Sample records for bulk waste removal

  1. 40 CFR 761.61 - PCB remediation waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Subpart N of this part provides a method for collecting new site characterization data or for assessing... left after cleanup is completed. (i) Bulk PCB remediation waste. Bulk PCB remediation waste includes... similar material of minimum thickness spread over the area where remediation waste was removed or left in...

  2. Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste.

    PubMed

    Ma, Jie; Yang, Yongqi; Dai, Xiaoli; Chen, Yetong; Deng, Hanmei; Zhou, Huijun; Guo, Shaohui; Yan, Guangxu

    2016-05-01

    Contamination from oil-field drilling waste is a worldwide environmental problem. This study investigated the performance of four bench-scale biopiles in treating drilling waste: 1) direct biopile (DW), 2) biopile plus oil-degrading microbial consortium (DW + M), 3) biopile plus microbial consortium and bulking agents (saw dust) (DW + M + BA), 4) biopile plus microbial consortium, bulking agents, and inorganic nutrients (Urea and K2HPO4) (DW + M + BA + N). Ninety days of biopiling removed 41.0%, 44.0%, 55.7% and 87.4% of total petroleum hydrocarbon (TPH) in the pile "DW", "DW + M", "DW + M + BA", and "DW + M + BA + N" respectively. Addition of inorganic nutrient and bulking agents resulted in a 56.9% and 26.6% increase in TPH removal efficiency respectively. In contrast, inoculation of hydrocarbon-degrading microorganisms only slightly enhanced the contaminant removal (increased 7.3%). The biopile with stronger contaminant removal also had higher pile temperature and lower pile pH (e.g., in "DW + M + BA + N"). GC-MS analysis shows that biopiling significantly reduced the total number of detected contaminants and changed the chemical composition. Overall, this study shows that biopiling is an effective remediation technology for drilling waste. Adding inorganic nutrients and bulking agents can significantly improve biopile performance while addition of microbial inocula had minimal positive impacts on contaminant removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Solid Waste Treatment Technology

    ERIC Educational Resources Information Center

    Hershaft, Alex

    1972-01-01

    Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)

  4. Effects of adding bulking agents on the biodrying of kitchen waste and the odor emissions produced.

    PubMed

    Yuan, Jing; Li, Yun; Zhang, Hongyu; Zhang, Difang; Chadwick, David; Li, Guoxue; Wang, Guoying; Chi, Menghao; Yang, Fan

    2018-05-01

    The effects of adding a bulking agent on the performance and odor emissions (ammonia and eight sulfur-containing odorous compounds) when biodrying kitchen waste were investigated. Three treatments were considered: the addition of either cornstalks (CS) or wood peat (WP) to kitchen waste as a bulking agent before biodrying, and a control treatment (CK). The water-removal rates for CK, CS, and WP treatments were 0.35, 0.56, and 0.43kg/kg, respectively. Addition of bulking agents to kitchen waste produced less leachate, higher moisture-removal rates, and lower consumption of volatile solids. The CS treatment had the highest biodrying index (4.07), and those for the WP and CK treatments were 3.67 and 1.97, respectively. Adding cornstalks or wood peat decreased NH 3 emissions by 55.8% and 71.7%, respectively. Total sulfur losses were 3.6%-21.6% after 21days biodrying, and H 2 S and Me 2 SS were the main (>95%) sulfur compounds released. The smallest amounts of sulfur-containing odorous compounds were emitted when cornstalks were added, and adding cornstalks and wood peat decreased total sulfur losses by 50.6%-64.8%. Copyright © 2017. Published by Elsevier B.V.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Weldon Spring Quarry is one of two noncontiguous areas that constitute the US Department of Energy`s (DOE) Weldon Spring site. The main area of the site is the chemical plant. Both areas are located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis. The US Environmental Protection Agency (EPA) listed the quarry on the National Priorities List (NPL) in 1987, and the chemical plant area was added to the list in 1989. The quarry is about 6.4 km (4 mi) south-southwest of the chemical plant area; it is accessible from State Route 94 andmore » is currently fenced and closed to the public. The quarry is approximately 300 m (1,000 ft) long by 140 m (450 ft) wide and covers an area of approximately 3.6 ha (9 acres). The quarry was used by the Army for disposal of chemically contaminated (explosive) materials in the 1940s and was later used for the disposal of radioactively contaminated material by the Atomic Energy Commission (AEC) in the 1960s. Approximately 110,000 m{sup 3} (144,000 yd{sup 3}) of soil and waste material was removed from the quarry and transported to the chemical plant area as part of completing the remedial action stipulated in the Record of Decision (ROD) for the Quarry Bulk Waste Operable Unit (DOE 1990). Bulk waste removal was completed in October 1995. These wastes have been placed in the disposal cell at the chemical plant. Prior to bulk waste removal, contaminated water contained in the quarry pond was also removed; approximately 170 million liters (44 million gal) have been treated as of March 1998.« less

  6. Characterization of the March 2017 Tank 15 Waste Removal Slurry Sample (Combination of Slurry Samples HTF-15-17-28 and HTF-15-17-29)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S. H.; King, W. D.; Coleman, C. J.

    2017-05-09

    Two March 2017 Tank 15 slurry samples (HTF-15-17-28 and HTF-15-17-29) were collected during the second bulk waste removal campaign and submitted to SRNL for characterization. At SRNL, the two samples were combined and then characterized by a series of physical, elemental, radiological, and ionic analysis methods. Sludge settling as a function of time was also quantified. The characterization results reported in this document are consistent with expectations based upon waste type, process knowledge, comparisons between alternate analysis techniques, and comparisons with the characterization results obtained for the November 2016 Tank 15 slurry sample (the sample collected during the first bulkmore » waste removal campaign).« less

  7. Pretreatment of Hanford medium-curie wastes by fractional crystallization.

    PubMed

    Nassif, Laurent; Dumont, George; Alysouri, Hatem; Rousseau, Ronald W

    2008-07-01

    Acceleration of the schedule for decontamination of the Hanford site using bulk vitrification requires implementation of a pretreatment operation. Medium-curie waste must be separated into two fractions: one is to go to a waste treatment and immobilization plant and a second, which is low-activity waste, is to be processed by bulk vitrification. The work described here reports research on using fractional crystallization for that pretreatment. Sodium salts are crystallized by evaporation of water from solutions simulating those removed from single-shell tanks, while leaving cesium in solution. The crystalline products are then recovered and qualified as low-activity waste, which is suitable upon redissolution for processing by bulk vitrification. The experimental program used semibatch operation in which a feed solution was continuously added to maintain a constant level in the crystallizer while evaporating water. The slurry recovered at the end of a run was filtered to recover product crystals, which were then analyzed to determine their composition. The results demonstrated that targets on cesium separation from the solids, fractional recovery of sodium salts, and sulfate content of the recovered salts can be achieved by the process tested.

  8. Evolution of thermoelectric performance for (Bi,Sb){sub 2}Te{sub 3} alloys from cutting waste powders to bulks with high figure of merit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Xi'an, E-mail: groupfxa@163.com; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081; School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081

    Bi{sub 2}Te{sub 3} based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi{sub 2}Te{sub 3} based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb){sub 2}Te{sub 3} alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb){sub 2}Te{sub 3} alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used inmore » this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi{sub 0.36}Sb{sub 1.64}Te{sub 3} and Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi{sub 2}Te{sub 3} based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi{sub 2}Te{sub 3} based wastes were directly selected as raw materials for TE alloys. • Contaminants from cutting fluid and oxides could be effectively removed. • Bulk Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} with ZT of 1.16 was obtained from Bi{sub 2}Te{sub 3} based wastes. • Different from hydrometallurgy, the recycling method introduced here was green. • Directly recycling Bi{sub 2}Te{sub 3} wastes can lower raw material costs of manufacturers.« less

  9. Methods for Heel Retrieval for Tanks C-101, C-102, and C-111 at the Hanford Site - 13064

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sams, T.L.; Kirch, N.W.; Reynolds, J.H.

    The purpose of this paper is to evaluate the prospects of using bulk waste characteristics to determine the most appropriate heel retrieval technology. If the properties of hard to remove heels can be determined before bulk retrieval, then a heel retrieval technology can be selected before bulk retrieval is complete. This would save substantially on sampling costs and would allow the deployment of the heel retrieval technology immediately after bulk retrieval. The latter would also accelerate the heel removal schedule. A number of C-farm retrievals have been fully or partially completed at the time of this writing. Thus, there ismore » already substantial information on the success of different technologies and the composition of the heels. There is also substantial information on the waste types in each tank based on historical records. Therefore, this study will correlate the performance of technologies used so far and compare them to the known waste types in the tanks. This will be used to estimate the performance of future C Farm heel retrievals. An initial decision tree is developed and employed on tanks C-101, C-102, and C 111. An assumption of this study is that no additional characterization information would be available, before or after retrieval. Note that collecting additional information would substantially increase the probability of success. Deploying some in-situ testing technologies, such as a water lance or an in-situ Raman probe, might substantially increase the probability of successfully selecting the process conditions without having to take samples from the tanks for laboratory analysis. (authors)« less

  10. Methods for heel retrieval for tanks C-101, C-102, and C-111 at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sams, Terry L.; Kirch, N. W.; Reynolds, Jacob G.

    The purpose of this paper is to evaluate the prospects of using bulk waste characteristics to determine the most appropriate heel retrieval technology. If the properties of hard to remove heels can be determined before bulk retrieval, then a heel retrieval technology can be selected before bulk retrieval is complete. This would save substantially on sampling costs and would allow the deployment of the heel retrieval technology immediately after bulk retrieval. The latter would also accelerate the heel removal schedule. A number of C-farm retrievals have been fully or partially completed at the time of this writing. Thus, there ismore » already substantial information on the success of different technologies and the composition of the heels. There is also substantial information on the waste types in each tank based on historical records. Therefore, this study will correlate the performance of technologies used so far and compare them to the known waste types in the tanks. This will be used to estimate the performance of future C Farm heel retrievals. An initial decision tree is developed and employed on tanks C-101, C-102, and C 111. An assumption of this study is that no additional characterization information would be available, before or after retrieval. Note that collecting additional information would substantially increase the probability of success. Deploying some in-situ testing technologies, such as a water lance or an in-situ Raman probe, might substantially increase the probability of successfully selecting the process conditions without having to take samples from the tanks for laboratory analysis.« less

  11. Test and Evaluation of a Pilot System for Ion Exchange Treatment of Cadmium Cyanide Wastes

    DTIC Science & Technology

    1993-09-01

    rate, metal concentration and solution chemistry , and temperature. These factors affect the diffusion rate of metal ions from the bulk solution to the...Changes in Cd2+ or CN- resin capacity and removal efficiency after a number of regeneration cycles; • Discharge leakage levels of Cd2+ and CN- after...a filter to remove any suspended solids, an activated-carbon column to remove any organic matter (this step was not utilized since organic levels

  12. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudduth, Christie; Vitali, Jason; Keefer, Mark

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the factmore » that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.« less

  13. Treatment of irradiated graphite from French Bugey reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Howard; Laurent, Gerard

    In 2008, following the general French plan for nuclear waste management, Electricite de France attempted to find for irradiated graphite an alternative solution to direct storage at the low-activity long-life storage center in France managed by the national agency for wastes (ANDRA). EDF management requested that its engineering arm, EDF CIDEN, study the graphite treatment alternatives to direct storage. In mid-2008, this study revealed the potential advantage for EDF to use a steam reforming process known as Thermal Organic Reduction, 'THOR' (owned by Studsvik, Inc., USA), to treat or destroy the graphite matrix and limit the quantity of secondary wastemore » to be stored. In late 2009, EDF began a test program with Studsvik to determine if the THOR steam reforming process could be used to destroy the graphite. The program also sought to determine if the graphite could be treated to release the bulk of activity while minimizing the gasification of the bulk mass of the graphite. In October 2009, tests with non-irradiated graphite were completed and demonstrated destruction of a graphite matrix by the THOR process at satisfactory rates. After gasifying the graphite, focus shifted to the effect of roasting graphite at high temperatures in inert gases with low concentrations of oxidizing gases to preferentially remove volatile radionuclides while minimizing the graphite mass loss to 5%. A radioactive graphite sleeve was imported from France to the US for these tests. Completed in April 2010, 'Phase I' of testing showed that the process removed >99% of H-3 and 46% of C-14 with <6% mass loss. Completed in September 2011, 'Phase II' testing achieved increased removals as high as 80% C-14. During Phase II, it was also discovered that roasting in a reducing atmosphere helped to limit the oxidation of the graphite. Future work seeks to explore the effects of reducing gases to limit the bulk oxidation of graphite. If the graphite could be decontaminated of long-lived radionuclides up to 95% for C-14 while minimizing mass loss to <5%, this would minimize the volume of any secondary waste streams and potentially lower the waste class of the larger bulk of graphite. Alternatively, if up to 95% decontamination of C-14 is achieved, the graphite may be completely gasified which could result in lower disposal. (authors)« less

  14. Test Report for Cesium and Solids Removal from an 11.5L Composite of Archived Hanford Double Shell Tank Supernate for Off-Site Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Stephanie R.; Cooke, Gary A.

    The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion-exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid in themore » classification of the waste for shipping, receiving, treatment, and disposal determinations.« less

  15. Test Report for Cesium and Solids Removal from an 11.5L Composite of Archived Hanford Double Shell Tank Supernate for Off-Site Disposal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, S. R.; Cooke, G. A.

    The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid inmore » the classification of the waste for shipping, receiving, treatment, and disposal determinations.« less

  16. Superfund Record of Decision (EPA Region 4): Newsom Brothers/Old Reichhold, Columbia, MS. (First remedial action), September 1989. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-09-18

    The 81-acre Newsom Brothers/Old Reichhold site is in Marion County, Columbia, Mississippi. Site activities included producing tall oils, turpentine, calcium and zinc resinates, and polymerized and rubber resins. Furthermore, PCP was apparently mixed with diesel oil and sold, and xylenes were used in a number of processes. A State investigation in 1976 revealed that waste water containing phenols, oil, and grease was discharging to a small creek. Further investigations resulted in EPA performing an immediate removal action in 1984, which included the removal of over 600 surface drums from the site and excavating and draining two ponds, one of whichmore » was subsequently filled with clean fill. Onsite buried drum areas were the target of another EPA removal action conducted in 1987-88. In addition there is an extensive system of concrete drains that served to collect and drain spilled wastes and rain water that has an area of runoff of approximately 300,000 square feet. The primary contaminants of concern in the soil, sediment, and bulked wastes are organics including PAHs, PCBs, and PCP, and metals.« less

  17. The removal of As(III) and As(V) from aqueous solutions by waste materials.

    PubMed

    Rahaman, M S; Basu, A; Islam, M R

    2008-05-01

    The use of different waste materials such as Atlantic Cod fish scale, chicken fat, coconut fibre and charcoal in removing arsenic [As(III) and As(V)] from aqueous solutions was investigated. Initial experimental runs, conducted for both As(III) and As(V) with the aforementioned materials, demonstrated the potential of using Atlantic Cod fish scale in removing both species of arsenic from aqueous streams. Therefore, the biosorbent fish scale was selected for further investigations and various parameters such as residence time, adsorbent dose, initial concentration of adsorbate, grain size of the adsorbent and pH of the bulk phase were studied to establish optimum conditions. The maximum adsorption capacity was observed at pH value 4.0. The equilibrium adsorption data were interpreted by using both Freundlich and Langmuir models. Rapid small-scale column tests (RSSCT) were also performed to determine the breakthrough characteristics of the arsenic species with respect to packed biosorbent columns.

  18. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    .... Remediation Waste AGENCY: Environmental Protection Agency (EPA). ACTION: Request for Public Comment. SUMMARY... biphenyl (PCB) disposal regulations regarding PCB bulk product and PCB remediation waste. The proposed... regarding PCB bulk product and PCB remediation waste under regulations promulgated at 40 CFR part 761. The...

  19. Magnetic Separation Using HTS Bulk Magnet for Cs-Bearing Fe precipitates

    NASA Astrophysics Data System (ADS)

    Oka, T.; Ichiju, K.; Sasaki, S.; Ogawa, J.; Fukui, S.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Aoki, S.; Ohnishi, N.

    2017-09-01

    A peculiar magnetic separation technique has been examined in order to remove the Cs-bearing Fe precipitates formed of the waste ash from the withdrawn incinerator furnaces in Fukushima. The separation system was constructed in combination with high temperature superconducting bulk magnets which generates the intensive magnetic field over 2 T, which was activated by the pulsed field magnetization process. The separation experiment has been operated with use of the newly-built alternating channel type magnetic separating device, which followed the high-gradient magnetic separation technique. The magnetic stainless steel filters installed in the water channels are magnetized by the applied magnetic fields, and are capable of attracting the precipitates bearing the Fe compound and thin Cs contamination. The experimental results clearly exhibited the positive feasibility of HTS bulk magnets.

  20. Helminth eggs inactivation efficiency by faecal sludge dewatering and co-composting in tropical climates.

    PubMed

    Koné, Doulaye; Cofie, Olufunke; Zurbrügg, Christian; Gallizzi, Katharina; Moser, Daya; Drescher, Silke; Strauss, Martin

    2007-11-01

    This study investigates helminth eggs removal and inactivation efficiency in a treatment process combining faecal sludge (FS) dewatering and subsequent co-composting with organic solid waste as a function of windrow turning frequency. Fresh public toilet sludge and septage mixed at a 1:2 ratio were dewatered on a drying bed. Biosolids with initial loads of 25-83 helminth eggs/g total solids (TS) were mixed with solid waste as bulking material for co-composting at a 1:2 volume ratio. Two replicate sets of compost heaps were mounted in parallel and turned at different frequencies during the active composting period: (i) once every 3 days and (ii) once every 10 days. Turning frequency had no effect on helminth eggs removal efficiency. In both setups, helminth eggs were reduced to <1 viable egg/g TS, thereby complying with the WHO guidelines 2006 for the safe reuse of FS.

  1. Co-biodrying of sewage sludge and organic fraction of municipal solid waste: Role of mixing proportions.

    PubMed

    Zhang, Difang; Luo, Wenhai; Yuan, Jing; Li, Guoxue

    2018-04-26

    This study investigated the performance of co-biodrying sewage sludge and organic fraction of municipal solid waste (OFMSW) at different proportions. Cornstalk was added at 15% (of total wet weight) as the bulking agent. Results show that increasing OFMSW percentage promoted the biodegradation of organic matter, thus enhancing the temperature integration value and water removal to above 75% during sludge and OFMSW co-biodrying. In particular, adding more OFMSW accelerated the biodegradation of soluble carbohydrates, lignins, lipids, and amylums, resulting in more organic loss and thus lower biodrying index (3.3-3.7 for 55-85% OFMSW). Water balance calculation indicated that evaporation was the main mechanism for water removal. Heat used for water evaporation was 37.7-48.6% of total heat consumption during co-biodrying. Our results suggest that sludge and OFMSW should be mixed equally for their efficient co-biodrying. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling bulk PCB remediation waste..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.265 Sampling bulk PCB remediation waste and porous surfaces...

  3. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removalmore » and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned motor pumps designed to fit within available risers and have significant agitation capabilities to suspend waste solids. Waste removal and closure of two tanks has been accomplished with agitation provided by 3 SMPs installed within the tanks. In 2012, a team was assembled to investigate alternative solids removal technologies to support waste removal for closing tanks. The goal of the team was to find a more cost effective approach that could be used to replace the current mixing pump technology. This team was unable to identify an alternative technology outside of mixing pumps to support waste agitation and removal from SRS waste tanks. However, the team did identify a potentially lower cost mixing pump compared to the baseline SLPs and SMPs. Rather than using the traditional procurement using an engineering specification, the team proposed to seek commercially available submersible mixer pumps (CSMP) as alternatives to SLPs and SMPs. SLPs and SMPs have a high procurement cost and the actual cost of moving pumps between tanks has shown to be significantly higher than the original estimates that justified the reuse of SMPs and SLPs. The team recommended procurement of “off-the-shelf” industry pumps which may be available for significant savings, but at an increased risk of failure and reduced operating life in the waste tank. The goal of the CSMP program is to obtain mixing pumps that could mix from bulk waste removal through tank closure and then be abandoned in place as part of tank closure. This paper will present the development, progress and relative advantages of the CSMP.« less

  4. Effect of granular porous media on the composting of swine manure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ku-Yong; Kim, Hyun-Woo; Han, Sun-Kee

    2008-11-15

    This study investigated the feasibility of a bulking agent of granular porous media (GPM) for the composting of swine manure. Two lab-scale composting reactors were operated to evaluate the general performances and maturity parameters using GPM made of wastes from the Portland cement manufacturing processes as an alternative bulking agent. The overall volatile solid (VS) removal was 38.5% (dry basis). During the experiments, moisture content ranged between 41% and 53%, ensuring feasibility of microbial activity in composting. Cured compost showed proper maturity and low phytotoxicity, despite the slight decreases of CO{sub 2} production and VS removal at the second batchmore » operation. Various physico-chemical parameters of the cured compost met the regulatory standards reported elsewhere. The pH, carbon-to-nitrogen ratio, ammonia nitrogen and soluble organic carbon (SOC) of the cured compost were significantly correlated to the germination index (GI) using the seeds of Chinese cabbage and lettuce, indicating the progressive biodegradation of phytotoxins as well as organic matter. Consequently, the results obtained in this study demonstrate that GPM could contribute to the environmentally friendly and economical composting of problematic swine manure as a recyclable bulking agent.« less

  5. Improved compaction of dried tannery wastewater sludge.

    PubMed

    Della Zassa, M; Zerlottin, M; Refosco, D; Santomaso, A C; Canu, P

    2015-12-01

    We quantitatively studied the advantages of improving the compaction of a powder waste by several techniques, including its pelletization. The goal is increasing the mass storage capacity in a given storage volume, and reducing the permeability of air and moisture, that may trigger exothermic spontaneous reactions in organic waste, particularly as powders. The study is based on dried sludges from a wastewater treatment, mainly from tanneries, but the indications are valid and useful for any waste in the form of powder, suitable to pelletization. Measurements of bulk density have been carried out at the industrial and laboratory scale, using different packing procedures, amenable to industrial processes. Waste as powder, pellets and their mixtures have been considered. The bulk density of waste as powder increases from 0.64 t/m(3) (simply poured) to 0.74 t/m(3) (tapped) and finally to 0.82 t/m(3) by a suitable, yet simple, packing procedure that we called dispersion filling, with a net gain of 28% in the compaction by simply modifying the collection procedure. Pelletization increases compaction by definition, but the packing of pellets is relatively coarse. Some increase in bulk density of pellets can be achieved by tapping; vibration and dispersion filling are not efficient with pellets. Mixtures of powder and pellets is the optimal packing policy. The best compaction result was achieved by controlled vibration of a 30/70 wt% mixture of powders and pellets, leading to a final bulk density of 1t/m(3), i.e. an improvement of compaction by more than 54% with respect to simply poured powders, but also larger than 35% compared to just pellets. That means increasing the mass storage capacity by a factor of 1.56. Interestingly, vibration can be the most or the least effective procedure to improve compaction of mixtures, depending on characteristics of vibration. The optimal packing (30/70 wt% powders/pellets) proved to effectively mitigate the onset of smouldering, leading to self-heating, according to standard tests, whereas the pure pelletization totally removes the self-heating hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Characterization of Atmospheric Pressure Plasma Torch and the Surface Interaction for Material Removal

    NASA Astrophysics Data System (ADS)

    McWilliams, Anthony Joseph

    An atmospheric pressure plasma torch has been developed and characterized for removal of organic based coatings. The focus of the Strategic Environmental Research & Development Program (SERDP) project WP-1762, that funded the bulk of this dissertation work, is removal of paint from US Navy vessels. The goal is to develop a novel technology for coating removal that is capable of reducing the amount of environmental waste produced during the commonly used grit blasting process. The atmospheric pressure air plasma torch was identified as having the capacity to remove the paint systems while using only compressed air and electricity as a media-less removal system with drastically reduced waste generation. Any improvements to the existing technology need to be based on scientific knowledge and thus the plasma removal mechanisms or material warranted investigation. The removal of material does not show a strong relation to the plasma parameters of power, frequency, and gas flow, nor is there a strong relation to the presences of inorganic fillers impeding or altering the removal rates. The underlying removal mechanisms also do not show a strong correlation to the rotational temperature of the plasma but do show a strong correlation to the optical emission intensity. Primarily, the emission from atomic oxygen and molecular nitrogen were identified significant contributors and were investigated further. The plasma feed gas was then varied from the nitrogen and oxygen ratio present in ambient air to pure nitrogen to identify the effect of oxygen on the removal mechanism. From these experiments it was concluded that the oxygen present in air does contribute to the overall removal mechanism; however, it is not the sole contributing factor with the other major factor being nitrogen.

  7. 40 CFR 761.340 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... leaching characteristics for storage or disposal. (a) Existing accumulations of non-liquid, non-metal PCB bulk product waste. (b) Non-liquid, non-metal PCB bulk product waste from processes that continuously generate new waste. (c) Non-liquid PCB remediation waste from processes that continuously generate new...

  8. Usage of air jigging for multi-component separation of construction and demolition waste.

    PubMed

    Ambrós, Weslei Monteiro; Sampaio, Carlos Hoffmann; Cazacliu, Bogdan Grigore; Miltzarek, Gerson Luis; Miranda, Leonardo R

    2017-02-01

    The use of air jigging for performing multi-component separation in the treatment of mixed construction and demolition waste was studied. Sorting tests were carried out with mixtures of equal bulk volume of concrete and brick in which fixed quantities of unwanted materials - gypsum, wood and paper - were added. Experimental results have demonstrated the possibility to use air jigging to carry out both the removal of low-density contaminants and the concrete concentration in only one process step. In relation to the removal of contaminants only, the overall performance of jigging process can be comparable with that of commercial air classifiers and automatic sorting systems. Also, the initial content of contaminants seems does not have a significant effect on the separation extent. These results are of particular importance for recycling plants processing as they represent an alternative to optimize the use of air jigs. Further investigation is needed in order to evaluate the practical feasibility of such method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale upmore » test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.« less

  10. Estimating Residual Solids Volume In Underground Storage Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.« less

  11. 40 CFR 761.347 - First level sampling-waste from existing piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation... a cone; that is, having a circular base with PCB bulk product waste or PCB remediation waste... one pile. If the PCB bulk product waste or PCB remediation waste consists of more than one pile or...

  12. Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting.

    PubMed

    Yuan, Jing; Yang, Qingyuan; Zhang, Zhiye; Li, Guoxue; Luo, Wenhai; Zhang, Difang

    2015-11-01

    The effects of adding a bulking agent and chemically pretreating municipal kitchen waste before aerobic composting were studied using a laboratory-scale system. The system used 20-L reactors and each test lasted 28days. The objective was to decrease NH3 and H2S emissions during composting. The bulking agent, dry cornstalks, was mixed with the kitchen waste to give a mixture containing 15% (wet weight) bulking agent. A combined treatment was also conducted, in which kitchen waste mixed with the bulking agent was pretreated with ferric chloride (FeCl3). Less leachate was produced by the composted kitchen waste mixed with bulking agent than by the kitchen waste alone, when the materials had reached the required maturity. The presence of cornstalks also caused less H2S to be emitted, but had little impact on the amount of NH3 emitted. The FeCl3 was found to act as an effective chemical flocculant, and its presence significantly decreased the amounts of NH3 and H2S emitted. Kitchen waste mixed with cornstalks and treated with FeCl3 emitted 42% less NH3 and 76% less H2S during composting than did pure kitchen waste. Copyright © 2015. Published by Elsevier B.V.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for physical testing. Covered are: properties of solutions, slurries, and sludges; rheological measurement with cone/plate viscometer; % solids determination; particle size distribution by laser scanning; penetration resistance of radioactive waste; operation of differential scanning calorimeter, thermogravimetric analyzer, and high temperature DTA and DSC; sodium rod for sodium bonded fuel; filling SP-100 fuel capsules; sodium filling of BEATRIX-II type capsules; removal of alkali metals with ammonia; specific gravity of highly radioactive solutions; bulk density of radioactive granular solids; purification of Li by hot gettering/filtration; and Li filling of MOTA capsules.

  14. 40 CFR 761.289 - Compositing samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or... compositing bulk PCB remediation waste samples. These procedures are based on the method for selecting...

  15. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  16. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  17. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  18. 40 CFR 761.265 - Sampling bulk PCB remediation waste and porous surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling bulk PCB remediation waste and porous surfaces. 761.265 Section 761.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste...

  19. 40 CFR 761.289 - Compositing samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or... compositing bulk PCB remediation waste samples. These procedures are based on the method for selecting...

  20. Bed mixing and leachate recycling strategies to overcome pressure drop buildup in the biofiltration of hydrogen sulfide.

    PubMed

    Roshani, Babak; Torkian, Ayoob; Aslani, Hasan; Dehghanzadeh, Reza

    2012-04-01

    The effects of leachate recycling and bed mixing on the removal rate of H(2)S from waste gas stream were investigated. The experimental setup consisted of an epoxy-coated three-section biofilter with an ID of 8 cm and effective bed height of 120 cm. Bed material consisted of municipal solid waste compost and PVC bits with an overall porosity of 54% and dry bulk density of 0.456 g cm(-3). Leachate recycling had a positive effect of increasing elimination capacity (EC) up to 21 g S m(-3) bed h(-1) at recycling rates of 75 ml d(-1), but in the bed mixing period EC declined to 8 g S m(-3) bed h(-1). Pressure drop had a range of zero to 18 mm H(2)O m(-1) in the course of leachate recycling. Accumulation of sulfur reduced removal efficiency and increased pressure drop up to 110 mm H(2)O m(-1) filter during the bed mixing stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Waste biomass adsorbents for copper removal from industrial wastewater--a review.

    PubMed

    Bilal, Muhammad; Shah, Jehanzeb Ali; Ashfaq, Tayyab; Gardazi, Syed Mubashar Hussain; Tahir, Adnan Ahmad; Pervez, Arshid; Haroon, Hajira; Mahmood, Qaisar

    2013-12-15

    Copper (Cu(2+)) containing wastewaters are extensively released from different industries and its excessive entry into food chains results in serious health impairments, carcinogenicity and mutagenesis in various living systems. An array of technologies is in use to remediate Cu(2+) from wastewaters. Adsorption is the most attractive option due to the availability of cost effective, sustainable and eco-friendly bioadsorbents. The current review is dedicated to presenting state of the art knowledge on various bioadsorbents and physico-chemical conditions used to remediate Cu(2+) from waste streams. The advantages and constraints of various adsorbents were also discussed. The literature revealed the maximum Cu adsorption capacities of various bioadsorbents in the order of algae>agricultural and forest>fungal>bacterial>activated carbon>yeast. However, based on the average Cu adsorption capacity, the arrangement can be: activated carbon>algal>bacterial>agriculture and forest-derived>fungal>yeast biomass. The data of Cu removal using these bioadsorbents were found best fit both Freundlich and Langmuir models. Agriculture and forest derived bioadsorbents have greater potential for Cu removal because of higher uptake, cheaper nature, bulk availability and mono to multilayer adsorption behavior. Higher costs at the biomass transformation stage and decreasing efficiency with desorption cycles are the major constraints to implement this technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Bio-Refineries Bioprocess Technologies for Waste-Water Treatment, Energy and Product Valorization

    NASA Astrophysics Data System (ADS)

    Keith Cowan, A.

    2010-04-01

    Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also, potable water is becoming a scarce resource in many parts of the world, and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non-GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food, fiber, and other biology-based products, including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific-attribute raw materials for differentiated markets, we can argue that processes such as mass cultivation of microalgae and the concept of bio-refineries be seen as part of a `new' agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste-water treatment, water polishing and endocrine disruptor (EDC) removal, sustainable energy production, and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings, and for commercial extraction of bulk commodities such as bio-oils and lecithin. This presentation will address efforts to establish a fully operational solar-driven microalgae bio-refinery for use not only in waste remediation but to transform waste and biomass to energy, fuels, and other useful materials (valorisation), with particular focus on environmental quality and sustainability goals.

  3. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    NASA Astrophysics Data System (ADS)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste were also tested. The final solid product was a hard dense ceramic with a density that varied from 2.12 g/cm3 for a 19% waste loading with a 1200°C sintering temperature to 3.03 g/cm 3 with a 29% waste loading and sintered at 1100°C. Differential Scanning Calorimetry and Thermal Gravimetric Analysis (DSC-TGA) of the loaded bentonite displayed mass loss steps which were consistent with water losses in pure bentonite. Water losses were complete after dehydroxylation at ˜650°C. No mass losses were evident beyond the dehydroxylation. The ceramic melts at temperatures greater than 1300°C. Light flash analysis found heat capacities of the ceramic to be comparable to those of strontium and barium feldspars as well as pollucite. Thermal conductivity improved with higher sintering temperatures, attributed to lower porosity. Porosity was minimized in 1200°C sinterings. Ceramics with waste loadings less than 25 wt% displayed slump, the lowest waste loading, 15 wt% bloated at a 1200°C sintering. Waste loading above 25 wt% produced smooth uniform ceramics when sintered >1100°C. Sintered bentonite may provide a simple alternative to vitrification and other engineered radioactive waste-forms.

  4. PCB in the environment: bio-based processes for soil decontamination and management of waste from the industrial production of Pleurotus ostreatus.

    PubMed

    Siracusa, Giovanna; Becarelli, Simone; Lorenzi, Roberto; Gentini, Alessandro; Di Gregorio, Simona

    2017-10-25

    Polychlorinated biphenyls (PCBs) are hazardous soil contaminants for which a bio-based technology for their recovery is essential. The objective of this study was to validate the exploitation of spent mushroom substrate (SMS), a low or null cost organic waste derived from the industrial production of P. ostreatus, as bulking agent in a dynamic biopile pilot plant. The SMS shows potential oxidative capacity towards recalcitrant compounds. The aim was consistent with the design of a process of oxidation of highly chlorinated PCBs, which is independent from their reductive dehalogenation. Feasibility was verified at a mesocosm scale and validated at pilot scale in a dynamic biopile pilot plant treating ten tons of a historically contaminated soil (9.28±0.08mg PCB/kg soil dry weight). Mixing of the SMS with the soil was required for the depletion of the contaminants. At the pilot scale, after eight months of incubation, 94.1% depletion was recorded. A positive correlation between Actinobacteria and Firmicutes active metabolism, soil laccase activity and PCB removal was observed. The SMS was found to be exploitable as a versatile low cost organic substrate capable of activating processes for the oxidation of highly chlorinated PCBs. Moreover, its exploitation as bulking agent in biopiles is a valuable management strategy for the re-utilisation of an organic waste deriving from the industrial cultivation of edible mushrooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. "From safe source to safe sink" development of colorimetric assay for gabapentin in bulk drug and capsules using naturally derived genipin.

    PubMed

    Winotapun, Weerapath; Kongpakwattana, Khachen; Dejpittayanunt, Sirirat; Pathomcharoensukchai, Suwaparp; Suksaran, Udomluck; Nuntharatanapong, Nopparat; Rojanarata, Theerasak

    2012-09-15

    A novel colorimetric assay for gabapentin in bulk drug and capsules has been developed via a safety-and-sustainability concerning concept. The method relied on the reaction of primary amino group of drug with non-toxic and eco-friendly genipin in totally aqueous medium to form the blue product which was subsequently measured by visible spectrophotometry at 590 nm. Under the optimized conditions, Beer's law was obeyed in the concentration range of 0.15-0.50 mM (r(2)=0.9998). It was accurate, precise and insensitive to the interferences from all related compounds specified in the United States Pharmacopeia as well as commonly used excipients. Furthermore, it gave the assay results in agreement with the pharmacopeial chromatographic method. Owing to the environmental concern and responsibility, a fast and facile method was also proposed for the treatment of waste generated from the assay based on the decoloration by using gypsum as a cheap and commonly available adsorbent. After the treatment, more than 95% of the initial blue product was removed from the waste solution and the treated waste was proven to be safe for aquatic organisms, as studied in brine shrimp and guppy fishes. Therefore, this work not only reports for the first time the application of naturally derived genipin to drug analysis, but also presents a new and contemporary paradigm that illustrates the fully benign-by-design development of the analytical methodologies in the era of Green Chemistry, starting from the safe source of reagents toward the safe sink when waste is released into the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Reuse of drinking water treatment residuals in a continuous stirred tank reactor for phosphate removal from urban wastewater.

    PubMed

    Bai, Leilei; Wang, Changhui; Pei, Yuansheng; Zhao, Jinbo

    2014-01-01

    This work proposed a new approach of reusing drinking water treatment residuals (WTR) in a continuous stirred tank reactor (CSTR) to remove phosphate (P) from urban wastewater. The results revealed that the P removal efficiency of the WTR was more than 94% for urban wastewater, in the condition of initial P concentration (P0) of 10 mg L⁻¹, hydraulic retention time (HRT) of 2 h and WTR dosage (M0) of 10 g L⁻¹. The P mass transfer from the bulk to the solid-liquid interface in the CSTR system increased at lower P0, higher M0 and longer HRT. The P adsorption capacity of WTR from urban wastewater was comparable to that of the 201 × 4 resin and unaffected by ions competition. Moreover, WTR had a limited effect on the metals' (Fe, Al, Zn, Cu, Mn and Ni) concentrations of the urban wastewater. Based on the principle of waste recycling, the reuse of WTR in CSTR is a promising alternative technology for P removal from urban wastewater.

  7. Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: characterization of physicochemical parameters and microbial enzymatic dynamic.

    PubMed

    Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Bundela, Pushpendra Singh; Khan, Jamaluddin

    2015-04-01

    The effect of various bulking waste such as wood shaving, agricultural and yard trimming waste combined with organic fraction of municipal solid waste (OFMSW) composting was investigated through assessing their influence on microbial enzymatic activities and quality of finished compost. All three piles of OFMSW with different bulking waste were inoculated with microbial consortium. The results revealed that OFMSW combined with wood shaving and microbial consortium (Phanerochaete chrysosporium, Trichoderma viride and Pseudomonas aeruginosa) were helpful tool to facilitate the enzymatic activity and shortened composting period within 4 weeks. Maximum enzymatic activity were observed in pile 1 and 3 during the first 3 weeks, while in pile 2 relatively very low. But phosphatase activity was relatively higher in all piles until the end of the process. Maturity parameters of compost quality also favored the pile 1 as the best formulation for OFMSW composting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  9. Upcycling of polypropylene waste by surface modification using radiation-induced grafting

    NASA Astrophysics Data System (ADS)

    Hassan, Muhammad Inaam ul; Taimur, Shaista; Yasin, Tariq

    2017-11-01

    In this work, upcycling of polypropylene waste into amidoxime functionalized polypropylene adsorbent was studied using radiation-induced grafting technique. Polypropylene waste (PPw) was resulted from accelerated thermal ageing of polypropylene (PP). Bulk grafting of acrylonitrile (AN) onto PPw was achieved by simultaneous radiation grafting method using gamma rays. Degree of grafting of AN on PPw is affected by absorbed dose and dose rate. The acrylonitrile groups of grafted PPw were chemically converted into amidoxime functionality. Both the acrylonitrile-grafted PP waste and its amidoxime product were investigated by FTIR, XRD, SEM-EDX and TGA techniques. The prepared amidoxime adsorbent with amidoxime group density of 8.06 mmol/g was used for removal of copper ions from aqueous solutions. The effects of various physicochemical conditions such as: solution pH, adsorbent content, initial metal ion concentration and time on adsorption were studied to maximize adsorption of metal ion. Pseudo-first-order, pseudo-second-order and intra-particle diffusion models were applied to study the kinetics of adsorption. Maximum Langmuir adsorption capacity of 208.3 mg/g at pH 5.0 with optimum contact time of 120 min was observed. Utilization of PP waste and its comparable adsorption capacity with existing radiation grafted polymer-based adsorbents provide a new, cheap and cost effective system.

  10. Home composting using different ratios of bulking agent to food waste.

    PubMed

    Guidoni, Lucas Lourenço Castiglioni; Marques, Roger Vasques; Moncks, Rodrigo Bilhalva; Botelho, Fabiana Torma; da Paz, Matheus Francisco; Corrêa, Luciara Bilhalva; Corrêa, Érico Kunde

    2018-02-01

    The negative environmental impacts associated with home composting may be due to the absence of a defined operation criteria for the degradation process. In addition to the potentially low environmental impact in terms of energy and water usage, which is minimal to the manufacture of the composting unit and avoiding the processing and transportation of waste or byproduct, composting at home can also promote a reduction in the emission of unpleasant gases. The proportion of the food waste and bulking agents in the composting mixture may be decisive to fulfill good practices of waste stabilization. The aim of this study was to investigate how different ratios of bulking agent and organic household waste can affect the progress and outcome of the composting process. Three treatments, varying in the ratio of rice husk: raw fruit and vegetable leftovers (70:30, 50:50, 30:70; v:v) were used in a home composting system on a pilot scale. Results show that the proportion of starting materials used in the composting mixture influenced the degradation of organic matter, nitrogen dynamics of the process and its toxicity on germinating plants. The proportions with greater amounts of food waste had higher concentrations of mineral matter, higher peak temperature, and a better initial carbon-to-nitrogen ratio, while the proportion containing 70% of bulking agent lacked odors and leachate generation and showed a low nitrogen loss. A higher proportion of food waste presented better conditions for microbiological development and less time to obtain characteristics of matured composts. A higher proportion of bulking agents resulted in favorable conditions for household handling and less potential for environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Evaluation of plant-wide WWTP control strategies including the effects of filamentous bulking sludge.

    PubMed

    Flores-Alsina, Xavier; Comas, Joaquim; Rodríguez Roda, Ignasi; Poch, Manel; Gernaey, Krist V; Jeppsson, Ulf

    2009-01-01

    The main objective of this paper is to evaluate the effect of filamentous bulking sludge on the predicted performance of simulated plant-wide WWTP control strategies. First, as a reference case, several control strategies are implemented, simulated and evaluated using the IWA Benchmark Simulation Model No. 2 (BSM2). In a second series of simulations the parameters of the secondary settler model in the BSM2 are automatically changed on the basis of an on-line calculated risk of filamentous bulking, in order to mimic the effect of growth of filamentous bacteria in the plant. The results are presented using multivariate analysis. Including the effects of filamentous bulking in the simulation model gives a-more realistic-deterioration of the plant performance during periods when the conditions for development of filamentous bulking sludge are favourable: compared to the reference case where bulking effects are not considered. Thus, there is a decrease of the overall settling velocity, an accumulation of the total suspended solids (TSS) in the middle layers of the settler with a consequent reduction of their degree of compaction in the bottom. As a consequence there is a lower TSS concentration in both return and waste flow, less biomass in the bioreactors and a reduction of the TSS removal efficiency. The control alternatives using a TSS controller substantially increase the food to microorganisms (F/M) ratio in the bioreactor, thereby reducing both risk and effects of bulking sludge. The effects of ammonium (NH(4)(+)), nitrate (NO(3)(-)) and reject water control strategies are rather poor when it comes to handling solids separation problems.

  12. Development and Demonstration of a Sulfate Precipitation Process for Hanford Waste Tank 241-AN-107

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SK Fiskum; DE Kurath; BM Rapko

    2000-08-16

    A series of precipitation experiments were conducted on Hanford waste tank 241-AN-107 samples in an effort to remove sulfate from the matrix. Calcium nitrate was added directly to AN-107 sub-samples to yield several combinations of Ca:CO{sub 3} mole ratios spanning a range of 0:1 to 3:1 to remove carbonate as insoluble CaCO{sub 3}. Similarly barium nitrate was added directly to the AN-107 aliquots, or to the calcium pretreated AN-107 aliquots, giving of Ba:SO{sub 4} mole ratios spanning a range of 1:1 to 5:1 to precipitate sulfate as BaSO{sub 4}. Initial bulk carbonate removal was required for successful follow-on barium sulfatemore » precipitation. A {ge} 1:1 mole ratio of Ca:CO{sub 3} was found to lower the carbonate concentration such that Ba would react preferentially with the sulfate. A follow-on 1:1 mole ratio of Ba:SO{sub 4} resulted in 70% sulfate removal. The experiment was scaled up with a 735-mL aliquot of AN-107 for more complete testing. Calcium carbonate and barium sulfate settling rates were determined and fates of selected cations, anions, and radionuclides were followed through the various process steps. Seventy percent of the sulfate was removed in the scale-up test while recovering 63% of the filtrate volume. Surprisingly, during the scale-up test a sub-sample of the CaCO{sub 3}/241-AN-107 slurry was found to lose fluidity upon standing for {le} 2 days. Metathesis with BaCO{sub 3} at ambient temperature was also evaluated using batch contacts at various BaCO{sub 3}:SO{sub 4} mole ratios with no measurable success.« less

  13. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Canfield, Nathan; Sulaiman, Sannoh

    A high selectivity and sorption capacity for iodine and a feasible consolidation to a durable SiO2-based waste form makes silver-functionalized silica aerogel (Ag0-aerogel) an attractive choice for the removal and sequestration of iodine compounds from the off-gas of a nuclear fuel reprocessing plant. Hot uniaxial pressing of iodine-loaded Ag0-aerogel (20.2 mass% iodine) at 1200°C for 30 min under 29 MPa pressure provided a partially sintered product with residual open porosity of 16.9% that retained ~93% of sorbed iodine. Highly iodine-loaded Ag0-aerogel was successfully consolidated by hot isostatic pressing at 1200°C with a 30-min hold and under 207 MPa. The fullymore » densified waste form had a bulk density of 3.3 g/cm3 and contained ~39 mass% iodine. The iodine was retained in the form of nano- and micro-particles of AgI that were uniformly distributed inside and along boundaries of fused silica grains.« less

  14. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WILLIS, W.L.

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  15. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... management activities under a RAP at a location removed from the area where the remediation wastes originated... management activities under a RAP at a location removed from the area where the remediation wastes originated? (a) You may request a RAP for remediation waste management activities at a location removed from the...

  16. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... management activities under a RAP at a location removed from the area where the remediation wastes originated... management activities under a RAP at a location removed from the area where the remediation wastes originated? (a) You may request a RAP for remediation waste management activities at a location removed from the...

  17. New Standards in Liquid Waste Treatment at Fukushima Dai-ichi - 13134

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvester, Paul; Milner, Tim; Ruffing, Jennifer

    The earthquake and tsunami on March 11, 2011 severely damaged the Fukushima Dai-ichi nuclear plant leading to the most severe nuclear incident since Chernobyl. Ongoing operations to cool the damaged reactors at the site have led to the generation of highly radioactive coolant water. This is currently mainly treated to remove Cs-137 and Cs-134 and passed through a reverse osmosis (RO) unit to reduce the salinity before being cycled back to the reactors. Because only the Cs isotopes are removed, the RO reject water still contains many radioactive isotopes and this has led to the accumulation of over 200,000 cubicmore » meters (52 million gallons) of extremely contaminated water which is currently stored on site in tanks. EnergySolutions, in partnership with Toshiba, were contracted to develop a system to reduce 62 isotopes in this waste down to allowable levels. This was a significant technical challenge given the high background salt content of the wastewater, the variation in aqueous chemistry of the radioactive isotopes and the presence of non-active competing ions (e.g. Ca and Mg) which inhibit the removal of isotopes such as Sr-89 and Sr-90. Extensive testing was performed to design a suitable system that could meet the required decontamination goals. These tests were performed over a 6 month period at facilities available in the nearby Fukushima Dai-ni laboratory using actual waste samples. This data was then utilized to design a Multi Radioactive Nuclides Removal System (MRRS) for Fukushima which is a modified version of EnergySolutions' proprietary Advanced Liquid Processing System (ALPS)'. The stored tank waste is fed into a preliminary precipitation system where iron flocculation is performed to remove a number of isotopes, including Sb-125, Ru-106, Mn-54 and Co-60. The supernatant is then fed into a second precipitation tank where the pH is adjusted and the bulk of the Mg, Ca and Sr precipitated out as carbonates and hydroxides. After passing through a cross-flow ultrafiltration membrane, the permeate then goes through a total of 14 fixed ion exchange and adsorbent columns followed by a disposable polishing column to polish the residual isotopes down to allowable levels. At the end of the system, the effluent is filtered for a final time to removal any particulates that may have been picked up from the media columns and then stored prior to analysis. (authors)« less

  18. Co-composting of vegetable wastes and carton: Effect of carton composition and parameter variations.

    PubMed

    Rawoteea, Soonita Anjeena; Mudhoo, Ackmez; Kumar, Sunil

    2017-03-01

    The aim of the study was to investigate the effects of carton in the composting process of mixed vegetable wastes using an experimental composter of capacity 80L. Three different mixes were set-up (Mixes 1, 2 and 3) which consisted of vegetable wastes, 2.0kg paper and bulking agents, vegetable wastes, 1.5kg carton and bulking agents, vegetable wastes, 4.5kg carton and bulking agents, respectively. Temperature evolution, pH trends, moisture levels, respiration rates, percentage volatile solids and electrical conductivity were monitored for a period of 50days. The system remained under thermophilic conditions for a very short period due to the small size of the reactor. The three mixes did not exceed a temperature of 55°C, where sanitization takes place by the destruction of pathogens. The highest peak of CO 2 evolution was observed in Mix 2 indicating that maximum microbial degradation took place in that mix. Copyright © 2016. Published by Elsevier Ltd.

  19. 40 CFR 761.283 - Determination of the number of samples to collect and sample collection locations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs...-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With... locations for bulk PCB remediation waste and porous surfaces destined to remain at a cleanup site after...

  20. 40 CFR 761.283 - Determination of the number of samples to collect and sample collection locations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs...-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With... locations for bulk PCB remediation waste and porous surfaces destined to remain at a cleanup site after...

  1. Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E.

    This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera armmore » will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the retrieval nozzle to aid in calcine fluidization, remote viewing, clumped calcine breaking and recovery from off-normal conditions. As the design of the retrieval system progresses from conceptual to preliminary, increasing attention will be directed toward detailed design and proof-of- concept testing. (authors)« less

  2. Mercury contamination extraction

    DOEpatents

    Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  3. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  4. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  5. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  6. 40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... concentrations in samples. 761.295 Section 761.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...

  7. Removal of boron (B) from waste liquors.

    PubMed

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  8. Protein removal from waste brines generated during ham salting through acidification and centrifugation.

    PubMed

    Gutiérrez-Martínez, Maria del Rosario; Muñoz-Guerrero, Hernán; Alcaína-Miranda, Maria Isabel; Barat, José Manuel

    2014-03-01

    The salting step in food processes implies the production of large quantities of waste brines, having high organic load, high conductivity, and other pollutants with high oxygen demand. Direct disposal of the residual brine implies salinization of soil and eutrophication of water. Since most of the organic load of the waste brines comes from proteins leaked from the salted product, precipitation of dissolved proteins by acidification and removal by centrifugation is an operation to be used in waste brine cleaning. The aim of this study is optimizing the conditions for carrying out the separation of proteins from waste brines generated in the pork ham salting operation, by studying the influence of pH, centrifugal force, and centrifugation time. Models for determining the removal of proteins depending on the pH, centrifugal force, and time were obtained. The results showed a high efficacy of the proposed treatment for removing proteins, suggesting that this method could be used for waste brine protein removal. The best pH value to be used in an industrial process seems to be 3, while the obtained results indicate that almost 90% of the proteins from the brine can be removed by acidification followed by centrifugation. A further protein removal from the brine should have to be achieved using filtrating techniques, which efficiency could be highly improved as a consequence of the previous treatment through acidification and centrifugation. Waste brines from meat salting have high organic load and electrical conductivity. Proteins can be removed from the waste brine by acidification and centrifugation. The total protein removal can be up to 90% of the initial content of the waste brine. Protein removal is highly dependent on pH, centrifugation rate, and time. © 2014 Institute of Food Technologists®

  9. FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia

    2000-12-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10.more » Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste.« less

  10. Ferrate treatment for removing chromium from high-level radioactive tank waste.

    PubMed

    Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J

    2001-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.

  11. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    PubMed

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Feasibility of composting combinations of sewage sludge, olive mill waste and winery waste in a rotary drum reactor.

    PubMed

    Fernández, Francisco J; Sánchez-Arias, Virginia; Rodríguez, Lourdes; Villaseñor, José

    2010-10-01

    Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery-distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Removal of radioactive and other hazardous material from fluid waste

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  14. The As removal from arsenopyrite-bearing mine waste by microwave

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Soo; Myung, Eun Ji; Hack Lim, Dae; Kim, Bong Ju; Park, Cheon Young

    2016-04-01

    Penalties incurred by miners for arsenic in concentrates have increased significantly because the removal and disposal of arsenic is difficult and costly for smelters and because the environmental challenges are increasing worldwide. Typically miners incur penalties on arsenic in concentrates above 0.2% As with smelter rejection limits of 0.5%. Therefore, finding an effective solution for removing As during primary mining activities is necessary to avoid penalty. The aim of this study was to investigate the As removal from mine waste using microwave process. The mine waste samples were characterized by chemical and XRD analysis. To determine of As removal from the microwave experiments, aqua regia digestion was performed according to Korean environmental standard method(KESM) and the As removal effect were evaluated using the standard EPA toxicity characteristic leaching procedure(TCLP, EPA 1311 method). The result of mineralogical character for mine waste using XRD was detected arsenopyrite, pyrite, chalcopyrite, pyrrhotite and quartz. The chemical analysis of As, Pb, Zn contents in the mine waste measured 13,896.0, 896.1 and 1,054.6 mg/kg, respectively. The As removal of experiments was conducted to examine the effects of microwave exposure time(1~15min). The results showed that the As removal in mine waste (exposure time = 10min) was 92.90%, and the temperature of mine waste by microwave heating was 886℃. The TCLP leaching of treated mine waste by microwave measured values were below the EPA's current regulatory threshold(As, Pb, Zn : 5 mg/L). The optimum condition of microwave exposure for As removal from arsenopyrite-bearing mine waste was obtained at 800W, 2450MHz, 10min. Acknowledgment : This work was supported by the Energy and Resources Engineering Program Grant funded by the Ministry of Trade, Industry and Energy, Korea

  15. Effect of sparging rate on permeate quality in a submerged anaerobic membrane bioreactor (SAMBR) treating leachate from the organic fraction of municipal solid waste (OFMSW).

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2016-03-01

    This paper focuses on the treatment of leachate from the organic fraction of municipal solid waste (OFMSW) in a submerged anaerobic membrane bioreactor (SAMBR). Operation of the SAMBR for this type of high strength wastewater was shown to be feasible at 5 days hydraulic retention time (HRT), 10 L min(-1) (LPM) biogas sparging rate and membrane fluxes in the range of 3-7 L m(-2) hr(-1) (LMH). Under these conditions, more than 90% COD removal was achieved during 4 months of operation without chemical cleaning the membrane. When the sparging rate was reduced to 2 LPM, the transmembrane pressure increased dramatically and the bulk soluble COD concentration increased due to a thicker fouling layer, while permeate soluble COD remained constant. Permeate soluble COD concentration increased by 20% when the sparging rate increased to 10 LPM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis.

    PubMed

    Govindan, Siva Shangari; Agamuthu, P

    2014-10-01

    Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills. © The Author(s) 2014.

  17. Fundamental characteristics of input waste of small MSW incinerators in Korea.

    PubMed

    Choi, Ki-In; Lee, Suk-Hui; Lee, Dong-Hoon; Osako, Masahiro

    2008-11-01

    Waste incineration in a small incinerator is a simple and convenient way of treating waste discharged from small areas or from large facilities and buildings such as business centers, marketplaces, factories, and military units. Despite their ostensible advantages, however, many small incinerators frequently suffer from serious problems, e.g., unsystematic waste feeding, unstable combustion, deficient air pollution control devices, and consequently, environmental pollution. To obtain a better understanding of the characterization of wastes in small incinerators, we investigated a series of fundamental characteristics, i.e., physical composition, bulk density, proximate and ultimate analysis, potential energy content, and so on. The main waste components in small incinerators were identified as paper and plastic; the proportion of food waste was less than that in large incinerators. Especially, a low ratio of food waste had a strong influence on other waste characteristics, e.g., lower moisture content and bulk density, and higher potential energy. On the other hand, in contrast with that of HCl, there was no distinguishable linear relationship between Cl content in waste and PCDD/DF concentration in combustion gas.

  18. Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model.

    PubMed

    Flores-Alsina, Xavier; Comas, Joaquim; Rodriguez-Roda, Ignasi; Gernaey, Krist V; Rosen, Christian

    2009-10-01

    The main objective of this paper is to demonstrate how including the occurrence of filamentous bulking sludge in a secondary clarifier model will affect the predicted process performance during the simulation of WWTPs. The IWA Benchmark Simulation Model No. 2 (BSM2) is hereby used as a simulation case study. Practically, the proposed approach includes a risk assessment model based on a knowledge-based decision tree to detect favourable conditions for the development of filamentous bulking sludge. Once such conditions are detected, the settling characteristics of the secondary clarifier model are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant performance. Particularly, during the periods when the conditions for the development of filamentous bulking sludge are favourable--leading to poor activated sludge compaction, low return and waste TSS concentrations and difficulties in maintaining the biomass in the aeration basins--a subsequent reduction in overall pollution removal efficiency is observed. Also, a scenario analysis is conducted to examine i) the influence of sludge retention time (SRT), the external recirculation flow rate (Q(r)) and the air flow rate in the bioreactor (modelled as k(L)a) as factors promoting bulking sludge, and ii) the effect on the model predictions when the settling properties are changed due to a possible proliferation of filamentous microorganisms. Finally, the potentially adverse effects of certain operational procedures are highlighted, since such effects are normally not considered by state-of-the-art models that do not include microbiology-related solids separation problems.

  19. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.

  20. Antimony leaching and chemical species analyses in an industrial solid waste: Surface and bulk speciation using ToF-SIMS and XANES.

    PubMed

    Kappen, P; Ferrando-Miguel, G; Reichman, S M; Innes, L; Welter, E; Pigram, P J

    2017-05-05

    The surface chemistry and bulk chemical speciation of solid industrial wastes containing 8wt-% antimony (Sb) were investigated using synchrotron X-ray Absorption Near Edge Structure (XANES) and Time-of-Flight Ion Secondary Mass Spectrometry (ToF-SIMS). Leaching experiments were conducted in order to better understand the behavior of Sb in waste streams and to inform regulatory management of antimony-containing wastes. The experiments also demonstrate how a combination of XANES and ToF-SIMS adds value to the field of waste investigations. Leaching treatments (acid and base) were performed at a synchrotron over 24h time periods. Surface analyses of the wastes before leaching showed the presence of Sb associated with S and O. Bulk analyses revealed Sb to be present, primarily, as trivalent sulfide species. Both acid and base leaching did not change the antimony speciation on the solid. Leaching transferred about 1% of the total Sb into solution where Sb was found to be present as Sb(V). XANES data showed similarities between leachate and FeSbO 4 . During base leaching, the Sb content in solution gradually increased over time, and potential desorption mechanisms are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Strategy of Construction and Demolition Waste Management after Chemical Industry Facilities Removal

    NASA Astrophysics Data System (ADS)

    Tashkinova, I. N.; Batrakova, G. M.; Vaisman, Ya I.

    2017-06-01

    Mixed waste products are generated in the process of irrelevant industrial projects’ removal if conventional techniques of their demolition and dismantling are applied. In Russia the number of unused chemical industry facilities including structures with high rate of wear is growing. In removing industrial buildings and production shops it is used conventional techniques of demolition and dismantling in the process of which mixed waste products are generated. The presence of hazardous chemicals in these wastes makes difficulties for their use and leads to the increasing volume of unutilized residues. In the process of chemical industry facilities’ removal this fact takes on special significance as a high level of hazardous chemicals in the waste composition demands for the realization of unprofitable measures aimed at ensuring environmental and industrial safety. The proposed strategy of managing waste originated from the demolition and dismantling of chemical industry facilities is based on the methodology of industrial metabolism which allows identifying separate material flows of recycled, harmful and ballast components, performing separate collection of components during removal and taking necessary preventive measures. This strategy has been tested on the aniline synthesis plant being in the process of removal. As a result, a flow of 10 wt. %, subjected to decontamination, was isolated from the total volume of construction and demolition waste (C&D waste). The considered approach allowed using the resource potential of more than 80wt. % of waste and minimizing the disposed waste volume.

  2. Gaseous emissions from management of solid waste: a systematic review

    PubMed Central

    Pardo, Guillermo; Moral, Raúl; Aguilera, Eduardo; del Prado, Agustín

    2015-01-01

    The establishment of sustainable soil waste management practices implies minimizing their environmental losses associated with climate change (greenhouse gases: GHGs) and ecosystems acidification (ammonia: NH3). Although a number of management strategies for solid waste management have been investigated to quantify nitrogen (N) and carbon (C) losses in relation to varied environmental and operational conditions, their overall effect is still uncertain. In this context, we have analyzed the current scientific information through a systematic review. We quantified the response of GHG emissions, NH3 emissions, and total N losses to different solid waste management strategies (conventional solid storage, turned composting, forced aerated composting, covering, compaction, addition/substitution of bulking agents and the use of additives). Our study is based on a meta-analysis of 50 research articles involving 304 observations. Our results indicated that improving the structure of the pile (waste or manure heap) via addition or substitution of certain bulking agents significantly reduced nitrous oxide (N2O) and methane (CH4) emissions by 53% and 71%, respectively. Turned composting systems, unlike forced aerated composted systems, showed potential for reducing GHGs (N2O: 50% and CH4: 71%). Bulking agents and both composting systems involved a certain degree of pollution swapping as they significantly promoted NH3 emissions by 35%, 54%, and 121% for bulking agents, turned and forced aerated composting, respectively. Strategies based on the restriction of O2 supply, such as covering or compaction, did not show significant effects on reducing GHGs but substantially decreased NH3 emissions by 61% and 54% for covering and compaction, respectively. The use of specific additives significantly reduced NH3 losses by 69%. Our meta-analysis suggested that there is enough evidence to refine future Intergovernmental Panel on Climate Change (IPCC) methodologies from solid waste, especially for solid waste composting practices. More holistic and integrated approaches are therefore required to develop more sustainable solid waste management systems. PMID:25393229

  3. Gaseous emissions from management of solid waste: a systematic review.

    PubMed

    Pardo, Guillermo; Moral, Raúl; Aguilera, Eduardo; Del Prado, Agustín

    2015-03-01

    The establishment of sustainable soil waste management practices implies minimizing their environmental losses associated with climate change (greenhouse gases: GHGs) and ecosystems acidification (ammonia: NH3 ). Although a number of management strategies for solid waste management have been investigated to quantify nitrogen (N) and carbon (C) losses in relation to varied environmental and operational conditions, their overall effect is still uncertain. In this context, we have analyzed the current scientific information through a systematic review. We quantified the response of GHG emissions, NH3 emissions, and total N losses to different solid waste management strategies (conventional solid storage, turned composting, forced aerated composting, covering, compaction, addition/substitution of bulking agents and the use of additives). Our study is based on a meta-analysis of 50 research articles involving 304 observations. Our results indicated that improving the structure of the pile (waste or manure heap) via addition or substitution of certain bulking agents significantly reduced nitrous oxide (N2 O) and methane (CH4 ) emissions by 53% and 71%, respectively. Turned composting systems, unlike forced aerated composted systems, showed potential for reducing GHGs (N2 O: 50% and CH4 : 71%). Bulking agents and both composting systems involved a certain degree of pollution swapping as they significantly promoted NH3 emissions by 35%, 54%, and 121% for bulking agents, turned and forced aerated composting, respectively. Strategies based on the restriction of O2 supply, such as covering or compaction, did not show significant effects on reducing GHGs but substantially decreased NH3 emissions by 61% and 54% for covering and compaction, respectively. The use of specific additives significantly reduced NH3 losses by 69%. Our meta-analysis suggested that there is enough evidence to refine future Intergovernmental Panel on Climate Change (IPCC) methodologies from solid waste, especially for solid waste composting practices. More holistic and integrated approaches are therefore required to develop more sustainable solid waste management systems. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  4. 40 CFR 761.347 - First level sampling-waste from existing piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false First level sampling-waste from..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.347 First level sampling—waste...

  5. 40 CFR 761.347 - First level sampling-waste from existing piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false First level sampling-waste from..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.347 First level sampling—waste...

  6. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.

    1986-02-28

    The present invention relates to a method of solubilizing lead, in the form of lead oxide, found in industrial wastes, before these wastes are dumped into the environment. The lead is solubilized by dissolving the lead oxide in the wastes through contact with an anaerobic bacterial culture containing the bacterium ATCC No. 53464. The solubilized lead can then be removed from the wastes by chemical separation. It could also be removed by extending the contact period with the bacterial culture. As the culture grows, the solubilized lead is removed from the wastes by bioaccumulation by the microorganism or by immobilization by a polymer-like material produced by the microorganism. At this point, the lead is then removed from the wastes when the waste material is separated from the bacterial culture. If desired, the bacterial culture could be digested at this point to yield relatively pure lead for further industrial use.

  7. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland.

    PubMed

    Zhang, Xinwen; Hu, Zhen; Ngo, Huu Hao; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Xie, Huijun

    2018-03-01

    Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH 4 + -N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H 2 S, NH 3 , greenhouse gas (N 2 O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H 2 S, NH 3 and N 2 O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evaluation and Analysis of Cotton Bedding as a Bulking Agent in an Aerobic Food Waste Composting System

    NASA Astrophysics Data System (ADS)

    Chan, A. S. L.

    2017-12-01

    Food wastage is a prominent issue in Hong Kong that should be addressed. Here at The Independent Schools Foundation Academy, we are continuously looking for ways to improve, including that of food waste. In 2013 the school installed an A900 Rocket Food Composter, in hopes of reducing carbon footprint. Since the installation, the school has tested various elements of the food composter to further improve upon it to make it increasingly more sustainable and effective. These improvements vary from the revamping of the odour control system, increasing the nitrogen content and the installation of an improved grease trap. The school composts the food waste through combining a variety of substances together: coffee, compost, food waste, and a bulking agent - which will be tested in this study. Recently, the school has changed the compost bulking agent from wood shavings and cardboard to cotton bedding - a side product of the production of UK passports. In this study, I will evaluate the effectiveness of cotton bedding as a bulking agent in an aerobic composting system, focusing primarily on three points: a) microbial activity - the identification of cellulose digesting bacteria and the associated kinetics, b) the soil gas composition - the data shall be collected through the use of the Gasmet DX 4015, and c) the chemical analysis of the compost - specifically the amount of aluminum in the compost and whether or not it is significant enough to discredit cotton bedding as an effective bulking agent. The the analysis of cotton bedding using these three specifications will allow ISF Academy to evaluate the overall effectiveness of cotton bedding as a bulking agent.

  9. The circulation of the cerebrospinal fluid (CSF) in the spinal canal

    NASA Astrophysics Data System (ADS)

    Sanchez, Antonio L.; Martinez-Bazan, Carlos; Lasheras, Juan C.

    2016-11-01

    Cerebrospinal Fluid (CSF) is secreted in the choroid plexus in the lateral sinuses of the brain and fills the subarachnoid space bathing the external surfaces of the brain and the spinal canal. Absence of CSF circulation has been shown to impede its physiological function that includes, among others, supplying nutrients to neuronal and glial cells and removing the waste products of cellular metabolism. Radionuclide scanning images published by Di Chiro in 1964 showed upward migration of particle tracers from the lumbar region of the spinal canal, thereby suggesting the presence of an active bulk circulation responsible for bringing fresh CSF into the spinal canal and returning a portion of it to the cranial vault. However, the existence of this slow moving bulk circulation in the spinal canal has been a subject of dispute for the last 50 years. To date, there has been no physical explanation for the mechanism responsible for the establishment of such a bulk motion. We present a perturbation analysis of the flow in an idealized model of the spinal canal and show how steady streaming could be responsible for the establishment of such a circulation. The results of this analysis are compared to flow measurements conducted on in-vitro models of the spinal canal of adult humans.

  10. Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.

    PubMed

    Guha, Saumyen; Bhargava, Puja

    2005-01-01

    Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely.

  11. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.D.; Collins, J.L.

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test usingmore » the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.« less

  12. Facile Fabrication of Nanofibrillated Chitin/Ag2O Heterostructured Aerogels with High Iodine Capture Efficiency.

    PubMed

    Gao, Runan; Lu, Yun; Xiao, Shaoliang; Li, Jian

    2017-06-27

    Nanofibrillated chitin/Ag 2 O aerogels were fabricated for radioiodine removal. Chitin was first fabricated into nanofibers with abundant acetyl amino groups (-NHCOCH 3 ) on the surface. Then, highly porous chitin nanofiber (ChNF) aerogels were obtained via freeze-drying. The ChNF aerogels exhibited a low bulk density of 2.19 mg/cm 3 and a high specific surface area of 179.71 m 2 /g. Ag 2 O nanoparticles were evenly anchored on the surfaces of ChNF scaffolds via strong interactions with -NHCOCH 3 groups, subsequently yielding Ag 2 O@ChNF heterostructured aerogels. The composites were used as efficient absorbents to remove radioiodine anions from water and capture a high amount of I 2 vapor in the forms of AgI and iodine molecules. The adsorption capacity of the composite monoliths can reach up to 2.81 mmol/g of I - anions. The high adsorbability of the composite monolithic aerogel signifies its potential applications in radioactive waste disposal.

  13. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, C.A., Westinghouse Hanford

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  15. 40 CFR 258.28 - Liquids restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 258.28 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.28 Liquids restrictions. (a) Bulk or... (Paint Filter Liquids Test), included in “Test Methods for Evaluating Solid Waste, Physical/Chemical...

  16. 40 CFR 258.28 - Liquids restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 258.28 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.28 Liquids restrictions. (a) Bulk or... (Paint Filter Liquids Test), included in “Test Methods for Evaluating Solid Waste, Physical/Chemical...

  17. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  18. Treatment of zinc-rich acid mine water in low residence time bioreactors incorporating waste shells and methanol dosing.

    PubMed

    Mayes, W M; Davis, J; Silva, V; Jarvis, A P

    2011-10-15

    Bioreactors utilising bacterially mediated sulphate reduction (BSR) have been widely tested for treating metal-rich waters, but sustained treatment of mobile metals (e.g. Zn) can be difficult to achieve in short residence time systems. Data are presented providing an assessment of alkalinity generating media (shells or limestone) and modes of metal removal in bioreactors receiving a synthetic acidic metal mine discharge (pH 2.7, Zn 15 mg/L, SO(4)(2-) 200mg/L, net acidity 103 mg/L as CaCO(3)) subject to methanol dosing. In addition to alkalinity generating media (50%, v.v.), the columns comprised an organic matrix of softwood chippings (30%), manure (10%) and anaerobic digested sludge (10%). The column tests showed sustained alkalinity generation, which was significantly better in shell treatments. The first column in each treatment was effective throughout the 422 days in removing >99% of the dissolved Pb and Cu, and effective for four months in removing 99% of the dissolved Zn (residence time: 12-14 h). Methanol was added to the feedstock after Zn breakthrough and prompted almost complete removal of dissolved Zn alongside improved alkalinity generation and sulphate attenuation. While there was geochemical evidence for BSR, sequential extraction of substrates suggests that the bulk (67-80%) of removed Zn was associated with Fe-Mn oxide fractions. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A PRELIMINARY EXPERIMENT ON DENITRIFICATION OF WASTE LANDFILL LEACHATE

    NASA Astrophysics Data System (ADS)

    Wada, Nariaki; Nakamichi, Tamihiro; Yagi, Masahiro; Matsumoto, Toshihide; Kugimiya, Akikazu; Michioku, Kohji

    A laboratory experiment on denitrification was carried out in order to reduce nitrogen load from municipal landfill leachate. Nitrogen was efficiently removed by feeding sludge of the leachate pond into the tanks, which could activate denitrification bacteria. Although inorganic reducing agent such as iron powder was not able to make the whole water mass anoxic, denitrification took place by supplying organic matters such as methanol, hydrogen feeding agent, etc.. It is considered that small amount of anoxic water film produced on surfaces of container and carriers might contribute to denitrification, although the bulk water is kept aerobic. It is found that organic matters contained in the leachate is so insufficient that nitrification liquid circulation does not work well for denitrification.

  20. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.345 Form of the waste to be sampled. PCB bulk product waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  1. 40 CFR 761.208 - Use of the manifest.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.208 Use of the manifest. (a)(1) The generator of PCB... accompany the shipment of PCB waste. (2) For bulk shipments of PCB waste within the United States... PCB waste within the United States which originate at the site of generation, the generator shall send...

  2. Nuclear waste solidification

    DOEpatents

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  3. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Sewage treatment and bulk water sales contracts. 1780... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Planning, Designing, Bidding, Contracting, Constructing and Inspections § 1780.63 Sewage treatment and bulk water...

  4. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Sewage treatment and bulk water sales contracts. 1780... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS Planning, Designing, Bidding, Contracting, Constructing and Inspections § 1780.63 Sewage treatment and bulk water...

  5. Removal of hazardous metals from MSW fly ash--an evaluation of ash leaching methods.

    PubMed

    Fedje, Karin Karlfeldt; Ekberg, Christian; Skarnemark, Gunnar; Steenari, Britt-Marie

    2010-01-15

    Incineration is a commonly applied management method for municipal solid waste (MSW). However, significant amounts of potentially hazardous metal species are present in the resulting ash, and these may be leached into the environment. A common idea for cleaning the ash is to use enhanced leaching with strong mineral acids. However, due to the alkalinity of the ash, large amounts of acid are needed and this is a drawback. Therefore, this work was undertaken in order to investigate some alternative leaching media (EDTA, ammonium nitrate, ammonium chloride and a number of organic acids) and to compare them with the usual mineral acids and water. All leaching methods gave a significant increase in ash specific surface area due to removal of soluble bulk (matrix) compounds, such as CaCO(3) and alkali metal chlorides. The use of mineral acids and EDTA mobilised many elements, especially Cu, Zn and Pb, whereas the organic acids generally were not very effective as leaching agents for metals. Leaching using NH(4)NO(3) was especially effective for the release of Cu. The results show that washing of MSW filter ash with alternative leaching agents is a possible way to remove hazardous metals from MSW fly ash.

  6. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  7. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, Lane A.; Burger, Leland L.

    1994-01-01

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  8. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).

    PubMed

    Bergersen, Ove; Haarstad, Ketil

    2014-01-01

    Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Thermal Pretreatment For TRU Waste Sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, T.; Aoyama, Y.; Miyamoto, Y.

    2008-07-01

    Japan Atomic Energy Agency conducted a study on thermal treatment of TRU waste to develop a removal technology for materials that are forbidden for disposal. The thermal pretreatment in which hot nitrogen and/or air is introduced to the waste is a process of removing combustibles, liquids, and low melting point metals from PVC wrapped TRU waste. In this study, thermal pretreatment of simulated waste was conducted using a desktop thermal treatment vessel and a laboratory scale thermal pretreatment system. Combustibles and low melting point metals are effectively separated from wastes by choosing appropriate temperature of flowing gases. Combustibles such asmore » papers, PVC, oil, etc. were removed and low melting point metals such as zinc, lead, and aluminum were separated from the simulated waste by the thermal pretreatment. (authors)« less

  10. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authoritymore » of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40 CFR 300.430(e)(9): ( 1) overall protection of human health and the environment; (2) compliance with applicable or relevant and appropriated requirement: (ARARs); (3) long-term effectiveness and permanence; (4) reduction of toxicity, mobility, or volume through treatment; (5) short-term effectiveness; (6) implementability; (7) cost; (8) state acceptable; and (9) community acceptance. Closure of each tank involves two separate operations after bulk waste removal has been accomplished: (1) cleaning of the tank (i.e., removing the residual contaminants), and (2) the actual closure or filling of the tank with an inert material, (e.g., grout). This process would continue until all the tanks and ancillary equipment and systems have been closed. This is expected to be about year 2028 for Type I, II, and IV tanks and associated systems. Subsequent to that, Type III tanks and systems will be closed.« less

  11. Transformation of arsenic in the presence of cow dung and arsenic sludge disposal and management strategy in Bangladesh

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Azizur; Jalil, Md. Abdul; Ali, M. Ashraf

    2014-10-01

    With increasing use of arsenic (As) removal units for treatment of As-contaminated groundwater in rural Bangladesh, concerns have been raised regarding safe disposal of the As-rich wastes from such units and possible contamination of the environment. In the absence of any clear guideline for safe disposal of wastes generated from As removal units, the wastes are usually disposed of in the open environment, often on cow dung beds in the backyard. Short term (up to 6 weeks) batch experiments performed in this study suggest that bio-chemical (e.g., bio-methylation) processes in the presence of only fresh cow dung may lead to a significant removal of As, both from aqueous solution and As-rich treatment wastes. Arsenic removal appears to increase with decreasing As to cow dung weight ratio. This study also suggests that arsenate transforms to arsenite before removal from aqueous As solution in the presence of cow dung. In most cases majority of As removal takes place during first few days. Removal of As under cap-open (to facilitate aerobic condition) and cap-closed conditions (to facilitate aerobic condition) were found to be similar. No significant variation was observed in the removal As from aqueous solution and from treatment wastes (As bound to iron solids). This study concludes that disposal of As-rich treatment wastes to cow dung pits could be an effective option of As sludge disposal and management in rural areas of Bangladesh.

  12. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  13. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  14. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  15. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  16. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  17. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  18. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  19. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  20. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  1. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  2. The Glymphatic Pathway.

    PubMed

    Benveniste, Helene; Lee, Hedok; Volkow, Nora D

    2017-01-01

    The overall premise of this review is that cerebrospinal fluid (CSF) is transported within a dedicated peri-vascular network facilitating metabolic waste clearance from the central nervous system while we sleep. The anatomical profile of the network is complex and has been defined as a peri-arterial CSF influx pathway and peri-venous clearance routes, which are functionally coupled by interstitial bulk flow supported by astrocytic aquaporin 4 water channels. The role of the newly discovered system in the brain is equivalent to the lymphatic system present in other body organs and has been termed the "glymphatic pathway" or "(g)lymphatics" because of its dependence on glial cells. We will discuss and review the general anatomy and physiology of CSF from the perspective of the glymphatic pathway, a discovery which has greatly improved our understanding of key factors that control removal of metabolic waste products from the central nervous system in health and disease and identifies an additional purpose for sleep. A brief historical and factual description of CSF production and transport will precede the ensuing discussion of the glymphatic system along with a discussion of its clinical implications.

  3. 76 FR 27606 - Technical Corrections To Remove Obsolete References to Non-Automated Carriers From Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ...] Technical Corrections To Remove Obsolete References to Non- Automated Carriers From Electronic Cargo... manifests for vessels transporting bulk and certain break bulk cargo to the United States to make several... transmit cargo declaration information electronically (non-automated carriers). When CBP amended its...

  4. Water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Murray, R. W.

    1973-01-01

    Water and sewage treatment systems are presented with concentration on the filtration of water. Equipment is described for organic removal, solids removal, nutrient removal, inorganic removal, and disinfection of the water. Such things as aseline hardware, additional piping connections, waste disposal, and costs involved are also reported.

  5. Evaluation of uranium removal by Hydrilla verticillata (L.f.) Royle from low level nuclear waste under laboratory conditions.

    PubMed

    Srivastava, Sudhakar; Bhainsa, K C

    2016-02-01

    The present study evaluated uranium (U) removal ability and tolerance to low level nuclear waste (LLNW) of an aquatic weed Hydrilla verticillata. Plants were screened for growth in 10%-50% waste treatments up to 3 d. Treatments of 20% and 50% waste imposed increasing toxicity with duration assessed in terms of change in fresh weight and in the levels of photosynthetic pigments and thiobarbituric acid-reactive substances. U concentration, however, did not show a progressive increase and was about 42 μg g(-1) dw from 20% to 50% waste at 3 d. This suggested that a saturation stage was reached with respect to U removal due to increasing toxicity. However, in another experiment with 10% waste and 10% waste+10 ppm U treatments, plants showed an increase in U concentration with the maximum level approaching 426 μg g(-1) dw at 3 d without showing any toxicity as compared to that at 20% and 50% waste treatments. Hence, plants possessed significant potential to take up U and toxicity of LLNW limited their U removal ability. This implies that the use of Hydrilla plants for U removal from LLNW is feasible at low concentrations and would require repeated harvesting at short intervals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Experimenting with Different Bulking Agents in an Aerobic Food Waste Composter

    NASA Astrophysics Data System (ADS)

    Chann, S.

    2016-12-01

    With one third of Hong Kong's solid wastage being food scraps, reducing food waste has become crucial. The ISF Academy, a Hong Kong private school, had an A900 Rocket Food Composter installed in 2013, hoping to reduce its carbon footprint. The 27 metric tons of food wastage produced annually by the school is put through an aerobic process and the wastage is converted into humus. The composter has a capacity of 1750 litres of food and it produces humus every 14 days. The base of the humus consists of a bulking agent and food waste (2:1). A bulking agent is a carbon based material used to absorb moisture and odors, add structure and air and eliminate bugs from humus. This study contains comparative data on a few of the listed bulking agents: Hemp, Kenaf, rapeseed oil straw, miscanthus and shredded cardboard. The aim of this study is to determine an alternative reliable, affordable and suitable bulking agent to wood shavings: the current agent used. The humus produced must pass regulations for "general agricultural use" as it is used for experiential learning and gardening with primary school students. Over 500 children are participating in the school's plantation project, producing legumes for the school cafeteria. ISF pioneers and sets an example for other Hong Kong schools, showing that a composting and plantation scheme, not only proves to have environmental benefits but also educational uses.

  7. A COMPREHENSIVE TECHNICAL REVIEW OF THE DEMONSTRATION BULK VITRIFICATION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAUS, P.S.

    2006-09-29

    In May 2006, CH2M Hill Hanford Group, Inc. chartered an Expert Review Panel (ERP) to review the current status of the Demonstration Bulk Vitrification System (DBVS). It is the consensus of the ERP that bulk vitrification is a technology that requires further development and evaluation to determine its potential for meeting the Hanford waste stabilization mission. No fatal flaws (issues that would jeopardize the overall DBVS mission that cannot be mitigated) were found, given the current state of the project. However, a number of technical issues were found that could significantly affect the project's ability to meet its overall missionmore » as stated in the project ''Justification of Mission Need'' document, if not satisfactorily resolved. The ERP recognizes that the project has changed from an accelerated schedule demonstration project to a formally chartered project that must be in full compliance with DOE 413.3 requirements. The perspective of the ERP presented herein, is measured against the formally chartered project as stated in the approved Justification of Mission Need document. A justification of Mission Need document was approved in July 2006 which defined the objectives for the DBVS Project. In this document, DOE concluded that bulk vitrification is a viable technology that requires additional development to determine its potential applicability to treatment of a portion of the Hanford low activity waste. The DBVS mission need statement now includes the following primary objectives: (1) process approximately 190,000 gallons of Tank S-109 waste into fifty 100 metric ton boxes of vitrified product; (2) store and dispose of these boxes at Hanford's Integrated Disposal Facility (IDF); (3) evaluate the waste form characteristics; (4) gather pilot plant operability data, and (5) develop the overall life cycle system performance of bulk vitrification and produce a comparison of the bulk vitrification process to building a second LAW Immobilization facility or other supplemental treatment alternatives as provided in M-62-08.« less

  8. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization.

    PubMed

    Peláez-Cid, Alejandra-Alicia; Herrera-González, Ana-María; Salazar-Villanueva, Martín; Bautista-Hernández, Alejandro

    2016-10-01

    In this study, three mesoporous activated carbons prepared from vegetable residues were used to remove acid, basic, and direct dyes from aqueous solutions, and reactive and vat dyes from textile wastewater. Granular carbons obtained by chemical activation at 673 K with phosphoric acid from prickly pear peels (CarTunaQ), broccoli stems (CarBrocQ), and white sapote seeds (CarZapQ) were highly efficient for the removal of dyes. Adsorption equilibrium studies were carried out in batch systems and treated with Langmuir and Freundlich isotherms. The maximum adsorption capacities calculated from the Langmuir isotherms ranged between 131.6 and 312.5 mg/g for acid dyes, and between 277.8 and 500.0 mg/g for basic dyes at 303 K. Our objective in this paper was to show that vegetable wastes can serve as precursors for activated carbons that can be used for the adsorption of dyes. Specifically CarBrocQ was the best carbon produced for the removal of textile dyes. The color removal of dyes present in textile wastewaters was compared with that of a commercial powdered carbon, and it was found that the carbons produced using waste material reached similar efficiency levels. Carbon samples were characterized by bulk density, point of zero charge, thermogravimetric analysis, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, methylene blue adsorption isotherms at 303 K, and nitrogen adsorption isotherms at 77 K (SBET). The results show that the activated carbons possess a large specific surface area (1025-1177 m(2)/g) and high total pore volume (1.06-2.16 cm(3)/g) with average pore size diameters between 4.1 and 8.4 nm. Desorption and regeneration tests were made to test the viability of reusing the activated carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Struvite crystallization

    NASA Technical Reports Server (NTRS)

    Barak, Phillip W. (Inventor); Tabanpour, Menachem E. (Inventor); Meyer, Juliane M. (Inventor); Avila-Segura, Mauricio (Inventor)

    2007-01-01

    The present invention provides a method and apparatus for removing phosphorus from phosphorus containing waste. In one embodiment, the method is preferably carried out by contacting the phosphorus containing waste with a non-cellular membrane and precipitating phosphorus from the waste as struvite. Another aspect of the invention includes a method of removing phosphorus from phosphorus containing sewage comprising filtrates and biosolids. The removal of phosphorus as struvite occurs in two stages as primary and secondary removal. In the primary removal process, the sewage from a dewatering unit is contacted with a first polymeric membrane reactor and the phosphorus is removed as primary struvite. Subsequently Mg is added so as promote struvite formation and the secondary removal process of struvite. In the secondary removal process, the sewage from GBT Filtrate well or Centrifuge Liquor well is contacted with a second monomolecular membrane and the phosphorus is removed as secondary struvite.

  10. Precipitation process for the removal of technetium values from nuclear waste solutions

    DOEpatents

    Walker, D.D.; Ebra, M.A.

    1985-11-21

    High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  11. Method for processing aqueous wastes

    DOEpatents

    Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  12. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... assumed to be in compliance with this requirement. (e) These alternative locations are remediation waste... 40 Protection of Environment 27 2011-07-01 2011-07-01 false May I perform remediation waste management activities under a RAP at a location removed from the area where the remediation wastes originated...

  13. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... assumed to be in compliance with this requirement. (e) These alternative locations are remediation waste... 40 Protection of Environment 27 2014-07-01 2014-07-01 false May I perform remediation waste management activities under a RAP at a location removed from the area where the remediation wastes originated...

  14. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    NASA Astrophysics Data System (ADS)

    Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.

    2014-01-01

    The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  15. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, T.; Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Tsujimura, M.; Terasawa, T.

    2013-01-01

    The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni-P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  16. [Energy saving achieved by limited filamentous bulking under low dissolved oxygen: derivation, originality and theoretical basis].

    PubMed

    Peng, Yong-zhen; Guo, Jian-hua; Wang, Shu-ying; Chen, Ying

    2008-12-01

    How to prevent and control filamentous bulking sludge has being a research focus and attracted much attention. To date despite the extensive research that has been done on bulking sludge, filamentous bulking still occurs world-wide and a comprehensive solution does not seem to be available. Particularly, there are few studies about making use of the characteristics of filamentous bacteria and achieving energy saving by filamentous bulking. Limited filamentous bulking, a novel method for energy saving while equal or better treatment performance by allowing slight and controlled filamentous bulking sludge at low dissolved oxygen (DO), was proposed based on full-scale field observations. The practical operation showed that limited filamentous bulking resulted from a decline in DO concentration. COD, SS and TP removal could be enhanced and energy saving could be achieved by limited filamentous bulking at low DO. The derivation of limited filamentous bulking is introduced firstly, and then the theoretical fundamentals of the technique of limited filamentous bulking are presented and analyzed, including the occurrence of limited filamentous bulking caused by low DO, the enhanced effect of filamentous bacteria on pollutants removal and the energy saving mechanism by using limited filamentous bulking. Besides, the paper provides some new perspectives about the application and research direction of limited filamentous bulking in future.

  17. Determination of biological removal of recalcitrant organic contaminants in coal gasification waste water.

    PubMed

    Ji, Qinhong; Tabassum, Salma; Yu, Guangxin; Chu, Chunfeng; Zhang, Zhenjia

    2015-01-01

    Coal gasification waste water treatment needed a sustainable and affordable plan to eliminate the organic contaminants in order to lower the potential environmental and human health risk. In this paper, a laboratory-scale anaerobic-aerobic intermittent system carried out 66 operational cycles together for the treatment of coal gasification waste water and the removal capacity of each organic pollutant. Contaminants included phenols, carboxylic acids, long-chain hydrocarbons, and heterocyclic compounds, wherein the relative content of phenol is up to 57.86%. The long-term removal of 77 organic contaminants was evaluated at different hydraulic retention time (anaerobic24 h + aerobic48 h and anaerobic48 h +aerobic48 h). Contaminant removal ranged from no measurable removal to near-complete removal with effluent concentrations below the detection limit. Contaminant removals followed one of four trends: steady-state removal throughout, increasing removal to steady state (acclimation), decreasing removal, and no removal. Organic degradation and transformation in the reaction were analysed by gas chromatography/mass spectrometry technology.

  18. Removal of arsenic from aqueous solutions using waste iron columns inoculated with iron bacteria.

    PubMed

    Azhdarpoor, Abooalfazl; Nikmanesh, Roya; Samaei, Mohammad Reza

    2015-01-01

    Arsenic contamination of water resources is one of the serious risks threatening natural ecosystems and human health. This study investigates arsenic removal using a waste iron column with and without iron bacteria in continuous and batch phases. In batch experiments, the effects of pH, contact time, initial concentration of arsenic and adsorbent dose were investigated. Results indicated that the highest arsenate removal efficiency occurred at pH 7 (96.76%). On increasing the amount of waste iron from 0.25 to 1 g, the removal rate changed from about 42.37%-96.70%. The results of continuous experiments on the column containing waste iron showed that as the empty bed contact time increased from 5 to 60 min, the secondary arsenate concentration changed from 23 to 6 µg/l. In experiments involving a waste iron column with iron bacteria, an increase in residence time from 5 to 60 min decreased the secondary arsenate concentration from 14.97 to 4.86 µg/l. The results of this study showed that waste iron containing iron bacteria is a good adsorbent for removal of arsenic from contaminated water.

  19. Tritium migration to the surfaces of Type 316 stainless steel; aluminum 6061; and oxygen-free, high-conductivity copper

    DOE PAGES

    Sharpe, M.; Shmayda, W. T.; Schroder, W. U.

    2016-05-25

    The migration of tritium to the surfaces of aluminum 6061, oxygen-free, high-conductivity copper (OFHC), and stainless-steel 316 from the bulk metal was studied using low-pressure Tonks–Langmuir argon plasma. The plasma is shown to be effective at removing tritium from metal surfaces in a controlled manner. Tritium is removed in decreasing quantities with successive plasma exposures, which suggests a depletion of the surface and near-surface tritium inventories. A diffusion model was developed to predict tritium migration from the bulk and its accumulation in the water layers present on the metal surface. The model reproduces the rate of tritium re-growth on themore » surface for all three metals and can be used to calculate the triton solubility in the water layers present on metal surfaces. The ratio of surface-to-bulk solubilities at the water-layer/bulk-metal interface uniquely determines the concentration ratio between these two media. Removing the tritium-rich water layers induces tritium to migrate from the bulk to the surface. Furthermore, this process is driven by a concentration gradient that develops in the bulk because of the perturbation on the surface.« less

  20. Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data.

    PubMed

    De la Cruz, Florentino B; Barlaz, Morton A

    2010-06-15

    The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, k(lab), for the major biodegradable MSW components were used to derive field-scale decay rates (k(field)) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04 yr(-1), k(field) was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029 yr(-1), for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard waste and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.

  1. 40 CFR 761.356 - Conducting a leach test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...

  2. Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes.

    PubMed

    Jolanun, B; Tripetchkul, S; Chiemchaisri, C; Chaiprasert, P; Towprayoon, S

    2005-03-01

    Vegetable and fruit wastes mixed with sawdust were composted in a laboratory scale reactor by controlling the waste feeding rate at 21 kg m(-3) day(-1) and aeration rate at 10.6 l m(-3) min(-1). The effects of initial moisture content on organic matter degradation and process performance of fed batch composting were investigated. The absolute amount of removal, removal percentage, and removal rate of dry mass obtained were substantially different among the initial moisture contents. The rapid rise of moisture content and the lowest absolute amount of removal observed were achieved in the 50% condition. The initial moisture content yielding the largest absolute amount of removal in both feeding and curing stage was 30% whereas the removal percentage and rate constant of waste decomposition were highest in the 50% condition. Examined by traditional soil physics method, the moisture content at 50-55% was suitable for satisfying the degree of free air space (65-70%) of compost during the fed batch composting. Most degradable organic matter was mainly consumed in the feeding stage as indicated by a higher removal rate of dry mass in all cases. It is recommended that the initial moisture content of 30% and mode of aeration and agitation should be adopted for achieving practical fed batch composting of vegetable and fruit wastes. The study also demonstrated that the composting kinetics of vegetable and fruit wastes mixed with sawdust can be described by a first order model.

  3. Copper speciation in variably toxic sediments at the Ely Copper Mine, Vermont, United States

    USGS Publications Warehouse

    Kimball, Bryn E.; Foster, Andrea L.; Seal, Robert R.; Piatak, Nadine M.; Webb, Samuel M.; Hammarstrom, Jane M.

    2016-01-01

    At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160–1200 times) and sediments (15–79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80–95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu.

  4. A hybrid liquid-phase precipitation (LPP) process in conjunction with membrane distillation (MD) for the treatment of the INEEL sodium-bearing liquid waste.

    PubMed

    Bader, M S H

    2005-05-20

    A novel hybrid system combining liquid-phase precipitation (LPP) and membrane distillation (MD) is integrated for the treatment of the INEEL sodium-bearing liquid waste. The integrated system provides a "full separation" approach that consists of three main processing stages. The first stage is focused on the separation and recovery of nitric acid from the bulk of the waste stream using vacuum membrane distillation (VMD). In the second stage, polyvalent cations (mainly TRU elements and their fission products except cesium along with aluminum and other toxic metals) are separated from the bulk of monovalent anions and cations (dominantly sodium nitrate) by a front-end LPP. In the third stage, MD is used first to concentrate sodium nitrate to near saturation followed by a rear-end LPP to precipitate and separate sodium nitrate along with the remaining minor species from the bulk of the aqueous phase. The LPP-MD hybrid system uses a small amount of an additive and energy to carry out the treatment, addresses multiple critical species, extracts an economic value from some of waste species, generates minimal waste with suitable disposal paths, and offers rapid deployment. As such, the LPP-MD could be a valuable tool for multiple needs across the DOE complex where no effective or economic alternatives are available.

  5. Determination of Desorbed Species During Heating of AgI-Mordenite Provided by ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croes, Kenneth James; Garino, Terry J.; Mowry, Curtis D.

    This study is focused on describing the desorbed off gases due to heating of the AgIMordenite (MOR) produced at ORNL for iodine (I 2) gas capture from nuclear fuel aqueous reprocessing. In particular, the interest is for the incorporation of the AgI-MOR into a waste form, which might be the Sandia developed, low temperature sintering, Bi-Si oxide based, Glass Composite Material (GCM). The GCM has been developed as a waste form for the incorporation any oxide based getter material. In the case where iodine may be released during the sintering process of the GCM, additional Ag flake is added asmore » further insurance in total iodine capture and retention. This has been the case for the incorporated ORNL developed AgIMOR. Thermal analysis studies were carried out to determine off gasing processes of ORNL AgIMOR. Independent of sample size, ~7wt% of total water is desorbed by 225°C. This includes both bulk surface and occluded water, and are monitored as H2O and OH. Of that total, ~5.5wt% is surface water which is removed by 125°C, and 1.5wt% is occluded (in zeolite pore) water. Less than ~1 wt% total water continues to desorb, but is completely removed by 500°C. Above 300°C, the detectable remaining desorbing species observed are iodine containing compounds, including I and I 2.« less

  6. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RT Hallen; SA Bryan; FV Hoopes

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRUmore » removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a).« less

  7. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false May I perform remediation waste management activities under a RAP at a location removed from the area where the remediation wastes originated... Plans (RAPs) Obtaining A Rap for An Off-Site Location § 270.230 May I perform remediation waste...

  8. 49 CFR 173.150 - Exceptions for Class 3 (flammable and combustible liquids).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the material meets the definition of a hazardous substance, hazardous waste, marine pollutant, or are... waste, or a marine pollutant. (3) A combustible liquid that is in a bulk packaging or a combustible liquid that is a hazardous substance, a hazardous waste, or a marine pollutant is not subject to the...

  9. 49 CFR 173.150 - Exceptions for Class 3 (flammable and combustible liquids).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... material meets the definition of a hazardous substance, hazardous waste, marine pollutant, or is offered... that is a hazardous substance, a hazardous waste, or a marine pollutant is not subject to the... liquid in a non-bulk packaging unless the combustible liquid is a hazardous substance, a hazardous waste...

  10. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collecting a sample. 761.286 Section 761.286 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  11. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... collecting a sample. 761.286 Section 761.286 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  12. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... collecting a sample. 761.286 Section 761.286 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  13. 40 CFR 761.286 - Sample size and procedure for collecting a sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... collecting a sample. 761.286 Section 761.286 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...

  14. Comparison of mass balance, energy consumption and cost of composting facilities for different types of organic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Huijun; Matsuto, Toshihiko, E-mail: matsuto@eng.hokudai.ac.jp

    2011-03-15

    Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities. The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in themore » compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.« less

  15. 27 CFR 25.195 - Removals for analysis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS BEER Removals Without Payment of Tax Removals for Analysis, Research... analysis in packages or in bulk containers. The brewer shall record beer removed for analysis in daily...

  16. 27 CFR 25.195 - Removals for analysis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS BEER Removals Without Payment of Tax Removals for Analysis, Research... analysis in packages or in bulk containers. The brewer shall record beer removed for analysis in daily...

  17. Cleaning and passivation of copper surfaces to remove surface radioactivity and prevent oxide formation

    NASA Astrophysics Data System (ADS)

    Hoppe, E. W.; Seifert, A.; Aalseth, C. E.; Bachelor, P. P.; Day, A. R.; Edwards, D. J.; Hossbach, T. W.; Litke, K. E.; McIntyre, J. I.; Miley, H. S.; Schulte, S. M.; Smart, J. E.; Warren, G. A.

    2007-08-01

    High-purity copper is an attractive material for constructing ultra-low-background radiation measurement devices. Many low-background experiments using high-purity copper have indicated surface contamination emerges as the dominant background. Radon daughters plate out on exposed surfaces, leaving a residual 210Pb background that is difficult to avoid. Dust is also a problem; even under cleanroom conditions, the amount of U and Th deposited on surfaces can represent the largest remaining background. To control these backgrounds, a copper cleaning chemistry has been developed. Designed to replace an effective, but overly aggressive concentrated nitric acid etch, this peroxide-based solution allows for a more controlled cleaning of surfaces. The acidified hydrogen peroxide solution will generally target the Cu +/Cu 2+ species which are the predominant surface participants, leaving the bulk of copper metal intact. This preserves the critical tolerances of parts and eliminates significant waste disposal issues. Accompanying passivation chemistry has also been developed that protects copper surfaces from oxidation. Using a high-activity polonium surface spike, the most difficult-to-remove daughter isotope of radon, the performance of these methods are quantified.

  18. Biosorbents for Removing Hazardous Metals and Metalloids †

    PubMed Central

    Inoue, Katsutoshi; Parajuli, Durga; Ghimire, Kedar Nath; Biswas, Biplob Kumar; Kawakita, Hidetaka; Oshima, Tatsuya; Ohto, Keisuke

    2017-01-01

    Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II). Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide) into biosorbents that effectively removed Pb(II). These materials also effectively removed Sb(III and V) and As(III and V) when these were preloaded with multi-valent metal ions such as Zr(IV) and Fe(III). Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI), were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid. PMID:28773217

  19. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  20. Health physics challenges involved with opening a "seventeen-inch" concrete waste vault.

    PubMed

    Sullivan, Patrick T; Pizzulli, Michelle

    2005-05-01

    This paper describes the various activities involved with opening a sealed legacy "Seventeen-inch" concrete vault and the health physics challenges and solutions employed. As part of a legacy waste stream that was removed from the former Hazardous Waste Management Facility at Brookhaven National Laboratory, the "Seventeen-inch" concrete vault labeled 1-95 was moved to the new Waste Management Facility for ultimate disposal. Because the vault contained 239Pu foils with a total activity in excess of the transuranic waste limits, the foils needed to be removed and repackaged for disposal. Conventional diamond wire saws could not be used because of facility constraints, so this project relied mainly on manual techniques. The planning and engineering controls put in place enabled personnel to open the vault and remove the waste while keeping dose as low as reasonably achievable.

  1. Separation of motor oils, oily wastes and hydrocarbons from contaminated water by sorption on chrome shavings.

    PubMed

    Gammoun, A; Tahiri, S; Albizane, A; Azzi, M; Moros, J; Garrigues, S; de la Guardia, M

    2007-06-25

    In this paper, the ability of chrome shavings to remove motor oils, oily wastes and hydrocarbons from water has been studied. To determine amount of hydrocarbons sorbed on tanned wastes, a FT-NIR methodology was used and a multivariate calibration based on partial least squares (PLS) was employed for data treatment. The light density, porous tanned waste granules float on the surface of water and remove hydrocarbons and oil films. Wastes fibers from tannery industry have high sorption capacity. These tanned solid wastes are capable of absorbing many times their weight in oil or hydrocarbons (6.5-7.6g of oil and 6.3g of hydrocarbons per gram of chrome shavings). The removal efficiency of the pollutants from water is complete. The sorption of pollutants is a quasi-instantaneous process.

  2. Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen.

    PubMed

    Guo, Jian-Hua; Peng, Yong-Zhen; Peng, Cheng-Yao; Wang, Shu-Ying; Chen, Ying; Huang, Hui-Jun; Sun, Zhi-Rong

    2010-02-01

    Limited filamentous bulking caused by low dissolved oxygen (DO) was proposed to establish a low energy consumption wastewater treatment system. This method for energy saving was derived from two full-scale field observations, which showed pollutants removal would be enhanced and energy consumption could be reduced by at least 10% using limited filamentous bulking. Furthermore, preliminary investigation including the abundance evaluation and the identification of filamentous bacteria demonstrated that the limited filamentous bulking could be repeated steadily in a lab-scale anoxic-oxic reactor fed with domestic wastewater. The sludge loss did not occur in the secondary clarifier, while COD and total nitrogen removal efficiencies were improved by controlling DO for optimal filamentous bacterial population. Suspended solids in effluent were negligible and turbidity was lower than 2 NTU, which were distinctly lower than those under no bulking. Theoretical and experimental results indicated the aeration consumption could be saved by the application of limited filamentous bulking.

  3. Method for processing aqueous wastes

    DOEpatents

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  4. IgA Nephropathy

    MedlinePlus

    ... the tiny working units of the kidneys that filter wastes and remove extra fluid from the blood. ... the tiny working units of the kidneys that filter wastes and remove extra fluid from the blood. ...

  5. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    ERIC Educational Resources Information Center

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  6. 40 CFR 761.207 - The manifest-general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.207 The manifest—general..., the earliest date of removal from service for disposal, and the weight in kilograms of the PCB waste..., the date of removal from service for disposal, and weight in kilograms of the PCB waste in each PCB...

  7. 40 CFR 761.207 - The manifest-general requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.207 The manifest—general..., the earliest date of removal from service for disposal, and the weight in kilograms of the PCB waste..., the date of removal from service for disposal, and weight in kilograms of the PCB waste in each PCB...

  8. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  9. Color removal from dye-containing wastewater by magnesium chloride.

    PubMed

    Gao, Bao-Yu; Yue, Qin-Yan; Wang, Yan; Zhou, Wei-Zhi

    2007-01-01

    Color removal by MgCl(2) when treating synthetic waste containing pure dyes was studied. The color removal efficiency of MgCl(2)/Ca(OH)(2) was compared with that of Al(2)(SO(4))(3), polyaluminum chloride (PAC) and FeSO(4)/Ca(OH)(2). The mechanism of color removal by MgCl(2) was also investigated. The experimental results show that the color removal efficiency of MgCl(2) is related to the type of dye and depends on the pH of the waste and the dosage of the coagulants used. Treatment of waste containing reactive dye or dispersed dye with MgCl(2) yielded an optimum color removal ratio when the pH of the solution was equal to or above 12.0. For both the reactive and dispersed dye waste, MgCl(2)/Ca(OH)(2) was shown to be superior to MgCl(2)/NaOH, Al(2)(SO(4))(3), PAC and FeSO(4)/Ca(OH)(2) for color removal. A magnesium hydroxide precipitate formed at pH values greater than 12.0, which provided a large adsorptive surface area and a positive electrostatic surface charge, enabling it to remove the dyes through charge neutralization and an adsorptive coagulating mechanism. So, the MgCl(2)/Ca(OH)(2) system is a viable alternative to some of the more conventional forms of chemical treatment, especially for treating actual textile waste with high natural pH.

  10. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    PubMed Central

    Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-01-01

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363

  11. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions.

    PubMed

    Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-02-26

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  12. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, K.; Landsberger, S.; Srinivasan, B.

    1994-12-31

    A method for the separation of radionuclides with Z greater than 88, from lower-level radioactive wastes (liquid scintillation cocktail or LSC wastes), is described. The method is liquid-liquid extraction (LLX) and demulsification. The actinide elements are removed from the LSC wastes by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated, then the wastes type remaining may be incinerated. Future experiments will be performed to study the effects of pH and temperature and to extend the study to wastes containing americium.

  13. Dialysis centers -- what to expect

    MedlinePlus

    ... will flow through a special filter that removes waste and excess fluid. The filter is sometimes called ... on: How well your kidneys work How much waste needs to be removed How much water weight ...

  14. Characterization of leaf waste based biochar for cost effective hydrogen sulphide removal from biogas.

    PubMed

    Sahota, Shivali; Vijay, Virendra Kumar; Subbarao, P M V; Chandra, Ram; Ghosh, Pooja; Shah, Goldy; Kapoor, Rimika; Vijay, Vandit; Koutu, Vaibhav; Thakur, Indu Shekhar

    2018-02-01

    Installation of decentralized units for biogas production along with indigenous upgradation systems can be an effective approach to meet growing energy demands of the rural population. Therefore, readily available leaf waste was used to prepare biochar at different temperatures and employed for H 2 S removal from biogas produced via anaerobic digestion plant. It is found that biochar prepared via carbonization of leaf waste at 400 °C effectively removes 84.2% H 2 S (from 1254 ppm to 201 ppm) from raw biogas for 25 min in a continuous adsorption tower. Subsequently, leaf waste biochar compositional, textural and morphological properties before and after H 2 S adsorption have been analyzed using proximate analysis, CHNS, BET surface area, FTIR, XRD, and SEM-EDX. It is found that BET surface area, pore size, and textural properties of leaf waste biochar plays a crucial role in H 2 S removal from the biogas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effectiveness of three bulking agents for food waste composting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Bijaya K.; Barrington, Suzelle; Martinez, Jose

    2009-01-15

    Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends.more » Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment.« less

  16. BIOREACTOR LANDFILLS, THEORETICAL ADVANTAGES AND RESEARCH CHALLENGES

    EPA Science Inventory

    Bioreactor landfills are municipal solid waste landfills that utilize bulk liquids in an effort to accelerate solid waste degradation. There are few potential benefits for operating a MSW landfill as a bioreactor. These include leachate treatment and management, increase in the s...

  17. Chinese medicinal herbal residues as a bulking agent for food waste composting.

    PubMed

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2018-02-01

    This study aimed to co-compost Chinese medicinal herbal residues (CMHRs) as the bulking agent with food waste (FW) to develop a high value antipathogenic compost. The FW, sawdust (SD) and CMHRs were mixed at three different mixing ratios, 5:5:1, 2:2:1 and 1:1:1 on dry weight basis. Lime at 2.25% was added to the composting mix to buffer the pH during the composting. A control without lime addition was also included. The mixtures were composted in 20-L in-vessel composters for 56 days. A maximum of 67.2% organic decomposition was achieved with 1:1:1 mixing ratio within 8 weeks. The seed germination index was 157.2% in 1:1:1 mixing ratio, while other ratios showed <130.0% and the treatment without lime showed 40.3%. Therefore use of CMHRs as the bulking agent to compost food waste at the dry weight ratio of 1:1:1 (FW: SD: CMHRs) was recommended for FW-CMHRs composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Method of dye removal for the textile industry

    DOEpatents

    Stone, Mark L.

    2000-01-01

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  19. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAUS, P.S.

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Wastemore » Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.« less

  20. Ethene removal from a synthetic waste gas using a dry biobed.

    PubMed

    De Heyder, B; Overmeire, A; Van Langenhove, H; Verstraete, W

    1994-08-20

    A packed granular activated carbon (GAC) biobed, inoculated with the ethane-degrading strain Mycobacterium E3, was used to study ethene removal from a synthetic waste gas. Ethene, for which the dimensionless partition coefficient for an air-water system at 20 degrees C is about 7.6, was used as a model compound for poorly water soluble gaseous pollutants. In a first mode or operation, the GAC biobed was sprinkled intermittently and the waste gas influent was continuously pre-humidified, establishing relatively moist conditions (water content >40% to 45%). A volumetric ethene removal rate of 0.382 kg COD x m(-3) x d(-1) (0.112 kg ethene x m(-3) x d(-1)) was obtained for an influent concentration of 125 ppm, a superficial waste gas velocity of 3.6E-3 m x s(-1) and a pseudo residence time of 45 s. However, in the second mode of operation, omitting the pre-humidification of the waste gas influent and establishing a "dry" biobed (water content <40% to 45%), and thus obtaining better mass transfer to the biofilm, the ethene removal could be doubled for otherwise comparable operating parameters. Furthermore, under decreased wetting and for the given experimental conditions (influent concentration 125 to 816 ppm, waste gas superficial velocity 3.0E-3 m x s(-1), pseudo waste gas residence time 43 s), the ethene removal was not limited by mass transfer of ethene through the water layer covering the biofilm.

  1. Optimizing the performance of microbial fuel cells fed a combination of different synthetic organic fractions in municipal solid waste.

    PubMed

    Pendyala, Brahmaiah; Chaganti, Subba Rao; Lalman, Jerald A; Heath, Daniel D

    2016-03-01

    The objective of this study was to establish the impact of different steam exploded organic fractions in municipal solid waste (MSW) on electricity production using microbial fuel cells (MFCs). In particular, the influence of individual steam exploded liquefied waste components (food waste (FW), paper-cardboard waste (PCW) and garden waste (GW)) and their blends on chemical oxygen demand (COD) removal, columbic efficiency (CE) and microbial diversity was examined using a mixture design. Maximum power densities from 0.56 to 0.83 W m(-2) were observed for MFCs fed with different feedstocks. The maximum COD removed and minimum CE were observed for a GW feed. However, a reverse trend (minimum COD removed and maximum CE) was observed for the FW feed. A maximum COD removal (78%) accompanied with a maximum CE (24%) was observed for a combined feed of FW, PCW plus GW in a 1:1:1 ratio. Lactate, the major byproduct detected, was unutilized by the anodic biofilm community. The organic fraction of municipal solid waste (OFMSW) could serve as a potential feedstock for electricity generation in MFCs; however, elevated protein levels will lead to reduced COD removal. The microbial communities in cultures fed FW and PCW was highly diversified; however, the communities in cultures fed FW or a feed mixture containing high FW levels were similar and dominated by Bacteroidetes and β-proteobacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Performance of Silica Gel in the Role of Residual Air Drying

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Hogan, John A.; Koss, Brian; Palmer, Gary H.; Richardson, Justine; Linggi, Paul

    2014-01-01

    Removal of carbon dioxide (CO2) is a necessary step in air revitalization and is often accomplished with sorbent materials. Since moisture competes with CO2 in sorbent materials, it is necessary to remove the water first. This is typically accomplished in two stages: bulk removal and residual drying. Silica gel is used as the bulk drying material in the Carbon Dioxide Removal Assembly (CDRA) in operation on ISS. There has been some speculation that silica gel may also be capable of serving as the residual drying material. This paper will describe test apparatus and procedures for determining the performance of silica gel in residual air drying.

  3. Tritium systems test assembly stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasen, W. G.; Michelotti, R. A.; Anast, K. R.

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium technology Research and Development (R&D) primarily for future fusion power reactors. The facility was conceived in mid 1970's, operations commenced in early 1980's, stabilization and deactivation began in 2000 and were completed in 2003. The facility will remain in a Surveillance and Maintenance (S&M) mode until the Department of Energy (DOE) funds demolition of the facility, tentatively in 2009. A safe and stable end state was achieved by the TSTA Facility Stabilization Project (TFSP) in anticipation of long term S&M. At the start of the stabilization project, withmore » an inventory of approximately 140 grams of tritium, the facility was designated a Hazard Category (HC) 2 Non-Reactor Nuclear facility as defined by US Department of Energy standard DOE-STD-1027-92 (1997). The TSTA facility comprises a laboratory area, supporting rooms, offices and associated laboratory space that included more than 20 major tritium handling systems. The project's focus was to reduce the tritium inventory by removing bulk tritium, tritiated water wastes, and tritium-contaminated high-inventory components. Any equipment that remained in the facility was stabilized in place. All of the gloveboxes and piping were rendered inoperative and vented to atmosphere. All equipment, and inventoried tritium contamination, remaining in the facility was left in a safe-and-stable state. The project used the End Points process as defined by the DOE Office of Environmental Management (web page http://www.em.doe.- gov/deact/epman.htmtlo) document and define the end state required for the stabilization of TSTA Facility. The End Points process added structure that was beneficial through virtually all phases of the project. At completion of the facility stabilization project the residual tritium inventory was approximately 3,000 curies, considerably less than the 1.6-gram threshold for a HC 3 facility. TSTA is now designated as a Radiological Facility. Innovative approaches were employed for characterization and removal of legacy wastes and high inventory components. Major accomplishments included: (1) Reduction of tritium inventory, elimination of chemical hazards, and identification and posting of remaining hazards. (2) Removal of legacy wastes. (3) Transferred equipment for reuse in other DOE projects, including some at other DOE facilities. (4) Transferred facility in a safe and stable condition to the S&M organization. The project successfully completed all project goals and the TSTA facility was transferred into S&M on August 1,2003. This project demonstrates the benefit of radiological inventory reduction and the removal of legacy wastes to achieve a safe and stable end state that protects workers and the environment pending eventual demolition of the facility.« less

  4. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  5. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.

    PubMed

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  6. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  7. Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) technology of mercury removal and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xiangdong; Liu, Jun; Fryxell, G.E.

    1997-09-01

    This paper explains the technology developed to produce Self-Assembled Mercaptan on Mesoporous Silica (SAMMS) for mercury removal from aqueous wastewater and from organic wastes. The characteristics of SAMMS materials, including physical characteristics and mercury loading, and its application for mercury removal and stabilization are discussed. Binding kinetics and binding speciations are reported. Preliminary cost estimates are provided for producing SAMMS materials and for mercury removal from wastewater. The characteristics of SAMMS in mercury separation were studied at PNNL using simulated aqueous tank wastes and actual tritiated pump oil wastes from Savannah River Site; preliminary results are outlined. 47 refs., 16more » figs., 16 tabs.« less

  8. In-Vessel Composting of Simulated Long-Term Missions Space-Related Solid Wastes

    NASA Technical Reports Server (NTRS)

    Rodriguez-Carias, Abner A.; Sager, John; Krumins, Valdis; Strayer, Richard; Hummerick, Mary; Roberts, Michael S.

    2002-01-01

    Reduction and stabilization of solid wastes generated during space missions is a major concern for the Advanced Life Support - Resource Recovery program at the NASA, Kennedy Space Center. Solid wastes provide substrates for pathogen proliferation, produce strong odor, and increase storage requirements during space missions. A five periods experiment was conducted to evaluate the Space Operation Bioconverter (SOB), an in vessel composting system, as a biological processing technology to reduce and stabilize simulated long-term missions space related solid-wastes (SRSW). For all periods, SRSW were sorted into components with fast (FBD) and slow (SBD) biodegradability. Uneaten food and plastic were used as a major FBD and SBD components, respectively. Compost temperature (C), CO2 production (%), mass reduction (%), and final pH were utilized as criteria to determine compost quality. In period 1, SOB was loaded with a 55% FBD: 45% SBD mixture and was allowed to compost for 7 days. An eleven day second composting period was conducted loading the SOB with 45% pre-composted SRSW and 55% FBD. Period 3 and 4 evaluated the use of styrofoam as a bulking agent and the substitution of regular by degradable plastic on the composting characteristics of SRSW, respectively. The use of ceramic as a bulking agent and the relationship between initial FBD mass and heat production was investigated in period 5. Composting SRSW resulted in an acidic fermentation with a minor increase in compost temperature, low CO2 production, and slightly mass reduction. Addition of styrofoam as a bulking agent and substitution of regular by biodegradable plastic improved the composting characteristics of SRSW, as evidenced by higher pH, CO2 production, compost temperature and mass reduction. Ceramic as a bulking agent and increase the initial FBD mass (4.4 kg) did not improve the composting process. In summary, the SOB is a potential biological technology for reduction and stabilization of mission space-related solid wastes. However, the success of the composting process may depend of the physical characteristics (particle size, porosity, structure, texture) of the SBD components which would require pre-processing of solid wastes before placing them in the SOB.

  9. [Methodological approaches to the development of environmentally benign technology for the use of solid waste in iron metallurgy].

    PubMed

    Pugin, K G; Vaĭsman, Ia I

    2013-01-01

    On the basis of the life cycle of materials, containing wastes of iron and steel industry, new methodological approaches to the assessment of technologies of the secondary use of wastes are developed A complex criteria for selection of the technology for the use of resource potential of solid waste of iron and steel industry are developed with taking into account environmental, technological and economic indices. The technology of the use of wastes of ferrovanadium industry as bulk solid materials at the solid waste landfill is shown.

  10. Promising Thermoelectric Bulk Materials with 2D Structures.

    PubMed

    Zhou, Yiming; Zhao, Li-Dong

    2017-12-01

    Given that more than two thirds of all energy is lost, mostly as waste heat, in utilization processes worldwide, thermoelectric materials, which can directly convert waste heat to electricity, provide an alternative option for optimizing energy utilization processes. After the prediction that superlattices may show high thermoelectric performance, various methods based on quantum effects and superlattice theory have been adopted to analyze bulk materials, leading to the rapid development of thermoelectric materials. Bulk materials with two-dimensional (2D) structures show outstanding properties, and their high performance originates from both their low thermal conductivity and high Seebeck coefficient due to their strong anisotropic features. Here, the advantages of superlattices for enhancing the thermoelectric performance, the transport mechanism in bulk materials with 2D structures, and optimization methods are discussed. The phenomenological transport mechanism in these materials indicates that thermal conductivities are reduced in 2D materials with intrinsically short mean free paths. Recent progress in the transport mechanisms of Bi 2 Te 3 -, SnSe-, and BiCuSeO-based systems is summarized. Finally, possible research directions to enhance the thermoelectric performance of bulk materials with 2D structures are briefly considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 40 CFR 262.84 - Tracking document.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Transfrontier Shipments of Hazardous Waste for... (bulk shipments only) the generator must forward the tracking document with the manifest to the last... the U.S. which originate at the site of generation, the generator must forward the tracking document...

  12. Hazardous Waste Management System - Identification and Listing of Hazardous Waste - Toxicity Characteristic - Hydrocarbon Recovery Operations - Federal Register Notice, February 1, 1991

    EPA Pesticide Factsheets

    Extends the compliance date of the Toxicity Characteristic until January 25, 1991 for groundwater that is reinjected or reinfiltrated during existing hydrocarbon recovery operations at petroleum refineries, marketing terminals, and bulk plants.

  13. 40 CFR 761.348 - Contemporaneous sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.348 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  14. 40 CFR 761.348 - Contemporaneous sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.348 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  15. 40 CFR 761.348 - Contemporaneous sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.348 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  16. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - U.S. POSTAL SERVICE BULK MAIL CENTER, DALLAS, TEXAS

    EPA Science Inventory

    The United States Postal Service (USPS) in cooperation with EPA’s National Risk Management Research Laboratory (NRMRL) is engaged in an effort to integrate waste prevention and recycling activities into the waste management programs at Postal facilities. This report describ...

  17. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.).

    PubMed

    Sharma, Kavita; Garg, V K

    2018-02-01

    Present study was undertaken to investigate the vermicomposting of two different organic wastes (rice straw and paper waste) employing, Eisenia fetida. Nine feedstocks were prepared with different ratios of wastes using cow dung as bulking substrate. After pre-composting, worms were allowed to feed on different feedstocks for 105 days under laboratory conditions. The results showed that NPK content was higher in the vermicompost. Heavy metal content was also higher in the vermicomposts. Whereas total organic carbon and C:N ratio were lower after vermicomposting, by 17.38-58.04% and 19-102% respectively. SEM images revealed changes in the morphology of vermicompost. Earthworm growth and reproduction was significant in different feedstocks except one containing 50% rice straw depicting that this ratio is not suitable for the earthworms. Results further demonstrated that proportion of bulking substrate affect the earthworm growth and reproduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites.

    PubMed

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-05-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.

  19. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites

    PubMed Central

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-01-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability. PMID:27222742

  20. 78 FR 803 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...In this Final Rule, pursuant to section 215 of the Federal Power Act, the Federal Energy Regulatory Commission (Commission) approves modifications to the currently-effective definition of ``bulk electric system'' developed by the North American Electric Reliability Corporation (NERC), the Commission-certified Electric Reliability Organization. The Commission finds that the modified definition of ``bulk electric system'' removes language allowing for regional discretion in the currently-effective bulk electric system definition and establishes a bright-line threshold that includes all facilities operated at or above 100 kV. The modified definition also identifies specific categories of facilities and configurations as inclusions and exclusions to provide clarity in the definition of ``bulk electric system.'' In this Final Rule, the Commission also approves: NERC's revisions to its Rules of Procedure, which create an exception process to add elements to, or remove elements from, the definition of ``bulk electric system'' on a case-by-case basis; NERC's form entitled ``Detailed Information To Support an Exception Request'' that entities will use to support requests for exception from the ``bulk electric system'' definition; and NERC's implementation plan for the revised ``bulk electric system'' definition.

  1. RCRA Summary Document for the David Witherspoon 1630 Site, Knoxville, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeffer, J.

    2008-06-10

    The 48-acre David Witherspoon, Inc. (DWI) 1630 Site operated as an unregulated industrial landfill and scrap yard. The Tennessee Division of Superfund (TDSF) closed the landfill in 1974. During the period of operation, the site received solid and liquid wastes from salvage and industrial operations. The site consists of five separate tracts of land including a small portion located across the Norfolk Southern Railroad track. The landfill occupies approximately 5 acres of the site, and roughly 20 acres of the 48 acres contains surface and buried debris associated with the DWI dismantling business operation. Beginning in 1968, the state ofmore » Tennessee licensed DWI to receive scrap metal at the DWI 1630 Site, contaminated with natural uranium and enriched uranium (235U) not exceeding 0.1 percent by weight (TDSF 1990). The U.S. Department of Energy (DOE) has agreed to undertake remedial actions at the DWI 1630 Site as specified under a Consent Order with the Tennessee Department of Environment and Conservation (TDEC) (Consent Order No. 90-3443, April 4, 1991), and as further delineated by a Memorandum of Understanding (MOU) between DOE and the State of Tennessee (MOU Regarding Implementation of Consent Orders, October 6, 1994). The soil and debris removal at the DWI 1630 Site is being performed by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. Remediation consists of removing contaminated soil and debris from the DWI 1630 site except for the landfill area and repairing the landfill cap. The DWI 1630 remediation waste that is being disposed at the Environmental Management Waste Management Facility (EMWMF) as defined as waste lot (WL) 146.1 and consists primarily of soils and soil like material, incidental debris and secondary waste generated from the excavation of debris and soil from the DWI 1630 site. The WL 146.1 includes soil, soil like material (e.g., shredded or chipped vegetation, ash), discrete debris items (e.g., equipment, drums, large scrap metal, cylinders, and cable) and populations of debris type items (e.g., piles of bricks, small scrap metal, roofing material, scaffolding, and shelving) that are located throughout the DWI 1630 site. The project also generates an additional small volume of secondary waste [e.g., personal protective equipment (PPE), and miscellaneous construction waste] that is bagged and included in bulk soil shipments to the EMWMF. The Waste Acceptance Criteria (WAC) for the EMWMF does not allow for material that does not meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs). The waste being excavated in certain areas of the DWI 1630 site contained soil that did not meet RCRA LDR criteria; therefore this waste had to be segregated for treatment or alternate disposal offsite. This document identifies the approach taken by the DWI 1630 project to further characterize the areas identified during the Phase II Remedial Investigation (RI) as potentially containing RCRA-characteristic waste. This document also describes the methodology used to determine excavation limits for areas determined to be RCRA waste, post excavation sampling, and the treatment and disposal of this material.« less

  2. THE INTEGRATION OF A PROPOSED ZONE CLOSURE APPROACH FOR THE PLUTONIUM FINISHING PLANT (PFP) DECOMMISSIONING & THE PFP ZONE HANFORD SITE WASHINGTON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOPKINS, A.M.

    2005-02-23

    The Plutonium Finishing Plant (PFP) and associated processing facilities are located in the 200 area of the Hanford Site in Eastern Washington. This area is part of what is now called the Central Plateau. In order to achieve closure of the contaminated facilities and waste sites at Hanford on the Central Plateau (CP), a geographic re-districting of the area into zones has been proposed in the recently published Plan for Central Plateau Closure. One of the 22 zones proposed in the Central Plateau encompasses the PFP and ancillary facilities. Approximately eighty six buildings are included in the PFP Zone. Thismore » paper addresses the approach for the closure of the PFP Zone within the Central Plateau. The PFP complex of buildings forms the bulk of the structures in the PFP Zone. For closure of the above-grade portion of structures within the PFP complex, the approach is to remove them to a state called ''slab-on-grade'' per the criteria contained in PFP End Point Criteria document and as documented in action memoranda. For below-grade portions of the structures (such as below-grade rooms, pipe trenches and underground ducts), the approach is to remove as much residual contamination as practicable and to fill the void spaces with clean fill material such as sand, grout, or controlled density fill. This approach will be modified as planning for the waste sites progresses to ensure that the actions of the PFP decommissioning projects do not negatively impact future planned actions under the CERCLA. Cribs, settling tanks, septic tanks and other miscellaneous below-grade void spaces will either be cleaned to the extent practicable and filled or will be covered with an environmental barrier as determined by further studies and CERCLA decision documents. Currently, between two and five environmental barriers are proposed to be placed over waste sites and remaining building slabs in the PFP Zone.« less

  3. Effect and removal mechanisms of 6 different washing agents for building wastes containing chromium.

    PubMed

    Xing-run, Wang; Yan-xia, Zhang; Qi, Wang; Jian-min, Shu

    2012-01-01

    With the building wastes contaminated by chromium in Haibei Chemical Plan in China as objects, we studied the contents of total Cr and Cr (VI) of different sizes, analyzed the effect of 6 different washing agents, discussed the removal mechanisms of 6 different washing agents for Cr in various forms, and finally selected applicable washing agent. As per the results, particle size had little impact on the contents of total Cr and Cr (VI); after one washing with water, the removal rate of total Cr and Cr (VI) was 75% and 78%, respectively, and after the second washing with 6 agents, the removal rate of citric acid was the highest, above 90% for total Cr and above 99% for hexavalent chromium; the pH of building wastes were reduced by citric acid, and under acid condition, hexavalent chromium was reduced to trivalent chromium spontaneously by organic acid, which led to better removal rate of acid soluble Cr and reducible Cr; due to the complexing action, citric acid had best removal rate for oxidizable trivalent chromium. In conclusion, citric acid is the most applicable second washing agent for building wastes.

  4. Ion Exchange Column Tests Supporting Technetium Removal Resin Maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C.; McCabe, D.; Hamm, L.

    2013-12-20

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant, currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed on site. There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Due to the soluble properties of pertechnetate and long half-life ofmore » 99Tc, effective management of 99Tc is important. Options are being explored to immobilize the supplemental LAW portion of the tank waste, as well as to examine the volatility of 99Tc during the vitrification process. Removal of 99Tc, followed by off-site disposal has potential to reduce treatment and disposal costs. A conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. SuperLig® 639 is an elutable ion exchange resin. In the tank waste, 99Tc is predominantly found in the tank supernate as pertechnetate (TcO 4 -). Perrhenate (ReO 4 -) has been shown to be a good non-radioactive surrogate for pertechnetate in laboratory testing for this ion exchange resin. This report contains results of experimental ion exchange distribution coefficient and column resin maturation kinetics testing using the resin SuperLig® 639a to selectively remove perrhenate from simulated LAW. This revision includes results from testing to determine effective resin operating temperature range. Loading tests were performed at 45°C, and the computer modeling was updated to include the temperature effects. Equilibrium contact testing indicated that this batch of SuperLig® 639 resin has good performance, with an average perrhenate distribution coefficient of 291 mL/g at a 100:1 phase ratio. This slightly exceeds the computer-modeled equilibrium distribution. The modeling agreed well with the experimental data for perrhenate removal with minor adjustments. Predicted breakthrough performance was on average within about 20% of measured values.« less

  5. Removal of chromium(III) from aqueous waste solution by liquid-liquid extraction in a circular microchannel.

    PubMed

    Luo, Jian Hong; Li, Jun; Guo, Lei; Zhu, Xin Hua; Dai, Shuang; Li, Xing

    2017-11-01

    A new circular microchannel device has been proposed for the removal of chromium(III) from aqueous waste solution by using kerosene as a diluent and (2-ethylhexyl) 2-ethylhexyl phosphonate as an extractant. The proposed device has several advantages such as a flexible and easily adaptable design, easy maintenance, and cheap setup without the requirement of microfabrication. To study the extraction efficiency and advantages of the circular microchannel device in the removal of chromium(III), the effects of various operating conditions such as the inner diameter of the channel, the total flow velocity, the phase ratio, the initial pH of aqueous waste solution, the reaction temperature and the initial concentration of extractant on the extraction efficiency are investigated and the optimal process conditions are obtained. The results show that chromium(III) in aqueous waste solution can be effectively removed with (2-ethylhexyl) 2-ethylhexyl phosphonate in the circular microchannel. Under optimized conditions, an extraction efficiency of chromium(III) of more than 99% can be attained and the aqueous waste solution can be discharged directly, which can meet the Chinese national emission standards.

  6. Standard Waste Box Lid Screw Removal Option Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anast, Kurt Roy

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  7. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  8. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.

    1994-01-01

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  9. Sorption of mercury onto waste material derived low-cost activated carbon

    NASA Astrophysics Data System (ADS)

    Bhakta, Jatindra N.; Rana, Sukanta; Lahiri, Susmita; Munekage, Yukihiro

    2017-03-01

    The present study was performed to develop the low-cost activated carbon (AC) from some waste materials as potential mercury (Hg) sorbent to remove high amount of Hg from aqueous phase. The ACs were prepared from banana peel, orange peel, cotton fiber and paper wastes by pyrolysis and characterized by analyzing physico-chemical properties and Hg sorption capacity. The Brunauer Emmett and Teller surface areas (cotton 138 m2/g; paper 119 m2/g), micropore surface areas (cotton 65 m2/g; paper 54 m2/g) and major constituent carbon contents (cotton 95.04 %; paper 94.4 %) were higher in ACs of cotton fiber and paper wastes than the rest two ACs. The Hg sorption capacities and removal percentages were greater in cotton and paper wastes-derived ACs compared to those of the banana and orange peels. The results revealed that elevated Hg removal ability of cotton and paper wastes-derived ACs is largely regulated by their surface area, porosity and carbon content properties. Therefore, ACs of cotton and paper wastes were identified as potential sorbent among four developed ACs to remove high amount of Hg from aqueous phase. Furthermore, easily accessible precursor material, simple preparation process, favorable physico-chemical properties and high Hg sorption capacity indicated that cotton and paper wastes-derived ACs could be used as potential and low-cost sorbents of Hg for applying in practical field to control the severe effect of Hg contamination in the aquatic environment to avoid its human and environmental health risks.

  10. [Characteristics and mechanism of sodium removal by the synergistic action of flue gas and waste solid].

    PubMed

    Yi, Yuan-Rong; Han, Min-Fang

    2012-07-01

    The carbon dioxide (CO2) in flue gas was used to remove the sodium in the red mud (RM) , a kind of alkaline solid waste generated during alumina production. The reaction characteristics and mechanism of sodium removal by the synergistic action of CO2 and RM were studied with different medium pH, reaction time and temperature. It was demonstrated that the remove of sodium by RM was actually the result of the synergistic action of sodium-based solid waste in RM with the CO2-H2O and OH(-)-CO2 systems. The sodium removal efficiency was correlated with pH, reaction temperature and time. The characteristics of RM before and after sodium removal were analyzed using X-ray diffractometer (XRD) and scanning electron microscope (SEM), and the results showed that the alkaline materials in the red mud reacted with CO2 and the sodium content in solid phases decreased significantly after reaction. The sodium removal efficiency could reach up to 70% with scientific procedure. The results of this research will offer an efficient way for low-cost sodium removal.

  11. Preparation and performance of arsenate (V) adsorbents derived from concrete wastes.

    PubMed

    Sasaki, Takeshi; Iizuka, Atsushi; Watanabe, Masayuki; Hongo, Teruhisa; Yamasaki, Akihiro

    2014-10-01

    Solid adsorbent materials, prepared from waste cement powder and concrete sludge were assessed for removal of arsenic in the form of arsenic (As(V)) from water. All the materials exhibited arsenic removal capacity when added to distilled water containing 10-700 mg/L arsenic. The arsenic removal isotherms were expressed by the Langmuir type equations, and the highest removal capacity was observed for the adsorbent prepared from concrete sludge with heat treatment at 105°C, the maximum removal capacity being 175 mg-As(V)/g. Based on changes in arsenic and calcium ion concentrations, and solution pH, the removal mechanism for arsenic was considered to involve the precipitation of calcium arsenate, Ca3(AsO4)2. The enhanced removal of arsenic for the adsorbent prepared from concrete sludge with heat treatment was thought to reflect ion exchange by ettringite. The prepared adsorbents, derived from waste cement and concrete using simple procedures, may offer a cost effective approach for arsenic removal and clean-up of contaminated waters, especially in developing countries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Natural diatomite process for removal of radioactivity from liquid waste.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2007-01-01

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.

  13. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.« less

  14. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    EPA Science Inventory

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  15. ENGINEERING BULLETIN: IN SITU STEAM EXTRACTION TREATMENT

    EPA Science Inventory

    In situ steam extraction removes volatile and semivolatile hazardous contaminants from soil and groundwater without excavation of the hazardous waste. Waste constituents are removed in situ by the technology and are not actually treated. The use of steam enhances the stripping of...

  16. Ethene removal from a synthetic waste gas using a dry biobed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Heyder, B.; Overmeire, A.; Van Langenhove, H.

    A packed granular activated carbon (GAC) biobed, inoculated with the ethene-degrading strain Mycobacterium E3, was used to study ethene removal from a synthetic waste gas. Ethene, for which the dimensionless partition coefficient for an air-water system at 20C is about 7.6, was used as a model compound for poorly water soluble gaseous pollutants. In a first mode of operation, the GAC biobed was sprinkled intermittently and the waste gas influent was continuously pre-humidified, establishing relatively moist conditions. A volumetric ethene removal rate of 0.382 kg COD [center dot] m[sup [minus]3] [center dot] d[sup [minus]1] was obtained for an influent concentrationmore » of 125 ppm, a superficial waste gas velocity of 3.6E-3 m [center dot] s[sup [minus]1] and a pseudo residence time of 45 s. However, in the second mode of operation, omitting the pre-humidification of the waste gas influent and establishing a dry'' biobed and thus obtaining better mass transfer to the biofilm, the ethene removal could be doubled for otherwise comparable operating parameters. Furthermore, under decreased wetting and for the given experimental conditions, the ethene removal was not limited by mass transfer of ethene through the water layer covering the biofilm.« less

  17. Thermal Flammable Gas Production from Bulk Vitrification Feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.

    2008-05-21

    The baseline bulk-vitrification (BV) process (also known as in-container vitrification ICV™) includes a mixer/dryer to convert liquid low-activity waste (LAW) into a dried, blended feed for vitrification. Feed preparation includes blending LAW with glass-forming minerals (GFMs) and cellulose and drying the mixture to a suitable dryness, consistency, and particle size for transport to the ICVTM container. The cellulose is to be added to the BV feed at a rate sufficient to destroy 75% of the nitrogen present as nitrate or nitrite. Concern exists that flammable gases may be produced during drying operations at levels that could pose a risk. Themore » drying process is conducted under vacuum in the temperature range of 60 to 80°C. These flammable gases could be produced either through thermal decomposition of cellulose or waste organics or as a by-product of the reaction of cellulose and/or waste organics with nitrate or the postulated small amount of nitrite present in the waste. To help address the concern about flammable gas production during drying, the Pacific Northwest National Laboratory (PNNL) performed studies to identify the gases produced at dryer temperatures and at possible process upset conditions. Studies used a thermogravimetric analyzer (TGA) up to 525°C and isothermal testing up to 120°C to determine flammable gas production resulting from the cellulose and organic constituents in bulk vitrification feed. This report provides the results of those studies to determine the effects of cellulose and waste organics on flammable gas evolution« less

  18. Hazardous Waste Management System - Identification and Listing of Hazardous Waste - Toxicity Characteristic - Hydrocarbon Recovery Operations - Federal Register Notice, April 2, 1991

    EPA Pesticide Factsheets

    Proposal to extend the compliance date for the Toxicity Characteristic until January 25, 1993 for produced groundwater from free phase hydrocarbon recovery operations at certain petroleum industry sites-namely, refineries, marketing terminals, bulk plants.

  19. 40 CFR 761.346 - Three levels of sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  20. 40 CFR 761.356 - Conducting a leach test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  1. 40 CFR 761.346 - Three levels of sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  2. 40 CFR 761.350 - Subsampling from composite samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off.... 761.350 Section 761.350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  3. 40 CFR 761.350 - Subsampling from composite samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off.... 761.350 Section 761.350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  4. 40 CFR 761.356 - Conducting a leach test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  5. 40 CFR 761.346 - Three levels of sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.346 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  6. 40 CFR 761.356 - Conducting a leach test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  7. 40 CFR 761.350 - Subsampling from composite samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off.... 761.350 Section 761.350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  8. 40 CFR 761.356 - Conducting a leach test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal... Section 761.356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...

  9. 40 CFR 761.289 - Compositing samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 761.289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or...

  10. 40 CFR 761.289 - Compositing samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 761.289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or...

  11. 40 CFR 761.289 - Compositing samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 761.289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or...

  12. Chemical Waste and Allied Products.

    PubMed

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste.

  13. Evaluation of waste tank 16 using a field mercury analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, B.; Cook, J.R.

    1988-05-12

    Liquid radioactive wastes from the chemical processing of nuclear materials at the Savannah River Plant (SRP) are stored in large tanks buried near the ground surface. Each tank has multiple containment barriers designed to prevent leakage to the surrounding soil and groundwater. The only incident in which waste leaked through the multiple containment of a waste tank at SRP occurred at Tank 16 on September 8, 1960 (Poe, 1974; Prendergast, 1982). Tank 16 was built in 1955 and has a capacity of approximately one million gallons. Tank 16 consists of a steel primary containment vessel resting in a shallow steelmore » pan. A massive concrete encasement surrounds the tank and pan. After the leak in 1960, the tank was removed from service until 1967; at that time it was placed into service for lower activity wastes. In 1972 the tank was removed from service. Subsequently, all of the waste except a sludge heel of 67,000 gallons was removed from the tank. In 1980, this sludge was removed. Following the sludge removal, the tank was exhaustively cleaned and rinsed. Concentrations of radioactivity in the rinsewater suggested that the cleaning of the tank was effective (West and Morris, 1980). Recently, there has been concern about residual nonradioactive constituents, such as mercury, in the tank. To assist in evaluating the potential for residual mercury contamination, a survey method was developed and a survey of several tanks was conducted. 3 refs., 1 tab.« less

  14. Removal of Pertechnetate-Related Oxyanions from Solution Using Functionalized Hierarchical Porous Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Elsaidi, Sameh K.; Aguila, Briana

    2016-10-20

    Efficient and cost-effective removal of radioactive pertechnetate anions from nuclear waste is a key challenge to mitigate long-term nuclear waste storage issues. Traditional materials such as resins and layered double hydroxides (LDHs) were evaluated for their pertechnetate or perrhenate (the non-radioactive surrogate) removal capacity, but there is room for improvement in terms of capacity, selectivity and kinetics. A series of functionalized hierarchical porous frameworks were evaluated for their perrhenate removal capacity in the presence of other competing anions.

  15. Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Robert Wesley; Hargis, Kenneth Marshall

    2014-09-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.« less

  16. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Kenneth Marshall

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlementmore » agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.« less

  17. 40 CFR 194.46 - Removal of waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Removal of waste. 194.46 Section 194.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION... time after disposal. Such documentation shall include an analysis of the technological feasibility of...

  18. 40 CFR 194.46 - Removal of waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Removal of waste. 194.46 Section 194.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION... time after disposal. Such documentation shall include an analysis of the technological feasibility of...

  19. 40 CFR 194.46 - Removal of waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Removal of waste. 194.46 Section 194.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION... time after disposal. Such documentation shall include an analysis of the technological feasibility of...

  20. 40 CFR 194.46 - Removal of waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Removal of waste. 194.46 Section 194.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION... time after disposal. Such documentation shall include an analysis of the technological feasibility of...

  1. Simultaneous treatment of SO2 containing stack gases and waste water

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levendis, Y.A.

    A study was conducted to determine the efficacy of carboxylic calcium and magnesium salts (e.g., calcium magnesium acetate or CMA, CaMg{sub 2}(CH{sub 2}COOH){sub 6}) for the simultaneous removal of SO{sub 2} and NO{sub x} in oxygen-lean atmospheres. Experiments were performed in a high-temperature furnace that simulated the post-flame environment of a coal-fired boiler by providing similar temperatures and partial pressures of SO{sub 2}, NO{sub x} CO{sub 2} and O{sub 2}. When injected into a hot environment, the salts calcined and formed highly porous {open_quotes}popcorn{close_quotes}-like cenospheres. Residual MgO and/or CaCO{sub 3} and CaO reacted heterogeneously with SO{sub 2} to form MgSO{submore » 4} and/or CaCO{sub 4}. The organic components - which can be manufactured from wastes such as sewage sludge - gasified and reduced NO{sub x }to N{sub 2} efficiently if the atmosphere was moderately fuel-rich. Dry-injected CMA particles at a Ca/S ratio of 2, residence time of 1 second and bulk equivalence ratio of 1.3 removed over 90% of SO{sub 2} and NO{sub x} at gas temperatures {>=} 950{degrees}C. When the furnace isothermal zone was {<=} 950{degrees}C, Ca was essentially inert in the furnace quenching zone, while Mg continued to sorb SO{sub 2} as the gas temperature cooled at a rate of -130{degrees}C/sec. Hence, the removal of SO{sub 2} by CMA could continue for nearly the entire residence time of emissions in the exhaust stream of a power plant. Additional research is needed to improve the efficiency and reduce the cost of the relatively expensive carboxylic acid salts as dual SO{sub 2}-NO{sub x} reduction agents. For example, wet injection of the salts could be combined with less expensive hydrocarbons such as lignite or even polymers such as poly(ethylene) that could be extracted from the municipal waste stream.« less

  3. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    PubMed

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Removal of Chalk River unidentified deposit (CRUD) radioactive waste by enhanced electrokinetic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Won-Seok; Nam, Seongsik; Chang, Seeun

    Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less

  5. Removal of Chalk River unidentified deposit (CRUD) radioactive waste by enhanced electrokinetic process

    DOE PAGES

    Kim, Won-Seok; Nam, Seongsik; Chang, Seeun; ...

    2017-08-13

    Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less

  6. Nuclear energy waste-space transportation and removal

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed.

  7. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  8. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  9. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  10. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  11. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  12. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  13. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  14. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  15. 40 CFR 761.348 - Contemporaneous sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Contemporaneous sampling. 761.348... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...

  16. 40 CFR 761.348 - Contemporaneous sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Contemporaneous sampling. 761.348... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...

  17. Hazardous Waste Management System - Identification and Listing of Hazardous Waste - Toxicity Characteristic - Hydrocarbon Recovery Operations - Federal Register Notice, October 5, 1990

    EPA Pesticide Factsheets

    The Agency is promulgating an interim final rule to extend the compliance date of the Toxicity Characteristic rule for petroleum refining facilities, marketing terminals and bulk plants engaged in the recovery and remediation operation for 120 days.

  18. 40 CFR 761.359 - Reporting the PCB concentrations in samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off...

  19. 40 CFR 761.359 - Reporting the PCB concentrations in samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off...

  20. 40 CFR 761.359 - Reporting the PCB concentrations in samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off...

  1. 40 CFR 761.359 - Reporting the PCB concentrations in samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off...

  2. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  3. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  4. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  5. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  6. ENVIRONMENTAL RESEARCH BRIEF: WASTE REDUCTION ACTIVITIES AND OPTIONS FOR A TRANSPORTER OF BULK PLASTIC PELLETS.

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...

  7. Optimization of food waste hydrolysis in leach bed coupled with methanogenic reactor: effect of pH and bulking agent.

    PubMed

    Xu, Su Yun; Lam, Hoi Pui; Karthikeyan, O Parthiba; Wong, Jonathan W C

    2011-02-01

    The effects of pH and bulking agents on hydrolysis/acidogenesis of food waste were studied using leach bed reactor (LBR) coupled with methanogenic up-flow anaerobic sludge blanket (UASB) reactor. The hydrolysis rate under regulated pH (6.0) was studied and compared with unregulated one during initial experiment. Then, the efficacies of five different bulking agents, i.e. plastic full particles, plastic hollow sphere, bottom ash, wood chip and saw dust were experimented under the regulated pH condition. Leachate recirculation with 50% water replacement was practiced throughout the experiment. Results proved that the daily leachate recirculation with pH control (6.0) accelerated the hydrolysis rate (59% higher volatile fatty acids) and methane production (up to 88%) compared to that of control without pH control. Furthermore, bottom ash improved the reactor alkalinity, which internally buffered the system that improved the methane production rate (0.182 l CH(4)/g VS(added)) than other bulking agents. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Cleaning and passivation of copper surfaces to remove surface radioactivity and prevent oxide formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Eric W.; Seifert, Allen; Aalseth, Craig E.

    High-purity copper is an attractive material for constructing ultra-low-background radiation measurement devices. Many low-background experiments using high-purity copper have indicated surface contamination emerges as the dominant background. Radon daughters plate out on exposed surfaces, leaving a residual 210Pb background that is difficult to avoid. Dust is also a problem; even under cleanroom conditions, the amount of U and Th deposited on surfaces can represent the largest remaining background. To control these backgrounds, a copper cleaning chemistry has been developed. Designed to replace an effective, but overly aggressive concentrated nitric acid etch, this peroxide-based solution allows for a more controlled cleaningmore » of surfaces. The acidified hydrogen peroxide solution will generally target the Cu+/Cu2+ species which are the predominant surface participants, leaving the bulk of copper metal intact. This preserves the critical tolerances of parts and eliminates significant waste disposal issues. Accompanying passivation chemistry has also been developed that protects copper surfaces from oxidation. Using a high-activity polonium surface spike, the most difficult-to-remove daughter isotope of radon, the performance of these methods are quantified. © 2001 Elsevier Science. All rights reserved« less

  9. Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal

    NASA Astrophysics Data System (ADS)

    Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.

    2016-07-01

    The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.

  10. Calcium and organic matter removal by carbonation process with waste incineration flue gas towards improvement of leachate biotreatment performance.

    PubMed

    Zhang, Cheng; Zhu, Xuedong; Wu, Liang; Li, Qingtao; Liu, Jianyong; Qian, Guangren

    2017-09-01

    Municipal solid wastes incineration (MSWI) flue gas was employed as the carbon source for in-situ calcium removal from MSWI leachate. Calcium removal efficiency was 95-97% with pH of 10.0-11.0 over 100min of flue gas aeration, with both bound Ca and free Ca being removed effectively. The fluorescence intensity of tryptophan, protein-like and humic acid-like compounds increased after carbonation process. The decrease of bound Ca with the increase of precipitate indicated that calcium was mainly converted to calcium carbonate precipitate. It suggested that the interaction between dissolved organic matter and Ca 2+ was weakened. Moreover, 10-16% of chemical oxygen demand removal and the decrease of ultraviolet absorption at 254nm indicated that some organics, especially aromatic compound decreased via adsorption onto the surface of calcium carbonate. The results indicate that introduce of waste incineration flue gas could be a feasible way for calcium removal from leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOEpatents

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  12. Hazardous Waste Management System - Removal of Strontium Sulfide From the List of Hazardous Waste - Federal Register Notice, February 25, 1991

    EPA Pesticide Factsheets

    The Environmental Protection Agency is correcting an amendment to regulations under the Resource Conservation and Recovery Act (RCRA) to remove strontium sulfide (CAS No. 1314-96-1) from 40 CFR 261.33.

  13. 40 CFR 194.46 - Removal of waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Removal of waste. 194.46 Section 194.46 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS CRITERIA... disposal. Such documentation shall include an analysis of the technological feasibility of mining the...

  14. The Effect of Body Posture on Brain Glymphatic Transport.

    PubMed

    Lee, Hedok; Xie, Lulu; Yu, Mei; Kang, Hongyi; Feng, Tian; Deane, Rashid; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2015-08-05

    The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF-interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by "retention" of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans. The rodent brain removes waste better during sleep or anesthesia compared with the awake state. Animals exhibit different body posture during the awake and sleep states, which might affect the brain's waste removal efficiency. We investigated the influence of body posture on brainwide transport of inert tracers of anesthetized rodents. The major finding of our study was that waste, including Aβ, removal was most efficient in the lateral position (compared with the prone position), which mimics the natural resting/sleeping position of rodents. Although our finding awaits testing in humans, we speculate that the lateral position during sleep has advantage with regard to the removal of waste products including Aβ, because clinical studies have shown that sleep drives Aβ clearance from the brain. Copyright © 2015 the authors 0270-6474/15/3511034-11$15.00/0.

  15. The Effect of Body Posture on Brain Glymphatic Transport

    PubMed Central

    Lee, Hedok; Xie, Lulu; Yu, Mei; Kang, Hongyi; Feng, Tian; Deane, Rashid; Logan, Jean; Nedergaard, Maiken

    2015-01-01

    The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF–interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by “retention” of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans. SIGNIFICANCE STATEMENT The rodent brain removes waste better during sleep or anesthesia compared with the awake state. Animals exhibit different body posture during the awake and sleep states, which might affect the brain's waste removal efficiency. We investigated the influence of body posture on brainwide transport of inert tracers of anesthetized rodents. The major finding of our study was that waste, including Aβ, removal was most efficient in the lateral position (compared with the prone position), which mimics the natural resting/sleeping position of rodents. Although our finding awaits testing in humans, we speculate that the lateral position during sleep has advantage with regard to the removal of waste products including Aβ, because clinical studies have shown that sleep drives Aβ clearance from the brain. PMID:26245965

  16. Material recycling of post-consumer polyolefin bulk plastics: Influences on waste sorting and treatment processes in consideration of product qualities achievable.

    PubMed

    Pfeisinger, Christian

    2017-02-01

    Material recycling of post-consumer bulk plastics made up of polyolefins is well developed. In this article, it is examined which effects on waste sorting and treatment processes influence the qualities of polyolefin-recyclats. It is shown that the properties and their changes during the product life-cycle of a polyolefin are defined by its way of polymerisation, its nature as a thermoplast, additives, other compound and composite materials, but also by the mechanical treatments during the production, its use where contact to foreign materials is possible and the waste sorting and treatment processes. Because of the sum of the effects influencing the quality of polyolefin-recyclats, conclusions are drawn for the material recycling of polyolefins to reach high qualities of their recyclats. Also, legal requirements like the EU regulation 1907/2006 concerning the registration, evaluation, authorisation and restrictions on chemicals are considered.

  17. Effect of PAC dosage in a pilot-scale PAC-MBR treating micro-polluted surface water.

    PubMed

    Hu, Jingyi; Shang, Ran; Deng, Huiping; Heijman, Sebastiaan G J; Rietveld, Luuk C

    2014-02-01

    To address the water scarcity issue and advance the traditional drinking water treatment technique, a powdered activated carbon-amended membrane bioreactor (PAC-MBR) is proposed for micro-polluted surface water treatment. A pilot-scale study was carried out by initially dosing different amounts of PAC into the MBR. Comparative results showed that 2g/L performed the best among 0, 1, 2 and 3g/L PAC-MBR regarding organic matter and ammonia removal as well as membrane flux sustainability. 1g/L PAC-MBR exhibited a marginal improvement in pollutant removal compared to the non-PAC system. The accumulation of organic matter in the bulk mixture of 3g/L PAC-MBR led to poorer organic removal and severer membrane fouling. Molecular weight distribution of the bulk liquid in 2g/L PAC-MBR revealed the synergistic effects of PAC adsorption/biodegradation and membrane rejection on organic matter removal. Additionally, a lower amount of soluble extracellular polymer substances in the bulk can be secured in 21 days operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, R. B.

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludgemore » in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.« less

  19. IET control building (TAN620). equipment removed. Lube oil and waste ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). equipment removed. Lube oil and waste piping at upper right. Fire door on right. Rebar exposed in concrete of ceiling. INEEL negative no. HD-21-5-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  20. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    NASA Astrophysics Data System (ADS)

    Knox, C. A.; Farnsworth, R. K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.

  1. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    PubMed

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  2. 40 CFR 60.51 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., yard wastes, food wastes, plastics, leather, rubber, and other combustibles, and noncombustible... subpart A of this part. (a) Incinerator means any furnace used in the process of burning solid waste for the purpose of reducing the volume of the waste by removing combustible matter. (b) Solid waste means...

  3. Removal of radioactive contaminants by polymeric microspheres.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2016-11-01

    Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.

  4. Treatment of synthetic wastewater and hog waste with reduced sludge generation by the multi-environment BioCAST technology.

    PubMed

    Yerushalmi, L; Alimahmoodi, M; Mulligan, C N

    2013-01-01

    Simultaneous removal of carbon, nitrogen and phosphorus was examined along with reduced generation of biological sludge during the treatment of synthetic wastewater and hog waste by the BioCAST technology. This new multi-environment wastewater treatment technology contains both suspended and immobilized microorganisms, and benefits from the presence of aerobic, microaerophilic, anoxic and anaerobic conditions for the biological treatment of wastewater. The influent concentrations during the treatment of synthetic wastewater were 1,300-4,000 mg chemical oxygen demand (COD)/L, 42-115 mg total nitrogen (TN)/L, and 19-40 mg total phosphorus (TP)/L. The removal efficiencies reached 98.9, 98.3 and 94.1%, respectively, for carbon, TN and TP during 225 days of operation. The removal efficiencies of carbon and nitrogen showed a minimal dependence on the nitrogen-to-phosphorus (N/P) ratio, while the phosphorus removal efficiency showed a remarkable dependence on this parameter, increasing from 45 to 94.1% upon the increase of N/P ratio from 3 to 4.5. The increase of TN loading rate had a minimal impact on COD removal rate which remained around 1.7 kg/m(3) d, while it contributed to increased TP removal efficiency. The treatment of hog waste with influent COD, TN and TP concentrations of 960-2,400, 143-235 and 25-57 mg/L, respectively, produced removal efficiencies up to 89.2, 69.2 and 47.6% for the three contaminants, despite the inhibitory effects of this waste towards biological activity. The treatment system produced low biomass yields with average values of 3.7 and 8.2% during the treatment of synthetic wastewater and hog waste, respectively.

  5. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow.

    PubMed

    Holter, Karl Erik; Kehlet, Benjamin; Devor, Anna; Sejnowski, Terrence J; Dale, Anders M; Omholt, Stig W; Ottersen, Ole Petter; Nagelhus, Erlend Arnulf; Mardal, Kent-André; Pettersen, Klas H

    2017-09-12

    The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid [Formula: see text] that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain's interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had [Formula: see text] higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs.

  6. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  7. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  8. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  9. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  10. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  11. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  12. AUTOMATED REMOVAL OF BROMINATED FLAME RETARDANT MATERIAL FROM A MIXED E-WASTE PLASTICS RECYCLING STREAM - PHASE I

    EPA Science Inventory

    Electronic waste (e-waste) is one of the most rapidly growing waste problems worldwide. Improper handling of e-waste results in vast amounts of toxic waste being sent to landfills and leaching into the water supply. Because of these concerns, e-waste recycling is a rapidly gro...

  13. AUTOMATED REMOVAL OF BROMINATED FLAME RETARDANT MATERIAL FROM A MIXED E-WASTE PLASTICS RECYCLING STREAM - PHASE II

    EPA Science Inventory

    Electronic waste (e-waste) is one of the most rapidly growing waste problems worldwide. Improper handling of e-waste results in vast amounts of toxic waste being sent to landfill and leaching into the water supply. Due to there concerns e-waste recycling is a rapidly growing...

  14. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  15. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  16. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  17. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  18. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun S.; Singh, Dileep; Jeong, Seung-Young

    1998-01-01

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder.

  19. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, A.S.; Singh, D.; Jeong, S.Y.

    1998-11-03

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder. 3 figs.

  20. Reducing acid leaching of manganiferous ore: effect of the iron removal operation on solid waste disposal.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Vegliò, Francesco

    2009-01-01

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO3, NaOH, and Na2CO3. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.

  1. Kinetics and capacities of phosphorus sorption to tertiary stage wastewater alum solids, and process implications for achieving low-level phosphorus effluents.

    PubMed

    Maher, Chris; Neethling, J B; Murthy, Sudhir; Pagilla, Krishna

    2015-11-15

    The role of adsorption and/or complexation in removal of reactive or unreactive effluent phosphorus by already formed chemical precipitates or complexes has been investigated. Potential operational efficiency gains resulting from age of chemically precipitated tertiary alum sludge and the recycle of sludge to the process stream was undertaken at the Iowa Hill Water Reclamation Facility which employs the DensaDeg(®) process (IDI, Richmond, VA) for tertiary chemical P removal to achieve a filtered final effluent total phosphorus concentration of <30 μg/L. The effect of sludge solids age was found to be insignificant over the solids retention time (SRT) of 2-8 days, indicating that the solids were unaffected by the aging effects of decreasing porosity and surface acidity. The bulk of solids inventory was retained in the clarifier blanket, providing no advantage in P removal from increased solids inventory at higher SRTs. When solids recycle was redirected from the traditional location of the flocculation reactor to a point just prior to chemical addition in the chemical mixing reactor, lower effluent soluble P concentrations at lower molar doses of aluminum were achieved. At laboratory scale, the "spent" or "waste" chemical alum sludge from P removal showed high capacity and rapid kinetics for P sorption from real wastewater effluents. Saturation concentrations were in the range of 8-29 mg soluble reactive P/g solids. Higher saturation concentrations were found at higher temperatures. Alum sludge produced without a coagulant aid polymer had a much higher capacity for P sorption than polymer containing alum sludge. The adsorption reaction reached equilibrium in less than 10 min with 50% or greater removal within the first minute. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Hot Isostatic Pressing of Engineered Forms of I-AgZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Watkins, Thomas R.; Bruffey, Stephanie H.

    Hot isostatic pressing (HIP) is being considered for direct conversion of 129I-bearing materials to a radiological waste form. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary to comply with regulatory requirements regarding reprocessing facilities sited within the United States, and any iodine-containing media or solid sorbents generated by offgas abatement will require disposal. Zeolite minerals such as silver-exchanged mordenite (AgZ) have been studied as potential iodine sorbents and will contain 129I as chemisorbed AgI. Oak Ridge National Laboratory (ORNL) has conducted several recent studies on the HIP of both iodine-loadedmore » AgZ (I-AgZ) and other iodine-bearing zeolite minerals. The goal of these research efforts is to achieve a stable, highly leach resistant material that is reduced in volume as compared to bulk iodine-loaded I-AgZ. Through the use of HIP, it may be possible to achieve this with the addition of little or no additional materials (waste formers). Other goals for the process include that the waste form will be tolerant to high temperatures and pressures, not chemically hazardous, and that the process will result in minimal secondary waste generation. This document describes the preparation of 27 samples that are distinct from previous efforts in that they are prepared exclusively with an engineered form of AgZ that is manufactured using a binder. Iodine was incorporated solely by chemisorption. This base material is expected to be more representative of an operational system than were samples prepared previously with pure minerals.« less

  3. 30 CFR 57.6802 - Bulk delivery vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Surface and Underground § 57.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a... removed. Before welding or cutting on a hollow shaft, the shaft shall be thoroughly cleaned inside and out...

  4. CHEMICAL REMOVAL OF BIOMASS FROM WASTE AIR BIOTRICKLING FILTERS: SCREENING CHEMICALS OF POTENTIAL INTEREST. (R825392)

    EPA Science Inventory

    A protocol was developed to rapidly assess the efficiency of chemical washing for the removal of excess biomass from biotrickling filters for waste air treatment. Although the experiment was performed on a small scale, conditions were chosen to simulate application in full-scale ...

  5. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    NASA Astrophysics Data System (ADS)

    Maeng, Sung Kyu; Sharma, Saroj K.; Abel, Chol D. T.; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L.

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  6. 40 CFR 761.346 - Three levels of sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Three levels of sampling. 761.346... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...

  7. 40 CFR 761.346 - Three levels of sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Three levels of sampling. 761.346... PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal...

  8. 40 CFR 761.359 - Reporting the PCB concentrations in samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting the PCB concentrations in... COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off...

  9. 40 CFR 761.358 - Determining the PCB concentration of samples of waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Determining the PCB concentration of..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation...

  10. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  11. Reagent precipitation of copper ions from wastewater of machine-building factories

    NASA Astrophysics Data System (ADS)

    Porozhnyuk, L. A.; Lupandina, N. S.; Porozhnyuk, E. V.

    2018-03-01

    The article presents the results of reagent removal of copper ions from wastewater of machine-building factories. The urgency of the study is conditioned by the widening of the range of effective reagents through the implementation of industrial waste. The investigation covers mineralogical and fractional composition of chalk enrichment waste. In the work, the conditions of thermal activation of chalk enrichment waste used for reagent removal of copper ions from wastewater were elaborated. It was shown that the thermal activation of waste facilitates the increased treatment efficacy up to the set sanitation, hygiene and technological standards.

  12. Use of phosphorus-sorbing materials to remove phosphate from greenhouse wastewater.

    PubMed

    Dunets, C Siobhan; Zheng, Youbin; Dixon, Mike

    2015-01-01

    High phosphate content in wastewater is currently a major issue faced by the North American greenhouse industry. Phosphate-sorbing material filters could provide a means of removing phosphate from wastewater prior to discharge to the environment, but the characterization of economically viable materials and specific recommendations for greenhouse wastewater are not available. Batch and column experiments were used to examine the capacity of two calcium-based waste materials, basic oxygen furnace slag and a concrete waste material, to remove phosphate from greenhouse nutrient solution at varied operating conditions. Material columns operating at a hydraulic retention time (HRT) of 3 h consistently removed >99% of influent phosphate at a concentration of 60 mg/L over repeated applications and demonstrated high phosphate retention capacity (PRC) of 8.8 and 5.1 g P/kg for slag and concrete waste, respectively. Both materials also provided some removal of the micronutrients Fe, Mn and Zn. Increasing HRT to 24 h increased P retention capacity of slag to >10.5 g P/kg but did not improve retention by concrete waste. Decreasing influent phosphate concentration to 20 mg/L decreased PRC to 1.64 g P/kg in concrete waste columns, suggesting fluctuations in greenhouse wastewater composition will affect filter performance. The pH of filter effluent was closely correlated to final P concentration and can likely be used to monitor treatment effectiveness. This study demonstrated that calcium-based materials are promising for the removal of phosphate from greenhouse wastewater, and worthy of further research on scaling up the application to a full-sized system.

  13. Develop Recovery Systems for Separations of Salts from Process Streams for use in Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo

    1998-01-01

    The main objectives of this project were the development of a four-compartment electrolytic cell using high selective membranes to remove nitrate from crop residue leachate and convert it to nitric acid, and the development of an six compartment electrodialysis cell to remove selectively sodium from urine wastes. The recovery of both plant inedible biomass and human wastes nutrients to sustain a biomass production system are important aspects in the development of a controlled ecological life support system (CELSS) to provide the basic human needs required for life support during long term space missions. A four-compartment electrolytic cell has been proposed to remove selectively nitrate from crop residue and to convert it to nitric acid, which is actually used in the NASA-KSC Controlled Ecological Life Support System to control the pH of the aerobic bioreactors and biomass production chamber. Human activities in a closed system require large amount of air, water and minerals to sustain life and also generate wastes. Before using human wastes as nutrients, these must be treated to reduce organic content and to remove some minerals which have adverse effects on plant growth. Of all the minerals present in human urine, sodium chloride (NACl) is the only one that can not be used as nutrient for most plants. Human activities also requires sodium chloride as part of the diet. Therefore, technology to remove and recover sodium chloride from wastes is highly desirable. A six-compartment electrodialysis cell using high selective membranes has been proposed to remove and recover NaCl from human urine.

  14. Preparation and Characterization of Ato Nanoparticles by Coprecipitation with Modified Drying Method

    NASA Astrophysics Data System (ADS)

    Liu, Shimin; Liang, Dongdong; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan

    Antimony-doped tin oxide (ATO) nanoparticles were prepared by coprecipitation by packing drying and traditional direct drying (for comparison) methods. The as-prepared ATO nanoparticles were characterized by TG, XRD, EDS, TEM, HRTEM, BET, bulk density and electrical resistivity measurements. Results indicated that the ATO nanoparticles obtained by coprecipitation with direct drying method featured hard-agglomerated morphology, high bulk density, low surface area and low electrical resistivity, probably due to the direct liquid evaporation during drying, the fast shrinkage of the precipitate, the poor removal efficiency of liquid molecules and the hard agglomerate formation after calcination. Very differently, the ATO product obtained by the packing and drying method featured free-agglomerated morphology, low bulk density, high surface area and high electrical resistivity ascribed probably to the formed vapor cyclone environment and liquid evaporation-resistance, avoiding fast liquid removal and improving the removal efficiency of liquid molecules. The intrinsic formation mechanism of ATO nanoparticles from different drying methods was illustrated based on the dehydration process of ATO precipitates. Additionally, the packing and drying time played key roles in determining the bulk density, morphology and electrical conductivity of ATO nanoparticles.

  15. 40 CFR 263.30 - Immediate action.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... responsibilities determines that immediate removal of the waste is necessary to protect human health or the....30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO TRANSPORTERS OF HAZARDOUS WASTE Hazardous Waste Discharges § 263.30 Immediate action...

  16. 40 CFR 263.30 - Immediate action.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... responsibilities determines that immediate removal of the waste is necessary to protect human health or the....30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO TRANSPORTERS OF HAZARDOUS WASTE Hazardous Waste Discharges § 263.30 Immediate action...

  17. 40 CFR 263.30 - Immediate action.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... responsibilities determines that immediate removal of the waste is necessary to protect human health or the....30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO TRANSPORTERS OF HAZARDOUS WASTE Hazardous Waste Discharges § 263.30 Immediate action...

  18. 40 CFR 263.30 - Immediate action.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... responsibilities determines that immediate removal of the waste is necessary to protect human health or the....30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO TRANSPORTERS OF HAZARDOUS WASTE Hazardous Waste Discharges § 263.30 Immediate action...

  19. 40 CFR 263.30 - Immediate action.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... responsibilities determines that immediate removal of the waste is necessary to protect human health or the....30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO TRANSPORTERS OF HAZARDOUS WASTE Hazardous Waste Discharges § 263.30 Immediate action...

  20. Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results and Policy Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin

    2009-09-17

    ARUBA (Arsenic Removal Using Bottom Ash) has proven effective at removing high concentrations of arsenic from drinking water in Bangladesh. During fieldwork in four sub-districts of the country, ARUBA reduced arsenic levels ranging from 200 to 900 ppb to below the Bangladesh standard of 50 ppb. The technology is cost-effective because the substrate--bottom ash from coal fired power plants--is a waste material readily available in South Asia. In comparison to similar technologies, ARUBA uses less media for arsenic removal due to its high surface area to volume ratio. Hence, less waste is produced. A number of experiments were conducted inmore » Bangladesh to determine the effectiveness of various water treatment protocols. It was found that (1) ARUBA removes more than half of the arsenic from water within five minutes of treatment, (2) ARUBA, that has settled at the bottom of a treatment vessel, continues to remove arsenic for 2-3 days, (3) ARUBA's arsenic removal efficiency can be improved through sequential partial dosing (adding a given amount of ARUBA in fractions versus all at once), and (4) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic levels ten times lower than treating water directly out of the well. Our findings imply a number of tradeoffs between ARUBA's effective arsenic removal capacity, treatment system costs, and waste output. These tradeoffs, some a function of arsenic-related policies in Bangladesh (e.g., waste disposal regulations), must be considered when designing an arsenic removal system. We propose that the most attractive option is to use ARUBA in communityscale water treatment centers, installed as public-private partnerships, in Bangladeshi villages.« less

  1. Heat treatment of bulk gallium arsenide using a phosphosilicate glass cap

    NASA Technical Reports Server (NTRS)

    Mathur, G.; Wheaton, M. L.; Borrego, J. M.; Ghandhi, S. K.

    1985-01-01

    n-type bulk GaAs crystals, capped with chemically vapor-deposited phosphosilicate glass, were heat treated at temperatures in the range of 600 to 950 C. Measurements on Schottky diodes and solar cells fabricated on the heat-treated material, after removal of a damaged surface layer, show an increase in free-carrier concentration, in minority-carrier-diffusion length, and in solar-cell short-circuit current. The observed changes are attributed to a removal of lifetime-reducing acceptorlike impurities, defects, or their complexes.

  2. The Effect of COD Concentration Containing Leaves Litter, Canteen and Composite Waste to the Performance of Solid Phase Microbial Fuel Cell (SMFC)

    NASA Astrophysics Data System (ADS)

    Samudro, Ganjar; Syafrudin; Nugraha, Winardi Dwi; Sutrisno, Endro; Priyambada, Ika Bagus; Muthi'ah, Hilma; Sinaga, Glory Natalia; Hakiem, Rahmat Tubagus

    2018-02-01

    This research is conducted to analyze and determine the optimum of COD concentration containing leaves litter, canteen and composite waste to power density and COD removal efficiency as the indicator of SMFC performance. COD as the one of organic matter parameters perform as substrate, nutrient and dominating the whole process of SMFC. Leaves litter and canteen based food waste were obtained from TPST UNDIP in Semarang and treated in SMFC reactor. Its reactor was designed 2 liter volume and equipped by homemade graphene electrodes that were utilized at the surface of organic waste as cathode and in a half of reactor height as anode. COD concentration was initially characterized and became variations of initial COD concentration. Waste volume was maintained 2/3 of volume of reactor. Bacteria sources as the important process factor in SMFC were obtained from river sediment which contain bacteroides and exoelectrogenic bacteria. Temperature and pH were not maintained while power density and COD concentration were periodically observed and measured during 44 days. The results showed that power density up to 4 mW/m2 and COD removal efficiency performance up to 70% were reached by leaves litter, canteen and composite waste at days 11 up to days 44 days. Leaves litter contain 16,567 mg COD/l providing higher COD removal efficiency reached approximately 87.67%, more stable power density reached approximately 4.71 mW/m2, and faster optimum time in the third day than canteen based food waste and composite waste. High COD removal efficiency has not yet resulted in high power density.

  3. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  4. Corrective Action Decision Document/Closure Report for Corrective Action Unit 561: Waste Disposal Areas, Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Krauss

    2011-08-01

    CAU 561 comprises 10 CASs: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches ; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 561 with no further corrective action. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process:more » (1) Determine whether COCs are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to complete appropriate corrective actions. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) No contamination exceeding FALs was identified at CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06. (2) The surface and subsurface soil within the burn area at CAS 02-08-02 contains arsenic and lead above the FALs of 23 milligrams per kilogram (mg/kg) and 800 mg/kg, respectively. The surface and subsurface soil within the burn area also contains melted lead slag (potential source material [PSM]). The soil within the waste piles contains polyaromatic hydrocarbons (PAHs) above the FALs. The contamination within the burn area is spread throughout the area, as it was not feasible to remove all the PSM (melted lead), while at the waste piles, the contamination is confined to the piles. (3) The surface and subsurface soils within Trenches 3 and 5 at CAS 23-21-04 contain arsenic and polychlorinated biphenyls (PCBs) above the FALs of 23 mg/kg and 0.74 mg/kg, respectively. The soil was removed from both trenches, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead bricks and counterweights were also removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. (4) The concrete-like material at CAS 25-08-02 contains arsenic above the FAL of 23 mg/kg. This concrete-like material was removed, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead-acid batteries were also removed, and the soil below the batteries does not contain contamination that exceeds the FAL for lead. (5) The surface soils within the main waste dump at the posted southern radioactive material area (RMA) at CAS 25-23-21 contain cesium (Cs)-137 and PCBs above the FALs of 72.9 picocuries per gram (pCi/g) and 0.74 mg/kg, respectively. The soil was removed from the RMA, and the soil that remains at this CAS does not contain contamination exceeding the FALs. (6) The surface and subsurface soils at CAS 25-25-19 do not contain contamination exceeding the FALs. In addition, lead bricks were removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. The following best management practices were implemented: (1) Housekeeping debris at CASs 02-08-02, 23-21-04, 25-08-02, 25-23-21, and 25-25-19 was removed and disposed of; (2) The open trenches at CAS 23-21-04 were backfilled; (3) The waste piles at CAS 25-08-02 were removed and the area leveled to ground surface; and (4) The remaining waste piles at the main waste dump at CAS 25-23-21 were leveled to ground surface. Therefore, NNSA/NSO provides the following recommendations: (1) No further action for CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06; (2) Closure in place with an FFACO use restriction (UR) at CAS 02-08-02 for the remaining PAH-, arsenic-, and lead-contaminated soil, and the melted lead PSM. The UR form and map have been filed in the NNSA/NSO Facility Information Management System, the FFACO database, and the NNSA/NSO CAU/CAS files; (3) No further corrective action at CAS 23-21-04, as the lead bricks and counterweights (PSM) have been removed, and the COCs of arsenic and PCBs in soil have been removed; (4) No further corrective action at CAS 25-08-02, as the COC of arsenic in soil has been removed, and the lead-acid batteries have been removed; (5) No further corrective action at CAS 25-23-21, as the COCs of Cs-137 and PCBs in soil have been removed, and the cast-iron pipes have been removed and disposed of; (6) No further corrective action at CAS 25-25-19, as the lead bricks (PSM) been removed; (7) A Notice of Completion to the NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 561; and (8) Corrective Action Unit 561 should be moved from Appendix III to Appendix IV of the FFACO.« less

  5. Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bench, T.R.

    1997-05-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less

  6. Metals removal and recovery in bioelectrochemical systems: A review.

    PubMed

    Nancharaiah, Y V; Venkata Mohan, S; Lens, P N L

    2015-11-01

    Metal laden wastes and contamination pose a threat to ecosystem well being and human health. Metal containing waste streams are also a valuable resource for recovery of precious and scarce elements. Although biological methods are inexpensive and effective for treating metal wastewaters and in situ bioremediation of metal(loid) contamination, little progress has been made towards metal(loid) recovery. Bioelectrochemical systems are emerging as a new technology platform for removal and recovery of metal ions from metallurgical wastes, process streams and wastewaters. Biodegradation of organic matter by electroactive biofilms at the anode has been successfully coupled to cathodic reduction of metal ions. Until now, leaching of Co(II) from LiCoO2 particles, and removal of metal ions i.e. Co(III/II), Cr(VI), Cu(II), Hg(II), Ag(I), Se(IV), and Cd(II) from aqueous solutions has been demonstrated. This article reviews the state of art research of bioelectrochemical systems for removal and recovery of metal(loid) ions and pertaining removal mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ammonia nitrogen removal from aqueous solution by local agricultural wastes

    NASA Astrophysics Data System (ADS)

    Azreen, I.; Lija, Y.; Zahrim, A. Y.

    2017-06-01

    Excess ammonia nitrogen in the waterways causes serious distortion to environment such as eutrophication and toxicity to aquatic organisms. Ammonia nitrogen removal from synthetic solution was investigated by using 40 local agricultural wastes as potential low cost adsorbent. Some of the adsorbent were able to remove ammonia nitrogen with adsorption capacity ranging from 0.58 mg/g to 3.58 mg/g. The highest adsorption capacity was recorded by Langsat peels with 3.58 mg/g followed by Jackfruit seeds and Moringa peels with 3.37 mg/g and 2.64 mg/g respectively. This experimental results show that the agricultural wastes can be utilized as biosorbent for ammonia nitrogen removal. The effect of initial ammonia nitrogen concentration, pH and stirring rate on the adsorption process were studied in batch experiment. The adsorption capacity reached maximum value at pH 7 with initial concentration of 500 mg/L and the removal rate decreased as stirring rate was applied.

  8. Method for the removal of ultrafine particulates from an aqueous suspension

    DOEpatents

    Chaiko, David J.; Kopasz, John P.; Ellison, Adam J. G.

    2000-01-01

    A method of separating ultra-fine particulates from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel containing the particulates, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.

  9. Trip Reports. Hazardous Waste Minimization and Control at Army Depots

    DTIC Science & Technology

    1989-08-01

    Cdcs Statement A per telecon Eric Hangeland Dist Av f CETIA-TS-D s AG, MD 21010-5401 NW 1-29-92 A-1 iii _ TABLES Number 1 Hazardous waste generation...Chief, Building 114; Major Robert Ronne; and Ken Rollins, Section Chief, Building 409. The purpose of this trip report Is to document the Information...hazardous. 6. Wf-TIM WOR Feosbility of a suitable p-etresaent f waste cuttins oil and sulleln coolant loach as 4iltratlan to remove metals. removal

  10. Method for the Removal of Ultrafine Particulates from an Aqueous Suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiko, David J.; Kopasz, John P.; Ellison, Adam J.G.

    1999-03-05

    A method of separating ultra-fine particulate from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel-containing the particulate, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.

  11. Removal of two antibacterial compounds triclocarban and triclosan in a waste water treatment plant

    USDA-ARS?s Scientific Manuscript database

    This study investigates the fate of Triclocarban (TCC) and Triclosan (TCS) in a waste water treatment plant (WWTP). Our goal was to identify the most effective removal step and to determine the amount on the solid phase versus degraded. Our influent contained higher TCS than TCC concentrations (8....

  12. Successful remediation of four uranium calibration pits at Technical Area II, Sandia National Laboratories, Albuquerque, New Mexico, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, R.; Wade, M.; Tharp, T.

    1994-12-31

    The first remediation of an Environmental Restoration (ER) Project site at Sandia National Laboratories (SNL) was successfully conducted in May and June 1994 at Technical Area II. The removal action involved four Uranium Calibration Pits (UCPs) filled with radioactive or hazardous materials. The concrete culvert pits were used to test and calibrate borehole radiometric logging tools for uranium exploration. The removal action consisted of excavating and containerizing the pit contents and contaminated soil beneath the culverts, removing the four culverts, and backfilling the excavation. Each UCP removal had unique complexities. Sixty 208-L drums of solid radioactive waste and eight 208-Lmore » drums of liquid hazardous waste were generated during the VCM. Two of the concrete culverts will be disposed as radioactive waste and two as solid waste. Uranium-238 was detected in UCP-2 ore material at 746 pci/g, and at 59 pci/g in UCP-1 silica sand. UCP-4 was empty; sludge from UCP-3 contained 122 mg/L (ppm) chromium.« less

  13. Non-equilibrium steady states in supramolecular polymerization

    NASA Astrophysics Data System (ADS)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.

    2017-06-01

    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  14. 40 CFR 240.207-3 - Recommended procedures: Operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended... appearance. (b) Solid wastes that cannot be processed by the facility should be removed from the facility at...

  15. Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents.

    PubMed

    Vecino, X; Devesa-Rey, R; Moldes, A B; Cruz, J M

    2014-09-01

    The cellulosic fraction of vineyard pruning waste (free of hemicellulosic sugars) was entrapped in calcium alginate beads and evaluated as an eco-friendly adsorbent for the removal of different nutrients and micronutrients (Mg, P, Zn, K, N-NH4, SO4, TN, TC and PO4) from an agroindustrial effluent (winery wastewater). Batch adsorption studies were performed by varying the amounts of cellulosic adsorbent (0.5-2%), sodium alginate (1-5%) and calcium chloride (0.05-0.9M) included in the biocomposite. The optimal formulation of the adsorbent composite varied depending on the target contaminant. Thus, for the adsorption of cationic contaminants (Mg, Zn, K, N-NH4 and TN), the best mixture comprised 5% sodium alginate, 0.05M calcium chloride and 0.5% cellulosic vineyard pruning waste, whereas for removal of anionic compounds (P, SO4 and PO4), the optimal mixture comprised 1% sodium alginate, 0.9M calcium chloride and 0.5% cellulosic vineyard pruning waste. To remove TC from the winery wastewater, the optimal mixture comprised 3% of sodium alginate, 0.475M calcium chloride and 0.5% cellulosic vineyard pruning waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  17. Leaching of plutonium from a radioactive waste glass by eight groundwaters from the western United States

    USGS Publications Warehouse

    Rees, T.F.; Cleveland, J.M.; Nash, K.L.

    1985-01-01

    The leachability of a radioactive waste glass formulated to Battelle Pacific Northwest Laboratory specification 80-270 has been studied using eight actual groundwaters with a range of chemical compositions as leachants. Waters collected from the Grande Ronde Basalt (Washington State) and from alluvial deposits in the Hualapai Valley (Arizona) were the most effective at removing plutonium from this glass. Leaching was shown to be incongruent; plutonium was removed from the glass more slowly than the overall glass matrix. The results of these experiments indicate the need to study the leachability of actual waste forms using the actual projected groundwaters that are most likely to come into contact with the waste should a radioactive waste repository be breached.

  18. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE PAGES

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    2017-03-16

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  19. Assessment of the Cast Stone Low-Temperature Waste Form Technology Coupled with Technetium Removal - 14379

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey

    2014-03-03

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated withmore » the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.« less

  20. Utilization and recycling of industrial magnesite refractory waste material for removal of certain radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcos, T.N.; Tadrous, N.A.; Borai, E.H.

    2007-07-01

    Increased industrialization over the last years in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. The current lack of management of the solid waste in Egypt has created a situation where large parts of the land (especially industrial areas) are covered by un-planned dumps of industrial wastes. Consequently, in the present work, industrial magnesite waste produced in large quantities after production process of magnesium sulfate in Zinc Misr factory, Egypt, was tried to be recycled. Firstly, this material has been characterized applying different analytical techniques such as infrared spectroscopy (IR), surface analyzer (BET), particle sizemore » distribution (PSD), elemental analysis by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The magnesite material has been used as a source of producing aluminum, chromium, and magnesium oxides that has better chemical stability than conventional metal oxides. Secondly, utilization of magnesite material for removal of certain radionuclides was applied. Different factors affecting the removal capability such as pH, contacting time, metal concentration, particle size were systematically investigated. The overall objective was aimed at determining feasible and economic solution to the environmental problems related to re-use of the industrial solid waste for radioactive waste management. (authors)« less

  1. Reducing acid leaching of manganiferous ore: Effect of the iron removal operation on solid waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca

    2009-01-15

    The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary ironmore » removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO{sub 3}, NaOH, and Na{sub 2}CO{sub 3}. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.« less

  2. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  3. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  4. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  5. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  6. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...

  7. Removal of Methylene Blue from aqueous solution using spent bleaching earth

    NASA Astrophysics Data System (ADS)

    Saputra, E.; Saputra, R.; Nugraha, M. W.; Irianty, R. S.; Utama, P. S.

    2018-04-01

    The waste from industrial textile waste is one of the environmental problems, it is required effective and efficient processing. In this study spent bleaching earth was used as absorbent. It was found that the absorbent was effective to remove methylene blue from aqueous solution with removal efficiency 99.97 % in 120 min. Several parameters such as pH, amount of absorbent loading, stirring speed are found as key factor influencing removal of methylene blue. The mechanism of adsorption was also studied, and it was found that Langmuir isotherm fitted to data of experiment with adsorption capacity 0.5 mg/g.

  8. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.

    PubMed

    Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon

    2011-07-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.

  9. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  10. Structure modification of natural zeolite for waste removal application

    NASA Astrophysics Data System (ADS)

    Widayatno, W. B.

    2018-03-01

    Tremendous industrialization in the last century has led to the generation of huge amount of waste. One of the recent hot research topics is utilizing any advance materials and methods for waste removal. Natural zeolite as an inexpensive porous material with a high abundance holds a key for efficient waste removal owing to its high surface area. However, the microporous structure of natural zeolite hinders the adsorption of waste with a bigger molecular size. In addition, the recovery of natural zeolite after waste adsorption into its pores should also be considered for continuous utilization of this material. In this study, the porosity of natural zeolite from Tasikmalaya, Indonesia, was hydrothermally-modified in a Teflon-lined autoclave filled with certain pore directing agent such as distilled water, KOH, and NH4OH to obtain hierarchical pore structure. After proper drying process, the as-treated natural zeolite is impregnated with iron cation and heat-treated at specified temperature to get Fe-embedded zeolite structure. XRD observation is carried out to ensure the formation of magnetic phase within the zeolite pores. The analysis results show the formation of maghemite phase (γ-Fe2O3) within the zeolite pore structure.

  11. Textile Wastes.

    ERIC Educational Resources Information Center

    Talbot, R. S.

    1978-01-01

    Presents a literature review of wastes from textile industry, covering publications of 1977. This review covers studies such as removing heavy metals in textile wastes, and the biodegradability of six dyes. A list of references is also presented. (HM)

  12. DOE Waste Treatability Group Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less

  13. Evaluation and Testing of IONSIV IE-911 for the Removal of Cesium-137 from INEEL Tank Waste and Dissolved Calcines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. A. Todd; K. N. Brewer

    1999-04-01

    Development of waste treatment processes for the remediation of radioactive wastes is currently underway. A number of experiments were performed at the Idaho Nuclear Technology and Environmental Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) with the commercially available sorbent material, IONSIV IE-911, crystalline silicotitanate (CST), manufactured by UOP LLC. The purpose of this work was to evaluate the removal efficiency, sorbent capacity and selectivity of CST for removing Cs-137 from actual and simulated acidic tank waste in addition to dissolved pilot-plant calcine solutions. The scope of this work included batch contact tests performed with non-radioactivemore » dissolved Al and Run-64 pilot plant calcines in addition to simulants representing the average composition of tank waste. Small-scale column tests were performed with actual INEEL tank WM-183 waste, tank waste simulant, dissolved Al and Run-64 pilot plant calcine solutions. Small-scale column experiments using actual WM-183 tank waste resulted in fifty-percent Cs-137 breakthrough at approximately 589 bed volumes. Small-scale column experiments using the tank waste simulant displayed fifty-percent Cs-137 breakthrough at approximately 700 bed volumes. Small-scale column experiments using dissolved Al calcine simulant displayed fifty-percent Cs-137 breakthrough at approximately 795 bed volumes. Column experiments with dissolved Run-64, pilot plant calcine did not reach fifty-percent breakthrough throughout the test.« less

  14. Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant.

    PubMed

    Starvin, A M; Rao, T Prasada

    2004-09-10

    As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.

  15. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    PubMed

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Removal of xylenol orange from its aqueous solution using SDS self-microemulsifying systems: optimization by Box-Behnken statistical design.

    PubMed

    Shakeel, Faiyaz; Haq, Nazrul; Alanazi, Fars K; Alsarra, Ibrahim A

    2014-04-01

    The aim of present study was to develop and evaluate sodium dodecyl sulfate (SDS) self-microemulsifying systems (SMES) for the removal of an anionic dye xylenol orange (XO) from its bulk aqueous media via liquid-liquid adsorption. The composition of SDS SMES was optimized by Box-Behnken statistical design for the maximum removal of XO from its aqueous solution. Various SDS formulations were prepared by spontaneous emulsification method and characterized for thermodynamic stability, self-microemulsification efficiency, droplet size, and viscosity. Adsorption studies were conducted at 8, 16, and 24 h by mixing small amounts of SDS formulations with relatively large amounts of bulk aqueous solution of XO. Droplet size and viscosity of SDS formulations were significantly influenced by oil phase concentration (triacetin), while surfactant concentration had little impact on droplet size and viscosity. However, the percentage of removal of XO was influenced by triacetin concentration, surfactant concentration, and adsorption time. Based on lowest droplet size (35.97 nm), lowest viscosity (29.62 cp), and highest percentage of removal efficiency (89.77 %), formulation F14, containing 2 % w/w of triacetin and 40 % w/w of surfactant mixture (20 % w/w of SDS and 20 % w/w of polyethylene glycol 400), was selected as an optimized formulation for the removal of XO from its bulk aqueous media after 16 h. These results indicated that SDS SMES could be suitable alternates of solid-liquid adsorption for the removal of toxic dyes such as XO from its aqueous solution through liquid-liquid adsorption.

  17. Production of activated carbons from waste tyres for low temperature NOx control.

    PubMed

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of compost age and composition on the atrazine removal from solution.

    PubMed

    Tsui, Lo; Roy, William R

    2007-01-02

    Compost samples from two composting facilities, the Urbana (Illinois) Landscape Recycling Center (ULRC) and Illinois State University (ISU), were selected to examine the effect of compost age on atrazine removal from solution. The ULRC samples were made from yard waste without an additional nitrogen source. The ISU samples were made from yard waste or sawdust with the addition of manure. The 6-month-old ULRC compost had the greater capacity to remove atrazine from solution, which we attributed to its greater organic carbon content. The addition of nitrate into ULRC compost could influence the extent of atrazine removal, but did not have a significant impact on atrazine removal when applied to ISU compost, probably because manure was added to the yard waste to produce the compost. For both ULRC and ISU samples, the presence of sodium azide inhibited atrazine removal, suggesting that microbial activity contributed to the atrazine removal. Metabolic analysis demonstrated that hydroxyatrazine was the major identified metabolite that accumulated in solution before significant ring mineralization could occur. When compared with the ISU compost, the ULRC compost sample had a greater capacity to remove atrazine from solution during the 120 days of study because of the larger humic acid content. The experimental results suggested that less-mature compost may be better suited for environmental applications such as removing atrazine from tile-drainage waters.

  19. Effect of compost age and composition on the atrazine removal from solution

    USGS Publications Warehouse

    Tsui, L.; Roy, W.R.

    2007-01-01

    Compost samples from two composting facilities, the Urbana (Illinois) Landscape Recycling Center (ULRC) and Illinois State University (ISU), were selected to examine the effect of compost age on atrazine removal from solution. The ULRC samples were made from yard waste without an additional nitrogen source. The ISU samples were made from yard waste or sawdust with the addition of manure. The 6-month-old ULRC compost had the greater capacity to remove atrazine from solution, which we attributed to its greater organic carbon content. The addition of nitrate into ULRC compost could influence the extent of atrazine removal, but did not have a significant impact on atrazine removal when applied to ISU compost, probably because manure was added to the yard waste to produce the compost. For both ULRC and ISU samples, the presence of sodium azide inhibited atrazine removal, suggesting that microbial activity contributed to the atrazine removal. Metabolic analysis demonstrated that hydroxyatrazine was the major identified metabolite that accumulated in solution before significant ring mineralization could occur. When compared with the ISU compost, the ULRC compost sample had a greater capacity to remove atrazine from solution during the 120 days of study because of the larger humic acid content. The experimental results suggested that less-mature compost may be better suited for environmental applications such as removing atrazine from tile-drainage waters. ?? 2006 Elsevier B.V. All rights reserved.

  20. Ion Exchange Distribution Coefficient Tests and Computer Modeling at High Ionic Strength Supporting Technetium Removal Resin Maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Charles A.; Hamm, L. Larry; Smith, Frank G.

    2014-12-19

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and poured into canisters for disposition. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Duemore » to the water solubility properties of pertechnetate and long half-life of 99Tc, effective management of 99Tc is important to the overall success of the Hanford River Protection Project mission. To achieve the full target WTP throughput, additional LAW immobilization capacity is needed, and options are being explored to immobilize the supplemental LAW portion of the tank waste. Removal of 99Tc, followed by off-site disposal, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. To enable an informed decision regarding the viability of technetium removal, further maturation of available technologies is being performed. This report contains results of experimental ion exchange distribution coefficient testing and computer modeling using the resin SuperLig ® 639 a to selectively remove perrhenate from high ionic strength simulated LAW. It is advantageous to operate at higher concentration in order to treat the waste stream without dilution and to minimize the volume of the final wasteform. This work examined the impact of high ionic strength, high density, and high viscosity if higher concentration LAW feed solution is used. Perrhenate (ReO 4 -) has been shown to be a good nonradioactive surrogate for pertechnetate in laboratory testing for this ion exchange resin, and the performance bias is well established. Equilibrium contact testing with 7.8 M [Na +] average simulant concentrations indicated that the SuperLig ® 639 resin average perrhenate distribution coefficient was 368 mL/g at a 100:1 phase ratio. Although this indicates good performance at high ionic strength, an equilibrium test cannot examine the impact of liquid viscosity, which impacts the diffusivity of ions and therefore the loading kinetics. To get an understanding of the effect of diffusivity, modeling was performed, which will be followed up with column tests in the future.« less

  1. Microbial diversity of bacteria, archaea, and fungi communities in a continuous flow constructed wetland for the treatment of swine waste

    USDA-ARS?s Scientific Manuscript database

    Contaminant removal in constructed wetlands may largely be a function of many microbial processes. However, information about bacterial, archaea, and fungi communities in constructed wetlands for the removal of swine waste is limited. In this study, we used 454/GS-FLX pyrosequencing to assess bacter...

  2. Utilization of Waste Biomass (Kitchen Waste) Hydrolysis Residue as Adsorbent for Dye Removal: Kinetic, Equilibrium, and Thermodynamic Studies.

    PubMed

    Li, Panyu; Chen, Xi; Zeng, Xiaotong; Zeng, Yu; Xie, Yi; Li, Xiang; Wang, Yabo; Xie, Tonghui; Zhang, Yongkui

    2018-02-02

    Kitchen waste hydrolysis residue (KWHR), which is produced in the bioproduction process from kitchen waste (KW), is usually wasted with potential threats to the environment. Herein, experiments were carried out to evaluate the potential of KWHR as adsorbent for dye (methylene blue, MB) removal from aqueous solution. The adsorbent was characterized using FT-IR and SEM. Adsorption results showed that the operating variables had great effects on the removal efficiency of MB. Kinetic study indicated pseudo-second-order model was suitable to describe the adsorption process. Afterwards, the equilibrium data were well fitted by using Langmuir isotherm model, suggesting a monolayer adsorption. The Langmuir monolayer adsorption capacity was calculated to be 110.13 mg/g, a level comparable to some other low-cost adsorbents. It was found that the adsorption process of MB onto KWHR was spontaneous and exothermic through the estimation of thermodynamic parameters. Thus, KWHR was of great potential to be an alternative adsorbent material to improve the utilization efficiency of bioresource (KW) and lower the cost of adsorbent for color treatment.

  3. 75 FR 20942 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... of the waste generation and management information for saccharin and its salts, which demonstrate... partnership with the States, biennially collects information regarding the generation, management, and final... Based on the Available Toxicological Information and Waste Generation and Management Information for...

  4. Removal of chromium(III) from tannery wastewater using activated carbon from sugar industrial waste.

    PubMed

    Fahim, N F; Barsoum, B N; Eid, A E; Khalil, M S

    2006-08-21

    Chromium is commonly found in huge quantities in tannery wastewaters. For this reason, the removal and recovery of the chromium content of tannery wastewaters is crucial for environmental protection and economic reasons. Removal and recovery of chromium were carried out by using low-cost potential adsorbents. For this purpose three types of activated carbon; C1, the waste generated from sugar industry as waste products and the others (C2, C3) are commercial granular activated carbon, were used. The adsorption process and extent of adsorption are dependent on the physical and chemical characteristics of the adsorbent, adsorbate and experimental condition. The effect of pH, particle size and different adsorbent on the adsorption isotherm of Cr(III) was studied in batch system. The sorption data fitted well with Langmuir adsorption model. The efficiencies of activated carbon for the removal of Cr(III) were found to be 98.86, 98.6 and 93 % for C1, C2 and C3, respectively. The order of selectivity is C1>C2>C3 for removal of Cr(III) from tannery wastewater. Carbon "C1" of the highest surface area (520.66 m(2)/g) and calcium content (333.3 mg/l) has the highest adsorptive capacity for removal of Cr(III). The results revealed that the trivalent chromium is significantly adsorbed on activated carbon collected from sugar industry as waste products and the method could be used economically as an efficient technique for removal of Cr(III) and purification of tannery wastewaters.

  5. Dewatering Treatment Scale-up Testing Results of Hanford Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, A.R.; May, T.H.; Bryan, W.E.

    2008-07-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualifiedmore » the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process. (authors)« less

  6. Method for calcining radioactive wastes

    DOEpatents

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  7. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    NASA Astrophysics Data System (ADS)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  8. The Scenario Approach to the Development of Regional Waste Management Systems (Implementation Experience in the Regions of Russia)

    ERIC Educational Resources Information Center

    Fomin, Eugene P.; Alekseev, Audrey A.; Fomina, Natalia E.; Dorozhkin, Vladimir E.

    2016-01-01

    The article illustrates a theoretical approach to scenario modeling of economic indicators of regional waste management system. The method includes a three-iterative algorithm that allows the executive authorities and investors to take a decision on logistics, bulk, technological and economic parameters of the formation of the regional long-term…

  9. 77 FR 44289 - Notice of Permit Application Received Under the Antarctic Conservation Act of 1978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... small amount of waste created by the expedition team will be removed, including all fuel bottles, batteries, plastics, and non-combustible wastes, including perishable and nonperishable food wastes. The...

  10. Nuclear waste solutions

    DOEpatents

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  11. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOEpatents

    Lee, Lien-Mow; Kilpatrick, Lester L.

    1984-01-01

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  12. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOEpatents

    Lee, L.M.; Kilpatrick, L.L.

    1982-05-19

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Fiskum, Sandra K.; Smoot, Margaret R.

    Washington River Protection Solutions (WRPS) is developing a Low-Activity Waste Pretreatment System (LAWPS) to provide low-activity waste (LAW) directly to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste Facility for immobilization. The pretreatment that will be conducted on tank waste supernate at the LAWPS facility entails filtration to remove entrained solids and cesium (Cs) ion exchange to remove Cs from the product sent to the WTP. Currently, spherical resorcinol-formaldehyde (sRF) resin (Microbeads AS, Skedsmokorset, Norway) is the Cs ion exchange resin of choice. Most work on Cs ion exchange efficacy in Hanford tank waste has been conductedmore » at nominally 5 M sodium (Na). WRPS is examining the possibility of processing supernatant at high Na concentrations—up to 8 M Na—to maximize processing efficiency through the LAWPS. Minimal Cs ion exchange work has been conducted at 6 M and 8 M Na concentrations..« less

  14. Applicability of Perinereis aibuhitensis Grube for fish waste removal from fish cages in Sanggou Bay, P. R. China

    NASA Astrophysics Data System (ADS)

    Fang, Jinghui; Jiang, Zengjie; Jansen, Henrice M.; Hu, Fawen; Fang, Jianguang; Liu, Yi; Gao, Yaping; Du, Meirong

    2017-04-01

    The present study investigated the applicability of integrated polychaete-fish culture for fish waste removal to offset negative impact induced by organic benthic enrichment. A field study demonstrated that deposition rate was significantly higher underneath the fish farm than that in control area. The material settling under the farm was characterized by a high amount of fish feces (45%) and uneaten feed (27%). Both feeding rate (FR) and apparent digestibility rate (ADR) increased with decreasing body weight, as was indicated by significantly a higher rate observed for the groups containing smaller individuals in a lab study. The nutrient in fresh deposited material (De) was higher than that in sediments collected under the farm (Se), resulting in lower feces production but higher apparent digestibility rate for the De group as feeding rate was similar. Consequently, higher nutrient removal efficiency was observed in the De group. A mass balance approach indicated that approximately 400-500 individuals m-2 is required for removing all waste materials deposited underneath the fish farm, whereas abundance can be lower (about 300-350 individuals m-2) when only the fish waste needs to be removed. The results showed that a significant amount of waste had been accumulated in the fish cages in Sanggou Bay. The integration of fish with P. aibuhitensis seems promising for preventing organic pollution in the sediment and therefore is an effective strategy for mitigating negative effect of fish farms. Thus such integration can become a new IMTA (integrated multi-trophic aquaculture) model in Sanggou Bay.

  15. Acid-neutralizing potential of minerals in intrusive rocks of the Boulder batholith in northern Jefferson County, Montana

    USGS Publications Warehouse

    Desborough, George A.; Briggs, Paul H.; Mazza, Nilah; Driscoll, Rhonda

    1998-01-01

    Experimental studies show that fresh granitic rocks of the Boulder batholith in the Boulder River headwaters near Basin, Montana have significant acid-neutralizing potential and are capable of neutralizing acidic water derived from metal-mining related wastes or mine workings. Laboratory studies show that in addition to the acidneutralizing potential (ANP) of minor amounts of calcite in these rocks, biotite, tremolite, and feldspars will contribute significantly to long-term ANP. We produced 0.45 micrometer-filtered acidic (pH = 2.95) leachate for use in these ANP experiments by exposing metal-mining related wastes to deionized water in a waste:leachate ratio of 1:20. We then exposed these leachates to finely-ground and sized fractions of batholith rocks, and some of their mineral fractions for extended and repeated periods, for which results are reported here. The intent was to understand what reactions of metal-rich acidic water and fresh igneous rocks would produce. The reactions between the acidic leachates and the bulk rocks and mineral fractions are complex. Factors such as precipitation of phases like Fe-hydroxides and Alhydroxides and the balance between dissolved cations and anions that are sulfate dominated complicate analysis of the results. Research by others of acid neutralization by biotite and tremolite attributed a rise in pH to proton (H+) adsorption in sites vacated by K, Mg, and Ca. Destruction of the silicate framework and liberation of associated structural hydroxyl ions may contribute to ANP. Studies by others have indicated that the conversion of biotite to a vermiculite-type structure by removal of K at a pH of 4 consumes about six protons for every mole of biotite, but at a pH of 3 there is pronounced dissolution of the tetrahedral lattice. The ANP of fresh granitic rocks is much higher than anticipated. The three bulk Boulder igneous rock samples studied have minimum ANP equivalent to about 10-14 weight percent calcite. This ANP is in addition to that provided by the 0.36-1.4 weight percent calcite present in these samples. The total rock ANP is thus equivalent to that of many sedimentary rocks that are generally believed to be among the most efficient for attenuation of acidic waters. The long-term ANP contributed by biotite, tremolite, feldspars, and possibly unidentified minerals in these rocks, as well as calcite, are all important with regard to their natural remediation of degraded water quality originating from Fe-sulfide rich mineral deposits and the associated mine wastes and acid-mine drainage water.

  16. Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell.

    PubMed

    Ding, Dahu; Lei, Zhongfang; Yang, Yingnan; Feng, Chuanping; Zhang, Zhenya

    2014-04-15

    A novel nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell (Ni(II)HCF(III)-WS) was developed to selectively remove cesium ion (Cs(+)) from aqueous solutions. This paper showed the first integral study on Cs(+) removal behavior and waste reduction analysis by using biomass adsorption material. The results indicated that the removal process was rapid and reached saturation within 2h. As a special characteristic of Ni(II)HCF(III)-WS, acidic condition was preferred for Cs(+) removal, which was useful for extending the application scope of the prepared biomass material in treating acidic radioactive liquid waste. The newly developed Ni(II)HCF(III)-WS could selectively remove Cs(+) though the coexisting ions (Na(+) and K(+) in this study) exhibited negative effects. In addition, approximately 99.8% (in volume) of the liquid waste was reduced by using Ni(II)HCF(III)-WS and furthermore 91.9% (in volume) of the spent biomass material (Cs-Ni(II)HCF(III)-WS) was reduced after incineration (at 500°C for 2h). Due to its relatively high distribution coefficient and significant volume reduction, Ni(II)HCF(III)-WS is expected to be a promising material for Cs(+) removal in practice. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste.

    PubMed

    Ibekwe, A M; Ma, J; Murinda, Shelton; Reddy, G B

    2016-02-15

    Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to high N and P accumulations in soil or lead to runoff which may contaminate surface or ground water with pathogens and nutrients. In this study, continuous marsh constructed wetland was used for the removal of contaminants from swine waste. Using pyrosequencing, we assessed bacterial composition within the wetland using principal coordinate analysis (PCoA) which showed that bacterial composition from manure influent and lagoon water were significantly different (P=0.001) from the storage pond to the final effluent. Canonical correspondence analysis (CCA) showed that different bacterial populations were significantly impacted by ammonium--NH4 (P=0.035), phosphate--PO4(3-) (P=0.010), chemical oxygen demand--COD (P=0.0165), total solids--TS (P=0.030), and dissolved solids--DS (P=0.030) removal, with 54% of the removal rate explained by NH4+PO4(3-) according to a partial CCA. Our results showed that different bacterial groups were responsible for the composition of different wetland nutrients and decomposition process. This may be the major reason why most wetlands are very efficient in waste decomposition. Published by Elsevier B.V.

  18. Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride-bearing waste in concrete.

    PubMed

    Ismail, Zainab Z; AbdelKareem, Hala N

    2015-11-01

    Sustainable management of waste materials is an attractive approach for modern societies. In this study, recycling of raw waste lamb and chicken bones for defluoridation of water has been estimated. The effects of several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existing anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal efficiency up to 99.4% and 99.8% using lamb and chicken bones, respectively at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the pseudo-second order kinetic model. Both, Langmuir and Freundlich isotherm models could fit the experimental data well with correlation coefficient values >0.99 suggesting favorable conditions of the process. Furthermore, for complete sustainable management of waste bones, the resulted fluoride-bearing sludge was reused in concrete mixes to partially replace sand. Tests of the mechanical properties of fluoride sludge-modified concrete mixes indicated a potential environmentally friendly approach to dispose fluoride sludge in concrete and simultaneously enhance concrete properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  20. The management of arsenic wastes: problems and prospects.

    PubMed

    Leist, M; Casey, R J; Caridi, D

    2000-08-28

    Arsenic has found widespread use in agriculture and industry to control a variety of insect and fungicidal pests. Most of these uses have been discontinued, but residues from such activities, together with the ongoing generation of arsenic wastes from the smelting of various ores, have left a legacy of a large number of arsenic-contaminated sites. The treatment and/or removal of arsenic is hindered by the fact that arsenic has a variety of valence states. Arsenic is most effectively removed or stabilized when it is present in the pentavalent arsenate form. For the removal of arsenic from wastewater, coagulation, normally using iron, is the preferred option. The solidification/stabilization of arsenic is not such a clear-cut process. Factors such as the waste's interaction with the additives (e.g. iron or lime), as well as any effect on the cement matrix, all impact on the efficacy of the fixation. Currently, differentiation between available solidification/stabilization processes is speculative, partly due to the large number of differing leaching tests that have been utilized. Differences in the leaching fluid, liquid-to-solid ratio, and agitation time and method all impact significantly on the arsenic leachate concentrations. This paper reviews options available for dealing with arsenic wastes, both solid and aqueous through an investigation of the methods available for the removal of arsenic from wastewater as well as possible solidification/stabilization options for a variety of waste streams.

  1. Transport and fate of organic wastes in groundwater at the Stringfellow hazardous waste disposal site, southern California

    USGS Publications Warehouse

    Leenheer, J.A.; Hsu, J.; Barber, L.B.

    2001-01-01

    In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community. Copyright ?? 2001 .

  2. PERFORMANCE OF AN AIR CLASSIFIER TO REMOVE LIGHT ORGANIC CONTAMINATION FROM ALUMINUM RECOVERED FROM MUNICIPAL WASTE BY EDDY CURRENT SEPARATION. TEST NO. 5.03, RECOVERY 1, NEW ORLEANS

    EPA Science Inventory

    The report describes a test in which aluminum cans recovered from municipal waste, together with known amounts of contaminant, were processed by a 'zig-zag' vertical air classifier to remove aerodynamically light contaminant. Twelve test runs were conducted; the proportions of co...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skibo, A.

    SRNL has considerable experience in designing, engineering, and operating systems for removing iodine-129 (I-129) and ruthenium-106 (Ru-106) from waste streams that are directly analogous to the Advanced Liquid Processing System (ALPS) waste streams. SRNL proposes to provide the technical background and design and engineering support for an improved I-129 and Ru-106 removal system for application to ALPS on the Fukushima Daiichi Nuclear Power Station (NPS).

  4. Biosorbents based on agricultural wastes for ionic liquid removal: An approach to agricultural wastes management.

    PubMed

    Yu, Fang; Sun, Li; Zhou, Yanmei; Gao, Bin; Gao, Wenli; Bao, Chong; Feng, Caixia; Li, Yonghong

    2016-12-01

    Modified biochars produced from different agricultural wastes were used as low-cost biosorbents to remove hydrophilic ionic liquid, 1-butyl-3-methyl-imidazolium chloride ([BMIM][Cl]). Herein, the biosorbents based on peanut shell, corn stalk and wheat straw (denoted as PB-K-N, CB-K-N and WB-K-N) all exhibited higher [BMIM][Cl] removal than many other carbonaceous adsorbents and the adsorption capacities were as the following: PB-K-N > CB-K-N > WB-K-N. The characterizations of biosorbents indicated that they had great deal of similarity in morphological, textural and surface chemical properties such as possessing simultaneously accessible microporous structure and abundant oxygen-containing functional groups. Additionally, adsorption of [BMIM][Cl] onto PB-K-N, CB-K-N and WB-K-N prepared from the modified process, which was better described by pseudo-second order kinetic and Freundlich isotherm models. Therefore, the viable approach could also be applied in other biomass materials treatment for the efficient removal of ILs from aqueous solutions, as well as recycling agricultural wastes to ease their disposal pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials.

    PubMed

    Mondal, Monoj Kumar; Garg, Ravi

    2017-05-01

    Arsenic contamination in water bodies is a serious problem and causes various health problems due to which US Environment Protection Agency (USEPA) set its maximum permissible limit of 10 ppb. The present review article starts with the removal of toxic arsenic using adsorbents prepared from easily available waste materials. Adsorbent either commercial or low-cost adsorbent can be used for arsenic removal but recent research was focused on the low-cost adsorbent. Preparation and activation of various adsorbents were discussed. Adsorption capacities, surface area, thermodynamic, and kinetics data of various adsorbents for As(III) and As(V) removal were compiled. Desorption followed by regeneration and reuse of adsorbents is an important step in adsorption and leads to economical process. Various desorbing and regenerating agents were discussed for arsenic decontamination from the adsorbent surface. Strong acids, bases, and salts are the main desorbing agents. Disposal of arsenic-contaminated adsorbent and arsenic waste was also a big problem because of the toxic and leaching effect of arsenic. So, arsenic waste was disposed of by proper stabilization/solidification (S/S) technique by mixing it in Portland cement, iron, ash, etc. to reduce the leaching effect.

  6. Method and apparatus for incinerating hazardous waste

    DOEpatents

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  7. Changes on aggregation in mine waste amended with biochar and marble mud

    NASA Astrophysics Data System (ADS)

    Ángeles Muñoz, María; Guzmán, Jose; Zornoza, Raúl; Moreno-Barriga, Fabián; Faz, Ángel; Lal, Rattan

    2016-04-01

    Mining activities have produced large amounts of wastes over centuries accumulated in tailing ponds in Southeast Spain. Applications of biochar may have a high potential for reclamation of degraded soils. Distribution, size and stability of aggregates are important indices of soil physical quality. However, research data on aggregation processes at amended mining tailings with biochar are scanty. Therefore, the aim of this study was to determine the effects of seven different treatments involving biochar and marble mud (MM) on the aggregation in mine waste (MW). Seven different treatments were tested after 90 days of incubation in the laboratory. These treatments were the mix of MW and: biochar from solid pig manure (PM), biochar from cotton crop residues (CR), biochar from municipal solid waste (MSW), marble mud (MM), PM+MM, CR+MM, MSW+MM and control without amendment. High sand percentages were identified in the MW. The biochars made from wastes (PM, CR, MSW) were obtained through pyrolysis of feedstocks. The water stability of soil aggregates was studied. The data on total aggregation were corrected for the primary particles considering the sandy texture of the MW. Moreover, partial aggregation was determined for each fraction and the mean weight diameter (MWD) of aggregates was computed. Soil bulk density and total porosity were also determined. No significant differences were observed in total aggregation and MWD among treatments including the control. For the size range of >4.75 mm, there were significant differences in aggregates > 4.75 mm between CR+MM in comparison with that for CT. There were also significant differences between MSW and PM+MM for the 1-0.425 mm fraction, and between CT and MM and CR for 0.425-0.162 mm aggregate size fractions. Therefore, CR-derived biochar applied with MM enhanced stability of macro-aggregates. Furthermore, soil bulk density was also the lowest bulk density and total porosity the highest for the CR-derived biochar treatment because macro aggregate stability is largely responsible for macro-porosity. The decrease in bulk density may be an indication of a positive effect for mine waste reclamation. Conversely, no differences were observed among treatments in micro-aggregate stability. Apparently, low organic matter contents in MW needed to be co-amended with labile organic amendments to effectively increase soil aggregation. Furthermore, the presence of Fe hydroxides could also increase the micro-aggregation. Additional research is needed to understand the mechanisms of mine soil reclamation. Acknowledgement : This work has been funded by Fundación Séneca (Agency of Science and Technology of the Region of Murcia, Spain

  8. Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments

    DOE PAGES

    Asmussen, R. Matthew; Matyas, Josef; Qafoku, Nikolla P.; ...

    2018-05-01

    Here, one of the key challenges for radioactive waste management is the efficient capture and immobilization of radioiodine, because of its radiotoxicity, high mobility in the environment, and long half-life (t 1/2 = 1.57 × 10 7 years). Silver-functionalized silica aerogel (AgAero) represents a strong candidate for safe sequestration of radioiodine from various nuclear waste streams and subsurface environments. Batch sorption experiments up to 10 days long were carried out in oxic and anoxic conditions in both deionized water (DIW) and various Hanford Site Waste Treatment Plant (WTP) off-gas condensate simulants containing from 5 to 10 ppm of iodide (Imore » –) or iodate (IO 3 –). Also tested was the selectivity of AgAero towards I – in the presence of other halide anions. AgAero exhibited fast and complete removal of I – from DIW, slower but complete removal of I – from WTP off-gas simulants, preferred removal of I – over Br – and Cl –, and it demonstrated ability to remove IO 3 – through reduction to I –.« less

  9. Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmussen, R. Matthew; Matyas, Josef; Qafoku, Nikolla P.

    Here, one of the key challenges for radioactive waste management is the efficient capture and immobilization of radioiodine, because of its radiotoxicity, high mobility in the environment, and long half-life (t 1/2 = 1.57 × 10 7 years). Silver-functionalized silica aerogel (AgAero) represents a strong candidate for safe sequestration of radioiodine from various nuclear waste streams and subsurface environments. Batch sorption experiments up to 10 days long were carried out in oxic and anoxic conditions in both deionized water (DIW) and various Hanford Site Waste Treatment Plant (WTP) off-gas condensate simulants containing from 5 to 10 ppm of iodide (Imore » –) or iodate (IO 3 –). Also tested was the selectivity of AgAero towards I – in the presence of other halide anions. AgAero exhibited fast and complete removal of I – from DIW, slower but complete removal of I – from WTP off-gas simulants, preferred removal of I – over Br – and Cl –, and it demonstrated ability to remove IO 3 – through reduction to I –.« less

  10. Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments.

    PubMed

    Asmussen, R Matthew; Matyáš, Josef; Qafoku, Nikolla P; Kruger, Albert A

    2018-05-01

    One of the key challenges for radioactive waste management is the efficient capture and immobilization of radioiodine, because of its radiotoxicity, high mobility in the environment, and long half-life (t 1/2  = 1.57 × 10 7 years). Silver-functionalized silica aerogel (AgAero) represents a strong candidate for safe sequestration of radioiodine from various nuclear waste streams and subsurface environments. Batch sorption experiments up to 10 days long were carried out in oxic and anoxic conditions in both deionized water (DIW) and various Hanford Site Waste Treatment Plant (WTP) off-gas condensate simulants containing from 5 to 10 ppm of iodide (I - ) or iodate (IO 3 - ). Also tested was the selectivity of AgAero towards I - in the presence of other halide anions. AgAero exhibited fast and complete removal of I - from DIW, slower but complete removal of I - from WTP off-gas simulants, preferred removal of I - over Br - and Cl - , and it demonstrated ability to remove IO 3 - through reduction to I - . Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) andmore » the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.« less

  12. Investigating Liquid Leak from Pre-Filled Syringes upon Needle Shield Removal: Effect of Air Bubble Pressure.

    PubMed

    Chan, Edwin; Maa, Yuh-Fun; Overcashier, David; Hsu, Chung C

    2011-01-01

    This study is to investigate the effect of headspace air pressure in pre-filled syringes on liquid leak (dripping) from the syringe needle upon needle shield removal. Drip tests to measure drip quantity were performed on syringes manually filled with 0.5 or 1.0 mL of various aqueous solutions. Parameters assessed included temperature (filling and test), bulk storage conditions (tank pressure and the type of the pressurized gas), solution composition (pure water, 0.9% sodium chloride, and a monoclonal antibody formulation), and testing procedures. A headspace pressure analyzer was used to verify the drip test method. Results suggested that leakage is indeed caused by headspace pressure increase, and the temperature effect (ideal gas expansion) is a major, but not the only, factor. The dissolved gases in the liquid bulk prior to or during filling may contribute to leakage, as these gases could be released into the headspace due to solubility changes (in response to test temperature and pressure conditions) and cause pressure increase. Needle shield removal procedures were found to cause dripping, but liquid composition played little role. Overall, paying attention to the processing history (pressure and temperature) of the liquid bulk is the key to minimize leakage. The headspace pressure could be reduced by decreasing liquid bulk storage pressure, filling at a higher temperature, or employing lower solubility gas (e.g., helium) for bulk transfer and storage. Leakage could also be mitigated by simply holding the syringe needle pointing upward during needle shield removal. Substantial advances in pre-filled syringe technology development, particularly in syringe filling accuracy, have been made. However, there are factors, as subtle as how the needle shield (or tip cap) is removed, that may affect dosing accuracy. We recently found that upon removal of the tip cap from a syringe held vertically with needle pointed downwards, a small amount of solution, up to 3-4% of the 1 mL filled volume or higher for filled volume of <1 mL, leaked out from the needle. This paper identified the root causes of this problem and offered solutions from the perspectives of the syringe fill process and the end user procedure. The readers will benefit from this paper by understanding how each process step prior to and during syringe filling may affect delivery performance of the pre-filled syringe device.

  13. Electromagnetic mixed waste processing system for asbestos decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.; Vaux, W.; Ulerich, N.

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less

  14. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  15. Evaluation of cyanobacteria: Spirulina maxima for growth, nutrient removal, and quality on waste-effluent media in batch cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadros, M.G.; Phillips, J.

    1992-01-01

    Spirulina maxima, a semi-microscopic filamentous blue-green alga, was inoculated in synthetic and waste media of different sources. The alga was evaluated for growth yield, uptake of nutrients and chemical composition. The removal rate of N and P was rapid during the first week of growth. At the end of the second week, more than 90% of the total -P and -N was removed. The mass of alga was high. The quality of the alga obtained in different media did not show much variations, except when the medium was limited in nutrients. Results indicated that Spirulina may be integrated into themore » effluent treatment system. Recycling waste materials not only minimizes the problem of water pollution but also revitalizes the inherently rich nutrients of waste. The biomass obtained from cultivation of Spirulina in these wastewater media may be used as a pigment-protein supplement in animal feed and as raw material for certain chemicals.« less

  16. Phytoremediation Potential of Duckweed (Lemna minor L.) On Steel Wastewater.

    PubMed

    Saha, Priyanka; Banerjee, Angela; Sarkar, Supriya

    2015-01-01

    An eco-friendly and cost effective technique- phytoremediation was used to remediate contaminants from waste water. This study demonstrated that phytoremediation ability of duckweed (Lemna minor L.) to remove chloride, sulphate from Biological Oxygen Treatment (BOT) waste water of coke oven plant. The BOT water quality was assessed by analyzing physico-biochemical characters--pH, Biological oxygen demand (BOD), Chemical oxygen demand (COD), total dissolved solids (TDS) and elemental concentration. It was observed that an increase in pH value indicated an improvement of water quality. The experimental results showed that, duckweed effectively removed 30% chloride, 16% sulphate and 14% TDS from BOT waste water, which suggested its ability in phytoremediation for removal of chloride and sulphate from BOT waste water. A maximum increase of 30% relative growth rate of duckweed was achieved after 21 days of experiment. Thus, it was concluded that duckweed, an aquatic plant, can be considered for treatment of the effluent discharged from the coke oven plant.

  17. Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water

    NASA Astrophysics Data System (ADS)

    Ardila, Liliana; Godoy, Rubén; Montenegro, Luis

    2017-08-01

    Tanning process is a polluting activity due to the release of toxic agents into the environment. One of the most important of those toxic chemicals is chromium. Different alternatives have been proposed for the removal of this metal from tanning waste water which include the optimization of the productive processes, physicochemical and biochemical waste water treatment. In this study, the biological adsorption process of trivalent chromium was carried out in synthetic water and tannery waste water through two types of native green microalgae, called Chlorella vulgaris and Scenedesmus acutus in Free State and immobilized in PVA state. This, considering that cellular wall of microalgae has functional groups like amines and carboxyl that might bind with trivalent chromium. Statistical significance of variables as pH temperature, chromium and algae concentrations was evaluated just like bio sorption capacity of different types of water and kind of bioadsorbent was calculated to determine if this process is a competitive solution comparing to other heavy metal removal processes.

  18. Removal of nickel and cadmium from battery waste by a chemical method using ferric sulphate.

    PubMed

    Jadhav, Umesh U; Hocheng, Hong

    2014-01-01

    The removal of nickel (Ni) and cadmium (Cd) from spent batteries was studied by the chemical method. A novel leaching system using ferric sulphate hydrate was introduced to dissolve heavy metals in batteries. Ni-Cd batteries are classified as hazardous waste because Ni and Cd are suspected carcinogens. More efficient technologies are required to recover metals from spent batteries to minimize capital outlay, environmental impact and to respond to increased demand. The results obtained demonstrate that optimal conditions, including pH, concentration of ferric sulphate, shaking speed and temperature for the metal removal, were 2.5, 60 g/L, 150 rpm and 30 degrees C, respectively. More than 88 (+/- 0.9) and 84 (+/- 2.8)% of nickel and cadmium were recovered, respectively. These results suggest that ferric ion oxidized Ni and Cd present in battery waste. This novel process provides a possibility for recycling waste Ni-Cd batteries in a large industrial scale.

  19. Evaluation of actinide biosorption by microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happel, A.M.

    1996-06-01

    Conventional methods for removing metals from aqueous solutions include chemical precipitation, chemical oxidation or reduction, ion exchange, reverse osmosis, electrochemical treatment and evaporation. The removal of radionuclides from aqueous waste streams has largely relied on ion exchange methods which can be prohibitively costly given increasingly stringent regulatory effluent limits. The use of microbial cells as biosorbants for heavy metals offers a potential alternative to existing methods for decontamination or recovery of heavy metals from a variety of industrial waste streams and contaminated ground waters. The toxicity and the extreme and variable conditions present in many radionuclide containing waste streams maymore » preclude the use of living microorganisms and favor the use of non-living biomass for the removal of actinides from these waste streams. In the work presented here, we have examined the biosorption of uranium by non-living, non-metabolizing microbial biomass thus avoiding the problems associated with living systems. We are investigating biosorption with the long term goal of developing microbial technologies for the remediation of actinides.« less

  20. Radioactive waste disposal via electric propulsion

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.

    A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power reactor sites was conducted. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: (1) characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory, (2) a description of the on-site infrastructure and conditionsmore » relevant to transportation of SNF and GTCC waste, (3) an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing SNF and GTCC waste, including identification of gaps in information, and (4) an evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. Every site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.« less

  2. Towards Ideal NOx and CO2 Emission Control Technology for Bio-Oils Combustion Energy System Using a Plasma-Chemical Hybrid Process

    NASA Astrophysics Data System (ADS)

    Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.

    2013-03-01

    A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.

  3. Electrochemical Induced Calcium Phosphate Precipitation: Importance of Local pH

    PubMed Central

    2017-01-01

    Phosphorus (P) is an essential nutrient for living organisms and cannot be replaced or substituted. In this paper, we present a simple yet efficient membrane free electrochemical system for P removal and recovery as calcium phosphate (CaP). This method relies on in situ formation of hydroxide ions by electro mediated water reduction at a titanium cathode surface. The in situ raised pH at the cathode provides a local environment where CaP will become highly supersaturated. Therefore, homogeneous and heterogeneous nucleation of CaP occurs near and at the cathode surface. Because of the local high pH, the P removal behavior is not sensitive to bulk solution pH and therefore, efficient P removal was observed in three studied bulk solutions with pH of 4.0 (56.1%), 8.2 (57.4%), and 10.0 (48.4%) after 24 h of reaction time. While P removal efficiencies are not generally affected by bulk solution pH, the chemical-physical properties of CaP solids collected on the cathode are still related to bulk solution pH, as confirmed by structure characterizations. High initial solution pH promotes the formation of more crystalline products with relatively high Ca/P molar ratio. The Ca/P molar ratio increases from 1.30 (pH 4.0) to 1.38 (pH 8.2) and further increases to 1.55 (pH 10.0). The formation of CaP precipitates was a typical crystallization process, with an amorphous phase formed at the initial stage which then transforms to the most stable crystal phase, hydroxyapatite, which is inferred from the increased Ca/P molar ratio from 1.38 (day 1) to the theoretical 1.76 (day 11) and by the formation of needle-like crystals. Finally, we demonstrated the efficiency of this system for real wastewater. This, together with the fact that the electrochemical method can work at low bulk pH, without dosing chemicals and a need for a separation process, highlights the potential application of the electrochemical method for P removal and recovery. PMID:28872838

  4. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.

    PubMed

    Lee, Seo-Yun; Choi, Hee-Jeong

    2018-03-01

    The aim of this study was to investigate heavy metal removal using waste biomass adsorbent, persimmon leaves, in an aqueous solution. Persimmon leaves, which are biomaterials, have a large number of hydroxyl groups and are highly suitable for removal of heavy metals. Therefore, in this study, we investigated the possibility of removal of Cu, Pb, and Cd in aqueous solution by using raw persimmon leaves (RPL) and dried persimmon leaves (DPL). Removal of heavy metals by RPL and DPL showed that DPL had a 10%-15% higher removal than RPL, and the order of removal efficiency was found to be Pb > Cu > Cd. The pseudo-second order model was a better fit to the heavy metal adsorption experiments using RPL and DPL than the pseudo-first order model. The adsorption of Cu, Pb, and Cd by DPL was more suitable with the Freundlich isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Cu, Pb, and Cd was determined to be 19.42 mg/g, 22.59 mg/g, and 18.26 mg/g, respectively. The result of the adsorption experiments showed that the n value was higher than 2 regardless of the dose, indicating that the heavy metal adsorption on DPL was easy. In the thermodynamic experiment, ΔG° was a negative value, and ΔH° and ΔS° were positive values. It can be seen that the heavy metal adsorption process using DPL was spontaneous in nature and was an endothermic process. Moreover, as the temperature increased, the adsorption increased, and the affinity of heavy metal adsorption to DPL was very good. This experiment, in which heavy metals are removed using the waste biomass of persimmon leaves is an eco-friendly new bioadsorbent method because it can remove heavy metals without using chemicals while utilizing waste recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. 40 CFR 267.115 - After I stop operating, how long until I must close?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...? (a) Within 90 days after the final volume of hazardous waste is sent to a unit, you must treat or remove from the unit all hazardous wastes following the approved closure plan. (b) You must complete...

  6. 40 CFR 267.115 - After I stop operating, how long until I must close?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...? (a) Within 90 days after the final volume of hazardous waste is sent to a unit, you must treat or remove from the unit all hazardous wastes following the approved closure plan. (b) You must complete...

  7. 40 CFR 267.115 - After I stop operating, how long until I must close?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES...? (a) Within 90 days after the final volume of hazardous waste is sent to a unit, you must treat or remove from the unit all hazardous wastes following the approved closure plan. (b) You must complete...

  8. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment. 273.4 Section 273.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury...-containing components have been removed. (c) Generation of waste mercury-containing equipment. (1) Used...

  9. Liners and Leak Detection Systems for Hazardous Waste Land Disposal Units - Federal Register Notice, January 29, 1992

    EPA Pesticide Factsheets

    The EPA is amending its current regulations under the Resource Conservation and Recovery Act (RCRA) concerning liner and leachate collection and removal systems for hazardous waste surface impoundments, landfills, and waste piles.

  10. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... adverse comment by October 25, 2010, the direct final rule would not take effect and we would publish a.... Lists of Subjects in 40 CFR Part 261 Environmental Protection, Hazardous waste, Recycling, Reporting and...

  11. 40 CFR 265.228 - Closure and post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.228 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... or operator must: (1) Remove or decontaminate all waste residues, contaminated containment system...

  12. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D.; Crawford, C.; Duignan, M.

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so itsmore » disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.« less

  13. [Energy saving achieved by limited filamentous bulking under low dissolved oxygen: experimental validation in A/O process].

    PubMed

    Guo, Jian-hua; Wang, Shu-ying; Peng, Yong-zhen; Zheng, Ya-nan; Huang, Hui-jun; Ge, Shi-jian; Sun, Zhi-rong

    2008-12-01

    Preliminary studies had been conducted to determine the correctness of the theory and technique of energy saving achieved by limited filamentous bulking under low DO using a lab-scale A/O reactor with real domestic wastewater as the influent. The results showed that SVI could be maintained 150-230 mL/g and sludge settleability would not become very poor under the condition of low DO. During the period of limited filamentous bulking, COD and total nitrogen removal efficiencies were improved, and distinct simultaneous nitrification and denitrification (SND) was achieved, while ammonia removal efficiency would slightly decline with decreasing of DO, compared with the period of good settleability sludge under high DO. COD, ammonia and total nitrogen removal efficiencies were 86%, 70% and 63%, respectively. It was found that about 10%-25% nitrogen would be removed by SND based on the mass balance of nitrogen. Besides, SS in the effluent was almost negligible and the effluent turbidity was lower than 3 NTU. Significantly, aeration consumptions would be decreased by 17% under the condition with DO of 0.5 mg/L compared with 2.0 mg/L according to theoretical calculation of air requirements to keep different DO levels, which was about 57% in lab-scale reactor correspondingly.

  14. Identification of Non-Pertechnetate Species In Hanford Tank Waste, Their Synthesis, Characterization, And Fundamental Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth R. Ashely; Norman Schroeder; Jose A. Olivares

    2004-12-10

    This proposal had three major goals: (1) develop capillary electrophoresis mass spectrometry as a characterization technique, (2) separate a non-pertechnetate fraction from a waste sample and identify the non-pertechnetate species in it by CEMS, and (3) synthesize and characterize bulk quantities of the identified non-pertechnetate species and study their ligand substitution and redox chemistry.

  15. Effect of airflow on biodrying of gardening wastes in reactors.

    PubMed

    Colomer-Mendoza, F J; Herrera-Prats, L; Robles-Martínez, F; Gallardo-Izquierdo, A; Piña-Guzmán, A B

    2013-05-01

    Biodrying consists of reducing moisture by using the heat from aerobic bio-degradation. The parameters that control the process are: aeration, temperature during the process, initial moisture of biowaste, and temperature and relative humidity of the input air. Lawn mowing and garden waste from the gardens of the University Jaume I, Castellón (Spain) were used as a substrate. Biodrying was performed in 10 reactors with known air volumes from 0.88 to 6.42 L/(min x kg dry weight). To promote aeration, 5 of the reactors had 15% of a bulking agent added. The experiment lasted 20 days. After the experiments it was found that the bulking agent led to greater weight loss. However, the increased airflow rate was not linearly proportional to the weight loss.

  16. [A laboratory and field study on the disposal of domestic waste water based on soil permeation].

    PubMed

    Yamaura, G

    1989-02-01

    The present study was conducted to get information necessary for the disposal of domestic waste water by soil permeation. The clarifying ability of soil was examined by conducting laboratory experiments using soil columns and making inquiries about practical disposal facilities based on soil permeation using trenches. In the column experiment, soil columns were prepared by packing polyvinyl chloride pipes with volcanic-ash loam, river sand, or an equivolume mixture of both, and secondary effluent of domestic waste water was poured into each soil column at a daily rate of 100 l/m2. In this experiment, loam and sand loam, both containing fine silt and clay, gave BOD removals of over 95% when the influent BOD load per 1 m3 of soil was less than 10 g/d and gave the coliform group removals of 100% when the influent coliform group load per 1 m3 soil was less than 10(9)/d. Loam and sand loam gave T-P removals of over 90%. The P adsorption capacity of soil was limited to less than 12% of the absorption coefficient of phosphoric acid. All the soils gave low T-N removals, mostly less than 50%. The trench disposal gave high removals of 90-97% for BOD, 90-97% for T-P, and 94-99% for the coliform group but low removals of 11-49% for T-N, showing a trend similar to that of the column disposal. Thus, we can roughly estimate the effectiveness of actual soil permeation disposal from the results of the column experiments. In the waste water permeation region, the extent of waste water permeation exceeded 700 cm horizontally from the trench, but the waste water load within 100 cm laterally from the trench occupied 60.3% of the total. The concentrations of T-C and T-N at almost all observation spots in the permeation region were lower than in the control region, and were not caused to accumulate in soil by waste water loading. In contrast, T-P was accumulated concentratively in the depth range from 50-100 cm right below the trench. The conditions for effective disposal of domestic waste water by soil permeation have been estimated to be: (1) the soil should contain more than 30% silt and clay, (2) the absorption coefficient of phosphoric acid should be more than 1000, (3) the permeation rate should be 1.0-1.8 mm/min, and (4) the soil volume to be permeated should be more than 6.86 m3/person.

  17. Process for removing thorium and recovering vanadium from titanium chlorinator waste

    DOEpatents

    Olsen, Richard S.; Banks, John T.

    1996-01-01

    A process for removal of thorium from titanium chlorinator waste comprising: (a) leaching an anhydrous titanium chlorinator waste in water or dilute hydrochloric acid solution and filtering to separate insoluble minerals and coke fractions from soluble metal chlorides; (b) beneficiating the insoluble fractions from step (a) on shaking tables to recover recyclable or otherwise useful TiO.sub.2 minerals and coke; and (c) treating filtrate from step (a) with reagents to precipitate and remove thorium by filtration along with acid metals of Ti, Zr, Nb, and Ta by the addition of the filtrate (a), a base and a precipitant to a boiling slurry of reaction products (d); treating filtrate from step (c) with reagents to precipitate and recover an iron vanadate product by the addition of the filtrate (c), a base and an oxidizing agent to a boiling slurry of reaction products; and (e) treating filtrate from step (d) to remove any remaining cations except Na by addition of Na.sub.2 CO.sub.3 and boiling.

  18. Chemical activation of gasification carbon residue for phosphate removal

    NASA Astrophysics Data System (ADS)

    Kilpimaa, Sari; Runtti, Hanna; Lassi, Ulla; Kuokkanen, Toivo

    2012-05-01

    Recycling of waste materials provides an economical and environmentally significant method to reduce the amount of waste. Bioash formed in the gasification process possesses a notable amount of unburned carbon and therefore it can be called a carbon residue. After chemical activation carbon residue could be use to replace activated carbon for example in wastewater purification processes. The effect of chemical activation process variables such as chemical agents and contact time in the chemical activation process were investigated. This study also explored the effectiveness of the chemically activated carbon residue for the removal of phosphate from an aqueous solution. The experimental adsorption study was performed in a batch reactor and the influence of adsorption time, initial phosphate concentration and pH was studied. Due to the carbon residue's low cost and high adsorption capacity, this type of waste has the potential to be utilised for the cost-effective removal of phosphate from wastewaters. Potential adsorbents could be prepared from these carbonaceous by-products and used as an adsorbent for phosphate removal.

  19. Methanol metabolism and archaeal community changes in a bioelectrochemical anaerobic digestion sequencing batch reactor with copper-coated graphite cathode.

    PubMed

    Park, Jungyu; Lee, Beom; Shi, Peng; Kwon, Hyejeong; Jeong, Sang Mun; Jun, Hangbae

    2018-07-01

    In this study, the metabolism of methanol and changes in an archaeal community were examined in a bioelectrochemical anaerobic digestion sequencing batch reactor with a copper-coated graphite cathode (BEAD-SBR Cu ). Copper-coated graphite cathode produced methanol from food waste. The BEAD-SBR Cu showed higher methanol removal and methane production than those of the anaerobic digestion (AD)-SBR. The methane production and pH of the BEAD-SBR Cu were stable even under a high organic loading rate (OLR). The hydrogenotrophic methanogens increased from 32.2 to 60.0%, and the hydrogen-dependent methylotrophic methanogens increased from 19.5 to 37.7% in the bulk of BEAD-SBR Cu at high OLR. Where methanol was directly injected as a single substrate into the BEAD-SBR Cu , the main metabolism of methane production was hydrogenotrophic methanogenesis using carbon dioxide and hydrogen released by the oxidation of methanol on the anode through bioelectrochemical reactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunnane, J.C.; Bates, J.K.; Bradley, C.R.

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II.

  1. Potentials and limitations of microorganisms as renal failure biotherapeutics

    PubMed Central

    Jain, Poonam; Shah, Sapna; Coussa, Razek; Prakash, Satya

    2009-01-01

    Renal insufficiency leads to uremia, a complicated syndrome. It thus becomes vital to reduce waste metabolites and regulate water and electrolytes in kidney failure. The most common treatment of this disease is either dialysis or transplantation. Although these treatments are very effective, they are extremely costly. Recently artificial cells, microencapsulated live bacterial cells, and other cells have been studied to manage renal failure metabolic wastes. The procedure for microencapsulation of biologically active material is well documented and offers many biomedical applications. Microencapsulated bacteria have been documented to efficiently remove urea and several uremic markers such as ammonia, creatinine, uric acid, phosphate, potassium, magnesium, sodium, and chloride. These bacteria also have further potential as biotherapeutic agents because they can be engineered to remove selected unwanted waste. This application has enormous potential for removal of waste metabolites and electrolytes in renal failure as well as other diseases such as liver failure, phenylketonuria, and Crohn’s disease, to name a few. This paper discusses the various options available to date to manage renal failure metabolites and focuses on the potential of using encapsulated live cells as biotherapeutic agents to control renal failure waste metabolites and electrolytes. PMID:19707412

  2. Anaerobic co-digestion of livestock and vegetable processing wastes: fibre degradation and digestate stability.

    PubMed

    Molinuevo-Salces, Beatriz; Gómez, Xiomar; Morán, Antonio; García-González, Mari Cruz

    2013-06-01

    Anaerobic digestion of livestock wastes (swine manure (SM) and poultry litter (PL)) and vegetable processing wastes (VPW) mixtures was evaluated in terms of methane yield, volatile solids removal and lignocellulosic material degradation. Batch experiments were performed with 2% VS (volatile solids) to ensure complete conversion of TVFAs (total volatile fatty acids) and to avoid ammonia inhibition. Experimental methane yields obtained for the mixtures resulted in higher values than those obtained from the sum of the methane yields from the individual components. VPW addition to livestock wastes before anaerobic digestion also resulted in improved VS elimination. In SM-VPW co-digestions, CH4 yield increased from 111 to 244 mL CH4 g VS added(-1), and the percentage of VS removed increased from 50% to 86%. For PL-VPW co-digestions, the corresponding values were increased from 158 to 223 mL CH4 g VS added(-1) and from 70% to 92% VS removed. Hemicelluloses and more than 50% of cellulose were degraded during anaerobic digestion. Thermal analyses indicated that the stabilization of the wastes during anaerobic digestion resulted in significantly less energy being released by digestate samples than fresh samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement.

    PubMed

    Dai, Shijin; Li, Yang; Zhou, Tao; Zhao, Youcai

    2017-06-01

    Food waste fermentation generates complicated organic and acidic liquids with low pH. In this work, it was found that an organic acid liquid with pH 3.28 and volatile low-molecular-weight organic acid (VLMWOA) content of 5.2 g/L could be produced from food wastes after 9-day fermentation. When the liquid-to-solid ratio was 50:1, temperature was 40 °C, and contact time was 0.5-1 day, 92.9, 78.8, and 52.2% of the Cd, Cu, and Zn in the contaminated soil could be washed out using the fermented food waste liquid, respectively. The water-soluble, acid-soluble, and partly reducible heavy metal fractions can be removed after 0.5-day contact time, which was more effective than that using commercially available VLMWOAs (29-72% removal), as the former contained microorganisms and adequate amounts of nutrients (nitrogen, phosphorous, and exchangeable Na, K, and Ca) which favored the washing process of heavy metals. It is thus suggested that the organic acid fractions from food waste has a considerable potential for reclaiming contaminated soil while improving soil fertility.

  4. Synthesis of sodium lauryl sulphate (SLS)-modified activated carbon from risk husk for waste lead (Pb) removal

    NASA Astrophysics Data System (ADS)

    Al-Latief, D. N.; Arnelli, Astuti, Y.

    2015-12-01

    Surfactant-modified active carbon (SMAC) has been successfully synthesized from waste rice husk using a series of treatments i.e. carbonization, activation with H3PO4 and surface modification using sodium lauryl sulfate (SLS). The synthesized SMAC was characterized using SEM-EDX and FTIR. The adsorption results show that the SMAC synthesized using H3PO4 treatment for 8 hours followed with SLS treatment for 5 hours had efficiency and capacity of the waste lead removal of 99.965% and 0.499825 mg.g-1, respectively.

  5. Paint removal activities in the US Navy

    NASA Astrophysics Data System (ADS)

    Kozol, Joseph

    1993-03-01

    Use of methylene chloride and phenol based chemical strippers for aircraft paint removal generates large quantities of hazardous waste and creates health and safety problems for operating personnel. This paper presents an overview of the U.S. Navy's activities in the investigation and implementation of alternate paint stripping methods which will minimize or eliminate hazardous waste and provide a safe operating environment. Alternate paint removal methods under investigation by the Navy at the present time include use of non-hazardous chemical paint removers, xenon flashlamp/CO2 pellets, lasers and plastic media. Plastic media blasting represents a mature technology in current usage for aircraft paint stripping and is being investigated for determination of its effects on Navy composite aircraft configurations.

  6. THE FINAL DEMISE OF EAST TENNESSEE TECHNOLOGY PARK BUILDING K-33 Health Physics Society Annual Meeting West Palm Beach, Florida June 27, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King

    2011-06-27

    Building K-33 was constructed in 1954 as the final section of the five-stage uranium enrichment cascade at the Oak Ridge Gaseous Diffusion Plant (ORGDP). The two original building (K-25 and K-27) were used to produce weapons grade highly enriched uranium (HEU). Building K-29, K-31, and K-33 were added to produce low enriched uranium (LEU) for nuclear power plant fuel. During ORGDP operations K-33 produced a peak enrichment of 2.5%. Thousands of tons of reactor tails fed into gaseous diffusion plants in the 1950s and early 1960s introducing some fission products and transuranics. Building K-33 was a two-story, 25-meters (82-feet) tallmore » structure with approximately 30 hectare (64 acres) of floor space. The Operations (first) Floor contained offices, change houses, feed vaporization rooms, and auxiliary equipment to support enrichment operations. The Cell (second) Floor contained the enrichment process equipment and was divided into eight process units (designated K-902-1 through K-902-8). Each unit contained ten cells, and each cell contained eight process stages (diffusers) for a total of 640 enrichment stages. 1985: LEU buildings were taken off-line after the anticipated demand for uranium enrichment failed to materialize. 1987: LEU buildings were placed in permanent shutdown. Process equipment were maintained in a shutdown state. 1997: DOE signed an Action Memorandum for equipment removal and decontamination of Buildings K-29, K-31, K-33; BNFL awarded contract to reindustrialize the buildings under the Three Buildings D&D and Recycle Project. 2002: Equipment removal complete and effort shifts to vacuuming, chemical cleaning, scabbling, etc. 2005: Decontamination efforts in K-33 cease. Building left with significant {sup 99}Tc contamination on metal structures and PCB contamination in concrete. Uranium, transuranics, and fission products also present on building shell. 2009: DOE targets Building K-33 for demolition. 2010: ORAU contracted to characterize Building K-33 for final disposition at the Environmental Management Waste Management Facility (EMWMF) in Oak Ridge. ORAU collected 439 samples from May and June. LATA Sharp started removing transite panels in September. 2011: LATA Sharp began demolition in January and expects the last waste shipment to EMWMF in September. Approximately 237,000 m{sup 3} (310,000 yd{sup 3}, bulked) of waste taken to EMWMF in 23,000 truckloads expected by project completion.« less

  7. Ion Selective Ceramics for Waste Separations. Input for Annual Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spoerke, Erik David

    This report discusses“Ion-Selective Ceramics for Waste Separations” which aims to develop an electrochemical approach to remove fission product waste (e.g., Cs+ ) from the LiCl-KCl molten salts used in the pyroprocessing of spent nuclear fuel.

  8. Process for treating waste water having low concentrations of metallic contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  9. 49 CFR 172.302 - General marking requirements for bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Size of markings. Except as otherwise provided, markings required by this subpart on bulk packagings... to remove any potential hazard; or (2) Refilled, with a material requiring different markings or no... body or trailer in which the lading has been fumigated with any hazardous material, or is undergoing...

  10. 46 CFR 154.524 - Piping joints: Welded and screwed couplings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 154.524 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and... 979 kPa gauge (142 psig) must be removed after the weld is completed; (2) A consumable insert; or (3...

  11. 46 CFR 154.524 - Piping joints: Welded and screwed couplings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 154.524 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and... 979 kPa gauge (142 psig) must be removed after the weld is completed; (2) A consumable insert; or (3...

  12. Sediment filtration can reduce the N load of the waste water discharge - a full-scale lake experiment

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni L.; Saarenheimo, Jatta; Karvinen, Anu; Rissanen, Antti J.; Ropponen, Janne; Juntunen, Janne; Tiirola, Marja

    2016-04-01

    European commission has obliged Baltic states to reduce nitrate load, which requires high investments on the nitrate removal processes and may increase emissions of greenhouse gases, e.g. N2O, in the waste water treatment plants. We used ecosystem-scale experimental approach to test a novel sediment filtration method for economical waste water N removal in Lake Keurusselkä, Finland between 2014 and 2015. By spatially optimizing the waste water discharge, the contact area and time of nitrified waste water with the reducing microbes of the sediment was increased. This was expected to enhance microbial-driven N transformation and to alter microbial community composition. We utilized 15N isotope pairing technique to follow changes in the actual and potential denitrification rates, nitrous oxide formation and dissimilatory nitrate reduction to ammonium (DNRA) in the lake sediments receiving nitrate-rich waste water input and in the control site. In addition, we investigated the connections between observed process rates and microbial community composition and functioning by using next generation sequencing and quantitative PCR. Furthermore, we estimated the effect of sediment filtration method on waste water contact time with sediment using the 3D hydrodynamic model. We sampled one year before the full-scale experiment and observed strong seasonal patterns in the process rates, which reflects the seasonal variation in the temperature-related mixing patterns of the waste water within the lake. During the experiment, we found that spatial optimization enhanced both actual and potential denitrification rates of the sediment. Furthermore, it did not significantly promote N2O emissions, or N retention through DNRA. Overall, our results indicate that sediment filtration can be utilized as a supplemental or even alternative method for the waste water N removal.

  13. Pit 9 Category of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Kenneth M.

    2014-01-08

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP).This report summarizes available information on the origin, configuration, and composition of the waste containers within Pit 9, their physical and radiological characteristics, and issues that may be encountered in their retrieval and processing. Review of the available information indicates that Pit 9 should present no major issues in retrieval and processing, and most drums contain TRU waste that can be shipped to WIPP. The primary concern in retrieval is the integrity of containers that have been stored below-ground for 35 to 40 years. The most likely issue that will be encountered in processing containers retrieved from Pit 9 is the potential for items that are prohibited at WIPP such as sealed containers greater than four liters in size and free liquids that exceed limits for WIPP.« less

  14. Effect of anatomical characteristics and chemical components on microwave-assisted liquefaction of bamboo wastes

    Treesearch

    JiuLong Xie; XingYan Huang; JinQiu Qi; Chung Hse; Todd Shupe

    2014-01-01

    The epidermis layer waste (ELW) and the inner layer waste (ILW) were removed from Phyllostachys pubescens bamboo, and the anatomical characteristics and chemical components of these wastes were comparatively investigated. Both the ELW and the ILW were subjected to a microwave-assisted liquefaction process to evaluate the relationship between bamboo...

  15. Structural Chemistry of Functional Nano-Materials for Environmental Remediation

    NASA Astrophysics Data System (ADS)

    John, Jesse

    Nano minerals and materials have become a focal point of Geoscience research due to the unique physical, chemical, optical, magnetic, electronic, and reactive properties. Many of these desired properties in Nano technology have the potential to impact society by improving remediation, photovoltaics, medicine and the sustainability limits on Earth for an expanding population. Despite the progress made on the discovery, synthesis, and manufacturing of numerous nano-materials, the atomistic cause of their desired properties is poorly understood. To gain a better understanding of the atomic structure of nano materials and their bulk counterparts we combined several crystallographic techniques to solve the crystal structure and performed formative characterization to ascertain the atomistic source of the desired application. These strategies and tools can be used to expedite discovery, development and the goals of the National Nanotechnology Initiative (NNI). This thesis will cover the optimization of the reaction conditions and resolve the atomic structure to produce pure synthetic nano nolanite (SNN) Fe2V3O7OH. The complete structural model of nolanite was described from a bulk mineral to the nano-regime using a combination of single crystal X-ray diffraction (SC-XRD), pair distribution function analysis (PDF) and neutron powder diffraction from synthetic material. Nolanite is isostructural to ferrihydrite, a ubiquitous nano-mineral, both of these mineral structures have been the subject for debate for the last half of century. A comparative study of the isostructural minerals nolanite, akdalaite and ferrihydrite was utilized to address the discrepancies and consolidate the structural models. Lastly, we developed a structural model for nano-crystalline titanium-based material; mono sodium titanate (MST) using high energy total X-ray scattering and PDF coupled with scanning transmission electron microscope (STEM). In the USA we have accumulated over 76000 metric tons of nuclear waste and the nuclear industry continues to generate an additional 2000 tons every year. MST is the baseline material used for to effectively remove 90Sr and alpha-emitting actinides from strongly alkaline, high-level nuclear waste solutions at the Savannah River site. Despite the success of MST in the remediation of high-level radioactive waste (HLW) the process by which the metals are structurally incorporated is still poorly understood, and there is still no structural model. This study aims to better understand the ion exchange mechanism of MST by generating a structural model derived from synchrotron X-ray powder diffraction data.

  16. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    PubMed

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  17. Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting.

    PubMed

    Haynes, R J; Belyaeva, O N; Zhou, Y-F

    2015-01-01

    In order to better characterize mechanically shredded municipal green waste used for composting, five samples from different origins were separated into seven particle size fractions (>20mm, 10-20mm, 5-10mm, 2-5mm, 1-2mm, 0.5-1.0mm and <0.5mm diameter) and analyzed for organic C and nutrient content. With decreasing particle size there was a decrease in organic C content and an increase in macronutrient, micronutrient and ash content. This reflected a concentration of lignified woody material in the larger particle fractions and of green stems and leaves and soil in the smaller particle sizes. The accumulation of nutrients in the smaller sized fractions means the practice of using large particle sizes for green fuel and/or mulch does not greatly affect nutrient cycling via green waste composting. During a 100-day incubation experiment, using different particle size fractions of green waste, there was a marked increase in both cumulative CO2 evolution and mineral N accumulation with decreasing particle size. Results suggested that during composting of bulk green waste (with a high initial C/N ratio such as 50:1), mineral N accumulates because decomposition and net N immobilization in larger particles is slow while net N mineralization proceeds rapidly in the smaller (<1mm dia.) fractions. Initially, mineral N accumulated in green waste as NH4(+)-N, but over time, nitrification proceeded resulting in accumulation of NO3(-)-N. It was concluded that the nutrient content, N mineralization potential and decomposition rate of green waste differs greatly among particle size fractions and that chemical analysis of particle size fractions provides important additional information over that of a bulk sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Basic diagnosis of solid waste generated at Agua Blanca State Park to propose waste management strategies.

    PubMed

    Laines Canepa, José Ramón; Zequeira Larios, Carolina; Valadez Treviño, Maria Elena Macías; Garduza Sánchez, Diana Ivett

    2012-03-01

    State parks are highly sensitive areas of great natural importance and tourism value. Herein a case study involving a basic survey of solid waste which was carried out in 2006 in Agua Blanca State Park, Macuspana, Tabasco, Mexico with two sampling periods representing the high and low tourist season is presented. The survey had five objectives: to find out the number of visitors in the different seasons, to consider the daily generation of solid waste from tourist activities, to determine bulk density, to select and quantify sub-products; and to suggest a possible treatment. A daily average of 368 people visited the park: 18,862 people in 14 days during the high season holiday (in just one day, Easter Sunday, up to 4425 visitors) and 2092 visitors in 43 days during the low season. The average weight of the generated solid waste was 61.267 kg day(-1) and the generated solid waste average per person was 0.155 kg person(-1 ) day(-1). During the high season, the average increased to 0.188 kg person(-1 ) day(-1) and during the low season, the average decreased to 0.144 kg person(-1 ) day(-1). The bulk density average was 75.014 kg m(-3), the maximum value was 92.472 kg m(-3) and the minimum was 68.274 kg m(-3). The sub-products comprised 54.52% inorganic matter; 32.03% organic matter, 10.60% non-recyclable and 2.85% others. Based on these results, waste management strategies such as reuse/recycling, aerobic and anaerobic digestion, the construction of a manual landfill and the employment of a specialist firm were suggested.

  19. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism.

    PubMed

    Li, Xingang; Gao, Yujie; Ding, Hui

    2013-10-01

    The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. THE EFFECT OF TEMPERATURE AND UNIAXIAL PRESSURE ON THE DENSIFICATION BEHAVIOR OF SILICA AEROGEL GRANULES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Robinson, Matthew J.; Fryxell, Glen E.

    Materials are being developed in U.S. for the removal and immobilization of iodine from gaseous products of nuclear fuel reprocessing in support of the Fuel Cycle Technology Separations and Waste Forms Campaign. The silver-functionalized silica aerogel proved to be an excellent candidate for this treatment because of its high selectivity and sorption capacity for radioiodine and its possible conversion to a durable silica-based waste form. The present study investigated with nitrogen sorption and helium pycnometry the effect of pressureless isothermal sintering at temperatures of 900-1400°C for 2.5-90 min or isothermal hot-pressing at 1200°C for 2.5 min on densification of rawmore » and silver-functionalized silica aerogel granules. Rapid sintering was observed at 1050 and 1200°C. Only 15 min of pressureless sintering at 1200°C resulted in almost complete densification. The macropores disappeared, surface area decreased from 1114 m2/g to 25 m2/g, pore volume from 7.41 cm3/g to 0.09 cm3/g, and adsorption pore size from 18.7 to 7 nm. The skeletal density of sintered granules was similar to the bulk density of amorphous silica (2.2 g/cm3). The hot-pressing accelerated the sintering process, decreasing significantly the pore size and volume.« less

  1. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John R.; Hardin, Ernest

    2015-11-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubingmore » was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.« less

  2. 3. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY, CAMERA FACING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY, CAMERA FACING NORTHEAST. SHOWS RELATIONSHIP BETWEEN DECONTAMINATION ROOM, ADSORBER REMOVAL HATCHES (FLAT ON GRADE), AND BRIDGE CRANE. INEEL PROOF NUMBER HD-17-2. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  3. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    EPA Science Inventory

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  4. 40 CFR 258.55 - Assessment monitoring program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 258.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.55 Assessment... be shown that the removed constituents are not reasonably expected to be in or derived from the waste...

  5. CsIX/TRU Grout Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. J. Losinski; C. M. Barnes; B. K. Grover

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that liquid waste now stored at the Idaho Nuclear Technology Engineering Center (INTEC - formerly the Idaho Chemical Processing Plant, ICPP) will be calcined by the end of year 2012. This study investigates an alternative treatment of the liquid waste that removes undissolved solids (UDS) by filtration and removes cesium by ion exchange followed by cement-based grouting of the remaining liquid into 55-gal drums. Operations are assumed to be from January 2008 through December 2012. The grouted waste will be contact-handled and will be shippedmore » to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. The small volume of secondary wastes such as the filtered solids and cesium sorbent (resin) would remain in storage at the Idaho National Engineering and Environmental Laboratory for treatment and disposal under another project, with an option to dispose of the filtered solids as a r emote-handled waste at WIPP.« less

  6. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program formore » High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.« less

  7. Explosives Removal from Munitions Wastewaters

    DTIC Science & Technology

    1975-01-01

    activated carbon columns. Waste water, for the study was drawn as needed from the effluent of the i diatomaceous earth filters and stored in an 800-gallon...explosive Laterials, such as DNT and nitrocresols, from waste streams. The loaded adsorbent can be regenerated with solvent. To minimize operating costs...most effective is fixed-bed adsorption followir.nI clarification and filtration to remove suspended j solids. Activated carbon adsorbent is used at a

  8. Application of Updated Construction and Demolition Waste Reduction Policy to Army Projects

    DTIC Science & Technology

    2015-12-01

    goal of Net Zero waste disposal in landfills. Therefore, projects that involve the removal of existing buildings or structures are directed to...Therefore, projects that involve the removal of existing buildings or structures will evaluate the feasibility of deconstruction and salvage rather than...deconstruction. Therefore, needed new guidance must include consideration of the types of buildings and structures that do (and do not) lend

  9. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    PubMed

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass. 2010 Elsevier B.V. All rights reserved.

  10. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources.

    PubMed

    Huang, Haiming; Xiao, Dean; Zhang, Qingrui; Ding, Li

    2014-12-01

    This paper presents a study concerning ammonia removal from landfill leachate by struvite precipitation with the use of waste phosphoric acid as the phosphate source. The results indicated that the Al(3+) ions present in the waste phosphoric acid significantly affected the struvite precipitation, and a removal ratio of ammonia close to that of pure phosphate salts could be achieved. Nevertheless, large amounts of NaOH were necessary to neutralize the H(+) present in the waste phosphoric acid. To overcome this problem, a low-cost magnesium source was proposed to be used as well as an alkali reagent in the struvite precipitation. The ammonia removal ratios were found to be 83%, with a remaining phosphate of 56 mg/L, by dosing the low-cost MgO in the Mg:N:P molar ratio of 3:1:1. An economic analysis showed that using waste phosphoric acid plus the low-cost MgO could save chemical costs by 68% compared with the use of pure chemicals. Post-treatment employment of a biological anaerobic filter process demonstrated that the high concentration of Mg(2+) remaining in the effluent of the struvite precipitation has no inhibitory effect on the performance of the biological treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Application of landfill treatment approaches for stabilization of municipal solid waste.

    PubMed

    Bolyard, Stephanie C; Reinhart, Debra R

    2016-09-01

    This research sought to compare the effectiveness of three landfill enhanced treatment approaches aimed at removing releasable carbon and nitrogen after anaerobic landfilling including flushing with clean water (FB 1), leachate recirculation with ex-situ treatment (FB 2), and leachate recirculation with ex-situ treatment and in-situ aeration (FB 3). After extensive treatment of the waste in the FB scenarios, the overall solids and biodegradable fraction were reduced relative to the mature anaerobically treated waste. In terms of the overall degradation, aeration did not provide any advantage over flushing and anaerobic treatment. Flushing was the most effective approach at removing biodegradable components (i.e. cellulose and hemicellulose). Leachate quality improved for all FBs but through different mechanisms. A significant reduction in ammonia-nitrogen occurred in FB 1 and 3 due to flushing and aeration, respectively. The reduction of chemical oxygen demand (COD) in FB 1 was primarily due to flushing. Conversely, the reduction in COD in FBs 2 and 3 was due to oxidation and precipitation during Fenton's Reagent treatment. A mass balance on carbon and nitrogen revealed that a significant fraction still remained in the waste despite the additional treatment provided. Carbon was primarily converted biologically to CH4 and CO2 in the FBs or removed during treatment using Fenton's Reagent. The nitrogen removal occurred through leaching or biological conversion. These results show that under extensive treatment the waste and leachate characteristics did meet published stability values. The minimum stability values achieved were through flushing although FB 2 and 3 were able to improve leachate quality and solid waste characteristics but not to the same extent as FB 1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. ICPP tank farm closure study. Volume 2: Engineering design files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less

  13. Heavy metal removal from waste waters by ion flotation.

    PubMed

    Polat, H; Erdogan, D

    2007-09-05

    Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under optimum conditions at low pH. At basic pH it became as high as 90%, probably due to the contribution from the flotation of metal precipitates.

  14. Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents

    DOEpatents

    Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.

    2017-03-21

    A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.

  15. Waste in health information systems: a systematic review.

    PubMed

    Awang Kalong, Nadia; Yusof, Maryati

    2017-05-08

    Purpose The purpose of this paper is to discuss a systematic review on waste identification related to health information systems (HIS) in Lean transformation. Design/methodology/approach A systematic review was conducted on 19 studies to evaluate Lean transformation and tools used to remove waste related to HIS in clinical settings. Findings Ten waste categories were identified, along with their relationships and applications of Lean tool types related to HIS. Different Lean tools were used at the early and final stages of Lean transformation; the tool selection depended on the waste characteristic. Nine studies reported a positive impact from Lean transformation in improving daily work processes. The selection of Lean tools should be made based on the timing, purpose and characteristics of waste to be removed. Research limitations/implications Overview of waste and its category within HIS and its analysis from socio-technical perspectives enabled the identification of its root cause in a holistic and rigorous manner. Practical implications Understanding waste types, their root cause and review of Lean tools could subsequently lead to the identification of mitigation approach to prevent future error occurrence. Originality/value Specific waste models for HIS settings are yet to be developed. Hence, the identification of the waste categories could guide future implementation of Lean transformations in HIS settings.

  16. Electricity production from municipal solid waste in Brazil.

    PubMed

    Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-07-01

    Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.

  17. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes.

    PubMed

    Zhang, Jingxin; Mao, Feijian; Loh, Kai-Chee; Gin, Karina Yew-Hoong; Dai, Yanjun; Tong, Yen Wah

    2018-02-01

    The effects of activated carbon (AC) on methane production and the fate of antibiotic resistance genes (ARGs) were evaluated through comparing the anaerobic digestion performance and transformation of ARGs among anaerobic mono-digestion of food waste, co-digestion of food waste and chicken manure, and co-digestion of food waste and waste activated sludge. Results showed that adding AC in anaerobic digesters improved methane yield by at least double through the enrichment of bacteria and archaea. Conventional digestion process showed ability in removing certain types of ARGs, such as tetA, tetX, sul1, sul2, cmlA, floR, and intl1. Supplementing AC in anaerobic digester enhanced the removal of most of the ARGs in mono-digestion of food waste. The effects tended to be minimal in co-digestion of co-substrates such as chicken manure and waste activated sludge, both of which contain a certain amount of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Recovery of Waste Heat from Propellant Forced-Air Dry House

    DTIC Science & Technology

    1978-12-01

    function of bulk air side film heat transfer coefficient and diffusivity 66 15. Dry house waste heat recovery system instrumentation 67 16. Sample data...inlet condition by, maintaining the exhaust temperature above the NG dew point. The set point is adjustable to accommodate various propel- lant and...system. In dry cycle operation, an overall energy recovery effectiveness of about 40% was measured for winter operation when the exhaust temperature

  19. [Removal of toluene from waste gas by honeycomb adsorption rotor with modified 13X molecular sieves].

    PubMed

    Wang, Jia-De; Zheng, Liang-Wei; Zhu, Run-Ye; Yu, Yun-Feng

    2013-12-01

    The removal of toluene from waste gas by Honeycomb Adsorption Rotor with modified 13X molecular sieves was systematically investigated. The effects of the rotor operating parameters and the feed gas parameters on the adsorption efficiency were clarified. The experimental results indicated that the honeycomb adsorption rotor had a good humidity resistance. The removal efficiency of honeycomb adsorption rotor achieved the maximal value with optimal rotor speed and optimal generation air temperature. Moreover, for an appropriate flow rate ratio the removal efficiency and energy consumption should be taken into account. When the recommended operating parameters were regeneration air temperature of 180 degrees C, rotor speed of 2.8-5 r x h(-1), flow rate ratio of 8-12, the removal efficiency kept over 90% for the toluene gas with concentration of 100 mg x m(-3) and inlet velocity of 2 m x s(-1). The research provided design experience and operating parameters for industrial application of honeycomb adsorption rotor. It showed that lower empty bed velocity, faster rotor speed and higher temperature were necessary to purify organic waste gases of higher concentrations.

  20. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.

    PubMed

    Ren, Hongyan; Tuo, Jinhua; Addy, Min M; Zhang, Renchuan; Lu, Qian; Anderson, Erik; Chen, Paul; Ruan, Roger

    2017-12-01

    To improve nutrients removal from real centrate wastewater and enhance the microalgae biomass production, cultivation of Chlorella vulgaris in lab and a pilot-scale photobioreactor with waste glycerol was studied. The results showed the optimal concentration of the crude glycerol was 1.0gL -1 with the maximum biomass productivity of 460mgL -1 d -1 TVS, the maximum lipid content of 27%, the nutrient removal efficiency of all above 86%, due to more balanced C/N ratio. The synergistic relationship between the wastewater-borne bacteria and the microalgae had significant good influence on nutrient removal. In pilot-scale wastewater-based algae cultivation, with 1gL -1 waste glycerol addition, the average biomass production of 16.7gm -2 d -1 , lipid content of 23.6%, and the removal of 2.4gm -2 d -1 NH 4 + -N, 2.7gm -2 d -1 total nitrogen, 3.0gm -2 d -1 total phosphorous, and 103.0gm -2 d -1 of COD were attained for 34days semi-continuous mode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Removal of toxic metals from leachates from hazardous solid wastes and reduction of toxicity to microtox by the use of calcium alginate beads containing humic acid.

    PubMed

    Pandey, Ashok K; Pandey, Shri Dhar; Misra, Virendra

    2002-06-01

    Improper disposal of hazardous wastes can lead to release of potentially harmful substances through leaching such as heavy metals, which ultimately contaminate soil, sediment surface water, and groundwater through runoff. To remove these toxic metals and avoid any adverse effect on the ecosystem, a novel approach involving calcium alginate (CA) beads containing humic acid (HA) was used. For this, 10% leachates of the waste obtained from two major industrial units with electroplating processess were prepared at neutral pH and analyzed by atomic absorption spectrophotometry (AAS). Both leachates contained Cd, Cu, Cr, Ni, Mn, Fe, and Zn. The concentrations of Ni, Mn, Fe, and Zn in the waste were found to be significant. The leachates analyzed were passed through columns packed with calcium alginate beads with or without humic acid. The concentrations of various metals in beads and in different fractions collected after adsorption were measured. Data recorded indicate that calcium alginate beads containing humic acids are more efficient in removal of all metals in substantial amounts from the two leachates. Along with removal of metals, this process led to considerable detoxification of the leachates as tested by Microtox assay, indicated by earlier protection and higher EC(50). The significance of the results in relation to removal of toxic metals by beads containing humic acid is discussed. (c) 2002 Elsevier Science (USA).

  2. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2016-02-01

    A recyclable organic bulking agent (BA) that can be screened and was developed to optimize green waste (GW) composting. This study investigated the use of wood chips (WC) (at 0%, 15%, and 25%) and/or composted green waste (CGW) (at 0%, 25%, and 35%) as the BAs in the two-stage composting of GW. The combined addition of WC and CGW improved the conditions of composting process and the quality of compost product in terms of composting temperature, porosity, water retention, particle-size distribution, pH, electrical conductivity (EC), cation exchange capacity (CEC), nitrogen losses, humification indices, microbial numbers, enzyme activities, macro- and micro-nutrient contents, and toxicity to germinating seeds. The compost matured in only 22days with the optimized two-stage composting method rather than in the 90-270days typically required for traditional composting. The optimal two-stage composting process and the best quality of compost product were obtained with the combined addition of 15% WC and 35% CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Perfect sound insulation property of reclaimed waste tire rubber

    NASA Astrophysics Data System (ADS)

    Ubaidillah, Harjana, Yahya, Iwan; Kristiani, Restu; Muqowi, Eki; Mazlan, Saiful Amri

    2016-03-01

    This article reports an experimental investigation of sound insulation and absorption performance of a materials made of reclaimed ground tire rubber which is known as un-recyclable thermoset. The bulk waste tire is processed using single step recycling methods namely high-pressure high-temperature sintering (HPHTS). The bulk waste tire is simply placed into a mold and then a pressure load of 3 tons and a heating temperature of 200°C are applied to the mold. The HPHTS conducted for an hour and then it is cooled in room temperature. The resulted product is then evaluated the acoustical properties namely sound transmission loss (STL) and sound absorption coefficient using B&K Tube Kit Type 4206-T based on ISO 10534-2, ASTM E1050 and ASTM E2611. The sound absorption coefficient is found about 0.04 until 0.08 while STL value ranges between 50 to 60 dB. The sound absorption values are found to be very low (<0.1), while the average STL is higher than other elastomeric matrix found in previous work. The reclaimed tire rubber through HPHTS technique gives good soundproof characteristic.

  4. 40 CFR 265.404 - Closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Physical, and Biological Treatment § 265.404 Closure. At closure, all hazardous waste and hazardous waste residues must be removed from treatment processes or equipment, discharge control equipment, and discharge...

  5. 40 CFR 265.404 - Closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Physical, and Biological Treatment § 265.404 Closure. At closure, all hazardous waste and hazardous waste residues must be removed from treatment processes or equipment, discharge control equipment, and discharge...

  6. 40 CFR 265.404 - Closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Physical, and Biological Treatment § 265.404 Closure. At closure, all hazardous waste and hazardous waste residues must be removed from treatment processes or equipment, discharge control equipment, and discharge...

  7. 40 CFR 265.404 - Closure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Physical, and Biological Treatment § 265.404 Closure. At closure, all hazardous waste and hazardous waste residues must be removed from treatment processes or equipment, discharge control equipment, and discharge...

  8. 40 CFR 265.404 - Closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Physical, and Biological Treatment § 265.404 Closure. At closure, all hazardous waste and hazardous waste residues must be removed from treatment processes or equipment, discharge control equipment, and discharge...

  9. Imaging high stage river-water intrusion into a contaminated aquifer along a major river corridor using 2D time-lapse surface electrical resistivity tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallin, Erin L.; Johnson, Timothy C.; Greenwood, William J.

    2013-03-29

    The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper we use time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river during high stagemore » conditions. We demonstrate a modified time-lapse inversion approach, whereby the transient water table elevation is explicitly modeled by removing regularization constraints across the water table boundary. This implementation was critical for producing meaningful imaging results. We inverted approximately 1200 data sets (400 per line over 3 lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal non-uniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity ‘break through’ curves and longer river water residence times. The time-lapse ERT inversion approach removes the deleterious effects of changing water table elevation and enables remote and spatial continuous groundwater-river water exchange monitoring using surface based ERT arrays under conditions where groundwater and river water conductivity are in contrast.« less

  10. WESTERN RESEARCH INSTITUTE CONTAINED RECOVERY OF OILY WASTES (CROW) PROCESS - ITER

    EPA Science Inventory

    This report summarizes the findings of an evaluation of the Contained Recovery of Oily Wastes (CROW) technology developed by the Western Research Institute. The process involves the injection of heated water into the subsurface to mobilize oily wastes, which are removed from the ...

  11. SOURCES OF PATHOGENIC MICROORGANISMS AND THEIR FATE DURING LAND APPLICATION OF WASTES

    EPA Science Inventory

    The hazards associated with pathogens in land-applied animal and human wastes have long been recognized. Management of these risks requires an understanding of sources, concentrations, and removal by processes that may be used to treat the wastes; survival in the environment; and...

  12. Removal of 226Ra and 228Ra from TENORM sludge waste using surfactants solutions.

    PubMed

    Attallah, M F; Hamed, Mostafa M; El Afifi, E M; Aly, H F

    2015-01-01

    The feasibility of using surfactants as extracting agent for the removal of radium species from TENORM sludge produced from petroleum industry is evaluated. In this investigation cationic and nonionic surfactants were used as extracting agents for the removal of radium radionuclides from the sludge waste. Two surfactants namely cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX100) were investigated as the extracting agents. Different parameters affecting the removal of both (226)Ra and (228)Ra by the two surfactants as well as their admixture were studied by the batch technique. These parameters include effect of shaking time, surfactants concentration and temperature as well as the effect of surfactants admixture. It was found that, higher solution temperature improves the removal efficiency of radium species. Combined extraction of nonionic and cationic surfactants produces synergistic effect in removal both (226)Ra and (228)Ra, where the removals reached 84% and 80% for (226)Ra and (228)Ra, respectively, were obtained using surfactants admixture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs.

    PubMed

    Farías, Romina D; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam

    2017-05-15

    This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs.

  14. Process for disposal of aqueous solutions containing radioactive isotopes

    DOEpatents

    Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.

  15. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs

    PubMed Central

    Farías, Romina D.; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam

    2017-01-01

    This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs. PMID:28772892

  16. Biosorption of Cr(VI) and As(V) at high concentrations by organic and inorganic wastes

    NASA Astrophysics Data System (ADS)

    María Rivas Pérez, Ivana; Paradelo Núñez, Remigio; Nóvoa Muñoz, Juan Carlos; Arias Estévez, Manuel; José Fernández Sanjurjo, María; Álvarez Rodríguez, Esperanza; Núñez Delgado, Avelino

    2016-04-01

    The potential reutilization of several wastes as biosorbents for As(V) and Cr(VI) has been assessed in batch-type experiments. The materials studied were one inorganic: mussel shell, and three organic: pine bark, oak ash and hemp waste. Batch experiments were performed in order to determine the removal capacity of the wastes under conditions of high As(V) and Cr(VI) loads. For this, 3 g of each waste material were added with 30 mL NaNO3 0.01 M dissolutions containing 0, 0.5, 1.5, 3 and 6 mmol As(V) L-1 or Cr(VI) L-1, prepared from analytical grade Na2HAsO4 or K2Cr2O7. The resulting suspensions were shaken for 24 h, centrifuged and filtered. Once each batch experiment corresponding to the sorption trials ended, each individual sample was added with 30 mL of NaNO3 0.01 M to desorb As(V) or Cr(VI), shaken for 24 h, centrifuged and filtered as in the sorption trials. Oak ash showed high sorption (>76%) and low desorption (<7%) for As(V), which was lower on mussel shell (<31%), hemp waste (<16%) and pine bark (<9.9%). In turn, pine bark showed the highest Cr(VI) sorption (>98%) with very low desorption (<0.5%), followed by oak ash (27% sorption), and hemp waste and mussel shell, that presented very low Cr(VI) sorption (<10%). Sorption data for both elements were better described by the Freundlich than by the Langmuir model. The variable results obtained for the removal of the two anionic contaminants for a given sorbent suggest that different mechanisms govern removal from the solution in each case. In summary, oak ash would be an efficient sorbent material for As(V), but not for Cr(VI), while pine bark would be the best sorbent for Cr(VI) removal.

  17. Dialysis -- hemodialysis

    MedlinePlus

    ... Dialysis treats end-stage kidney failure . It removes waste from your blood when your kidneys can no ... toxins and extra fluid from your blood. If waste products build up in your body, it can ...

  18. A sampling device with a capped body and detachable handle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jezek, Gerd-Rainer

    1997-12-01

    The present invention relates to a device for sampling radioactive waste and more particularly to a device for sampling radioactive waste which prevents contamination of a sampled material and the environment surrounding the sampled material. During vitrification of nuclear wastes, it is necessary to remove contamination from the surfaces of canisters filled with radioactive glass. After removal of contamination, a sampling device is used to test the surface of the canister. The one piece sampling device currently in use creates a potential for spreading contamination during vitrification operations. During operations, the one piece sampling device is transferred into and outmore » of the vitrification cell through a transfer drawer. Inside the cell, a remote control device handles the sampling device to wipe the surface of the canister. A one piece sampling device can be contaminated by the remote control device prior to use. Further, the sample device can also contaminate the transfer drawer producing false readings for radioactive material. The present invention overcomes this problem by enclosing the sampling pad in a cap. The removable handle is reused which reduces the amount of waste material.« less

  19. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents.

    PubMed

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-09-12

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  20. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    PubMed Central

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results. PMID:28788199

  1. Review of hydrophilic PP membrane for organic waste removal

    NASA Astrophysics Data System (ADS)

    Ariono, Danu; Wardani, Anita Kusuma

    2017-05-01

    The acceleration of industrialization in developing countries has given an impact of environmental pollution rapidly, such as contamination of groundwater with organic waste. To solve this problem, some membrane techniques have been performed to remove organic waste from water, such as membrane contactors, membrane bioreactors, and supported liquid membranes. Polypropylene (PP) membrane is one of the promising candidates for these membrane processes due to its chemical stability, low cost, good mechanical resistance, and being easily available. However, different processes require membranes with different surface properties. Hydrophobic PP membranes with excellent chemical stability can be directly used in membrane contactors, in which the organic phase wets the porous membrane and slightly excessive pressure applied to the other phase. On the other hand, hydrophilization of PP membrane is necessary for some other processes, such as for fouling reduction on membrane bioreactors due to organic matters deposition. The aim of this paper is to give a brief overview of removal of organic waste by PP membrane. Moreover, the effects of PP surface hydrophilization on antifouling properties are also discussed.

  2. Redox-stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal: the effect of co- versus counter-diffusion on reactor performance.

    PubMed

    Terada, Akihiko; Lackner, Susanne; Tsuneda, Satoshi; Smets, Barth F

    2007-05-01

    A multi-population biofilm model for completely autotrophic nitrogen removal was developed and implemented in the simulation program AQUASIM to corroborate the concept of a redox-stratification controlled biofilm (ReSCoBi). The model considers both counter- and co-diffusion biofilm geometries. In the counter-diffusion biofilm, oxygen is supplied through a gas-permeable membrane that supports the biofilm while ammonia (NH(4)(+)) is supplied from the bulk liquid. On the contrary, in the co-diffusion biofilm, both oxygen and NH(4)(+) are supplied from the bulk liquid. Results of the model revealed a clear stratification of microbial activities in both of the biofilms, the resulting chemical profiles, and the obvious effect of the relative surface loadings of oxygen and NH(4)(+) (J(O(2))/J(NH(4)(+))) on the reactor performances. Steady-state biofilm thickness had a significant but different effect on T-N removal for co- and counter-diffusion biofilms: the removal efficiency in the counter-diffusion biofilm geometry was superior to that in the co-diffusion counterpart, within the range of 450-1,400 microm; however, the efficiency deteriorated with a further increase in biofilm thickness, probably because of diffusion limitation of NH(4)(+). Under conditions of oxygen excess (J(O(2))/J(NH(4)(+)) > 3.98), almost all NH(4)(+) was consumed by aerobic ammonia oxidation in the co-diffusion biofilm, leading to poor performance, while in the counter-diffusion biofilm, T-N removal efficiency was maintained because of the physical location of anaerobic ammonium oxidizers near the bulk liquid. These results clearly reveal that counter-diffusion biofilms have a wider application range for autotrophic T-N removal than co-diffusion biofilms. (c) 2006 Wiley Periodicals, Inc.

  3. Colonel Norbet A. Fochs Letter RE: BGCAPP

    EPA Pesticide Factsheets

    Proposed Demonstration Approval to Store and Process PCB Bulk Product Waste Blue Grass Chemical Agent-Destruction Pilot Plant (BGCAPP) Blue Grass Army Depot (BGAD), Richmond, Kentucky EPA ID No. KY8 213 820 105

  4. Extracellular bioreduction

    DOEpatents

    Chidambaram, Devicharan [Middle Island, NY; Francis, Arokiasamy J [Middle Island, NY

    2012-04-17

    A method for processing environmental or industrial samples to remove, reclaim or otherwise reduce the level of chemical species present in the sample that act as redox active species. The redox active species is kept in a waste chamber and is separated from an aqueous bacterial culture that is held in a culture chamber. The waste chamber and the culture chamber are separated by a porous membrane through which electron transfer can occur but through which the aqueous bacterial culture cannot pass. The redox active species substantially remains in the waste chamber and is in non-contact with the aqueous bacterial culture during the process of removal, reduction or reclamation.

  5. Applications of polymeric smart materials to environmental problems.

    PubMed Central

    Gray, H N; Bergbreiter, D E

    1997-01-01

    New methods for the reduction and remediation of hazardous wastes like carcinogenic organic solvents, toxic materials, and nuclear contamination are vital to environmental health. Procedures for effective waste reduction, detection, and removal are important components of any such methods. Toward this end, polymeric smart materials are finding useful applications. Polymer-bound smart catalysts are useful in waste minimization, catalyst recovery, and catalyst reuse. Polymeric smart coatings have been developed that are capable of both detecting and removing hazardous nuclear contaminants. Such applications of smart materials involving catalysis chemistry, sensor chemistry, and chemistry relevant to decontamination methodology are especially applicable to environmental problems. PMID:9114277

  6. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)« less

  7. Kidney Disease (Nephropathy)

    MedlinePlus

    ... millions of tiny blood vessels that act as filters. Their job is to remove waste products from ... to fail. Failing kidneys lose their ability to filter out waste products, resulting in kidney disease. How ...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for the safety operation procedure for hot cell. It covers the master-slave manipulators, dry waste removal, cell transfers, hoists, cask handling, liquid waste system, and physical characterization of fluids.

  9. BAG PASSOUT SEALER FOR WATER-SHIELDED CAVE FACILITY (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-10-31

    The water-shielded cave facility is used in processing irradiated slugs for recovery of americium, curium, berkelium, californium, einsteinium, and fermium. The remotely operated, plastic-bag passout sealer is used in removing isotopic fractions for storage in the rear or for removing radioactive waste for placement in the waste storage containers. The unit is accessible by both the primary inclosure master-slaves and the service area master-slaves. (F.L.S.)

  10. In-Situ Contained And Of Volatile Soil Contaminants

    DOEpatents

    Varvel, Mark Darrell

    2005-12-27

    The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

  11. In-Situ Containment and Extraction of Volatile Soil Contaminants

    DOEpatents

    Varvel, Mark Darrell

    2005-12-27

    The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

  12. Removal of Cu(II) from leachate using natural zeolite as a landfill liner material.

    PubMed

    Turan, N Gamze; Ergun, Osman Nuri

    2009-08-15

    All hazardous waste disposal facilities require composite liner systems to act as a barrier against migration of contaminated leachate into the subsurface environment. Removal of copper(II) from leachate was studied using natural zeolite. A serial of laboratory systems on bentonite added natural zeolite was conducted and copper flotation waste was used as hazardous waste. The adsorption capacities and sorption efficiencies were determined. The sorption efficiencies increased with increasing natural zeolite ratio. The pseudo-first-order, the pseudo-second-order, Elovich and the intra-particle diffusion kinetic models were used to describe the kinetic data to estimate the rate constants. The second-order model best described adsorption kinetic data. The results indicated that natural zeolite showed excellent adsorptive characteristics for the removal of copper(II) from leachate and could be used as very good liner materials due to its high uptake capacity and the abundance in availability.

  13. 40 CFR 267.1106 - What do I do if I detect a release?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... procedures. (a) Upon detection of a condition that has lead to a release of hazardous waste (for example... the facility operating record; (2) Immediately remove the portion of the containment building affected...

  14. 40 CFR 267.1106 - What do I do if I detect a release?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... procedures. (a) Upon detection of a condition that has lead to a release of hazardous waste (for example... the facility operating record; (2) Immediately remove the portion of the containment building affected...

  15. 40 CFR 267.1106 - What do I do if I detect a release?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... procedures. (a) Upon detection of a condition that has lead to a release of hazardous waste (for example... the facility operating record; (2) Immediately remove the portion of the containment building affected...

  16. 40 CFR 267.1106 - What do I do if I detect a release?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A... procedures. (a) Upon detection of a condition that has lead to a release of hazardous waste (for example... the facility operating record; (2) Immediately remove the portion of the containment building affected...

  17. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... Landfill (Gulf West) located in Anahuac, TX, published on January 28, 2011. This notice removes the... are withdrawing the proposed rule for Republic Services, Inc./BFI Gulf West Landfill (Gulf West... Environmental protection, Hazardous waste, Recycling, Reporting and recordkeeping requirements. Authority: Sec...

  18. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste

    USDA-ARS?s Scientific Manuscript database

    Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to hi...

  19. EVALUATION OF EMISSIONS FROM THE OPEN BURNING OF HOUSEHOLD WASTE IN BARRELS - VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a detailed emissions characterization study undertaken to examine, characterize, and quantify emissions from the simulated burning of household waste in barrels. The study evaluated two waste streams: that of an avid recycler, who removed most of the r...

  20. EVALUATION OF EMISSIONS FROM THE OPEN BURNING OF HOUSEHOLD WASTES IN BARRELS - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a detailed emissions characterization study undertaken to examine, characterize, and quantify emissions from the simulated burning of household waste in barrels. The study evaluated two waste streams: that of an avid recycler, who removed most of the r...

Top