combination (olive, linseed and fish oils) bulking system based on konjac gel (O-KG). Technological, microbiological and sensory properties were analyzed as affected by the type of formulation and by chilled storage (9days, 2°C). Fat was reduced by between 30 and 86%. In the cases where O-KG was incorporated, 12 and 41% of total fat in patties came from the oil combination. There was no observable effect on color parameters in samples with O-K. Higher KG levels produced harder cooked patties. Animal fat replacement in patties promoted an increase in lipid oxidation, which was more pronounced in samples with an oil combination. In general, during chilled storage no major changes were observed in the studied properties as a result of the different treatments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The Value of CO2-Geothermal Bulk Energy Storage to Reducing CO2 Emissions Compared to Conventional Bulk Energy Storage Technologies

    NASA Astrophysics Data System (ADS)

    Ogland-Hand, J.; Bielicki, J. M.; Buscheck, T. A.

    2016-12-01

    Sedimentary basin geothermal resources and CO2 that is captured from large point sources can be used for bulk energy storage (BES) in order to accommodate higher penetration and utilization of variable renewable energy resources. Excess energy is stored by pressurizing and injecting CO2 into deep, porous, and permeable aquifers that are ubiquitous throughout the United States. When electricity demand exceeds supply, some of the pressurized and geothermally-heated CO2 can be produced and used to generate electricity. This CO2-BES approach reduces CO2 emissions directly by storing CO2 and indirectly by using some of that CO2 to time-shift over-generation and displace CO2 emissions from fossil-fueled power plants that would have otherwise provided electricity. As such, CO2-BES may create more value to regional electricity systems than conventional pumped hydro energy storage (PHES) or compressed air energy storage (CAES) approaches that may only create value by time-shifting energy and indirectly reducing CO2 emissions. We developed and implemented a method to estimate the value that BES has to reducing CO2 emissions from regional electricity systems. The method minimizes the dispatch of electricity system components to meet exogenous demand subject to various CO2 prices, so that the value of CO2 emissions reductions can be estimated. We applied this method to estimate the performance and value of CO2-BES, PHES, and CAES within real data for electricity systems in California and Texas over the course of a full year to account for seasonal fluctuations in electricity demand and variable renewable resource availability. Our results suggest that the value of CO2-BES to reducing CO2 emissions may be as much as twice that of PHES or CAES and thus CO2-BES may be a more favorable approach to energy storage in regional electricity systems, especially those where the topography is not amenable to PHES or the subsurface is not amenable to CAES.

  16. Cryopreservation: Vitrification and Controlled Rate Cooling.

    PubMed

    Hunt, Charles J

    2017-01-01

    Cryopreservation is the application of low temperatures to preserve the structural and functional integrity of cells and tissues. Conventional cooling protocols allow ice to form and solute concentrations to rise during the cryopreservation process. The damage caused by the rise in solute concentration can be mitigated by the use of compounds known as cryoprotectants. Such compounds protect cells from the consequences of slow cooling injury, allowing them to be cooled at cooling rates which avoid the lethal effects of intracellular ice. An alternative to conventional cooling is vitrification. Vitrification methods incorporate cryoprotectants at sufficiently high concentrations to prevent ice crystallization so that the system forms an amorphous glass thus avoiding the damaging effects caused by conventional slow cooling. However, vitrification too can impose damaging consequences on cells as the cryoprotectant concentrations required to vitrify cells at lower cooling rates are potentially, and often, harmful. While these concentrations can be lowered to nontoxic levels, if the cells are ultra-rapidly cooled, the resulting metastable system can lead to damage through devitrification and growth of ice during subsequent storage and rewarming if not appropriately handled.The commercial and clinical application of stem cells requires robust and reproducible cryopreservation protocols and appropriate long-term, low-temperature storage conditions to provide reliable master and working cell banks. Though current Good Manufacturing Practice (cGMP) compliant methods for the derivation and banking of clinical grade pluripotent stem cells exist and stem cell lines suitable for clinical applications are available, current cryopreservation protocols, whether for vitrification or conventional slow freezing, remain suboptimal. Apart from the resultant loss of valuable product that suboptimal cryopreservation engenders, there is a danger that such processes will impose a selective

  17. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1997 annual progress report

    SciTech Connect

    Doctor, R.; Nunez, L.; Cicero-Herman, C.A.; Ritter, J.A.; Landsberger, S.

    1997-01-01

    'Vitrification has been selected as a final waste form technology in the US for long-term storage of high-level radioactive wastes (HLW). However, a foreseeable problem during vitrification in some waste feed streams lies in the presence of elements (e.g., transition metals) in the HLW that may cause instabilities in the final glass product. The formation of spinel compounds, such as Fe{sub 3}O{sub 4} and FeCrO{sub 4}, results in glass phase separation and reduces vitrifier lifetime, and durability of the final waste form. A superconducting open gradient magnetic separation (OGMS) system maybe suitable for the removal of the deleterious transition elements (e.g. Fe, Co, and Ni) and other elements (lanthanides) from vitrification feed streams due to their ferromagnetic or paramagnetic nature. The OGMS systems are designed to deflect and collect paramagnetic minerals as they interact with a magnetic field gradient. This system has the potential to reduce the volume of HLW for vitrification and ensure a stable product. In order to design efficient OGMS and High gradient magnetic separation (HGMS) processes, a fundamental understanding of the physical and chemical properties of the waste feed streams is required. Using HLW simulant and radioactive fly ash and sludge samples from the Savannah River Technology Center, Rocky Flats site, and the Hanford reservation, several techniques were used to characterize and predict the separation capability for a superconducting OGMS system.'

  18. Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization

    SciTech Connect

    Jantzen, C.M.

    2001-10-05

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

  19. Vitrification of human blastocysts: an update.

    PubMed

    Liebermann, Juergen

    2009-01-01

    Transfer of blastocyst-stage embryos has been shown to increase pregnancy rates while allowing for improved selection of potentially viable embryos. At this late stage of development, lower numbers of embryos can be transferred, resulting in less high-order multiple pregnancies and increased implantation rates. Between January 2004 and February 2009, 8449 blastocysts from 2453 patients were vitrified. After 1398 vitrified embryo transfers (VET) of both day-5 and day-6 blastocysts with a mean patient age of 34.6 +/- 5.0 years, the study centre has seen a survival rate of 96.3% (2730/2835), an implantation rate of 29.4% and a clinical pregnancy rate per VET of 42.8% (599 pregnancies/1398 warmed embryo transfers). After more than 5 years of vitrifying blastocysts, the perinatal outcome was, from 348 deliveries with vitrified blastocysts, the births of 431 babies (202 boys and 229 girls). One of the benefits of blastocyst vitrification is that it can be undertaken on a more flexible basis by laboratory staff. Also, vitrification may allow individual blastocysts to be cryopreserved at their optimal stage of development and expansion.

  20. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, Dennis F.

    1997-01-01

    A process for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  1. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1997-09-02

    A process is described for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process is also disclosed. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile. 1 fig.

  2. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1995-01-01

    A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  3. Vitrification of electric arc furnace dusts.

    PubMed

    Pelino, M; Karamanov, A; Pisciella, P; Crisucci, S; Zonetti, D

    2002-01-01

    Electric arc furnace baghouse dust (EAFD), a waste by-product of the steelmaking process, contains the elements that are volatilized from the charge during the melting (Cr, Pb, Zn, Cu and Cd). The results of leaching tests show that the concentration of these elements exceeds the regulatory limits. Consequently, EAFD cannot be disposed of in ordinary landfill sites without stabilization of the heavy metals. In this work, the vitrification of EAFD, from both carbon and stainless steel productions, were studied. The vitrification process was selected as the inertizing process because it permits the immobilization of the hazardous elements in the glass network and represents an environmentally acceptable method for the stabilization of this waste. Classes of various compositions were obtained by mixing EAFD with glass cullet and sand. The EAFD and the glass products were characterized by DTA, TG, X-ray analysis and by the TCLP test. The results show that the stability of the product is influenced by the glass structure, which mainly depends on the Si/O ratio. Secondary crystallization heat-treatment were carried out on some samples. The results highlighted the formation of spinel phases, which reduced the chemical durability in acid media. The possibility to recover Zn from carbon steel production EAFD was investigated and about 60-70% of metal recovery was obtained. The resulting glass show higher chemical stability than glasses obtained without metal recovery.

  4. Appendix D: Irvine Scientific(®) Vitrification System.

    PubMed

    VerMilyea, Matthew; Brewer, Amber

    2017-01-01

    This chapter will describe the use of the Irvine Scientific(®) vitrification and warming solutions (Vit Kits(®)) along with a detailed protocol for the correct use of the CryoTip(®) vitrification device for human embryos and oocytes. Successful pregnancies have been reported after carrying out rapid vitrification methods of oocytes, cleavage stage embryos, and blastocysts using the CryoTip(®) (Popwell et al. Fertil Steril, 101:e20, 2014; Kuwayama et al. Reprod Biomed 11:608-614, 2005; Kuwayama et al. Fertil Steril 84:S187, 2005; Kuwayama et al. Vitrification of human embryos using the CryoTip TM method. Reprod Biomed 11:608-614). Compared to other vitrification carrier devices, the CryoTip(®) is considered a closed carrier for vitrification, thereby eliminating the theoretical risk of disease transmission through contaminated liquid nitrogen during cooling and storage (Bielanski et al. Cryobiology, 40:110-116, 2000). The CryoTip(®) is cleared by the FDA and has CE mark approval as a closed device to carry gametes or embryos in a specialized medium during cryopreservation procedures and subsequent long-term storage in liquid nitrogen. The CryoTip(®) has been shown to be a safe and reliable vitrification device, and when compared to other open system vitrification devices, it has provided similar results (Martino et al. Reprod Biol Endocrinol 11:27, 2013, Valbuena et al. Fertil Steril 97:209-217, 2012; Kuwayama et al. Reprod Biomed 11:608-614, 2005). The CryoTip(®) has also been shown to be suitable for use as a vitrification device for the cryopreservation of small volumes of sperm (Tanaka et al. Fertil Steril 90: S292, 2008).

  5. Vitrification of in vitro cultured rabbit morulae.

    PubMed

    Silvestre, M A; Saeed, A M; Escribá, M J; Garcií-Ximénez, F

    2003-03-20

    In the present work, we attempt to establish an efficient vitrification procedure for 32-cell rabbit embryos obtained in vitro. In experiment 1, both the effect of the composition of the vitrification solutions and the cryoprotectant addition (either in one or two steps) were studied. For one-step addition, straws with embryos in the final vitrification solution (total time 60s) were plunged into liquid nitrogen. For two-step addition, previously embryos were 2 min pre-equilibrated in 0.5 ml of (1:1) PBS plus 20% FCS: vitrification solution without sucrose. Different solutions of cryoprotectants were compared: 25 vol.% ethylene glycol supplemented with 0.25 M sucrose (25EG+S) and 20% ethylene glycol plus 20% dimethyl sulfoxide, alone (20EG+20DMSO-S) or supplemented with 0.25 M sucrose (20EG+20DMSO+S). Six percent (30/487) of the total of 32-cell embryos obtained by in vitro culture in each experimental session was slow-frozen by a classical method as a technical efficiency control. Only 30% slow-frozen embryos reached blastocyst stage. Significant differences in embryo development were detected between the one-step (25EG+S) and two-step (25EG+S) groups and the one-step (20EG-20DMSO+S) and two-step (20EG-20DMSO-S) groups (0-6% versus 36-50%, respectively). Consequently, in the following experiments only these two vitrification procedures were used. In experiment 2, we attempted to substitute the use of PBS by HEPES-buffered Ham's F-10 (h-CM) in all cryoprotective solutions or media. When h-CM was used, a significant reduction in the in vitro embryo development was observed when the HEPES-buffered groups were compared with one-step (20EG-20DMSO+S) group in s-PBS (35-45% versus 73%). In experiment 3, the one-step (20EG+20DMSO+S) and two-step (20EG+20DMSO-S) procedures were assayed using two FCS levels (20 and 40%) in the PBS-based media. Relative to in vitro development, the highest rates were reached with one step (20EG-20DMSO+S), using PBS plus 20% FCS, which was

  6. Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA's Cold Crucible Melter

    SciTech Connect

    Do Quang, R.; Petitjean, V.; Hollebecque, F.; Pinet, O.; Flament, T.; Prod'homme, A.

    2003-02-25

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R&D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  7. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    SciTech Connect

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  8. Transportable vitrification system pilot demonstration with surrogate Oak Ridge WETF sludge

    SciTech Connect

    Smith, M.E.; Singer, R.P.; Young, S.R.; Zamecnik, J.R.

    1996-12-31

    Surrogate Oak Ridge Reservation West End Treatment Facility (WETF) sludge was vitrified in a pilot-scale EnVitCo melter at the Clemson University Environmental Systems Engineering Department (ESED) Vitrification Facility. Although much smaller than the Transportable Vitrification System (TVS) melter, this melter is similar in design to the one in the TVS. The TVS was built by EnVitCo for the Savannah River Technology Center (SRTC) for the treatment of low level and mixed wastes. A total of three tests were done by ESED personnel with guidance from SRTC TVS personnel. The purpose of these tests was to determine what problems might occur during the vitrification of WETF sludge feed in the TVS. The demonstration was successfully completed and the glasses produced passed the TCLP tests for all the hazardous waste components (Ba, Cd, Cr, Pb, and Ni). An overview of these tests and experimental results on glass container testing, glass pouring, glass product characterization, electrode and refractory wear, and offgas composition and particulate measurements will be given.

  9. Mixed Waste Treatment Cost Analysis for a Range of GeoMelt Vitrification Process Configurations

    SciTech Connect

    Thompson, L. E.

    2002-02-27

    GeoMelt is a batch vitrification process used for contaminated site remediation and waste treatment. GeoMelt can be applied in several different configurations ranging from deep subsurface in situ treatment to aboveground batch plants. The process has been successfully used to treat a wide range of contaminated wastes and debris including: mixed low-level radioactive wastes; mixed transuranic wastes; polychlorinated biphenyls; pesticides; dioxins; and a range of heavy metals. Hypothetical cost estimates for the treatment of mixed low-level radioactive waste were prepared for the GeoMelt subsurface planar and in-container vitrification methods. The subsurface planar method involves in situ treatment and the in-container vitrification method involves treatment in an aboveground batch plant. The projected costs for the subsurface planar method range from $355-$461 per ton. These costs equate to 18-20 cents per pound. The projected cost for the in-container method is $1585 per ton. This cost equates to 80 cents per pound. These treatment costs are ten or more times lower than the treatment costs for alternative mixed waste treatment technologies according to a 1996 study by the US Department of Energy.

  10. Integrated DWPF Melter System (IDMS) campaign report: Hanford Waste Vitrification Plan (HWVP) process demonstration

    SciTech Connect

    Hutson, N.D.

    1992-08-10

    Vitrification facilities are being developed worldwide to convert high-level nuclear waste to a durable glass form for permanent disposal. Facilities in the United States include the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the West Valley Demonstration Project (WVDP) at West Valley, NY. At each of these sites, highly radioactive defense waste will be vitrified to a stable borosilicate glass. The DWPF and WVDP are near physical completion while the HWVP is in the design phase. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. Because of the similarities of the DWPF and HWVP processes, the IDMS facility has also been used to characterize the processing behavior of a reference NCAW simulant. The demonstration was undertaken specifically to determine material balances, to characterize the evolution of offgas products (especially hydrogen), to determine the effects of noble metals, and to obtain general HWVP design data. The campaign was conducted from November, 1991 to February, 1992.

  11. In Situ Vitrification Engineering-Scale Test ES-INEL-4 Product Characterization Test Plan

    SciTech Connect

    Weidner, J.R.; Stoots, P.R.

    1990-06-01

    In 1987, the Buried Waste Program (BWP) was established within EG G Idaho, Inc., the prime contractor at INEL. Following the Environmental Restoration guidelines of the Buried Waste Program, the In Situ Vitrification Program is participating in a Remedial Investigation/Feasibility Study (RI/FS) for permanent disposal of INEL waste, in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This study was requested and is being funded by the Office of Technology Development of the Idaho Operations Office of DOE (DOE-ID). As part of the RI/FS, an in situ vitrification (ISV) scoping study on the treatability of mixed low-level and mixed transuranic-contaminated waste is being performed to determine the applicability of ISV to remediation of waste at SDA. In examination of the ISV process for applicability to SDA waste, this In Situ Vitrification Engineering-Scale Test ES-INEL-4 Product Characterization Test Plan identifies the following: sampling and analysis strategy; sampling procedures; methods to conduct analyses; equipment; and procedures to ensure data quality. 8 refs., 2 tabs.

  12. Test Summary Report INEEL Sodium-Bearing Waste Vitrification Demonstration RSM-01-1

    SciTech Connect

    Goles, Ronald W.; Perez, Joseph M.; Macisaac, Brett D.; Siemer, Darryl D.; Mccray, John A.

    2001-05-21

    The U.S. Department of Energy's Idaho National Engineering and Environmental Laboratory is storing large amounts of radioactive and mixed wastes. Most of the sodium-bearing wastes have been calcined, but about a million gallons remain uncalcined, and this waste does not meet current regulatory requirements for long-term storage and/or disposal. As a part of the Settlement Agreement between DOE and the State of Idaho, the tanks currently containing SBW are to be taken out of service by December 31, 2012, which requires removing and treatment the remaining SBW. Vitrification is the option for waste disposal that received the highest weighted score against the criteria used. Beginning in FY 2000, the INEEL high-level waste program embarked on a program for technology demonstration and development that would lead to conceptual design of a vitrification facility in the event that vitrification is the preferred alternative for SBW disposal. The Pacific Northwest National Laborator's Research-Scale Melter was used to conduct these initial melter-flowsheet evaluations. Efforts are underway to reduce the volume of waste vitrified, and during the current test, an overall SBW waste volume-reduction factor of 7.6 was achieved.

  13. [Oocyte vitrification and its impact on the clinical practice of assisted reproduction].

    PubMed

    Boyer, P; Tourame, P; Gervoise-Boyer, M

    2012-11-01

    Oocyte vitrification is a new technique in cryobiology that will lead to a number of improvements in assisted reproduction practices, oocyte donation and the preservation of female fertility. Professionals already versed in the techniques of micromanipulation will be able to master the new procedures, which should not be delegated to unqualified staff. When adopted by clinical units, oocyte vitrification will require changes in laboratory and administrative organization. The technique will also modify the ethical outlines of reproductive biology. France today is running behind in the application of this major development in cryobiology. The reasons are many and have to do with a long waiting period for authorization from national health authorities, a lack of material and human resources and a foreseeable shake-up in the nationally established egg donation program. However, recently a new law of bioethics has recognized the breakthrough that this new technique represents by allowing couples covered by the French national health care program for Assisted Reproductive Technologies (ART) to choose oocyte vitrification as an option.

  14. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    SciTech Connect

    Bickford, D.F.

    1993-12-31

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  15. Low-level waste vitrification pilot-scale system need report

    SciTech Connect

    Morrissey, M.F.; Whitney, L.D.

    1996-03-01

    This report examines the need for pilot-scale testing in support of the low-level vitrification facility at Hanford. In addition, the report examines the availability of on-site facilities to contain a pilot-plant. It is recommended that a non-radioactive pilot-plant be operated for extended periods. In addition, it is recommended that two small-scale systems, one processing radioactive waste feed and one processing a simulated waste feed be used for validation of waste simulants. The actual scale of the pilot-plant will be determined from the technologies included in conceptual design of the plant. However, for the purposes of this review, a plant of 5 to 10 metric ton/day of glass production was assumed. It is recommended that a detailed data needs package and integrated flowsheet be developed in FY95 to clearly identify data requirements and identify relationships with other TWRS elements. A pilot-plant will contribute to the reduction of uncertainty in the design and initial operation of the vitrification facility to an acceptable level. Prior to pilot-scale testing, the components will not have been operated as an integrated system and will not have been tested for extended operating periods. Testing for extended periods at pilot-scale will allow verification of the flowsheet including the effects of recycle streams. In addition, extended testing will allow evaluation of wear, corrosion and mechanical reality of individual components, potential accumulations within the components, and the sensitivity of the process to operating conditions. Also, the pilot facility will provide evidence that the facility will meet radioactive and nonradioactive environmental release limits, and increase the confidence in scale-up. The pilot-scale testing data and resulting improvements in the vitrification facility design will reduce the time required for cold chemical testing in the vitrification facility.

  16. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  17. Design of microwave vitrification systems for radioactive waste

    SciTech Connect

    White, T.L.; Wilson, C.T.; Schaich, C.R.; Bostick, T.L.

    1995-12-31

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of Department of Energy (DOE) radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915-MHz, 75-kW microwave vitrification system or ``microwave melter`` is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge.

  18. Design of microwave vitrification systems for radioactive waste

    SciTech Connect

    White, T.L.; Wilson, C.T.; Schaick, C.R.; Bostick, W.D.

    1996-04-01

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of DOE radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915 MHz, 75 kW microwave vitrification system or `microwave melter` is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge.

  19. Apparatus for in situ heating and vitrification

    DOEpatents

    Buelt, J.L.; Oma, K.H.; Eschbach, E.A.

    1994-05-31

    An apparatus for decontaminating ground areas where toxic chemicals are buried includes a plurality of spaced electrodes located in the ground and to which a voltage is applied for bringing about current flow. Power delivered to the ground volatilizes the chemicals that are then collected and directed to a gas treatment system. A preferred form of the invention employs high voltage arc discharge between the electrodes for heating a ground region to relatively high temperatures at relatively low power levels. Electrodes according to the present invention are provided with preferentially active lower portions between which current flows for the purpose of soil heating or for soil melting and vitrification. Promoting current flow below ground level avoids predominantly superficial treatment and increases electrode life. 15 figs.

  20. Defense waste vitrification studies during FY 1980

    SciTech Connect

    Bjorklund, W.J.

    1981-08-01

    During FY-1980, Pacific Northwest Laboratory (PNL) tested three vitrification processes on simulated high-level radioactive waste typical of that stored or being produced at US defense facilities. Processes tested included a spray calciner/in-can melter, spray calciner/ceramic melter and direct liquid feeding of a ceramic melter. Tests were made on pilot-scale as well as fullscale equipment. Over 16,000 kg of glass product were produced from 68,000 L of simulated waste. Several compositions were tested, and the glass products were evaluated. Emphasis was placed on determining the processing rates and the ability of the waste to be processed. Off-gas data were collected on several runs. Major conclusions drawn from this test program are divided into processing results, glass-product results, and general information.

  1. Apparatus for in situ heating and vitrification

    DOEpatents

    Buelt, James L.; Oma, Kenton H.; Eschbach, Eugene A.

    1994-01-01

    An apparatus for decontaminating ground areas where toxic chemicals are buried includes a plurality of spaced electrodes located in the ground and to which a voltage is applied for bringing about current flow. Power delivered to the ground volatilizes the chemicals that are then collected and directed to a gas treatment system. A preferred form of the invention employs high voltage arc discharge between the electrodes for heating a ground region to relatively high temperatures at relatively low power levels. Electrodes according to the present invention are provided with preferentially active lower portions between which current flows for the purpose of soil heating or for soil melting and vitrification. Promoting current flow below ground level avoids predominantly superficial treatment and increases electrode life.

  2. Hanford Waste Vitrification Plant hydrogen generation

    SciTech Connect

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K.

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H{sub 2}. CO{sub 2}, N{sub 2}0, NO, and NH{sub 3}. For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H{sub 2}, CO, CO{sub 2}, N{sub 2}, N{sub 2}O and NO.

  3. Vitrification and levitation of a liquid droplet on liquid nitrogen.

    PubMed

    Song, Young S; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2010-03-09

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect.

  4. Vitrification and levitation of a liquid droplet on liquid nitrogen

    PubMed Central

    Song, Young S.; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M.; Maas, Richard L.; Demirci, Utkan

    2010-01-01

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect. PMID:20176969

  5. Cryopreservation of animal and human embryos by vitrification.

    PubMed

    Kasai, Magosaburo; Mukaida, Tetsunori

    2004-08-01

    Vitrification is a method in which not only cells but also the whole solution is solidified without the crystallization of ice. For embryo cryopreservation, the vitrification method has advantages over the slow freezing method. For example, injuries related to ice is less likely to occur, embryo survival is more likely if the embryo treatment is optimized, and embryos can be cryopreserved by a simple method in a short period without a programmed freezer. However, solutions for vitrification must include a high concentration of permeating cryoprotectants, which may cause injury through the toxicity of the agents. Since the development of the first vitrification solution, which contained dimethylsulphoxide, acetamide, and propylene glycol, numerous solutions have been composed and reported to be effective. However, ethylene glycol is now most widely used as the permeating component. As supplements, a macromolecule and/or a small saccharide are frequently added. Embryos of various species, including humans, can be cryopreserved by conventional vitrification using insemination straws or by ultrarapid vitrification using minute tools such as electron microscopic grids, thin capillaries, minute loops, or minute sticks, or as microdrops. In the ultrarapid method, solutions with a lower concentration of permeating cryoprotectants, thus having a lower toxicity, can be used, because ultrarapid cooling/warming helps to prevent ice formation.

  6. Slow-freezing versus vitrification for human ovarian tissue cryopreservation.

    PubMed

    Klocke, Silke; Bündgen, Nana; Köster, Frank; Eichenlaub-Ritter, Ursula; Griesinger, Georg

    2015-02-01

    Ovarian tissue can be cryopreserved prior to chemotherapy using either the slow-freezing or the vitrification method; however, the data on the equality of the procedures are still conflicting. In this study, a comparison of the cryo-damage of human ovarian tissue induced by either vitrification or slow-freezing was performed. Ovarian tissue from 23 pre-menopausal patients was cryopreserved with either slow-freezing or vitrification. After thawing/warming, the tissue was histologically and immunohistochemically analyzed and cultured in vitro. During tissue culture the estradiol release was assessed. No significant difference was found in the proportion of high-quality follicles after thawing/warming in the slow-freezing and vitrification group, respectively (72.7 versus 66.7 %, p = 0.733). Estradiol secretion by the ovarian tissue was similar between groups during 18 days in vitro culture (area-under-the-curve 5,411 versus 13,102, p = 0.11). Addition of Sphingosine-1-Phosphate or Activin A to the culture medium did not alter estradiol release in both groups. The proportion of Activated Caspase-3 or 'Proliferating-Cell-Nuclear-Antigen' positive follicles at the end of the culture period was similar between slow-freezing and vitrification. Slow-freezing and vitrification result in similar morphological integrity after cryopreservation, a similar estradiol release in culture, and similar rates of follicular proliferation and apoptosis after culture.

  7. Metal mesh vitrification (MMV) method for cryopreservation of porcine embryos.

    PubMed

    Fujino, Y; Kojima, T; Nakamura, Y; Kobayashi, H; Kikuchi, K; Funahashi, H

    2008-09-15

    The objective was to develop a simpler, more reliable vitrification method for porcine embryos. Prepubertal donor gilts were induced to ovulate with eCG and hCG, and then inseminated artificially. Morulae and expanding blastocysts approximately 200 microm in diameter were collected 6 or 7d after hCG treatment. Embryos collected from donor gilts were maintained, so as to be individually recognizable, and handled in batches of four or five. The embryos together with a minimum volume (<2 microL) of vitrification solution were placed onto stainless steel metal meshes or plastic plates, and then plunged into liquid nitrogen-metal mesh vitrification (MMV) and plastic plate vitrification (PPV), respectively. The meshes or plates were stored in 1.8-mL cryotubes submerged in liquid nitrogen. Stored embryos were subsequently removed, cultured in medium for 24 h, and then assessed for viability. The survival rate (84.4%) of expanding blastocysts cooled by MMV was higher than that (53.1%) of embryos cooled by PPV (P<0.05). There was no significant difference in total cell number between MMV and PPV. The survival rate of morulae cooled by MMV was 55.0%. Transfer of 200 expanding blastocysts cooled by MMV to 10 synchronized recipient gilts resulted in 37 live piglets from 7 recipients. In conclusion, the MMV method was an effective vitrification procedure for cryopreservation of expanding porcine blastocysts. However, there was a batch effect on embryo survival after vitrification.

  8. Genotoxicity assessment of mouse oocytes by comet assay before vitrification and after warming with three vitrification protocols.

    PubMed

    Berthelot-Ricou, Anais; Perrin, Jeanne; di Giorgio, Carole; de Meo, Michel; Botta, Alain; Courbiere, Blandine

    2013-09-01

    To assess the genotoxicity of three oocyte vitrification protocols. Murine assay. Biogenotoxicology research laboratory. CD1 female mice. Three mouse oocyte groups were exposed to three commercialized human oocyte vitrification protocols. Protocols 1 and 2 contained dimethyl sulfoxide and ethylene glycol (EG), and protocol 3 contained EG and 1,2-propanediol (PrOH). DNA damage was first evaluated by comet assay after oocyte exposure to the three different equilibration and vitrification solutions. Comet assay was also performed after full vitrification and warming procedure and compared with a negative control group (oocytes stored in medium culture only) and a positive control group (oocytes exposed to hydrogen peroxide just before comet assay). DNA damage was quantified as Olive tail moment (OTM). Statistical analysis consisted of a Shapiro-Wilk test. Then, median protocol OTM was compared with the negative control group with the Mann-Whitney U test. The difference was considered to be statistically significant if the P value was <.05. In both parts of our study, protocols 1 and 2 did not induce significant DNA damage, whereas protocol 3 induced statistically higher DNA damage compared with the negative control group. Vitrification protocols containing PrOH induced significant DNA damage on mouse oocytes, both before cooling and after warming. Therefore, for the moment, we prefer vitrification techniques without PrOH while we await more studies on PrOH toxicity and long-term evaluation. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Comparison of in situ vitrification and rotary kiln incineration for soils treatment

    SciTech Connect

    Shearer, T.L. )

    1991-09-01

    In the hazardous waste community, the term thermal destruction' is a catchall phrase that broadly refers to high temperature destruction of hazardous contaminants. Included in the thermal destruction category are treatment technologies such as rotary kiln incineration, fluidized bed incineration, infrared thermal treatment, wet air oxidation, pyrolytic incineration, and vitrification. Among them, conventional rotary kiln incineration, a disposal method for many years, is the most well established, and often serves as a barometer to gauge the relative success of similar technologies. Public sentiment on an environmental issues and increasingly stringent environmental regulations has, over time, spurred design and development of innovative thermal treatment processes directed toward reducing harmful emissions and residuals that may require further treatment or disposal. In situ vitrification (ISV), a technology that combines heat and immobilization, is one such innovative and relatively new technology. This paper presents a comparison of ISV and rotary kiln incineration for soils treatment in the areas of process performance, process residuals, process limitations, applicable or relevant and appropriate (ARARs) regulations, criteria and limitations, and costs.

  10. Strategy for product composition control in the Hanford Waste Vitrification Plant

    SciTech Connect

    Bryan, M.F.; Piepel, G.F.

    1996-03-01

    The Hanford Waste Vitrification Plant (HWVP) will immobilize transuranic and high-level radioactive waste in borosilicate glass. The major objective of the Process/Product Model Development (PPMD) cost account of the Pacific Northwest Laboratory HWVP Technology Development (PHTD) Project is the development of a system for guiding control of feed slurry composition (which affects glass properties) and for checking and documenting product quality. This document lays out the broad structure of HWVP`s product composition control system, discusses five major algorithms and technical issues relevant to this system, and sketches the path of development and testing.

  11. How thermal stress alters the confinement of polymers vitrificated in nanopores.

    PubMed

    Teng, Chao; Li, Linling; Wang, Yong; Wang, Rong; Chen, Wei; Wang, Xiaoliang; Xue, Gi

    2017-05-28

    Understanding and controlling the glass transition temperature (Tg) and dynamics of polymers in confined geometries are of significance in both academia and industry. Here, we investigate how the thermal stress induced by a mismatch in the coefficient of thermal expansion affects the Tg behavior of polystyrene (PS) nanorods located inside cylindrical alumina nanopores. The size effects and molecular weight dependence of the Tg are also studied. A multi-step relaxation process was employed to study the relationship between thermal stress and cooling rate. At fast cooling rates, the imparted thermal stress would overcome the yield stress of PS and peel chains off the pore walls, while at slow cooling rates, chains are kept in contact with the pore walls due to timely dissipation of the produced thermal stress during vitrification. In smaller nanopores, more PS chains closely contact with pore walls, then stronger internal thermal stress would be generated between core and shell of PS nanorod, which results in a larger deviation between two Tgs. The core part of PS shows lower Tg than bulk value, which can induce faster dynamics in the center region. A complex and important role stress plays is supposed in complex confinement condition, e.g., in nanopores, during vitrification.

  12. How thermal stress alters the confinement of polymers vitrificated in nanopores

    NASA Astrophysics Data System (ADS)

    Teng, Chao; Li, Linling; Wang, Yong; Wang, Rong; Chen, Wei; Wang, Xiaoliang; Xue, Gi

    2017-05-01

    Understanding and controlling the glass transition temperature (Tg) and dynamics of polymers in confined geometries are of significance in both academia and industry. Here, we investigate how the thermal stress induced by a mismatch in the coefficient of thermal expansion affects the Tg behavior of polystyrene (PS) nanorods located inside cylindrical alumina nanopores. The size effects and molecular weight dependence of the Tg are also studied. A multi-step relaxation process was employed to study the relationship between thermal stress and cooling rate. At fast cooling rates, the imparted thermal stress would overcome the yield stress of PS and peel chains off the pore walls, while at slow cooling rates, chains are kept in contact with the pore walls due to timely dissipation of the produced thermal stress during vitrification. In smaller nanopores, more PS chains closely contact with pore walls, then stronger internal thermal stress would be generated between core and shell of PS nanorod, which results in a larger deviation between two Tgs. The core part of PS shows lower Tg than bulk value, which can induce faster dynamics in the center region. A complex and important role stress plays is supposed in complex confinement condition, e.g., in nanopores, during vitrification.

  13. Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components

    SciTech Connect

    Coleman, J.T.; Bickford, D.F.

    1991-12-31

    This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

  14. Development of glass vitrification at SRL as a waste treatment technique for nuclear weapon components

    SciTech Connect

    Coleman, J.T.; Bickford, D.F.

    1991-01-01

    This report discusses the development of vitrification for the waste treatment of nuclear weapons components at the Savannah River Site. Preliminary testing of surrogate nuclear weapon electronic waste shows that glass vitrification is a viable, robust treatment method.

  15. Oak Ridge National Laboratory West End Treatment Facility simulated sludge vitrification demonstration, Revision 1

    SciTech Connect

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-01-26

    Technologies are being developed by the US Department of Energy`s (DOE) Nuclear Facility sites to convert hazardous and mixed wastes to a form suitable for permanent disposal. Vitrification, which has been declared the Best Demonstrated Available Technology for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment. These wastes are typically wastewater treatment sludges that are categorized as listed wastes due to the process origin or organic solvent content, and usually contain only small amounts of hazardous constituents. The Oak Ridge National Laboratory`s (ORNL) West End Treatment Facility`s (WETF) sludge is considered on of these representative wastes. The WETF is a liquid waste processing plant that generates sludge from the biodenitrification and precipitation processes. An alternative wasteform is needed since the waste is currently stored in epoxy coated carbon steel tanks, which have a limited life. Since this waste has characteristics that make it suitable for vitrification with a high likelihood of success, it was identified as a suitable candidate by the Mixed Waste Integrated Program (MWIP) for testing at CU. The areas of special interest with this sludge are (1) minimum nitrates, (2) organic destruction, and (3) waste water treatment sludges containing little or no filter aid.

  16. [Contribution of embryo vitrification procedure to ART efficiency].

    PubMed

    Sifer, C

    2014-10-01

    This work aims to show, from data available in the literature and our own experience, how embryos' vitrification change and/or improve the management of infertile couples. In all, 652 cycles of frozen-thawed embryo transfers (FET) following vitrification were prospectively included and compared with 1126 FETs from slow freezing (SF) method. Primary end points were the (i) survival rate (SR) (% of embryos with>50% post-thaw intact blastomeres) and (ii) intact survival rate (ISR) (% of embryos with 100% post-thaw intact blastomeres). Secondary end point was the clinical pregnancy rate (CPR) defined as the presence of an intra uterine gestational sac with positive foetal heart beat. In all, 1097 and 2408 embryos have been thawed following vitrification and SF, respectively. We observed a highly significant increase of SR and ISR respectively when thawing concerned vitrified embryos rather than those from SF method (97.0% vs. 72.7%, P<10(-4); 91.5% vs. 49.8%, P<10(-4)). Furthermore, CPR were of 26.5% (73/652) and of 18.1% (204/1126) following FETs performed after vitrification or SF and thawing (P=0.0002), respectively. At the blastocyst stage, ISR was significantly improved following vitrification compared to SF (94.5% vs. 21.4%, P<10(-4)). In the study period, vitrification (i) reduced the mean number of fresh transferred embryos (1.5 vs. 1.6; P=0.08) and (ii) increased the rate of FETs at the blastocyst stage when compared with the control period (18.1% vs 2.5%., P<10(-4)). Embryo vitrification preserves all embryos from an ART cycle because of its excellent results regarding ISR at all stages of embryo development. This procedure allows a significant increase of pregnancy rates after thawing. In addition, there is a trend for increasing ART cycles performed using extended culture embryo and vitrification. The expected improvement of the cumulative birth rate at the blastocyst stage following vitrification remains to be demonstrated in a prospective randomized study.

  17. Vitrification development plan for US Department of Energy mixed wastes

    SciTech Connect

    Peters, R.; Lucerna, J.; Plodinec, M.J.

    1993-10-01

    This document is a general plan for conducting vitrification development for application to mixed wastes owned by the US Department of Energy. The emphasis is a description and discussion of the data needs to proceed through various stages of development. These stages are (1) screening at a waste site to determine which streams should be vitrified, (2) waste characterization and analysis, (3) waste form development and treatability studies, (4) process engineering development, (5) flowsheet and technical specifications for treatment processes, and (6) integrated pilot-scale demonstration. Appendices provide sample test plans for various stages of the vitrification development process. This plan is directed at thermal treatments which produce waste glass. However, the study is still applicable to the broader realm of thermal treatment since it deals with issues such as off-gas characterization and waste characterization that are not necessarily specific to vitrification. The purpose is to provide those exploring or considering vitrification with information concerning the kinds of data that are needed, the way the data are obtained, and the way the data are used. This will provide guidance to those who need to prioritize data needs to fit schedules and budgets. Knowledge of data needs also permits managers and planners to estimate resource requirements for vitrification development.

  18. Development of a combined soil-wash/in-furnace vitrification system for soil remediation at DOE sites. Final report

    SciTech Connect

    Pegg, I.L.; Guo, Y.; Lahoda, E.J.; Lai, Shan-Tao; Muller, I.S.; Ruller, J.; Grant, D.C.

    1993-01-01

    This report addresses research and development of technologies for treatment of radioactive and hazardous waste streams at DOE sites. Weldon Spring raffinate sludges were used in a direct vitrification study to investigate their use as fluxing agents in glass formulations when blended with site soil. Storm sewer sediments from the Oak Ridge, TN, Y-12 facility were used for soil washing followed by vitrification of the concentrates. Both waste streams were extensively characterized. Testing showed that both mercury and uranium could be removed from the Y-12 soil by chemical extraction resulting in an 80% volume reduction. Thermal desorption was used on the contaminant-enriched minority fraction to separate the mercury from the uranium. Vitrification tests demonstrated that high waste loading glasses could be produced from the radioactive stream and from the Weldon Spring wastes which showed very good leach resistance, and viscosities and electrical conductivities in the range suitable for joule-heated ceramic melter (JHCM) processing. The conceptual process described combines soil washing, thermal desorption, and vitrification to produce clean soil (about 90% of the input waste stream), non-radioactive mercury, and a glass wasteform; the estimated processing costs for that system are about $260--$400/yd{sup 3}. Results from continuous melter tests performed using Duratek`s advanced JHCM (Duramelter) system are also presented. Since life cycle cost estimates are driven largely by volume reduction considerations, the large volume reductions possible with these multi-technology, blended waste stream approaches can produce a more leach resistant wasteform at a lower overall cost than alternative technologies such as cementation.

  19. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  20. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  1. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  2. Improved mixing and sampling systems for vitrification melter feeds

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    This report summarizes the methods used and results obtained during the progress of the study of waste slurry mixing and sampling systems during fiscal year 1977 (FY97) at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU). The objective of this work is to determine optimal mixing configurations and operating conditions as well as improved sampling technology for defense waste processing facility (DWPF) waste melter feeds at US Department of Energy (DOE) sites. Most of the research on this project was performed experimentally by using a tank mixing configuration with different rotating impellers. The slurry simulants for the experiments were prepared in-house based on the properties of the DOE sites` typical waste slurries. A sampling system was designed to withdraw slurry from the mixing tank. To obtain insight into the waste mixing process, the slurry flow in the mixing tank was also simulated numerically by applying computational fluid dynamics (CFD) methods. The major parameters investigated in both the experimental and numerical studies included power consumption of mixer, mixing time to reach slurry uniformity, slurry type, solids concentration, impeller type, impeller size, impeller rotating speed, sampling tube size, and sampling velocities. Application of the results to the DWPF melter feed preparation process will enhance and modify the technical base for designing slurry transportation equipment and pipeline systems. These results will also serve as an important reference for improving waste slurry mixing performance and melter operating conditions. These factors will contribute to an increase in the capability of the vitrification process and the quality of the waste glass.

  3. Bulk-filled posterior resin restorations based on stress-decreasing resin technology: a randomized, controlled 6-year evaluation.

    PubMed

    van Dijken, Jan W V; Pallesen, Ulla

    2017-08-01

    This randomized study evaluated a flowable resin composite bulk-fill technique in posterior restorations and compared it intraindividually with a conventional 2-mm resin composite layering technique over a 6-yr follow-up period. Thirty-eight pairs of Class II restorations and 15 pairs of Class I restorations were placed in 38 adults. In all cavities a single-step self-etch adhesive (Xeno V) was applied. In the first cavity of each pair, the flowable resin composite (SDR) was placed, in bulk increments of up to 4 mm. The occlusal part was completed with a layer of nanohybrid resin composite (Ceram X mono). In the second cavity of each pair, the hybrid resin composite was placed in 2-mm increments. The restorations were evaluated using slightly modified US Public Health Service (USPHS) criteria at baseline and then annually for a time period of 6 yr. After 6 yr, 72 Class II restorations and 26 Class I restorations could be evaluated. Six failed Class II molar restorations, three in each group, were observed, resulting in a success rate of 93.9% for all restorations and an annual failure rate (AFR) of 1.0% for both groups. The AFR for Class II and Class I restorations in both groups was 1.4% and 0%, respectively. The main reason for failure was resin composite fracture. © 2017 Eur J Oral Sci.

  4. Analysis of results from the operation of a pilot plasma gasification/vitrification unit for optimizing its performance.

    PubMed

    Moustakas, K; Xydis, G; Malamis, S; Haralambous, K-J; Loizidou, M

    2008-03-01

    Plasma gasification/vitrification is an innovative and environmentally friendly method of waste treatment. A demonstration plasma gasification/vitrification unit was developed and installed in Viotia region in order to examine the efficiency of this innovative technology in dealing with hazardous waste. The preliminary results from the trial runs of the plasma unit, as well as the study of the influence of certain parameters in the system performance are presented and analyzed in this paper, contributing to the improvement of the operation performance. Finally, data on the final air emissions and the vitrified ash toxicity characteristic leaching procedure (TCLP) results are provided in order to assess the environmental performance of the system. The produced slag was found to be characterized by extremely low leaching properties and can be utilized as construction material, while the values of the polluting parameters of the air emissions were satisfactory.

  5. Gas evolution during vitrification of sodium sulfate and silica

    SciTech Connect

    Ebert, W.L.; Bakel, A.J.; Rosine, S.D. |

    1997-08-01

    This paper describes the operation of an apparatus designed to identify species evolved during vitrification of hazardous waste materials and to measure the temperatures at which they are evolved. To demonstrate the utility of the apparatus for designing off-gas systems, the authors present the results of heating various sulfates alone and in the presence of silica. During vitrification, the decomposition behavior of some waste components will be affected by the chemical composition of the melt. For example, they found that when silica is present during heating, SO{sub x} gases are evolved at lower temperatures than when pure sodium sulfate is heated. Such analyses will be important in the design of off-gas units for waste vitrification systems.

  6. Thermal Cycling on Fatigue Failure of the Plutonium Vitrification Melter

    SciTech Connect

    Jordan, Jeffrey; Gorczyca, Jennifer

    2009-02-11

    One method for disposition of excess plutonium is vitrification into cylindrical wasteforms. Due to the hazards of working with plutonium, the vitrification process must be carried out remotely in a shielded environment. Thus, the equipment must be easily maintained. With their simple design, induction melters satisfy this criterion, making them ideal candidates for plutonium vitrification. However, due to repeated heating and cooling cycles and differences in coefficients of thermal expansion of contacting materials fatigue failure of the induction melter is of concern. Due to the cost of the melter, the number of cycles to failure is critical. This paper presents a method for determining the cycles to failure for an induction melter by using the results from thermal and structural analyses as input to a fatigue failure model.

  7. The West Valley Demonstration Project's vitrification system operating experience

    SciTech Connect

    Pope, J.M.; Barnes, S.M.

    1989-01-01

    A full-sized, integrated vitrification system is being tested at the West Valley Demonstration Project (WVDP) to establish its operational characteristics that will allow a quality, high-level nuclear waste (HLW) glass product to be consistently produced. Recently, this nonradioactive verification testing has emphasized (a) ensuring flow sheet and feed makeup chemistry that enables well-balanced melter performance, (b) achieving design basis melter throughput rates at steady-state operating conditions, and (c) demonstrating that the release limit of NO{sub x} is met by the vitrification off-gas system. The West Valley vitrification process testing is rapidly converging to demonstrate that the acceptance specification in the glass product and the environmental requirements on the off-gas will indeed be met, thereby providing the basis for approval to begin radioactive operations in 1992.

  8. Vitrification as an alternative to landfilling of tannery sewage sludge.

    PubMed

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to

  9. Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM

    PubMed Central

    Jain, Tilak; Sheehan, Patrick; Crum, John; Carragher, Bridget; Potter, Clinton S.

    2012-01-01

    Over the last three decades, Cryo-TEM has developed into a powerful technique for high-resolution imaging of biological macromolecules in their native vitrified state. However, the technique for vitrifying specimens onto EM grids is essentially unchanged – application of ~ 3 µL sample to a grid, followed by blotting and rapid plunge freezing into liquid ethane. Several trials are often required to obtain suitable thin (few hundred nanometers or less) vitrified layers amenable for cryo-TEM imaging, which results in waste of precious sample and resources. While commercially available instruments provide some level of automation to control the vitrification process in an effort to increase quality and reproducibility, obtaining satisfactory vitrified specimens remains a bottleneck in the Cryo-TEM pipeline. We describe here a completely novel method for EM specimen preparation based on small volume (picoliter to nanoliter) dispensing using inkjet technology. A first prototype system (Spotiton v0.5) demonstrates feasibility of this new approach for specimen vitrification. A piezo-electric inkjet dispenser is integrated with optical real-time cameras (100 Hz frame rate) to analyze picoliter to nanoliter droplet profiles in-flight and spreading dynamics on the grid, and thus provides a method to optimize timing of the process. Using TEM imaging and biochemical assays we demonstrate that the piezo-electric inkjet mechanism does not disrupt the structural or functional integrity of macromolecules. These preliminary studies provide insight into the factors and components that will need further development to enable a robust and repeatable technique for specimen vitrification using this novel approach. PMID:22569522

  10. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification.

    PubMed

    Huang, Ruth; Huang, Kuo-Lin; Lin, Zih-Yi; Wang, Jian-Wen; Lin, Chitsan; Kuo, Yi-Ming

    2013-11-15

    In this study, vitrification was applied to treat Ni-Cu electroplating sludge. The sludge was mixed with additives (limestone:cullet = 4:6) and then heated to 1450 °C. The cooled product could be separated into slag and ingot. An atomic absorption spectrometer was used to determine the metal levels of specimens and toxicity characteristic leaching procedure (TCLP) tests, whereas the crystalline and surface characteristics were examined using quantitative X-ray diffraction (XRD) analysis and scanning electron microscopy, respectively. With a glassy structure, the slag was mainly composed of Ca, Si, and Mg. The TCLP results of slags met the Taiwan regulated standards, suggesting that slag can be used for recycling purposes. With the aid of additives, the crystalline phase of slag was transformed form CaMgSiO4 into CsSiO3. The ingots were mainly composed of Ni (563,000-693,800 mg/kg), Cu (79,900-87,400 mg/kg), and Fe (35,000-43,600 mg/kg) (target metals) due the gravity separation during vitrification. At appropriate additives/sludge ratios (>0.2), >95% of target metals gathered in the ingot as a recoverable form (Ni-Fe alloy). The high Ni level of slag suggests that the ingot can be used as the raw materials for smelters or the additives for steel making. Therefore, the vitrification approach of this study is a promising technology to recover valuable metals from Ni-Cu electroplating sludge.

  11. Vitrification as an alternative to landfilling of tannery sewage sludge

    SciTech Connect

    Celary, Piotr Sobik-Szołtysek, Jolanta

    2014-12-15

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with

  12. Rocky Flats Plant precipitate sludge surrogate vitrification demonstration. Technical Task Plan

    SciTech Connect

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-06-17

    Technologies are being developed by the US Department of Energy`s (DOE) Nuclear Facility sites to convert hazardous and mixed wastes to a form suitable for permanent disposal. The preferred disposal method would be one that is capable of consistently producing a durable leach resistant wasteform, while simultaneously minimizing disposal volumes. Vitrification, which has been declared the Best Demonstrated Available Technology (BDAT) for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment.

  13. Vitrification of cesium-contaminated organic ion exchange resin

    SciTech Connect

    Sargent, Jr., Thomas N.

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.

  14. Bulk undercooling

    NASA Technical Reports Server (NTRS)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  15. Effect of geometric curvature on vitrification behavior for polymer nanotubes confined in anodic aluminum oxide templates

    NASA Astrophysics Data System (ADS)

    Chen, Jiao; Li, Linling; Zhou, Dongshan; Wang, Xiaoliang; Xue, Gi

    2015-09-01

    The glass transition behavior of polystyrene (PS) nanotubes confined in cylindrical alumina nanopores was studied as a function of pore diameter (d ) and polymer tube thickness (δ). Both the calorimetric glass transition temperature and the microstructure measured by a nonradiative energy transfer method indicated that the polymer nanotube, or concave polymer thin film, exhibited significant differences in vitrification behavior compared to the planar one. A closer interchain proximity and an increased Tg were observed for polymer nanotubes with respect to the bulk polymer. Tg for polymer nanotubes was primarily dependent on the curvature radius d of the template, while it was less dependent on the thickness δ of the PS tube wall in the range of 11-23 nm. For small nanotubes (d =55 nm ) , the Tg increased as high as 18 °C above the bulk value. This vitrified property reverted back to the bulk value when the substrate was chemically removed, which indicated the crucial importance of the interfacial effect imposed by the hard wall with a concave geometry.

  16. An overview of micro-optical components and system technology: bulk, planar, and thin-film for laser initiated devices

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    There are a number of attractive micro optical elements or combinations of elements that are currently used or could be employed in optically initiated ordnance systems. When taking a broad-spectrum examination of optically initiated devices, the required key parameters become obviously straightforward for micro optics. Plainly stated, micro optics need to be simple, inexpensive, reliable, robust and compatible within their operational environment. This presentation focuses on the variety of optical elements and components available in the market place today that could be used to realize micro-optical beam shaping and delivery systems for optically initiated devices. A number of micro optical elements will be presented with specific bulk, planar optical and thin film optical devices, such as diffractive optics, micro prisms, axicons, waveguides, micro lenses, beam splitters and gratings. Further descriptions will be presented on the subject of coupling light from a laser beam into a multimode optical fiber. The use of micro optics for collimation of the laser source and conditioning of the laser beam to achieve the highest efficiency and matching the optical fiber NA will be explained. An emphasis on making these optical assemblies compact and rugged will be highlighted.

  17. Melter Technologies Assessment

    SciTech Connect

    Perez, J.M. Jr.; Schumacher, R.F.; Forsberg, C.W.

    1996-05-01

    The problem of controlling and disposing of surplus fissile material, in particular plutonium, is being addressed by the US Department of Energy (DOE). Immobilization of plutonium by vitrification has been identified as a promising solution. The Melter Evaluation Activity of DOE`s Plutonium Immobilization Task is responsible for evaluating and selecting the preferred melter technologies for vitrification for each of three immobilization options: Greenfield Facility, Adjunct Melter Facility, and Can-In-Canister. A significant number of melter technologies are available for evaluation as a result of vitrification research and development throughout the international communities for over 20 years. This paper describes an evaluation process which will establish the specific requirements of performance against which candidate melter technologies can be carefully evaluated. Melter technologies that have been identified are also described.

  18. SITE - DEMONSTRATION BULLETIN - MINERGY GLASS FURNACE TECHNOLOGY - MINERGY CORPORATION

    EPA Science Inventory

    The Glass Furnace Technology (GFT) was developed by Minergy Corporation (Minergy), of Waukesha, Wisconsin. Minergy originally developed vitrification technologies to process wastewater sludge into glass aggregate that could be sold as a commercial product. Minergy modified a st...

  19. SITE - DEMONSTRATION BULLETIN - MINERGY GLASS FURNACE TECHNOLOGY - MINERGY CORPORATION

    EPA Science Inventory

    The Glass Furnace Technology (GFT) was developed by Minergy Corporation (Minergy), of Waukesha, Wisconsin. Minergy originally developed vitrification technologies to process wastewater sludge into glass aggregate that could be sold as a commercial product. Minergy modified a st...

  20. Methodology of Qualification of CCIM Vitrification Process Applied to the High- Level Liquid Waste from Reprocessed Oxide Fuels - 12438

    SciTech Connect

    Lemonnier, S.; Labe, V.; Ledoux, A.; Nonnet, H.; Godon, N.

    2012-07-01

    The vitrification of high-level liquid waste from reprocessed oxide fuels (UOX fuels) by Cold Crucible Induction Melter is planed by AREVA in 2013 in a production line of the R7 facility at La Hague plant. Therefore, the switch of the vitrification technology from the Joule Heated Metal Melter required a complete process qualification study. It involves three specialties, namely the matrix formulation, the glass long-term behavior and the vitrification process development on full-scale pilot. A new glass frit has been elaborated in order to adapt the redox properties and the thermal conductivity of the glass suitable for being vitrified with the Cold Crucible Induction Melter. The role of cobalt oxide on the long term behavior of the glass has been described in the range of the tested concentrations. Concerning the process qualification, the nominal tests, the sensitivity tests and the study of the transient modes allowed to define the nominal operating conditions. Degraded operating conditions tests allowed to identify means of detecting incidents leading to these conditions and allowed to define the procedures to preserve the process equipments protection and the material quality. Finally, the endurance test validated the nominal operating conditions over an extended time period. This global study allowed to draft the package qualification file. The qualification file of the UOX package is currently under approval by the French Nuclear Safety Authority. (authors)

  1. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    SciTech Connect

    Seymour, R.G.

    1995-02-17

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing.

  2. Vitrification in human and domestic animal embryology: work in progress.

    PubMed

    Vajta, Gábor

    2013-01-01

    According to the analysis of papers published in major international journals, rapidly increasing application of vitrification is one of the greatest achievements in domestic animal and especially human embryology during the first decade of our century. This review highlights factors supporting or hampering this progress, summarises results achieved with vitrification and outlines future tasks to fully exploit the benefits of this amazing approach that has changed or will change many aspects of laboratory (and also clinical) embryology. Supporting factors include the simplicity, cost efficiency and convincing success of vitrification compared with other approaches in all species and developmental stages in mammalian embryology, while causes that slow down the progress are mostly of human origin: inadequate tools and solutions, superficial teaching, improper application and unjustified concerns resulting in legal restrictions. Elimination of these hindrances seems to be a slower process and more demanding task than meeting the biological challenge. A key element of future progress will be to pass the pioneer age, establish a consensus regarding biosafety requirements, outline the indispensable features of a standard approach and design fully-automated vitrification machines executing all phases of the procedure, including equilibration, cooling, warming and dilution steps.

  3. Low-level waste vitrification contact maintenance viability study

    SciTech Connect

    Leach, C.E., Westinghouse Hanford

    1996-07-12

    This study investigates the economic viability of contact maintenance in the Low-Level Waste Vitrification Facility, which is part of the Hanford Site Tank Waste Remediation System. This document was prepared by Flour Daniel, Inc., and transmitted to Westinghouse Hanford Company in September 1995.

  4. A simple vitrification method for cryobanking avian testicular tissue

    USDA-ARS?s Scientific Manuscript database

    Cryopreservation of testicular tissue is a promising method of preserving male reproductive potential for avian species. This study was conducted to assess whether a vitrification method can be used to preserve avian testicular tissue, using the Japanese quail (Coturnix japonica) as a model. A sim...

  5. Leaching characteristics of copper flotation waste before and after vitrification.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri

    2006-12-01

    Copper flotation waste from copper production using a pyrometallurgical process contains toxic metals such as Cu, Zn, Co and Pb. Because of the presence of trace amounts of these highly toxic metals, copper flotation waste contributes to environmental pollution. In this study, the leaching characteristics of copper flotation waste from the Black Sea Copper Works in Samsun, Turkey have been investigated before and after vitrification. Samples obtained from the factory were subjected to toxicity tests such as the extraction procedure toxicity test (EP Tox), the toxicity characteristic leaching procedure (TCLP) and the "method A" extraction procedure of the American Society of Testing and Materials. The leaching tests showed that the content of some elements in the waste before vitrification exceed the regulatory limits and cannot be disposed of in the present form. Therefore, a stabilization or inertization treatment is necessary prior to disposal. Vitrification was found to stabilize heavy metals in the copper flotation waste successfully and leaching of these metals was largely reduced. Therefore, vitrification can be an acceptable method for disposal of copper flotation waste.

  6. Vitrification of caudal fin explants from zebrafish adult specimens.

    PubMed

    Cardona-Costa, J; Roig, J; Perez-Camps, M; García-Ximénez, F

    2006-01-01

    No data on vitrification of tissue samples are available in fishes. Three vitrification solutions were compared: V1: 20% ethylene glycol and 20% dimethyl sulphoxide; V2: 25% propylene glycol and 20% dimethyl sulphoxide, and; V3: 20% propylene glycol and 13% methanol, all three prepared in Hanks' buffered salt solution plus 20 percent FBS, following the same one step vitrification procedure developed in mammals. Caudal fin tissue pieces were vitrified into 0.25 ml plastic straws in 30s and stored in liquid nitrogen for 3 days minimum, warmed (10s in nitrogen vapour and 5s in a 25 degree C water bath) and cultured (L-15 plus 20% FBS at 28.5 degree C). At the third day of culture, both attachment and outgrowing rates were recorded. V3 led to the worst results (8% of attachment rate). V1 and V2 allow higher attachment rates (V1: 63% vs V2: 50%. P < 0.05) but not significantly different outgrowing rates (83% to 94%). Vitrification of caudal fin pieces is advantageous in fish biodiversity conservation, particularly in the wild, due to the simplicity of procedure and equipment.

  7. Vitrification solution without sucrose for cryopreservation in mouse blastocysts.

    PubMed

    Joo, Jong Kil; Lee, Young Ju; Jeong, Ju Eun; Kim, Seung Chul; Ko, Gyoung Rae; Lee, Kyu Sup

    2014-09-01

    This study was designed to investigate the survival rate of vitrified mouse blastocysts depending on the presence or absence of sucrose in vitrification solution. Mouse two-cell embryos were collected and cultured to blastocysts. Two vitrification solutions were prepared. The control solution was composed of 25% glycerol, 25% ethylene glycol, and 0.5 M sucrose (G25E250.5S) containing 2.5 mL glycerol, 2.5 mL ethylene glycol, 2 mL SSS, and 0.855 g sucrose in 5 mL PB1. The experimental solution was composed of 25% glycerol and 25% ethylene glycol (G25E25) and contained 2.5 mL glycerol and 2.5 mL ethylene glycol in 5 mL PB1. Artificial shrinkage was conducted by aspirating the blastocoelic fluid using an ICSI pipette. To examine the effect of sucrose in the vitrification solution on the survival rate of mouse blastocysts, the shrunken-equilibrated blastocysts were rehydrated or vitrified after being exposed to one of the two vitrification solutions. After exposure and the vitrification-thawing process, the re-expansion rate and hatching rate were evaluated after 6 hours of in vitro culture. The re-expansion rate of mouse blastocysts exposed to vitrification solution with and without sucrose were not different in the experimental solution (without sucrose) (98%) and the control solution (with sucrose) (92%) (p>0.05). The hatching rate was higher in the experimental solution (95%) than in the control solution (88%), but did not differ across two treatments (p>0.05). The re-expansion rate of mouse blastocysts vitrified in the control solution was 92% and 94%, respectively (p>0.05), and the hatching rate was higher in the experimental solution (90%) than in the control solution (74%) (p<0.05). Sucrose need not be added in vitrification solution for freezing of artificially shrunken mouse blastocysts.

  8. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    SciTech Connect

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  9. Vitrification of Simulated Fernald K-65 Silo Waste at Low Temperature

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.

    1998-07-07

    Vitrification is the technology that has been chosen to solidify approximately 18,000 tons of geologic mill tailings, designated as K-65 wastes, at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. The glass formula developed in this study for the FEMP wastes is a lithia substituted soda-lime-lithia-silica (SLLS) composition which melts at 1050 degrees Celsius. Low melting formulations minimize volatilization of hazardous species such as arsenic, selenium, chromium, and lead during vitrification. Formulation in the SLLS system avoids problematic phase separation known to occur in the MO-B2O3-SiO2 glass forming system (where MO = CaO, MgO, BaO, and PbO which are all constituents of the FEMP wastes). The SLLS glass passed the Environmental Protection Agency (EPA) Toxic Characteristic Leach Procedure (TCLP) for all the hazardous constituents of concern under the current regulations. The SLLS glass is as durable as the high melting soda-lime-silica glasses and is more durable than the borosilicate glasses previously developed for the K-65 wastes. Optimization of glass formulations in the SLLS glass forming system should provide glasses which will pass the newly promulgated Universal Treatment Standards which take effect of August 28, 1998.

  10. Grout and vitrification formula development for immobilization of hazardous radioactive tank sludges at ORNL

    SciTech Connect

    Gilliam, T.M.; Spence, R.D.

    1997-12-31

    Stabilization/solidification (S/S) has been identified as the preferred treatment option for hazardous radioactive sludges, and currently grouting and vitrification are considered the leading candidate S/S technologies. Consequently, a project was initiated at Oak Ridge National Laboratory (ORNL) to define composition envelopes, or operating windows, for acceptable grout and glass formulations containing Melton Valley Storage Tank (MVST) sludges. The resulting data are intended to be used as guidance for the eventual treatment of the MVST sludges by the government and/or private sector. Wastewater at ORNL is collected, evaporated, and stored in the MVSTs pending treatment for disposal. The waste separates into two phases: sludge and supernate. The sludges in the tank bottoms have been accumulating for several years and contain a high amount of radioactivity, with some classified as transuranic (TRU) sludges. The available total constituent analysis for the MVST sludge indicates that the Resource and Conservation Recovery Act (RCRA) metal concentrations are high enough to be potentially RCRA hazardous; therefore, these sludges have the potential to be designated as mixed TRU waste. S/S treatment must be performed to remove free liquids and reduce the leach rate of RCRA metals. This paper focuses on initial results for the development of the operating window for vitrification. However, sufficient data on grouting are presented to allow a comparison of the two options.

  11. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  12. Cryopreservation of embryos by vitrification at a private sector reproductive medicine facility in Karachi.

    PubMed

    Khan, Majida; Zafar, Shaheen; Syed, Serajuddaula

    2012-09-01

    To assess the survival of freezing cleaved human embryos through vitrification. The prospective study was conducted at the Karachi-based Sindh Institute of Reproductive Medicine between June 2008 and June 2009. The cryopreservation of embryos being a new technology in Pakistan, only 19 couples, picked through convenience sampling, comprised the study population. The couples were treated for infertility by in virto fertilisation (IVF) or intracytoplasmic sperm injection (ICSI); 125 surplus embryos were vitrified. Subsequently, 15 embryos were thawed, and transferred in a controlled cycle. SPSS version 11 was used for statistical analysis. After the surplus embryos were vitrified and subsequently thawed and transferred, the survival of the embryos was assessed by the number of blastomeres that were intact. The overall embryo survival rate was (14/15) 93.33%. Vitrification is a simple procedure that requires less time and is likely to become safer and more cost-effective with time. Survival rate after thawing and preserving is high, but comparative success rates in terms of pregnancy and taking-home-baby rates are yet to be established in Pakistan.

  13. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15

    . The model demonstrates that batch foaming has a decisive influence on the rate of melting. Understanding the dynamics of the foam layer at the bottom of the cold cap and the heat transfer through it appears crucial for a reliable prediction of the rate of melting as a function of the melter-feed makeup and melter operation parameters. Although the study is focused on a batch for waste vitrification, the authors expect that the outcome will also be relevant for commercial glass melting.

  14. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29

    and melter conditions. The model demonstrates that batch foaming has a decisive influence on the rate of melting. Understanding the dynamics of the foam layer at the bottom of the cold cap and the heat transfer through it appears crucial for a reliable prediction of the rate of melting as a function of the melter-feed makeup and melter operation parameters. Although the study is focused on a batch for waste vitrification, the authors expect that the outcome will also be relevant for commercial glass melting.

  15. First-ever test and characterization of the AMS standard bulk 0.35 μm CMOS technology at sub-kelvin temperatures

    NASA Astrophysics Data System (ADS)

    Rhouni, A.; Gevin, O.; de la Broïse, X.; Sauvageot, JL; Revéret, V.; Rodriguez, L.

    2017-05-01

    From medical imaging to particle physics passing, among others, by space applications, integrated readout electronics (ICs) in CMOS technologies are often adopted. When a high sensitivity and a low noise level are required, cooling of detectors and readout electronics is the recommended solution. To maintain a constant cooling temperature, they very often operate at nitrogen and helium-4 liquids temperatures, respectively 77 K and 4.2 K. At these temperatures, Spice parameters of MOSFET transistors may be found in the literature. However, their performances at sub-kelvin temperatures remain unknown because of a lack in scientific publications thereupon. CEA Astrophysics division’s focal plane arrays-based bolometers are cooled at 0.1 K. The front-end electronics also. However, a CMOS technology was characterized for the first time at sub-kelvin temperatures. It is shown by measured n and p channel transistors’ I-V that the AMS 0.35 μm standard bulk CMOS technology, is still performing at 0.1 K. Despite some specific effects on silicon behaviour at cryogenic temperatures, performances are very satisfactory.

  16. Vitrification demonstration with surrogate Oak Ridge Reservation K-25 B and C pond sludge

    SciTech Connect

    Cicero, C.A.; Overcamp, T.J.; Erich, D.L.

    1996-07-01

    Surrogate Oak Ridge Reservation (ORR) K-25 B&C Pond sludge was vitrified in a pilot-scale EnVit Co melter operated by Clemson University at the DOE/Industrial Center for Vitrification Research Center. This demonstration was performed for the Savannah River Technology Center (SRTC) in support of a Department of Energy (DOE) - Office of Technology Development (OTD) Technical Task Plan. The intent of the demonstration was to determine the feasibility of vitrifying actual K-25 B&C Pond sludge in an EnVitCo type melter. B&C Pond sludge is a mixed waste consisting primarily of various amounts of Ca, Fe, and Si, with Ni and U as the principal hazardous and radioactive components. The demonstration was successfully completed and homogeneous, durable glass was produced. Characterization of the glass product, as well as details of the demonstration, will be discussed.

  17. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    SciTech Connect

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1991-12-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. This document, Volume 1, identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues.

  18. In situ vitrification of a simulated seepage trench: A radioactive field test at ORNL

    SciTech Connect

    Tixier, J.S.; Powell, T.D. ); Jacobs, G.K.; Spalding, B.P. )

    1992-01-01

    The pits and trenches used at Oak Ridge National Laboratory (ORNL) from 1951 to 1966 to dispose of over a million curies of radioactive liquid wastes are currently undergoing remedial investigations/feasibility studies to identify potential technologies for cleanup and/or stabilization. In situ vitrification (ISV) is a leading technology candidate because of the high risks associated with options requiring retrieval and because of the high-quality waste form produced by ISV. The radioactive field test conducted on a simulated ORNL seepage trench in May 1991 is the second step in evaluating ISV as a remedial action at these sites. A previous test using nonradioactive tracers for cesium and strontium was completed in 1987.

  19. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    SciTech Connect

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.; Bates, S.O. ); Thompson, L.E.; McGrail, B.P. )

    1991-08-01

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.

  20. Evaluation of the new vacuum infiltration vitrification (viv) cryopreservation technique for native Australian plant shoot tips.

    PubMed

    Funnekotter, Bryn; Whiteley, Susan E; Turner, Shane R; Bunn, Eric; Mancera, Ricardo L

    2015-01-01

    The application of a vacuum during the incubation in cryoprotective agents such as PVS2 allows for increased penetration, reducing total incubation times required before vitrification and post-cryopreservation regeneration is achieved. This study compared a conventional droplet-vitrification protocol to the new vacuum infiltration vitrification protocol in four Australian plant species. The new vacuum infiltration vitrification applied an 80 kPa vacuum during incubations in loading solution and PVS2. Infiltration of the cryoprotective agents into shoot tips was determined by differential scanning calorimetry measuring ice formation in the thermographs comparing a range of loading solution and PVS2 incubation times. The application of the vacuum infiltration vitrification technique resulted in a significantly reduced PVS2 incubation time for cryogenic survival and regeneration for all four species, reducing the time needed to adequately protect shoot tips by half to a quarter when compared to a conventional droplet-vitrification technique.

  1. Appendix C: Automated Vitrification of Mammalian Embryos on a Digital Microfluidic Device.

    PubMed

    Liu, Jun; Pyne, Derek G; Abdelgawad, Mohamed; Sun, Yu

    2017-01-01

    This chapter introduces a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual microdroplets manipulated on the microfluidic device were used as microvessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  2. Process Control for Simultaneous Vitrification of Two Mixed Waste Streams in the Transportable Vitrification System

    SciTech Connect

    Cozzi, A.D.; Jantzen, C.M.; Brown, K.G.; Cicero-Herman, C.

    1998-05-01

    Two highly variable mixed (radioactive and hazardous) waste sludges were simultaneously vitrified in an EnVitCo Transportable Vitrification System (TVS) deployed at the Oak Ridge Reservation. The TVS was the result of a cooperative effort between the Westinghouse Savannah River Company and EnVitCo to design and build a transportable melter capable of vitrifying a variety of mixed low level wastes.The two waste streams for the demonstration were the dried B and C Pond sludges at the K-25 site and waste water sludge produced in the Central Neutralization Facility from treatment of incinerator blowdown. Large variations occurred in the sodium, calcium, silicon, phosphorus, fluorine and iron content of the co- blended waste sludges: these elements have a significant effect on the process ability and performance of the final glass product. The waste sludges were highly reduced due to organics added during processing, coal-pile runoff (coal and sulfides), and other organics, including wood chips. A batch-by-batch process control model was developed to control glass viscosity, liquidus, and reduction/oxidation, assuming that the melter behaved as a Continuously Stirred Tank Reactor.

  3. The Efforts to Utilize High-Temperature Melting Technologies for ILLW and the Development of Guidelines for their Technical Assessment

    SciTech Connect

    Lee, K. S.; Choi, Y. C.; Seo, Y. C.; Jeong, C. W.; Park, W. J.

    2003-02-25

    A couple of domestic institutions have been investigating the application of vitrification technology to treat low- and intermediate-level radioactive wastes in Korea. In the case that such investigations prove to be successful, it is expected that commercial vitrification plants will be constructed. The safety insuring on vitrification plants could not be compatible with criterion on radioactive waste management because the facilities are at high temperature and contain a variety of accommodations for the exhaust gases and residual products. Therefore, it is necessary to suggest a new strategy or modifications of criterion of radioactive waste management on considerations related with the vitrification technology. In order to ensure the safety of vitrification plants, a technical guideline or standard for design and operation of vitrification plants must be established too. A study on the safety assessment of vitrification plants in consideration with general items as an industrial facility, safety and technical requirements as a nuclear facility is needed to be ready before using and permitting them. Also, the stability of vitrified waste forms produced by vitrification plants must be analyzed to ensure their acceptance in final repositories, which includes chemical durability as one of the main considerable items. This paper introduces the status on the utilization of vitrification technology for treating LILW and efforts to develop technical guides with basic study results on chemical durability of forms.

  4. Comparison of vitrification and conventional freezing for cryopreservation of caprine embryos.

    PubMed

    Araújo-Lemos, Paula F B; Freitas Neto, Leopoldo M; Moura, Marcelo T; Melo, Janaína V; Lima, Paulo F; Oliveira, Marcos A L

    2015-08-01

    The experiment aimed to compare conventional freezing and different vitrification protocols for cryopreservation of caprine embryos at morphological, ultrastructural, and functional levels. Caprine embryos produced in vivo were allocated randomly to three groups: (1) conventional freezing with ethylene glycol (EG); (2) dimethyl sulfoxide + EG (DMSO/EG) vitrification; and (3) dimethylformamide + EG (DMF/EG) vitrification. All groups were scored for cell viability (propidium iodide staining and ultrastructural levels) and re-expansion rate after thawing or warming. Embryos subjected to DMSO/EG vitrification showed higher cell viability (73.33%), compared with DMF/EG vitrification and conventional freezing group embryos (40.00 and 66.66%, respectively). The ultrastructural study revealed that vitrified embryos had greater preservation of cellular structure than embryos from conventional freezing with EG. DMSO/EG vitrification resulted in higher rates of re-expansion in vitro (47.36%) than DMF/EG vitrification (31.58%), and conventional freezing (25.00%). In conclusion, caprine embryos produced in vivo are better cryopreserved after vitrification than conventional freezing, therefore we conclude that DMSO/EG vitrification is the most effective protocol for cryopreservation.

  5. The role of troublesome components in plutonium vitrification

    SciTech Connect

    Li, Hong; Vienna, J.D.; Peeler, D.K.; Hrma, P.; Schweiger, M.J.

    1996-05-01

    One option for immobilizing surplus plutonium is vitrification in a borosilicate glass. Two advantages of the glass form are (1) high tolerance to feed variability and, (2) high solubility of some impurity components. The types of plutonium-containing materials in the United States inventory include: pits, metals, oxides, residues, scrap, compounds, and fuel. Many of them also contain high concentrations of carbon, chloride, fluoride, phosphate, sulfate, and chromium oxide. To vitrify plutonium-containing scrap and residues, it is critical to understand the impact of each component on glass processing and chemical durability of the final product. This paper addresses glass processing issues associated with these troublesome components. It covers solubility limits of chlorine, fluorine, phosphate, sulfate, and chromium oxide in several borosilicate based glasses, and the effect of each component on vitrification (volatility, phase segregation, crystallization, and melt viscosity). Techniques (formulation, pretreatment, removal, and/or dilution) to mitigate the effect of these troublesome components are suggested.

  6. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos by vitrification.

    PubMed

    Sajini, K K; Karun, A; Amamath, C H; Engelmann, F

    2011-01-01

    The present study investigates the effect of preculture conditions, vitrification and unloading solutions on survival and regeneration of coconut zygotic embryos after cryopreservation. Among the seven plant vitrification solutions tested, PVS3 was found to be the most effective for regeneration of cryopreserved embryos. The optimal protocol involved preculture of embryos for 3 days on medium with 0.6 M sucrose, PVS3 treatment for 16 h, rapid cooling and rewarming and unloading in 1.2 M sucrose liquid medium for 1.5 h. Under these conditions, 70-80 survival (corresponding to size enlargement and weight gain) was observed with cryopreserved embryos and 20-25 percent of the plants regenerated (showing normal shoot and root growth) from cryopreserved embryos were established in pots.

  7. A PIXE study of vitrification of carnation in vitro culture

    NASA Astrophysics Data System (ADS)

    Yao, H. Y.; Lin, E. K.; Wang, C. W.; Yu, Y. C.; Chang, C. H.; Yang, Y. C.; Chang, C. Y.

    1996-04-01

    PIXE (Proton Induced X-ray Emission) is a well-known method for elemental analyses of specimens in applied studies. In this paper, we report results of an application of PIXE in trace-element analysis of normal and vitrified carnations in vitro culture. Experiments were performed to study the vitrification in connection with the trace elements in carnation tissues. About two hundred PIXE spectra were obtained from seventy samples with an irradiation of 3 MeV protons from the NEC 9SDH-2 Pelletron tandem accelerator. From the PIXE analysis we determined the trace element composition of normal and vitrified carnations. Our results indicate that there is a significant change of K, Ca, Fe and Zn contents in the vitrification process.

  8. Americium/Curium Vitrification Pilot Tests - Part II

    SciTech Connect

    Marra, J.E.; Baich, M.A.; Fellinger, A.P.; Hardy, B.J.; Herman, D.T.; Jones, T.M.; Miller, C.B.; Miller, D.H.; Snyder, T. K.; Stone, M.E.

    1998-05-01

    Isotopes of americium (Am) and curium (Cm) were produced in the past at the Savannah River Site (SRS) for research, medical, and radiological applications. These highly radioactive and valuable isotopes have been stored in an SRS reprocessing facility for a number of years. Vitrification of this solution will allow the material to be more safely stored until it is transported to the DOE Oak Ridge Reservation for use in research and medical applications. A previous paper described operation results from the Am-Cm Melter 2A pilot system, a full-scale non-radioactive pilot facility. This paper presents the results from continued testing in the Pilot Facility and also describes efforts taken to look at alternative vitrification process operations and flowsheets designed to address the problems observed during melter 2A pilot testing.

  9. Stabilization of contaminated soils by in situ vitrification

    SciTech Connect

    Jacobs, G.K.; Spalding, B.P.; Tixier, J.S.; Powell, T.D.

    1992-12-31

    In situ methods are preferred for the stabilization or restoration of soil sites contaminated with elevated levels of hazardous materials (e.g., radionuclides, metals, organics) to minimize potential risks to personnel and the environment associated with removal and treatment. In situ methods available include polymer and silicate grouting, compaction, chemical treatment, groundwater diversion, and vitrification. Of these, in situ vitrification (ISV) is most desirable because it is more a permanent solution and produces a final waste form with the most preferred characteristics. The ISV product, generally a mixture of glass and crystals, has high strength, is resistant to leaching, and has low porosity and permeability. Results are presented on an ISV test at an Oak Ridge Laboratory Site.

  10. Stabilization of contaminated soils by in situ vitrification

    SciTech Connect

    Jacobs, G.K.; Spalding, B.P. ); Tixier, J.S.; Powell, T.D. )

    1992-01-01

    In situ methods are preferred for the stabilization or restoration of soil sites contaminated with elevated levels of hazardous materials (e.g., radionuclides, metals, organics) to minimize potential risks to personnel and the environment associated with removal and treatment. In situ methods available include polymer and silicate grouting, compaction, chemical treatment, groundwater diversion, and vitrification. Of these, in situ vitrification (ISV) is most desirable because it is more a permanent solution and produces a final waste form with the most preferred characteristics. The ISV product, generally a mixture of glass and crystals, has high strength, is resistant to leaching, and has low porosity and permeability. Results are presented on an ISV test at an Oak Ridge Laboratory Site.

  11. Scaling considerations for modeling the in situ vitrification process

    SciTech Connect

    Langerman, M.A.; MacKinnon, R.J.

    1990-09-01

    Scaling relationships for modeling the in situ vitrification waste remediation process are documented based upon similarity considerations derived from fundamental principles. Requirements for maintaining temperature and electric potential field similarity between the model and the prototype are determined as well as requirements for maintaining similarity in off-gas generation rates. A scaling rationale for designing reduced-scale experiments is presented and the results are assessed numerically. 9 refs., 6 figs.

  12. In-situ vitrification of transuranic wastes: systems evaluation and applications assessment

    SciTech Connect

    Oma, K.H.; Brown, D.R.; Buelt, J.L.; FitzPatrick, V.F.; Hawley, K.A.; Mellinger, G.B.; Napier, B.A.; Silviera, D.J.; Stein, S.L.; Timmerman, C.L.

    1983-09-01

    Major advantages of in-situ vitrification (ISV) as a means of stabilizing radioactive waste are: long term durability of the waste form; cost effectiveness; safety in terms of minimizing worker and public exposure; and applicability to different kinds of soils and buried wastes. This document describes ISV technology that is available as another viable tool for in place stabilization of waste sites. The following sections correspond to the chapters in the body of this document: description of the ISV process; analysis of the performane of the ISV tests conducted thus far; parameters of the ISV process; cost analysis for the ISV process; analysis of occupational and public exposure; and assessment of waste site applications.

  13. Test plan for BWID Phase 2 electric arc melter vitrification tests

    SciTech Connect

    Soelberg, N.R.; Turner, P.C.; Oden, L.L.; Anderson, G.L.

    1994-10-01

    This test plan describes the Buried Waste Integrated Demonstration (BWID), Phase 2, electric arc melter, waste treatment evaluation tests to be performed at the US Bureau of Mines (USBM) Albany Research Center. The BWID Arc Melter Vitrification Project is being conducted to evaluate and demonstrate existing industrial arc melter technology for thermally treating mixed transuranic-contaminated wastes and soils. Phase 1 baseline tests, performed during fiscal year 1993 at the USBM, were conducted on waste feeds representing incinerated buried mixed wastes and soils. In Phase 2, surrogate feeds will be processed that represent actual as-retrieved buried wastes from the Idaho National Engineering Laboratory`s Subsurface Disposal Area at the Radioactive Waste Management Complex.

  14. A review of potential alternatives for air cleaning at the Hanford Waste Vitrification Plant

    SciTech Connect

    Sehmel, G.A.

    1990-07-01

    Pacific Northwest Laboratory conducted this review in support of the Hanford Waste Vitrification Plant (HWVP) being designed by Fluor Daniel Inc. for the US Department of Energy (DOE). The literature on air cleaning systems is reviewed to identify potential air cleaning alternatives that might be included in the design of HWVP. An overview of advantages/disadvantages of the various air cleaning technologies follows. Information and references are presented for the following potential air cleaning alternatives: deep-bed glass-fiber filters (DBGF), high-efficiency particulate air filters (HEPA), remote modular filter systems, high-efficiency mist eliminators (HEME), electrostatic precipitators, and the sand filter. Selected information is summarized for systems in the United States, Belgium, Japan, and West Germany. This review addresses high-capacity air cleaning systems currently used in the nuclear industry and emphasizes recent developments. 10 refs., 9 figs., 3 tabs.

  15. Low-level waste vitrification phase 1 vendor test sample analysis data

    SciTech Connect

    Mast, E.S.

    1995-10-04

    A multi-phase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests was performed in vendor test facilities using simulated LLW and was completed during FY-1995. Test samples taken during Phase 1 testing were analyzed by independent laboratories who reported the analyses results to Westinghouse Hanford Company for integration and evaluation. The reported analytical results were integrated into an electronic data base using Microsoft Excel*5.0. This report documents this data base as of the end of FY-1995, and is supplemental to the Phase 1 LLW melter testing summary report, WHC-SD-WM-ER-498, revision 0.

  16. Integration of pneumatic fracturing and in situ vitrification in the soil subsurface

    SciTech Connect

    Luey, J.; Seiler, D.K.; Schuring, J.R.

    1995-02-01

    Pacific Northwest Laboratory is evaluating ways to increase the applicability of the in situ vitrification (ISV) process at hazardous and radioactive waste sites. One innovation is the placement of a conductive material that will facilitate initiating the ISV process at a target depth. A series of laboratory tests performed at the New Jersey Institute of Technology (NJIT) assessed the feasibility of pneumatic fracturing (PF) in the highly permeable soils of the Hanford Site. The NJIT tests included an analysis of Hanford soils, a series of PF injection tests, and a parametric analysis to determine how soil properties affect the PF process. Results suggest that the PF process can be applied to Hanford soils and that dry medium (e.g., conductive material such as graphite flake) can be injected into the fracture. This paper describes the laboratory testing performed at NJIT, its results, and the application of those results to plans for a field demonstration at Hanford.

  17. Glass formation development and testing for the vitrification of cesium-loaded Crystalline Silicotitanate (CST)

    SciTech Connect

    Andrews, M.K.

    1997-07-01

    As part of a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC), Melton Valley Storage Tank supernate will be passed through a column of crystalline silicotitanate (CST) sorbent at ORNL. The cesium-loaded CST sorbent will subsequently be shipped to the SRTC for vitrification in a joule-heated melter. The CST sorbent contains significant quantities of titanium which historically have been difficult to incorporate into the glass structure. Therefore, crucible studies were performed to develop a glass formulation that could be processed in the SRTC shielded cells melter. Additional tests were conducted to increase the waste loading and optimize the composition. These studies showed that waste loadings up to 60 wt percent CST could be obtained. The results of the crucible melts were used to determine the liquidus temperature, viscosity, and durability of the glass waste form. This paper will present the results of the formulation efforts.

  18. Use of noninvasive geophysical techniques for the In Situ Vitrification Program

    SciTech Connect

    Josten, N.E.; Marts, S.T.; Carpenter, G.S.

    1991-11-01

    In situ vitrification (ISV) is a waste pit remediation technology that can potentially eliminate the need for pit excavation. The ISV program at the Idaho National Engineering Laboratory (INEL) funded this study to evaluate geophysical techniques that might be useful for performing detailed screening of the materials, soil conditions, and local geology of waste pits targeted for remediation. The evaluation focuses on a specific set of characterization objectives developed by ISV engineers. The objectives are based on their assessment of safety, environmental, and cost efficiency issues associated with the ISV process. A literature review of geophysical case histories was conducted and a geophysical survey was performed at the INEL simulated waste pit so that the evaluation could be based on demonstrable results.

  19. Use of noninvasive geophysical techniques for the In Situ Vitrification Program

    SciTech Connect

    Marts, S.T.; Josten, N.E.; Carpenter, G.S.

    1991-11-01

    This document is the second volume of a three volume report to evaluate geophysical methods for use in the detailed characterization of waste pits. The In Situ Vitrification (ISV) Program funded the study to support the ISV remediation technology being developed at the Idaho National Engineering Laboratory (INEL). The ISV Program is considering geophysical waste characterization as a means to enhance the efficiency of the ISV process. Field tests were conducted to demonstrate and evaluate the application of magnetic, electromagnetic induction, and ground penetrating radar methods to waste site characterization. The primary objective was to investigate the ability of these noninvasive geophysical methods to locate and identify buried waste materials under conditions representative of the INEL Subsurface Disposal Area (SDA). The tests were conducted at an simulated waste pit designed to represent conditions at the SDA.

  20. Vitrification and crystallization of metallic liquid under pressures.

    PubMed

    Wang, Li; Peng, Chuanxiao; Wang, Yuqing; Zhang, Yanning

    2006-08-16

    Using molecular dynamics simulation with the embedded atom method, the structural properties of liquid NiAl in a pressure range of 0-20 GPa are investigated with a quenching rate of 2 K ps(-1). Not only is vitrification of liquid at low temperature detected, but also crystallization by change of average atomic volume as a function of temperature. Convincing evidence is presented that the applied pressure strongly affects the vitrification and crystallization of metallic liquid. The simulated glass transition temperature T(g) increases with pressure by 38.4 K GPa(-1) within the range 0-10 GPa, while external pressure induces crystallization of metallic liquid within the pressure range 10-20 GPa, and the crystallization temperature T(c) increases with a slope of 6.4 K GPa(-1). Therefore, the critical pressure for the formation of metallic glass at this cooling rate is estimated to be 10 GPa. The competition between the densification and the suppression of atomic diffusion in the liquid by pressure is able to explain the vitrification and crystallization behaviours of the liquid. Our present work provides a possible guidance for an experiment to study the pressure effect on the glass transition and crystallization process in metallic liquid.

  1. Design, operation, and evaluation of the transportable vitrification system

    SciTech Connect

    Zamecnik, J.R.; Young, S.R.; Hansen, E.K.; Whitehouse, J.C.

    1997-02-20

    The Transportable Vitrification System (TVS) is a transportable melter system designed to demonstrate the treatment of low-level and mixed hazardous and radioactive wastes such as wastewater treatment sludges, contaminated soils and incinerator ash. The TVS is a large-scale, fully integrated vitrification system consisting of melter feed preparation, melter, offgas, service, and control modules. The TVS was tested with surrogate waste at the Clemson University Environmental Systems Engineering Department`s (ESED) DOE/Industry Center for Vitrification Research prior to being shipped to the DOE Oak Ridge Reservation (ORR) K-25 site for treatment of mixed waste. This testing, along with additional testing at ORR, proved that the TVS would be able to successfully treat mixed waste. These surrogate tests consistently produced glass that met the EPA Toxicity Characteristic Leaching Procedure (TCLP). Performance of the system resulted in acceptable emissions of regulated metals from the offgas system. The TVS is scheduled to begin mixed waste operations at ORR in June 1997.

  2. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report

    SciTech Connect

    Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

    2001-09-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  3. Novel Bulk Silicon Lateral Double-Diffused Metal-Oxide-Semiconductor Field-Effect Transistors Using Step Thickness Technology in Drift Region

    NASA Astrophysics Data System (ADS)

    Huang, Shi; Guo, Yufeng; Yao, Jiafei; Hua, Tingting; Zhang, Jun; Zhang, Changchun; Ji, Xincun

    2013-12-01

    In this paper, a novel bulk silicon lateral double-diffused metal-oxide-semiconductor field-effect transistors (LDMOS) using step thickness technology in drift region is proposed. The drift region is divided into several zones with different thicknesses increasing from source to drain. Owing to modulation effect of the step thickness drift region, new additional electric field peaks are introduced in the drift region, thus leading to the reduction of the surface electric fields and the increase of the breakdown voltage. The influences of device parameters on breakdown voltage and specific on-resistance are investigated using semiconductor device simulator, MEDICI. The simulation results indicate that an 18.4% increase in the breakdown voltage and a 42.5% increase in the figure of merit (FOM) are obtained in the novel device in comparison with the conventional LDMOS. Furthermore, single step can lead to approximately ideal FOM in comparison with the multiple steps, so that can obtain a suitable trade-off between fabrication costs and performance.

  4. Validated physical models and parameters of bulk 3C–SiC aiming for credible technology computer aided design (TCAD) simulation

    NASA Astrophysics Data System (ADS)

    Arvanitopoulos, A.; Lophitis, N.; Gyftakis, K. N.; Perkins, S.; Antoniou, M.

    2017-10-01

    The cubic form of SiC (β- or 3C-) compared to the hexagonal α-SiC polytypes, primarily 4H- and 6H–SiC, has lower growth cost and can be grown heteroepitaxially in large area silicon (Si) wafers which makes it of special interest. This in conjunction with the recently reported growth of improved quality 3C–SiC, make the development of devices an imminent objective. However, the readiness of models that accurately predict the material characteristics, properties and performance is an imperative requirement for attaining the design and optimization of functional devices. The purpose of this study is to provide and validate a comprehensive set of models alongside with their parameters for bulk 3C–SiC. The validation process revealed that the proposed models are in a very good agreement to experimental data and confidence ranges were identified. This is the first piece of work achieving that for 3C–SiC. Considerably, it constitutes the necessary step for finite element method simulations and technology computer aided design.

  5. Behavior of mercury and iodine during vitrification of simulated alkaline Purex waste

    SciTech Connect

    Holton, L.K.

    1981-09-01

    Current plans indicate that the high-level wastes stored at the Savannah River Plant will be solidified by vitrification. The behavior of mercury and iodine during the vitrification process is of concern because: mercury is present in the waste in high concentrations (0.1 to 2.8 wt%); mercury will react with iodine and the other halogens present in the waste during vitrification and; the mercury compounds formed will be volatilized from the vitrification process placing a high particulate load in the vitrification system off-gas. Twelve experiments were completed to study the behavior of mercury during vitrification of simulated SRP Purex waste. The mercury was completely volatized from the vitrification system in all experiments. The mercury reacted with iodine, chlorine and oxygen to form a fine particulate solid. Quantitative recovery of mercury compounds formed in the vitrification system off-gas was not possible due to high (37 to 90%) deposition of solids in the off-gas piping. The behavior of mercury and iodine was most strongly influenced by the vitrification system atmosphere. During experiments performed in which the oxygen content of the vitrification system atmosphere was low (< 1 vol%); iodine retention in the glass product was 27 to 55%, the mercury composition of the solids recovered from the off-gas scrub solutions was 75 to 85 wt%, and a small quantity of metallic mercury was recovered from the off-gas scrub solution. During experiments performed in which the oxygen content of the vitrification system atmosphere was high (20 vol%), iodide retention in the glass product was 3 to 15%, the mercury composition of the solids recovered from the off-gas scrub solutions was 60 to 80 wt%, and very little metallic mercury was recovered from the off-gas scrub solution.

  6. Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions.

    PubMed

    Fahy, G M; Levy, D I; Ali, S E

    1987-06-01

    Vitrification solutions are aqueous cryoprotectant solutions which do not freeze when cooled at moderate rates to very low temperatures. Vitrification solutions have been used with great success for the cryopreservation of some biological systems but have been less successful or unsuccessful with other systems, and more fundamental knowledge about vitrification solutions is required. The purpose of the present survey is to show that a general understanding of the physical behavior and biological effects of vitrification solutions, as well as an understanding of the conditions under which vitrification solutions are required, is gradually emerging. Detailed nonequilibrium phase diagram information in combination with specific information on the tolerance of biological systems to ice and to cryoprotectant at subzero temperatures provides a quantitative theoretical basis for choosing between vitrification and freezing. The vitrification behavior of mixtures of cryoprotective agents during cooling is predictable from the behavior of the individual agents, and the behavior of individual agents is gradually becoming predictable from the details of their molecular structures. Progress is continuing concerning the elucidation of mechanisms and cellular sites of toxicity and mechanisms for the reduction of toxicity. Finally, important new information is rapidly emerging concerning the crystallization of previously vitrified cryoprotectant solutions during warming. It appears that vitrification tendency, toxicity, and devitrification all depend on subtle variations in the organization of water around dissolved substances.

  7. Method for initiating in-situ vitrification using an impregnated cord

    DOEpatents

    Carter, John G.

    1991-01-01

    In-situ vitrification of soil is initiated by placing a cord of dielectric material impregnated with conductive material in thermally-conductive contact with the soil, and energizing the cord with an electric current for heating the cord and starting the vitrification process.

  8. Method for initiating in-situ vitrification using an impregnated cord

    DOEpatents

    Carter, J.G.

    1991-04-02

    In-situ vitrification of soil is initiated by placing a cord of dielectric material impregnated with conductive material in thermally-conductive contact with the soil, and energizing the cord with an electric current for heating the cord and starting the vitrification process. 1 figure.

  9. Chapter 4 Role of Antioxidants and Antifreeze Proteins in Cryopreservation/Vitrification.

    PubMed

    Kim, Seul Ki; Youm, Hye Won; Lee, Jung Ryeol; Suh, Chang Suk

    2017-01-01

    In recent years, supplementation of antioxidants and antifreeze proteins during cryopreservation/vitrification has significantly improved the survival and function of oocytes and ovarian tissues (OT) in animal models. In this chapter, the experimental protocols for the use of antioxidants and antifreeze proteins in cryopreservation/vitrification are described.

  10. Viability of zebrafish (Danio rerio) ovarian follicles after vitrification in a metal container.

    PubMed

    Marques, Lis S; Bos-Mikich, Adriana; Godoy, Leandro C; Silva, Laura A; Maschio, Daniel; Zhang, Tiantian; Streit, Danilo P

    2015-12-01

    Cryopreservation of ovarian tissue has been studied for female germline preservation of farm animals and endangered mammalian species. However, there are relatively few reports on cryopreservation of fish ovarian tissue and especially using vitrification approach. Previous studies of our group has shown that the use of a metal container for the cryopreservation of bovine ovarian fragments results in good primordial and primary follicle morphological integrity after vitrification. The aim of this study was to assess the viability and in vitro development of zebrafish follicles after vitrification of fragmented or whole ovaries using the same metal container. In Experiment 1, we tested the follicular viability of five developmental stages following vitrification in four vitrification solutions using fluorescein diacetate and propidium iodide fluorescent probes. These results showed that the highest viability rates were obtained with immature follicles (Stage I) and VS1 (1.5 M methanol + 4.5 M propylene glycol). In Experiment 2, we used VS1 to vitrify different types of ovarian tissue (fragments or whole ovaries) in two different carriers (plastic cryotube or metal container). In this experiment, Stage I follicle survival was assessed following vitrification by vital staining after 24 h in vitro culture. Follicular morphology was analyzed by light microscopy after vitrification. Data showed that the immature follicles morphology was well preserved after cryopreservation. Follicular survival rate was higher (P < 0.05) in vitrified fragments, when compared to whole ovaries. There were no significant differences in follicular survival and growth when the two vitrification devices were compared.

  11. Efficacy of fish embryo vitrification protocols in terms of embryo morphology - a systematic review.

    PubMed

    Souza de Carvalho, A F; Ramos, S E; Gonzaga de Carvalho, T S; Pomarico de Souza, Y C; Zangeronimo, M G; Pereira, L J; Solis Murgas, L D

    2014-01-01

    Embryo cryopreservation has been used for the creation of genetic banks with diploid resources, and among different techniques, vitrification is considered as the most promising method. The goal is to evaluate the major aspects of the existing vitrification techniques and to evaluate their efficacy in terms of embryo morphology. Electronic searches in the PubMed and ScienceDirect databases were performed with the keyword combination: fish, embryo and vitrification. Pubmed retrieved 26 articles and Science Direct resulted in 464 articles. For this review, only studies that developed and tested vitrification protocols in fish embryos were included. Research regarding cryoprotectant toxicity and permeability were excluded. There were no restrictions on publication date or language. With these criteria, a total of ten articles were evaluated. In these articles, the major aspects to be considered for the development of new vitrification protocols are: the cryoprotectants' toxicity, the embryos' development stage, the exposure to and the permeability of the cryoprotectants, vitrification devices and vitrification-warning cycle. The survival were limited, however, the preservation of embryonic morphology after thawing indicates the possibility of preserving fish embryos via the vitrification technique.

  12. Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project

    SciTech Connect

    Vance, R.F.; Brill, B.A.; Carl, D.E.

    1997-06-01

    The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented.

  13. Numerical simulation of cooling rates in vitrification systems used for oocyte cryopreservation.

    PubMed

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2011-08-01

    Oocyte cryopreservation is of key importance in the preservation and propagation of germplasm. Interest in oocyte cryopreservation has increased in recent years due to the application of assisted reproductive technologies in farm animals such as in vitro fertilization, nuclear transfer and the need for the establishment of ova/gene banks worldwide. However, the cryopreservation of the female gamete has been met with limited success mainly due to its small surface-area:volume ratio. In the past decade, several vitrification devices such as open pulled straws (OPS), fine and ultra fine pipette tips, nylon loops and polyethylene films have been introduced in order to manipulate minimal volumes and achieve high cooling rates. However, experimental comparison of cooling rates presents difficulties mainly because of the reduced size of these systems. To circumvent this limitation, a numerical simulation of cooling rates of various vitrification systems immersed in liquid nitrogen was conducted solving the non-stationary heat transfer partial differential equation using finite element method. Results indicate the nylon loop (Cryoloop®) is the most efficient heat transfer system analyzed, with a predicted cooling rate of 180,000°C/min for an external heat transfer coefficient h= 1000 W/m(2)K when cooling from 20 to -130°C; in contrast, the open pulled straw method (OPS) showed the lowest performance with a cooling rate of 5521°C/min considering the same value of external heat transfer coefficient. Predicted cooling rates of Miniflex® and Cryotop® (polyethylene film system) were 6164 and 37,500°C/min, respectively, for the same heat transfer coefficient. Copyright © 2011. Published by Elsevier Inc.

  14. Thermal oxidation vitrification flue gas elimination system

    SciTech Connect

    Kephart, W.; Angelo, F.; Clemens, M.

    1995-06-01

    With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO{sub x} emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ``greenhouse gas`` contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition.

  15. [Effect of vitrification state of protective solutions on recovery of red blood cells after lyophilization preservation].

    PubMed

    Quan, Guo-Bo; Han, Ying; Liu, Xiu-Zhen; Liu, An; Jin, Peng; Cao, Wei

    2003-06-01

    To study effect of vitrification state of protective solutions on recovery of red blood cells after lyophilization, four protective solutions composed of isotonic buffers containing 7% DMSO (v/v) and 20%, 30%, 40% or 50% polyvinylpyrrolidone (PVP) (w/v) were adopted. Vitrification state of protective solutions was examined first when white ice crystal appeared in any protective solution during freezing or thawing, if the used solution was not a vitrification solution. Red blood cells were lyophilized in MINILYO45 freeze-dryer after washing, mixing with protective solutions and prefreezing. After lyophilization, the samples were quickly rehydrated by 37 degrees C rehydration solution. The results showed that in vitrification and devitrification experiments, white ice crystal appeared in solution of 20% PVP + 7% DMSO and 30% PVP + 7% DMSO during freezing and thawing; vitrification appeared in solution of 40% PVP + 7% DMSO during freezing, but devitrification appeared during thawing; vitrification appeared in solution of 50% PVP + 7% DMSO during freezing and thawing. After rehydration, the recoveries of red blood cells and hemoglobin in 40% PVP + 7% DMSO group were (81.36 +/- 14.94)% and (77.54 +/- 12.86)%, which were significantly higher than that in 20% PVP + 7% DMSO, 30% PVP + 7% DMSO and 50% PVP + 7% DMSO groups (P < 0.01). The concentration of free hemoglobin in 40% PVP + 7% DMSO group was also significantly lower than that in other three groups (P < 0.01). With increase of PVP concentration in protective solutions, vitrification state and protective effect of these solutions also increased; when concentration of PVP in protective solution was 40% though it was not a vitrification solution, the effect of lyophilization was the best; but when concentration of PVP further increased to 50%, though it was a vitrification solution, the effect decreased. It is concluded that excessive vitrification state could not benefit lyophilization of red blood cells.

  16. Fully front-side bulk-micromachined single-chip micro flow sensors for bare-chip SMT (surface mounting technology) packaging

    NASA Astrophysics Data System (ADS)

    Liu, Jiedan; Wang, Jiachou; Li, Xinxin

    2012-03-01

    This paper reports novel single-wafer-based piezoresistive micro flow sensors, which are bulk micromachined only from the front side of the silicon wafer to facilitate the sensor-bare chips directly packaged into micro-fluidic systems with low-cost surface mounting technology (SMT). With neither double-sided micromachining nor multiwafer bonding needed, two structural types of the piezoresistive flow sensors are designed and fabricated in (1 1 1) wafers, where ‘type A’ sensor has a smaller channel cross section area compared to ‘type B’ sensor. After the bare sensor chip directly attached on a printed circuit board (PCB), wire bonded between the pads and the PCB for electric interconnection and the inlet/outlet front side connected, deionized water is flowed into the both types of flow sensors to characterize piezoresistive output of the differential pressure sensing elements in terms of the flow rate. For ‘type A’ and ‘type B’ sensors that are both power supplied with DC 5 V, the sensitivities are sequentially measured as 766.80 mV (µL s-1)-1 and 19.12 mV (µL s-1)-1, with the nonlinearities as 0.4% FS and 0.9% FS, respectively. Compared with traditionally fabricated micro flow sensors, the single-chip fabricated differential-pressure flow sensors can be low-cost volume manufactured. Moreover, the bare sensor chips can be simply SMT packaged for low-cost micro-system applications.

  17. Biophysical Characteristics of Successful Oilseed Embryo Cryoprotection and Cryopreservation Using Vacuum Infiltration Vitrification: An Innovation in Plant Cell Preservation

    PubMed Central

    Nadarajan, Jayanthi; Pritchard, Hugh W.

    2014-01-01

    Heterogeneity in morphology, physiology and cellular chemistry of plant tissues can compromise successful cryoprotection and cryopreservation. Cryoprotection is a function of exposure time × temperature × permeability for the chosen protectant and diffusion pathway length, as determined by specimen geometry, to provide sufficient dehydration whilst avoiding excessive chemical toxicity. We have developed an innovative method of vacuum infiltration vitrification (VIV) at 381 mm (15 in) Hg (50 kPa) that ensures the rapid (5 min), uniform permeation of Plant Vitrification Solution 2 (PVS2) cryoprotectant into plant embryos and their successful cryopreservation, as judged by regrowth in vitro. This method was validated on zygotic embryos/embryonic axes of three species (Carica papaya, Passiflora edulis and Laurus nobilis) up to 1.6 mg dry mass and 5.6 mm in length, with varying physiology (desiccation tolerances) and 80°C variation in lipid thermal profiles, i.e., visco-elasticity properties, as determined by differential scanning calorimetry. Comparisons between the melting features of cryoprotected embryos and embryo regrowth indicated an optimal internal PVS2 concentration of about 60% of full strength. The physiological vigour of surviving embryos was directly related to the proportion of survivors. Compared with conventional vitrification, VIV-cryopreservation offered a ∼ 10-fold reduction in PVS2 exposure times, higher embryo viability and regrowth and greater effectiveness at two pre-treatment temperatures (0°C and 25°C). VIV-cryopreservation may form the basis of a generic, high throughput technology for the ex situ conservation of plant genetic resources, aiding food security and protection of species from diverse habitats and at risk of extinction. PMID:24788797

  18. Embryo vitrification in rabbits: Consequences for progeny growth.

    PubMed

    Lavara, R; Baselga, M; Marco-Jiménez, F; Vicente, J S

    2015-09-15

    The objective of this research is to examine if there are any effects of the rederivation procedures on rabbit growth pattern and on weight of different organ in adults. For this purpose, three experiments were conducted on two different groups of animals (control group and vitrified-transferred group) to evaluate the possible effect of embryo manipulation (vitrification and transfer procedures) on future growth traits. The first experiment studies body weight from 1 to 9 weeks of age from the two groups. The second experiment describes the growth curve of progeny from experimental groups and analyzes their Gompertz curve parameters, including the estimation of adult body weight. The third experiment has been developed to study if there are any differences in different organ weight in adult males from the two experimental groups. In general, the results indicate that rederivation procedures had effect on the phenotypic expression of growth traits. The results showed that rabbit produced by vitrification and embryo transfer had higher body weight in the first four weeks of age than control progeny. Results from body weight (a parameter) and b parameter estimated by fitting the Gompertz growth curve did not show any difference between experimental groups. However, differences related with growth velocity (k parameter of the Gompertz curve) were observed among them, showing that the control group had higher growth velocity than the vitrified-transferred group. In addition, we found that liver weight at 40th week of age exhibits significant differences between the experimental groups. The liver weight was higher in the control males than in the VF males. Although the present results indicate that vitrification and transfer procedures might affect some traits related with growth in rabbits, further research is needed to assess the mechanisms involved in the appearance of these phenotypes and if these phenotypes could be transferred to the future progeny.

  19. Physical problems with the vitrification of large biological systems.

    PubMed

    Fahy, G M; Saur, J; Williams, R J

    1990-10-01

    Vitrification is an attractive potential pathway to the successful cryopreservation of mature mammalian organs, but modern cryobiological research on vitrification to date has been devoted mostly to experiments with solutions and with biological systems ranging in diameter from about 6 through about 100 microns. The present paper focuses on concerns which are particularly relevant to large biological systems, i.e., those systems ranging in size from approximately 10 ml to approximately 1.5 liters. New qualitative data are provided on the effect of sample size on the probability of nucleation and the ultimate size of the resulting ice crystals as well as on the probability of fracture at or below Tg. Nucleation, crystal growth, and fracture depend on cooling velocity and the magnitude of thermal gradients in the sample, which in turn depend on sample size, geometry, and cooling technique (environmental thermal history and thermal uniformity). Quantitative data on thermal gradients, cooling rates, and fracture temperatures are provided as a function of sample size. The main conclusions are as follows. First, cooling rate (from about 0.2 to about 2.5 degrees C/min) has a profound influence on the temperature-dependent processes of nucleation and crystal growth in 47-50% (w/w) solutions of propylene glycol. Second, fracturing depends strongly on cooling rate and thermal uniformity and can be postponed to about 25 degrees C below Tg for a 482-ml sample if cooling is slow and uniform. Third, the presence of a carrier solution reduces the concentration of cryoprotectant needed for vitrification (CV). However, the CV of samples larger than about 10 ml is significantly higher than the CV of smaller samples whether a carrier solution is present or not.

  20. Property evolution during vitrification of dimethacrylate photopolymer networks

    PubMed Central

    Abu-Elenain, Dalia; Lewis, Steven H.; Stansbury, Jeffrey W.

    2013-01-01

    Objectives This study seeks to correlate the interrelated properties of conversion, shrinkage, modulus and stress as dimethacrylate networks transition from rubbery to glassy states during photopolymerization. Methods An unfilled BisGMA/TEGDMA resin was photocured for various irradiation intervals (7–600 s) to provide controlled levels of immediate conversion, which was monitored continuously for 10 min. Fiber optic near-infrared spectroscopy permitted coupling of real-time conversion measurement with dynamic polymerization shrinkage (linometer), modulus (dynamic mechanical analyzer) and stress (tensometer) development profiles. Results The varied irradiation conditions produced final conversion ranging from 6 % to more than 60 %. Post-irradiation conversion (dark cure) was quite limited when photopolymerization was interrupted either at very low or very high levels of conversion while significant dark cure contributions were possible for photocuring reactions suspended within the post-gel, rubbery regime. Analysis of conversion-based property evolution during and subsequent to photocuring demonstrated that the shrinkage rate increased significantly at about 40 % conversion followed by late-stage suppression in the conversion-dependent shrinkage rate that begins at about 45–50 % conversion. The gradual vitrification process over this conversion range is evident based on the broad but well-defined inflection in the modulus versus conversion data. As limiting conversion is approached, modulus and, to a somewhat lesser extent, stress rise precipitously as a result of vitrification with the stress profile showing little if any late-stage suppression as seen with shrinkage. Significance Near the limiting conversion for this model resin, the volumetric polymerization shrinkage rate slows while an exponential rise in modulus promotes the vitrification process that appears to largely dictate stress development. PMID:24080378

  1. Successful vitrification of bovine blastocysts on paper container.

    PubMed

    Kim, Y M; Uhm, S J; Gupta, M K; Yang, J S; Lim, J-G; Das, Z C; Heo, Y T; Chung, H-J; Kong, I-K; Kim, N-H; Lee, H T; Ko, D H

    2012-09-15

    Cryopreservation of bovine embryos can be performed by a variety of methods with variable degree of success. Here, we report a new, easy to perform, simple, inexpensive, and successful method for vitrification of bovine blastocysts. In vitro produced bovine blastocysts were exposed to vitrification solution (5.5 m ethylene glycol, 10% serum and 1% sucrose) in one single step for 20 s, loaded on a paper container prepared from commonly available non-slippery, absorbent writing paper, and then were directly plunged into liquid nitrogen for storage. Vitrified blastocysts were warmed by serial rinsing in 0.5, 0.25 and 0.125 m sucrose solution for 1 min each. Results showed that one step exposure of bovine blastocysts to cryoprotective agents was sufficient to achieve successful cryopreservation. Under these conditions, more than 95% of blastocysts survived the vitrification-warming on paper containers which was significantly higher than those obtained from other containers, such as electron microscope (EM) grid (78.1%), open pulled straw (OPS; 80.2%), cryoloop (76.2%) or plastic straw (73.9%). Embryo transfer of blastocysts vitrified-warmed on paper container resulted in successful conception (19.3%) and full-term live birth of offspring (12.3%) which were lower (P < 0.05) than those obtained from non-vitrified blastocysts (38.0 and 32.7%) but were comparable (P > 0.05) to those obtained from blastocysts vitrified-warmed on EM grid (23.3 and 14.2%). Our results, therefore, suggest that paper may be an inexpensive and useful container for the cryopreservation of animal embryos.

  2. Modeling requirements for in situ vitrification

    SciTech Connect

    MacKinnon, R.J.; Mecham, D.C.; Hagrman, D.L.; Johnson, R.W.; Murray, P.E.; Slater, C.E.; Marwil, E.S.; Weaver, R.A.; Argyle, M.D.

    1991-11-01

    This document outlines the requirements for the model being developed at the INEL which will provide analytical support for the ISV technology assessment program. The model includes representations of the electric potential field, thermal transport with melting, gas and particulate release, vapor migration, off-gas combustion and process chemistry. The modeling objectives are to (1) help determine the safety of the process by assessing the air and surrounding soil radionuclide and chemical pollution hazards, the nuclear criticality hazard, and the explosion and fire hazards, (2) help determine the suitability of the ISV process for stabilizing the buried wastes involved, and (3) help design laboratory and field tests and interpret results therefrom.

  3. Zeolite Vitrification Demonstration Program: characterization of nonradioactive demonstration product

    SciTech Connect

    Daniel, J L

    1982-09-01

    An extensive characterization of specimens of the glass produced during Run 4 (ZVDP-4) of the nonradioactive phase of the Three Mile Island (TMI) Zeolite Vitrification Demonstration Program was conducted by the Materials characterization Center (MCC) at Pacific Northwest Laboratory (PNL). The characteristics of the ZVDP-4 glass were compared with those of MCC's borosilicate reference glass, MCC 76-68. Tests included analyses of composition, density and phases present, the MCC-1P Static Leach Test Method, measurements of tensile strength and impact behavior, and evaluation of high-temperature vaporization.

  4. Comparative effects of slow freezing and vitrification on cryosurvival of spermatozoa obtained from west African dwarf goat bucks.

    PubMed

    Daramola, J O; Adekunle, E O

    2016-01-01

    Slow freezing and vitrification are used to improve the viability of spermatozoa from various species but comparative effects of these cryoprotocols have never been evaluated for spermatozoa obtained from West African Dwarf (WAD) goat bucks. This study evaluated the comparative effects of slow freezing and vitrification on the viability of spermatozoa of WAD goat bucks. Semen samples collected with the aid of artificial vagina were allocated to slow freezing and vitrification protocols and cryopreserved for 30 days in liquid nitrogen. Consistent higher (P<0.05) sperm motility, acrosome integrity, membrane integrity, live sperm, acrosome reaction and capacitation in slow freezing compared to vitrification. Abnormal sperm cells and malondialdehyde (MDA) concentrations reduced (P<0.05) in slow freezing compared to vitrification. Higher (P<0.05) arginase activity was observed in slow freezing compared to vitrification. The findings indicated that spermatozoa obtained from WAD goat bucks were better preserved in slow freezing compared to vitrification.

  5. Evaluation of high-level waste vitrification feed preparation chemistry for an NCAW simulant, FY 1994: Alternate flowsheets (DRAFT)

    SciTech Connect

    Smith, H.D.; Merz, M.D.; Wiemers, K.D.; Smith, G.L.

    1996-02-01

    High-level radioactive waste stored in tanks at the U.S. Department of Energy`s (DOE`s) Hanford Site will be pretreated to concentrate radioactive constituents and fed to the vitrification plant A flowsheet for feed preparation within the vitrification plant (based on the Hanford Waste Vitrification Plant (HWVP) design) called for HCOOH addition during the feed preparation step to adjust rheology and glass redox conditions. However, the potential for generating H{sub 2} and NH{sub 3} during treatment of high-level waste (HLW) with HCOOH was identified at Pacific Northwest Laboratory (PNL). Studies at the University of Georgia, under contract with Savannah River Technology Center (SRTC) and PNL, have verified the catalytic role of noble metals (Pd, Rh, Ru), present in the waste, in the generation of H{sub 2} and NH{sub 3}. Both laboratory-scale and pilot-scale studies at SRTC have documented the H{sub 2} and NH{sub 3} generation phenomenal Because H{sub 2} and NH{sub 3} may create hazardous conditions in the vessel vapor space and offgas system of a vitrification plant, reducing the H{sub 2} generation rate and the NH{sub 3} generation to the lowest possible levels consistent with desired melter feed characteristics is important. The Fiscal Year 1993 and 1994 studies were conducted with simulated (non-radioactive), pre-treated neutralized current acid waste (NCAW). Neutralized current acid waste is a high-level waste originating from the plutonium/uranium extraction (PUREX) plant that has been partially denitrated with sugar, neutralized with NaOH, and is presently stored in double-shell tanks. The non-radioactive simulant used for the present study includes all of the trace components found in the waste, or substitutes a chemically similar element for radioactive or very toxic species. The composition and simulant preparation steps were chosen to best simulate the chemical processing characteristics of the actual waste.

  6. Melter performance during surrogate vitrification campaigns at the DOE/Industrial Center for Vitrification Research at Clemson University

    SciTech Connect

    Marra, J.C.; Overcamp, T.J.

    1995-10-05

    This report summarizes the results from seven melter campaigns performed at the DOE/Industrial Center for Vitrification Research at Clemson University. A brief description of the EnVitco EV-16 Joule heated glass melter and the Stir-Melter WV-0.25 stirred melter are included for reference. The report discusses each waste stream examined, glass formulations developed and utilized, specifics relating to melter operation, and a synopsis of the results from the campaigns. A `lessons learned` section is included for each melter to emphasize repeated processing problems and identify parameters which are considered extremely important to successful melter operation

  7. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    SciTech Connect

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Krisman, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-07-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the acid pit and transuranic pits and trenches (TRU-PTs) at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues lated with ISV application at the SDA. The activities of the ISV Steering Committee are summarized in a three-volume report. Volume I identifies the systematic approach used to identify and prioritize the ISV technical issues and briefly discusses the methodology that will be employed to resolve these issues. Volumes 2 and 3 discuss each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTS, respectively. The three-volume report is a working document that will be updated as necessary to reflect current evaluation strategy for the ISV technology. This is Volume 3.

  8. Chemical durability of glasses obtained by vitrification of industrial wastes.

    PubMed

    Pisciella, P; Crisucci, S; Karamanov, A; Pelino, M

    2001-01-01

    The vitrification of zinc-hydrometallurgy wastes, electric arc furnace dust (EAFD), drainage mud, and granite mud was shown to immobilize the hazardous components in these wastes. Batch compositions were prepared by mixing the wastes with glass-cullet and sand to force the final glass composition into the glass forming region of the SiO2-Fe2O3-(CaO, MgO) system. The vitrification was carried out in the 1400-1450 degrees C temperature range followed by quenching in water or on stainless steel mold. The United States (US) Environmental Protection Agency (EPA) toxic characterization leaching procedure (TCLP) test was used as a standard method for evaluating the leachability of the elements in the glasses and glass-ceramics samples made with different percentages of wastes. The results for EAFD glasses highlighted that the chemical stability is influenced by the glass structure formed, which, in turn, depends on the Si/O ratio in the glass. The chemical durability of jarosite glasses and glass-ceramics was evaluated by 24 h contact in NaOH, HCl and Na2CO3, at 95 degrees C. Jarosite glass-ceramics containing pyroxene (J40) are more durable than the parent glass in HCl. Jarosite glass-ceramics containing magnetite type spinels (J50) have a durability similar to the parent glass and even lower in HCl because the magnetite is soluble in HCl.

  9. Defense waste vitrification studies during FY-1981. Summary report

    SciTech Connect

    Bjorklund, W.J.

    1982-09-01

    Both simulated alkaline defense wastes and simulated acidic defense wastes (formed by treating alkaline waste with formic acid) were successfully vitrified in direct liquid-fed melter experiments. The vitrification process was improved while using the formate-treated waste. Leach resistance was essentially the same. Off-gas entrainment was the primary mechanism for material exiting the melter. When formate waste was vitrified, the flow behavior of the off gas from the melter changed dramatically from an erratic surging behavior to a more quiet, even flow. Hydrogen and CO were detectable while processing formate feed; however, levels exceeding the flamability limits in air were never approached. Two types of melter operation were tested during the year, one involving boost power. Several boosting methods located within the melter plenum were tested. When lid heating was being used, water spray cooling in the off gas was required. Countercurrent spray cooling was more effective than cocurrent spray cooling. Materials of construction for the off-gas system were examined. Inconel-690 is preferred in the plenum area. Inspection of the pilot-scale melter found that corrosion of the K-3 refractory and Inconel-690 electrodes was minimal. An overheating incident occurred with the LFCM in which glass temperatures up to 1480/sup 0/C were experienced. Lab-scale vitrification tests to study mercury behavior were also completed this year. 53 figures, 63 tables.

  10. Modeling of the in-situ vitrification process

    SciTech Connect

    Koegler, S.S.; Kindle, C.H.

    1990-04-01

    In situ vitrification (ISV) is a thermal treatment process that converts contaminated soil into a durable, leach-resistant product similar to obsidian or basalt. The process, which was developed by Pacific Northwest Laboratory (PNL) for remediation of contaminated soil, is now in the field demonstration and implementation stage. Demonstration tests using the US Department of Energy (DOE)-owned large-scale system are underweight or planned for applications at Hanford and other DOE sites, including the Idaho National Engineering Laboratory, Oak Ridge National Laboratory, and the Savannah River Site. In addition, a private company, Geosafe Corporation, is beginning remediation of commercial contaminated soil sites. A mathematical and computer model has been developed at PNL as a predictive tool to assist engineers and researchers in the application of ISV to different sites. The model, currently configured on a Macintosh personal computer, predicts vitrification time, depth, width, and electrical consumption based on user inputs of electrode configuration, soil parameters, and molten glass characteristics. The model time and depth predications are useful for operations planning, cost estimates, and site selection. Additionally, the depth and width predictions will be used to direct ISV operations to ensure that the contaminated area is completely vitrified and to help mitigate the effect of ISV on adjacent structures. 1 ref., 8 figs.

  11. "Universal" vitrification of cells by ultra-fast cooling.

    PubMed

    Heo, Yun Seok; Nagrath, Sunitha; Moore, Alessandra L; Zeinali, Mahnaz; Irimia, Daniel; Stott, Shannon L; Toth, Thomas L; Toner, Mehmet

    2015-03-01

    Long-term preservation of live cells is critical for a broad range of clinical and research applications. With the increasing diversity of cells that need to be preserved (e.g. oocytes, stem and other primary cells, genetically modified cells), careful optimization of preservation protocols becomes tedious and poses significant limitations for all but the most expert users. To address the challenge of long-term storage of critical, heterogeneous cell types, we propose a universal protocol for cell vitrification that is independent of cell phenotype and uses only low concentrations of cryoprotectant (1.5 M PROH and 0.5 M trehalose). We employed industrial grade microcapillaries made of highly conductive fused silica, which are commonly used for analytical chemistry applications. The minimal mass and thermal inertia of the microcapillaries enabled us to achieve ultrafast cooling rates up to 4,000 K/s. Using the same low, non-toxic concentration of cryoprotectant, we demonstrate high recovery and viability rates after vitrification for human mammary epithelial cells, rat hepatocytes, tumor cells from pleural effusions, and multiple cancer cell lines.

  12. Comparison of vitrification and slow cooling for umbilical tissues.

    PubMed

    Da-Croce, Lilian; Gambarini-Paiva, Greicy Helen Ribeiro; Angelo, Patrícia Caroline; Bambirra, Eduardo Alves; Cabral, Antônio Carlos Vieira; Godard, Ana Lúcia Brunialti

    2013-03-01

    The tissue cryopreservation maintains the cellular metabolism in a quiescence state and makes the conservation possible for an indefinite period of time. The choice of an appropriate cryopreservation protocol is essential for maintenance of cryopreserved tissue banks. This study evaluated 10 samples of umbilical cord, from which small fragments of tissue (Wharton's jelly and cord lining membrane) were subjected to two protocols of cryopreservation: slow cooling and vitrification. The samples were frozen for a period of time ranging from 5 to 78 days. The efficiency of cryopreservation was evaluated by testing cell viability, histological analysis, cell culture, cytogenetic analysis and comparison with the results of the fresh samples. The results showed that the slow cooling protocol was more efficient than the vitrification for cryopreservation of umbilical cord tissue, because it has caused fewer changes in the structure of tissue (edema and degeneration of the epithelium) and, despite the significant decrease cell viability compared to fresh samples, the ability of cell proliferation in vitro was preserved in most samples. In conclusion, this study showed that it is possible to cryopreserve small fragments of tissue from the umbilical cord and, to obtain viable cells capable of proliferation in vitro after thawing, contributing to the creation of a frozen tissue bank.

  13. Transportable vitrification system demonstration on mixed waste. Revision 1

    SciTech Connect

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-04-22

    The Transportable Vitrification System (TVS) is a large scale, fully integrated, vitrification system for the treatment of low-level and mixed wastes in the form of sludges, soils, incinerator ash, and many other waste streams. It was demonstrated on surrogate waste at Clemson University and at the Oak Ridge Reservation (ORR) prior to treating actual mixed waste. Treatment of a combination of dried B and C Pond sludge and CNF sludge was successfully demonstrated at ORR in 1997. The demonstration produced 7,616 kg of glass from 7,328 kg of mixed wastes with a 60% reduction in volume. Glass formulations for the wastes treated were developed using a combination of laboratory crucible studies with the actual wastes and small melter studies at Clemson with both surrogate and actual wastes. Initial characterization of the B and C Pond sludge had not shown the presence of carbon or fluoride, which required a modified glass formulation be developed to maintain proper glass redox and viscosity. The CNF sludge challenges the glass formulations due to high levels of phosphate and iron. The demonstration was delayed several times by permitting problems, a glass leak, and electrical problems. The demonstration showed that the two wastes could be successfully vitrified, although the design glass production rate was not achieved. The glass produced met the Universal Treatment Standards and the emissions from the TVS were well within the allowable permit limits.

  14. Ash from a pulp mill boiler--characterisation and vitrification.

    PubMed

    Ribeiro, Ana S M; Monteiro, Regina C C; Davim, Erika J R; Fernandes, M Helena V

    2010-07-15

    The physical, chemical and mineralogical characterisation of the ash resulting from a pulp mill boiler was performed in order to investigate the valorisation of this waste material through the production of added-value glassy materials. The ash had a particle size distribution in the range 0.06-53 microm, and a high amount of SiO(2) (approximately 82 wt%), which was present as quartz. To favour the vitrification of the ash and to obtain a melt with an adequate viscosity to cast into a mould, different amounts of Na(2)O were added to act as fluxing agent. A batch with 80 wt% waste load melted at 1350 degrees C resulting in a homogeneous transparent green-coloured glass with good workability. The characterisation of the produced glass by differential thermal analysis and dilatometry showed that this glass presents a stable thermal behaviour. Standard leaching tests revealed that the concentration of heavy metals in the leaching solution was lower than those allowed by the Normative. As a conclusion, by vitrification of batch compositions with adequate waste load and additive content it is possible to produce an ash-based glass that may be used in similar applications as a conventional silicate glass inclusively as a building ecomaterial.

  15. Stabilization of biothreat diagnostic samples through vitrification matrices.

    PubMed

    Minogue, Timothy Devin; Kalina, Warren Vincent; Coyne, Susan Rajnik

    2014-06-01

    Diagnostics for biothreat agents require sample shipment to reference labs for diagnosis of disease; however high/fluctuating temperatures during sample transport negatively affect sample quality and results. Vitrification additives preserve sample integrity for molecular-based assay diagnostics in the absence of refrigeration by imparting whole molecule stability to a plethora of environmental insults. Therefore, we have evaluated commercially available vitrification matrices' (Biomatrica's CloneStable® and RNAStable®) ability to stabilize samples of Yersinia pestis and Venezuelan Equine Encephalitis Virus. When heated to 95°C in RNAStable®, Y. pestis had a 13-fold improvement in detection via real-time PCR compared to heated samples in buffer. VEEV, in RNAStable® at 55°C, had a ~10-fold improved detection versus heated samples in buffer. CloneStable® also preserved Y. pestis antigens for 7days after exposure to cycling temperatures. Overall, RNAStable® and CloneStable® respectively offered superior stabilization to nucleic acids and proteins in response to temperature fluctuations.

  16. Effects of oocyte vitrification on epigenetic status in early bovine embryos.

    PubMed

    Chen, Huanhuan; Zhang, Lei; Deng, Tengfei; Zou, Pengda; Wang, Yongsheng; Quan, Fusheng; Zhang, Yong

    2016-08-01

    Oocyte cryopreservation has a great impact on subsequent embryonic development. Currently, several studies have primarily focused on the consequences of vitrification and the development potential of cellular structures. This study determined whether oocyte vitrification caused epigenetic instabilities of bovine embryos. The effects of oocyte vitrification on DNA methylation, histone modifications, and putative imprinted genes' expression in early embryos derived by intracytoplasmic sperm injection were examined. Results showed that oocyte vitrification did not affect zygote cleavage rates (67.0% vs. 73.8% control, P > 0.05) but reduced the blastocyst rate (9.6% vs. 23.0%, P < 0.05). The levels of DNA methylation and H3K9me3 in oocytes and early cleavage embryos were lower (P < 0.05) than those in control group, but the level of acH3K9 increased (P < 0.05) in the vitrification group during the early cleavage phases. No differences were observed for DNA methylation, H3K9me3, and acH3K9 in the inner cell mass of blastocysts, whereas decreased levels of DNA methylation and acH3K9 (P < 0.05) existed in TE cells after vitrification. The expression of putative-imprinted genes PEG10, XIST, and KCNQ1O1T was upregulated in blastocysts. These epigenetic abnormalities may be partially explained by altered expression of genes associated with epigenetic regulations. DNA methylation and H3K9 modification suggest that oocyte vitrification may excessively relax the chromosomes of oocytes and early cleavage embryos. In conclusion, these epigenetic indexes could be used as damage markers of oocyte vitrification during early embryonic development, which offers a new insight to assess oocyte vitrification.

  17. Porcine oocyte vitrification in optimized low toxicity solution with open pulled straws.

    PubMed

    Marco-Jiménez, F; Casares-Crespo, L; Vicente, J S

    2014-05-01

    One of the greatest challenges for reproductive cryobiologists today is to develop an efficient cryopreservation method for human and domestic animal oocytes. The objective of the present study was to optimize a low toxicity solution called VM3 to vitrify porcine oocytes using an open pulled straw (OPS) device and to evaluate the effects on viability, chromosomal organization and cortical granules distribution. Two experiments were conducted in this study. Firstly, we determined the minimum concentration of cryoprotectant present in the VM3 solution required (7.6 M) for vitrification using an OPS device. The appearance of opacity was observed when using a cooling solution at -196°C; no observable opacity was noted as vitrification. In addition, the ultrastructure of oocytes in VM3 or VM3 optimized solution was examined using cryo-scanning electron microscopy. The minimum total cryoprotectant concentration present in VM3 solution necessary for apparent vitrification was 5.6 M when combined with use of an OPS device. Use of both vitrification solutions showed a characteristic plasticized surface. In the second experiment, the relative cytotoxicity of vitrification solutions (VM3 and VM3 optimized) was studied. Oocyte viability, chromosomal organization and the cortical granules distribution were assessed by fluorescent stain. After warming, oocyte survival rate was similar to that of fresh oocytes. The vitrification process significantly reduced correct chromosomal organization and cortical granules distribution rates compared with the fresh oocytes group. However, correct chromosomal organization and cortical granules distribution rates did not differ among oocytes placed in different vitrification solutions. In conclusion, our data demonstrated that the VM3 solution can be optimized and that reduction in concentration to 5.6 M enabled vitrification of oocytes with an OPS device, however use of the VM3 optimised solution had no beneficial effect on vitrification of

  18. Vitrification of Human Germinal Vesicle Oocytes: before or after In Vitro Maturation?

    PubMed

    Kasapi, Evangelia; Asimakopoulos, Byron; Chatzimeletiou, Katerina; Petousis, Stamatios; Panagiotidis, Yannis; Prapas, Nikos; Nikolettos, Nikos

    2017-01-01

    The use of immature oocytes derived from stimulated cycles could be of great importance, particularly for urgent fertility preservation cases. The current study aimed to determine whether in vitro maturation (IVM) was more successful before or after vitrification of these oocytes. This prospective study was performed in a private in vitro fertilization (IVF) center. We collected 318 germinal vesicle (GV) oocytes from 104 stimulated oocyte donation cycles. Oocytes were divided into two groups according to whether vitrification was applied at the GV stage (group 1) or in vitro matured to the metaphase II (MII) stage and then vitrified (group 2). In the control group (group 3), oocytes were in vitro matured without vitrification. In all three groups, we assessed survival rate after warming, maturation rate, and MII-spindle/chromosome configurations. The chi-square test was used to compare rates between the three groups. Statistical significance was defined at P<0.05 and we used Bonferroni criterion to assess statistical significance regarding the various pairs of groups. The Statistical Package for the Social Sciences version 17.0 was used to perform statistical analysis. There was no significant difference in the survival rate after vitrification and warming of GV (93.5%) and MII oocytes (90.8%). A significantly higher maturation rate occurred when IVM was performed before vitrification (82.9%) compared to after vitrification (51%). There was no significant difference in the incidence of normal spindle/ chromosome configurations among warmed oocytes matured in vitro before (50.0%) or after (41.2%) vitrification. However, a higher incidence of normal spindle/chromosome configurations existed in the in vitro matured oocytes which were not subjected to vitrification (fresh oocytes, 77.9%). In stimulated cycles, vitrification of in vitro matured MII oocytes rather than GV oocytes seems to be more efficient. This approach needs to be verified in nonstimulated fertility

  19. L-carnitine supplementation during vitrification of mouse oocytes at the germinal vesicle stage improves preimplantation development following maturation and fertilization in vitro.

    PubMed

    Moawad, Adel R; Tan, Seang Lin; Xu, Baozeng; Chen, Hai Ying; Taketo, Teruko

    2013-04-01

    Oocyte cryopreservation is important for assisted reproductive technologies (ART). Although cryopreservation of metaphase II (MII) oocytes has been successfully used, MII oocytes are vulnerable to the damage inflicted by the freezing procedure. Cryopreservation of germinal vesicle stage oocytes (GV-oocytes) is an alternative choice; however, blastocyst development from GV-oocytes is limited largely due to the need for in vitro maturation (IVM). Herein, we evaluated the effects of l-carnitine (LC) supplementation during vitrification and thawing of mouse GV-oocytes, IVM, and embryo culture on preimplantation development after in vitro fertilization (IVF). We first compared the rate of embryonic development from the oocytes that had been collected at the GV stage from three mouse strains, (B6.DBA)F1, (B6.C3H)F1, and B6, and processed for IVM and IVF, as well as that from the oocytes matured in vivo, i.e. ovulated (IVO). Our results demonstrated that the rate of blastocyst development was the highest in the (B6.DBA)F1 strain and the lowest in the B6 strain. We then supplemented the IVM medium with 0.6 mg/ml LC. The rate of blastocyst development improved in the B6 but not in the (B6.DBA)F1 strain. Vitrification of GV-oocytes in the basic medium alone reduced the rate of blastocyst development in both of those mouse strains. LC supplementation to the IVM medium alone did not change the percentage of blastocyst development. However, LC supplementation to both vitrification and IVM media significantly improved blastocyst development to the levels comparable with those obtained from vitrified/thawed IVO oocytes in both of the (B6.DBA)F1 and B6 strains. We conclude that LC supplementation during vitrification is particularly efficient in improving the preimplantation development from the GV-oocytes that otherwise have lower developmental competence in culture.

  20. L-proline: a highly effective cryoprotectant for mouse oocyte vitrification

    PubMed Central

    Zhang, Lu; Xue, Xu; Yan, Jie; Yan, Li-Ying; Jin, Xiao-Hu; Zhu, Xiao-Hui; He, Zhi-Zhu; Liu, Jing; Li, Rong; Qiao, Jie

    2016-01-01

    Recent studies have shown that L-proline is a natural osmoprotectant and an antioxidant to protect cells from injuries such as that caused by freezing and thawing in many species including plant, ram sperm and human endothelial cells. Nevertheless, this nontoxic cryoprotectant has not yet been applied to mammalian oocyte vitrification. In this study we evaluated the efficiency and safety of the new cryoprotectant in oocyte vitrification. The results indicated that L-proline improves the survival rate of vitrified oocytes, protects mitochondrial functions and could be applied as a new cryoprotectant in mouse oocyte vitrification. PMID:27412080

  1. Task 20 - Prevention of Chloride Corrosion in High-Temperature Waste Treatment Systems (Corrosives Removals from Vitrification Slurries)

    SciTech Connect

    Timpe, R.C.; Aulich, T.R.

    1998-11-01

    GTS Duratek is working with BNFL Incorporated on a US Department of Energy (DOE) contract to develop a facility to treat and immobilize radioactive waste at the Hanford site in southeast Washington. Development of the 10-ton/day Hanford facility will be based on findings from work at Duratek's 3.3-ton/day pilot plant in Columbia, Maryland, which is in the final stage of construction and scheduled for shakedown testing in early 1999. In prior work with the Catholic University of America Vitreous State Laboratory, Duratek has found that slurrying is the most efficient way to introduce low-level radioactive, hazardous, and mixed wastes into vitrification melters. However, many of the Hanford tank wastes to be vitrified contain species (primarily chloride and sulfate) that are corrosive to the vitrifier or the downstream air pollution control equipment, especially under the elevated temperature conditions existent in these components. Removal of these corrosives presents a significant challenge because most tank wastes contain high (up to 10-molar) concentrations of sodium hydroxide (NaOH) along with significant levels of nitrate, nitrite, and other anions, which render standard ion-exchange, membrane filtration, and other separation technologies relatively ineffective. In Task 20, the Energy and Environmental Research Center (EERC) will work with Duratek to develop and optimize a vitrification pretreatment process for consistent, quantitative removal of chloride and sulfate prior to vitrifier injection.

  2. NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE STATUS AND DIRECTION

    SciTech Connect

    RAMSEY WG; GRAY MF; CALMUS RB; EDGE JA; GARRETT BG

    2011-01-13

    Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

  3. Glass optimization for vitrification of Hanford Site low-level tank waste

    SciTech Connect

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design.

  4. In situ vitrification of transuranic wastes: An updated systems evaluation and applications assessment

    SciTech Connect

    Buelt, J.L.; Timmerman, C.L.; Oma, K.H.; FitzPatrick, V.F.; Carter, J.G.

    1987-03-01

    In situ vitrification (ISV) is a process whereby joule heating immobilizes contaminated soil in place into a durable glass and crystalline waste form. Numerous technological advances made during the past three years in the design, fabrication, and testing of the ISV process are discussed. Performance analysis of ISV focuses on process equipment, element retention (in the vitrified soil during processing), melt geometry, depth monitors, and electrodes. The types of soil and waste processed by ISV are evaluated as process parameters. Economic data provide the production costs of the large-scale unit for radioactive and hazardous chemical wastes (wet and dry). The processing of transuranic-contaminated soils are discussed with respect to occupational and public safety. Alternative applications and operating sequences for various waste sites are identified. The technological data base warrants conducting a large-scale radioactive test at a contaminated soil site at Hanford to provide a representative waste form that can be evaluated to determine its suitability for in-place stabilization of transuranic-contaminated soils.

  5. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    SciTech Connect

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-01-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. Volume 1 identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues. This document Volume 2 and Volume 3 discusses each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTs, respectively.

  6. Bulk Site Reference Materials

    SciTech Connect

    Barich, J.J. III; Jones, R.R. Sr.

    1996-12-31

    The selection, manufacture and use of Bulk Site Reference Materials (BSRMs) at hazardous waste sites is discussed. BSRMs are useful in preparing stabilization/solidification (S/S) formulations for soils, ranking competing S/S processes, comparing S/S alternatives to other technologies, and in interpreting data from different test types. BSRMs are large volume samples that are representative of the physical and chemical characteristics of a site soil, and that contain contaminants at reasonably high levels. A successful BSRM is extremely homogeneous and well-characterized. While not representative of any point on the site, they contain the contaminants of the site in the matrices of the site. Design objectives for a BSRM are to produce a material that (1) maintains good fidelity to site matrices and contaminants, and (2) exhibits the lowest possible relative standard deviation.

  7. Vitrification of mouse MII oocytes: Developmental competency using paclitaxel.

    PubMed

    Fesahat, Farzaneh; Faramarzi, Azita; Khoradmehr, Arezoo; Omidi, Marjan; Anbari, Fatemeh; Khalili, Mohammad Ali

    2016-12-01

    Oocyte cryopreservation provides an important alternative for fertility preservation for women who will be treated with cytotoxic drugs. However, it can cause spindle disorganization of microtubules, putting the zygote at risk for aneuploidy. Paclitaxel is known to stabilize the microtubules that constitute the spindle. The aim of this study was to investigate the suitable concentration of paclitaxel for adding to the vitrification media to improve the developmental potential of post-thawed mature oocytes to blastocyst formation in mice. A total of 300 MII oocytes were retrieved from superovulated mice, and were divided into three groups of control, Experimental I, and Experimental II. Oocytes in Experimental I and Experimental II were cryopreserved in the presence of 0.5μM or 1μM of paclitaxel in vitrification media, respectively. After thawing, all oocytes were incubated in G-IVF medium for 1 hour. From each group,12 oocytes were selected for viability evaluation by Hoechst/propidium iodide nuclear staining. Standard in vitro fertilization was performed on the rest of the oocytes and embryo development was followed to the blastocyst stage. Fertilization rate was not significantly different between the three groups. However, the cleavage rate (55%) in Experimental II group was significantly lower compared to Experimental I (88%) and control groups (83%). There was a detectable difference between the three groups at the blastocyst rate (Experimental I and control groups, p = 0.004; Experimental II vs. control and Experimental I, p < 0.001). The highest rates of parthenogenesis and arrest were in Experimental II (16% and 21%, respectively) compared with control (6% and 5%, respectively) and Experimental I (5% and 3%, respectively). There was also a significant decrease in viability rate of oocytes in Experimental II compared to the other groups. A high concentration of paclitaxel, an anticancer drug, interrupted the mouse oocyte competency when supplemented to

  8. A new method for measurement of the vitrification rate of earthenware texture by scanning electron microscope.

    PubMed

    Moon, Eun Jung; Kim, Su Kyeong; Han, Min Su; Lee, Eun Woo; Heo, Jun Su; Lee, Han Hyoung

    2013-08-01

    A new method for determining the vitrification rate of pottery depending on the firing temperature was devised using secondary electron images (SEI) of scanning electron microscope (SEM). Several tests were performed to establish the appropriate operating conditions of SEM and reproducibility as well as to examine the applicability of the method. The grayscale values converted from each pixel of SEI were used to determine the vitrification rate of pottery, which in our study were artificially fired specimens composed of three types of clay. A comparison between the vitrification rate value and appearance temperature of minerals shows that mullite formation starts at 1,100°C, during which the vitrification rate rapidly increases by over 10%. In consequence, the result presented here demonstrates that the new method can be applied to estimate the firing temperature of pottery.

  9. Zeolite vitrification demonstration program: characterization of radioactive vitrified zeolite materials

    SciTech Connect

    Barner, J O; Daniel, J L; Marshall, R K

    1984-01-01

    The leach behavior of radioactive vitrified zeolite material was studied as part of the Three Mile Island (TMI) Zeolite Vitrification Program conducted by Pacific Northwest Laboratory (PNL). Experimental procedures, test results, and discussions of the results are presented. The leach behavior of material from three canisters of vitrified zeolite is discussed in terms of the normalized weight loss of the glass-formers and the normalized activity loss of the fission products cesium and strontium. The leach behavior of the radioactive vitrified zeolite material is also compared to the leach behavior of MCC 76-68 reference glass. The effects of changes in the surface microstructure of the vitrified zeolite that occurred during leaching are also presented. 3 references, 23 figures, 10 tables.

  10. First use of in situ vitrification on radioactive wastes

    SciTech Connect

    Bowlds, L.

    1992-03-01

    A high-temperature method for containing hazardous wastes, which was first developed in the 1980s, is being adapted for the in situ treatment of buried radioactive wastes by the US DOE's Idaho National Engineering Laboratory (INEL), following its recent report on successful preliminary tests. The method, called in situ vitrification (ISV), is an electrically induced thermal process that melts and fuses soil and wastes into a glass-like material at least as strong as natural obsidian or granite. Gases released during the process are captured and treated by an off-gas treatment system. After the wastes are vitrified, they could be left in place, or the mass could be broken up and transported to a disposal site. The glass-like substance would be chemically and physically similar to obsidian and from 4 to 10 times more durable than typical borosilicate glasses used to immobolize high-level nuclear wastes.

  11. In situ vitrification model development and implementation plan

    SciTech Connect

    MacKinnon, R.J.; Murray, P.E.; Johnson, R.W.; Hagrman, D.L.; Slater, C.E.; Marwil, E.S.

    1990-08-01

    This document describes the In Situ Vitrification (ISV) Analysis Package being developed at the INEL to provide analytical support for (ISV) safety analysis and treatment performance predictions. Mathematical models and features which comprise this analysis package are presented and the proposed approach to model development and implementation is outlined. The objective of this document is two fold: to define preliminary design information and modeling objectives so that ISV modeling personnel can effectively modify existing models and formulate new models which are consistent with the objectives of the ISV treatability study and to provide sufficient technical information for internal and external reviewers to detect any shortcomings in model development and implementation plans. 27 refs., 17 figs., 3 tabs.

  12. Initial tests on in situ vitrification using electrode feeding techniques

    SciTech Connect

    Farnsworth, R.K.; Oma, K.H.; Bigelow, C.E.

    1990-05-01

    This report summarizes the results of an engineering-scale in situ vitrification (ISV) test conducted to demonstrate the potential for electrode feeding in soils with a high concentration of metals. The engineering-scale test was part of a Pacific Northwest Laboratory (PNL) program to assist Idaho National Engineering Laboratory (INEL) in conducting treatability studies of the potential for applying ISV to the mixed transuranic waste buried at the INEL subsurface disposal area. The purpose of this test was to evaluate the effectiveness of both gravity fed and operator-controlled electrode feeding in reducing or eliminating many of the potential problems associated with fixed-electrode processing of soils with high concentrations of metal. Actual site soils from INEL were mixed with representative concentrations of carbon steel and stainless steel for this engineering-scale test. 18 refs., 14 figs., 3 tabs.

  13. Multipurpose optimization models for high level waste vitrification

    SciTech Connect

    Hoza, M.

    1994-08-01

    Optimal Waste Loading (OWL) models have been developed as multipurpose tools for high-level waste studies for the Tank Waste Remediation Program at Hanford. Using nonlinear programming techniques, these models maximize the waste loading of the vitrified waste and optimize the glass formers composition such that the glass produced has the appropriate properties within the melter, and the resultant vitrified waste form meets the requirements for disposal. The OWL model can be used for a single waste stream or for blended streams. The models can determine optimal continuous blends or optimal discrete blends of a number of different wastes. The OWL models have been used to identify the most restrictive constraints, to evaluate prospective waste pretreatment methods, to formulate and evaluate blending strategies, and to determine the impacts of variability in the wastes. The OWL models will be used to aid in the design of frits and the maximize the waste in the glass for High-Level Waste (HLW) vitrification.

  14. Behavior of technetium in nuclear waste vitrification processes.

    PubMed

    Pegg, Ian L

    Nearly 100 tests were performed with prototypical melters and off-gas system components to investigate the extents to which technetium is incorporated into the glass melt, partitioned to the off-gas stream, and captured by the off-gas treatment system components during waste vitrification. The tests employed several simulants, spiked with (99m)Tc and Re (a potential surrogate), of the low activity waste separated from nuclear wastes in storage in the Hanford tanks, which is planned for immobilization in borosilicate glass. Single-pass technetium retention averaged about 35 % and increased significantly with recycle of the off-gas treatment fluids. The fraction escaping the recycle loop was very small.

  15. High level radioactive waste vitrification process equipment component testing

    SciTech Connect

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system.

  16. Competition between crystallization and vitrification of the rigid amorphous fraction in poly(3-hydroxybutyrate)

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Maria Laura; Righetti, Maria Cristina; Gazzano, Massimo

    2012-07-01

    Semicrystalline polymers have a metastable nanophase structure, where the various nanophases can be crystal, liquid, glass, or mesophase. This multi-level structure is determined by a competition among self-organization, crystallization, and vitrification of the amorphous segments and is established during material processing. The kinetics of such competition is here determined for poly(3-hydroxybutyrate) (PHB), as vitrification/devitrification of the rigid amorphous fraction strongly affects crystallization kinetics of PHB.

  17. Developmental competence and gene expression of immature oocytes following liquid helium vitrification in bovine.

    PubMed

    Chen, Jun-Yi; Li, Xiao-Xia; Xu, Ya-Kun; Wu, Hua; Zheng, Jun-Jun; Yu, Xue-Li

    2014-12-01

    The objective of this study was to develop an effective ultra-rapid vitrification method and evaluate its effect on maturation, developmental competence and development-related gene expression in bovine immature oocytes. Bovine cumulus oocyte complexes were randomly allocated into three groups: (1) controls, (2) liquid nitrogen vitrification, and (3) liquid helium vitrification. Oocytes were vitrified and then warmed, the percentage of morphologically normal oocytes in liquid helium group (89.0%) was significantly higher (P<0.05) than that of the liquid nitrogen group (81.1%). When the vitrified-thawed oocytes were matured in vitro for 24h, the maturation rate in liquid helium group (50.6%) was higher (P<0.05) than liquid nitrogen group (42.6%). Oocytes of liquid helium vitrification had higher cleavage and blastocyst rates (41.1% and 10.0%) than that of liquid nitrogen vitrification (33.0% and 4.5%; P<0.05) after in vitro fertilization. Moreover, the expression of GDF9 (growth/differentiation factor-9), BAX (apoptosis factor) and ZAR1 (zygote arrest 1) was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) when the vitrified-thawed oocytes were matured 24h. The expression of these genes was altered after vitrification. Expression of GDF9 and BAX in the liquid helium vitrification group was not significantly different from that of the control, however there were significant differences between the liquid nitrogen vitrification group and control. In conclusion, it was feasible to use liquid helium for vitrifying bovine immature oocytes. There existed an association between the compromised developmental competence and the altered expression levels of these genes for the vitrified oocytes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Overview of the West Valley Vitrification Facility transfer cart control system

    SciTech Connect

    Bradley, E.C.; Rupple, F.R.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) has designed the control system for the West Valley Demonstration Project Vitrification Facility transfer cart. The transfer cart will transfer canisters of vitrified high-level waste remotely within the Vitrification Facility. The control system will operate the cart under battery power by wireless control. The equipment includes cart mounted control electronics, battery charger, control pendants, engineer's console, and facility antennas.

  19. Overview of the West Valley Vitrification Facility transfer cart control system

    SciTech Connect

    Bradley, E.C.; Rupple, F.R.

    1993-05-01

    Oak Ridge National Laboratory (ORNL) has designed the control system for the West Valley Demonstration Project Vitrification Facility transfer cart. The transfer cart will transfer canisters of vitrified high-level waste remotely within the Vitrification Facility. The control system will operate the cart under battery power by wireless control. The equipment includes cart mounted control electronics, battery charger, control pendants, engineer`s console, and facility antennas.

  20. Heavy Metals Behavior During Thermal Plasma Vitrification Of Incineration Residues

    SciTech Connect

    Cerqueira, Nuno; Vandensteendam, Colette; Baronnet, Jean Marie

    2006-01-15

    Incineration of wastes, widely and increasingly used nowadays, produces residues, mainly bottom ash and filter fly ash. Fly ash is especially problematic because of its high content in heavy metals easily drawn out. Thermal processes, based mainly on electrical arc processes, are used to melt the residues at high temperature and convert them into a relatively inert glass. Consequently, to improve the process and get a glass satisfying regulation, control of heavy metals (lead, zinc, cadmium and chromium...) volatility during plasma fly ash melting and vitrification is needed and basic data concerning vaporization of these metals are required. According to the volatility of these compounds observed during vitrification of fly ash, a predictive model has been used to simulate the elimination of Pb, Zn and S from the melt as a function of time and temperature for a system including chlorides, oxides and sulfates. The objective of this work was the experimental study of heavy metals volatility using optical emission spectroscopy. A twin torch plasma system, mounted above a cold crucible with Ar (or Ar + O2) as plasma gas, has been used. The crucible was filled with synthetic glass in which known amounts of metallic salts were added to obtain the same chemical composition as used in the model. From spectral lines intensities of Ar, the plasma temperature profiles along the observation direction has been first established, before using ratios of spectral lines of Ar and metallic (Pb, Zn) or Cl vapors to reach the evolution of the elements concentrations above the melt. Off-gases have been analyzed by mass spectrometry. The influence of the atmosphere (Ar or Ar + O2) above the crucible has been studied and differences in elements behaviors have been pointed out. The results of the spectroscopic measurements have been compared to the ones issued of modeling, in order to validate our model of vaporization.

  1. Cold cap subsidence for in situ vitrification and electrodes therefor

    DOEpatents

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1992-01-01

    An electrode for use in in situ vitrification of soil comprises a molybdenum rod received within a conductive sleeve or collar formed of graphite. Electrodes of this type are placed on either side of a region containing buried waste material and an electric current is passed therebetween for vitrifying the soil between the electrodes. The graphite collar enhances the thermal conductivity of the electrode, bringing heat to the surface, and preventing the formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is filled with a conductive ceramic powder of a type that sinters upon the molybdenum rod, protecting the same from oxidation as the graphite material is consumed, or a metal powder which liquifies at operating temperatures. The molybdenum rod in the former case may be coated with an oxidation protectant, e.g. of molybdenum disilicide. As insulative blanket is suitably placed on the surface of the soil during processing to promote subsidence by allowing off-gassing and reducing surface heat loss. In other embodiments, connection to vitrification electrodes is provided below ground level to avoid loss of connection due to electrodes deterioration, or a sacrificial electrode may be employed when operation is started. Outboard electrodes can be utilized to square up the vitrified area. Further, the center of the molybdenum rod can be made hollow and filled with a powdered metal, such as copper, which liquifies at operating temperatures. In one embodiment, the molybdenum rod and the graphite collar are physically joined at the bottom.

  2. In situ vitrification large-scale operational acceptance test analysis

    SciTech Connect

    Buelt, J.L.; Carter, J.G.

    1986-05-01

    A thermal treatment process is currently under study to provide possible enhancement of in-place stabilization of transuranic and chemically contaminated soil sites. The process is known as in situ vitrification (ISV). In situ vitrification is a remedial action process that destroys solid and liquid organic contaminants and incorporates radionuclides into a glass-like material that renders contaminants substantially less mobile and less likely to impact the environment. A large-scale operational acceptance test (LSOAT) was recently completed in which more than 180 t of vitrified soil were produced in each of three adjacent settings. The LSOAT demonstrated that the process conforms to the functional design criteria necessary for the large-scale radioactive test (LSRT) to be conducted following verification of the performance capabilities of the process. The energy requirements and vitrified block size, shape, and mass are sufficiently equivalent to those predicted by the ISV mathematical model to confirm its usefulness as a predictive tool. The LSOAT demonstrated an electrode replacement technique, which can be used if an electrode fails, and techniques have been identified to minimize air oxidation, thereby extending electrode life. A statistical analysis was employed during the LSOAT to identify graphite collars and an insulative surface as successful cold cap subsidence techniques. The LSOAT also showed that even under worst-case conditions, the off-gas system exceeds the flow requirements necessary to maintain a negative pressure on the hood covering the area being vitrified. The retention of simulated radionuclides and chemicals in the soil and off-gas system exceeds requirements so that projected emissions are one to two orders of magnitude below the maximum permissible concentrations of contaminants at the stack.

  3. Follicle Viability after Vitrification of Bovine Ovarian Tissue.

    PubMed

    Guedes, Janaína de Souza; Rodrigues, Jhenifer Kliemchen; Campos, Ana Luisa Menezes; Moraes, Camila Cruz de; Caetano, João Pedro Junqueira; Marinho, Ricardo Mello

    2017-08-31

    Purpose The present study aimed to evaluate the impact of vitrification on the viability of follicles using a three-dimensional (3D) in vitro culture. Methods Bovine ovarian tissue samples (n = 5) obtained from slaughterhouses were utilized. The cortex was cut into small fragments of 2 × 3 × 0.5 mm using a tissue slicer. From these fragments, secondary follicles were first isolated by mechanical and enzymatic methods, then encapsulated in alginate gel and individually cultured for 20 days. Additional fragments of the same ovarian tissue were vitrified in a solution containing 25% glycerol and 25% ethylene glycol. After warming, the follicles underwent the same follicular isolation process that was performed for the fresh follicles. Results A total of 61 follicles were isolated, 51 from fresh ovarian tissue, and 10 from vitrified tissue. After the culture, the vitrified and fresh follicles showed 20% and 43.1% survival rates respectively (p = 0.290), with no significant differences. At the end of the culture, there were no significant differences in follicular diameter between the vitrified (422.93 ± 85.05 µm) and fresh (412.99 ± 102.55 µm) groups (p = 0.725). Fresh follicles showed higher mean rate of antrum formation when compared with vitrified follicles (47.1% and 20.0% respectively), but without significant difference (p = 0.167). Conclusions The follicles were able to develop, grow and form antrum in the 3D system after vitrification, despite the lower results obtained with the fresh tissue. Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil.

  4. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing

    PubMed Central

    Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-01-01

    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems. PMID:26655688

  5. Molecular Mechanism of the Synergistic Effects of Vitrification Solutions on the Stability of Phospholipid Bilayers

    PubMed Central

    Hughes, Zak E.; Mancera, Ricardo L.

    2014-01-01

    The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions. PMID:24940779

  6. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing

    NASA Astrophysics Data System (ADS)

    Shi, Meng; Ling, Kai; Yong, Kar Wey; Li, Yuhui; Feng, Shangsheng; Zhang, Xiaohui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-12-01

    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.

  7. Glycine increases preimplantation development of mouse oocytes following vitrification at the germinal vesicle stage

    PubMed Central

    Cao, Xin-Yan; Rose, Jack; Wang, Shi-Yong; Liu, Yong; Zhao, Meng; Xing, Ming-Jie; Chang, Tong; Xu, Baozeng

    2016-01-01

    Ice-free cryopreservation, referred to as vitrification, is receiving increased attention in the human and animal assisted reproduction. However, it introduces the detrimental osmotic stress by adding and removing high contents of cryoprotectants. In this study, we evaluated the effects of normalizing cell volume regulation by adding glycine, an organic osmolyte, during vitrification of mouse germinal vesicle stage oocyte and/or subsequent maturation on its development. The data showed that glycine supplementation in either vitrification/thawing or maturation medium significantly improved the cytoplasmic maturation of MII oocytes manifested by spindle assembly, chromosomal alignment, mitochondrial distribution, euploidy rate, and blastocyst development following fertilization in vitro, compared to the control without glycine treatment. Furthermore, glycine addition during both vitrification/thawing and maturation further enhanced the oocyte quality demonstrated by various markers, including ATP contents and embryo development. Lastly, the effect of anti-apoptosis was also observed when glycine was added during vitrification. Our result suggests that reducing osmotic stress induced by vitrification could improve the development of vitrified mouse oocyte. PMID:27845423

  8. Cryopreservation of chicken primordial germ cells by vitrification and slow freezing: A comparative study.

    PubMed

    Tonus, C; Connan, D; Waroux, O; Vandenhove, B; Wayet, J; Gillet, L; Desmecht, D; Antoine, N; Ectors, F J; Grobet, L

    2017-01-15

    In the present study, we compare a classical slow freezing (SLF) method and an aseptic vitrification (Vitrif) technique to cryopreserve a stable primordial germ cell (PGCs) line issued from the Ardennaise chicken breed. Viability immediately after warming was close to 80% and did not differ between the two cryopreservation methods. Proliferation tended to be slower for both cryopreservation methods compared with controls, but the difference was significant only for Vitrif. No difference was found between the two methods after flow cytometry analysis of stage-specific embryonic antigen-1 expression and reverse transcription-polymerase chain reaction on several factors related to PGC phenotype. After 1 week in culture, all cryopreserved cells reached controls' main morphologic and expanding (viability/proliferation) features. However, SLF generated more unwanted cells clusters than Vitrif. After injection of the PGCs into recipient embryos, vitrified PGCs reported a clear, yet not significant, tendency to colonize the gonad at a higher rate than slow frozen PGCs. SLF in cryovials remains simple, inexpensive, and less technically demanding than Vitrif. Nevertheless, the intrinsic advantages of our aseptic Vitrif method and the present study suggest that this should be considered as safer than classical SLF for cryopreserving chicken PGCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Sheep ovarian tissue vitrification by two different dehydration protocols and needle immersing methods.

    PubMed

    Fathi, Rouhollah; Valojerdi, Mojtaba Rezazadeh; Eimani, Hussein; Hasani, Fatemeh; Yazdi, Poopak Eftekhari; Ajdari, Zahra; Tahaei, Leila Sadat

    2011-01-01

    The present research investigated the effects of two vitrification methods on sheep ovarian tissue. The base medium (BM) of the vitrification solutions contains 60% HEPES tissue culture medium (HTCM), 15% ethylene glycol (EG) and 15% dimethyl sulfoxide (DMSO). Ovarian cortex pieces were dehydrated by two different regimens, the 2-step which consisted of 50% BM and a 90% solution of 0.25 mol/L sucrose in BM for 10 minutes each at 4 degree C and the 4-step method which utilized: a) 25% BM, b) 50% BM, c) 75% BM and d) a 90% solution of 0.25 mol/L sucrose in BM for 5 minutes each at 4 degree C. After warming, the proportion of intact antral follicles in the control (non-vitrified) and 2-step vitrification groups was significantly higher than in the 4-step vitrification group. The number of apoptotic follicles in the ovarian pieces was significantly different between the control and 4-step vitrification groups. These results indicated that sheep ovarian tissue vitrification by the 2-step method was simpler and more effective than the 4-step method.

  10. Vitrification of mouse preantral follicles versus slow freezing: Morphological and apoptosis evaluation.

    PubMed

    Taghavi, Seyed Abdolvahab; Valojerdi, Mojtaba Rezazadeh; Moghadam, Mehdi Forozandeh; Ebrahimi, Bita

    2015-01-01

    The aim of this study was evaluation of survivability, maturation rate and apoptotic gene expression of preantral follicles after vitrification and slow freezing technique. Normal mouse preantral follicles were randomly divided into three experimental groups. In the control group, follicles were cultured immediately; in the vitrification and slow freezing groups, follicles were cultured after vitrification-warming and slow freezing-thawing procedures. Follicular viability was assessed by using 0.4% trypan blue, and molecular evaluation of messenger RNA levels of apoptosis-related genes was performed by the semi-quantitative RT-PCR method after 3 h of culture. Oocyte maturation rates were also evaluated on day 14 of culture. Survival and maturation rate in the slow freezing group were significantly lower than those in control and vitrification groups (P ≤ 0.05). Although there was no difference in Survivin expression among the three experimental groups, Bcl-2 expression was significantly lower in the slow freezing group compared to the other groups (P ≤ 0.05). The expression of Bax, P53, Fas and Bax/Bcl-2 ratio in the slow freezing group was significantly higher than control and vitrification groups (P ≤ 0.05). Preantral follicle vitrification seems to be better than slow freezing as seen in the survival, maturation and expression rates of apoptotic gene variants. © 2014 Japanese Society of Animal Science.

  11. Closed Vitrification System as A Platform for Cryopreservation of Tissue Engineered Constructs.

    PubMed

    Trufanova, N A; Zaikov, V S; Zinchenko, A V; Petrenko, A Yu; Petrenko, Y A

    Cryopreservation of mesenchymal stromal cells (MSCs) and MSCs-based tissue engineered constructs (TECs) is a promising strategy for regenerative medicine. To examine vitrification system consisting of multicomponent vitreous solution, closed type container, human adult MSCs and two-step exposure procedure as a platform for cryopreservation of MSCs-based TECs. Vitrification properties of solutions were studied by visual analysis and calorimetry. Viability (trypan blue, MTT-test), metabolic activity (Alamar Blue assay) and adhesion of cells were assessed both after exposure with vitreous solutions and following rapid cooling-thawing in standard cryovials. The feasibility of the vitrification system was tested on MSCs suspensions (S-MSCs) and alginate encapsulated MSCs (AE-MSCs). The minimal concentrations of cryoprotectants, which allowed avoiding ice formation during rapid cooling and rewarming comprised 10 % for dimethylsulfoxide, 20 % for ethylene glycol, 20 % for 1.2-propanediol and 0.5 M sucrose. To achieve viability and metabolic activity rates of AE-MSCs comparable to S-MSCs after vitrification the extension of the exposure time within the same vitreous solution was sufficient. After vitrification both S-MSCs and AE-MSCs retained the capacity to osteogenic and adipogenic differentiation. Data demonstrate that this vitrification system can be used as a platform for development of effective protocols for cryopreservation of MSCs-based TECs.

  12. Effect of cytochalasin B pre-treatment of in vitro matured porcine oocytes before vitrification.

    PubMed

    Marco-Jiménez, F; Casares-Crespo, L; Vicente, J S

    2012-01-01

    The study tested the efficacy of pre-treating mature porcine oocytes with cytochalasin B before vitrification by the open pulled straw method (OPS) in a low toxicity solution containing ice blockers. The effects of pre-treating the oocytes with 7.5 micrograms per ml cytochalasin B before vitrification on membrane integrity, chromosome organisation and cortical granule distribution were evaluated. When oocytes pre-treated with cytochalasin B before vitrification were compared with control oocytes, similar membrane integrity was observed. In contrast, when both vitrified oocytes groups (treated and untreated with cytochalasin B) were compared with fresh oocytes, significantly lower proportions of oocytes with normal chromosomes aligned regularly on the metaphase plate and peripheral cortical granule distribution were observed. The percentages of oocytes with normal chromosomes aligned regularly on the metaphase plate were similar between those treated or untreated with cytochalasin B before vitrification. Similar results were found for normal cortical granules distribution. Irrespective of previous cytochalasin B exposure, vitrification gave rise to higher abnormal cortical granule distribution percentages. Cytochalasin B pretreatment of oocytes before vitrification does not help to reduce the damage induced by the cryopreservation process of porcine oocytes.

  13. Development of Cryopreservation Techniques for Gorgonian (Junceella juncea) Oocytes through Vitrification.

    PubMed

    Tsai, Sujune; Yen, Wish; Chavanich, Suchana; Viyakarn, Voranop; Lin, Chiahsin

    2015-01-01

    Gorgonian corals are slowly declining due to human interaction and environmental impacts. Cryopreservation of gorgonian corals is an ex-situ method of conservation, ensuring future reproduction. The present study assessed the vitrification properties of cryoprotectant (CPT) mixtures using the cryotop, cryoloop and open pulled straw (OPS) cryopereservation methods prior to experimentation on gorgonian (Junceella juncea) oocytes. Investigations of the equilibration and vitrification solutions' (ES and VS) effect on oocytes throughout different incubation periods were conducted. The cryotop method was found to be the most successful in ensuring vitrification. The most favourable VS was composed of propylene glycol (PG), ethylene glycol (EG) and methanol with concentrations of 3.5 M, 1.5 M and 2 M respectively. Experiments were performed using the cryotop method to cryopreserve Junceella juncea oocytes using VS2, the solution had the least impact on oocytes at 5°C rather than at 26°C. The success of the vitrification procedures was determined by adenosine triphosphate (ATP) levels in cooled-thaw oocytes and the highest viability obtained from the present study was 76.6 ± 6.2%. This study provides information regarding gorgonian corals' tolerance and viability throughout vitrification to further advance the vitrification protocol on whip corals.

  14. Ultra-rapid vitrification of mouse oocytes in low cryoprotectant concentrations

    PubMed Central

    Lee, Ho-Joon; Elmoazzen, Heidi; Wright, Diane; Biggers, John; Rueda, Bo R; Heo, Yun Seok; Toner, Mehmet; Toth, Thomas L

    2010-01-01

    The ideal cryopreservation protocol would combine the benefits of slow freezing with the benefits of vitrification. This report describes a method for the ultra-rapid vitrification of oocytes using slush nitrogen in quartz capillaries. The approach minimizes the thermal mass of the vitrification vessel by using open microcapillaries made of highly conductive quartz and achieves cooling rates of 250,000°C/min. The process of vitrification can be optimized by maximizing the rate at which the sample is cooled, which allows for the use of lower cryoprotectant concentrations. Mouse oocytes can be successfully vitrified using 1.5 mol/l propane-1,2-diol and 0.5 mol/l trehalose and achieve survival rates of 92.5%. Fertilization and blastocyst formation rates of vitrified–warmed and fresh oocytes were not significantly different. A total of 120 blastocysts from each of the vitrified–warmed and fresh oocytes were transferred to surrogate mothers and 23 and 27 offspring were born respectively. All offspring in both groups were healthy, grew and bred normally and gave rise to a second generation of pups. Thus, an ultra-rapid vitrification technique has been developed for mouse oocytes that uses low concentrations of cryoprotectants and slush nitrogen in quartz capillaries, which combines the benefits of slow freezing and vitrification. PMID:20113958

  15. Vitrification as a method for genome resource banking oocytes from the endangered Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Czarny, N A; Rodger, J C

    2010-06-01

    Populations of Australia's largest terrestrial marsupial carnivore, the Tasmanian devil (Sarcophilus harrisii), are rapidly declining in the wild due to Tasmanian Devil Facial Tumour Disease (TDFTD). One tool which can reduce the loss of genetic diversity is genome resource banking. This study examines the application of an oocyte vitrification protocol, initially developed in a model marsupial carnivore, to the endangered Tasmanian devil. Ovarian tissue was transported to the laboratory on ice from Tasmania which took up to 48 h. Individual granulosa oocyte complexes (GOC) were isolated enzymatically and the viability of oocytes from primary GOC was assessed immediately following isolation or after exposure to cold shock, vitrification and thawing media without exposure to liquid nitrogen or the full vitrification and thawing process. There was no decline in oocyte viability following cold shock or exposure to the vitrification and thawing media. Following the full vitrification and thawing process there was a decline in oocyte viability (chi(2)=20.0, P<0.001) but approximately 70% of oocytes remained viable. This study provides further evidence that oocyte vitrification is a promising strategy for genome resource banking in carnivorous marsupials and suggests that it should be considered in conservation plans for the survival of the iconic Tasmanian devil. Copyright 2010 Elsevier Inc. All rights reserved.

  16. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Switching of a pulsed ionic diode through the bulk of an ion source with laser plasma initiation

    NASA Astrophysics Data System (ADS)

    Pleshakova, R. P.; Shikanov, A. E.

    1987-10-01

    An analysis was made of the results of an investigation of switching of a pulsed ionic diode through the bulk of an ion source with a laser plasma and a vacuum arc. The dependences of the neutron yield on the electrical energy of the diode were recorded and analyzed. The results indicated a possible way of simple construction of an acceleration tube with switching via a laser-plasma source.

  17. Rotary bulk solids divider

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  18. ROTARY BULK SOLIDS DIVIDER

    DOEpatents

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  19. 'Personalisation' of droplet-vitrification protocols for plant cells: a systematic approach to optimising chemical and osmotic effects.

    PubMed

    Kim, Haeng-Hoon; Lee, Sheong-Chun

    2012-01-01

    Although an appropriate cryopreservation protocol is a prerequisite for basic studies and large-scale implementation as well as further cryopreservation studies, the process relies on trial and error. Among the vitrification-based cryopreservation techniques, droplet-vitrification produces high post-cryopreservation recovery. However, the protocol itself cannot solve the problems engaged in plant cryopreservation, prominently due to dehydration with cytotoxic vitrification solutions. This paper proposes a set of treatments to develop droplet-vitrification using a standard procedure associated with additional treatments and alternative vitrification solutions. The proposed standard protocol consists of a progressive preculture with 0.3 M sucrose for 31 h and with 0.7 M for 17 h, loading with vitrification solution C4-35% (17.5 percent glycerol + 17.5 percent sucrose, w/v) for 20 to 40 min, dehydration with vitrification solutions A3-90 percent (37.5 percent glycerol + 15% DMSO + 15 percent EG + 22.5 percent sucrose) for 10 to 30 min or B1-100 percent (PVS3) for 40 to 120 min at room temperature, cooling the samples using aluminum foil strips, rewarming by plunging into pre-heated (40 degree C) unloading solution (0.8 M sucrose) and further unloading for 20 to 60 min, depending on size and permeability of the materials. Using this systematic approach we can identify whether the material is tolerant or sensitive to chemical toxicity and to the osmotic stress of dehydration with vitrification solutions, thus revealing which is the main barrier in solution-based vitrification methods. Based on the sensitivity of samples we can design a droplet-vitrification procedure, i.e. preculture, loading, dehydration with vitrification solutions, cooling and rewarming. Using this approach, the development of appropriate droplet-vitrification protocol is facilitated.

  20. Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report

    SciTech Connect

    Grunewald, W.; Roth, G.; Tobie, W.; Weisenburger, S.; Weiss, K.; Elliott, M.; Eyler, L.L.

    1996-03-01

    ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely.

  1. Demonstration of thermal plasma gasification/vitrification for municipal solid waste treatment.

    PubMed

    Byun, Youngchul; Namkung, Won; Cho, Moohyun; Chung, Jae Woo; Kim, Young-Suk; Lee, Jin-Ho; Lee, Carg-Ro; Hwang, Soon-Mo

    2010-09-01

    Thermal plasma treatment has been regarded as a viable alternative for the treatment of highly toxic wastes, such as incinerator residues, radioactive wastes, and medical wastes. Therefore, a gasification/vitrification unit for the direct treatment of municipal solid waste (MSW), with a capacity of 10 tons/day, was developed using an integrated furnace equipped with two nontransferred thermal plasma torches. The overall process, as well as the analysis of byproducts and energy balance, has been presented in this paper to assess the performance of this technology. It was successfully demonstrated that the thermal plasma process converted MSW into innocuous slag, with much lower levels of environmental air pollutant emissions and the syngas having a utility value as energy sources (287 Nm3/MSW-ton for H2 and 395 Nm3/MSW-ton for CO), using 1.14 MWh/MSW-ton of electricity (thermal plasma torch (0.817 MWh/MSW-ton)+utilities (0.322 MWh/MSW-ton)) and 7.37 Nm3/MSW-ton of liquefied petroleum gas.

  2. Three-dimensional model of heat transport during In Situ Vitrification with melting and cool down

    SciTech Connect

    Hawkes, G.L.

    1993-07-01

    A potential technology for permanent remediation of buried wastes is the In Situ Vitrification (ISV) process. This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable, glasslike material that encapsulates and immobilizes buried wastes. The magnitude of the resulting electrical resistance heating is sufficient to cause soil melting. As the molten region grows, surface heat losses cause the soil near the surface to re solidify. This paper presents numerical results obtained by considering heat transport and melting when solving the conservation of mass and energy equations using finite element methods. A local heat source is calculated by solving the electric field equation and calculating a Joule Heat source term. The model considered is a three-dimensional model of the electrodes and surrounding soil. Also included in the model is subsidence; where the surface of the melted soil subsides due to the change in density when the soil melts. A power vs. time profile is implemented for typical ISV experiments. The model agrees well with experimental data for melt volume and melt shape.

  3. Pilot-scale in situ vitrification at Arnold Engineering Development Center, Arnold AFB, TN

    SciTech Connect

    Lominac, J.K.; Edwards, R.C. ); Timmerman, C.L. )

    1989-11-01

    The Department of Defense has the Installation Restoration Program (IRP) to identify and permanently remediate hazardous material disposal sites at its military bases across the United States. Pursuant to this guidance, Arnold Engineering Development Center (AEDC) selected In Situ Vitrification (ISV) to remediate an old fire training area, Fire Protection Training Area (FPTA) No. 2. The ISV technology was developed by Pacific Northwest Laboratory, Richland, WA, for the US Department of Energy (DOE) and will allow for the destruction and encapsulation of the petroleum-oil-lubricants (POL) and heavy metal-constituents found at the FPTA and adjacent overflow pond. ISV operates by passing a measured current of electricity into the ground through a set of electrodes. The resulting heat causes the soil to melt and form a solid vitreous (glass) mass similar to naturally occurring obsidian or basalt. In the process, organic constituents will be pyrolyzed (changed by heat) by the ensuing heat whereas the non-organic material will be incorporated into the glass matrix. 2 refs., 9 figs.

  4. The in-situ vitrification of subsurface containment barriers: An overview

    SciTech Connect

    Murphy, M.; Stottlemyre, J.A.

    1990-11-01

    In situ vitrification (ISV) is an environmental engineering process in which soil or soil/waste mixtures are melted through the direct application of electrical current and subsequently cooled to a glassy solid. The technology was developed by Pacific Northwest Laboratory (PNL) in the 1980s and has been tested on transuranic, mixed-hazardous, and PCB/organic waste similar to that found at US Department of Energy (DOE) and other facilities nationwide. PNL is conducting a wide range of field tests, expanding the scientific basis of ISV, and assessing its extension into new applications. One such project is ISV--Selective Barriers, an investigation into the construction and performance of ISV--generated, vertical and/or horizontal subsurface barriers to ground-water flow and biogenic intrusion. In some situations, it may be impractical or unnecessary to either excavate or vitrify an entire waste site. Vitrified barriers could minimize the diffusive or fluid transport of hazardous components with either a ground-water diversion wall or an in situ, box-like'' structure. During the first year of this project, engineering-scale tests are being conducted between graphite electrodes within a 1.8-m-diameter, 2.4-m-high test cell. Several methods are being tested, including passive metal electrodes, electrode feeding systems, fluxed soil, and fluxed boreholes. In addition, basic data have been collected on the thermal and material properties of ISV melt and solidified glass. 7 refs., 6 figs.

  5. Computer modeling of fluid flow and combustion in the ISV (In Situ Vitrification) confinement hood

    SciTech Connect

    Johnson, R.W.; Paik, S.

    1990-09-01

    Safety and suitability objectives for the application of the In Situ Vitrification (ISV) technology at the INEL require that the physical processes involved in ISVV be modeled to determine their operational behavior. The mathematical models that have been determined to address the modeling needs adequately for the ISV analysis package are detailed elsewhere. The present report is concerned with the models required for simulating the reacting flow that occurs in the ISV confinement hood. An experimental code named COYOTE has been secured that appears adequate to model the combustion in the confinement hood. The COYOTE code is a two-dimensional, transient, compressible, Eulerian, gas dynamics code for modeling reactive flows. It recognizes nonuniform Cartesian and cylindrical geometry and is based on the ICE (Implicit Continuous-fluid Eulerian) family of solution methods. It includes models for chemical reactions based on chemical kinetics as well as equilibrium chemistry. The mathematical models contained in COYOTE, their discrete analogs, the solution procedure, code structure and some test problems are presented in the report. 12 refs., 17 figs., 6 tabs.

  6. Obstetric outcome after oocyte vitrification and warming for fertility preservation in women with cancer.

    PubMed

    Martinez, Maria; Rabadan, Susana; Domingo, Javier; Cobo, Ana; Pellicer, Antonio; Garcia-Velasco, Juan A

    2014-12-01

    Obstetric outcome of first pregnancies achieved after vitrification and warming oocytes from women being treated for cancer was evaluated. Of a total of 493 women who consulted for fertility preservation, 357 had their oocytes cryopreserved after being diagnosed with cancer, and 11 returned after being cured for assisted reproduction treatments (eight had breast cancer, one Hodgkin lymphoma, one endometrial adenocarcinoma, and one thyroid cancer). The oocyte survival rate was 92.3%, the fertilization rate was 76.6%, and the mean number of embryos transferred was 1.8 ± 0.7. Beta-human chorionic gonadotropin was detected in seven out of the 11 embryo transfers carried out. Four ongoing pregnancies were achieved and delivered at term with normal fetal weight and no major or minor malformations. Women diagnosed with cancer who have their eggs cryopreserved before anti-cancer treatment have good assisted reproductive technology performance and good perinatal outcomes. Cryopreservation of oocytes seems to be a good alternative for fertility preservation in these women.

  7. Use of noninvasive geophysical techniques for the In Situ Vitrification Program. Volume 1, Literature review: Revision 1

    SciTech Connect

    Josten, N.E.; Marts, S.T.; Carpenter, G.S.

    1991-11-01

    In situ vitrification (ISV) is a waste pit remediation technology that can potentially eliminate the need for pit excavation. The ISV program at the Idaho National Engineering Laboratory (INEL) funded this study to evaluate geophysical techniques that might be useful for performing detailed screening of the materials, soil conditions, and local geology of waste pits targeted for remediation. The evaluation focuses on a specific set of characterization objectives developed by ISV engineers. The objectives are based on their assessment of safety, environmental, and cost efficiency issues associated with the ISV process. A literature review of geophysical case histories was conducted and a geophysical survey was performed at the INEL simulated waste pit so that the evaluation could be based on demonstrable results.

  8. Use of noninvasive geophysical techniques for the In Situ Vitrification Program. Volume 2, Demonstration at the simulated waste pit

    SciTech Connect

    Marts, S.T.; Josten, N.E.; Carpenter, G.S.

    1991-11-01

    This document is the second volume of a three volume report to evaluate geophysical methods for use in the detailed characterization of waste pits. The In Situ Vitrification (ISV) Program funded the study to support the ISV remediation technology being developed at the Idaho National Engineering Laboratory (INEL). The ISV Program is considering geophysical waste characterization as a means to enhance the efficiency of the ISV process. Field tests were conducted to demonstrate and evaluate the application of magnetic, electromagnetic induction, and ground penetrating radar methods to waste site characterization. The primary objective was to investigate the ability of these noninvasive geophysical methods to locate and identify buried waste materials under conditions representative of the INEL Subsurface Disposal Area (SDA). The tests were conducted at an simulated waste pit designed to represent conditions at the SDA.

  9. Vitrification as an Alternative Approach for Sperm Cryopreservation in Marine Fishes

    PubMed Central

    Hu, E.; Daniels, Harry; Gill, Adriane O.; Tiersch, Terrence R.

    2017-01-01

    The Southern Flounder Paralichthys lethostigma is a high-value species and a promising aquaculture candidate. Because sperm volume can be limited in this species (<500 μL), new sperm cryopreservation methods need to be evaluated. Vitrification is an alternative to conventional slow-rate freezing, whereby small volumes are cryopreserved at high cooling rates (>1,000°C/min). The goal of this work was to develop a standardized approach for vitrification of Southern Flounder sperm. The specific objectives were to (1) evaluate thawing methods and vitrification solutions, (2) evaluate the postthaw membrane integrity of sperm vitrified in different cryoprotectant solutions, (3) examine the relationship between membrane integrity and motility, and (4) evaluate the ability of vitrified sperm to fertilize eggs. From the vitrification solutions tested, the highest postthaw motility (28 ± 9% [mean ± SD]) and membrane integrity (11 ± 4%) was observed for 20% ethylene glycol plus 20% glycerol. There was no significant difference in postthaw motility of sperm thawed at 21°C or at 37°C. Fertilization from vitrified sperm in one trial yielded the same fertilization rate (50 ± 20%) as the fresh sperm control, while the sperm from the other two males yielded 3%. This is the first report of fertilization by vitrified sperm in a marine fish. Vitrification can be simple, fast, inexpensive, performed in the field, and, at least for small fishes, offers an alternative to conventional cryopreservation. Because of the minute volumes needed for ultrarapid cooling, vitrification is not presently suited as a production method for large fishes. Vitrification can be used to reconstitute lines from valuable culture species and biomedical models, conserve mutants for development of novel lines for ornamental aquaculture, and transport frozen sperm from the field to the repository to expand genetic resources. PMID:28936125

  10. Making behavioral technology transferable

    PubMed Central

    Pennypacker, H. S.; Hench, Larry L.

    1997-01-01

    The paucity of transferred behavioral technologies is traced to the absence of strategies for developing technology that is transferable, as distinct from strategies for conducting research, whether basic or applied. In the field of engineering, the results of basic research are transformed to candidate technologies that meet standardized criteria with respect to three properties: quantification, repetition, and verification. The technology of vitrification and storage of nuclear waste is used to illustrate the application of these criteria. Examples from behavior analysis are provided, together with suggestions regarding changes in practice that will accelerate the development and application of behavioral technologies. PMID:22478284

  11. Cryopreservation of human failed maturation oocytes shows that vitrification gives superior outcomes to slow cooling.

    PubMed

    Fasano, G; Vannin, A S; Biramane, J; Delbaere, A; Englert, Y

    2010-12-01

    This study investigated whether failed maturation oocytes could be used to evaluate different cryopreservation procedures. A total of 289 failed maturation oocytes (GV and MI stages), obtained from 169 patients undergoing IVF treatment (mean age 33.84±5.0) were divided into two different slow-cooling groups (1.5 mol/l 1,2-propanediol+0.2 mol/l sucrose in either NaCl (group A) or choline chloride (ChCl) (group B) based cryopreservation solutions) and one vitrification group (15% ethylene glycol+15% dimethyl sulphoxide). Survival rate, in vitro maturation (IVM) rate, fertilization and developmental rate of cryopreserved oocytes were assessed. Regardless of the stage at which cryopreservation was performed (GV+MI), the slow cooling with ChCl based medium always gave significantly lower survival rate than the slow cooling in NaCl based medium (p=0.01) and vitrification (p<0.001). An extended study also showed statistically reduced survival rate between slow-cooling NaCl based medium and vitrification (p<0.05). Global results of in vitro maturation and fertilization showed worse results between both slow-cooling NaCl and ChCl based media versus vitrification. In conclusion, for oocytes that had failed to mature, vitrification gave better survival, maturation, fertilization and also cleavage rates than the slow-cooling protocols. Four cells embryos were obtained only from vitrified in vitro matured MI oocytes. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification.

    PubMed

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang; He, Xiaoming

    2015-11-25

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification (i.e., no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification (i.e., formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants (i.e., high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume).

  13. The Crucial Role of Zona Pellucida in Cryopreservation of Oocytes by Vitrification

    PubMed Central

    Choi, Jung Kyu; Yue, Tao; Huang, Haishui; Zhao, Gang; Zhang, Mingjun; He, Xiaoming

    2015-01-01

    Mammalian oocytes have a proteinaceous hydrogel-like outer shell known as the zona pellucida (ZP) that semi-encloses their plasma membrane and cytoplasm. In this study, we cryopreserved mouse oocytes either with or without ZP by vitrification. Our results show that the presence of an intact ZP could significantly improve the post-vitrification survival of oocytes to 92.1% from 13.3% for oocytes without ZP. Moreover, there was no significant difference in embryonic development between fresh and cryopreserved oocytes with ZP after in vitro fertilization (IVF). Further atomic force microscopy (AFM) analysis showed that the intact oocytes with ZP have an elastic modulus that is more than 85 times higher than that of oocytes without ZP. This may partially explain the important role of ZP in protecting the oocytes by resisting the mechanical stress due to possible ice formation during cryopreservation by vitrification. Collectively, this study reveals a new biophysical role of ZP during vitrification of oocytes and suggests microencapsulation of the many mammalian cells without a ZP in ZP-like hydrogel is an effective strategy to improve their survival post cryopreservation by vitrification. PMID:26297946

  14. Alginate Hydrogel Microencapsulation Inhibits Devitrification and Enables Large-Volume Low-CPA Cell Vitrification

    PubMed Central

    Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang

    2015-01-01

    Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification (i.e., no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification (i.e., formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants (i.e., high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume). PMID:26640426

  15. Cryopreservation of redwood (Sequoia sempervirens) in vitro buds using vitrification-based techniques.

    PubMed

    Ozudogru, E A; Kirdok, E; Kaya, E; Capuana, M; Benelli, C; Engelmann, E

    2011-01-01

    In this study, the efficiency of three vitrification-based cryopreservation techniques, i.e. vitrification, encapsulation-vitrification and droplet-vitrification were compared for cryopreserving Sequoia sempervirens apical and basal buds sampled from in vitro shoot cultures. The effect of cold-hardening of mother-plants and of bud culture medium and sucrose preculture was also investigated. Culture of apical and basal buds sampled from cold-hardened mother-plants on Quoirin and Lepoivre medium with activated charcoal had a positive effect on regrowth. Only droplet-vitrification ensured survival and regrowth after cryopreservation. After cryopreservation, regeneration of apical buds was possible for PVS2 exposure durations between 90 and 180 min but it remained low, with a maximum of 18 percent after 135 min treatment. With basal buds, regeneration after cryopreservation was possible over a larger range of PVS2 treatment durations, between 30 and 180 min. The highest regeneration percentage was slightly higher (22 percent) than that measured with apical buds, and was also achieved after 135 min PVS2 exposure.

  16. The Increased Expression of Connexin and VEGF in Mouse Ovarian Tissue Vitrification by Follicle Stimulating Hormone.

    PubMed

    Yang, Yanzhou; Chen, Jie; Wu, Hao; Pei, Xiuying; Chang, Qing; Ma, Wenzhi; Ma, Huiming; Hei, Changchun; Zheng, Xiaomin; Cai, Yufang; Zhao, Chengjun; Yu, Jia; Wang, Yanrong

    2015-01-01

    Ovarian follicular damages were caused by cryoinjury during the process of ovarian vitrification and ischemia/reperfusion during the process of ovarian transplantation. And appropriate FSH plays an important role in antiapoptosis during ovarian follicle development. Therefore, in this study, 0.3 IU/mL FSH was administered into medium during mouse ovarian cryopreservation by vitrification to ascertain the function of FSH on ovarian vitrification and avascular transplantation. The results suggested that the expressions of Cx37, Cx43, apoptotic molecular caspase-3, and angiogenesis molecular VEGF were confirmed using immunohistochemistry, western blotting, and real-time PCR, and the results suggested that the treatment with FSH remarkably increased the number of morphologically normal follicles in vitrified/warmed ovaries by upregulating the expression of Cx37, Cx43, VEGF, and VEGF receptor 2, but downregulating the expression of caspase-3. In addition, the vitrified/warmed ovaries were transplanted, and the related fertility was analyzed, and the results suggested that the fertility, neoangiogenesis, and follicle reserve were remarkably increased in the FSH administrated group. Taken together, administration of 0.3 IU/mL FSH during ovarian cryopreservation by vitrification can maintain ovarian survival during ovarian vitrification and increases the blood supply with avascular transplantation via upregulation of Cx43, Cx37, and VEGF/VEGFR2, as well as through its antiapoptotic effects.

  17. The crucial role of zona pellucida in cryopreservation of oocytes by vitrification.

    PubMed

    Choi, Jung Kyu; Yue, Tao; Huang, Haishui; Zhao, Gang; Zhang, Mingjun; He, Xiaoming

    2015-10-01

    Mammalian oocytes have a proteinaceous hydrogel-like outer shell known as the zona pellucida (ZP) that semi-encloses their plasma membrane and cytoplasm. In this study, we cryopreserved mouse oocytes either with or without ZP by vitrification. Our results show that the presence of an intact ZP could significantly improve the post-vitrification survival of oocytes to 92.1% from 13.3% for oocytes without ZP. Moreover, there was no significant difference in embryonic development between fresh and cryopreserved oocytes with ZP after in vitro fertilization (IVF). Further atomic force microscopy (AFM) analysis showed that the intact oocytes with ZP have an elastic modulus that is more than 85 times higher than that of oocytes without ZP. This may partially explain the important role of ZP in protecting the oocytes by resisting the mechanical stress due to possible ice formation during cryopreservation by vitrification. Collectively, this study reveals a new biophysical role of ZP during vitrification of oocytes and suggests microencapsulation of the many mammalian cells without a ZP in ZP-like hydrogel is an effective strategy to improve their survival post cryopreservation by vitrification.

  18. Ewe Ovarian Tissue Vitrification: A Model for the Study of Fertility Preservation in Women.

    PubMed

    Lunardi, Franciele Osmarini; Bass, Casie Shantel; Bernuci, Marcelo Picinin; Chaves, Roberta Nogueira; Lima, Laritza Ferreira; Silva, Renato Félix da; Figueiredo, José Ricardo de; Rodrigues, Ana Paula Ribeiro

    2015-11-01

    Emergency in vitro fertilization followed by embryo vitrification is one feasible fertility preservation option for cancer patients. However, its clinical application has several limitations. Hormonal stimulation delays the initiation of oncotherapy and it is contraindicated in hormone-sensitive cancers or for use in pre-pubertal females. Vitrification of ovarian cortical tissue prior to the start of cancer treatment could be utilized for autotransplantation or for in vitro maturation of follicles enclosed in ovarian tissue. Nevertheless, the main concern associated with autotransplantation is the risk of malignant cell re-introduction to the patient, which is non-existent with the use of follicular in vitro culture. Since obtaining ovarian tissues from women for research is challenging and experimental studies are difficult to complete due to ethical issues, exploring the alternative usage of animal models for fertility preservation may provide beneficial insight into the prospects of follicular culture as an alternative for fertility restoration following ovarian tissue vitrification. Similarities between ewe and human ovary structures, as well as in ovarian follicular development dynamics, make the ewe a possible animal model for the study of female fertility preservation. As vitrification of ovarian tissue has the potential to cryopreserve preantral ovarian follicles, the present review will describe the progress of ovarian tissue vitrification studies completed in ewes.

  19. Effect of "ice blockers" in solutions for vitrification of in vitro matured ovine oocytes.

    PubMed

    Marco-Jimenez, F; Berlinguer, F; Leoni, G G; Succu, S; Naitana, S

    2012-01-01

    Polymers have been used as a substitute for serum in vitrification solutions for embryos and oocytes. This study was designed to replace serum with defined commercial macromolecules in vitrification solution for in vitro matured ovine oocytes. Oocytes were cryopreserved in two vitrification solutions (16.5 percent ethylene glycol + 16.5 percent dimethyl sulphoxide) supplemented with 1 percent of SuperCool X-1000 and 1 percent SuperCool Z-1000 (Ice Blockers) or 20 percent foetal calf serum (FCS). After warming, oocytes viability and developmental potential after processing for in vitro embryo production were assessed. The number of viable oocytes (87.4 percent and 85.9 percent), cleaveage rates (21.4 percent and 19.6 percent) and blastocyst development rates (4.8 percent and 4.5 percent) were similar for Ice Blockers and FCS, respectively. On the basis of these findings, it may be concluded that combined use of Ice Blockers (SuperCool X-1000 and SuperCool Z-1000) as supplementation in vitrification solution offers similar results to serum for vitrification of in vitro matured ovine oocytes.

  20. Cryopreservation of Thymus cariensis and T. vulgaris shoot tips: comparison of three vitrification-based methods.

    PubMed

    Ozudogru, E A; Kaya, E

    2012-01-01

    Thymus is an important genus of the Lamiaceae family, comprising more than 400 perennial aromatic thyme species, which are used extensively for medicinal and culinary purposes. The present study focused on the development of cryopreservation procedures for Thymus vulgaris and T. cariensis, the latter being an endemic and endangered species of Turkey. For cryopreservation of T. vulgaris shoot tips, PVS2-based one-step freezing methods, i.e., PVS2 vitrification, encapsulation-vitrification and droplet-vitrification, were compared. Cold hardening and sucrose preculture were also optimized before the cryopreservation trials. For T. cariensis, a droplet-vitrification method was applied to cold-hardened shoot tips, and after sucrose preculture. In all the methods tested, PVS2 was applied for up to 120 min. The best T. vulgaris cryopreservation was achieved with a droplet-vitrification method, that involved 2-weeks cold hardening of shoot cultures, 48 h preculture of shoot tips on MS medium supplemented with 0.25 M sucrose, and a 90 min PVS2 treatment in droplets. After direct immersion in LN, thawing and plating, 80% of shoot-tips recovered. Post-thaw recovery was significantly lower when the same procedure was applied to T. cariensis shoot tips; however also here 90 min PVS2 treatment produced the highest survival (25 percent) and recovery (25 percent) levels.

  1. FLUIDIZED BED STEAM REFORMING (FBSR) OF HIGH LEVEL WASTE (HLW) ORGANIC AND NITRATE DESTRUCTION PRIOR TO VITRIFICATION: CRUCIBLE SCALE TO ENGINEERING SCALE DEMONSTRATIONS AND NON-RADIOACTIVE TO RADIOACTIVE DEMONSTRATIONS

    SciTech Connect

    Jantzen, C; Michael Williams, M; Gene Daniel, G; Paul Burket, P; Charles Crawford, C

    2009-02-07

    Over a decade ago, an in-tank precipitation process to remove Cs-137 from radioactive high level waste (HLW) supernates was demonstrated at the Savannah River Site (SRS). The full scale demonstration with actual HLW was performed in SRS Tank 48 (T48). Sodium tetraphenylborate (NaTPB) was added to enable Cs-137 extraction as CsTPB. The CsTPB, an organic, and its decomposition products proved to be problematic for subsequent processing of the Cs-137 precipitate in the SRS HLW vitrification facility for ultimate disposal in a HLW repository. Fluidized Bed Steam Reforming (FBSR) is being considered as a technology for destroying the organics and nitrates in the T48 waste to render it compatible with subsequent HLW vitrification. During FBSR processing the T48 waste is converted into organic-free and nitrate-free carbonate-based minerals which are water soluble. The soluble nature of the carbonate-based minerals allows them to be dissolved and pumped to the vitrification facility or returned to the tank farm for future vitrification. The initial use of the FBSR process for T48 waste was demonstrated with simulated waste in 2003 at the Savannah River National Laboratory (SRNL) using a specially designed sealed crucible test that reproduces the FBSR pyrolysis reactions, i.e. carbonate formation, organic and nitrate destruction. This was followed by pilot scale testing of simulants at the Science Applications International Corporation (SAIC) Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003-4 and then engineering scale demonstrations by THOR{reg_sign} Treatment Technologies (TTT) and SRS/SRNL at the Hazen Research, Inc. (HRI) test facility in Golden, CO in 2006 and 2008. Radioactive sealed crucible testing with real T48 waste was performed at SRNL in 2008, and radioactive Benchscale Steam Reformer (BSR) testing was performed in the SRNL Shielded Cell Facility (SCF) in 2008.

  2. Glass melter assembly for the Hanford Waste Vitrification Plant

    SciTech Connect

    Chen, A.E.; Russell, A.; Shah, K.R.; Kalia, J.

    1993-01-01

    The Hanford Waste Vitrification Plant (HWVP) is designed to solidify high level radioactive waste by converting it into stable borosilicate after mixing with glass frit and water. The heart of this conversion process takes place in the glass melter. The life span of the existing melter is limited by the possible premature failure of the heater assembly, which is not remotely replaceable, in the riser and pour spout. A goal of HWVP Project is to design remotely replaceable riser and pour spout heaters so that the useful life of the melter can be prolonged. The riser pour spout area is accessible only by the canyon crane and impact wrench. It is also congested with supporting frame members, service piping, electrode terminals, canister positioning arm and other various melter components. The visibility is low and the accessibility is limited. The problem is further compounded by the extreme high temperature in the riser core and the electrical conductive nature of the molten glass that flows through it.

  3. Vitrification in assisted reproduction: myths, mistakes, disbeliefs and confusion.

    PubMed

    Vajta, G; Nagy, Z P; Cobo, A; Conceicao, J; Yovich, J

    2009-01-01

    The purpose of this work is to update embryologists and clinicians on different approaches in human oocyte and embryo cryopreservation, by clarifying some misunderstandings and explaining the underlying reasons for controversial opinions. The work is based on literature review and critical analysis of published papers or conference abstracts during the last 24 years, with special focus on the last 3 years. Due to the latest advancements in techniques, cryopreservation now offers new perspectives along with solutions to many demanding problems, and has developed from a backup procedure to a successful alternative that is an indispensable constituent of assisted reproductive techniques. However, this progress is not free from controversies, at some points is rather serendipitous, and many factors, including human ones, hamper the selection and widespread application of the most efficient technique for the given task. A better understanding of the basic features of the two rival approaches (slow-rate freezing and vitrification), a clarification of terms and technical details, and a balanced, pragmatic evaluation of possible risks and potential, or definite, gains are required to accelerate advancement. Alternatively, the increasing flow of patients to the few assisted reproduction clinics and countries that are highly successful in this field will enforce the required changes in methodology and mentality worldwide.

  4. Hanford Waste Vitrification Plant reference conceptual design report

    SciTech Connect

    Not Available

    1987-07-01

    This document describes the Reference Conceptual Design (RCD) of the Hanford Waste Vitrification Plant (HWVP). The HWVP will immobilize pretreated Hanford defense liquid high-level waste prior to shipment to a geologic repository, satisfying an objective in the President's Defense Waste Management Plan. The HWVP will vitrify the waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at Hanford until they are shipped to a Federal Geologic Repository. The HWVP will support a glass production rate of 100 pounds per hour. The annual production goal of 610,000 pounds of glass is based on 70% plant availability, excluding downtime for Melter replacement. The HWVP will be located approximately 2000 feet southwest of B-Plant in the 200 East Area of the Hanford Site and will occupy an area approximately 1200 feet by 1200 feet. The RCD cost estimate for the HWVP is $920 million. Hot startup of the HWVP is currently scheduled for Fiscal Year 1999. 9 refs., 19 figs., 17 tabs.

  5. Effect of cold cap chemistry on waste melter vitrification kinetics

    SciTech Connect

    Smith, H.D.; Smith, G.L.; Tracey, E.M.; Peeler, D.K.

    1996-12-31

    Cold-cap chemistry affects the vitrification rates of simulated waste glass melter feeds that produce the same final glass composition. Laboratory- and engineering-scale melter experiments were conducted to evaluate the melting performance of melter feeds produced from pretreated simulated waste using glycolic acid in one instance and two nitric acid based feeds. The two nitric based melter feeds were pretreated with nitric acid in one case and nitric plus boric acid in the other. These melter feeds melt at significantly different rates (glycolic faster than nitric plus boric which is faster than nitric). Closer examination of cold cap samples indicated that silica was being digested faster in the glycolic-treated feed than in the nitric-treated feeds. Laboratory off gas testing results of the two nitric based melter feeds indicated that a lower temperature eutectic melt was produced in the nitric plus boric acid melter feed. Other reactions, such as salt melt accumulations at the base of the cold cap, occurred with all three melter feeds. It is also possible that exothermic reactions in the cold cap may play a roll in increasing the melting rate. Oxidation of glycolate (an exothermic reaction) occurred in the melter feed treated with glycolic acid.

  6. Ion Exchange Resin and Clay Vitrification by Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Díaz A., Laura V.; Pacheco S., Joel O.; Pacheco P., Marquidia; Monroy G., Fabiola; Emeterio H., Miguel; Ramos F., Fidel

    2006-12-01

    The lack of treatment of a low and intermediate level radioactive waste (LILRW) lead us to propose a vitrification process based on a plasma discharge; this technique incorporates LILRW into a matrix glass composed of ceramic clays material. The Mexican Institute of Nuclear Research (ININ), uses an ion exchange resin IRN 150 (styrene-divinilbence copolymer) in the TRIGA MARK III nuclear reactor. The principal objective of this resin is to absorb particles containing heavy metals and low-level radioactive particles. Once the IRN 150 resin filter capacity has been exceeded, it should be replaced and treated as LILRW. In this work, a transferred plasma system was realized to vitrify this resin taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. In order to characterize the morphological structure of these clay samples, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA) techniques were applied before and after the plasma treatment.

  7. Conventional slow freezing cryopreserves mouflon spermatozoa better than vitrification.

    PubMed

    Pradiee, J; Esteso, M C; Castaño, C; Toledano-Díaz, A; Lopez-Sebastián, A; Guerra, R; Santiago-Moreno, J

    2017-04-01

    This work examines the effectiveness of a TCG (Tris, citric acid, glucose, 6% egg yolk and 5% glycerol) and a TEST (TES, Tris, glucose, 6% egg yolk and 5% glycerol) sperm extender in the freezing of mouflon spermatozoa at slow cooling rates, using different pre-freezing equilibration times (2-3 hr). It also examines the tolerance of mouflon spermatozoa to different concentrations of cryoprotectants (5, 10, 20% glycerol; 5%, 10%, 20% dimethyl sulfoxide; 6% polyvinylpyrrolidone) and/or sucrose (100, 300, 500 mm). The highest quality (p < .01) thawed spermatozoa were obtained when using the TEST extender and an equilibration time of 3 hr. Sperm motility and membrane integrity were strongly reduced when using rapid freezing rates (60-85°C min(-1) ), independent of the concentration of cryoprotectants. The lowest sucrose concentration (100 mm) provided the highest (p < .05) percentage of motile spermatozoa and live spermatozoa with an intact acrosome. Vitrified-warmed sperm variables were at their best when the spermatozoa was diluted in TCG-6% egg yolk + 100 mm sucrose and warmed at 60°C. Slow warming at 37°C strongly reduced (p < .05) sperm motility and viability. However, sperm vitrification returned lower fertility, sperm motility and sperm viability values than conventional sperm freezing. © 2016 Blackwell Verlag GmbH.

  8. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.

    PubMed

    Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter.

  9. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification

    SciTech Connect

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.; Pokorny, Richard; Hrma, Pavel R.

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of molten glass. Knowing the temperature profile within a cold cap will help determine its characteristics and relate them to the rate of glass production. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Since a direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed where the textural features in a laboratory-made cold cap with a high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. To correlate the temperature distribution to microstructures within the cold cap, microstructures were identified of individual feed samples that were heat treated to set temperatures between 400°C and 1200°C and quenched. The temperature distribution within the cold cap was then established by correlating cold-cap regions with the feed samples of nearly identical structures and was compared with the temperature profile from a mathematical model.

  10. Use of noninvasive geophysical techniques for the in situ vitrification program

    SciTech Connect

    Josten, N.E.; Marts, S.T.; Carpenter, G.S.

    1991-11-01

    In situ vitrification (ISV) is a waste pit remediation technology that can potentially eliminate the need for pit excavation. The ISV program at the Idaho National Engineering Laboratory (INEL) funded this study to evaluate geophysical techniques that might be useful for performing detailed screening of the materials, soil conditions, and local geology of waste pits targeted for remediation. The evaluation focusses on a specific set of characterization objectives developed by ISV engineers. The objectives are based on their assessment of safety, environmental, and cost efficiency issues associated with the ISV process. A literature review of geophysical case histories was conducted and a geophysical survey was performed at the INEL simulated waste pit so that the evaluation could be based on demonstrable results. The literature review shows that all the ISV objectives are theoretically achievable because they involve physical properties (such as electrical conductivity, density, or magnetization) that can be sensed by geophysical instruments. However, most of the ISV objectives require substantially higher resolution than is achieved in typical waste site investigations, or than has been demonstrated by researches using state-of-the-art techniques. The survey at the INEL simulated waste pit yielded useful, qualitative information on subsurface materials and boundaries; but quantitative information, such as depth, size, or composition of buried materials, was subject to significant uncertainty. For ISV, the usefulness of geophysical characterization depends both on the capabilities of geophysical methods and on an assessment of the amount of uncertainty that is acceptable. Based on a preliminary assessment of these factors, the location of trench boundaries and detection of massive metallic objects are the important achievable objectives using current technology.

  11. Use of noninvasive geophysical techniques for the in situ vitrification program. Volume 3, Discussion and recommendations

    SciTech Connect

    Josten, N.E.; Marts, S.T.; Carpenter, G.S.

    1991-11-01

    In situ vitrification (ISV) is a waste pit remediation technology that can potentially eliminate the need for pit excavation. The ISV program at the Idaho National Engineering Laboratory (INEL) funded this study to evaluate geophysical techniques that might be useful for performing detailed screening of the materials, soil conditions, and local geology of waste pits targeted for remediation. The evaluation focusses on a specific set of characterization objectives developed by ISV engineers. The objectives are based on their assessment of safety, environmental, and cost efficiency issues associated with the ISV process. A literature review of geophysical case histories was conducted and a geophysical survey was performed at the INEL simulated waste pit so that the evaluation could be based on demonstrable results. The literature review shows that all the ISV objectives are theoretically achievable because they involve physical properties (such as electrical conductivity, density, or magnetization) that can be sensed by geophysical instruments. However, most of the ISV objectives require substantially higher resolution than is achieved in typical waste site investigations, or than has been demonstrated by researches using state-of-the-art techniques. The survey at the INEL simulated waste pit yielded useful, qualitative information on subsurface materials and boundaries; but quantitative information, such as depth, size, or composition of buried materials, was subject to significant uncertainty. For ISV, the usefulness of geophysical characterization depends both on the capabilities of geophysical methods and on an assessment of the amount of uncertainty that is acceptable. Based on a preliminary assessment of these factors, the location of trench boundaries and detection of massive metallic objects are the important achievable objectives using current technology.

  12. Cost effectiveness studies of environmental technologies: Volume 1

    SciTech Connect

    Silva, E.M.; Booth, S.R.

    1994-02-01

    This paper examines cost effectiveness studies of environmental technologies including the following: (1) In Situ Air Stripping, (2) Surface Towed Ordinance Locator System, (3) Ditch Witch Horizontal Boring Technology, (4) Direct Sampling Ion Trap Mass Spectrometer, (5) In Situ Vitrification, (6) Site Characterization and Analysis Penetrometer System, (7) In Situ Bioremediation, and (8) SEAMIST Membrane System Technology.

  13. Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet vitrification and encapsulation-dehydration procedures

    USDA-ARS?s Scientific Manuscript database

    A droplet-vitrification procedure is described for cryopreservation of Malus shoot tips. Survival patterns, recovery types, histological observations, and genetic integrity were compared for Malus shoot tips cryopreserved using this droplet-vitrification procedure and an encapsulation-dehydration pr...

  14. Cryopreservation of Fraser photinia (Photinia x fraseri Dress.) via vitrification-based one-step freezing techniques.

    PubMed

    Tokatli, Y O; Akdemir, H

    2010-01-01

    An efficient vitrification-based cryopreservation procedure was developed for Fraser photinia shoot apices by assessing the influences of various vitrification solutions (PVS1, PVS2, PVS3 and VSL) and different vitrification methods (cryovial vitrification, droplet vitrification and droplet freezing) on shoot regrowth. Moreover, influences of cold-hardening period (0 to 8 weeks), preculture medium (with sucrose and proline) and regrowth medium (QL plus 4.4, 8.8 and 17.6 micromolar BA) were also evaluated. Among the different procedures tested, best shoot regrowth (40.3 percent) was achieved by using a droplet vitrification technique in which cold-hardened and precultured shoot apices were vitrified for 120 min at 0 degree C in droplets, rapidly cooled, thawed and then cultured on 17.6 micromolar BA-containing QL medium. Overall results indicated the importance of not only the composition of vitrification solution, and preculture and regrowth media, but also the application of an appropriate vitrification technique to achieve optimum recovery post-cryopreservation.

  15. Hanford Waste Vitrification program pilot-scale ceramic melter Test 23

    SciTech Connect

    Goles, R.W.; Nakaoka, R.K.

    1990-02-01

    The pilot-scale ceramic melter test, was conducted to determine the vitrification processing characteristics of simulated Hanford Waste Vitrification Plant process slurries and the integrated performance of the melter off-gas treatment system. Simulated melter feed was prepared and processed to produce glass. The vitrification system, achieved an on-stream efficiency of greater than 98%. The melter off-gas treatment system included a film cooler, submerged bed scrubber, demister, high-efficiency mist eliminator, preheater, and high-efficiency particulate air filter (HEPA). Evaluation of the off-gas system included the generation, nature, and capture efficiency of gross particulate, semivolatile, and noncondensible melter products. 17 refs., 48 figs., 61 tabs.

  16. Vitrification with glutamine improves maturation rate of vitrified / warmed immature bovine oocytes.

    PubMed

    Yamada, C; Feitosa, W B; Simões, R; Nicacio, A C; Mendes, C M; Assumpção, M E O A; Visintin, J A

    2011-02-01

    The current study examined the protective effects of l-glutamine and cytochalasin B during vitrification of immature bovine oocytes. Oocyte vitrification solution (PBS supplemented with 10% FCS, 25% EG, 25% DMSO and 0.5 m trehalose) was the vitrification control. Treatments were the addition of 7 μg/ml cytochalasin B, 80 mm glutamine or both cytochalasin and glutaminine for 30 s. After warming, oocytes were matured in vitro for 24 h, fixed and stained with Hoechst (33342) for nuclear maturation evaluation. L-glutamine improved the vitrified/warmed immature bovine oocytes viability (32.8%), increasing the nuclear maturation rates compared to other treatments and the no treatment vitrified control (17.4%). There was, however, no effect of cytochalasin B on in vitro maturation (14.4%).

  17. System for enhanced destruction of hazardous wastes by in situ vitrification of soil

    DOEpatents

    Timmerman, Craig L.

    1991-01-01

    The present invention comprises a system for promoting the destruction of volatile and/or hazardous contaminants present in waste materials during in situ vitrification processes. In accordance with the present invention, a cold cap (46) comprising a cohesive layer of resolidified material is formed over the mass of liquefied soil and waste (40) present between and adjacent to the electrodes (10, 12, 14, 16) during the vitrification process. This layer acts as a barrier to the upward migration of any volatile type materials thereby increasing their residence time in proximity to the heated material. The degree of destruction of volatile and/or hazardous contaminants by pyrolysis is thereby improved during the course of the vitrification procedure.

  18. Testing of the West Valley Vitrification Facility transfer cart control system

    SciTech Connect

    Halliwell, J.W.; Bradley, E.C.

    1995-02-01

    Oak Ridge National Laboratory (ORNL) has designed and tested the control system for the West Valley Demonstration Project Vitrification Facility transfer cart. The transfer cart will transfer canisters of vitrified high-level waste remotely within the Vitrification Facility. The control system operates the cart under battery power by wireless control. The equipment includes cart-mounted control electronics, battery charger, control pendants, engineer`s console, and facility antennas. Testing was performed in several phases of development: (1) prototype equipment was built and tested during design, (2) board-level testing was then performed at ORNL during fabrication, and (3) system-level testing was then performed by ORNL at the fabrication subcontractor`s facility for the completed cart system. These tests verified (1) the performance of the cart relative to design requirements and (2) operation of various built-in cart features. The final phase of testing is planned to be conducted during installation at the West Valley Vitrification Facility.

  19. Bulk Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-09-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  20. Evaluation of new concepts for in situ vitrification: Power system, melt insulation, and off-gas containment

    SciTech Connect

    Luey, J.; Powell, T.D.; Heath, W.O.; Richardson, R.L.

    1992-07-01

    In situ vitrification (ISV) is a thermal process that converts contaminated soil into a highly leach-resistant material resembling natural obsidian. The ISV process was developed by the Pacific Northwest Laboratory (PNL)(a) for the US Department of Energy (DOE) to treat soils contaminated with transuranics. Since 1980, ISV has grown from a concept to an innovative technology through bench-, engineering-, intermediate-, and full-scale tests. Efforts by PNL have developed ISV into a technology considered available for limited deployment to remediate contaminated soil. The technology has been transferred to a licensee for commercial application. In September 1991, PNL conducted an operational acceptance test (OAT) of the modified engineering-scale unit. The OAT provided an opportunity to conduct proof-of-principle testing of new concepts for ISV technology. This additional testing was permitted since it was determined that testing of these new concepts would have no impact on the OAT objective. In discussing the proof-of-principle portion of the engineering-scale test, this report presents conclusions from this work and also describes the conceptual bases of the tested concepts, the engineering-scale test equipment and setup, and test results.

  1. Slow cryopreservation is not superior to vitrification in human spermatozoa; an experimental controlled study

    PubMed Central

    Ali Mohamed, Mohamed Shehata

    2015-01-01

    Background: Spermatozoa cryopreservation is used for the management of infertility and some other medical conditions. The routinely applied cryopreservation technique depends on permeating cryoprotectants, whose toxic effects have raised the attention towards permeating cryoprotectants-free vitrification technique. Objective: To compare between the application of slow cryopreservation and vitrification on human spermatozoa. Materials and Methods: This was an experimental controlled study involving 33 human semen samples, where each sample was divided into three equal parts; fresh control, conventional slow freezing, and permeating cryoprotectants-free vitrification. Viability and mitochondrial membrane potential (MMP) of control and post-thawing spermatozoa were assessed with the sperm viability kit and the JC-1 kit, respectively, using fluorescence-activated cell sorting analysis. Results: Significant reduction of the progressive motility, viability and MMP was observed by the procedure of freezing and thawing, while there was not any significant difference between both cryopreservation techniques. Cryopreservation resulted in 48% reduction of the percentage of viable spermatozoa and 54.5% rise in the percentage of dead spermatozoa. In addition, high MMP was reduced by 24% and low MMP was increased by 34.75% in response to freezing and thawing. Progressive motility of spermatozoa was correlated significantly positive with high MMP and significantly negative with low MMP in control as well as post-thawing specimens (r=0.8881/ -0.8412, 0.7461/ -0.7510 and 0.7603/ -0.7839 for control, slow and vitrification respectively, p=0.0001). Conclusion: Although both cryopreservation techniques have similar results, vitrification is faster, easier and associated with less toxicity and costs. Thus, vitrification is recommended for the clinical application. PMID:26644792

  2. Bulk CMOS VLSI Technology Studies. Part 1. Scalable CMOS Design Rules. Part 2. CMOS Approaches to PLA (Programmable Logic Array) Design.

    DTIC Science & Technology

    2014-09-26

    microns %H*SIC dimensions. Part 2: Various Programmable Logic Array (PLA) implementations with clocked CMOS technology are explored inthis project...Previous research at MSU has dealt with clocked CMOS circuit styles with some application to gate array and microprocessor applications. Work under this...in this report deals with structured logic schemes based on Programmable Logic Arrays (PLAs). Three different PLA design methods are reported with a

  3. Evaluation Pilot-Scale Melter Systems for the Direct Vitrification Development Program

    SciTech Connect

    Mc Cray, Casey William; Thomson, Troy David

    2001-09-01

    This report documents the results of an evaluation conducted to identify a joule-heated melter system that could be installed in the Idaho Falls area in support of the Direct Vitrification Development Program. The relocation was to be completed by January 1, 2002, within a total budget of one million dollars. Coordination with the Department of Energy Tanks Focus Area identified five melters or melter systems that could potentially support the Direct Vitrification Development Program. Each unit was inspected and evaluated based on qualitative criteria such as availability, completeness of the system, contamination, scalability, materials of construction, facility requirements, and any unique features.

  4. [Experimental and clinical study of skin stored by vitrification].

    PubMed

    Zhu, Z M

    1991-11-01

    To improve the quality of stored skin, vitrification storage method (rapid cooling) was introduced. G group cryoprotective solution (20% DMSO and 6% propylene glycol in kreb's Ringer phosphate solution) was selected from 7 different kinds of solution with low toxicity and high cryoprotective activity. G group solution was proved very effective in cryopreservation of small and large pieces of guinea pig skin. Fresh cadaveric skin, 0.3-0.4 mm in thickness, with an area of 500-1,000 sq.cm was soaked in G group solution for 30 min. After being sealed in plastic bags, the skin was put directly into liquid nitrogen. The skin was thawed in 40 degrees C water bath before use. The cooling rate was about 2160 degrees C/min (by fine transient thermometer). The viabilities of stored skin measured by oxygen consumption (microelectrolyte method) and succinic dehydrogenase (by modified Hershey's method) were about 70% as prestored value, and were 20% higher than those stored by slow cooling method. 250000 sq.cm of vitrified skin stored for one to two years were used in 135 operations for major full thickness burns after tangential excision or excision of eschar. The taken-rate was over 94%. The color of skin turned to red within 3-4 days after grafting. There was no blister formation on the surface of grafted skin. If autologous micro-skin were put underneath the stored skin or small pieces of autologous skin were inserted into the small holes of the stored skin, the wounds healed smoothly within six weeks after operation and no further grafting was needed.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Interaction analysis method for the Hanford Waste Vitrification Plant

    SciTech Connect

    Grant, P.R.; Deshotels, R.L.; Van Katwijk, C.

    1993-08-01

    In order to anticipate potential problems as early as possible during the design effort, a method for interaction analysis was developed to meet the specific hazards of the Hanford Waste Vitrification Plant (HWVP). The requirement for interaction analysis is given in DOE Order 6430.1B and DOE-STD-1021-92. The purpose of the interaction analysis is to ensure that non-safety class items will not fail in a manner that will adversely affect the ability of any safety class item to perform its safety function. In the HWVP there are few structures, equipment, or controls that are safety class. In addition to damage due to failure of non-safety class items as a result of natural phenomena, threats to HWVP safety class items include the following: room flooding from firewater, leakage of chemically reactive liquids, high-pressure gas impingement from leaking piping, rocket-type impact from broken pressurized gas cylinders, loss of control of mobile equipment, cryogenic liquid spill, fire, and smoke. The time needed to perform the interaction analysis is minimized by consolidating safety class items into segregated areas. Each area containing safety class items is evaluated, and any potential threat to the safety functions is noted. After relocation of safety class items is considered, items that pose a threat are generally upgraded to eliminate the threat to the safety class items. Upgrading is the preferred option when relocation is not possible. An example will illustrate the method and application in the phased design, procurement, and construction environment of the HWVP.

  6. Flammability Control In A Nuclear Waste Vitrification System

    SciTech Connect

    Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

    2013-07-25

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

  7. Large area bulk superconductors

    DOEpatents

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  8. Raman-microscopy investigation of vitrification-induced structural damages in mature bovine oocytes

    PubMed Central

    De Canditiis, Carolina; Zito, Gianluigi; Rubessa, Marcello; Roca, Maria Serena; Carotenuto, Rosa; Sasso, Antonio; Gasparrini, Bianca

    2017-01-01

    Although oocyte cryopreservation has great potentials in the field of reproductive technologies, it still is an open challenge in the majority of domestic animals and little is known on the biochemical transformation induced by this process in the different cellular compartments. Raman micro-spectroscopy allows the non-invasive evaluation of the molecular composition of cells, based on the inelastic scattering of laser photons by vibrating molecules. The aim of this work was to assess the biochemical modifications of both the zona pellucida and cytoplasm of vitrified/warmed in vitro matured bovine oocytes at different post-warming times. By taking advantage of Principal Component Analysis, we were able to shed light on the biochemical transformation induced by the cryogenic treatment, also pointing out the specific role of cryoprotective agents (CPs). Our results suggest that vitrification induces a transformation of the protein secondary structure from the α-helices to the β-sheet form, while lipids tend to assume a more packed configuration in the zona pellucida. Both modifications result in a mechanical hardening of this cellular compartment, which could account for the reduced fertility rates of vitrified oocytes. Furthermore, biochemical modifications were observed at the cytoplasmic level in the protein secondary structure, with α-helices loss, suggesting cold protein denaturation. In addition, a decrease of lipid unsaturation was found in vitrified oocytes, suggesting oxidative damages. Interestingly, most modifications were not observed in oocytes exposed to CPs, suggesting that they do not severely affect the biochemical architecture of the oocyte. Nevertheless, in oocytes exposed to CPs decreased developmental competence and increased reactive oxygen species production were observed compared to the control. A more severe reduction of cleavage and blastocyst rates after in vitro fertilization was obtained from vitrified oocytes. Our experimental

  9. Risk Assessment supporting the decision on the initial selection of supplemental ILAW technologies

    SciTech Connect

    MANN, F. M.

    2003-09-29

    A risk assessment on the long-term environmental impact of various potential waste forms was conducted at the request of the Hanford Site's Mission Acceleration Initiative Team. These potential waste forms (bulk vitrification, cast stone, and steam reformer) may treat some of the low-activity waste currently planned to be treated at the Waste Treatment Plant.

  10. Pretreatment of in vitro matured bovine oocytes with docetaxel before vitrification: Effects on cytoskeleton integrity and developmental ability after warming.

    PubMed

    Chasombat, Jakkhaphan; Nagai, Takashi; Parnpai, Rangsun; Vongpralub, Thevin

    2015-10-01

    The stabilization of spindle fibersis important for successful vitrification of bovine oocytes because microtubules and other cytoskeleton fibers (CSF) can be damaged during vitrification, resulting in failure of fertilization after thawing. Docetaxel, a stabilizing agent, could potentially reduce CSF damage of bovine oocytes induced during vitrification. However, there have been no reports on the effects of docetaxel on their vitrification. Experiment 1 was conducted to investigate the effects of various doses of docetaxel (0.0, 0.05, 0.5, 5.0 and 50 μM) in preincubation medium of in vitro matured (IVM) bovine oocytes on their developmental ability after in vitro fertilization (IVF). The results show that 0.05 μM docetaxel had no adverse effect on embryo development, while docetaxel at a concentration of ⩾0.5 μM inhibited development. Experiments 2 and 3 were conducted to investigate the effects of preincubation of IVM bovine oocytes with 0.05 μM docetaxel for 30 min prior to vitrification-warming on CSF integrity (Experiment 2), and on oocyte survival and viability after IVF (Experiment 3). When preincubated with 0.05 μM docetaxel for 30 min before vitrification, post-thawed oocytes had less CSF damage and higher survival rates compared with those untreated with docetaxel before vitrification. Surviving oocytes also had higher rates of cleavage and development to the blastocyst stage after IVF. In conclusion, preincubation of IVM bovine oocytes with 0.05 μM docetaxel for 30 min before vitrification was effective at preventing CSF damage during vitrification, and improving oocyte viability after warming and subsequent cleavage and blastocyst formation after IVF.

  11. Vitrification of low-level radioactive mixed waste at Argonne National Laboratory

    SciTech Connect

    Mazer, J.J.; Rosine, S.D.; No, H.J.

    1995-06-01

    Argonne National Laboratory-East (ANL-E) is proceeding with plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated on-site. The objective is to install a full-scale vitrification system at ANL-E capable of processing the entire annual generation of selected LLMW streams. Crucible glass studies with actual mixed waste streams have produced sodium borosilicate glasses under conditions achievable in commercially available melters. These same glass compositions, spiked with toxic metals above the expected levels in actual wastes, pass the Toxicity Characteristic Leaching Procedure (TCLP) test. Earlier evaluations of the likely off-gases that will result from vitrification indicated that the primary off-gases will include compounds of SO{sub x}, NO{sub x}, and CO{sub 2}. These evaluations are being experimentally confirmed with a mass spectrometer analysis of the gases evolved from samples of the ANL-E wastes. The composition of the melter feed can be adjusted to minimize volatilization of some components, if necessary. The full-scale melter will be designed to handle the annual generation of at least three LLMW waste streams: evaporator concentrator bottoms sludge (ECB), storage tank sludge (STS), and HEPA filter media. Each waste stream is mixed waste by virtue of its failure to pass the TCLP test with respect to toxic metal leaching. Additional LLMW streams under consideration for vitrification include historical mixed waste glass from past operations and spent abrasive from a planned decontamination facility.

  12. Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now?

    PubMed

    Liebermann, Juergen; Dietl, Johannes; Vanderzwalmen, Pierre; Tucker, Michael J

    2003-12-01

    The target of any cryopreservation procedure should be to ensure high survival rates of living cells after thawing. Two important parameters determine the success of any cryopreservation protocol: the manner in which cells regain equilibrium in response to cooling, and the speed of freezing (cooling rate). Slow-rate freezing protocols result in the formation of ice crystals during cooling and warming. Vitrification, in which high cooling rates in combination with a high concentration of cryoprotectant are used, does not produce any ice crystals during cooling and warming. However, there is a practical limit to the attainable cooling speed, and also a biological limit to the concentration of cryoprotectant tolerated by the cells during vitrification. Although post-warming survival depends on the species, the developmental stage and the quality of the embryos being vitrified, it seems clear that vitrification methods are increasingly successful and might be a better method than slow cooling procedures in the field of cryobiology. Many of the potential problems and benefits underlying vitrification as a method of choice for embryo cryopreservation in clinical embryology will be discussed in this review.

  13. Identification of a highly successful cryopreservation method (droplet-vitrification) for petunia

    USDA-ARS?s Scientific Manuscript database

    Petunia (Petunia × hybrida Vilm.) is a very important crop conserved in the National Genebank of China. Petunia cultivar “Niu 2” was used to develop a droplet-vitrification protocol to cryopreserve shoot tips. Six variables (age of the in vitro plants, concentration of sucrose in the preculture solu...

  14. Waste vitrification: prediction of acceptable compositions in a lime-soda-silica glass-forming system

    SciTech Connect

    Gilliam, T.M.; Jantzen, C.M.

    1996-10-01

    A model is presented based upon calculated bridging oxygens which allows the prediction of the region of acceptable glass compositions for a lime-soda-silica glass-forming system containing mixed waste. The model can be used to guide glass formulation studies (e.g., treatability studies) or assess the applicability of vitrification to candidate waste streams.

  15. Shoot regeneration and embryogenesis in lily shoot tips cryopreserved by droplet vitrification

    USDA-ARS?s Scientific Manuscript database

    Shoot regeneration and embryogenesis were, for the first time, achieved directly in shoot tips of Lilium Oriental hybrid ‘Siberia’ following cryopreservation by droplet-vitrification. Shoot tips (2 mm in length) including 2-3 leaf primordia were excised from 4-week-old adventitious shoots directly r...

  16. 76 FR 13605 - Notice of Availability of Draft Waste Incidental to Reprocessing Evaluation for the Vitrification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... Web site listed above. SUPPLEMENTARY INFORMATION: The vitrification melter is a box structure, approximately 10 feet on each side, with a stainless steel outer structure and an interior lined with refractory..., pursuant to DOE's authority under the Atomic Energy Act of 1954, as amended, and in accordance with...

  17. Vitrification of a small number of spermatozoa in normozoospermic and severely oligozoospermic samples.

    PubMed

    Kuznyetsov, Valeriy; Moskovtsev, Sergey I; Crowe, Michael; Lulat, Ayub G-M; Librach, Clifford L

    2015-01-01

    Despite broad utilization of sperm cryopreservation, little progress has been made to modify freezing protocols or to improve rates of sperm survival. Vitrification is an alternative method for freezing human spermatozoa without toxic permeable cryoprotectants (CPAs). The purpose of our study was to optimize the vitrification and post thaw recovery of a small number of spermatozoa using only nonpermeating CPAs in a closed straw system in normozoospermic and severely oligozoospermic samples. Individual motile spermatozoa (n = 295) were selected from semen samples of 15 normozoospermic and 10 severe oligozoospermia patients. Overall sperm recovery after vitrification was 80% (n = 236) with 80% (n = 189) viability and 41.5% (n = 98) retained post-warming motility. Two different loading techniques were compared to transfer selected spermatozoa into straws in preparation for vitrification: by spontaneous capillary action (CA) and with the aid of a polar body biopsy (PBB) pipette. There was evidence that the PBB loading technique increases the odds of spermatozoa recovery in both subsets (p = 0.01 and p = 0.04) in the normal and abnormal subsamples, respectively.

  18. Confocal microscopic analysis of the microfilament configurations from human vitrification-thawed oocytes matured in vitro.

    PubMed

    Ci, Qianqian; Li, Mei; Zhang, Yingchun; Ma, Shuiying; Gao, Qin; Shi, Yuhua

    2014-01-01

    The alteration in microfilaments of human oocytes by vitrification has not been understood well. To evaluate the effect of vitrification on the microfilaments of human in vitro matured oocytes and the time needed for the repair. Human in vitro matured oocytes were divided into the control group (Group 1) and the vitrified group. The vitrified oocytes were further divided into four sub-groups that were cultured after thawing for 1 h, 2 h, 3 h and 4 h, respectively (Groups 2, 3, 4 and 5). The survival rate of oocytes was 87.4% after vitrification and thawing. The percentage of oocytes with a normal configuration of microfilaments in Group 2 and Group 3 was significantly lower than that of the fresh control group (Group 1), whereas the percentage of oocytes with normal microfilament configuration in Group 4 and Group 5 was comparable to the control group. Vitrification alters microfilament structure of oocytes, which takes at least 3h after thawing for the repair and recovery.

  19. Slow Freezing, but Not Vitrification Supports Complete Spermatogenesis in Cryopreserved, Neonatal Sheep Testicular Xenografts

    PubMed Central

    Pukazhenthi, Budhan S.; Nagashima, Jennifer; Travis, Alexander J.; Costa, Guilherme M.; Escobar, Enrique N.; França, Luiz R.; Wildt, David E.

    2015-01-01

    The ability to spur growth of early stage gametic cells recovered from neonates could lead to significant advances in rescuing the genomes of rare genotypes or endangered species that die unexpectedly. The purpose of this study was to determine, for the first time, the ability of two substantially different cryopreservation approaches, slow freezing versus vitrification, to preserve testicular tissue of the neonatal sheep and subsequently allow initiation of spermatogenesis post-xenografting. Testis tissue from four lambs (3-5 wk old) was processed and then untreated or subjected to slow freezing or vitrification. Tissue pieces (fresh, n = 214; slow freezing, then thawing, n = 196; vitrification, then warming, n = 139) were placed subcutaneously under the dorsal skin of SCID mice and then grafts recovered and evaluated 17 wk later. Grafts from fresh and slow frozen tissue contained the most advanced stages of spermatogenesis, including normal tubule architecture with elongating spermatids in ~1% (fresh) and ~10% (slow frozen) of tubules. Fewer than 2% of seminiferous tubules advanced to the primary spermatocyte stage in xenografts derived from vitrified tissue. Results demonstrate that slow freezing of neonatal lamb testes was far superior to vitrification in preserving cellular integrity and function after xenografting, including allowing ~10% of tubules to retain the capacity to resume spermatogenesis and yield mature spermatozoa. Although a first for any ruminant species, findings also illustrate the importance of preemptive studies that examine cryo-sensitivity of testicular tissue before attempting this type of male fertility preservation on a large scale. PMID:25923660

  20. Effective vitrification and warming of porcine embryos using a pH-stable, chemically defined medium

    PubMed Central

    Cuello, Cristina; Martinez, Cristina A.; Nohalez, Alicia; Parrilla, Inmaculada; Roca, Jordi; Gil, Maria A.; Martinez, Emilio A.

    2016-01-01

    The use of pH-stable media would simplify embryo vitrification and the warming of porcine embryos and might facilitate the application of embryo transfer in practice. In this work, we investigated whether a pH-stable basal medium constituted of Tyrode’s lactate medium, polyvinyl alcohol, and HEPES for buffering was suitable for porcine embryo vitrification warming in place of the conventional gas-equilibrated media. A high percentage (>90%) of embryos survived vitrification and warming in this medium, achieving in vitro survival rates similar to embryos vitrified-warmed using the conventional protocol and their fresh counterparts. The pH-stable medium did not affect the in vivo developmental competence of the vitrified-warmed embryos. A farrowing rate of 71.4% (5/7) with 10.4 ± 3.1 piglets born was obtained for the embryos vitrified and warmed in this medium and transferred to selected recipients. This medium will enable the use of simple, safe and standardized protocols for the vitrification and warming of porcine embryos for optimal embryo survival and quality when applied under field conditions. This study opens new possibilities for the widespread use of embryo transfer in pigs. PMID:27666294

  1. Cryopreservation the seeds of a Taiwanese terrestrial orchid, Bletilla formosana (Hayata) Schltr. by vitrification.

    PubMed

    Hu, Wei Hsin; Yang, Yue Han; Liaw, Song Iuan; Chang, Chen

    2013-12-01

    The cryopreservation of orchid seeds is an important conservation method, studies of the effects of cryopreservation on the seeds of wild orchids are scant. This investigation was to establish a method for the vitrification and cryopreservation of seeds of B. formosana that may be suitable for the long term storage of Taiwan native orchid germplasm for conservation purposes. The germination rate and morphological stability of seeds from spontaneous-dehiscent capsules of Bletilla formosana (Hayata) Schltr. were evaluated after cryopreservation by vitrification. The germination rates of cryopreserved seeds varied according to immersion time and the vitrification method used. Seeds that were dehydrated by immersion in loading solution (LS; 2.0 M glycerol, 0.4 M sucrose) for 10 min to 30 min then transferred to plant vitrification solution 2 (PVS2) for 30 min prior to freezing in liquid nitrogen (LN) showed significantly higher germination rates than seeds immersed in PVS2 only. The optimal immersion times were 10 min for LS and 30 min for PVS2, resulting in an in vitro germination rate of 91%. Germination was not observed for cryopreserved seeds that were dehydrated by immersion in LS only. Seed viabilities and germination rates did not vary significantly for cryostorage times from 10 minutes to 1 year. This study improve, an efficient protocol was established that maintained seed viability and enhanced the germination rates of seeds, compared with previously described cryopreservation methods, and the germinated seeds showed normal morphology of both vegetative and reproductive organs.

  2. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.

    PubMed

    Yang, Y; Xiao, Y; Voncken, J H L; Wilson, N

    2008-06-15

    Boiler ash generated from municipal solid waste (MSW) incinerators is usually classified as hazardous materials and requires special disposal. In the present study, the boiler ash was characterized for the chemical compositions, morphology and microstructure. The thermal chemical behavior during ash heating was investigated with thermal balance. Vitrification of the ash was conducted at a temperature of 1400 degrees C in order to generate a stable silicate slag, and the formed slag was examined with chemical and mineralogical analyses. The effect of vitrification on the leaching characteristics of various elements in the ash was evaluated with acid leaching. The study shows that the boiler ash as a heterogeneous fine powder contains mainly silicate, carbonate, sulfates, chlorides, and residues of organic materials and heavy metal compounds. At elevated temperatures, the boiler ash goes through the initial moisture removal, volatilization, decomposition, sintering, melting, and slag formation. At 1400 degrees C a thin layer of salt melt and a homogeneous glassy slag was formed. The experimental results indicate that leaching values of the vitrified slag are significantly reduced compared to the original boiler ash, and the vitrification could be an interesting alternative for a safer disposal of the boiler ash. Ash compacting, e.g., pelletizing can reduce volatilization and weight loss by about 50%, and would be a good option for the feed preparation before vitrification.

  3. Oocyte vitrification modifies nucleolar remodeling and zygote kinetics-a sibling study.

    PubMed

    Chamayou, S; Romano, S; Alecci, C; Storaci, G; Ragolia, C; Palagiano, A; Guglielmino, A

    2015-04-01

    Oocyte vitrification does not affect embryo quality after oocyte warming, making this method effective in the preservation of female fertility. Morphokinetic parameters can be used to predict the competence of an embryo produced from fresh oocytes. Our aim was to study the effect of oocyte vitrification on zygote-embryo kinetics (pl). The embryo-kinetics of fresh and sibling vitrified/warmed oocytes were compared to determine the consequences of oocyte preservation on the timing of embryo development. A 44-hours time-lapse analysis, from the time of ICSI (t0), of 179 fertilized fresh oocytes was compared to 168 fertilized sibling vitrified/warmed oocytes. Oocyte vitrification accelerated pronuclear disappearance, one-cell stage timing and modified nucleoli activity by increasing their number and decreasing their diameter at the zygote stage. In contrast, embryo kinetics during cleavage were similar to those observed for fresh sibling oocytes based on the parameters examined in this study. At the zygote stage, oocyte vitrification induces changes in pronuclei stability, probably due to pronuclei envelop instability as well as modifications in nucleoli functionality. Therefore, the predictive morphokinetic parameters on embryo competence found from fresh oocytes must be revised when applied on embryos from vitrified/warmed oocytes.

  4. Slow freezing, but not vitrification supports complete spermatogenesis in cryopreserved, neonatal sheep testicular xenografts.

    PubMed

    Pukazhenthi, Budhan S; Nagashima, Jennifer; Travis, Alexander J; Costa, Guilherme M; Escobar, Enrique N; França, Luiz R; Wildt, David E

    2015-01-01

    The ability to spur growth of early stage gametic cells recovered from neonates could lead to significant advances in rescuing the genomes of rare genotypes or endangered species that die unexpectedly. The purpose of this study was to determine, for the first time, the ability of two substantially different cryopreservation approaches, slow freezing versus vitrification, to preserve testicular tissue of the neonatal sheep and subsequently allow initiation of spermatogenesis post-xenografting. Testis tissue from four lambs (3-5 wk old) was processed and then untreated or subjected to slow freezing or vitrification. Tissue pieces (fresh, n = 214; slow freezing, then thawing, n = 196; vitrification, then warming, n = 139) were placed subcutaneously under the dorsal skin of SCID mice and then grafts recovered and evaluated 17 wk later. Grafts from fresh and slow frozen tissue contained the most advanced stages of spermatogenesis, including normal tubule architecture with elongating spermatids in ~1% (fresh) and ~10% (slow frozen) of tubules. Fewer than 2% of seminiferous tubules advanced to the primary spermatocyte stage in xenografts derived from vitrified tissue. Results demonstrate that slow freezing of neonatal lamb testes was far superior to vitrification in preserving cellular integrity and function after xenografting, including allowing ~10% of tubules to retain the capacity to resume spermatogenesis and yield mature spermatozoa. Although a first for any ruminant species, findings also illustrate the importance of preemptive studies that examine cryo-sensitivity of testicular tissue before attempting this type of male fertility preservation on a large scale.

  5. Effective vitrification and warming of porcine embryos using a pH-stable, chemically defined medium.

    PubMed

    Cuello, Cristina; Martinez, Cristina A; Nohalez, Alicia; Parrilla, Inmaculada; Roca, Jordi; Gil, Maria A; Martinez, Emilio A

    2016-09-26

    The use of pH-stable media would simplify embryo vitrification and the warming of porcine embryos and might facilitate the application of embryo transfer in practice. In this work, we investigated whether a pH-stable basal medium constituted of Tyrode's lactate medium, polyvinyl alcohol, and HEPES for buffering was suitable for porcine embryo vitrification warming in place of the conventional gas-equilibrated media. A high percentage (>90%) of embryos survived vitrification and warming in this medium, achieving in vitro survival rates similar to embryos vitrified-warmed using the conventional protocol and their fresh counterparts. The pH-stable medium did not affect the in vivo developmental competence of the vitrified-warmed embryos. A farrowing rate of 71.4% (5/7) with 10.4 ± 3.1 piglets born was obtained for the embryos vitrified and warmed in this medium and transferred to selected recipients. This medium will enable the use of simple, safe and standardized protocols for the vitrification and warming of porcine embryos for optimal embryo survival and quality when applied under field conditions. This study opens new possibilities for the widespread use of embryo transfer in pigs.

  6. Effect of NaOH on the vitrification process of waste Ni-Cr sludge.

    PubMed

    Chou, I-Cheng; Wang, Ya-Fen; Chang, Cheng-Ping; Wang, Chih-Ta; Kuo, Yi-Ming

    2011-01-30

    This study investigated the effect of NaOH on the vitrification of electroplating sludge. Ni, the major metal in the electroplating sludge, is the target for recovery in the vitrification. Sludge and encapsulation materials (dolomite, limestone, and cullet) were mixed and various amounts of NaOH were added to serve as a glass modifier and a flux. A vitrification process at 1450 °C separated the molten specimens into slag and ingot. The composition, crystalline characteristics, and leaching characteristics of samples were measured. The results indicate that the recovery of Ni is optimal with a 10% NaOH mass ratio; the recoveries of Fe, Cr, Zn, Cu, and Mn all exhibited similar trends. The results of the toxicity characteristic leaching procedure (TCLP) show that leaching characteristics of the slag meet the requirements of regulation in Taiwan. In addition, a semi-quantitative X-ray diffraction analysis revealed that the main crystalline phase of slag changed from Ca(3)(Si(3)O(9)) to Na(4)Ca(4)(Si(6)O(18)) with a NaOH mass ratio of over 15%, because the Ca(2+) ions were replaced with Na(+) ions during the vitrification process. Na(4)Ca(4)(Si(6)O(18)), a complex mineral which hinders the mobility of metals, accounts for the decrease of metal recovery.

  7. Plant shoot tip response to treatment with plant vitrification solution 2

    USDA-ARS?s Scientific Manuscript database

    Plant cryopreservation has become an effective method to conserve desirable genotypes of vegetatively propagated plant species. In many cases, excised shoot tips are treated with cryoprotectant solutions to prevent the formation of lethal ice during the freezing process. Plant vitrification solution...

  8. Cryopreservation of Endothelial Cells in Various Cryoprotective Agents and Media - Vitrification versus Slow Freezing Methods.

    PubMed

    von Bomhard, Achim; Elsässer, Alexander; Ritschl, Lucas Maximilian; Schwarz, Silke; Rotter, Nicole

    2016-01-01

    Vitrification of endothelial cells (MHECT-5) has not previously been compared with controlled slow freezing methods under standardized conditions. To identify the best cryopreservation technique, we evaluated vitrification and standardized controlled-rate -1°C/minute cell freezing in a -80°C freezer and tested four cryoprotective agents (CPA), namely dimethyl sulfoxide (DMSO), ethylene glycol (EG), propylene glycol (PG), and glycerol (GLY), and two media, namely Dulbecco's modified Eagle medium Ham's F-12 (DMEM)and K+-modified TiProtec (K+TiP), which is a high-potassium-containing medium. Numbers of viable cells in proliferation were evaluated by the CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega Corporation, Mannheim, Germany). To detect the exact frozen cell number per cryo vial, DNA content was measured by using Hoechst 33258 dye prior to analysis. Thus, results could be evaluated unconstrained by absolute cell number. Thawed cells were cultured in 25 cm2 cell culture flasks to confluence and examined daily by phase contrast imaging. With regard to cell recovery immediately after thawing, DMSO was the most suitable CPA combined with K+TiP in vitrification (99 ±0.5%) and with DMEM in slow freezing (92 ±1.6%). The most viable cells in proliferation after three days of culture were obtained in cells vitrificated by using GLY with K+TiP (308 ±34%) and PG with DMEM in slow freezing (280 ±27%).

  9. Cryopreservation of Endothelial Cells in Various Cryoprotective Agents and Media – Vitrification versus Slow Freezing Methods

    PubMed Central

    von Bomhard, Achim; Elsässer, Alexander; Ritschl, Lucas Maximilian; Schwarz, Silke; Rotter, Nicole

    2016-01-01

    Vitrification of endothelial cells (MHECT-5) has not previously been compared with controlled slow freezing methods under standardized conditions. To identify the best cryopreservation technique, we evaluated vitrification and standardized controlled-rate -1°C/minute cell freezing in a -80°C freezer and tested four cryoprotective agents (CPA), namely dimethyl sulfoxide (DMSO), ethylene glycol (EG), propylene glycol (PG), and glycerol (GLY), and two media, namely Dulbecco's modified Eagle medium Ham’s F-12 (DMEM)and K+-modified TiProtec (K+TiP), which is a high-potassium-containing medium. Numbers of viable cells in proliferation were evaluated by the CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega Corporation, Mannheim, Germany). To detect the exact frozen cell number per cryo vial, DNA content was measured by using Hoechst 33258 dye prior to analysis. Thus, results could be evaluated unconstrained by absolute cell number. Thawed cells were cultured in 25 cm2 cell culture flasks to confluence and examined daily by phase contrast imaging. With regard to cell recovery immediately after thawing, DMSO was the most suitable CPA combined with K+TiP in vitrification (99 ±0.5%) and with DMEM in slow freezing (92 ±1.6%). The most viable cells in proliferation after three days of culture were obtained in cells vitrificated by using GLY with K+TiP (308 ±34%) and PG with DMEM in slow freezing (280 ±27%). PMID:26890410

  10. Successful vitrification of bovine immature oocyte using liquid helium instead of liquid nitrogen as cryogenic liquid.

    PubMed

    Yu, Xue-Li; Xu, Ya-Kun; Wu, Hua; Guo, Xian-Fei; Li, Xiao-Xia; Han, Wen-Xia; Li, Ying-Hua

    2016-04-01

    The objectives of this study were to compare the effectiveness of liquid helium (LHe) and liquid nitrogen (LN2) as cryogenic liquid for vitrification of bovine immature oocytes with open-pulled straw (OPS) system and determine the optimal cryoprotectant concentration of LHe vitrification. Cumulus oocyte complexes were divided into three groups, namely, untreated group (control), LN2 vitrified with OPS group, and LHe vitrified with OPS group. Oocyte survival was assessed by morphology, nuclear maturation, and developmental capability. Results indicated that the rates of normal morphology, maturation, cleavage, and blastocyst (89.3%, 52.8%, 42.7%, and 10.1%, respectively) in the LHe-vitrified group were all higher than those (79.3%, 43.4%, 34.1%, and 4.7%) in the LN2-vitrified group (P < 0.05) although the corresponding rates in both treated groups decreased compared with the control group (100%, 75.0%, 64.9%, and 40.8%; P < 0.05). Normal calves were obtained after the transfer of blastocysts derived from LHe- and LN2-vitrified oocytes. The effects of the different vitrification solutions (EDS30, EDS35, EDS40, EDS45, and EDS50) in LHe vitrification for bovine immature oocytes vitrification were examined. No difference was found in the rates of morphologically normal oocytes among the EDS30 (87.9%), EDS35 (90.1%), EDS40 (89.4%), and EDS45 (87.2%) groups (P > 0.05). The maturation rate of the EDS35 group (65.0%) was higher than those of the EDS30 (51.3%), EDS40 (50.1%), EDS45 (52.1%), and EDS50 groups (36.9%; P < 0.05). No significant differences were observed in the cleavage and blastocyst rates between the EDS35 (49.0% and 12.1%) and EDS40 (41.7% and 10.2%) groups. However, the cleavage and blastocyst rates in the EDS35 group were higher (P < 0.05) than those of the EDS30 (36.2% and 6.8%), EDS45 (35.9% and 5.8%), and EDS50 (16.6% and 2.2%) groups. In conclusion, LHe can be used as a cryogenic liquid for vitrification of bovine immature oocytes, and it is more

  11. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-03-30

    A vendor was selected for the diamond wire technology demonstration scheduled for this summer at Princeton Plasma Physics Laboratory (PPPL). A team consisting of personnel from FIU-HCET, PPPL, and AEA Technology reviewed the submitted bids. FIU-HCET will contract this vendor. At the SRS Ninth ICT teleconference, the ICT team discussed the status of the following demonstrations: LRAD; x-ray, K-edge; Strippable Coatings; Thermal Spray Vitrification; Cutting/Shearing/Dismantlement/Size Reduction; and Electrets. The LRAD demo is complete, and the x-ray/K-edge, Strippable Coatings, and Electrets demos are ongoing. The Asbestos and Thermal Spray Vitrification demos require more laboratory testing. The Cutting/Shearing/Dismantlement/Size Reduction demo is undergoing procurement. Five FIU-HCET staff members took the 1S0 14000 environmental auditor training course February 22-26, 1999, given by ASC. The test plan for the Facility Dismantlement Technology Assessment is finished and ready for internal review.

  12. HIGH LEVEL WASTE (HLW) VITRIFICATION EXPERIENCE IN THE US: APPLICATION OF GLASS PRODUCT/PROCESS CONTROL TO OTHERHLW AND HAZARDOUS WASTES

    SciTech Connect

    Jantzen, C; James Marra, J

    2007-09-17

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. At the Savannah River Site (SRS) actual HLW tank waste has successfully been processed to stringent product and process constraints without any rework into a stable borosilicate glass waste since 1996. A unique 'feed forward' statistical process control (SPC) has been used rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. In SQC, the glass product is sampled after it is vitrified. Individual glass property models form the basis for the 'feed forward' SPC. The property models transform constraints on the melt and glass properties into constraints on the feed composition. The property models are mechanistic and depend on glass bonding/structure, thermodynamics, quasicrystalline melt species, and/or electron transfers. The mechanistic models have been validated over composition regions well outside of the regions for which they were developed because they are mechanistic. Mechanistic models allow accurate extension to radioactive and hazardous waste melts well outside the composition boundaries for which they were developed.

  13. Oocyte vitrification as an efficient option for elective fertility preservation.

    PubMed

    Cobo, Ana; García-Velasco, Juan A; Coello, Aila; Domingo, Javier; Pellicer, Antonio; Remohí, José

    2016-03-01

    To provide a detailed description of the current oocyte vitrification status as a means of elective fertility preservation (EFP). Retrospective observational multicenter study. Private university-affiliated center. A total of 1,468 women who underwent EFP because of age or having associated a medical condition other than cancer (January 2007 to April 2015). None. Survival and cumulative live birth rate (CLBR) per consumed oocyte. Mean age was higher with EFP due to age versus having an associated medical reason (37.7 y [95% confidence interval (CI) 36.5-37.9] vs. 35.7 y [95% CI 34.9-36.3]). In total, 137 patients (9.3%) returned to use their oocytes. Overall survival rate was 85.2% (95% CI 83.2-87.2). Live birth rate per patient was higher in women ≤35 years old than ≥36 years old (50% [95% CI 32.7-67.3] vs. 22.9% [95% CI 14.9-30.9]). CLBR was higher and increased faster in younger women. The gain in CLBR was sharp from 5 (15.4%, 95% CI -4.2 to 35.0) to 8 oocytes (40.8%, 95% CI 13.2-68.4), with an 8.4% gain per additional oocyte, in the ≤35-year-old group. The increase was slower with 10-15 oocytes, reaching a plateau CLBR of 85.2%. A milder increase (4.9% gain) was observed in the ≥36-year-old group (from 5.1% [95% CI -0.6 to 10.7] to 19.9% [95% CI 8.7-31.1] when 5-8 oocytes were consumed), reaching the plateau with 11 oocytes (CLBR 35.6%). Forty babies were born. At least 8-10 metaphase II oocytes are necessary to achieve reasonable success. Numbers should be individualized in women >36 years old. We suggest encouraging women who are motivated exclusively by a desire to postpone childbearing because of age, to come at younger ages to increase success possibilities. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Freezing-in and production of entropy in vitrification.

    PubMed

    Möller, Jörg; Gutzow, Ivan; Schmelzer, Jürn W P

    2006-09-07

    Following the classical concepts developed by Simon [Z. Anorg. Allg. Chem. 203, 219 (1931)], vitrification in the cooling of glass-forming melts is commonly interpreted as the transformation of a thermodynamically (meta)stable equilibrium system into a frozen-in, thermodynamically nonequilibrium system, the glass. Hereby it is assumed that the transformation takes place at some well-defined sharp temperature, the glass transition temperature Tg. However, a more detailed experimental and theoretical analysis shows that the transition to a glass proceeds in a broader temperature range, where the characteristic times of change of temperature, tauT=-(TT), and relaxation times, tau, of the system to the respective equilibrium states are of similar order of magnitude. In this transition interval, the interplay of relaxation and change of external control parameters determines the value of the structural order parameters. In addition, irreversible processes take place in the transition interval, resulting both in an entropy freezing-in as well as in an irreversible increase of entropy and, as a result, in significant changes of all other thermodynamic parameters of the vitrifying systems. The effect of entropy production on glass transition and on the properties of glasses is analyzed here for the first time. In this analysis, the structural order-parameter concept as developed by de Donder and van Rysselberghe [Thermodynamic Theory of Affinity (Stanford University Press, Stanford, 1936)] and Prigogine and Defay [Chemical Thermodynamics (Longmans, London, 1954)] is employed. In the framework of this approach we obtain general expressions for the thermodynamic properties of vitrifying systems such as heat capacity, enthalpy, entropy, and Gibbs' free energy, and for the entropy production. As one of the general conclusions we show that entropy production has a single maximum upon cooling and two maxima upon heating in the glass transition interval. The theoretical concepts

  15. Processing of bulk metallic glass.

    PubMed

    Schroers, Jan

    2010-04-12

    Bulk metallic glass (BMG) formers are multicomponent alloys that vitrify with remarkable ease during solidification. Technological interest in these materials has been generated by their unique properties, which often surpass those of conventional structural materials. The metastable nature of BMGs, however, has imposed a barrier to broad commercial adoption, particularly where the processing requirements of these alloys conflict with conventional metal processing methods. Research on the crystallization of BMG formers has uncovered novel thermoplastic forming (TPF)-based processing opportunities. Unique among metal processing methods, TPF utilizes the dramatic softening exhibited by a BMG as it approaches its glass-transition temperature and decouples the rapid cooling required to form a glass from the forming step. This article reviews crystallization processes in BMG former and summarizes and compares TPF-based processing methods. Finally, an assessment of scientific and technological advancements required for broader commercial utilization of BMGs will be made.

  16. Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect.

    PubMed

    Eisenberg, David P; Bischof, John C; Rabin, Yoed

    2016-01-01

    This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided-the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.

  17. Effective cryopreservation of golden Syrian hamster embryos by open pulled straw vitrification.

    PubMed

    Fan, Z; Meng, Q; Bunch, T D; White, K L; Wang, Z

    2016-02-01

    Golden Syrian hamster embryos are difficult to cryopreserve due to their high sensitivity to cryoprotectants and in vitro handling. The objective of this study is to develop a robust open pulled straw (OPS) vitrification technique for cryopreserving hamster embryos at various developmental stages. We first systematically tested the concentrations of cryoprotectants and the exposure times of two-cell embryos to various vitrification solutions. We identified pretreatment of two-cell embryos with 10% (v/v) ethylene glycol (EG) + 10% (v/v) dimethylsulfoxide (DMSO) for 30 s followed by exposure in the vitrification solution, EDFS30 (containing 15% EG + 15% DMSO), for 30 s before plunging into liquid nitrogen (two-step exposure method) as the optimal OPS vitrification protocol. We then investigated the resourcefulness of this protocol for vitrifying hamster embryos at different developmental stages. The results showed that high blastocyst rates from embryos vitrified at two-cell, four-cell, eight-cell, or morula stage (62%, 78%, 80%, or 72%, respectively), but not those verified at pronuclear (0%) or blastocyst stage (24%; P < 0.05), were achieved by this protocol. When embryos vitrified at the two-cell stage were recovered and then directly transferred to recipient females, 29% of them developed to term, a development rate not significantly different (P > 0.05) from the 40% birth rate of the unvitrified controls. In conclusion, we have developed an effective two-step OPS vitrification protocol for hamster embryos.

  18. Improved cryopreservation by diluted vitrification solution with supercooling-facilitating flavonol glycoside.

    PubMed

    Kami, Daisuke; Kasuga, Jun; Arakawa, Keita; Fujikawa, Seizo

    2008-12-01

    The effect of kaempferol-7-O-glucoside (KF7G), one of the supercooling-facilitating flavonol glycosides which was originally found in deep supercooling xylem parenchyma cells of the katsura tree and was found to exhibit the highest level of supercooling-facilitating activity among reported substances, was examined for successful cryopreservation by vitrification procedures, with the aim of determining the possibility of using diluted vitrification solution (VS) to reduce cryoprotectant toxicity and also to inhibit nucleation at practical cooling and rewarming by the effect of supplemental KF7G. Examination was performed using shoot apices of cranberry and plant vitrification solution 2 (PVS2) with dilution. Vitrification procedures using the original concentration (100%) of PVS2 caused serious injury during treatment with PVS2 and resulted in no regrowth after cooling and rewarming (cryopreservation). Dilution of the concentration of PVS2 to 75% or 50% (with the same proportions of constituents) significantly reduced injury by PVS2 treatment, but regrowth was poor after cryopreservation. It is thought that dilution of PVS2 reduced injury by cryoprotectant toxicity, but such dilution caused nucleation during cooling and/or rewarming, resulting in poor survival. On the other hand, addition of 0.5mg/ml (0.05% w/v) KF7G to the diluted PVS2 resulted in significantly (p<0.05) higher regrowth rates after cryopreservation. It is thought that addition of supercooling-facilitating KF7G induced vitrification even in diluted PVS2 probably due to inhibition of ice nucleation during cooling and rewarming and consequently resulted in higher regrowth. The results of the present study indicate the possibility that concentrations of routinely used VSs can be reduced by adding supercooling-facilitating KF7G, by which more successful cryopreservation might be achieved for a wide variety of biological materials.

  19. Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution.

    PubMed

    Wang, Hai-Yan; Inada, Takaaki; Funakoshi, Kunio; Lu, Shu-Shen

    2009-08-01

    Control of ice formation is crucial in cryopreservation of biological substances. Successful vitrification using several additives that inhibit ice nucleation in vitrification solutions has previously been reported. Among these additives, here we focused on a synthetic polymer, poly(vinyl alcohol) (PVA), and investigated the effects of PVA on nucleation and growth of ice in 35% (w/w) aqueous 1,2-propanediol solution by using a differential scanning calorimetry (DSC) system equipped with a cryomicroscope. First, the freezing temperature of the solution was measured using the DSC system, and then the change in ice fraction in the solution during cooling was evaluated based on images obtained using the cryomicroscope, at different concentrations of PVA between 0% and 3% (w/w). Based on the ice fraction, the change in residual solution concentration during cooling was also evaluated and then plotted on the state diagram of aqueous 1,2-propanediol solution. Results indicated that, when the partially glassy and partially frozen state was intentionally allowed, the addition of PVA effectively inhibited not only ice nucleation but also ice growth in the vitrification solution. The effect of PVA on ice growth in the vitrification solution was explained based on kinetic limitations mainly due to mass transport. The interfacial kinetics also might limit ice growth in the vitrification solution only when the ice growth rate decreased below a critical value. This coincides with the fact that PVA exhibits a unique antifreeze activity in the same manner as antifreeze proteins when ice growth rate is lower than a critical value.

  20. Hollow fiber vitrification: a novel method for vitrifying multiple embryos in a single device.

    PubMed

    Matsunari, Hitomi; Maehara, Miki; Nakano, Kazuaki; Ikezawa, Yuka; Hagiwara, Yui; Sasayama, Norihisa; Shirasu, Akio; Ohta, Hisayoshi; Takahashi, Masashi; Nagashima, Hiroshi

    2012-01-01

    Current embryo vitrification methods with proven efficacy are based on the minimum volume cooling (MVC) concept by which embryos are vitrified and rewarmed ultrarapidly in a very small amount of cryopreserving solution to ensure the high viability of the embryos. However, these methods are not suitable for simultaneously vitrifying a large number of embryos. Here, we describe a novel vitrification method based on use of a hollow fiber device, which can easily hold as many as 40 mouse or 20 porcine embryos in less than 0.1 μl of solution. Survival rates of up to 100% were obtained for mouse embryos vitrified in the presence of 15% DMSO, 15% ethylene glycol and 0.5 M sucrose using the hollow fiber vitrification (HFV) method, regardless of the developmental stage of the embryos (1-cell, 2-cell, morula or blastocyst; n = 50/group). The HFV method was also proven to be effective for vitrifying porcine in vitro- and in vivo-derived embryos that are known to be highly cryosensitive. For porcine embryos, the blastocyst formation rate of in vitro maturation (IVM)-derived parthenogenetic morulae after vitrification (48/65, 73.8%) did not decrease significantly compared with non-vitrified embryos (59/65, 90.8%). Transfer of 72 in vivo-derived embryos vitrified at the morula/early blastocyst stages to 3 recipients gave rise to 29 (40.3%) piglets. These data demonstrate that the HFV method enables simultaneous vitrification of multiple embryos while still adhering to the MVC concept, and this new method is very effective for cryopreserving embryos of mice and pigs.

  1. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    SciTech Connect

    Jantzen, C.M.

    2000-04-10

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public.

  2. A study on cryoprotectant solution suitable for vitrification of rat two-cell stage embryos.

    PubMed

    Eto, Tomoo; Takahashi, Riichi; Kamisako, Tsutomu; Hioki, Kyoji; Sotomaru, Yusuke

    2014-02-01

    The present study was performed to develop a suitable cryoprotectant solution for cryopreservation of rat two-cell stage embryos. First, we examined the cell permeability of several cryoprotectants; propylene glycol had the fastest permeability compared to dimethyl sulfoxide, ethylene glycol, and glycerol. Embryos were then exposed to a solution containing propylene glycol to evaluate its effects on fetal development. As the development was similar to that of fresh embryos, P10 (10% v/v propylene glycol in PB1) was used as a pretreatment solution. Next, the effects of the vitrification solution components (sucrose, propylene glycol, ethylene glycol, and Percoll) were examined by observing the vitrification status; 10% v/v propylene glycol, 30% v/v ethylene glycol, 0.3 mol sucrose, and 20% v/v Percoll in PB1 (PEPeS) was the minimum essential concentration for effective vitrification without the formation of ice crystals or freeze fractures. A new vitrification method using P10 and PEPeS was tested using rat embryos. The survival rate of vitrified embryos after exposure to P10 for 120, 300, or 600 s ranged from 95.9% to 98.3%. The fetal developmental rate ranged from 57.7% to 65.2%, which was not significantly different from that of fresh embryos. The experimental results indicated that vitrification using a combination of P10 and PEPeS was suitable for cryopreservation of rat early stage embryos. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area. Volume 1, A systematic approach for identification, prioritization, and closure of technical issues

    SciTech Connect

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1991-12-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. This document, Volume 1, identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues.

  4. Bulk GaN Ion Cleaving

    NASA Astrophysics Data System (ADS)

    Moutanabbir, O.; Gösele, U.

    2010-05-01

    Bulk or freestanding GaN is a key material in various devices other than the blue laser diodes. However, the high cost of bulk GaN wafers severely limits the large scale exploitation of these potential technologies. In this paper, we discuss some engineering issues involved in the application of the ion-cut process to split a thin layer from 2-inch freestanding GaN. This process combines the implantation of light ions and wafer bonding and can possibly be used to reduce the cost of the fabrication of GaN-based devices by allowing the transfer of several bulk quality thin layers from the same donor wafer. To achieve this multi-layer transfer several conditions must be fulfilled. Here issues related to bulk GaN surface irregularities and wafer bowing are discussed. We also describe a method to circumvent most of these problems and achieve high quality bonding.

  5. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 1: Results of treatability study

    SciTech Connect

    Spalding, B.P.; Naney, M.T.; Cline, S.R.; Bogle, M.A.; Tixier, J.S.

    1997-12-01

    A treatability study was initiated in October 1993 to apply in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was later extended to include all of Pit 1 and was performed to support a possible Interim Record of Decision or removal action for closure of one or more of the seepage pits and trenches beginning as early as FY 1997. This treatability study was carried out to establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability for the overlap of melt settings which will be necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of {sup 137}Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. In April 1996 an expulsion of an estimated 10% of the 196 Mg (216 tons) melt body occurred resulting in significant damage to ISV equipment and, ultimately, led to an indefinite suspension of further ISV operations at Pit 1. This report summarizes the technical accomplishments and status of the project in fulfilling these objectives through September 1997.

  6. Seesaw in the Bulk

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Yoshioka, K.

    2011-01-01

    A five-dimensional seesaw framework is analyzed with the lepton-number-violating propagator of bulk right-handed neutrinos. That can bypass summing up the effects of heavy Majorana particles whose masses and wavefunctions are not exactly known. The propagator method makes it easier to evaluate the seesaw-induced neutrino mass for various boundary conditions of bulk neutrinos and in a general background geometry, including the warped extra dimension. It is also found that the higher-dimensional seesaw gives a natural framework for the inverse seesaw suppression of low-energy neutrino masses.

  7. Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

    SciTech Connect

    Kim, Dong-Sang

    2015-03-02

    The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification process control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.

  8. Vitrification is not superior to rapid freezing of normozoospermic spermatozoa: effects on sperm parameters, DNA fragmentation and hyaluronan binding.

    PubMed

    Agha-Rahimi, Azam; Khalili, Mohammad Ali; Nabi, Ali; Ashourzadeh, Sareh

    2014-03-01

    Human sperm vitrification is a new cryopreservation method. This study compared the effects of rapid freezing and vitrification on various sperm parameters, hyaluronan-binding assay and DNA fragmentation and assessed the impact of cryoprotectant agents (CPA) with vitrification. A total of 30 normo-ejaculates were prepared by swim up and the motile sperm fraction was divided into four: fresh (control), rapid freezing, and two vitrification groups (a, lacking CPA; b, with CPA). For rapid freezing, a cryovial of sperm suspension was held just above the liquid nitrogen surface, and for vitrification, 30μl suspension was dropped directly into liquid nitrogen. Sperm parameters, including motility, viability and morphology, declined after cryopreservation in both groups. DNA fragmentation was not significantly higher in the vitrification (15.7±4.4%) or rapid freezing (16.6±5.6%) groups when compared with controls (11.6±4.5%). The rates of hyaluronan binding were similar between the control and cryopreserved groups. Moreover, addition of CPA for vitrification had a neutral effect on rates of sperm recovery. In conclusion, vitrification has great potential for human sperm cryopreservation and does not require CPA, with its possible toxicity. However, it is not superior to rapid cryopreservation regarding sperm recovery rate in normozoospermia. Human sperm vitrification is a new cryopreservation method that has been introduced recently. This study compared the effects of rapid freezing with vitrification on rates of sperm parameters, hyaluronan-binding assay and DNA fragmentation after thawing/warming and assessed the impact of cryoprotectant agent (CPA) on vitrification. The study was performed on 30 ejaculates prepared using the swim-up technique. Each motile sperm suspension was divided into four: control (fresh); rapid freezing; and two vitrification groups (a, lacking CPA; b, with CPA). For rapid freezing, a cryovial of sperm suspension was held above the surface of

  9. Cellular damage suffered by equine embryos after exposure to cryoprotectants or cryopreservation by slow-freezing or vitrification.

    PubMed

    Hendriks, W K; Roelen, B A J; Colenbrander, B; Stout, T A E

    2015-11-01

    Equine embryos are cryopreserved by slow-freezing or vitrification. While small embryos (<300 μm) survive cryopreservation reasonably well, larger embryos do not. It is not clear if slow-freezing or vitrification is less damaging to horse embryos. To compare the type and extent of cellular damage suffered by small and large embryos during cryopreservation by slow-freezing vs. vitrification. Sixty-three Day 6.5-7 embryos were subdivided by size and assigned to one of 5 treatments: control, exposure to slow-freezing or vitrification cryoprotectants (CPs), and cryopreservation by either technique. After thawing/CP removal, embryos were stained with fluorescent stains for various parameters of cellular integrity, and assessed by multiphoton microscopy. Exposing large embryos to vitrification CPs resulted in more dead cells (6.8 ± 1.3%: 95% confidence interval [CI], 3.1-10.4%) than exposure to slow-freezing media (0.3 ± 0.1%; 95% CI 0.0-0.6%: P = 0.001). Cryopreservation by either technique induced cell death and cytoskeleton disruption. Vitrification of small embryos resulted in a higher proportion of cells with fragmented or condensed (apoptotic) nuclei (P = 0.002) than slow-freezing (6.7 ± 1.5%, 95% CI 3.0-10.4% vs. 5.0 ± 2.1%, 95% CI 4.0-14.0%). Slow-freezing resulted in a higher incidence of disintegrated embryos (P = 0.01) than vitrification. Mitochondrial activity was low in control embryos, and was not differentially affected by cryopreservation technique, whereas vitrification changed mitochondrial distribution from a homogenous crystalline pattern in control embryos to a heterogeneous granulated distribution in vitrified embryos (P = 0.05). Cryopreservation caused more cellular damage to large embryos than smaller ones. While vitrification is more practical, it is not advisable for large embryos due to a higher incidence of dead cells. The choice is less obvious for small embryos, as vitrification led to occasionally very high

  10. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes.

    PubMed

    Jiao, Anjun; Han, Xu; Critser, John K; Ma, Hongbin

    2006-06-01

    During freezing, cells are often damaged directly or indirectly by ice formation. Vitrification is an alternative approach to cryopreservation that avoids ice formation. The common method to achieve vitrification is to use relatively high concentrations of cryoprotectant agents (CPA) in combination with a relatively slow cooling rate. However, high concentrations of CPAs have potentially damaging toxic and/or osmotic effects on cells. Therefore, establishing methods to achieve vitrification with lower concentrations of CPAs through ultra-fast cooling rates would be advantageous in these aspects. These ultra-fast cooling rates can be realized by a cooling system with an ultra-high heat transfer coefficient (h) between the sample and coolant. The oscillating motion heat pipe (OHP), a novel cooling device utilizing the pressure change to excite the oscillation motion of the liquid plugs and vapor bubbles, can significantly increase h and may fulfill this aim. The current investigation was designed to numerically study the effects of different values of h on the transient heat transfer characteristics and vitrification tendencies of the cell suspension during the cooling processes in an ultra-thin straw (100 microm in diameter). The transient temperature distribution, the cooling rate and the volume ratio (x) of the ice quantity to the maximum crystallizable ice of the suspension were calculated. From these numerical results, it is concluded that the ultra-high h (>10(4) W/m2 K) obtained by OHPs could facilitate vitrification by efficiently decreasing x as well as the time to pass through the dangerous temperature region where the maximum ice formation happens. For comparison, OHPs can decrease both of the parameters to less than 20% of those from the widely used open pulled straw methods. Therefore, the OHP method will be a promising approach to improving vitrification tendencies of CPA solutions and could also decrease the required concentration of CPAs for

  11. Effects of vitrification on ram spermatozoa using free-egg yolk extenders.

    PubMed

    Jiménez-Rabadán, Pilar; García-Álvarez, Olga; Vidal, Ana; Maroto-Morales, Alejandro; Iniesta-Cuerda, María; Ramón, Manuel; del Olmo, Enrique; Fernández-Santos, Rocío; Garde, J Julián; Soler, Ana Josefa

    2015-08-01

    The present study aimed to examine the behavior of ram spermatozoa subjected to a vitrification process in free-egg yolk diluents in relation with conventional diluents and cryopreservation protocol used in this species. Previously it was investigated the toxicity of cryoprotectants, sucrose and glycerol, based on different concentrations (sucrose at 0.03 M, 0.05 M, 0.15 M and 0.25 M; and glycerol at 3%, 7%, 14% and 18%) compared to a commercial extender (Biladyl® with 20% egg yolk and 7% glyerol). Cryoprotectants which reported less toxicity were chosen to perform the vitrification and results were compared with the conventional cryopreservation. Semen from three rams was collected by electroejaculation. The sperm evaluation was carried out at 0, 2 and 4h through the incubation time at 37°C for the experiment of toxicity and, at thawing when cryopreservation was performed. The sperm quality throughout the incubation time always resulted lower (P⩽0.05) for the free-egg yolk diluents in relation to Biladyl® (control), obtaining the lowest values of sperm quality with the highest concentrations of sucrose and glycerol. The vitrification was carried out with combinations of sucrose and glycerol (sucrose at 0.03 and 0.05 M with 3% and 7% of glycerol, respectively) and with Biladyl® (at different sperm concentrations). The vitrification decreased drastically (P⩽0.05) the sperm quality when combinations of sucrose and glycerol were used. Nevertheless, the sperm samples vitrified with Biladyl® at the lowest sperm concentration showed acceptable values of viability, acrosome integrity and DFI, although the sperm motility was strongly decreased. In conclusion, the use of vitrification with diluents based on combinations of sucrose and glycerol did not work for semen cryopreservation of ram. Promising results were obtained when diluents with egg yolk were used in the vitrification procedure, although more studies are necessary to improve this technique and the use

  12. Effects of vitrification procedures on subsequent development and ultrastructure of in vitro-matured swamp buffalo (Bubalus bubalis) oocytes.

    PubMed

    Boonkusol, Duangjai; Faisaikarm, Tassanee; Dinnyes, Andras; Kitiyanant, Yindee

    2007-01-01

    The purpose of the present study was to investigate the effects of two vitrification procedures on developmental capacity and ultrastructural changes of matured swamp buffalo oocytes. In vitro-matured oocytes were vitrified by using 35 and 40% ethylene glycol as vitrification solution for solid surface vitrification (SSV) and in-straw vitrification (ISV), respectively. Survival rate of vitrified-warmed oocytes, evaluated on the basis of ooplasm homogeneity, oolemma integrity and zona pellucida intactness, as well as parthenogenetic blastocyst rates of vitrified-warmed oocytes were significantly higher with SSV (89.3 and 13.6%, respectively) than ISV (81.8 and 5.5%, respectively). However, they were still significantly lower than that of control oocytes (100 and 34.2%, respectively). For examining the ultrastructural changes, fresh, VS-exposed (ISV and SSV), and vitrified-warmed (ISV and SSV) oocytes were processed for transmission electron microscopy. In VS-exposed oocytes, reduction of microvilli abundance and damage of mitochondrial membrane were found only in the ISV group. In vitrified-warmed oocytes, however, it was clear that both methods of vitrification induced profound ultrastructural modifications to microvilli, mitochondria, oolemma and cortical granules as well as to the size and position of vesicles. Damaged mitochondria were, however, more abundant in ISV vitrified oocytes than in SSV vitrified oocytes, which correlated with the developmental data, showing the superiority of the SSV method. The present study demonstrated the feasibility of vitrification of in vitro-matured swamp buffalo oocytes.

  13. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification. Revision 3, Part 2

    SciTech Connect

    Not Available

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program.

  14. U.S. Department of Energy, National Energy Technology Laboratory Solid-State Lighting Core Technologies Light Emitting Diodes on Semipolar Bulk GaN Substrate with IQE > 80% at 150 A/cm2 and 100 0C

    SciTech Connect

    Chakraborty, Arpan; David, Aurelien; Grundmann, Michael; Tyagi, Anurag; Craven, Michael; Hurni, Christophe; Cich, Michael

    2015-03-31

    GaN is a crucial material for light-emitting diodes (LEDs) emitting in the violet-to-green range. Despite its good performance, it still suffers from significant technical limitations. In particular, the efficiency of GaN-based LEDs decreases at high current (“current droop”) and high temperature (“temperature droop”). This is problematic in some lighting applications, where a high-power operation is required. This program studied the use of particular substrates to improve the efficiency of GaN-based LEDs: bulk semipolar (SP) GaN substrates. These substrates possess a very high material quality, and physical properties which are distinctly different from legacy substrates currently used in the LED industry. The program focused on the development of accurate metrology to quantify the performance of GaN-based LEDs, and on improvement to LED quality and design on SP substrates. Through a thorough optimization process, we demonstrated violet LEDs with very high internal quantum efficiency, exceeding 85% at high temperature and high current. We also investigated longer-wavelength blue emitters, but found that the limited strain budget was a key limitation.

  15. Three vitrification-based cryopreservation procedures cause different cryo-injuries to potato shoot tips while all maintain genetic integrity in regenerants.

    PubMed

    Wang, Biao; Li, Jing-Wei; Zhang, Zhi-Bo; Wang, Ren-Rui; Ma, Yan-Li; Blystad, Dag-Ragnar; Keller, E R Joachim; Wang, Qiao-Chun

    2014-08-20

    We previously reported successful cryopreservation of shoot tips of potato 'Zihuabai' by three vitrification-based protocols. In the present study, cryo-injury to shoot tips and genetic stability in regenerants recovered from cryopreserved shoot tips by the three vitrification-based protocols were further investigated. The results showed that sucrose preculture caused no obviously different injuries, while dehydration with plant vitrification solution 2 (PVS2) was the step causing major damage to cells of shoot tips, regardless of the cryogenic procedures. Compared with droplet-vitrification and encapsulation-vitrification, vitrification caused the most severe injury to cells of the shoot tips, thus resulting in much longer time duration for shoot recovery and much lower shoot regrowth rate. Cells in apical dome and the youngest leaf primordia were able to survive and subsequently some of them regrew into shoots following all three vitrification-based cryopreservation procedures. Analyses using inter-simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP) markers in shoots regrown from all three vitrification-based protocols did not find any polymorphic bands. The results reported here suggest that vitrification-based cryo-procedures can be considered promising methods for long-term preservation of potato genetic resources. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The nature of the volatile technetium species formed during vitrification of borosilicate glass

    SciTech Connect

    Childs, Bradley C.; Poineau, Frederic; Czerwinski, Kenneth R.; Sattelberger, Alfred P.

    2015-05-26

    Vitrification of sodium pertechnetate into borosilicate glass was performed in air at 1100 C. A glass with a composition similar to the one developed for vitrification of the low activity waste at the Hanford site was used. A red volatile species was observed above 600° C. The extended X-ray absorption fine structure results indicate the environment of the absorbing Tc atom consists of 2.9(6) O atoms at 1.73(2) A° , 2.2(4) O atoms at 2.02(2) A° , and 0.8(2) O atoms at 2.18(2) A° . The results are consistent with the presence of a mononuclear species with a structure closely related to TcO3(OH)(H2O)2.

  17. Vitrification of F006 plating waste sludge by Reactive Additive Stabilization Process (RASP)

    SciTech Connect

    Martin, H.L.; Jantzen, C.M.; Pickett, J.B.

    1994-06-01

    Solidification into glass of nickel-on-uranium plating wastewater treatment plant sludge (F006 Mixed Waste) has been demonstrated at the Savannah River She (SRS). Vitrification using high surface area additives, the Reactive Additive Stabilization Process (RASP), greatly enhanced the solubility and retention of heavy metals In glass. The bench-scale tests using RASP achieved 76 wt% waste loading In both soda-lime-silica and borosilicate glasses. The RASP has been Independently verified by a commercial waste management company, and a contract awarded to vitrify the approximately 500,000 gallons of stored waste sludge. The waste volume reduction of 89% will greatly reduce the disposal costs, and delisting of the glass waste is anticipated. This will be the world`s first commercial-scale vitrification system used for environmental cleanup of Mixed Waste. Its stabilization and volume reduction abilities are expected to set standards for the future of the waste management Industry.

  18. In-drum vitrification of transuranic waste sludge using microwave energy

    SciTech Connect

    Petersen, R.D.; Johnson, A.J.

    1989-01-01

    Microwave vitrification of transuranic (TRU) waste at the Rocky Flats nuclear weapons plant is being tested using actual TRU waste in a bench-scale system and simulated waste in a pilot system. In 1987, bench-scale testing was completed to determine the effectiveness of in-drum microwave vitrification of simulated precipitation sludge. The equipment used in the bench tests included a 6-kW, 2.45-GHz microwave generator, aluminum cavity, turntable, infrared (IR) thermometer, and screw feeder. Results similar to those achieved in bench-scale testing are reproducible using a 915-MHz microwave system in solidifying simulated TRU sludge. Nine samples have been processed to date. Also, preliminary results using actual TRU waste indicate that the actual waste will behave in a similar way to the surrogate waste used in the 2.45-GHz system. Work is ongoing to complete the TRU waste tests.

  19. HWVP pilot-scale vitrification system campaign: LFCM-8 summary report

    SciTech Connect

    Perez, J.M.; Whitney, L.D.; Buchmiller, W.C.; Daume, J.T.; Whyatt, G.A.

    1996-04-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to treat the high-level radiative waste (HLW) stored in underground storage tanks as an alkaline sludge. Tank waste will first be retrieved and pretreated to minimize solids requiring vitrification as HLW. The glass product resulting from HWVP operations will be stored onsite in stainless steel canisters until the HLW repository is available for final disposal. The first waste stream scheduled to be processed by the HWVP is the neutralized current acid waste (NCAW) stored in double-shell storage tanks. The Pacific Northwest Laboratory (PNL) is supporting Westinghouse Hanford Company (WHC) by providing research, development, and engineering expertise in defined areas. As a part of this support, pilot-scale testing is being conducted to support closure of HWVP design and development issues. Testing results will verify equipment design performance, establish acceptable and optimum process parameters, and support product qualification activities.

  20. High temperature materials for radioactive waste incineration and vitrification. Revision 1

    SciTech Connect

    Bickford, D F; Ondrejcin, R S; Salley, L

    1986-01-01

    Incineration or vitrification of radioactive waste subjects equipment to alkaline or acidic fluxing, oxidation, sulfidation, carburization, and thermal shock. It is necessary to select appropriate materials of construction and control operating conditions to avoid rapid equipment failure. Nickel- and cobalt-based alloys with high chromium or aluminum content and aluminum oxide/chromium oxide refractories with high chromium oxide content have provided the best service in pilot-scale melter tests. Inconel 690 and Monofrax K-3 are being used for waste vitrification. Haynes 188 and high alumina refractory are undergoing pilot scale tests for incineration equipment. Laboratory tests indicate that alloys and refractories containing still higher concentrations of chromium or chromium oxide, such as Inconel 671 and Monofrax E, may provide superior resistance to attack in glass melter environments.