Ionization state of L-phenylalanine at the air-water interface.
Griffith, Elizabeth C; Vaida, Veronica
2013-01-16
The ionization state of organic molecules at the air-water interface and the related problem of the surface pH of water have significant consequences on the catalytic role of the surface in chemical reactions and are currently areas of intense research and controversy. In this work, infrared reflection-absorption spectroscopy (IRRAS) is used to identify changes in the ionization state of L-phenylalanine in the surface region versus the bulk aqueous solution. L-phenylalanine has the unique advantage of possessing two different hydrophilic groups, a carboxylic acid and an amine base, which can deprotonate and protonate respectively depending on the ionic environment they experience at the water surface. In this work, the polar group vibrations in the surface region are identified spectroscopically in varying bulk pH solutions, and are subsequently compared with the ionization state of the polar groups of molecules residing in the bulk environment. The polar groups of L-phenylalanine at the surface transition to their deprotonated state at bulk pH values lower than the molecules residing in the bulk, indicating a decrease in their pK(a) at the surface, and implying an enhanced hydroxide ion concentration in the surface region relative to the bulk.
An overview of rotating machine systems with high-temperature bulk superconductors
NASA Astrophysics Data System (ADS)
Zhou, Difan; Izumi, Mitsuru; Miki, Motohiro; Felder, Brice; Ida, Tetsuya; Kitano, Masahiro
2012-10-01
The paper contains a review of recent advancements in rotating machines with bulk high-temperature superconductors (HTS). The high critical current density of bulk HTS enables us to design rotating machines with a compact configuration in a practical scheme. The development of an axial-gap-type trapped flux synchronous rotating machine together with the systematic research works at the Tokyo University of Marine Science and Technology since 2001 are briefly introduced. Developments in bulk HTS rotating machines in other research groups are also summarized. The key issues of bulk HTS machines, including material progress of bulk HTS, in situ magnetization, and cooling together with AC loss at low-temperature operation are discussed.
Tetradymites as thermoelectrics and topological insulators
NASA Astrophysics Data System (ADS)
Heremans, Joseph P.; Cava, Robert J.; Samarth, Nitin
2017-10-01
Tetradymites are M2X3 compounds — in which M is a group V metal, usually Bi or Sb, and X is a group VI anion, Te, Se or S — that crystallize in a rhombohedral structure. Bi2Se3, Bi2Te3 and Sb2Te3 are archetypical tetradymites. Other mixtures of M and X elements produce common variants, such as Bi2Te2Se. Because tetradymites are based on heavy p-block elements, strong spin-orbit coupling greatly influences their electronic properties, both on the surface and in the bulk. Their surface electronic states are a cornerstone of frontier work on topological insulators. The bulk energy bands are characterized by small energy gaps, high group velocities, small effective masses and band inversion near the centre of the Brillouin zone. These properties are favourable for high-efficiency thermoelectric materials but make it difficult to obtain an electrically insulating bulk, which is a requirement of topological insulators. This Review outlines recent progress made in bulk and thin-film tetradymite materials for the optimization of their properties both as thermoelectrics and as topological insulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Renhui; Sun, Yuanyuan; Song, Kai
Recent experimental studies have shown that the vibrational dynamics of free OH groups at the water-air interface is significantly different from that in bulk water. In this work, by performing molecular dynamics simulations and mixed quantum/classical calculations, we investigate different vibrational energy transfer pathways of free OH groups at the water-air interface. The calculated intramolecular vibrational energy transfer rate constant and the free OH bond reorientation time scale agree well with the experiment. It is also found that, due to the small intermolecular vibrational couplings, the intermolecular vibrational energy transfer pathway that is very important in bulk water plays amore » much less significant role in the vibrational energy relaxation of the free OH groups at the water-air interface.« less
NASA Technical Reports Server (NTRS)
Alonso-Azcarate, J.; Trigo-Rodriguez, J. M.; Moyano-Cambero, C. E.; Zolensky, M.
2014-01-01
Terrestrial ages of Antarctic carbonaceous chondrites (CC) indicate that these meteorites have been preserved in or on ice for, at least, tens of thousands of years. Due to the porous structure of these chondrites formed by the aggregation of silicate-rich chondrules, refractory inclusions, metal grains, and fine-grained matrix materials, the effect of pervasive terrestrial water is relevant. Our community defends that pristine CC matrices are representing samples of scarcely processed protoplanetary disk materials as they contain stellar grains, but they might also trace parent body processes. It is important to study the effects of terrestrial aqueous alteration in promoting bulk chemistry changes, and creating distinctive alteration minerals. Particularly because it is thought that aqueous alteration has particularly played a key role in some CC groups in modifying primordial bulk chemistry, and homogenizing the isotopic content of fine-grained matrix materials. Fortunately, the mineralogy produced by parent-body and terrestrial aqueous alteration processes is distinctive. With the goal to learn more about terrestrial alteration in Antarctica we are obtaining reflectance spectra of CCs, but also performing ICP-MS bulk chemistry of the different CC groups. A direct comparison with the mean bulk elemental composition of recovered falls might inform us on the effects of terrestrial alteration in finds. With such a goal, in the current work we have analyzed some members representative of CO and CM chondrite groups.
Bulk transmission system component outage data base. Research project 1283-1. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, P.F.; Heising, C.R.; Patton, A.D.
1981-04-01
This project is responsive to the premise that the successful analysis of equipment reliability and system adequacy in bulk transmission system planning and system operations requires data on equipment failure rates, maintenance outage rates and repair times. The objective of the project is to develop a system of consistent definitions, formats and procedures which can be used in the collection of such data in a well designed outage data bank. The project consisted of four interrelated phases, beginning with a review of related work and problem definition and ending with a discussion of data base organization and management. The reviewmore » of related work quickly pointed out that two schools of thought exist on data collection. One group contends that data should be collected on bulk transmission system physical equipments, such as transformers, circuit breakers, etc., and the other group supports data collection on functional transmission lines, including the terminal equipment, which have been defined as transmission units in this report. A compromise between these two approaches was imperative for successful completion of the work. The second phase investigated the data needed for reliability evaluation. The applications of the data bank were enumerated leading to a list of basic data needed when recording an incident. Phase 3 concentrated on developing procedures for data collection using forms to collect data both on outages and on the equipment design. Finally, the aspects of data base organization and management were explored and general recommendations made appropriate to this specific application. The project did not succeed in completely defining the procedures, particularly for multiple outages, but the ground work has been laid for a pilot data collection effort to refine the procedures before wide scale implementation by the utility industry.« less
Topological crystalline materials: General formulation, module structure, and wallpaper groups
NASA Astrophysics Data System (ADS)
Shiozaki, Ken; Sato, Masatoshi; Gomi, Kiyonori
2017-06-01
We formulate topological crystalline materials on the basis of the twisted equivariant K theory. Basic ideas of the twisted equivariant K theory are explained with application to topological phases protected by crystalline symmetries in mind, and systematic methods of topological classification for crystalline materials are presented. Our formulation is applicable to bulk gapful topological crystalline insulators/superconductors and their gapless boundary and defect states, as well as bulk gapless topological materials such as Weyl and Dirac semimetals, and nodal superconductors. As an application of our formulation, we present a complete classification of topological crystalline surface states, in the absence of time-reversal invariance. The classification works for gapless surface states of three-dimensional insulators, as well as full gapped two-dimensional insulators. Such surface states and two-dimensional insulators are classified in a unified way by 17 wallpaper groups, together with the presence or the absence of (sublattice) chiral symmetry. We identify the topological numbers and their representations under the wallpaper group operation. We also exemplify the usefulness of our formulation in the classification of bulk gapless phases. We present a class of Weyl semimetals and Weyl superconductors that are topologically protected by inversion symmetry.
NASA Astrophysics Data System (ADS)
Wu, Xinhe; Chen, Fengyun; Wang, Xuefei; Yu, Huogen
2018-01-01
Surface modification of g-C3N4 is one of the most effective strategies to boost its photocatalytic H2-evolution performance via promoting the interfacial catalytic reactions. In this study, an in situ one-step hydrothermal method was developed to prepare the oxygen-containing groups-modified g-C3N4 (OG/g-C3N4) by a facile and green hydrothermal treatment of bulk g-C3N4 in pure water without any additives. It was found that the hydrothermal treatment (180 °C) not only could greatly increase the specific surface area (from 2.3 to 69.8 m2 g-1), but also caused the formation of oxygen-containing groups (sbnd OH and Cdbnd O) on the OG/g-C3N4 surface, via the interlayer delamination and intralayer depolymerization of bulk g-C3N4. Photocatalytic experimental results indicated that after hydrothermal treatment, the resultant OG/g-C3N4 samples showed an obviously improved H2-evolution performance. Especially, when the hydrothermal time was 6 h, the resultant OG/g-C3N4(6 h) exhibited the highest photocatalytic activity, which was clearly higher than that of the bulk g-C3N4 by a factor of ca. 7. In addition to the higher specific surface area, the enhanced H2-evolution rate of OG/g-C3N4 photocatalysts can be mainly attributed to the formation of oxygen-containing groups, which possibly works as the effective H2-evolution active sites. Considering the facie and green synthesis method, the present work may provide a new insight for the development of highly efficient photocatalytic materials.
Propulsion and Energetics Panel Working Group 11 on Aircraft Fire Safety. Volume 2. Main Report
1979-11-01
which make burning metal particles a potent igni- tion source and extinguishment of bulk metal fires a difficult task. In the latter case, the difficulty...aircraft to fires induced by uncon- tained engine failures and internal engine metal fires . With respect to the uncontained engine failure current engine
Kuchkin, A.; Stebelkov, V.; Zhizhin, K.; ...
2018-01-30
Seven laboratories used the results of bulk uranium isotopic analysis by either inductively coupled plasma mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS) for characterization of the samples in the Nuclear Forensic International Technical Working Group fourth international collaborative material exercise, CMX-4. Comparison of the measured isotopic compositions of uranium in three exercise samples is implemented for identifying any differences or similarities between the samples. The role of isotopic analyses in the context of a real nuclear forensic investigation is discussed. Several limitations in carrying out ICP-MS or TIMS analysis in CMX-4 are noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchkin, A.; Stebelkov, V.; Zhizhin, K.
Seven laboratories used the results of bulk uranium isotopic analysis by either inductively coupled plasma mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS) for characterization of the samples in the Nuclear Forensic International Technical Working Group fourth international collaborative material exercise, CMX-4. Comparison of the measured isotopic compositions of uranium in three exercise samples is implemented for identifying any differences or similarities between the samples. The role of isotopic analyses in the context of a real nuclear forensic investigation is discussed. Several limitations in carrying out ICP-MS or TIMS analysis in CMX-4 are noted.
García-Gómez, C; Babin, M; Obrador, A; Álvarez, J M; Fernández, M D
2015-11-01
This work compared the toxicity of ZnO nanoparticles (ZnO-NPs), ZnO bulk, and ZnCl2 on microbial activity (C and N transformations and dehydrogenase and phosphatase activities) and their uptake and toxic effects (emergence, root elongation, and shoot growth) on three plant species namely wheat, radish, and vetch in a natural soil at 1000 mg Zn kg(-1). Additionally, plants were also tested at 250 mg Zn kg(-1). The effects of the chemical species on Zn extractability in soil were studied by performing single and sequential extractions. ZnCl2-1000 presented the highest toxicity for both taxonomic groups. For microorganisms, ZnO-NPs demonstrated adverse effects on all measured parameters, except on N transformations. The effects of both ZnO forms were similar. For plants, ZnO-NPs affected the growth of more plant species than ZnO bulk, although the effects were small in all cases. Regarding accumulation, the total Zn amounts were higher in plants exposed to ZnO-NP than those exposed to ZnO bulk, except for vetch shoots. The soil sequential extraction revealed that the Zn concentration in the most labile forms (water soluble (WS) and exchangeable (EX)) was similar in soil treated with ZnO (NP and bulk) and lower than that of ZnCl2-treated soil, indicating the higher availability of the ionic forms. The strong correlations obtained between WS-Zn fraction and the Zn concentrations in the roots, shoots, and the effects on shoot weight show the suitability of this soil extraction method for predicting bioavailable Zn soil for the three plant species when it was added as ZnO-NPs, ZnO bulk, or ZnCl2. In this work, the hazard associated with the ZnO-NPs was similar to ZnO bulk in most cases.
Fonseca, Jose Pedro; Hoffmann, Luisa; Cabral, Bianca Catarina Azeredo; Dias, Victor Hugo Giordano; Miranda, Marcio Rodrigues; de Azevedo Martins, Allan Cezar; Boschiero, Clarissa; Bastos, Wanderley Rodrigues; Silva, Rosane
2018-02-05
Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon forest reserve that are probably caused by more than one environmental factors such as rhizosphere and soil depth. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of hydrostatic pressure on prokaryotic heterotrophic activity in the dark ocean
NASA Astrophysics Data System (ADS)
Amano, C.; Sintes, E.; Utsumi, M.; Herndl, G. J.
2016-02-01
The pioneering work of ZoBell in the 1940s revealed the existence of piezophilic bacteria in the deep ocean, capable of growing only under high-pressure conditions. However, it is still unclear to what extent the bulk prokaryotic community inhabiting the deep ocean is affected by hydrostatic pressure. Essentially, the fractions of the bulk microbial community being piezophilic, piezotolerant and piezosensitive remain unknown. To determine the influence of hydrostatic pressure on the heterotrophic microbial activity, an in situ microbial incubator (ISMI) was deployed in the North Atlantic Ocean at depths down to 3200 m. Natural prokaryotic communities were incubated under both in situ hydrostatic pressure and atmospheric pressure conditions at in situ temperature following the addition of 5 nM 3H-leucine. Bulk leucine incorporation rates and single cell activity assessed by microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) were determined. Prokaryotic leucine incorporation rates obtained under in situ pressure conditions were generally lower than under atmospheric pressure conditions, suggesting that hydrostatic pressure inhibits overall heterotrophic activity in the deep sea. The ratio of leucine incorporation rates obtained under in situ pressure conditions to atmospheric pressure conditions decreased with depth for the bulk prokaryotic community. Moreover, MICRO-CARD-FISH revealed that specific prokaryotic groups are apparently more affected by hydrostatic pressure than others. Taken together, our results indicate varying sensitivities of prokaryotic groups to hydrostatic pressure.
Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review
Alvankarian, Jafar; Majlis, Burhanuddin Yeop
2015-01-01
The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process. PMID:26610519
21 CFR 610.53 - Dating periods for licensed biological products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ......do ......do 1 year. Meningococcal Polysaccharide Vaccine Group A: 1. Final bulk powder ......do 2... years. Meningococcal Polysaccharide Vaccine Group C: 1. Final bulk powder ......do 2 years (−20 °C or... Polysaccharide Vaccine Groups A and C combined: 1. Final bulk powder ......do 2 years (−20 °C or colder) Not...
21 CFR 610.53 - Dating periods for licensed biological products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ......do ......do 1 year. Meningococcal Polysaccharide Vaccine Group A: 1. Final bulk powder ......do 2... years. Meningococcal Polysaccharide Vaccine Group C: 1. Final bulk powder ......do 2 years (−20 °C or... Polysaccharide Vaccine Groups A and C combined: 1. Final bulk powder ......do 2 years (−20 °C or colder) Not...
21 CFR 610.53 - Dating periods for licensed biological products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ......do ......do 1 year. Meningococcal Polysaccharide Vaccine Group A: 1. Final bulk powder ......do 2... years. Meningococcal Polysaccharide Vaccine Group C: 1. Final bulk powder ......do 2 years (−20 °C or... Polysaccharide Vaccine Groups A and C combined: 1. Final bulk powder ......do 2 years (−20 °C or colder) Not...
21 CFR 610.53 - Dating periods for licensed biological products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ......do ......do 1 year. Meningococcal Polysaccharide Vaccine Group A: 1. Final bulk powder ......do 2... years. Meningococcal Polysaccharide Vaccine Group C: 1. Final bulk powder ......do 2 years (−20 °C or... Polysaccharide Vaccine Groups A and C combined: 1. Final bulk powder ......do 2 years (−20 °C or colder) Not...
1980-12-01
SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aide if neceeary aod identify by block number) Bulk cargo Market demand analysis Iron Commodity resource...shown below. The study included a Commodity Resource Inventory, a Modal Split Analysis and a Market Demand Analysis. The work included investigation...resource inventory, a modal split analysis and a market demand analysis. The work included investigation and analyses of the production
Revilla, Marta; Galán, Berta; Viguri, Javier R
2016-07-01
An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shear bond strength of bulk-fill and nano-restorative materials to dentin.
Colak, Hakan; Ercan, Ertugrul; Hamidi, Mehmet Mustafa
2016-01-01
Bulk-fill composite materials are being developed for preparation depths of up to 4 mm in an effort to simplify and improve the placement of direct composite posterior restorations. The aim of our study was to compare shear-bond strength of bulk-fill and conventional posterior composite resins. In this study, 60 caries free extracted human molars were used and sectioned parallel to occlusal surface to expose midcoronal dentin. The specimens were randomly divided into four groups. Total-etch dentine bonding system (Adper Scotchbond 1XT, 3M ESPE) was applied to dentin surface in all the groups to reduce variability in results. Then, dentine surfaces covered by following materials. Group I: SonicFill Bulk-Fill, Group II: Tetric EvoCeram (TBF), Group III: Herculite XRV Ultra, and Group IV: TBF Bulk-Fill, 2 mm × 3 mm cylindrical restorations were prepared by using application apparatus. Shear bond testing was measured by using a universal testing machine. Kruskal-Wallis and Mann-Whitney U-tests were performed to evaluate the data. The highest value was observed in Group III (14.42 ± 4.34) and the lowest value was observed in Group IV (11.16 ± 2.76) and there is a statistically significant difference between these groups (P = 0.046). However, there is no statistically significant difference between the values of other groups. In this study, Group III was showed higher strength values. There is a need for future studies about long-term bond strength and clinical success of these adhesive and bulk-fill systems.
Microtensile bond strength of bulk-fill restorative composites to dentin.
Mandava, Jyothi; Vegesna, Divya-Prasanna; Ravi, Ravichandra; Boddeda, Mohan-Rao; Uppalapati, Lakshman-Varma; Ghazanfaruddin, M D
2017-08-01
To facilitate the easier placement of direct resin composite in deeper cavities, bulk fill composites have been introduced. The Mechanical stability of fillings in stress bearing areas restored with bulk-fill resin composites is still open to question, since long term clinical studies are not available so far. Thus, the objective of the study was to evaluate and compare the microtensile bond strength of three bulk-fill restorative composites with a nanohybrid composite. Class I cavities were prepared on sixty extracted mandibular molars. Teeth were divided into 4 groups (n= 15 each) and in group I, the prepared cavities were restored with nanohybrid (Filtek Z250 XT) restorative composite in an incremental manner. In group II, III and IV, the bulk-fill composites (Filtek, Tetric EvoCeram, X-tra fil bulk-fill restoratives) were placed as a 4 mm single increment and light cured. The restored teeth were subjected to thermocycling and bond strength testing was done using instron testing machine. The mode of failure was assessed by scanning electron microscope (SEM). The bond strength values obtained in megapascals (MPa) were subjected to statistical analysis, using SPSS/PC version 20 software.One-way ANOVA was used for groupwise comparison of the bond strength. Tukey's Post Hoc test was used for pairwise comparisons among the groups. The highest mean bond strength was achieved with Filtek bulk-fill restorative showing statistically significant difference with Tetric EvoCeram bulk-fill ( p < 0.003) and X-tra fil bulk-fill ( p <0.001) composites. Adhesive failures are mostly observed with X-tra fil bulk fill composites, whereas mixed failures are more common with other bulk fill composites. Bulk-fill composites exhibited adequate bond strength to dentin and can be considered as restorative material of choice in posterior stress bearing areas. Key words: Bond strength, Bulk-fill restoratives, Configuration factor, Polymerization shrinkage.
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
Bulk Leisure--Problem or Blessing?
ERIC Educational Resources Information Center
Beland, Robert M.
1983-01-01
With an increasing number of the nation's work force experiencing "bulk leisure" time because of new work scheduling procedures, parks and recreation offices are encouraged to examine their program scheduling and content. (JM)
Criticality in Bulk Metallic Glass Constituent Elements
NASA Astrophysics Data System (ADS)
Mota, Rodrigo Miguel Ojeda; Graedel, T. E.; Pekarskaya, Evgenia; Schroers, Jan
2017-11-01
Bulk metallic glasses (BMGs), which readily form amorphous phases during solidification, are increasingly being used in first applications of watch components, electronic casings, and sporting goods. The compositions of BMGs typically include four to six elements. Various political and geological factors have recently led to supply disruptions for several metals, including some present in BMG compositions. In this work, we assess the "criticality" of 22 technologically interesting BMG compositions, compare the results with those for three common engineering alloy groups, and derive recommendations for BMG composition choices from a criticality perspective. The criticality of BMGs is found to be generally much higher compared with those for the established engineering alloys. Therefore, criticality concerns should also be considered in the choice between existing and developing novel BMGs.
NASA Astrophysics Data System (ADS)
Zheng, YinBo; Ding, Lei; Zhou, XinDa; Ba, RongSheng; Yuan, Jing; Xu, HongLei; Na, Jin; Li, YaJun; Yang, XiaoYu; Chai, Liqun; Chen, Bo; Zheng, WanGuo
2016-08-01
The investigation of polarization orientation on damage performance of type I doubler KDP crystals under different wavelengths pulses irradiation is presented in this work. Pinpoints densities (PPD) and the size distribution of pinpoints are extracted through light scattering pictures captured by microscope. The obtained results indicate that the measured PPD as a function of the fluence is both wavelength and polarization dependent, although neither fluence nor polarization have impact on the size distribution of pinpoints. We also find that the damage performances can separate into three groups depending on the wavelength, which suggests the existence of different categories of precursors and different mechanisms responsible for bulk damage initiation in SHG KDP crystals.
A shape dynamical approach to holographic renormalization
NASA Astrophysics Data System (ADS)
Gomes, Henrique; Gryb, Sean; Koslowski, Tim; Mercati, Flavio; Smolin, Lee
2015-01-01
We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities.
49 CFR 173.212 - Non-bulk packagings for solid hazardous materials in Packing Group II.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.212 Non-bulk packagings for solid hazardous materials in Packing Group II. (a) When § 172.101 of this subchapter specifies that a solid hazardous...
49 CFR 173.212 - Non-bulk packagings for solid hazardous materials in Packing Group II.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.212 Non-bulk packagings for solid hazardous materials in Packing Group II. (a) When § 172.101 of this subchapter specifies that a solid hazardous...
49 CFR 173.213 - Non-bulk packagings for solid hazardous materials in Packing Group III.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.213 Non-bulk packagings for solid hazardous materials in Packing Group III. (a) When § 172.101 of this subchapter specifies that a solid hazardous...
49 CFR 173.211 - Non-bulk packagings for solid hazardous materials in Packing Group I.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.211 Non-bulk packagings for solid hazardous materials in Packing Group I. (a) When § 172.101 of this subchapter specifies that a solid hazardous...
49 CFR 173.213 - Non-bulk packagings for solid hazardous materials in Packing Group III.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.213 Non-bulk packagings for solid hazardous materials in Packing Group III. (a) When § 172.101 of this subchapter specifies that a solid hazardous...
49 CFR 173.211 - Non-bulk packagings for solid hazardous materials in Packing Group I.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.211 Non-bulk packagings for solid hazardous materials in Packing Group I. (a) When § 172.101 of this subchapter specifies that a solid hazardous...
3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples
NASA Technical Reports Server (NTRS)
Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.
2015-01-01
In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible
2015-11-18
thickness of the film, or substrate. In this work, we report calculations for titanium nitride ( TiN ), a promising material for plasmonic applications...stoichiometric bulk TiN , as well as of the TiN (100), TiN (110), and TiN (111) outermost surfaces. Density functional theory (DFT) and many-body GW methods...and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity
Self-organization of polymerizable bolaamphiphiles bearing diacetylene mesogenic group.
Yin, Shouchun; Song, Bo; Liu, Guanqing; Wang, Zhiqiang; Zhang, Xi
2007-05-22
We report herein the synthesis of a series of polymerizable bolaamphiphiles containing a diacetylene group and mesogenic unit and their self-organization behaviors in bulk and at interface. The polymerizable bolaamphiphiles are noted as DPDA-n, where n refers to the spacer length of alkyl chain. DPDA-10 with suitable spacer length can self-organize into stable cylindrical micellar nanostructures, and these nanostructures have preferred orientation regionally when adsorbed at the mica/water interface. It is confirmed that the micellar nanostructure of DPDA-10 can be polymerized both in the bulk solution and in the film by UV irradiation. The emission property of DPDA-10 after UV irradiation has been significantly enhanced in comparison to that before polymerization, which may be due to the extension of the conjugated system arising from the transformation of the diacetylene group into polydiacetylene upon polymerization. In addition, the self-organization of DPDA-n is dependent on the spacer length. DPDA-7 with a short spacer length forms an irregular flat sheet structure with many defects; DPDA-15 with a long spacer length forms rodlike micellar structures. Thus, this work may provide a new approach for designing and fabricating organic functional nanostructured materials.
Quantum spin Hall insulator BiXH (XH = OH, SH) monolayers with a large bulk band gap.
Hu, Xing-Kai; Lyu, Ji-Kai; Zhang, Chang-Wen; Wang, Pei-Ji; Ji, Wei-Xiao; Li, Ping
2018-05-16
A large bulk band gap is critical for the application of two-dimensional topological insulators (TIs) in spintronic devices operating at room temperature. On the basis of first-principles calculations, we predict BiXH (X = OH, SH) monolayers as TIs with an extraordinarily large bulk gap of 820 meV for BiOH and 850 meV for BiSH, and propose a tight-binding model considering spin-orbit coupling to describe the electronic properties of BiXH. These large gaps are entirely due to the strong spin-orbit interaction related to the pxy orbitals of the Bi atoms of the honeycomb lattice. The orbital filtering mechanism can be used to understand the topological properties of BiXH. The XH groups simply remove one branch of orbitals (pz of Bi) and reduce the trivial 6-band lattice into a 4-band, which is topologically non-trivial. The topological characteristics of BiXH monolayers are confirmed by nonzero topological invariant Z2 and a single pair of gapless helical edge states in the bulk gap. Owing to these features, the BiXH monolayers of the large-gap TIs are an ideal platform to realize many exotic phenomena and fabricate new quantum devices working at room temperature.
Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao
2015-01-21
The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth.
Laser surface processing on sintered PM alloys
NASA Astrophysics Data System (ADS)
Reiter, Wilfred; Daurelio, Giuseppe; Ludovico, Antonio D.
1997-08-01
Usually the P.M. alloys are heat treated like case hardening, gas nitriding or plasma nitriding for a better wear resistance of the product surface. There is an additional method for gaining better tribological properties and this is the surface hardening (or remelting or alloying) of the P.M. alloy by laser treatment on a localized part of the product without heating the whole sample. This work gives a cured experimentation about the proper sintering powder alloys for laser surface processing from the point of view of wear, fatigue life and surface quality. As concerns the materials three different basic alloy groups with graduated carbon contents were prepared. Regarding these sintered powder alloys one group holds Fe, Mo and C and other group holds Fe, Ni, Mo and C and the last one holds Fe, Ni, Cu, Mo and C contents. Obviously each group has a different surface hardness, different porosity distribution, different density and diverse metallurgical structures (pearlite or ferrite-pearlite, etc.). ON the sample surfaces a colloidal graphite coating, in different thicknesses, has been sprayed to increase laser energy surface absorption. On some other samples a Mo coating, in different thicknesses, has been produced (on the bulk alloy) by diverse deposition techniques (D.C. Sputtering, P.V.D. and Flame Spraying). Only a few samples have a Mo coating and also an absorber coating, that is a bulk material- Mo and a colloidal graphite coating. All these sintered alloys have been tested by laser technology; so that, many laser working parameters (covering gas, work-speed, focussed and defocussed spot, rastered and integrated beam spots, square and rectangular beam shapes and so on) have been experimented for two different processes at constant laser power and at constant surface temperature (by using a temperature surface sensor and a closed controlled link). For all experiments a transverse fast axial flow CO2 2.5 kW c.w. laser source has been employed.
Hu, Li-Xia; Wang, Hong; Rao, Meng; Zhao, Xiao-Ling; Yang, Jing; Hu, Shi-Fu; He, Jing; Xia, Wei; Liu, Hefang; Zhen, Bo; Di, Haihong; Xie, Changsheng; Xia, Xianping; Zhu, Changhong
2014-01-01
A copper/low-density polyethylene nanocomposite (nano-Cu/LDPE), a potential intrauterine device component material, has been developed from our research. A logical extension of our previous work, this study was conducted to investigate the expression of plasminogen activator inhibitor 1 (PAI-1), substance P (SP), and substance P receptor (SP-R) in the endometrium of Sprague Dawley rats, New Zealand White rabbits, and Macaca mulatta implanted with nano-Cu/LDPE composite. The influence of the nano-Cu/LDPE composite on the morphology of the endometrium was also investigated. Animals were randomly divided into five groups: the sham-operated control group (SO group), bulk copper group (Cu group), LDPE group, and nano-Cu/LDPE groups I and II. An expression of PAI-1, SP, and SP-R in the endometrial tissues was examined by immunohistochemistry at day 30, 60, 90, and 180 postimplantation. The significant difference for PAI-1, SP, and SP-R between the nano-Cu/LDPE groups and the SO group (P<0.05) was identified when the observation period was terminated, and the changes of nano-Cu/LDPE on these parameters were less remarkable than those of the Cu group (P<0.05). The damage to the endometrial morphology caused by the nano-Cu/LDPE composite was much less than that caused by bulk copper. The nano-Cu/LDPE composite might be a potential substitute for conventional materials for intrauterine devices in the future because of its decreased adverse effects on the endometrial microenvironment. PMID:24596465
Hu, Li-Xia; Wang, Hong; Rao, Meng; Zhao, Xiao-Ling; Yang, Jing; Hu, Shi-Fu; He, Jing; Xia, Wei; Liu, Hefang; Zhen, Bo; Di, Haihong; Xie, Changsheng; Xia, Xianping; Zhu, Changhong
2014-01-01
A copper/low-density polyethylene nanocomposite (nano-Cu/LDPE), a potential intrauterine device component material, has been developed from our research. A logical extension of our previous work, this study was conducted to investigate the expression of plasminogen activator inhibitor 1 (PAI-1), substance P (SP), and substance P receptor (SP-R) in the endometrium of Sprague Dawley rats, New Zealand White rabbits, and Macaca mulatta implanted with nano-Cu/LDPE composite. The influence of the nano-Cu/LDPE composite on the morphology of the endometrium was also investigated. Animals were randomly divided into five groups: the sham-operated control group (SO group), bulk copper group (Cu group), LDPE group, and nano-Cu/LDPE groups I and II. An expression of PAI-1, SP, and SP-R in the endometrial tissues was examined by immunohistochemistry at day 30, 60, 90, and 180 postimplantation. The significant difference for PAI-1, SP, and SP-R between the nano-Cu/LDPE groups and the SO group (P<0.05) was identified when the observation period was terminated, and the changes of nano-Cu/LDPE on these parameters were less remarkable than those of the Cu group (P<0.05). The damage to the endometrial morphology caused by the nano-Cu/LDPE composite was much less than that caused by bulk copper. The nano-Cu/LDPE composite might be a potential substitute for conventional materials for intrauterine devices in the future because of its decreased adverse effects on the endometrial microenvironment.
A Batch Feeder for Inhomogeneous Bulk Materials
NASA Astrophysics Data System (ADS)
Vislov, I. S.; Kladiev, S. N.; Slobodyan, S. M.; Bogdan, A. M.
2016-04-01
The work includes the mechanical analysis of mechanical feeders and batchers that find application in various technological processes and industrial fields. Feeders are usually classified according to their design features into two groups: conveyor-type feeders and non-conveyor feeders. Batchers are used to batch solid bulk materials. Less frequently, they are used for liquids. In terms of a batching method, they are divided into volumetric and weighting batchers. Weighting batchers do not provide for sufficient batching accuracy. Automatic weighting batchers include a mass controlling sensor and systems for automatic material feed and automatic mass discharge control. In terms of operating principle, batchers are divided into gravitational batchers and batchers with forced feed of material using conveyors and pumps. Improved consumption of raw materials, decreased loss of materials, ease of use in automatic control systems of industrial facilities allows increasing the quality of technological processes and improve labor conditions. The batch feeder suggested by the authors is a volumetric batcher that has no comparable counterparts among conveyor-type feeders and allows solving the problem of targeted feeding of bulk material batches increasing reliability and hermeticity of the device.
NASA Astrophysics Data System (ADS)
Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2017-10-01
In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
The determination of asteroid bulk density is an important aspect of Near Earth Object (NEO) characterization. A fraction of meteoroids originate from asteroids (including some NEOs), thus in lieu of mutual perturbations, satellites, or expensive spacecraft missions, a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs (Potentially Hazardous Objects). Meteoroid bulk density is still inherently difficult to measure, and is most often determined by modeling the ablation of the meteoroid. One approach towards determining a meteoroid density distribution entails using a more easily measured proxy for the densities, then calibrating the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, KB (Ceplecha, 1958), which is thought to indicate the strength of a meteoroid and often correlated to different bulk densities in literature. KB is calculated using the air density at the beginning height of the meteor, the initial velocity, and the zenith angle of the radiant; quantities more readily determined than meteoroid bulk density itself. Numerical values of K(sub B) are sorted into groups (A, B, C, etc.), which have been matched to meteorite falls or meteor showers with known composition such as the porous Draconids. An extensive survey was conducted to establish the strength of the relationship between bulk density and K(sub B), specifically looking at those that additionally determined K(sub B) for the meteors. In examining the modeling of high-resolution meteor data from Kikwaya et al. (2011), the correlation between K(sub B) and bulk density was not as strong as hoped. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter (T(sub J)), with meteoroids from Halley Type comets (T(sub J) < 2) exhibiting much lower bulk densities than those originating from Jupiter Family comets and asteroids (T(sub J) > 2). Therefore, this work indicates that the dynamical classification of a meteoroid is a better indicator of the density than the strength proxy, a somewhat surprising result.
Taha, N A; Maghaireh, G A; Ghannam, A S; Palamara, J E
2017-08-01
To evaluate the effect of using a bulk-fill flowable base material on fracture strength and fracture patterns of root-filled maxillary premolars with MOD preparations restored with laminate restorations. Fifty extracted maxillary premolars were selected for the study. Standardized MOD cavities with endodontic treatment were prepared for all teeth, except for intact control. The teeth were divided randomly into five groups (n=10); (Group 1) sound teeth, (Group 2) unrestored teeth; (Group 3) MOD cavities with Vitrebond base and resin-based composite (Ceram. X One Universal); (Group 4) MOD cavities with 2mm GIC base (Fuji IX GP) and resin-based composite (Ceram. X One Universal) open laminate, (Group 5) MOD cavities were restored with 4mm of bulk-fill flowable base material (SDR) and resin-based composite (Ceram. X One Universal). All teeth were thermocycled and subjected to a 45° ramped oblique load in a universal testing machine. Fracture load and fracture patterns were recorded. Data were analyzed using one-way ANOVA and Dunnett's T3 test. Restoration in general increased the fracture strength compared to unrestored teeth. The fracture strength of group 5 (bulk-fill) was significantly higher than the fracture strength of the GIC laminate groups and not significantly different from the intact teeth (355±112N, P=0.118). The type of failure was unfavorable for most of the groups, with the majority being mixed failures. The use of a bulk-fill flowable base material significantly increased the fracture strength of extracted root-filled teeth with MOD cavities; however it did not improve fracture patterns to more favorable ones. Investigating restorative techniques that may improve the longevity of root-filled premolar teeth restored with direct resin restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pelegrina, J. L.; Guillermet, A. Fernández
2018-03-01
The theme of the present work is the procedure for evaluating the minimum size for the stability of a crystalline particle with respect to the same group of atoms but in the amorphous state. A key goal of the study is the critical analysis of an extensively quoted paper by F.G. Shi [J. Mater. Res. 9 (1994) 1307-1313], who presented a criterion for evaluating a "crystallinity distance" (h) through its relation with the "critical diameter" (dC) of a particle, i.e., the diameter below which no particles with the crystalline structure are expected to exist at finite temperatures. Key assumptions of Shi's model are a direct proportionality relation between h and dC , and a prescription for estimating h from crystallographic information. In the present work the accuracy of the Shi model is assessed with particular reference to nanoparticles of the elements. To this end, an alternative way to obtain h, that better realizes Shi's idea of this quantity as "the height of a monolayer of atoms on the bulk crystal surface", is explored. Moreover, a thermodynamic calculation of dC , which involves a description of the bulk- and the surface contributions to the crystalline/amorphous relative phase stability for nanoparticles, is performed. It is shown that the Shi equation does not account for the key features of the h vs. dC relation established in the current work. Consequently, it is concluded that the parameter h obtained only from information about the structure of the crystalline phase, does not provide an accurate route to estimate the quantity dC . In fact, a key result of the current study is that dC crucially depends on the relation between bulk- and surface contributions to the crystalline/amorphous relative thermodynamic stability.
Microwave-assisted routes for rapid and efficient modification of layered perovskites.
Akbarian-Tefaghi, S; Wiley, J B
2018-02-27
Recent advances in exploiting microwave radiation in the topochemical modification of layered oxide perovskites are presented. Such methods work well for rapid bulk synthetic steps used in the production of novel inorganic-organic hybrids (protonation, grafting, intercalation, and in situ click reactions), exfoliation to produce dispersed nanosheets, and post-exfoliation processing to rapidly vary nanosheet surface groups. Compared to traditional methods that often take days, microwave methods can produce quality products in as little as 1-2 h.
Bulk Enthalpy Calculations in the Arc Jet Facility at NASA ARC
NASA Technical Reports Server (NTRS)
Thompson, Corinna S.; Prabhu, Dinesh; Terrazas-Salinas, Imelda; Mach, Jeffrey J.
2011-01-01
The Arc Jet Facilities at NASA Ames Research Center generate test streams with enthalpies ranging from 5 MJ/kg to 25 MJ/kg. The present work describes a rigorous method, based on equilibrium thermodynamics, for calculating the bulk enthalpy of the flow produced in two of these facilities. The motivation for this work is to determine a dimensionally-correct formula for calculating the bulk enthalpy that is at least as accurate as the conventional formulas that are currently used. Unlike previous methods, the new method accounts for the amount of argon that is present in the flow. Comparisons are made with bulk enthalpies computed from an energy balance method. An analysis of primary facility operating parameters and their associated uncertainties is presented in order to further validate the enthalpy calculations reported herein.
2. WESTWARD VIEW OF LOW PURITY BULK OXYGEN BUILDING, AND ...
2. WESTWARD VIEW OF LOW PURITY BULK OXYGEN BUILDING, AND FERROMANGANESE GAS CLEANING PLANT ON LEFT. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Güven, Mehmet Esad
2018-01-01
The aim of this study was to determine the effects of glass and polyethylene fibers on the color and translucency change of bulk-fill and anterior composites before and after artificial accelerated aging (AAA). Two types of teflon molds were used to fabricate samples which were 13 mm in diameter and, respectively, 2 mm and 4 mm in height. Polyethylene fiber (PF) and glass fiber (GF) were incorporated in the middle of the composite samples. Color and translucency changes of each composite were evaluated before and after AAA with spectrophotometer. ANOVA and Tukey's HSD post hoc statistical analysis were used at a significance level of 0.05. Before AAA (for anterior composites), there were no significant differences in L* and b* parameters among the three groups (p > 0.05); there were no significant differences in L* parameter between PF and GF groups or in TP between GF and control groups (p > 0.05) (for bulk-fill composites). After AAA, there were no significant differences in L* parameter between GF and control groups, in a* parameter between PF and control groups, in b* parameter among all groups, or in TP parameter between GF and control groups (p > 0.05). Fiber reinforcement led to color and TP change in both anterior and bulk-fill resin composites. PMID:29850499
AdS/CFT and local renormalization group with gauge fields
NASA Astrophysics Data System (ADS)
Kikuchi, Ken; Sakai, Tadakatsu
2016-03-01
We revisit a study of local renormalization group (RG) with background gauge fields incorporated using the AdS/CFT correspondence. Starting with a (d+1)-dimensional bulk gravity coupled to scalars and gauge fields, we derive a local RG equation from a flow equation by working in the Hamilton-Jacobi formulation of the bulk theory. The Gauss's law constraint associated with gauge symmetry plays an important role. RG flows of the background gauge fields are governed by vector β-functions, and some of their interesting properties are known to follow. We give a systematic rederivation of them on the basis of the flow equation. Fixing an ambiguity of local counterterms in such a manner that is natural from the viewpoint of the flow equation, we determine all the coefficients uniquely appearing in the trace of the stress tensor for d=4. A relation between a choice of schemes and a virial current is discussed. As a consistency check, these are found to satisfy the integrability conditions of local RG transformations. From these results, we are led to a proof of a holographic c-theorem by determining a full family of schemes where a trace anomaly coefficient is related with a holographic c-function.
NASA Astrophysics Data System (ADS)
Deng, Z.; Wang, J.; Zheng, J.; Lin, Q.; Zhang, Y.; Wang, S.
2009-05-01
In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.
Long-term follow-up of bulking agents for stress urinary incontinence in older patients.
Plotti, Francesco; Montera, Roberto; Terranova, Corrado; Luvero, Daniela; Marrocco, Francesca; Miranda, Andrea; Gatti, Alessandra; De Cicco Nardone, Carlo; Angioli, Roberto; Scaletta, Giuseppe
2018-06-01
Implantation of bulking agents represents a noninvasive procedure for the treatment of stress urinary incontinence (SUI) in all patients where a more invasive procedure may increase perioperative risks. The primary aim of this retrospective study was to evaluate the efficacy over time of bulking agent implantation. As secondary aims, we evaluated long-term (patients' subjective) satisfaction rate, rate of de novo urinary symptoms, and the impact of urinary incontinence on the quality of life. All patients who underwent implantation of bulking agents between 1999 and 2013 at Campus Bio-Medico of Rome were retrospectively considered eligible for this study. Patients were interviewed using two standardized questionnaires: International Consultation on Incontinence Questionnaire Short Form and Patient Global Impression of Improvement. Cure rate, improvement rate, failure rate, and the onset of new symptoms were also investigated through specific questions. The original group of patients was then divided into two subgroups according to follow-up time (group A: shorter than median follow-up; group B: longer than median follow-up). Sixty-three patients were enrolled. Mean follow-up was 8.3 ± 3.5 years with a range of 3.5 to 18 years. Fifteen (24%) cured patients (cure rate), 12 (19%) improved patients (improvement rate), 36 (57%) failed treatment (failure rate). We reported an overall success rate of 43%. No differences were reported among groups in terms of overall success rate (42% vs 44% for group A and group B, respectively). Bulking agent implantation is an effective treatment for people with intrinsic sphincter deficiency (type III SUI) and it is a valid alternative to more invasive surgeries in older patients. Moreover, it shows an overall success rate (43%) that remains high even after many years.
3. SOUTHWEST VIEW OF LOW PURITY BULK OXYGEN BUILDING, WITH ...
3. SOUTHWEST VIEW OF LOW PURITY BULK OXYGEN BUILDING, WITH THE LINDE LOW PURITY OXYGEN FRACTIONATING TOWERS ON LEFT. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Phenomenological constraints on the bulk viscosity of QCD
NASA Astrophysics Data System (ADS)
Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Jeon, Sangyong; Gale, Charles
2017-11-01
While small at very high temperature, the bulk viscosity of Quantum Chromodynamics is expected to grow in the confinement region. Although its precise magnitude and temperature-dependence in the cross-over region is not fully understood, recent theoretical and phenomenological studies provided evidence that the bulk viscosity can be sufficiently large to have measurable consequences on the evolution of the quark-gluon plasma. In this work, a Bayesian statistical analysis is used to establish probabilistic constraints on the temperature-dependence of bulk viscosity using hadronic measurements from RHIC and LHC.
Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Keyan; Kang, Congying; Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn
2012-10-15
In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1−x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1−x}O and Cd{sub x}Zn{sub 1−x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1−x}O and Ca{sub x}Zn{sub 1−x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereasmore » the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.« less
Coppoolse, Jiska M. S.; Van Kooten, T. G.; Heris, Hossein K.; Mongeau, Luc; Li, Nicole Y. K.; Thibeault, Susan L.; Pitaro, Jacob; Akinpelu, Olubunmi; Daniel, Sam J.
2016-01-01
Purpose The objective of this study was to investigate local injection with a hierarchically microstructured hyaluronic acid–gelatin (HA-Ge) hydrogel for the treatment of acute vocal fold injury using a rat model. Method Vocal fold stripping was performed unilaterally in 108 Sprague-Dawley rats. A volume of 25 ml saline (placebo controls), HA-bulk, or HA-Ge hydrogel was injected into the lamina propria (LP) 5 days after surgery. The vocal folds were harvested at 3, 14, and 28 days after injection and analyzed using hematoxylin and eosin staining and immunohistochemistry staining for macrophages, myofibroblasts, elastin, collagen type I, and collagen type III. Results The macrophage count was statistically significantly lower in the HA-Ge group than in the saline group (p < .05) at Day 28. Results suggested that the HA-Ge injection did not induce inflammatory or rejection response. Myofibroblast counts and elastin were statistically insignificant across treatment groups at all time points. Increased elastin deposition was qualitatively observed in both HA groups from Day 3 to Day 28, and not in the saline group. Significantly more elastin was observed in the HA-bulk group than in the uninjured group at Day 28. Significantly more collagen type I was observed in the HA-bulk and HA-Ge groups than in the saline group (p < .05) at Day 28. The collagen type I concentration in the HA-Ge and saline groups was found to be comparable to that in the uninjured controls at Day 28. The concentration of collagen type III in all treatment groups was similar to that in uninjured controls at Day 28. Conclusion Local HA-Ge and HA-bulk injections for acute injured vocal folds were biocompatible and did not induce adverse response. PMID:24687141
Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites
NASA Astrophysics Data System (ADS)
Pauly, S.; Liu, G.; Wang, G.; Das, J.; Kim, K. B.; Kühn, U.; Kim, D. H.; Eckert, J.
2009-09-01
In the present work we prepared an in situ Cu47.5Zr47.5Al5 bulk metallic glass matrix composite derived from the shape memory alloy CuZr. We use a strength model, which considers percolation and a three-microstructural-element body approach, to understand the effect of the crystalline phase on the yield stress and the fracture strain under compressive loading, respectively. The intrinsic work-hardenability due to the martensitic transformation of the crystalline phase causes significant work hardening also of the composite material.
Redesigning nursing work in long-term care environments.
Hall, L M; O'Brien-Pallas, L
2000-01-01
The authors present a highly statistically oriented argument for examining work attitudes and activities among three groups of caregivers [RNs, RPNs, and HCAs] working in long-term care. The investigators used both work sampling, written surveys, and interviews with a sample of 46 caregivers in a large university-affiliated LTC facility in Toronto, Canada. While RNs stated their strong affinity for direct patient care activities, they perform the lowest percentage of direct care, chiefly due to their accountability for planning and coordinating the care provided by others. The HCAs who provided the bulk of direct patient care "valued it the least," apparently finding little gratification with this aspect of their role. This study suggests that there is a need to examine and clarify work roles and perceptions for all caregivers as part of any work redesign process. A higher level of RN involvement in direct patient care activities, along with "attention to enhancing the importance" of these activities for staff employed in the HCA role, could be beneficial.
Towards First Principles-Based Prediction of Highly Accurate Electrochemical Pourbaix Diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Zhenhua; Chan, Maria K. Y.; Zhao, Zhi-Jian
2015-08-13
Electrochemical potential/pH (Pourbaix) diagrams underpin many aqueous electrochemical processes and are central to the identification of stable phases of metals for processes ranging from electrocatalysis to corrosion. Even though standard DFT calculations are potentially powerful tools for the prediction of such diagrams, inherent errors in the description of transition metal (hydroxy)oxides, together with neglect of van der Waals interactions, have limited the reliability of such predictions for even the simplest pure metal bulk compounds, and corresponding predictions for more complex alloy or surface structures are even more challenging. In the present work, through synergistic use of a Hubbard U correction,more » a state-of-the-art dispersion correction, and a water-based bulk reference state for the calculations, these errors are systematically corrected. The approach describes the weak binding that occurs between hydroxyl-containing functional groups in certain compounds in Pourbaix diagrams, corrects for self-interaction errors in transition metal compounds, and reduces residual errors on oxygen atoms by preserving a consistent oxidation state between the reference state, water, and the relevant bulk phases. The strong performance is illustrated on a series of bulk transition metal (Mn, Fe, Co and Ni) hydroxides, oxyhydroxides, binary, and ternary oxides, where the corresponding thermodynamics of redox and (de)hydration are described with standard errors of 0.04 eV per (reaction) formula unit. The approach further preserves accurate descriptions of the overall thermodynamics of electrochemically-relevant bulk reactions, such as water formation, which is an essential condition for facilitating accurate analysis of reaction energies for electrochemical processes on surfaces. The overall generality and transferability of the scheme suggests that it may find useful application in the construction of a broad array of electrochemical phase diagrams, including both bulk Pourbaix diagrams and surface phase diagrams of interest for corrosion and electrocatalysis.« less
Biswas, Biswajit; Mondal, Saptarsi; Singh, Prashant Chandra
2017-02-16
The presence of the fluorocarbon group in fluorinated alcohols makes them an important class of molecules that have diverse applications in the field of separation techniques, synthetic chemistry, polymer industry, and biology. In this paper, we have performed the density function theory calculation along with atom in molecule analysis, molecular dynamics simulation, and IR measurements of bulk monofluoroethanol (MFE) and compared them with the data for bulk ethanol (ETH) to understand the effect of the fluorocarbon group in the structure and the hydrogen bond network of bulk MFE. It has been found that the intramolecular O-H···F hydrogen bond is almost absent in bulk MFE. Molecular dynamics simulation and density function theory calculation along with atom in molecule analysis clearly depict that in the case of bulk MFE, a significant amount of intermolecular O-H···F and C-H···F hydrogen bonds are present along with the intermolecular O-H···O hydrogen bond. The presence of intermolecular O-H···F and C-H···F hydrogen bonds causes the difference in the IR spectrum of bulk MFE as compared to bulk ETH. This study clearly depicts that the organic fluorine (fluorocarbon) of MFE acts as a hydrogen bond acceptor and plays a significant role in the structure and hydrogen bond network of bulk MFE through the formation of weak O-H···F as well C-H···F hydrogen bonds, which may be one of the important reasons behind the unique behavior of the fluoroethanols.
Cuspal Deflection of Premolars Restored with Bulk-Fill Composite Resins.
Behery, Haytham; El-Mowafy, Omar; El-Badrawy, Wafa; Saleh, Belal; Nabih, Sameh
2016-01-01
This in vitro study compared cuspal deflection of premolars restored with three bulk-fill composite resins to that of incrementally-restored ones with a low-shrinkage silorane-based restorative material. Forty freshly-extracted intact human upper premolars were used. Reference points at buccal and palatal cusp tips were acid-etched and composite rods were horizontally bonded to them (TPH-Spectra-HV, Dentsply). Two acrylic resin guiding paths were made for each premolar to guide beaks of a digital micrometer used for cuspal deflection measurements. Standardized MOD cavities, 3 mm wide bucco-lingually and 3.5 mm deep, were prepared on each premolar. Prepared teeth were then equally divided into four groups (n = 10) and each group was assigned to one of four composite resin (QuiXX, Dentsply; X-tra fil, Voco; Tetric EvoCeram Bulk Fill, Ivoclar Vivadent; low-shrinkage Filtek LS, 3M/ESPE). Adper Single Bond-Plus, 3M/ESPE was used with all bulk-fill restoratives. LS-System Adhesive, 3M/ESPE was used with Filtek LS. For each prepared premolar, cuspal deflection was measured in microns as the difference between two readings between reference points before and after restoration completion. Means and SDs were calculated and data statistically-analyzed using One-way ANOVA and Tukey's test. Filtek LS showed the lowest mean cuspal deflection value 6.4(0.84)μm followed by Tetric EvoCeram Bulk Fill 10.1(1.2) μm and X-tra fil 12.4(1.35)μm, while QuiXX showed the highest mean 13(1.05)μm. ANOVA indicated significant difference among mean values of groups (p < 0.001). Tukey's test indicated no significant difference in mean values between QuiXX and X-tra fil (p = 0.637). Tetric EvoCeram Bulk Fill had significantly lower mean cuspal deflection compared with the two other bulk-fill composite resins tested. Filtek LS had the lowest significant mean cuspal deflection in comparison to all tested bulk-fill restoratives. The use of Tetric EvoCeram Bulk fill composite resin restorative for class II MOD cavities resulted in reduced cuspal deflection in comparison to the two other bulk-fill composite resins tested. The silorane-based Filtek LS restorative resulted in the least cuspal deflection in comparison to all tested bulk-fill composite restoratives. © 2016 Wiley Periodicals, Inc.
Surface properties of functional polymer systems
NASA Astrophysics Data System (ADS)
Wong, Derek
Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was confined to the top 2--3 nm of the surface. Contact angle results showed also that the reorganization process proceeded as a function of (time) 1/2, indicating that it is likely diffusion controlled. The magnitudes of the activation energies determined from the experimental data according to the Arhenius equation, suggest that the process is possibly correlated with known bulk beta and gamma relaxations in the polymer.
Bortolotto, Tissiana; Melian, Karla; Krejci, Ivo
2013-10-01
The present study attempted to find a simple direct adhesive restorative technique for the restoration of Class 2 cavities. A self-etch adhesive system with a dual-cured core buildup composite resin (paste 1 + paste 2) was evaluated in its ability to restore proximo-occlusal cavities with margins located on enamel and dentin. The groups were: A, cavity filling (cf) with paste 1 (light-curing component) by using a layering technique; B, cf by mixing both pastes, bulk insertion, and dual curing; and C, cf by mixing both pastes, bulk insertion, and chemical curing. Two control groups (D, negative, bulk; and E, positive, layering technique) were included by restoring cavities with a classic three-step etch-and-rinse adhesive and a universal restorative composite resin. SEM margin analysis was performed before and after thermomechanical loading in a chewing simulator. Percentages (mean ± SD) of "continuous margins" were improved by applying the material in bulk and letting it self cure (54 ± 6) or dual cure (59 ± 9), and no significant differences were observed between these two groups and the positive control (44 ± 19). The present study showed that the dual-cured composite resin tested has the potential to be used as bulk filling material for Class 2 restorations. When used as filling materials, dual-cure composite resins placed in bulk can provide marginal adaptation similar to light-cured composites applied with a complex stratification technique.
Hu, Bo; Qi, Rong; An, Wei; Yang, Min
2012-01-01
Changes of protists, which were categorized into different functional groups primarily according to their feeding habits, in two full-scale municipal wastewater treatment systems experiencing sludge bulking were investigated over a period of 14 months. Protist biomass represented 3.7% to 5.2% of total biomass on average under normal sludge conditions, and the percentage increased significantly (p < 0.05) under sludge bulking conditions. The biomass of Chilodonella spp., capable of eating filamentous bacteria, tended to decrease in both systems when sludge bulking occurred, showing that the abnormal growth of filamentous bacteria did not lead to a biomass bloom of this group of protists. On the other hand, the bactivorous protists represented more than 96% of total protist biomass, and the biomass of this group, particularly the attached ciliates, increased significantly (p < 0.05) when sludge bulking occurred. The significant increase of the attached ciliates may have possibly facilitated the growth of filamentous bacteria through selectively preying on non-filamentous bacteria and further exacerbated sludge bulking. The redundancy analysis and correlation analysis results showed that the biomass changes of the attached ciliates were primarily related to the sludge volume index and to some extent related to five-day biochemical oxygen demand loading and hydraulic retention time.
NASA Astrophysics Data System (ADS)
Yang, Zhen; Jiang, Jie
2016-04-01
Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on their molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, bulk humic acids (HA) were separated into low molecular weight fractions (LMWF) and retentate. LMWF account for only 2% of the total organic carbon content of HA molecules, however, their reducing capacities are up to 33 times greater than either those of the bulk HA or retentate. Furthermore, the total reducing capacity of the bulk HA accounts for less than 15% of the total reducing capacity of bulk HA, retentate and LMWF combined, suggesting that releasing of LMWF cannot reduce the number of RFG. RFG are neither in fixed amounts nor in uniformly distributed in bulk HA. LWMF have great fluorescence intensities for humic-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF, and protein-like fluorophores. The 3,500 Da molecules (1.25 nm diameter) of HS could stimulate transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex/Em position provides a possibility to predicate relative reducing capacities of HS in environmental samples.
Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials?
Flury, Simon; Hayoz, Stefanie; Peutzfeldt, Anne; Hüsler, Jürg; Lussi, Adrian
2012-05-01
To evaluate if depth of cure D(ISO) determined by the ISO 4049 method is accurately reflected with bulk fill materials when compared to depth of cure D(new) determined by Vickers microhardness profiles. D(ISO) was determined according to "ISO 4049; Depth of cure" and resin composite specimens (n=6 per group) were prepared of two control materials (Filtek Supreme Plus, Filtek Silorane) and four bulk fill materials (Surefil SDR, Venus Bulk Fill, Quixfil, Tetric EvoCeram Bulk Fill) and light-cured for either 10s or 20s. For D(new), a mold was filled with one of the six resin composites and light-cured for either 10 s or 20 s (n=22 per group). The mold was placed under a microhardness indentation device and hardness measurements (Vickers hardness, VHN) were made at defined distances, beginning at the resin composite that had been closest to the light-curing unit (i.e. at the "top") and proceeding toward the uncured resin composite (i.e. toward the "bottom"). On the basis of the VHN measurements, Vickers hardness profiles were generated for each group. D(ISO) varied between 1.76 and 6.49 mm with the bulk fill materials showing the highest D(ISO). D(new) varied between 0.2 and 4.0 mm. D(new) was smaller than D(ISO) for all resin composites except Filtek Silorane. For bulk fill materials the ISO 4049 method overestimated depth of cure compared to depth of cure determined by Vickers hardness profiles. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Thermal transport properties of bulk and monolayer MoS2: an ab-initio approach
NASA Astrophysics Data System (ADS)
Bano, Amreen; Khare, Preeti; Gaur, N. K.
2017-05-01
The transport properties of semiconductors are key to the performance of many solid-state devices (transistors, data storage, thermoelectric cooling and power generation devices, etc). In recent years simulation tools based on first-principles calculations have been greatly improved, being able to obtain the fundamental ground-state properties of materials accurately. The quasi harmonic thermal properties of bulk and monolayer of MoS2 has been computed with ab initio periodic simulations based of density functional theory (DFT). The temperature dependence of bulk modulus, specific heat, thermal expansion and gruneisen parameter have been calculated in our work within the temperature range of 0K to 900K with projected augmented wave (PAW) method using generalized gradient approximation (GGA). Our results show that the optimized lattice parameters are in good agreement with the earlier reported works and also for thermoelastic parameter, i.e. isothermal bulk modulus (B) at 0K indicates that monolayer MoS2 (48.5 GPa)is more compressible than the bulk structure (159.23 GPa). The thermal expansion of monolayer structure is slightly less than the bulk. Similarly, other parameters like heat capacity and gruneisen parameter shows different nature which is due to the confinement of 3 dimensional structure to 2 dimension (2D) for improving its transport characteristics.
43 CFR 3836.12 - What work qualifies as assessment work?
Code of Federal Regulations, 2013 CFR
2013-10-01
..., sampling (geochemical or bulk), road construction on or for the benefit of the mining claim; and (b... REQUIREMENTS FOR MINING CLAIMS Performing Assessment Work § 3836.12 What work qualifies as assessment work...
43 CFR 3836.12 - What work qualifies as assessment work?
Code of Federal Regulations, 2011 CFR
2011-10-01
..., sampling (geochemical or bulk), road construction on or for the benefit of the mining claim; and (b... REQUIREMENTS FOR MINING CLAIMS Performing Assessment Work § 3836.12 What work qualifies as assessment work...
43 CFR 3836.12 - What work qualifies as assessment work?
Code of Federal Regulations, 2014 CFR
2014-10-01
..., sampling (geochemical or bulk), road construction on or for the benefit of the mining claim; and (b... REQUIREMENTS FOR MINING CLAIMS Performing Assessment Work § 3836.12 What work qualifies as assessment work...
43 CFR 3836.12 - What work qualifies as assessment work?
Code of Federal Regulations, 2012 CFR
2012-10-01
..., sampling (geochemical or bulk), road construction on or for the benefit of the mining claim; and (b... REQUIREMENTS FOR MINING CLAIMS Performing Assessment Work § 3836.12 What work qualifies as assessment work...
1. LOOKING SOUTH AT LOW PURITY BULK OXYGEN BUILDING (FORMERLY ...
1. LOOKING SOUTH AT LOW PURITY BULK OXYGEN BUILDING (FORMERLY BLOW ENGINE HOUSE No. 1), WITH LIQUID OXYGEN STORAGE TANKS IN THE FOREGROUND. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Technical Report on DOMICE Simulation Model
2012-04-01
Branch GPS Global Positioning System HHO home heating oil LCA Lake Carriers’ Association MAR USCG Domestic Icebreaking Mission Analysis...cargo types considered in the module. The module groups the four types of cargo into two broader categories, namely, Home Heating Oil ( HHO ) shipments...or Non- HHO shipments. Table 11. Cargo types. Types of Cargo Cargo Group Dry Bulk Non- HHO Liquid Bulk Perishable / Food Home Heating Oil HHO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poust, S; Phelan, RM; Deng, K
The gem-dimethyl groups in polyketide-derived natural products add steric bulk and, accordingly, lend increased stability to medicinal compounds, however, our ability to rationally incorporate this functional group in modified natural products is limited. In order to characterize the mechanism of gem-dimethyl group formation, with a goal toward engineering of novel compounds containing this moiety, the gem-dimethyl group producing polyketide synthase (PKS) modules of yersiniabactin and epothilone were characterized using mass spectrometry. The work demonstrated, contrary to the canonical understanding of reaction order in PKSs, that methylation can precede condensation in gem-dimethyl group producing PKS modules. Experiments showed that both PKSsmore » are able to use dimethylmalonyl acyl carrier protein (ACP) as an extender unit. Interestingly, for epothilone module8, use of dimethylmalonyl-ACP appeared to be the sole route to form a gem-dimethylated product, while the yersiniabactin PKS could methylate before or after ketosynthase condensation.« less
STUDIES ON THE ANOMALOUS VISCOSITY AND FLOW-BIREFRINGENCE OF PROTEIN SOLUTIONS
Lawrence, A. S. C.; Miall, Margaret; Needham, Joseph; Shen, Shih-Chang
1944-01-01
1. An extensive investigation has been made of protein particle shape using the methods of flow-birefringence and anomalous viscosity measurement in the coaxial cell. 2. As a result of investigations on a number of proteins, it is concluded that they may be divided into four groups. Group A consists of those which show flow-anomaly both in the bulk phase and in the surface film. These also show flow-birefringence in the bulk phase. Examples: tobacco mosaic disease virus nucleoprotein; myosin. Though corpuscular proteins, they have elongated particles before denaturation. Group B consists of those which show flow-anomaly only (in the first instance) in the surface film, and no flow-birefringence in the bulk phase. They are probably close to spherical in shape in solution, but form elongated particles as they denature in the surface film. After this process has been completed, they may show flow-anomaly also in the bulk phase. Some proteins show flow-anomaly in the surface film immediately it forms, others only show it after a certain time has elapsed for the building up of the film. We designate the former as group B1 and the latter as group B2. Group B1, immediate surface film flow-anomaly. Examples: serum euglobulin, amphibian embryo euglobulin b. Group B2, slowly appearing surface film flow-anomaly. After the film has once been fully formed and then dispersed by shaking, the solution may have the properties of that of a protein in group B1; i.e., anomalous flow in the film may occur immediately on testing in the viscosimeter. Examples: avian ovalbumin, amphibian embryo pseudoglobulin. Group C consists of those proteins which show flow-anomaly neither in the bulk phase nor in the surface film, under the conditions used by us. They are probably close to spherical in shape. Examples: insulin, methaemoglobin, amphibian embryo euglobulin c, mucoproteins. 3. The theoretical significance of protein fibre molecules, whether native or formed by denaturation in the living cell, is discussed, especially in relation to experimental morphology and cytology. PMID:19873385
Cheon, Gowoon; Duerloo, Karel-Alexander N; Sendek, Austin D; Porter, Chase; Chen, Yuan; Reed, Evan J
2017-03-08
Layered materials held together by weak interactions including van der Waals forces, such as graphite, have attracted interest for both technological applications and fundamental physics in their layered form and as an isolated single-layer. Only a few dozen single-layer van der Waals solids have been subject to considerable research focus, although there are likely to be many more that could have superior properties. To identify a broad spectrum of layered materials, we present a novel data mining algorithm that determines the dimensionality of weakly bonded subcomponents based on the atomic positions of bulk, three-dimensional crystal structures. By applying this algorithm to the Materials Project database of over 50,000 inorganic crystals, we identify 1173 two-dimensional layered materials and 487 materials that consist of weakly bonded one-dimensional molecular chains. This is an order of magnitude increase in the number of identified materials with most materials not known as two- or one-dimensional materials. Moreover, we discover 98 weakly bonded heterostructures of two-dimensional and one-dimensional subcomponents that are found within bulk materials, opening new possibilities for much-studied assembly of van der Waals heterostructures. Chemical families of materials, band gaps, and point groups for the materials identified in this work are presented. Point group and piezoelectricity in layered materials are also evaluated in single-layer forms. Three hundred and twenty-five of these materials are expected to have piezoelectric monolayers with a variety of forms of the piezoelectric tensor. This work significantly extends the scope of potential low-dimensional weakly bonded solids to be investigated.
Stoichiometry control in quantum dots: a viable analog to impurity doping of bulk materials.
Luther, Joseph M; Pietryga, Jeffrey M
2013-03-26
A growing body of research indicates that the stoichiometry of compound semiconductor quantum dots (QDs) may offer control over the materials' optoelectronic properties in ways that could be invaluable in electronic devices. Quantum dots have been characterized as having a stoichiometric bulk-like core with a highly reconstructed surface of a more flexible composition, consisting essentially of ligated, weakly bound ions. As such, many efforts toward stoichiometry-based control over material properties have focused on ligand manipulation. In this issue of ACS Nano, Murray and Kagan's groups instead demonstrate control of the conductive properties of QD arrays by altering the stoichiometry via atomic infusion using a thermal evaporation technique. In this work, PbSe and PbS QD films are made to show controlled n- or p-type behavior, which is key to developing optimized QD-based electronics. In this Perspective, we discuss recent developments and the future outlook in using stoichiometry as a tool to further manipulate QD material properties in this context.
A mutli-technique search for the most primitive CO chondrites
NASA Astrophysics Data System (ADS)
Alexander, C. M. O'D.; Greenwood, R. C.; Bowden, R.; Gibson, J. M.; Howard, K. T.; Franchi, I. A.
2018-01-01
As part of a study to identify the most primitive COs and to look for weakly altered CMs amongst the COs, we have conducted a multi-technique study of 16 Antarctic meteorites that had been classified as primitive COs. For this study, we have determined: (1) the bulk H, C and N abundances and isotopes, (2) bulk O isotopic compositions, (3) bulk modal mineralogies, and (4) for some selected samples the abundances and compositions of their insoluble organic matter (IOM). Two of the 16 meteorites do appear to be CMs - BUC 10943 seems to be a fairly typical CM, while MIL 090073 has probably been heated. Of the COs, DOM 08006 appears to be the most primitive CO identified to date and is quite distinct from the other members of its pairing group. The other COs fall into two groups that are less primitive than DOM 08006 and ALH 77307, the previously most primitive CO. The first group is composed of members of the DOM 08004 pairing group, except DOM 08006. The second group is composed of meteorites belonging to the MIL 03377 and MIL 07099 pairing groups. These two pairing groups should probably be combined. There is a dichotomy in the bulk O isotopes between the primitive (all Antarctic finds) and the more metamorphosed COs (mostly falls). This dichotomy can only partly be explained by the terrestrial weathering experienced by the primitive Antarctic samples. It seems that the more equilibrated samples interacted to a greater extent with 16O-poor material, probably water, than the more primitive meteorites.
Dynamic analysis of bulk-fill composites: Effect of food-simulating liquids.
Eweis, Ahmed Hesham; Yap, Adrian U-Jin; Yahya, Noor Azlin
2017-10-01
This study investigated the effect of food simulating liquids on visco-elastic properties of bulk-fill restoratives using dynamic mechanical analysis. One conventional composite (Filtek Z350 [FZ]), two bulk-fill composites (Filtek Bulk-fill [FB] and Tetric N Ceram [TN]) and a bulk-fill giomer (Beautifil-Bulk Restorative [BB]) were evaluated. Specimens (12 × 2 × 2mm) were fabricated using customized stainless steel molds. The specimens were light-cured, removed from their molds, finished, measured and randomly divided into six groups. The groups (n = 10) were conditioned in the following mediums for 7 days at 37°C: air (control), artificial saliva (SAGF), distilled water, 0.02N citric acid, heptane, 50% ethanol-water solution. Specimens were assessed using dynamic mechanical testing in flexural three-point bending mode and their respective mediums at 37°C and a frequency range of 0.1-10Hz. The distance between the supports were fixed at 10mm and an axial load of 5N was employed. Data for elastic modulus, viscous modulus and loss tangent were subjected to ANOVA/Tukey's tests at significance level p < 0.05. Significant differences in visco-elastic properties were observed between materials and mediums. Apart from bulk-fill giomer, elastic modulus was the highest after conditioning in heptane. No apparent trends were noted for viscous modulus. Generally, loss tangent was the highest after conditioning in ethanol. The effect of food-simulating liquids on the visco-elastic properties of bulk-fill composites was material and medium dependent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jet and electromagnetic tomography (JET) of extreme phases of matter in heavy-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinz, Ulrich
2015-08-31
The Ohio State University (OSU) group contributed to the deliverables of the JET Collaboration three major products: 1. The code package iEBE-VISHNU for modeling the dynamical evolution of the soft medium created in relativistic heavy-ion collisions, from its creation all the way to final freeze-out using a hybrid approach that interfaces a free-streaming partonic pre-equilbrium stage with a (2+1)-dimensional viscous relativistic fluid dynamical stage for the quark-gluon plasma (QGP) phase and the microscopic hadron cascade UrQMD for the hadronic rescattering and freeze-out stage. Except for UrQMD, all dynamical evolution components and interfaces were developed at OSU and tested and implementedmore » in collaboration with the Duke University group. 2. An electromagnetic radiation module for the calculation of thermal photon emission from the QGP and hadron resonance gas stages of a heavy-ion collision, with emission rates that have been corrected for viscous effects in the expanding medium consistent with the bulk evolution. The electromagnetic radiation module was developed under OSU leadership in collaboration with the McGill group and has been integrated in the iEBE-VISHNU code package. 3. An interface between the Monte Carlo jet shower evolution and hadronization codes developed by the Wayne State University (WSU), McGill and Texas A&M groups and the iEBE-VISHNU bulk evolution code, for performing jet quenching and jet shape modification studies in a realistically modeled evolving medium that was tuned to measured soft hadron data. Building on work performed at OSU for the theoretical framework used to describe the interaction of jets with the medium, initial work on the jet shower Monte Carlo was started at OSU and moved to WSU when OSU Visiting Assistant Professor Abhijit Majumder accepted a tenure track faculty position at WSU in September 2011. The jet-hydro interface was developed at OSU and WSU and tested and implemented in collaboration with the McGill, Texas A&M, and LBNL groups.« less
Duan, Ruomeng; Cui, Yong; Zhao, Yanfei; Li, Chen; Chen, Long; Hou, Jianhui; Wagner, Manfred; Baumgarten, Martin; He, Chang; Müllen, Klaus
2016-05-10
End groups in small-molecule photovoltaic materials are important owing to their strong influence on molecular stability, solubility, energy levels, and aggregation behaviors. In this work, a series of donor-acceptor pentads (D2 -A-D1 -A-D2 ) were designed and synthesized, aiming to investigate the effect of the end groups on the materials properties and photovoltaic device performance. These molecules share identical central A-D1 -A triads (with benzodithiophene as D1 and 6-carbonyl-thieno[3,4-b]thiophene as A), but with various D2 end groups composed of alkyl-substituted thiophene (T), thieno[3,2-b]thiophene (TT), and 2,2'-bithiophene (BT). The results indicate a relationship between conjugated segment/alkyl chain length of the end groups and the photovoltaic performance, which contributes to the evolving molecular design principles for high efficiency organic solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system
NASA Astrophysics Data System (ADS)
Longcai, Zhang
2014-07-01
Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.
6. LOOKING WEST IN LOW PURITY BULK OXYGEN BUILDING AT ...
6. LOOKING WEST IN LOW PURITY BULK OXYGEN BUILDING AT STEAM TURBINE END OF TWO ALLIS-CHALMERS AXIAL AIR COMPRESSORS FOR 1000 TON PER DAY HIGH PURITY OXYGEN MAKING PLANT. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
5. LOOKING WEST IN LOW PURITY BULK OXYGEN BUILDING AT ...
5. LOOKING WEST IN LOW PURITY BULK OXYGEN BUILDING AT STEAM TURBINE END OF TWO ALLIS-CHALMER AXIAL AIR COMPRESSORS FOR 1000 TON PER DAY HIGH PURITY OXYGEN MAKING PLANT. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Miletic, Vesna; Peric, Dejan; Milosevic, Milos; Manojlovic, Dragica; Mitrovic, Nenad
2016-11-01
To compare strain and displacement of sculptable bulk-fill, low-shrinkage and conventional composites as well as dye penetration along the dentin-restoration interface. Modified Class II cavities (N=5/group) were filled with sculptable bulk-fill (Filtek Bulk Fill Posterior, 3M ESPE; Tetric EvoCeram Bulk Fill, Ivoclar Vivadent; fiber-reinforced EverX Posterior, GC; giomer Beautifil Bulk, Schofu), low-shrinkage (Kalore, GC), nanohybrid (Tetric EvoCeram, Ivoclar Vivadent) or microhybrid (Filtek Z250, 3M ESPE) composites. Strain and displacement were determined using the 3D digital image correlation method based on two cameras with 1μm displacement sensitivity and 1600×1200 pixel resolution (Aramis, GOM). Microleakage along dentin axial and gingival cavity walls was measured under a stereomicroscope using a different set of teeth (N=8/group). Data were analyzed using analyses of variance with Tukey's post-test, Pearson correlation and paired t-test (α=0.05). Strain of TEC Bulk, Filtek Bulk, Beautifil Bulk and Kalore was in the range of 1-1.5%. EverX and control composites showed 1.5-2% strain. Axial displacements were between 5μm and 30μm. The least strain was identified at 2mm below the occlusal surface in 4-mm but not in 2-mm layered composites. Greater microleakage occurred along the gingival than axial wall (p<0.05). No correlation was found between strain/displacements and microleakage axially (r 2 =0.082, p=0.821; r 2 =-0.2, p=0.605, respectively) or gingivally (r 2 =-0.126, p=0.729, r 2 =-0.278, p=0.469, respectively). Strain i.e. volumetric shrinkage of sculptable bulk-fill and low-shrinkage composites was comparable to control composites but strain distribution across restoration depth differed. Marginal integrity was more compromised along the gingival than axial dentin wall. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rashid, Zahid; Zhu, Liyan; Li, Wu
2018-02-01
The effect of confinement on the anharmonic phonon scattering rates and the consequences thereof on the thermal transport properties in ultrathin silicon nanowires with a diameter of 1-4 nm have been characterized using atomistic simulations and the phonon Boltzmann transport equation. The phonon density of states (PDOS) for ultrathin nanowires approaches a constant value in the vicinity of the Γ point and increases with decreasing diameter, which indicates the increasing importance of the low-frequency phonons as heat carriers. The anharmonic phonon scattering becomes dramatically enhanced with decreasing thickness of the nanowires. In the thinnest nanowire, the scattering rates for phonons above 1 THz are one order of magnitude higher than those in the bulk Si. Below 1 THz, the increase in scattering rates is even much more appreciable. Our numerical calculations revealed that the scattering rates for transverse (longitudinal) acoustic modes follow √{ω } (1 /√{ω } ) dependence at the low-frequency limit, whereas those for the degenerate flexural modes asymptotically approach a constant value. In addition, the group velocities of phonons are reduced compared with bulk Si except for low-frequency phonons (<1 -2 THz depending on the thickness of the nanowires). The increased scattering rates combined with reduced group velocities lead to a severely reduced thermal conductivity contribution from the high-frequency phonons. Although the thermal conductivity contributed by those phonons with low frequencies is instead increased mainly due to the increased PDOS, the total thermal conductivity is still reduced compared to that of the bulk. This work reveals an unexplored mechanism to understand the measured ultralow thermal conductivity of silicon nanowires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrievska, Mirjana; Boero, Federica; Litvinchuk, Alexander P.
This work presents detailed structural and vibrational characterization of different Cu 2ZnSnS 4 (CZTS) polymorphs (space groups: Imore » $$\\bar{4}$$, P$$\\bar{4}$$2c, and P$$\\bar{4}$$2m), using Raman spectroscopy and first-principles calculations. Multiwavelength Raman measurements on bulk crystalline CZTS samples permitted determination of the vibrational modes of each polymorph structure, with frequencies matching well with the results obtained from simulations. Lastly, the results present Raman spectra fingerprints as well as experimental references for the different polymorph modifications.« less
Dimitrievska, Mirjana; Boero, Federica; Litvinchuk, Alexander P.; ...
2017-03-06
This work presents detailed structural and vibrational characterization of different Cu 2ZnSnS 4 (CZTS) polymorphs (space groups: Imore » $$\\bar{4}$$, P$$\\bar{4}$$2c, and P$$\\bar{4}$$2m), using Raman spectroscopy and first-principles calculations. Multiwavelength Raman measurements on bulk crystalline CZTS samples permitted determination of the vibrational modes of each polymorph structure, with frequencies matching well with the results obtained from simulations. Lastly, the results present Raman spectra fingerprints as well as experimental references for the different polymorph modifications.« less
Efficiency of bulk-heterojunction organic solar cells
Scharber, M.C.; Sariciftci, N.S.
2013-01-01
During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787
Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca
2016-01-01
Summary Aim To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Methods Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (P<0.05). Results No statistically significant differences were found among groups (P<0.05). Fracture resistance of endodontically treated teeth restored with a traditional resin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. Conclusions No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations. PMID:27486505
Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca
2016-01-01
To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (P<0.05). No statistically significant differences were found among groups (P<0.05). Fracture resistance of endodontically treated teeth restored with a traditional resin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations.
29 CFR 1915.13 - Cleaning and other cold work.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Spaces containing or having last contained bulk quantities of combustible or flammable liquids or gases; and (2) Spaces containing or having last contained bulk quantities of liquids, gases or solids that... sources of ignition within or near a space that has contained flammable or combustible liquids or gases in...
29 CFR 1915.13 - Cleaning and other cold work.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Spaces containing or having last contained bulk quantities of combustible or flammable liquids or gases; and (2) Spaces containing or having last contained bulk quantities of liquids, gases or solids that... sources of ignition within or near a space that has contained flammable or combustible liquids or gases in...
29 CFR 1915.13 - Cleaning and other cold work.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Spaces containing or having last contained bulk quantities of combustible or flammable liquids or gases; and (2) Spaces containing or having last contained bulk quantities of liquids, gases or solids that... sources of ignition within or near a space that has contained flammable or combustible liquids or gases in...
29 CFR 1915.13 - Cleaning and other cold work.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Spaces containing or having last contained bulk quantities of combustible or flammable liquids or gases; and (2) Spaces containing or having last contained bulk quantities of liquids, gases or solids that... sources of ignition within or near a space that has contained flammable or combustible liquids or gases in...
29 CFR 1915.13 - Cleaning and other cold work.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Spaces containing or having last contained bulk quantities of combustible or flammable liquids or gases; and (2) Spaces containing or having last contained bulk quantities of liquids, gases or solids that... sources of ignition within or near a space that has contained flammable or combustible liquids or gases in...
Code of Federal Regulations, 2010 CFR
2010-01-01
... longshore work at any United States port under the exceptions provided for in paragraphs (a)(2), (b), or (c... hazardous dry bulk cargo. (i) All tankers qualify for the hazardous cargo exception, including parcel tankers, except for a tanker that has been gas-freed to transport non-hazardous dry bulk commodities. (ii...
2008-01-01
oriented grain-boundaries. In this work we show considerable evidence for such weak-coupling by study of the dependence of magnetization in bulk and...powdered samples. Bulk sample magnetization curves show very little hysteresis while remanent magnetization shows almost no sample size dependence...K Fig. 2 (Color online) Magnetization hysteresis loops at 5 and 20 K for the bulk LaO0.89F0.11FeAs. Inset shows the temperature dependence of
Nagel, Katrin; Bishop, Nicholas E; Schlegel, Ulf J; Püschel, Klaus; Morlock, Michael M
2017-02-01
The strength of the cement-bone interface in tibial component fixation depends on the morphology of the cement mantle. The purpose of this study was to identify thresholds of cement morphology parameters to maximize fixation strength using a minimum amount of cement. Twenty-three cadaveric tibiae were analyzed that had been implanted with tibial trays in previous studies and for which the pull-out strength of the tray had been measured. Specimens were separated into a group failing at the cement-bone interface (INTERFACE) and one failing in the bulk bone (BULK). Maximum pull-out strength corresponds to the ultimate strength of the bulk bone if the cement-bone interface is sufficiently strong. 3D models of the cement mantle in situ were reconstructed from computed tomography scans. The influences of bone mineral density and 6 cement morphology parameters (reflecting cement penetration, bone-cement interface, cement volume) on pull-out strength of the BULK group were determined using multiple regression analysis. The threshold of each parameter for classification of the specimens into either group was determined using receiver operating characteristic analysis. Cement penetration exceeding a mean of 1.1 mm or with a maximum of 5.6 mm exclusively categorized all BULK bone failure specimens. Failure strength of BULK failure specimens increased with bone mineral density (R 2 = 0.67, P < .001) but was independent of the cement morphology parameters. To maximize fixation strength, a mean cement penetration depth of at least 1.1 mm should be achieved during tibial tray cementing. Copyright © 2016 Elsevier Inc. All rights reserved.
Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures
2018-02-19
the group V2-VI3 TI family. However, experimental efforts on Bi2Se3 have been frequently resulted in the bulk conduction being dominant over TSSs in...group V2-VI3 TI family. However, experimental efforts on Bi2Se3 have been frequently resulted in the bulk conduction being dominant over TSSs in...research interest of creating and manipulating unique quasi particles with topologically exceptional properties, such as Majorana particles, has added
NASA Astrophysics Data System (ADS)
Staines, K.; Balogh, A.; Cowley, S. W. H.; Hynds, R. J.; Yates, T. S.; Richardson, I. G.; Sanderson, T. R.; Wenzel, K. P.; McComas, D. J.; Tsurutani, B. T.
1991-03-01
The bulk parameters (number density and thermal energy density) of cometary water-group ions in the region surrounding Comet Giacobini-Zinner have been derived using data from the EPAS instrument on the ICE spacecraft. The derivation is based on the assumption that the pick-up ion distribution function is isotropic in the frame of the bulk flow, an approximation which has previously been shown to be reasonable within about 400,000 km of the comet nucleus along the spacecraft trajectory. The transition between the pick-up and mass-loaded regions occurs at the cometary shock, which was traversed at a cometocentric distance of about 100,000 km along the spacecraft track. Examination of the ion distribution functions in this region, transformed to the bulk flow frame, indicates the occurrence of a flattened distribution in the vicinity of the local pick-up speed, and a steeply falling tail at speeds above, which may be approximated as an exponential in ion speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splitter, Derek A; Kaul, Brian C; Szybist, James P
This work explores the dependence of fuel ignition delay on stochastic pre-ignition (SPI). Findings are based on bulk gas thermodynamic state, where the effects of kinetically controlled bulk gas pre-spark heat release (PSHR) are correlated to SPI tendency and magnitude. Specifically, residual gas and low temperature PSHR chemistry effects and observations are explored, which are found to be indicative of bulk gas conditions required for strong SPI events. Analyzed events range from non-knocking SPI to knocking SPI and even detonation SPI events in excess of 325 bar peak cylinder pressure. The work illustrates that singular SPI event count and magnitudemore » are found to be proportional to PSHR of the bulk gas mixture and residual gas fraction. Cycle-to-cycle variability in trapped residual mass and temperature are found to impose variability in singular SPI event count and magnitude. However, clusters and short lived bursts of multiple SPI events are found to better correlate with fuel-wall interaction. The results highlight the interplay of bulk gas thermodynamics and SPI ignition source, on SPI event magnitude and cluster tendency. Moreover, the results highlight fundamental fuel reactivity and associated hypersensitivity to operating conditions at SPI prone operating conditions.« less
Formation and Stability of Bulk Nanobubbles Generated by Ethanol-Water Exchange.
Qiu, Jie; Zou, Zhenglei; Wang, Shuo; Wang, Xingya; Wang, Lei; Dong, Yaming; Zhao, Hongwei; Zhang, Lijuan; Hu, Jun
2017-05-19
Bulk nanobubbles have unique properties and find potential applications in many important processes. However, their stability or long lifetime still needs to be understood and has attracted much attention from researchers. Bulk nanobubbles are generated based on ethanol-water exchange, a method that is generally used in the study of surface nanobubbles. Their formation and stability is further studied by using a new type of dynamic light scattering known as NanoSight. The results show that the concentration of the bulk nanobubbles produced by this method is about five times greater than that in the degassed group, which indicates the existence of bulk gas nanobubbles. The effects of ethanol/water ratios and temperature on the stability of the bulk nanobubbles have also been studied and their numbers reach a maximum at a ratio of about 1:10 (v/v). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang
2017-05-01
In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.
Influence of attitudes and behavior of milkers on the hygienic and sanitary quality of milk
Cassoli, Laerte D.; Machado, Paulo F.; Cerón-Muñoz, Mario Fernando
2017-01-01
Recognizing how human behaviors affect the milk process can be useful to understand variations in hygienic and sanitary parameters in bulk tank milk. Furthermore, this knowledge could be used to design management programs that guarantee milk quality, favoring the optimization of such processes. Forty-six milkers from the same number of dairy farms in Antioquia province (Colombia) were interviewed to establish the main factors associated to milk quality. Technical knowledge, motivations, and behavior of the personnel and its effect on hygienic and sanitary quality of milk were evaluated. Quality was assessed in terms of colony-forming units (CFU) and somatic cell count (SCC) in bulk tank milk. Two factors from a multivariate mixed data analysis were evaluated. One of those factors explained 9.51% of the total variability, related with in-farm availability and use of tools and the relationships between milker and manager. The other factor, associated with work environment and recognition, explained 6.97% of the total variability. The variables that best explained CFU levels were Knowledge of the udder condition at milking, and Milking type (parlor or pasture). The SCC was associated to knowledge of animal handling, schooling of milkers, milking site, and the groups derived from the cluster analysis by farm. In conclusion, milker attitudes and behaviors can affect CFU and SCC in bulk tank milk. PMID:28926583
Cellulosic ethanol byproducts as a bulking agent
J.M. Considine; D. Coffin; J.Y. Zhu; D.H. Mann; X. Tang
2017-01-01
Financial enhancement of biomass value prior to pulping requires subsequent use of remaining materials; e.g., high value use of remaining stock material after cellulosic ethanol production would improve the economics for cellulosic ethanol. In this work, use of enzymatic hydrolysis residual solids (EHRS), a cellulosic ethanol byproduct, were investigated as a bulking...
Inelastic vibrational bulk and surface losses of swift electrons in ionic nanostructures
NASA Astrophysics Data System (ADS)
Hohenester, Ulrich; Trügler, Andreas; Batson, Philip E.; Lagos, Maureen J.
2018-04-01
In a recent paper [Lagos et al., Nature (London) 543, 533 (2017), 10.1038/nature21699] we have used electron energy loss spectroscopy with sub-10 meV energy and atomic spatial resolution to map optical and acoustic, bulk and surface vibrational modes in magnesium oxide nanocubes. We found that a local dielectric description works well for the simulation of aloof geometries, similar to related work for surface plasmons and surface plasmon polaritons, while for intersecting geometries such a description fails to reproduce the rich spectral features associated with excitation of bulk acoustic and optical phonons. To account for scatterings with a finite momentum exchange, in this paper we investigate molecular and lattice dynamics simulations of bulk losses in magnesium-oxide nanocubes using a rigid-ion description and investigate the loss spectra for intersecting electron beams. From our analysis we can evaluate the capability of electron energy loss spectroscopy for the investigation of phonon modes at the nanoscale, and we discuss shortcomings of our simplified approach as well as directions for future investigations.
Enhancement of the inverted polymer solar cells via ZnO doped with CTAB
NASA Astrophysics Data System (ADS)
Sivashnamugan, Kundan; Guo, Tzung-Fang; Hsu, Yao-Jane; Wen, Ten-Chin
2018-02-01
A facile approach enhancing electron extraction in zinc oxide (ZnO) electron transfer interlayer and improving performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) by adding cetyltrimethylammonium bromide (CTAB) into sol-gel ZnO precursor solution was demonstrated in this work. The power conversion efficiency (PCE) has a 24.1% increment after modification. Our results show that CTAB can dramatically influence optical, electrical and morphological properties of ZnO electron transfer layer, and work as effective additive to enhance the performance of bulk- heterojunction polymer solar cells.
Synthesis and characterization of covalently bound benzocaine graphite oxide derivative
NASA Astrophysics Data System (ADS)
Kabbani, Ahmad; Kabbani, Mohamad; Safadi, Khadija
2015-09-01
Graphite oxide (GO) derived materials include chemically functionalize or reduced graphene oxide (exfoliated from GO) sheets, assembled paper-like forms , and graphene-based composites GO consists of intact graphitic regions interspersed with sp3-hybridized carbons containing hydroxyl and epoxide functional groups on the top and bottom surfaces of each sheet and sp2-hybridized carbons containing carboxyl and carbonyl groups mostly at the sheet edges. Hence, GO is hydrophilic and readily disperses in water to form stable colloidal suspensions Due to the attached oxygen functional groups, GO was used to prepare different derivatives which result in some physical and chemical properties that are dramatically different from their bulk counterparts .The present work discusses the covalent cross linking of graphite oxide to benzocaine or ethyl ester of para-aminobenzoic acid,structure I,used in many over-the-counter ointment drug.Synthesis is done via diazotization of the amino group.The product is characterized via IR,Raman, X-ray photoelectron spectroscopy as well as electron microscopy.
Durner, Jürgen; Schrickel, Klaus; Watts, David C; Ilie, Nicoleta
2015-04-01
Ethoxylated bisphenol A dimethacrylate (bisEMA) is a basis monomer in several dental resin composites. It was the aim of the present study to develop a method allowing detection of bisEMA and its different degrees of ethoxylation eluted from polymerized resin composites. High-temperature gas chromatography/mass spectrometry (HT-GC/MS) by direct on-column injection was used to identify ethoxylated bisEMA in ethanol/water (3:1) eluates from polymerized specimen of four bulk-fill resin composites - Venus(®) bulk fill, Surefil(®) SDR™ flow, Filtek™ Bulk Fill and Sonic Fill™. Additionally, the unpolymerised pastes were analysed. The developed method allowed identification of a homologous series of bisEMA up to twelve ethoxy groups in the unpolymerised materials. The molecular masses of the homologous bisEMA varied between 452 g/mol and 892 g/mol and were detected for retention times from 9.43 min to 13.36 min. Analysis of eluates from polymerised materials identified bisEMA monomers with less than 6 ethoxy groups. Chromatograms showed larger peak areas for the lower volatile bisEMA with 4-6 ethoxy groups compared with higher volatile bisEMA with 2 or 3 ethoxy groups, thus indicating that the amounts of these homologues in the pastes were higher. Ethoxylated bisEMA with up to twelve ethoxy groups can be identified by HT-GC/MS. In all eluates bisEMA was found. The higher the number of ethoxy groups the lower are the peak areas from bisEMA in the gas chromatogram. These findings may be significant for toxicological analysis of resin-composites incorporating bis-EMA. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, J.; Liao, X. L.; Jing, H. L.; Deng, Z. G.; Yen, F.; Wang, S. Y.; Wang, J. S.
2013-10-01
Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.
Phenomenological consequences of enhanced bulk viscosity near the QCD critical point
Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi
2017-03-06
In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less
Radiating gravitational collapse with shearing motion and bulk viscosity
NASA Astrophysics Data System (ADS)
Chan, R.
2001-03-01
A model is proposed of a collapsing radiating star consisting of a shearing fluid with bulk viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the bulk viscosity the pressure becomes more and more anisotropic. The behavior of the density, pressure, mass, luminosity, the effective adiabatic index and the Kretschmann scalar is analyzed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6 Msun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sexton, L.
2012-06-06
Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity tomore » collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, Yu
Here, the bulk locality in the constructive holographic renormalization group requires miraculous cancellations among various local renormalization group functions. The cancellation is not only from the properties of the spectrum but from more detailed aspects of operator product expansions in relation to conformal anomaly. It is remarkable that one-loop computation of the universal local renormalization group functions in the weakly coupled limit of the N = 4 super Yang-Mills theory fulfils the necessary condition for the cancellation in the strongly coupled limit in its SL(2, Z) duality invariant form. From the consistency between the quantum renormalization group and the holographicmore » renormalization group, we determine some unexplored local renormalization group functions (e.g. diffusive term in the beta function for the gauge coupling constant) in the strongly coupled limit of the planar N = 4 super Yang-Mills theory.« less
7 CFR 201.52 - Noxious-weed seeds.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the bulk examined for noxious-weed seeds need not be noted: 1/2-gram purity working sample, 16 or more seeds; 1-gram purity working sample, 23 or more seeds; 2-gram purity working sample or larger, 30 or...
A magnetic levitation rotating plate model based on high-Tc superconducting technology
NASA Astrophysics Data System (ADS)
Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang
2017-09-01
With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.
Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy.
Hsieh, Cho-Shuen; Okuno, Masanari; Hunger, Johannes; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa
2014-07-28
Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface--whereas in bulk water the coupling is homogeneous. For strongly hydrogen-bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near-surface region. For weakly hydrogen-bonded OH groups that absorb around 3500 cm(-1), which are assigned to the outermost, yet hydrogen-bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen-bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Toplis, M. J.; Mizzon, H.; Forni, O.; Monnereau, M.; Barrat, J-A.; Prettyman, T. H.; McSween, H. Y.; McCoy, T. J.; Mittlefehldt, D. W.; De Sanctis, M. C.;
2012-01-01
While the HEDs provide an extremely useful basis for interpreting data from the Dawn mission, there is no guarantee that they provide a complete vision of all possible crustal (and possibly mantle) lithologies that are exposed at the surface of Vesta. With this in mind, an alternative approach is to identify plausible bulk compositions and use mass-balance and geochemical modelling to predict possible internal structures and crust/mantle compositions and mineralogies. While such models must be consistent with known HED samples, this approach has the potential to extend predictions to thermodynamically plausible rock types that are not necessarily present in the HED collection. Nine chondritic bulk compositions are considered (CI, CV, CO, CM, H, L, LL, EH, EL). For each, relative proportions and densities of the core, mantle, and crust are quantified. This calculation is complicated by the fact that iron may occur in metallic form (in the core) and/or in oxidized form (in the mantle and crust). However, considering that the basaltic crust has the composition of Juvinas and assuming that this crust is in thermodynamic equilibrium with the residual mantle, it is possible to calculate a single solution to this problem for a given bulk composition. Of the nine bulk compositions tested, solutions corresponding to CI and LL groups predicted a negative metal fraction and were not considered further. Solutions for enstatite chondrites imply significant oxidation relative to the starting materials and these solutions too are considered unlikely. For the remaining bulk compositions, the relative proportion of crust to bulk silicate is typically in the range 15 to 20% corresponding to crustal thicknesses of 15 to 20 km for a porosity-free Vesta-sized body. The mantle is predicted to be largely dominated by olivine (greater than 85%) for carbonaceous chondrites, but to be a roughly equal mixture of olivine and pyroxene for ordinary chondrite precursors. All bulk compositions have a significant core, but the relative proportions of metal and sulphide can be widely different. Using these data, total core size (metal+ sulphide) and average core densities can be calculated, providing a useful reference frame within which to consider geophysical/gravity data of the Dawn mission. Further to these mass-balance calculations, the MELTS thermodynamic calculator has been used to assess to what extent chondritic bulk compositions can produce Juvinas-like liquids at relevant degrees of partial melting/crystallization. This work will refine acceptable bulk compositions and predict the mineralogy and composition of the associated solid and liquid products over wide ranges of partial melting and crystallization, providing a useful and self-consistent reference frame for interpretation of the data from the VIR and GRaND instruments onboard the Dawn spacecraft.
Structure and Bonding of Carbon in Clays from CI Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Garview, Laurence a. J.; Buseck, Peter R.
2005-01-01
Carbonaceous chondrites (CC) contain a diverse suite of C-rich materials. Acid dissolution of these meteorites leaves a C-rich residue with chemical and structural affinities to kerogen. This material has primarily been analyzed in bulk, and much information has been provided regarding functional groups and elemental and isotopic compositions. However, comparatively little work has been done on C in unprocessed meteorites. Studies of CCs suggest a spatial relationship of some C-rich materials with products of aqueous alteration. Recent studies revealed discrete submicronsized, C-rich particles in Tagish Lake and a range of CM2 meteorites. A challenge is to correlate the findings from the bulk acid-residue studies with those of high-spatial resolution-mineralogical and spectroscopic observations of unprocessed meteorites. Hence, the relationship between the C-rich materials in the acid residues and its form and locations in the unprocessed meteorite remains unclear. Here we provide information on the structure and bonding of C associated with clays in CI carbonaceous chondrites. Additional information is included in the original extended abstract.
Hu, Ying; Ren, Jie; Peng, Zhao; Umana, Arnoldo A; Le, Ha; Danilova, Tatiana; Fu, Junjie; Wang, Haiyan; Robertson, Alison; Hulbert, Scot H; White, Frank F; Liu, Sanzhen
2018-01-01
Goss's wilt (GW) of maize is caused by the Gram-positive bacterium Clavibacter michiganensis subsp. nebraskensis (Cmn) and has spread in recent years throughout the Great Plains, posing a threat to production. The genetic basis of plant resistance is unknown. Here, a simple method for quantifying disease symptoms was developed and used to select cohorts of highly resistant and highly susceptible lines known as extreme phenotypes (XP). Copy number variation (CNV) analyses using whole genome sequences of bulked XP revealed 141 genes containing CNV between the two XP groups. The CNV genes include the previously identified common rust resistant locus rp1 . Multiple Rp1 accessions with distinct rp1 haplotypes in an otherwise susceptible accession exhibited hypersensitive responses upon inoculation. GW provides an excellent system for the genetic dissection of diseases caused by closely related subspecies of C. michiganesis . Further work will facilitate breeding strategies to control GW and provide needed insight into the resistance mechanism of important related diseases such as bacterial canker of tomato and bacterial ring rot of potato.
Experimental investigation of fire propagation in single live shrubs
Jing Li; Shankar Mahalingam; David R. Weise
2017-01-01
This work focuses broadly on individual, live shrubs and, more specifically, it examines bulk density in chaparral and its combined effects with wind and ignition location on the resulting fire behaviour. Empirical functions to predict bulk density as a function of height for 4-year-old chaparral were developed for two typical species of shrub fuels in southern...
NASA Astrophysics Data System (ADS)
Häberlen, Oliver D.; Chung, Sai-Cheong; Stener, Mauro; Rösch, Notker
1997-03-01
A series of gold clusters spanning the size range from Au6 through Au147 (with diameters from 0.7 to 1.7 nm) in icosahedral, octahedral, and cuboctahedral structure has been theoretically investigated by means of a scalar relativistic all-electron density functional method. One of the main objectives of this work was to analyze the convergence of cluster properties toward the corresponding bulk metal values and to compare the results obtained for the local density approximation (LDA) to those for a generalized gradient approximation (GGA) to the exchange-correlation functional. The average gold-gold distance in the clusters increases with their nuclearity and correlates essentially linearly with the average coordination number in the clusters. An extrapolation to the bulk coordination of 12 yields a gold-gold distance of 289 pm in LDA, very close to the experimental bulk value of 288 pm, while the extrapolated GGA gold-gold distance is 297 pm. The cluster cohesive energy varies linearly with the inverse of the calculated cluster radius, indicating that the surface-to-volume ratio is the primary determinant of the convergence of this quantity toward bulk. The extrapolated LDA binding energy per atom, 4.7 eV, overestimates the experimental bulk value of 3.8 eV, while the GGA value, 3.2 eV, underestimates the experiment by almost the same amount. The calculated ionization potentials and electron affinities of the clusters may be related to the metallic droplet model, although deviations due to the electronic shell structure are noticeable. The GGA extrapolation to bulk values yields 4.8 and 4.9 eV for the ionization potential and the electron affinity, respectively, remarkably close to the experimental polycrystalline work function of bulk gold, 5.1 eV. Gold 4f core level binding energies were calculated for sites with bulk coordination and for different surface sites. The core level shifts for the surface sites are all positive and distinguish among the corner, edge, and face-centered sites; sites in the first subsurface layer show still small positive shifts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi
In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less
NASA Astrophysics Data System (ADS)
Gao, Da; Ray, Asok
2007-03-01
The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and anti-ferromagnetic configurations via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of both bulk and the (0001) surface of dhcp Am with the 5f electrons primarily localized. Our results show that magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Quantum size effects are found to be more pronounced in work functions than in surface energies. *This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy and the Welch Foundation, Houston, Texas.
Thermal hysteresis and electrocaloric effect in Ba1-xZrxTiO3
NASA Astrophysics Data System (ADS)
Zhang, Yingtang
2018-04-01
Samples of lead-free Ba(ZrxTi1-x)O3 bulk and thick film were fabricated using solid state reaction and tape - casting technique, respectively. A comprehensive investigation of dielectric, ferroelectric, and electrocaloric properties of these samples has been carried out. The results show that there is a dielectric relaxation behavior in the thick film Meantime, the "re-entrant relaxor behavior" and thermal hysteresis are observed in the bulk. Moreover, the electrocaloric effects are observed in the thick film and the bulk. The peak values of ΔTEC of the bulk and the thick film are 2.78 K and 0.37 K, respectively. This work is beneficial for realizing high efficiency and environmentally friendly cooling technology.
125 GeV Higgs boson mass from 5D gauge-Higgs unification
NASA Astrophysics Data System (ADS)
Carson, Jason; Okada, Nobuchika
2018-03-01
In the context of a simple gauge-Higgs unification (GHU) scenario based on the gauge group SU(3)×U(1)^' in a 5D flat space-time, we investigate the possibility of reproducing the observed Higgs boson mass of around 125 GeV. We introduce bulk fermion multiplets with a bulk mass and a (half-)periodic boundary condition. In our analysis, we adopt a low-energy effective theoretical approach of the GHU scenario, where the running Higgs quartic coupling is required to vanish at the compactification scale. Under this "gauge-Higgs condition," we investigate the renormalization group evolution of the Higgs quartic coupling and find a relation between the bulk mass and the compactification scale so as to reproduce the 125 GeV Higgs boson mass. Through quantum corrections at the one-loop level, the bulk fermions contribute to the Higgs boson production and decay processes and deviate the Higgs boson signal strengths at the Large Hadron Collider experiments from the Standard Model (SM) predictions. Employing the current experimental data that show that the Higgs boson signal strengths for a variety of Higgs decay modes are consistent with the SM predictions, we obtain lower mass bounds on the lightest mode of the bulk fermions to be around 1 TeV.
Study of the ink-paper interaction by image analysis: surface and bulk inspection
NASA Astrophysics Data System (ADS)
Fiadeiro, Paulo T.; de O. Mendes, António; M. Ramos, Ana M.; L. de Sousa, Sónia C.
2013-11-01
In this work, two optical systems previously designed and implemented by our research team, were used to enable the surface and bulk inspection of the ink-paper interaction by image analysis. Basically, the first system works by ejecting micro-liter ink drops onto the papers surface while monitoring the event under three different views over time. The second system is used for sectioning the paper samples through their thickness and to simultaneously acquire images of the ink penetration of each section cut. In the performed experiments, three black inks of different brands and a common copy paper were chosen, used, and tested with the two developed optical systems. Both qualitative and quantitative analyses were carried out at the surface level and in the bulk of the paper. In terms of conclusions, it was shown that the three tested ink-paper combinations revealed very distinct characteristics.
Perry, Nicola H.; Ishihara, Tatsumi
2016-01-01
Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic), and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS) with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance. PMID:28773978
Analysis of bulk arrival queueing system with batch size dependent service and working vacation
NASA Astrophysics Data System (ADS)
Niranjan, S. P.; Indhira, K.; Chandrasekaran, V. M.
2018-04-01
This paper concentrates on single server bulk arrival queue system with batch size dependent service and working vacation. The server provides service in two service modes depending upon the queue length. The server provides single service if the queue length is at least `a'. On the other hand the server provides fixed batch service if the queue length is at least `k' (k > a). Batch service is provided with some fixed batch size `k'. After completion of service if the queue length is less than `a' then the server leaves for working vacation. During working vacation customers are served with lower service rate than the regular service rate. Service during working vacation also contains two service modes. For the proposed model probability generating function of the queue length at an arbitrary time will be obtained by using supplementary variable technique. Some performance measures will also be presented with suitable numerical illustrations.
NASA Astrophysics Data System (ADS)
Makovníková, Jarmila; Širáň, Miloš; Houšková, Beata; Pálka, Boris; Jones, Arwyn
2017-10-01
Soil bulk density is one of the main direct indicators of soil health, and is an important aspect of models for determining agroecosystem services potential. By way of applying multi-regression methods, we have created a distributed prediction of soil bulk density used subsequently for topsoil carbon stock estimation. The soil data used for this study were from the Slovakian partial monitoring system-soil database. In our work, two models of soil bulk density in an equilibrium state, with different combinations of input parameters (soil particle size distribution and soil organic carbon content in %), have been created, and subsequently validated using a data set from 15 principal sampling sites of Slovakian partial monitoring system-soil, that were different from those used to generate the bulk density equations. We have made a comparison of measured bulk density data and data calculated by the pedotransfer equations against soil bulk density calculated according to equations recommended by Joint Research Centre Sustainable Resources for Europe. The differences between measured soil bulk density and the model values vary from -0.144 to 0.135 g cm-3 in the verification data set. Furthermore, all models based on pedotransfer functions give moderately lower values. The soil bulk density model was then applied to generate a first approximation of soil bulk density map for Slovakia using texture information from 17 523 sampling sites, and was subsequently utilised for topsoil organic carbon estimation.
High-speed data duplication/data distribution: An adjunct to the mass storage equation
NASA Technical Reports Server (NTRS)
Howard, Kevin
1993-01-01
The term 'mass storage' invokes the image of large on-site disk and tape farms which contain huge quantities of low- to medium-access data. Although the cost of such bulk storage is recognized, the cost of the bulk distribution of this data rarely is given much attention. Mass data distribution becomes an even more acute problem if the bulk data is part of a national or international system. If the bulk data distribution is to travel from one large data center to another large data center then fiber-optic cables or the use of satellite channels is feasible. However, if the distribution must be disseminated from a central site to a number of much smaller, and, perhaps varying sites, then cost prohibits the use of fiber-optic cable or satellite communication. Given these cost constraints much of the bulk distribution of data will continue to be disseminated via inexpensive magnetic tape using the various next day postal service options. For non-transmitted bulk data, our working hypotheses are that the desired duplication efficiency of the total bulk data should be established before selecting any particular data duplication system; and, that the data duplication algorithm should be determined before any bulk data duplication method is selected.
Kang, Yijun; Hao, Yangyang; Xia, Dan; Shen, Min; Li, Qing; Hu, Jian
2017-07-01
It is important to understand the dynamics of tetracycline-resistant bacteria (TRB) and tetracycline resistance genes (TRGs) in bulk and rhizosphere soils for evaluating the spread of TRGs from pig manure to human. In this work, a greenhouse experiment was conducted to investigate the difference in abundance of TRB, tetracycline-resistant Escherichia coli (TRE), tetracycline-resistant Pseudomonas spp. (TRP), and TRGs between bulk and cucumber rhizosphere soils. The application of pig manure resulted in the long-term persistence of TRB, TRE, TRP, and TRGs in bulk soil and rhizosphere of cucumber for at least 65 days. Pig manure application dose was the major driving force in altering the abundances of TRB and TRE, whereas TRP was disturbed mainly by compartment (bulk soil or rhizosphere). Both TRE and the percentage of TRE in bulk and rhizosphere soils increased linearly with an increase in dose of pig manure. The exponential relationships between pig manure dose and TRP along with TRP percentage were also noted. There were significant differences in the relative abundances of TRGs between bulk and cucumber rhizosphere soils, suggesting the use of pig manure exerted a more lasting impact on the spread of TRGs in the rhizosphere than in the bulk soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastero-Gil, Mar; Cerezo, Rafael; Berera, Arjun
2012-11-01
The effects of bulk viscosity are examined for inflationary dynamics in which dissipation and thermalization are present. A complete stability analysis is done for the background inflaton evolution equations, which includes both inflaton dissipation and radiation bulk viscous effects. Three representative approaches of bulk viscous irreversible thermodynamics are analyzed: the Eckart noncausal theory, the linear and causal theory of Israel-Stewart and a more recent nonlinear and causal bulk viscous theory. It is found that the causal theories allow for larger bulk viscosities before encountering an instability in comparison to the noncausal Eckart theory. It is also shown that the causalmore » theories tend to suppress the radiation production due to bulk viscous pressure, because of the presence of relaxation effects implicit in these theories. Bulk viscosity coefficients derived from quantum field theory are applied to warm inflation model building and an analysis is made of the effects to the duration of inflation. The treatment of bulk pressure would also be relevant to the reheating phase after inflation in cold inflation dynamics and during the radiation dominated regime, although very little work in both areas has been done; the methodology developed in this paper could be extended to apply to these other problems.« less
Physico-mechanical characteristics of commercially available bulk-fill composites.
Leprince, Julian G; Palin, William M; Vanacker, Julie; Sabbagh, Joseph; Devaux, Jacques; Leloup, Gaetane
2014-08-01
Bulk-fill composites have emerged, arguably, as a new "class" of resin-based composites, which are claimed to enable restoration in thick layers, up to 4mm. The objective of this work was to compare, under optimal curing conditions, the physico-mechanical properties of most currently available bulk-fill composites to those of two conventional composite materials chosen as references, one highly filled and one flowable "nano-hybrid" composite. Tetric EvoCeram Bulk Fill (Ivoclar-Vivadent), Venus Bulk Fill (Heraeus-Kulzer), SDR (Dentsply), X-tra Fil (VOCO), X-tra Base (VOCO), Sonic Fill (Kerr), Filtek Bulk Fill (3M-Espe), Xenius (GC) were compared to the two reference materials. The materials were light-cured for 40s in a 2mm×2mm×25mm Teflon mould. Degree of conversion was measured by Raman spectroscopy, Elastic modulus and flexural strength were evaluated by three point bending, surface hardness using Vickers microindentation before and after 24h ethanol storage, and filler weight content by thermogravimetric analysis. The ratio of surface hardness before and after ethanol storage was considered as an evaluation of polymer softening. Data were analyzed by one-way ANOVA and post hoc Tukey's test (p=0.05). The mechanical properties of the bulk-fill composites were mostly lower compared with the conventional high viscosity material, and, at best, comparable to the conventional flowable composite. Linear correlations of the mechanical properties investigated were poor with degree of conversion (0.09
Exploring the bulk in AdS /CFT : A covariant approach
NASA Astrophysics Data System (ADS)
Engelhardt, Netta
2017-03-01
I propose a general, covariant way of defining when one region is "deeper in the bulk" than another. This definition is formulated outside of an event horizon (or in the absence thereof) in generic geometries; it may be applied to both points and surfaces, and it may be used to compare the depth of bulk points or surfaces relative to a particular boundary subregion or relative to the entire boundary. Using the recently proposed "light-cone cut" formalism, the comparative depth between two bulk points can be determined from the singularity structure of Lorentzian correlators in the dual field theory. I prove that, by this definition, causal wedges of progressively larger regions probe monotonically deeper in the bulk. The definition furthermore matches expectations in pure AdS and in static AdS black holes with isotropic spatial slices, where a well-defined holographic coordinate exists. In terms of holographic renormalization group flow, this new definition of bulk depth makes contact with coarse graining over both large distances and long time scales.
Setyan, Ari; Sauvain, Jean-Jacques; Guillemin, Michel; Riediker, Michael; Demirdjian, Benjamin; Rossi, Michel J
2010-12-17
The complex chemical and physical nature of combustion and secondary organic aerosols (SOAs) in general precludes the complete characterization of both bulk and interfacial components. The bulk composition reveals the history of the growth process and therefore the source region, whereas the interface controls--to a large extent--the interaction with gases, biological membranes, and solid supports. We summarize the development of a soft interrogation technique, using heterogeneous chemistry, for the interfacial functional groups of selected probe gases [N(CH(3))(3), NH(2)OH, CF(3)COOH, HCl, O(3), NO(2)] of different reactivity. The technique reveals the identity and density of surface functional groups. Examples include acidic and basic sites, olefinic and polycyclic aromatic hydrocarbon (PAH) sites, and partially and completely oxidized surface sites. We report on the surface composition and oxidation states of laboratory-generated aerosols and of aerosols sampled in several bus depots. In the latter case, the biomarker 8-hydroxy-2'-deoxyguanosine, signaling oxidative stress caused by aerosol exposure, was isolated. The increase in biomarker levels over a working day is correlated with the surface density N(i)(O3) of olefinic and/or PAH sites obtained from O(3) uptakes as well as with the initial uptake coefficient, γ(0), of five probe gases used in the field. This correlation with γ(0) suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.
Rhenium-osmium systematics of calcium-aluminium-rich inclusions in carbonaceous chondrites
Becker, H.; Morgan, J.W.; Walker, R.J.; MacPherson, G.J.; Grossman, J.N.
2001-01-01
The Re-Os isotopic systematics of calcium-aluminium-rich inclusions (CAIs) in chondrites were investigated in order to shed light on the behavior of the Re-Os system in bulk chondrites, and to constrain the timing of chemical fractionation in primitive chondrites. CAIs with relatively unfractionated rare earth element (REE) patterns (groups I, III, V, VI) define a narrow range of 187Re/188Os (0.3764-0.4443) and 187Os/188Os (0.12599-0.12717), and high but variable Re and Os abundances (3209-41,820 ppb Os). In contrast, CAIs that show depletions in highly refractory elements and strongly fractionated REE patterns (group II) also show a much larger range in 187Re/188Os (0.409-0.535) and 187Os/188Os (0.12695-0.13770), and greater than an order of magnitude lower Re and Os abundances than other groups (e.g., 75.7-680.2 ppb Os). Sixteen bulk CAIs and CAI splits plot within analytical uncertainty of a 4558 Ga reference isochron, as is expected for materials of this antiquity. Eight samples, however, plot off the isochron. Several possible reasons for these deviations are discussed. Data for multiple splits of one CAI indicate that the nonisochronous behavior for at least this CAI is the result of Re-Os reequilibration at approximately 1.6 Ga. Thus, the most likely explanation for the deviations of most of the nonisochronous CAIs is late-stage open-system behavior of Re and Os in the asteroidal environment. The 187Os/188Os-Os systematics of CAIs are consistent with previous models that indicate group II CAIs are mixtures of components that lost the bulk of their highly refractory elements in a previous condensation event and a minor second component that provided refractory elements at chondritic relative proportions. The high Re/Os of group II CAIs relative to other CAIs and chondrite bulk rocks may have been caused by variable mobilization of Re and Os during medium- to low-temperature parent body alteration ??4.5 Ga ago. This model is favored over nebular models, which pose several difficulties. The narrow range of 187Os/188Os in group I, III, V, and VI bulk CAIs, and the agreement with 187Os/188Os of whole rock carbonaceous chondrites suggest that on a bulk inclusion scale, secondary alteration only modestly fractionated Re/Os in these CAIs. The average of 187Os/188Os for group I, III, V, and VI CAIs is indistinguishable from average CI chondrites, indicating a modern solar system value for 187Os/188Os of 0.12650, corresponding to a 187Re/188Os of 0.3964. Copyright ?? 2001 Elsevier Science Ltd.
Zhang, X; Turcheniuk, K; Zusmann, B; Benson, J; Nelson, S; Luo, S; Magasinski, A; Yushin, G
2018-05-24
In this work, we report a novel, one-step, inexpensive and environmentally friendly synthesis of Cu nanostructures by means of chemical de-alloying of bulk Cu-Ca alloys in aqueous solutions. By controlling the synthesis conditions, we tune the morphology of the nanostructured Cu from nanoporous Cu to copper oxide nanowires.
Facilities Management Guide for Asbestos and Lead
2004-11-01
equipment such as HEPA filtered power tools, portable welding exhaust systems, and paint removal equipment when work disturbs lead. Do not dry sweep ...sampling and analysis of [______] paint bulk and wipe samples by atomic absorption spectrophotometry (AA) or anodic stripping voltametry (ASV...analysis. e. All bulk (destructive) collected for lead shall be analyzed by atomic absorption spectrophotometry (AA) or anodic stripping voltametry
Reversible ultrafast melting in bulk CdSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wenzhi; Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712; He, Feng
2016-02-07
In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm{sup 2}, ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe.
Fabrication and RF characterization of zinc oxide based Film Bulk Acoustic Resonator
NASA Astrophysics Data System (ADS)
Patel, Raju; Bansal, Deepak; Agrawal, Vimal Kumar; Rangra, Kamaljit; Boolchandani, Dharmendar
2018-06-01
This work reports fabrication and characterization of Film Bulk Acoustic Resonator (FBAR) to improve the performance characteristics for RF filter and sensing application. Zinc oxide as a piezoelectric (PZE) material was deposited on an aluminum bottom electrode using an RF magnetron sputtering, at room temperature, and gold as top electrode for the resonator. Tetramethyl ammonium hydroxide (TMAH) setup was used for bulk silicon etching to make back side cavity to confine the acoustic signals. The transmission characteristics show that the FBARs have a central frequency at 1.77 GHz with a return loss of -10.7 dB.
Laser-Compton photon radiography for nondestructive test of bulk materials
NASA Astrophysics Data System (ADS)
Toyokawa, Hiroyuki; Ohgaki, Hideaki; Kudo, Katshuhisa; Takeda, Naoto; Mikado, Tomohisa; Yamada, Kawakatsu
2001-12-01
Experimental results of transmission photon radiography of bulk materials using the laser-Compton photon beam in the energy range of 2-20 MeV are given. The purpose of this work is to demonstrate the effectiveness and to survey a potential need and a technical limit of the present method for industrial application, such as nondestructive test of bulk materials. Several radiographs of metals, ceramics, and concrete were measured with the present method. Position resolution of the system was measured with using 10 MeV photon beam and slit. It was less than 1 mm.
Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C
2013-01-01
Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV-visible and three-dimensional excitation-emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV(250 nm)) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.
Koop, G; Dik, N; Nielen, M; Lipman, L J A
2010-06-01
The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC (Fossomatic 5000, Foss, Hillerød, Denmark) and TBC (BactoScan FC 150, Foss) were measured. Staphylococcal count was correlated to SCC (r=0.40), TBC (r=0.51), and SPC (r=0.53). Coliform count was correlated to TBC (r=0.33), but not to any of the other variables. Staphylococcus aureus did not correlate to SCC. The contribution of the staphylococcal count to the SPC was 31%, whereas the coliform count comprised only 1% of the SPC. The agreement of the repeated measurements was low. This study indicates that staphylococci in goat bulk milk are related to SCC and make a significant contribution to SPC. Because of the high variation in bacterial counts, repeated sampling is necessary to draw valid conclusions from bulk milk culturing. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
BDEN: A timesaving computer program for calculating soil bulk density and water content.
Lynn G. Starr; Michael J. Geist
1983-01-01
This paper presents an interactive computer program written in BASIC language that will calculate soil bulk density and moisture percentage by weight and volume. Coarse fragment weights are required. The program will also summarize the resulting data giving mean, standard deviation, and 95-percent confidence interval on one or more groupings of data.
Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties
NASA Astrophysics Data System (ADS)
Toplis, M. J.; Mizzon, H.; Monnereau, M.; Forni, O.; McSween, H. Y.; Mittlefehldt, D. W.; McCoy, T. J.; Prettyman, T. H.; De Sanctis, M. C.; Raymond, C. A.; Russell, C. T.
2013-11-01
Simple mass-balance and thermodynamic constraints are used to illustrate the potential geochemical and geophysical diversity of a fully differentiated Vesta-sized parent body with a eucrite crust (e.g., core size and density, crustal thickness). The results of this analysis are then combined with data from the howardite-eucrite-diogenite (HED) meteorites and the Dawn mission to constrain Vesta's bulk composition. Twelve chondritic compositions are considered, comprising seven carbonaceous, three ordinary, and two enstatite chondrite groups. Our analysis excludes CI and LL compositions as plausible Vesta analogs, as these are predicted to have a negative metal fraction. Second, the MELTS thermodynamic calculator is used to show that the enstatite chondrites, the CV, CK and L-groups cannot produce Juvinas-like liquids, and that even for the other groups, depletion in sodium is necessary to produce liquids of appropriate silica content. This conclusion is consistent with the documented volatile-poor nature of eucrites. Furthermore, carbonaceous chondrites are predicted to have a mantle too rich in olivine to produce typical howardites and to have Fe/Mn ratios generally well in excess of those of the HEDs. On the other hand, an Na-depleted H-chondrite bulk composition is capable of producing Juvinas-like liquids, has a mantle rich enough in pyroxene to produce abundant howardite/diogenite, and has a Fe/Mn ratio compatible with eucrites. In addition, its predicted bulk-silicate density is within 100 kg m-3 of solutions constrained by data of the Dawn mission. However, oxidation state and oxygen isotopes are not perfectly reproduced and it is deduced that bulk Vesta may contain approximately 25% of a CM-like component. Values for the bulk-silicate composition of Vesta and a preliminary phase diagram are proposed.
Nogueira, Douglas Willian; Maluf, Wilson Roberto; Dos Reis Figueira, Antonia; Maciel, Gabriel Mascarenhas; Gomes, Luiz Antonio Augusto; Benavente, Cesar Augusto Ticona
2011-10-01
The aim was to assess heterosis in a set of 16 summer-squash hybrids, and evaluate the combining capacity of the respective parental lines, which differed as to the degree of parthenocarpy and resistance to PRSV-W (Papaya Ringspot Virus-Watermelon strain). The hybrids were obtained using a partial diallel cross design (4 × 4). The lines of parental group I were 1 = ABX-037G-77-03-05-01-01-bulk, 2 = ABX-037G-77-03-05-03-10-bulk, 3 = ABX-037G-77-03-05-01-04-bulk and 4 = ABX-037G-77-03-05-05-01-bulk, and of group II, 1' = ABX-037G-77-03-05-04-08-bulk, 2' = ABX-037G-77-03-05-02-11-bulk, 3' = Clarice and 4' = Caserta. The 16 hybrids and eight parental lines were evaluated for PRSV-W resistance, parthenocarpic expression and yield in randomized complete-block designs, with three replications. Parthenocarpy and the resistance to PRSV-W were rated by means of a scale from 1 to 5, where 1 = non-parthenocarpic or high resistance to PRSV-W, and 5 = parthenocarpic or high susceptibility to PRSV-W. Both additive and non-additive gene effects were important in the expression of parthenocarpy and resistance to PRSV-W. Whereas estimates of heterosis in parthenocarpy usually tended towards a higher degree, resistance to PRSV-W was towards higher susceptibility. At least one F(1) hybrid was identified with a satisfactory degree of parthenocarpy, resistance to PRSV-W and high fruit-yield.
Nogueira, Douglas Willian; Maluf, Wilson Roberto; dos Reis Figueira, Antonia; Maciel, Gabriel Mascarenhas; Gomes, Luiz Antonio Augusto; Benavente, Cesar Augusto Ticona
2011-01-01
The aim was to assess heterosis in a set of 16 summer-squash hybrids, and evaluate the combining capacity of the respective parental lines, which differed as to the degree of parthenocarpy and resistance to PRSV-W (Papaya Ringspot Virus-Watermelon strain). The hybrids were obtained using a partial diallel cross design (4 × 4). The lines of parental group I were 1 = ABX-037G-77-03-05-01-01-bulk, 2 = ABX-037G-77-03-05-03-10-bulk, 3 = ABX-037G-77-03-05-01-04-bulk and 4 = ABX-037G-77-03-05-05-01-bulk, and of group II, 1′ = ABX-037G-77-03-05-04-08-bulk, 2′ = ABX-037G-77-03-05-02-11-bulk, 3′ = Clarice and 4′ = Caserta. The 16 hybrids and eight parental lines were evaluated for PRSV-W resistance, parthenocarpic expression and yield in randomized complete-block designs, with three replications. Parthenocarpy and the resistance to PRSV-W were rated by means of a scale from 1 to 5, where 1 = non-parthenocarpic or high resistance to PRSV-W, and 5 = parthenocarpic or high susceptibility to PRSV-W. Both additive and non-additive gene effects were important in the expression of parthenocarpy and resistance to PRSV-W. Whereas estimates of heterosis in parthenocarpy usually tended towards a higher degree, resistance to PRSV-W was towards higher susceptibility. At least one F1 hybrid was identified with a satisfactory degree of parthenocarpy, resistance to PRSV-W and high fruit-yield. PMID:22215966
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, A.J.; Hutchings, R.B.; Turnbull, A.
1993-09-01
The enhanced corrosion fatigue crack growth rates of low alloy steels cathodically protected in marine environments results from absorbed hydrogen atoms. Hydrogen atoms are generated at the crack tip, crack walls and the external surface of the specimen (bulk charging). In previous work, Turnbull and Saenz de Santa Maria developed a model to predict the rate of generation of hydrogen atoms at the tips of fatigue cracks for steels cathodically polarized in marine environments. The main prediction from this work was that the external surface of the specimen can be the dominant source of hydrogen atoms at potentials more negativemore » than about [minus]900 mV (SCE), at a cyclic frequency of 0.1 Hz and a stress ratio of 0.5. The relative importance of bulk charging depends on the specific test conditions and is influenced by the applied potential, bulk chemistry, cyclic frequency, specimen thickness, temperature and use of coatings. Since laboratory test times are usually short in relation to the time required for hydrogen transport measured crack growth rates may be lower than those occurring in practice, for which there is sufficient time for full hydrogen charging. The purpose of this study is to verify experimentally the importance of bulk charging. Since the sensitivity of cracking to variations in hydrogen concentration will be material dependent a high strength steel was selected in this initial study because of its sensitivity to hydrogen. This will enable validation of the basic premise that bulk charging can be important, prior to more extensive studies using lower strength alloys.« less
Yasa, E; Arslan, H; Yasa, B; Akcay, M; Alsancak, M; Hatirli, H
2017-10-01
To evaluate the effect of various materials as intra-orifice barriers on the force required fracture roots. One hundred-thirty five mandibular premolars were decoronated and prepared up to size #40. The root canals were filled and randomly divided into two control and seven experimental groups (n = 15), as follows: Positive control group (the intra-orifice barrier cavity was not prepared), negative control group (the intra-orifice barrier cavity was prepared, but not filled), filling using glass ionomer cement, nano-hybrid composite resin, short fiber-reinforced composite, bulk-fill flowable composite, MTA Angelus, Micro Mega MTA or Biodentine. A fracture strength test was performed, and the data were analyzed using one-way ANOVA and Tukey's post hoc tests. Nano-hybrid composite, short fiber-reinforced composite, bulk-fill flow able composite, and glass ionomer cement increased the force required fracture the roots compared to the positive and negative control groups (P < 0.05). While MTA groups did not increase the force required fracture the roots compared to the control groups, Biodentine increased significantly. Within the limitations of the present study, the use of nano-hybrid composite, short fiber-reinforced composite, bulk-fill flowable composite, and glass ionomer cement as an intra-orifice barrier may be useful in reinforcing roots. MTA placement (MTA Angelus or Micro Mega MTA) did not significantly increase the fracture resistance of endodontically treated roots compared to the control groups, however Biodentine did.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luan, Qingbin; Ni, Zhenyi; Zhu, Tiejun
2014-12-15
Technologically important low-resistivity bulk Si has been usually produced by the traditional Czochralski growth method. We now explore a novel method to obtain low-resistivity bulk Si by hot-pressing B- and P-hyperdoped Si nanocrystals (NCs). In this work bulk Si with the resistivity as low as ∼ 0.8 (40) mΩ•cm has been produced by hot pressing P (B)-hyperdoped Si NCs. The dopant type is found to make a difference for the sintering of Si NCs during the hot pressing. Bulk Si hot-pressed from P-hyperdoped Si NCs is more compact than that hot-pressed from B-hyperdoped Si NCs when the hot-pressing temperature ismore » the same. This leads to the fact that P is more effectively activated to produce free carriers than B in the hot-pressed bulk Si. Compared with the dopant concentration, the hot-pressing temperature more significantly affects the structural and electrical properties of hot-pressed bulk Si. With the increase of the hot-pressing temperature the density of hot-pressed bulk Si increases. The highest carrier concentration (lowest resistivity) of bulk Si hot-pressed from B- or P-hyperdoped Si NCs is obtained at the highest hot-pressing temperature of 1050 °C. The mobility of carriers in the hot-pressed bulk Si is low (≤ ∼ 30 cm{sup -2}V{sup -1}s{sup -1}) mainly due to the scattering of carriers induced by structural defects such as pores.« less
NASA Astrophysics Data System (ADS)
Kay, Bernard S.; Ortíz, L.
2014-05-01
We discuss the relationship between the bulk-boundary correspondence in Rehren's algebraic holography (and in other `fixed-background', QFT-based, approaches to holography) and in mainstream string-theoretic `Maldacena AdS/CFT'. Especially, we contrast the understanding of black-hole entropy from the point of view of QFT in curved spacetime—in the framework of 't Hooft's `brick wall' model—with the understanding based on Maldacena AdS/CFT. We show that the brick-wall modification of a Klein-Gordon field in the Hartle-Hawking-Israel state on dimensional Schwarzschild AdS has a well-defined boundary limit with the same temperature and entropy as the brick-wall-modified bulk theory. One of our main purposes is to point out a close connection, for general AdS/CFT situations, between the puzzle raised by Arnsdorf and Smolin regarding the relationship between Rehren's algebraic holography and mainstream AdS/CFT and the puzzle embodied in the `complementarity principle' proposed by Mukohyama and Israel in their work on the brick-wall approach to black hole entropy. Working on the assumption that similar results will hold for bulk QFT other than the Klein-Gordon field and for Schwarzschild AdS in other dimensions, and recalling the first author's proposed resolution to the Mukohyama-Israel puzzle based on his `matter-gravity entanglement hypothesis', we argue that, in Maldacena AdS/CFT, the algebra of the boundary CFT is isomorphic only to a proper subalgebra of the bulk algebra, albeit (at non-zero temperature) the (GNS) Hilbert spaces of bulk and boundary theories are still the `same'—the total bulk state being pure, while the boundary state is mixed (thermal). We also argue from the finiteness of its boundary (and hence, on our assumptions, also bulk) entropy at finite temperature, that the Rehren dual of the Maldacena boundary CFT cannot itself be a QFT and must, instead, presumably be something like a string theory.
The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells
NASA Astrophysics Data System (ADS)
Zou, Yunlong; Holmes, Russell
2015-03-01
Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.
X-Ray Absorption Spectroscopy of Electrochemically Generated Species
1993-02-01
that is a modification of our previously reported design (17) with reticulated vitreous carbon (RVC) as the working electrode. A peristaltic pump...and a flowing analyte stream. A packed carbon -bed bulk electrolysis cell generates the desired metal oxidation state. Completa oxidation and...packed carbon -bed bulk electrolysis cell generates the desired metal oxidation state. The system consists of a closed loop of electrolyte solution
A bulk localized state and new holographic renormalization group flow in 3D spin-3 gravity
NASA Astrophysics Data System (ADS)
Nakayama, Ryuichi; Suzuki, Tomotaka
2018-04-01
We construct a localized state of a scalar field in 3D spin-3 gravity. 3D spin-3 gravity is thought to be holographically dual to W3-extended CFT on a boundary at infinity. It is known that while W3 algebra is a nonlinear algebra, in the limit of large central charge c a linear finite-dimensional subalgebra generated by Wn (n = 0,±1,±2) and Ln (n = 0,±1) is singled out. The localized state is constructed in terms of these generators. To write down an equation of motion for a scalar field which is satisfied by this localized state, it is necessary to introduce new variables for an internal space α±, β±, γ, in addition to ordinary coordinates x± and y. The higher-dimensional space, which combines the bulk space-time with the “internal space,” which is an analog of superspace in supersymmetric theory, is introduced. The “physical bulk space-time” is a 3D hypersurface with constant α±, β± and γ embedded in this space. We will work in Poincaré coordinates of AdS space and consider W-quasi-primary operators Φh(x+) with a conformal weight h in the boundary and study two and three point functions of W-quasi-primary operators transformed as eix+L‑1heβ+W‑1hΦh(0)e‑β+W‑1he‑ix+L‑1h. Here, Lnh and Wnh are sl(3,R) generators in the hyperbolic basis for Poincaré coordinates. It is shown that in the β+ →∞ limit, the conformal weight changes to a new value h‧ = h/2. This may be regarded as a Renormalization Group (RG) flow. It is argued that this RG flow will be triggered by terms ΔS ∝ β+W ‑1h + β‑W¯ ‑1h added to the action.
New chairman takes helm at Climate Change Panel
NASA Astrophysics Data System (ADS)
Showstack, Randy
An Indian industrial engineer and economist who supports the Kyoto Protocol, and who has sharply criticized the administration of George W. Bush on the climate change issue for not doing enough to curb greenhouse gas emissions, won the first-ever contested election for chairman of the Intergovernmental Panel on Climate Change (IPCC) during a meeting on 19 April.Rajendra Pachauri is the first representative from a developing country to chair the IPCC, a panel of about 2,500 experts on a wide range of areas related to climate change. The IPCC was established in 1988 by the World Meteorological Organization and the United Nations Environment Programme. In total, the IPCC currently includes 192 member states. Although the bulk of the IPCC's work is conducted by three technical working groups, the chairman plays a key role in facilitating the overall process of the IPCC, organizing the scientific debate within the IPCC, and serving as chief spokesman.
Chemical and biological work-related risks across occupations in Europe: a review.
Montano, Diego
2014-01-01
Work-related health inequalities are determined to some extent by an unequal exposure to chemical and biological risk factors of disease. Although their potential economic burden in the European Union (EU-25) might be substantial, comprehensive reviews focusing on the distribution of these risks across occupational groups are limited. Thus, the main objective of this review is to provide a synopsis of the exposure to chemical and biological hazards across occupational groups. In addition, main industrial applications of hazardous substances are identified and some epidemiological evidence is discussed regarding societal costs and incidence rates of work-related diseases. Available lists of carcinogens, sensitisers, mutagens, reprotoxic substances and biological hazards were consulted. For each work-related hazard the main industrial application was identified in order to assess which ISCO occupational groups may be associated with direct exposure. Where available, information on annual tonnage production, risk assessment of the substances and pathogens, and other relevant data were collected and reported. Altogether 308 chemical and biological hazards were identified which may account to at least 693 direct exposures. These hazards concentrate on the following major occupational groups: technicians (ISCO 3), operators (ISCO 8), agricultural workers (ISCO 6) and workers in elementary occupations (ISCO 9). Common industrial applications associated with increased exposure rates relate among others to: (1) production or application of pigments, resins, cutting fluids, adhesives, pesticides and cleaning products, (2) production of rubber, plastics, textiles, pharmaceuticals and cosmetics, and (3) in agriculture, metallurgy and food processing industry, Societal costs of the unequal distribution of chemical and biological hazards across occupations depend on the corresponding work-related diseases and may range from 2900 EUR to 126000 EUR per case/year. Risk of exposure to chemical and biological risks and work-related disease incidence are highly concentrated on four occupational groups. The unequal burden of exposure across occupations is an important contributing factor leading to health inequalities in society. The bulk of societal costs, however, are actually being borne by the workers themselves. There is an urgent need of taking into account the health impact of production processes and services on workers' health.
Chemical and biological work-related risks across occupations in Europe: a review
2014-01-01
Background Work-related health inequalities are determined to some extent by an unequal exposure to chemical and biological risk factors of disease. Although their potential economic burden in the European Union (EU-25) might be substantial, comprehensive reviews focusing on the distribution of these risks across occupational groups are limited. Thus, the main objective of this review is to provide a synopsis of the exposure to chemical and biological hazards across occupational groups. In addition, main industrial applications of hazardous substances are identified and some epidemiological evidence is discussed regarding societal costs and incidence rates of work-related diseases. Methods Available lists of carcinogens, sensitisers, mutagens, reprotoxic substances and biological hazards were consulted. For each work-related hazard the main industrial application was identified in order to assess which ISCO occupational groups may be associated with direct exposure. Where available, information on annual tonnage production, risk assessment of the substances and pathogens, and other relevant data were collected and reported. Results Altogether 308 chemical and biological hazards were identified which may account to at least 693 direct exposures. These hazards concentrate on the following major occupational groups: technicians (ISCO 3), operators (ISCO 8), agricultural workers (ISCO 6) and workers in elementary occupations (ISCO 9). Common industrial applications associated with increased exposure rates relate among others to: (1) production or application of pigments, resins, cutting fluids, adhesives, pesticides and cleaning products, (2) production of rubber, plastics, textiles, pharmaceuticals and cosmetics, and (3) in agriculture, metallurgy and food processing industry, Societal costs of the unequal distribution of chemical and biological hazards across occupations depend on the corresponding work-related diseases and may range from 2900 EUR to 126000 EUR per case/year. Conclusions Risk of exposure to chemical and biological risks and work-related disease incidence are highly concentrated on four occupational groups. The unequal burden of exposure across occupations is an important contributing factor leading to health inequalities in society. The bulk of societal costs, however, are actually being borne by the workers themselves. There is an urgent need of taking into account the health impact of production processes and services on workers’ health. PMID:25071862
Correlated Time-Variation of Asphalt Rheology and Bulk Microstructure
NASA Astrophysics Data System (ADS)
Ramm, Adam; Nazmus, Sakib; Bhasin, Amit; Downer, Michael
We use noncontact optical microscopy and optical scattering in the visible and near-infrared spectrum on Performance Grade (PG) asphalt binder to confirm the existence of microstructures in the bulk. The number of visible microstructures increases linearly as penetration depth of the incident radiation increases, which verifies a uniform volume distribution of microstructures. We use dark field optical scatter in the near-infrared to measure the temperature dependent behavior of the bulk microstructures and compare this behavior with Dynamic Shear Rheometer (DSR) measurements of the bulk complex shear modulus | G* (T) | . The main findings are: (1) After reaching thermal equilibrium, both temperature dependent optical scatter intensity (I (T)) and bulk shear modulus (| G* (T) |) continue to change appreciably for times much greater than thermal equilibration times. (2) The hysteresis behavior during a complete temperature cycle seen in previous work derives from a larger time dependence in the cooling step compared with the heating step. (3) Different binder aging conditions show different thermal time-variations for both I (T) and | G* (T) | .
Single Crystal Synthesis and STM Studies of High Temperature Superconductors
NASA Technical Reports Server (NTRS)
Barrientos, Alfonso
1997-01-01
This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.
Imprinting bulk amorphous alloy at room temperature
Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...
2015-11-13
We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less
Kinematic space for conical defects
NASA Astrophysics Data System (ADS)
Cresswell, Jesse C.; Peet, Amanda W.
2017-11-01
Kinematic space can be used as an intermediate step in the AdS/CFT dictionary and lends itself naturally to the description of diffeomorphism invariant quantities. From the bulk it has been defined as the space of boundary anchored geodesics, and from the boundary as the space of pairs of CFT points. When the bulk is not globally AdS3 the appearance of non-minimal geodesics leads to ambiguities in these definitions. In this work conical defect spacetimes are considered as an example where non-minimal geodesics are common. From the bulk it is found that the conical defect kinematic space can be obtained from the AdS3 kinematic space by the same quotient under which one obtains the defect from AdS3. The resulting kinematic space is one of many equivalent fundamental regions. From the boundary the conical defect kinematic space can be determined by breaking up OPE blocks into contributions from individual bulk geodesics. A duality is established between partial OPE blocks and bulk fields integrated over individual geodesics, minimal or non-minimal.
Sub-second thermoplastic forming of bulk metallic glasses by ultrasonic beating
Ma, Jiang; Liang, Xiong; Wu, Xiaoyu; Liu, Zhiyuan; Gong, Feng
2015-01-01
The work proposed a novel thermoplastic forming approach–the ultrasonic beating forming (UBF) method for bulk metallic glasses (BMGs) in present work. The rapid forming approach can finish the thermoplastic forming of BMGs in less than one second, avoiding the time-dependent crystallization and oxidation to the most extent. Besides, the UBF is also proved to be competent in the fabrication of structures with the length scale ranging from macro scale to nano scale. Our results propose a novel route for the thermoplastic forming of BMGs and have promising applications in the rapid fabrication of macro to nano scale products and devices. PMID:26644149
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, D. M.; Chen, Yan; Mu, Juan
Micro-mechanical behaviors of a Cu 46.5Zr 46.5Al 7 bulk metallic glass composite in the plastic regime were investigated by continuous in situ neutron diffraction during compression. Three stages of the plastic deformation were observed according to the work-hardening rate. Here, the underlying natures of the work hardening, correlating with the lattice/microscopic strain evolution, are revealed for the three stages: (1) the initiation of shear bands, (2) the phase load transferring from the amorphous phase to the B2 phase and (3) the accelerated martensitic transformation and the work hardening of the polycrystalline phases promoted by the rapid propagation of the shearmore » bands.« less
Wang, D. M.; Chen, Yan; Mu, Juan; ...
2018-05-21
Micro-mechanical behaviors of a Cu 46.5Zr 46.5Al 7 bulk metallic glass composite in the plastic regime were investigated by continuous in situ neutron diffraction during compression. Three stages of the plastic deformation were observed according to the work-hardening rate. Here, the underlying natures of the work hardening, correlating with the lattice/microscopic strain evolution, are revealed for the three stages: (1) the initiation of shear bands, (2) the phase load transferring from the amorphous phase to the B2 phase and (3) the accelerated martensitic transformation and the work hardening of the polycrystalline phases promoted by the rapid propagation of the shearmore » bands.« less
Electroosmotic Mixing in Nanochannels
NASA Astrophysics Data System (ADS)
Conlisk, A. T.; Chen, Lei
2004-11-01
Electroosmotic flow in nanochannels is characterized by low Reynolds number in which flow mixing is difficult because of the dominance of molecular diffusion. Previous work shows that heterogenerous surface potential could generate a circulation region within the bulk flow near the surface. But all of this work requires that the ionic species be pairs of ions of equal and opposite valence and the distribution of ions is not considered. In the present work the electroosmotic flow in a rectangular channel with non-uniform zeta potential is examined. A model for the two dimensional electroosmotic flow problem is established. The distributions of potential, velocity and mole fractions are calculated numerically. Vortex formation is observed within the bulk flow near the the region of non-uniform zeta potential which suggests mixing can be induced.
Khan, Safdar N; Toth, Jeffrey M; Gupta, Kavita; Glassman, Steven D; Gupta, Munish C
2014-06-01
We used a nonhuman primate lumbar intertransverse process arthrodesis model to evaluate biological cascade of bone formation using different carrier preparation methods with a single dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) at early time points. To examine early-term/mid-term descriptive histologic and computerized tomographic events in single-level uninstrumented posterolateral nonhuman primate spinal fusions using rhBMP-2/absorbable collagen sponge (ACS) combined with ceramic bulking agents in 3 different configurations. rhBMP-2 on an ACS carrier alone leads to consistent posterolateral lumbar spine fusions in lower-order animals; however, these results have been difficult to replicate in nonhuman primates. Twelve skeletally mature, rhesus macaque monkeys underwent single-level posterolateral arthrodesis at L4-L5. A hydroxyapatite/β-tricalcium phosphate ceramic bulking agent in 3 formulations was used in the treatment groups (n=3). When used, rhBMP-2/ACS at 1.5 mg/cm (3.0 mg rhBMP-2) was combined with 2.5 cm of ceramic bulking agent per side. Animals were euthanized at 4 and 12 weeks postoperative. Computerized tomography scans were performed immediately postoperatively and every 4 weeks until they were euthanized. Sagittal histologic sections were evaluated for bone histogenesis and location, cellular infiltration of the graft/substitute, and bone remodeling activity. Significant histologic differences in the developing fusion appeared between the 3 rhBMP-2/ACS treatment groups at 4 and 12 weeks. At 4 weeks, bone formation appeared to originate at the transverse process and the intertransverse membrane. Cellular infiltration was greatest in granular ceramic groups compared with matrix ceramic group. Minimal to no residual ACS was identified at the early time point. At 12 weeks, marked ceramic remodeling was observed with continued bone formation noted in all carrier groups. At the early time period, histology showed that bone formation appeared to originate at the transverse processes and the intertransverse membrane, indicating that the dorsal muscle bed may not be the only location for bone formation. Histology also showed that the collagen carrier for rhBMP-2 is mostly resorbed by 4 weeks. Our results and previous literature indicate that ceramic bulking agents are needed to provide resistance to compression caused by paraspinal muscles on the fusion bed in the posterolateral environment. Histology showed that ceramic bulking agents may offer long-term scaffolding and a structure to supporting bone formation of the developing fusion mass.
Garoushi, Sufyan K.; Hatem, Marwa; Lassila, Lippo V. J.; Vallittu, Pekka K.
2015-01-01
Abstract Objectives: To determine the marginal microleakage of Class II restorations made with different composite base materials and the static load-bearing capacity of direct composite onlay restorations. Methods: Class II cavities were prepared in 40 extracted molars. They were divided into five groups (n = 8/group) depending on composite base material used (everX Posterior, SDR, Tetric EvoFlow). After Class II restorations were completed, specimens were sectioned mid-sagitally. For each group, sectioned restorations were immersed in dye. Specimens were viewed under a stereo-microscope and the percentage of cavity leakage was calculated. Ten groups of onlay restorations were fabricated (n = 8/group); groups were made with composite base materials (everX Posterior, SDR, Tetric EvoFlow, Gradia Direct LoFlo) and covered by 1 mm layer of conventional (Tetric N-Ceram) or bulk fill (Tetric EvoCeram Bulk Fill) composites. Groups made only from conventional, bulk fill and short fiber composites were used as control. Specimens were statically loaded until fracture. Data were analyzed using ANOVA (p = 0.05). Results: Microleakage of restorations made of plain conventional composite or short fiber composite base material showed statistically (p < 0.05) lower values compared to other groups. ANOVA revealed that onlay restorations made from short fiber-reinforced composite (FRC) as base or plain restoration had statistically significant higher load-bearing capacity (1593 N) (p < 0.05) than other restorations. Conclusion: Restorations combining base of short FRC and surface layer of conventional composite displayed promising performance related to microleakage and load-bearing capacity. PMID:28642894
Large-scale HTS bulks for magnetic application
NASA Astrophysics Data System (ADS)
Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter
2013-01-01
ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.
Colegrove, Eric; Harvey, Steven P.; Yang, Ji -Hui; ...
2017-02-08
Group V dopants may be used for next-generation high-voltage cadmium telluride (CdTe) solar photovoltaics, but fundamental defect energetics and kinetics need to be understood. Here, antimony (Sb) diffusion is studied in single-crystal and polycrystalline CdTe under Cd-rich conditions. Diffusion profiles are determined by dynamic secondary ion mass spectroscopy and analyzed with analytical bulk and grain-boundary diffusion models. Slow bulk and fast grain-boundary diffusion are found. Density functional theory is used to understand formation energy and mechanisms. Lastly, the theory and experimental results create new understanding of group V defect kinetics in CdTe.
Selective cleavage of the C(α)-C(β) linkage in lignin model compounds via Baeyer-Villiger oxidation.
Patil, Nikhil D; Yao, Soledad G; Meier, Mark S; Mobley, Justin K; Crocker, Mark
2015-03-21
Lignin is an amorphous aromatic polymer derived from plants and is a potential source of fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise oxidation of lignin model compounds. Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared several lignin model compounds that possess structures, characteristic reactivity, and linkages closely related to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl groups, followed by Baeyer-Villiger oxidation of the resulting ketones, successfully cleaves the Cα-Cβ linkage in these model compounds.
Chitosan magnetic nanoparticles for drug delivery systems.
Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin
2017-06-01
The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., create a material distortion of income. If the Commissioner determines that the taxpayer's grouping is...-programmable, interactive cathode ray tube computer terminals that vary in price. These terminals all interact... section 954(d)(1)(A)) of a bulk pharmaceutical in Puerto Rico from raw materials. S sold the bulk...
Code of Federal Regulations, 2013 CFR
2013-04-01
..., create a material distortion of income. If the Commissioner determines that the taxpayer's grouping is...-programmable, interactive cathode ray tube computer terminals that vary in price. These terminals all interact... section 954(d)(1)(A)) of a bulk pharmaceutical in Puerto Rico from raw materials. S sold the bulk...
Code of Federal Regulations, 2014 CFR
2014-04-01
..., create a material distortion of income. If the Commissioner determines that the taxpayer's grouping is...-programmable, interactive cathode ray tube computer terminals that vary in price. These terminals all interact... section 954(d)(1)(A)) of a bulk pharmaceutical in Puerto Rico from raw materials. S sold the bulk...
Code of Federal Regulations, 2011 CFR
2011-04-01
..., create a material distortion of income. If the Commissioner determines that the taxpayer's grouping is...-programmable, interactive cathode ray tube computer terminals that vary in price. These terminals all interact... section 954(d)(1)(A)) of a bulk pharmaceutical in Puerto Rico from raw materials. S sold the bulk...
Bass, David; van der Gast, Christopher; Thomson, Serena; Neuhauser, Sigrid; Hilton, Sally; Bending, Gary D.
2018-01-01
Microbial communities closely associated with the rhizosphere can have strong positive and negative impacts on plant health and growth. We used a group-specific amplicon approach to investigate local scale drivers in the diversity and distribution of plasmodiophorids in rhizosphere/root and bulk soil samples from oilseed rape (OSR) and wheat agri-systems. Plasmodiophorids are plant- and stramenopile-associated protists including well known plant pathogens as well as symptomless endobiotic species. We detected 28 plasmodiophorid lineages (OTUs), many of them novel, and showed that plasmodiophorid communities were highly dissimilar and significantly divergent between wheat and OSR rhizospheres and between rhizosphere and bulk soil samples. Bulk soil communities were not significantly different between OSR and wheat systems. Wheat and OSR rhizospheres selected for different plasmodiophorid lineages. An OTU corresponding to Spongospora nasturtii was positively selected in the OSR rhizosphere, as were two genetically distinct OTUs. Two novel lineages related to Sorosphaerula veronicae were significantly associated with wheat rhizosphere samples, indicating unknown plant-protist relationships. We show that group-targeted eDNA approaches to microbial symbiont-host ecology reveal significant novel diversity and enable inference of differential activity and potential interactions between sequence types, as well as their presence. PMID:29503632
Questionable inheritance: What Processes on Planetesimals Mean for the Bulk Composition of the Earth
NASA Astrophysics Data System (ADS)
Elkins-Tanton, L. T.
2015-12-01
Interrogating Earth's interior is limited to indirect means, such as seismic or magnetic fields, and relies heavily on modeling. A large body of literature either attempts to constrain the composition of the deep mantle by mass balancing the Earth with a chondritic composition, or to demonstrate that the Earth does not have a chondritic composition. These models provide predictions for the composition and density of the ultra-low shear wave provinces and for the D" layer, among others, and compare their results to structures resulting from seismic studies. The bulk composition of the Earth, however, remains an open question. We now know that the planets accreted from embryos that were already differentiated. The complexity of processes that occurred on planetesimals and planetary embryos are just beginning to come to light. Heating by radiogenic 26Al likely produced waves of hydration and dehydration in planetesimals. These free fluids may have carried a wide range of volatiles, moving them from the interior to the lid, or even losing them to space. Simultaneously, the first free fluids may have reacted with metals, producing oxides or sulfides. Further heating is required to reduce these to metals and made core formation possible; or perhaps the earliest cores are not fully metallic. These planetesimals and the embryos they were growing into were subjected to a series of impacts. As the work of Asphaug and his group have demonstrated, some of these are accretionary impacts, and some are hit-and-run, or destructive impacts. These destructive impacts may have reduced the thickness of Mercury's mantle, and stripped the mantle off the metal asteroid Psyche. Where, then would the shattered silicates from such collisions go? Asphuag suggests that at least in part they are added to the growing terrestrial planets. If the planetesimals and planetary embryos were compositionally heterogeneous because of interior fluid and magma movement, then the silicates blown off them by impacts would not have a bulk chondritic composition. The growing planets would not then have a bulk chondritic composition. This talk will discuss the possible ramifications of this model and its application to bulk Earth models.
Orchestrating Bulk Data Movement in Grid Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazhkudai, SS
2005-01-25
Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralizedmore » data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.« less
Colton, Caroline
2015-03-01
In 2014, the Australian Capital Territory Civil and Administrative Appeals Tribunal (ACAT) made a finding of professional misconduct against a Canberra general practitioner working in two bulk-billing medical practices established by a corporate medical practice service company, Primary Health Care Limited (Medical Board of Australia v Tausif (Occupational Discipline) [2015] ACAT 4). This column analyses that case, particularly in relation to the ACAT finding that the practitioner's professional misconduct was substantially contributed to by an unsafe system of care, specifically, the failure of Primary Health Care to provide supervision and mentoring for clinicians working at its medical centres. The case highlights the professional pressures carried by general practitioners who practise medicine within the framework of corporate bulk-billing business models. The column also examines the related issue of general practitioner co-payments in Australia and their impact on business models built around doctors purportedly characterised as independent contractors, bulk-billing large numbers of patients each day for short consultations.
Equilibration of a polycation - anionic surfactant mixture at the water/vapor interface.
Akanno, Andrew; Guzmán, Eduardo; Fernández-Peña, Laura; Llamas, Sara; Ortega, Francisco; Rubio, Ramon Gonzalez
2018-06-01
The adsorption of concentrated poly(diallyldimethylammonium chloride) (PDADMAC) - sodium lauryl ether sulfate (SLES) mixtures at the water / vapor interface has been studied by different surface tension techniques and dilational visco-elasticity measurements. This work tries to shed light on the way in which the formation of polyelectrolyte - surfactant complexes in the bulk affects to the interfacial properties of mixtures formed by a polycation and an oppositely charged surfactant. The results are discussed in terms of a two-step adsorption-equilibration of PDADMAC - SLES complexes at the interface, with the initial stages involving the diffusion of kinetically trapped aggregates formed in the bulk to the interface followed by the dissociation and spreading of such aggregates at the interface. This latter process becomes the main contribution to the surface tension decrease. This work helps on the understanding of the most fundamental bases of the physico-chemical behavior of concentrated polyelectrolyte - surfactant mixtures which present complex bulk and interfacial interactions with interest in both basic and applied sciences.
Large Work Function Modulation of Monolayer MoS2 by Ambient Gases.
Lee, Si Young; Kim, Un Jeong; Chung, JaeGwan; Nam, Honggi; Jeong, Hye Yun; Han, Gang Hee; Kim, Hyun; Oh, Hye Min; Lee, Hyangsook; Kim, Hyochul; Roh, Young-Geun; Kim, Jineun; Hwang, Sung Woo; Park, Yeonsang; Lee, Young Hee
2016-06-28
Although two-dimensional monolayer transition-metal dichalcogenides reveal numerous unique features that are inaccessible in bulk materials, their intrinsic properties are often obscured by environmental effects. Among them, work function, which is the energy required to extract an electron from a material to vacuum, is one critical parameter in electronic/optoelectronic devices. Here, we report a large work function modulation in MoS2 via ambient gases. The work function was measured by an in situ Kelvin probe technique and further confirmed by ultraviolet photoemission spectroscopy and theoretical calculations. A measured work function of 4.04 eV in vacuum was converted to 4.47 eV with O2 exposure, which is comparable with a large variation in graphene. The homojunction diode by partially passivating a transistor reveals an ideal junction with an ideality factor of almost one and perfect electrical reversibility. The estimated depletion width obtained from photocurrent mapping was ∼200 nm, which is much narrower than bulk semiconductors.
Intertwining operator realization of non-relativistic holography
NASA Astrophysics Data System (ADS)
Aizawa, N.; Dobrev, V. K.
2010-04-01
We give a group-theoretic interpretation of non-relativistic holography as equivalence between representations of the Schrödinger algebra describing bulk fields and boundary fields. Our main result is the explicit construction of the boundary-to-bulk operators in the framework of representation theory (without specifying any action). Further we show that these operators and the bulk-to-boundary operators are intertwining operators. In analogy to the relativistic case, we show that each bulk field has two boundary fields with conjugated conformal weights. These fields are related by another intertwining operator given by a two-point function on the boundary. Analogously to the relativistic result of Klebanov-Witten we give the conditions when both boundary fields are physical. Finally, we recover in our formalism earlier non-relativistic results for scalar fields by Son and others.
Carvalho, Matheus C; Carneiro, Pedro Bastos de Macedo; Dellatorre, Fernando Gaspar; Gibilisco, Pablo Ezequiel; Sachs, Julian; Eyre, Bradley D
2017-10-01
Little is known about the bulk hydrogen stable isotope composition (δ 2 H) of seaweeds. This study investigated the bulk δ 2 H in several different seaweed species collected from three different beaches in Brazil, Australia, and Argentina. Here, we show that Ulvophyceae (a group of green algae) had lower δ 2 H values (between -94‰ and -130‰) than red algae (Florideophyceae), brown algae (Phaeophyceae), and species from the class Bryopsidophyceae (another group of green algae). Overall the latter three groups of seaweeds had δ 2 H values between -50‰ and -90‰. These findings were similar at the three different geographic locations. Observed differences in δ 2 H values were probably related to differences in hydrogen (H) metabolism among algal groups, also observed in the δ 2 H values of their lipids. The marked difference between the δ 2 H values of Ulvophyecae and those of the other groups could be useful to trace the food source of food webs in coastal rocky shores, to assess the impacts of green tides on coastal ecosystems, and to help clarify aspects of their phylogeny. However, reference materials for seaweed δ 2 H are required before the full potential of using the δ 2 H of seaweeds for ecological studies can be exploited. © 2017 Phycological Society of America.
Volume-energy parameters for heat transfer to supercritical fluids
NASA Technical Reports Server (NTRS)
Kumakawa, A.; Niino, M.; Hendricks, R. C.; Giarratano, P. J.; Arp, V. D.
1986-01-01
Reduced Nusselt numbers of supercritical fluids from different sources were grouped by several volume-energy parameters. A modified bulk expansion parameter was introduced based on a comparative analysis of data scatter. Heat transfer experiments on liquefied methane were conducted under near-critical conditions in order to confirm the usefulness of the parameters. It was experimentally revealed that heat transfer characteristics of near-critical methane are similar to those of hydrogen. It was shown that the modified bulk expansion parameter and the Gibbs-energy parameter grouped the heat transfer data of hydrogen, oxygen and methane including the present data on near-critical methane. It was also indicated that the effects of surface roughness on heat transfer were very important in grouping the data of high Reynolds numbers.
Bulk amorphous steels based on Fe alloys
Lu, ZhaoPing; Liu, Chain T.
2006-05-30
A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.
Fatigue Life Variability in Large Aluminum Forgings with Residual Stress
2011-07-01
been conducted. A detailed finite element analysis of the forge/ quench /coldwork/machine process was performed in order to predict the bulk residual...forge/ quench /coldwork/machine process was performed in order to predict the bulk residual stresses in a fictitious aluminum bulkhead. The residual...continues to develop the capability for computational simulation of the forge, quench , cold work and machining processes. In order to handle the
NASA Astrophysics Data System (ADS)
Chen, Hua; Gan, Wei; Wu, Bao-hua; Wu, Dan; Zhang, Zhen; Wang, Hong-fei
2005-06-01
We report a direct measurement of the orientation of the two CH 3 groups of acetone molecule at the vapor/acetone interface. The interfacial acetone molecule is found well-ordered, with one methyl group points away around 14.4° ± 1.9° and another into the bulk liquid around 102.8° ± 1.9° from the interface normal, and thus the C dbnd O group points into the bulk around 135.8° ± 1.9°. These results directly confirmed the highly ordered and even crystal like interfacial structure of the vapor/acetone interface from previous MD simulation. The general formulation and accurate determination of the orientational parameter D can be used to treat interfaces with complex molecular orientations.
NASA Astrophysics Data System (ADS)
van Hall, Rutger; Cammeraat, Erik
2015-04-01
Agricultural fields have been increasingly abandoned in several regions in Southern Europe. In many cases this leads to natural vegetation succession which may have a direct impact on soil quality,biodiversity and hydrological connectivity. This research aims at getting insight on the effects of natural vegetation succession on the development of soil quality in the Sub-Mediterranean Dragonja catchment in SW Slovenia. This site was chosen due to its uniform geology, geomorphology and soil types. Four different stages of vegetation succession (i.e. field, abandoned field, young forest, semi-mature forest) were selected and sampled on both north-, and south-facing slopes, resulting in 8 treatments for which 6 representative sites were sampled. Samples were analysed on OC and TN content, EC, pH, bulk density, aggregate stability and grain size distribution. To get insight on the changes in biodiversity vegetation records were made distinguishing five different plant functional groups (i.e. juveniles, grasses, herbs, shrubs and trees). Age group (i.e. stage of vegetation succession) significantly influenced the OC and TN content, aggregate stability, bulk density and pH. Directly after abandonment, between age group 0 and 1, OC and TN content, aggregate stability and pH increased significantly and bulk density decreased significantly. OC content was most affected by age group and furthermore significantly correlated to TN content, aggregate stability, bulk density and pH. Regarding biodiversity, there was a significant increase in cover by trees between age group 1 and 2 and a significant decrease between age group 2 and 3. Cover by herbs decreased significantly between age group 1 and 2. The number of different trees and shrubs increased significantly between age group 0 and 1, and the number of different juveniles increased significantly between age group 2 and 3. Another factor significantly influencing the soil's quality is aspect. Although not found for each age group south-facing slopes generally had higher OC and TN content, and higher pH than north-facing slopes. On average OC content was 28% higher and TN content 25% higher on south facing slopes. Aspect did not have a significant influence on the biodiversity although on average vegetation cover is slightly (7%) higher and 16% mores species were found on north facing slopes.
NASA Astrophysics Data System (ADS)
Rose, Derek H.; Viljoen, K. S.; Mulaba-Bafubiandi, Antoine
2018-06-01
Published studies dealing with the process mineralogy of Pt mines on the Bushveld Complex is generally limited to the Western Bushveld. The recognition by mine management that another resource, in addition to the Upper Group 2 (UG2) reef currently being mined at the Two Rivers platinum mine (TRP), is urgently required in order to extend the life of mine, presented an opportunity to conduct such a study on the Eastern Limb of the Bushveld Complex. A process mineralogical investigation was undertaken on ore from the Merensky Reef (MR) and the UG2 at TRP. This was conducted on a suite of geological samples (channel samples) collected from the underground workings, as well as metallurgical samples obtained from the rougher circuits at the concentrator plant during the processing of MR and UG2 ore. The geological and metallurgical samples were analysed for bulk composition and quantitative mineralogy, while the geological samples were also subjected to laboratory-scale milling and flotation tests. This study shows that, although mineralogically distinct, the MR and UG2 behave similarly in terms of metallurgical performance. This holds promise for the proposed blending of MR and UG2 ores at TRP. An evaluation of the bulk rock (ore) Pt/Pd ratio as a possible indicator of the level of hydrothermal alteration of the ore, demonstrates that this may be of use in predicting recovery plant performance.
Solution processing of chalcogenide materials using thiol-amine "alkahest" solvent systems.
McCarthy, Carrie L; Brutchey, Richard L
2017-05-02
Macroelectronics is a major focus in electronics research and is driven by large area applications such as flat panel displays and thin film solar cells. Innovations for these technologies, such as flexible substrates and mass production, will require efficient and affordable semiconductor processing. Low-temperature solution processing offers mild deposition methods, inexpensive processing equipment, and the possibility of high-throughput processing. In recent years, the discovery that binary "alkahest" mixtures of ethylenediamine and short chain thiols possess the ability to dissolve bulk inorganic materials to yield molecular inks has lead to the wide study of such systems and the straightforward recovery of phase pure crystalline chalcogenide thin films upon solution processing and mild annealing of the inks. In this review, we recount the work that has been done toward elucidating the scope of this method for the solution processing of inorganic materials for use in applications such as photovoltaic devices, electrocatalysts, photodetectors, thermoelectrics, and nanocrystal ligand exchange. We also take stock of the wide range of bulk materials that can be used as soluble precursors, and discuss the work that has been done to reveal the nature of the dissolved species. This method has provided a vast toolbox of over 65 bulk precursors, which can be utilized to develop new routes to functional chalcogenide materials. Future studies in this area should work toward a better understanding of the mechanisms involved in the dissolution and recovery of bulk materials, as well as broadening the scope of soluble precursors and recoverable functional materials for innovative applications.
Singhal, Sakshi; Gurtu, Anuraag; Singhal, Anurag; Bansal, Rashmi; Mohan, Sumit
2017-08-01
This study was conducted to assess the effect of different composite materials on the cuspal deflection of premolars restored with bulk placement of resin composite in comparison to horizontal incremental placement and modified tangential incremental placement. The aim of this study was to evaluate the cuspal deflection caused by different composite materials when different insertion techniques were used. Two different composite materials were used that is Tetric N Ceram (Ivoclar Vivadent marketing, India) and SonicFill TM (Kerr Sybron Dental). Forty standardized Mesio-Occluso-Distal (MOD) preparations were prepared on maxillary first premolars. Each group was divided according to composite insertion technique (n=10), as follows: Group I - bulk insertion using Tetric N Ceram, Group II - Horizontal incremental insertion technique using Tetric N Ceram, Group III- Modified tangential incremental technique using Tetric N Ceram, and Group IV- bulk insertion using SonicFill TM . Preparations were acid-etched, and bonded with adhesive resin to provide micro mechanical attachment before restoration using a uniform etching and bonding protocol in all the groups. All groups received the same total photo-polymerization time. Cuspal deflection was measured during the restorative procedure using customized digital micrometer assembly. One-way ANOVA test was applied for the analysis of significant difference between the groups, p-value less than 0.05 was considered statistically significant. The average cuspal deflections for the different groups were as follows: Group I 0.045±0.018, Group II 0.029±0.009, Group III 0.018±0.005 and Group IV 0.017±0.004. The intergroup comparison revealed statistically significant difference. A measurable amount of cuspal deflection was present in all the four studied groups. In general, bulkfill restoration technique with conventional composite showed significantly highest cusp deflection. There were no significant differences in cuspal deflection among sonicFill TM and modified tangential incremental insertion techniques.
Gas selectivity of SILAR grown CdS nano-bulk junction
NASA Astrophysics Data System (ADS)
Jayakrishnan, R.; Nair, Varun G.; Anand, Akhil M.; Venugopal, Meera
2018-03-01
Nano-particles of cadmium sulphide were deposited on cleaned copper substrate by an automated sequential ionic layer adsorption reaction (SILAR) system. The grown nano-bulk junction exhibits Schottky diode behavior. The response of the nano-bulk junction was investigated under oxygen and hydrogen atmospheric conditions. The gas response ratio was found to be 198% for Oxygen and 34% for Hydrogen at room temperature. An increase in the operating temperature of the nano-bulk junction resulted in a decrease in their gas response ratio. A logarithmic dependence on the oxygen partial pressure to the junction response was observed, indicating a Temkin isothermal behavior. Work function measurements using a Kelvin probe demonstrate that the exposure to an oxygen atmosphere fails to effectively separate the charges due to the built-in electric field at the interface. Based on the benefits like simple structure, ease of fabrication and response ratio the studied device is a promising candidate for gas detection applications.
Bulk properties of solution-synthesized chevron-like graphene nanoribbons.
Vo, Timothy H; Shekhirev, Mikhail; Lipatov, Alexey; Korlacki, Rafal A; Sinitskii, Alexander
2014-01-01
Graphene nanoribbons (GNRs) have received a great deal of attention due to their promise for electronic and optoelectronic applications. Several recent studies have focused on the synthesis of GNRs by the bottom-up approaches that could yield very narrow GNRs with atomically precise edges. One type of GNRs that has received a considerable attention is the chevron-like GNR with a very distinct periodic structure. Surface-assisted and solution-based synthetic approaches for the chevron-like GNRs have been developed, but their electronic properties have not been reported yet. In this work, we synthesized chevron-like GNRs in bulk by a solution-based method, characterized them by a number of spectroscopic techniques and measured their bulk conductivity. We demonstrate that solution-synthesized chevron-like GNRs are electrically conductive in bulk, which makes them a potentially promising material for applications in organic electronics and photovoltaics.
NASA Astrophysics Data System (ADS)
Chen, Zhiliang; Yang, Guang; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Ma, Junjie; Wang, Hao; Fang, Guojia
2017-05-01
Perovskite solar cells have developed rapidly in recent years as the third generation solar cells. In spite of the great improvement achieved, there still exist some issues such as undesired hysteresis and indispensable high temperature process. In this work, bulk heterojunction perovskite-phenyl-C61-butyric acid methyl ester solar cells have been prepared to diminish hysteresis using a facile two step spin-coating method. Furthermore, high quality tin oxide films are fabricated using pulse laser deposition technique at room temperature without any annealing procedure. The as fabricated tin oxide film is successfully applied in bulk heterojunction perovskite solar cells as a hole blocking layer. Bulk heterojunction devices based on room temperature tin oxide exhibit almost hysteresis-free characteristics with power conversion efficiency of 17.29% and 14.0% on rigid and flexible substrates, respectively.
Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure
Wang, Q.; Yang, Y.; Jiang, H.; Liu, C. T.; Ruan, H. H.; Lu, J.
2014-01-01
Over centuries, structural glasses have been deemed as a strong yet inherently ‘brittle’ material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2–4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses. PMID:24755683
Fluoride Glasses for Bulk Optical and Waveguide Applications
1986-01-01
optics or for ultra low-loss OWG fibers . A new glass family was discovered and explored under this research program. This new fluoride composition...optical fibers for infrared transmission can be met using this new glass . During the course of this study, the CLAP glasses were identified, patented...the work is to use such glasses for bulk IR optics or for ultra-low-loss OWG fibers , further characterization was required. It remained to establish
Jeaidi, Zaid Al
2016-01-01
To assess the fracture resistance of endodontically treated teeth with a novel Zirconia (Zr) nano-particle filler containing bulk fill resin composite. Forty-five freshly extracted maxillary central incisors were endodontically treated using conventional step back preparation and warm lateral condensation filling. Post space preparation was performed using drills compatible for fiber posts (Rely X Fiber Post) on all teeth (n=45), and posts were cemented using self etch resin cement (Rely X Unicem). Samples were equally divided into three groups (n=15) based on the type of core materials, ZirconCore (ZC) MulticCore Flow (MC) and Luxacore Dual (LC). All specimens were mounted in acrylic resin and loads were applied (Universal testing machine) at 130° to the long axis of teeth, at a crosshead speed of 0.5 mm/min until failure. The loads and the site at which the failures occurred were recorded. Data obtained was tabulated and analyzed using a statistical program. The means and standard deviations were compared using ANOVA and Multiple comparisons test. The lowest and highest failure loads were shown by groups LC (18.741±3.02) and MC (25.16±3.30) respectively. Group LC (18.741±3.02) showed significantly lower failure loads compared to groups ZC (23.02±4.21) and MC (25.16±3.30) (p<0.01). However groups ZC (23.02±4.21) and MC (25.16±3.30) showed comparable failure loads (p=0.23). Fracture resistance of endodontically treated teeth restored with Zr filler containing bulk fill composite cores was comparable to teeth restored with conventional Zr free bulk fill composites. Zr filled bulk fill composites are recommended for restoration of endodontically treated teeth as they show comparable fracture resistance to conventional composite materials with less catastrophic failures.
Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses
Qin, Chunling; Zhao, Weimin; Inoue, Akihisa
2011-01-01
This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs). In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni) and Cu–Zr–Ag–Al–(Nb) bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS) analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance. PMID:21731441
NASA Astrophysics Data System (ADS)
Lu, Jin-Cheng; Chen, Xiao-Dong; Deng, Wei-Min; Chen, Min; Dong, Jian-Wen
2018-07-01
The valley is a flexible degree of freedom for light manipulation in photonic systems. In this work, we introduce the valley concept in magnetic photonic crystals with broken inversion symmetry. One-way propagation of bulk states is demonstrated by exploiting the pseudo-gap where bulk states only exist at one single valley. In addition, the transition between Hall and valley-Hall nontrivial topological phases is also studied in terms of the competition between the broken inversion and time-reversal symmetries. At the photonic boundary between two topologically distinct photonic crystals, we illustrate the one-way propagation of edge states and demonstrate their robustness against defects.
How did the Lunar Magma Ocean crystallize?
NASA Astrophysics Data System (ADS)
Davenport, J.; Neal, C. R.
2012-12-01
It is generally accepted that the lunar crust and at least the uppermost (500 km) mantle was formed by crystallization of a magma ocean. How the magma ocean cooled and crystallized is still under debate. Parameters such as bulk composition, lunar magma ocean (LMO) crystallization method (fractional vs. equilibrium), depth of the LMO, and time for LMO solidification (effects of tidal heating mechanisms, insulating crustal lid, etc.) are still under debate. Neal (2001, JGR 106, 27865-27885) argues for the presence of garnet in the deep lunar mantle via compositional differences between low- and high-Ti mare basalts and volcanic glasses. Neal (2001) suggests that these compositional differences are due to the presence of garnet in the source regions of certain volcanic glass bead groups. As Neal (2001, JGR 106, 27865-27885) points out, determining if there is garnet in the lunar mantle is important in determining if the LMO was a "whole-Moon" event or if it was limited to certain areas. In the latter case, garnet would have been preserved in the lunar mantle and would have been used in the source material for some of the volcanic glasses. High-pressure experimental work concludes that with the right T-P conditions (2.5-4.5 GPa and 1675-1800° C) there could be a garnet-bearing pyroxene rich protolith at ~500 km depth. This also has significant implications for the bulk Al2O3 composition of the initial bulk Moon. If the LMO was not global, the volcanic glass beads that show evidence of garnet in their sources were formed from the deep, primitive lunar mantle, it begs the questions how was the non-LMO regions of the Moon formed and what was it's bulk composition? To try to answer these questions, it is necessary to thoroughly model the evolution of the LMO and then use that work to model the sources and formation of mare basalts, the volcanic glass beads, and other regions in question. To begin to answer these questions, we developed a scenario we have termed reverse LMO modeling. Geochemical compositions such as KREEP, ur-KREEP and FAN will be run backwards through various LMO models that have been proposed in the literature. The concentration of the initial bulk Moon, according to the concentrations of the particular type of rock being used, can be modeled by taking this from 0 percent liquid (PCL; a completely solidified Moon) to 100 PCL. Using the KREEP composition reported by Warren and Wasson (1979, Rev. of Geophysics and Space Physics 17, 73-88), Warren (1988, Proc. 18th LPSC, 233-241) and Warren (1989, LPI Tech. Report 89, 149-153), the Mg numbers (Mg#) for the bulk initial Moon were calculated yielding 0.87, 0.76, and 0.86 respectively. The major element compositions of calculated bulk Moon compositions have elevated Al2O3, FeO, and TiO2, consistent with the presence of garnet in the lunar mantle as well as generating high-Ti basalts. Using these data we can model the petrogenesis of the low- and high-Ti mare basalt and volcanic glass source regions. Furthermore, using remote sensing and the calculated source data we can compare the modeled concentrations of these rocks to where these ranges of concentrations fall on the Moon's surfaces, so that we can constrain the areas where the presence of a magma ocean on the Moon was possible.
Characteristics of amorphous kerogens fractionated from terrigenous sedimentary rocks
NASA Astrophysics Data System (ADS)
Suzuki, Noriyuki
1984-02-01
A preliminary attempt to fractionate amorphous kerogens from terrigenous bulk kerogen by a benzene-water two phase partition method under acidic condition was made. Microscopic observation revealed that amorphous kerogens and structured kerogens were fractionated effectively by this method. Characteristics of the amorphous and structured kerogens fractionated by this method were examined by some chemical analyses and compared with those of the bulk kerogen and humic acid isolated from the same rock sample (Haizume Formation, Pleistocene, Japan). The elemental and infrared (IR) analyses showed that the amorphous kerogen fraction had the highest atomic H/C ratio and the lowest atomic N/C ratio and was the richest in aliphatic structures and carbonyl and carboxyl functional groups. Quantities of fatty acids from the saponification products of each geopolymer were in agreement with the results of elemental and IR analyses. Distribution of the fatty acids was suggestive that more animal lipids participate in the formation of amorphous kerogens because of the abundance of relatively lower molecular weight fatty acids (such as C 16 and C 18 acids) in saponification products of amorphous kerogens. On the other hand, although the amorphous kerogen fraction tends to be rich in aliphatic structures compared with bulk kerogen of the same rock samples, van Krevelen plots of elemental compositions of kerogens from the core samples (Nishiyama Oil Field, Tertiary, Japan) reveal that the amorphous kerogen fraction is not necessarily characterized by markedly high atomic H/C ratio. This was attributed to the oxic environment of deposition and the abundance of biodegraded terrestrial amorphous organic matter in the amorphous kerogen fraction used in this work.
Ab initio investigation of Ti2Al(C,N) solid solutions
NASA Astrophysics Data System (ADS)
Arróyave, Raymundo; Radovic, Miladin
2011-10-01
Mn+1AXn phases (M: early transition metal, A: IIIA- or IVA-group element, X: carbon or nitrogen) are layered ternary compounds that possess both metal- and ceramic-like properties with numerous potential applications in bulk and thin film forms, particularly under high-temperature conditions. In this work, we use the cluster expansion formalism to investigate the energetics of C-N interactions across the entire Ti2AlC-Ti2AlN composition range. It is shown that there is a definite tendency for ordering in the C,N sublattice. However, the molar volume and bulk modulus of the ordered structures found along the Ti2AlC-Ti2AlN composition range show small deviations from the (linear) rule of mixing, indicating that despite the ordering tendencies, the C-N interactions are not strong and the solution becomes disordered at relatively low temperatures. Random solid solutions of Ti2AlC1-xNx are simulated using special quasirandom structures (SQS) with x=0.25, 0.50, and 0.75. The thermodynamic properties of these structures are compared to those of the structures found to belong to the ground state through the cluster expansion approach. It is found that the structural properties of these approximations to random alloys do not deviate significantly from Vegard's law. The trend in the structural parameters of these SQS are found to agree well with available experimental data and the predictions of the bulk modulus suggest a very weak alloying effect—with respect to Vegard's law—on the elastic properties of Ti2AlC1-xNx.
Size, Shape and Impurity Effects on Superconducting critical temperature.
NASA Astrophysics Data System (ADS)
Umeda, Masaki; Kato, Masaru; Sato, Osamu
Bulk superconductors have their own critical temperatures Tc. However, for a nano-structured superconductor, Tc depends on size and shape of the superconductor. Nishizaki showed that the high pressure torsion on bulks of Nb makes Tc higher, because the torsion makes many nano-sized fine grains in the bulks. However the high pressure torsion on bulks of V makes Tc lower, and Nishizaki discussed that the decrease of Tc is caused by impurities in the bulks of V. We studied size, shape, and impurity effects on Tc, by solving the Gor'kov equations, using the finite element method. We found that smaller and narrower superconductors show higher Tc. We found how size and shape affects Tc by studying spacial order parameter distributions and quasi-particle eigen-energies. Also we studied the impurity effects on Tc, and found that Tc decreases with increase of scattering rate by impurities. This work was supported in part of KAKENHI Grant Number JP26400367 and JP16K05460, and program for leading graduate schools of ministry of education, culture, sports, science and technology-Japan.
NASA Astrophysics Data System (ADS)
Pappas, T.; Kanti, P.; Pappas, N.
2016-07-01
In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.
Chen, Weifeng; Wu, Weijing; Zhou, Lei; Xu, Miao; Wang, Lei; Peng, Junbiao
2018-01-01
A semi-analytical extraction method of interface and bulk density of states (DOS) is proposed by using the low-frequency capacitance–voltage characteristics and current–voltage characteristics of indium zinc oxide thin-film transistors (IZO TFTs). In this work, an exponential potential distribution along the depth direction of the active layer is assumed and confirmed by numerical solution of Poisson’s equation followed by device simulation. The interface DOS is obtained as a superposition of constant deep states and exponential tail states. Moreover, it is shown that the bulk DOS may be represented by the superposition of exponential deep states and exponential tail states. The extracted values of bulk DOS and interface DOS are further verified by comparing the measured transfer and output characteristics of IZO TFTs with the simulation results by a 2D device simulator ATLAS (Silvaco). As a result, the proposed extraction method may be useful for diagnosing and characterising metal oxide TFTs since it is fast to extract interface and bulk density of states (DOS) simultaneously. PMID:29534492
Kim, Beom Seo; Rhim, Jun-Won; Kim, Beomyoung; Kim, Changyoung; Park, Seung Ryong
2016-01-01
Monolayer MX2 (M = Mo, W; X = S, Se) has recently been drawn much attention due to their application possibility as well as the novel valley physics. On the other hand, it is also important to understand the electronic structures of bulk MX2 for material applications since it is very challenging to grow large size uniform and sustainable monolayer MX2. We performed angle-resolved photoemission spectroscopy and tight binding calculations to investigate the electronic structures of bulk 2H-MX2. We could extract all the important electronic band parameters for bulk 2H-MX2, including the band gap, direct band gap size at K (-K) point and spin splitting size. Upon comparing the parameters for bulk 2H-MX2 (our work) with mono- and multi-layer MX2 (published), we found that stacked layers, substrates for thin films, and carrier concentration significantly affect the parameters, especially the band gap size. The origin of such effect is discussed in terms of the screening effect. PMID:27805019
A bulk viscosity approach for shock capturing on unstructured grids
NASA Astrophysics Data System (ADS)
Shoeybi, Mohammad; Larsson, Nils Johan; Ham, Frank; Moin, Parviz
2008-11-01
The bulk viscosity approach for shock capturing (Cook and Cabot, JCP, 2005) augments the bulk part of the viscous stress tensor. The intention is to capture shock waves without dissipating turbulent structures. The present work extends and modifies this method for unstructured grids. We propose a method that properly scales the bulk viscosity with the grid spacing normal to the shock for unstructured grid for which the shock is not necessarily aligned with the grid. The magnitude of the strain rate tensor used in the original formulation is replaced with the dilatation, which appears to be more appropriate in the vortical turbulent flow regions (Mani et al., 2008). The original form of the model is found to have an impact on dilatational motions away form the shock wave, which is eliminated by a proposed localization of the bulk viscosity. Finally, to allow for grid adaptation around shock waves, an explicit/implicit time advancement scheme has been developed that adaptively identifies the stiff regions. The full method has been verified with several test cases, including 2D shock-vorticity entropy interaction, homogenous isotropic turbulence, and turbulent flow over a cylinder.
NASA Astrophysics Data System (ADS)
N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.
A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.
Stability of surface nanobubbles
NASA Astrophysics Data System (ADS)
Maheshwari, Shantanu; van der Hoef, Martin; Zhang, Xuehua; Lohse, Detlef
2015-11-01
We have studied the stability and dissolution of surface nanobubbles on the chemical heterogenous surface by performing Molecular Dynamics (MD) simulations of binary mixture consists of Lennard-Jones (LJ) particles. Recently our group has derived the exact expression for equilibrium contact angle of surface nanobubbles as a function of oversaturation of the gas concentration in bulk liquid and the lateral length of bubble. It has been showed that the contact line pinning and the oversaturation of gas concentration in bulk liquid is crucial in the stability of surface nanobubbles. Our simulations showed that how pinning of the three-phase contact line on the chemical heterogenous surface lead to the stability of the nanobubble. We have calculated the equilibrium contact angle by varying the gas concentration in bulk liquid and the lateral length of the bubble. Our results showed that the equilibrium contact angle follows the expression derived analytically by our group. We have also studied the bubble dissolution dynamics and showed the ''stick-jump'' mechanism which was also observed experimentally in case of dissolution of nanodrops.
Work function of bulk-insulating topological insulator Bi{sub 2–x}Sb{sub x}Te{sub 3–y}Se{sub y}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takane, Daichi; Souma, Seigo; Center for Spintronics Research Network, Tohoku University, Sendai 980-8577
Recent discovery of bulk insulating topological insulator (TI) Bi{sub 2–x}Sb{sub x}Te{sub 3–y}Se{sub y} paved a pathway toward practical device application of TIs. For realizing TI-based devices, it is necessary to contact TIs with a metal. Since the band-bending at the interface dominates the character of devices, knowledge of TIs' work function is of essential importance. We have determined the compositional dependence of the work function in Bi{sub 2–x}Sb{sub x}Te{sub 3–y}Se{sub y} by high-resolution photoemission spectroscopy. The obtained work-function values (4.95–5.20 eV) track the energy shift of the surface chemical potential seen by angle-resolved photoemission spectroscopy. The present result serves as amore » useful guide for developing TI-based electronic devices.« less
Factors affecting marginal integrity of class II bulk-fill composite resin restorations
Savadi Oskoee, Siavash; Bahari, Mahmoud; Jafari Navimipour, Elmira; Ajami, Amir Ahmad; Ghiasvand, Negar; Savadi Oskoee, Ayda
2017-01-01
Background. Bulk-fill composite resins are a new type of resin-based composite resins, claimed to have the capacity to be placed in thick layers, up to 4 mm. This study was carried out to evaluate factors affecting gap formation in Cl II cavities restored using the bulk-fill technique. Methods. A total of 60 third molars were used in this study. Two Cl II cavities were prepared in each tooth, one on the mesial aspect 1 mm coronal to the CEJ and one on the distal aspect 1 mm apical to the CEJ. The teeth were divided into 4 groups: A: The cavities were restored using the bulk-fill technique with Filtek P90 composite resin and its adhesive system and light-cured with quartz tungsten halogen (QTH) light-curing unit. B: The cavities were restored similar to that in group A but light-cured with an LED light-curing unit. C: The cavities were restored using the bulk-fill technique with X-tra Fil composite resin and Clearfil SE Bond adhesive system and light-cured with a QTH curing unit. D: The cavities were restored similar to that in group C but light-cured with an LED light-curing unit. The gaps were examined under a stereomicroscope at ×60. Data were analyzed with General Linear Model test. In cases of statistical significance (P<0.05), post hoc Bonferroni test was used for further analyses. Results. The light-curing unit type had no effect on gap formation. However, the results were significant in relation to the composite resin type and margin location (P<0.001). The cumulative effects of light-curing unit*gingival margin and light-curing unit*composite resin type were not significant; however, the cumulative effect of composite rein type*gingival margin was significant (P=0.04) Conclusion. X-tra Fil composite exhibited smaller gaps compared with Filtek P90 composite with both light-curing units. Both composite resins exhibited smaller gaps at enamel margins. PMID:28748051
Forced reptation revealed by chain pull-out simulations.
Bulacu, Monica; van der Giessen, Erik
2009-08-14
We report computation results obtained from extensive molecular dynamics simulations of tensile disentanglement of connector chains placed at the interface between two polymer bulks. Each polymer chain (either belonging to the bulks or being a connector) is treated as a sequence of beads interconnected by springs, using a coarse-grained representation based on the Kremer-Grest model, extended to account for stiffness along the chain backbone. Forced reptation of the connectors was observed during their disentanglement from the bulk chains. The extracted chains are clearly seen following an imaginary "tube" inside the bulks as they are pulled out. The entropic and energetic responses to the external deformation are investigated by monitoring the connector conformation tensor and the modifications of the internal parameters (bonds, bending, and torsion angles along the connectors). The work needed to separate the two bulks is computed from the tensile force induced during debonding in the connector chains. The value of the work reached at total separation is considered as the debonding energy G. The most important parameters controlling G are the length (n) of the chains placed at the interface and their areal density. Our in silico experiments are performed at relatively low areal density and are disregarded if chain scission occurs during disentanglement. As predicted by the reptation theory, for this pure pull-out regime, the power exponent from the scaling G proportional, variant n(a) is a approximately 2, irrespective of chain stiffness. Small variations are found when the connectors form different number of stitches at the interface, or when their length is randomly distributed in between the two bulks. Our results show that the effects of the number of stitches and of the randomness of the block lengths have to be considered together, especially when comparing with experiments where they cannot be controlled rigorously. These results may be significant for industrial applications, such reinforcement of polymer-polymer adhesion by connector chains, when incorporated as constitutive laws at higher time/length scales in finite element calculations.
Popovic, M. P.; Chen, K.; Shen, H.; ...
2018-03-29
At elevated temperatures, heavy liquid metals and their alloys are known to create a highly corrosive environment that causes irreversible degradation of most iron-based materials. In this paper, it has been found that an appropriate concentration of oxygen in the liquid alloy can significantly reduce this issue by creating a passivating oxide scale that controls diffusion, especially if Al is present in Fe-based materials (by Al-oxide formation). However, the increase of the temperature and of oxygen content in liquid phase leads to the increase of oxygen diffusion into bulk, and to promotion of the internal Al oxidation. This can causemore » a strain in bulk near the oxide layer, due either to mismatch between the thermal expansion coefficients of the oxides and bulk material, or to misfit of the crystal lattices (bulk vs. oxides). This work investigates the strain induced into proximal bulk of a Fe-Cr-Al alloy by oxide layers formation in liquid lead-bismuth eutectic utilizing synchrotron X-ray Laue microdiffraction. Finally, it is found that internal oxidation is the most likely cause for the strain in the metal rather than thermal expansion mismatch as a two-layer problem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovic, M. P.; Chen, K.; Shen, H.
At elevated temperatures, heavy liquid metals and their alloys are known to create a highly corrosive environment that causes irreversible degradation of most iron-based materials. In this paper, it has been found that an appropriate concentration of oxygen in the liquid alloy can significantly reduce this issue by creating a passivating oxide scale that controls diffusion, especially if Al is present in Fe-based materials (by Al-oxide formation). However, the increase of the temperature and of oxygen content in liquid phase leads to the increase of oxygen diffusion into bulk, and to promotion of the internal Al oxidation. This can causemore » a strain in bulk near the oxide layer, due either to mismatch between the thermal expansion coefficients of the oxides and bulk material, or to misfit of the crystal lattices (bulk vs. oxides). This work investigates the strain induced into proximal bulk of a Fe-Cr-Al alloy by oxide layers formation in liquid lead-bismuth eutectic utilizing synchrotron X-ray Laue microdiffraction. Finally, it is found that internal oxidation is the most likely cause for the strain in the metal rather than thermal expansion mismatch as a two-layer problem.« less
Comment on "Horizontal aquifer movement in a theis-theim confined system, by Donald C. Helm
Hsieh, Paul A.; Cooley, Richard L.
1995-01-01
In a recent paper, Helm [1994] presents an analysis of horizontal aquifer movement induced by groundwater withdrawal from a confined aquifer in which fluid and grains are incompressible. The analysis considers the aquifer in isolation (ignoring overlying and underlying strata) and assumes that the aquifer deforms purely in the horizontal direction (with no vertical movement). Helm's solution for grain displacement is obtained through introduction of a quantity known as bulk flux, qb, defined asqb = nvw + (1 - n)vswhere n is porosity, vw is velocity of water, and vs is the velocity of the solid grains. On the basis of the bulk flux concept, Helm develops an explanation for the driving force on the bulk material.It is our view that Helm's analysis is subject to four limitations. First, Helm's assumption of zero vertical displacement is not supported by field observations and could result in over- estimation of radial displacement. Second, in ignoring the role of overlying and underlying strata, Helm's solution does not yield reliable estimates of aquifer deformation. Third, Helm's solution method works only for problems that involve one spatial coordinate (for example, x or r) but does not generally work for problems involving three-dimensional flow and de- formation. Fourth, Helm's explanation of the driving force on the bulk material is faulty for general three-dimensional problems. The purpose of our comment is to discuss these four issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad
Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the usemore » of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.« less
Bi12TiO20 crystallization in a Bi2O3-TiO2-SiO2-Nd2O3 system
NASA Astrophysics Data System (ADS)
Slavov, S.; Jiao, Z.
2018-03-01
Polycrystalline mono-phase bismuth titanate was produced by free cooling from melts heated to 1170 °C. The control over the initial amounts in the starting compositions in the system Bi2O3/TiO2/SiO2/Nd2O3 and over the thermal gradient of the heat process resulted in the formation of specific structures and microstructures of monophase sillenite ceramics. The main phase Bi12TiO20 belongs to the amorphous network groups based on oxides of silicon, bismuth and titanium. In this work, we demonstrated a way to control the crystalline and amorphous phase formation in bulk poly-crystalline materials in the selected system.
NASA Astrophysics Data System (ADS)
Wang, Zi Shuai; Sha, Wei E. I.; Choy, Wallace C. H.
2016-12-01
Modeling the charge-generation process is highly important to understand device physics and optimize power conversion efficiency of bulk-heterojunction organic solar cells (OSCs). Free carriers are generated by both ultrafast exciton delocalization and slow exciton diffusion and dissociation at the heterojunction interface. In this work, we developed a systematic numerical simulation to describe the charge-generation process by a modified drift-diffusion model. The transport, recombination, and collection of free carriers are incorporated to fully capture the device response. The theoretical results match well with the state-of-the-art high-performance organic solar cells. It is demonstrated that the increase of exciton delocalization ratio reduces the energy loss in the exciton diffusion-dissociation process, and thus, significantly improves the device efficiency, especially for the short-circuit current. By changing the exciton delocalization ratio, OSC performances are comprehensively investigated under the conditions of short-circuit and open-circuit. Particularly, bulk recombination dependent fill factor saturation is unveiled and understood. As a fundamental electrical analysis of the delocalization mechanism, our work is important to understand and optimize the high-performance OSCs.
NASA Astrophysics Data System (ADS)
Bonadio, T. G. M.; Sato, F.; Medina, A. N.; Weinand, W. R.; Baesso, M. L.; Lima, W. M.
2013-06-01
In this work, we investigate the bioactivity and structural properties of nanostructured bulk composites that are composed of Nb2O5 and natural hydroxyapatite (HAp) and are produced by mechanical alloying and powder metallurgy. X-ray diffraction and Raman spectroscopy data showed that the milling process followed by a heat treatment at 1000 °C induced chemical reactions along with the formation of the CaNb2O6, PNb9O25 and Ca3(PO4)2 phases. Rietveld refinement indicated significant changes in each phase weight fraction as a function of HAp concentration. These changes influenced the in vitro bioactivity of the material. XRD and FTIR analyses indicated that the composites exhibited bioactivity characteristics by forming a carbonated apatite layer when the composites were immersed in a simulated body fluid. The formed layers had a maximum thickness of 13 μm, as measured by confocal Raman spectroscopy and as confirmed by scanning electron microscopy. The results of this work suggest that the tested bulk composites are promising biomaterials for use in implants.
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2016-03-01
In the production of n-type crystalline silicon solar cells with boron diffused emitters, the formation of a boron rich layer (BRL) is a common phenomenon and is largely responsible for bulk lifetime degradation. The phenomenon of BRL formation during diffusion of boron spin-on dopant and its impact on bulk lifetime degradation are investigated in this work. The BRL formed beneath the borosilicate glass layer has thicknesses varying from 10 nm-150 nm depending on the diffusion conditions. The effective and bulk minority carrier lifetimes, measured with Al2O3 deposited layers and a quinhydron-methanol solution, show that carrier lifetime degradation is proportional to the BRL thicknesses and their surface recombination velocities. The controlled diffusion processes and different oxidation techniques used in this work can partially reduce the BRL thickness and improve carrier lifetime by more than 10%. But for BRL thicknesses higher than 50 nm, different etching techniques further lower the carrier lifetime and the degradation in the device cannot be recovered.
Effect of layer thickness on the elution of bulk-fill composite components.
Rothmund, Lena; Reichl, Franz-Xaver; Hickel, Reinhard; Styllou, Panorea; Styllou, Marianthi; Kehe, Kai; Yang, Yang; Högg, Christof
2017-01-01
An increment layering technique in a thickness of 2mm or less has been the standard to sufficiently convert (co)monomers. Bulk fill resin composites were developed to accelerate the restoration process by enabling up to 4mm thick increments to be cured in a single step. The aim of the present study is to investigate the effect of layer thickness on the elution of components from bulk fill composites. The composites ELS Bulk fill, SDR Bulk fill and Venus Bulkfill were polymerized according to the instruction of the manufacturers. For each composite three groups with four samples each (n=4) were prepared: (1) samples with a layer thickness of 2mm; (2) samples with a layer thickness of 4mm and (3) samples with a layer thickness of 6mm. The samples were eluted in methanol and water for 24h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). A total of 11 different elutable substances have been identified from the investigated composites. Following methacrylates showed an increase of elution at a higher layer thickness: TEGDMA (SDR Bulk fill, Venus Bulk fill), EGDMA (Venus Bulk fill). There was no significant difference in the elution of HEMA regarding the layer thickness. The highest concentration of TEGDMA was 146μg/mL for SDR Bulk fill at a layer thickness of 6mm after 7 d in water. The highest HEMA concentration measured at 108μg/mL was detected in the methanol eluate of Venus Bulk fill after 7 d with a layer thickness of 6mm. A layer thickness of 4mm or more can lead to an increased elution of some bulk fill components, compared to the elution at a layer thickness of 2mm. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Dirac Fermions without bulk backscattering in rhombohedral topological insulators
NASA Astrophysics Data System (ADS)
Mera Acosta, Carlos; Lima, Matheus; Seixas, Leandro; da Silva, Antônio; Fazzio, Adalberto
2015-03-01
The realization of a spintronic device using topological insulators is not trivial, because there are inherent difficulties in achieving the surface transport regime. The majority of 3D topological insulators materials (3DTI) despite of support helical metallic surface states on an insulating bulk, forming topological Dirac fermions protected by the time-reversal symmetry, exhibit electronic scattering channels due to the presence of residual continuous bulk states near the Dirac-point. From ab initio calculations, we studied the microscopic origin of the continuous bulk states in rhombohedral topological insulators materials with the space group D3d 5 (R 3 m) , showing that it is possible to understand the emergence of residual continuous bulk states near the Dirac-point into a six bands effective model, where the breaking of the R3 symmetry beyond the Γ point has an important role in the hybridization of the px, py and pz atomic orbitals. Within these model, the mechanisms known to eliminate the bulk scattering, for instance: the stacking faults (SF), electric field and alloy, generated the similar effect in the effective states of the 3DTI. Finally, we show how the surface electronic transport is modified by perturbations of bulk with SF. We would like to thank the financial support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).
NASA Astrophysics Data System (ADS)
Zhou, Si; Liu, Cheng-Cheng; Zhao, Jijun; Yao, Yugui
2018-03-01
Monolayer group-III monochalcogenides (MX, M = Ga, In; X = S, Se, Te), an emerging category of two-dimensional (2D) semiconductors, hold great promise for electronics, optoelectronics and catalysts. By first-principles calculations, we show that the phonon dispersion and Raman spectra, as well as the electronic and topological properties of monolayer MX can be tuned by oxygen functionalization. Chemisorption of oxygen atoms on one side or both sides of the MX sheet narrows or even closes the band gap, enlarges work function, and significantly reduces the carrier effective mass. More excitingly, InS, InSe, and InTe monolayers with double-side oxygen functionalization are 2D topological insulators with sizeable bulk gap up to 0.21 eV. Their low-energy bands near the Fermi level are dominated by the px and py orbitals of atoms, allowing band engineering via in-plane strains. Our studies provide viable strategy for realizing quantum spin Hall effect in monolayer group-III monochalcogenides at room temperature, and utilizing these novel 2D materials for high-speed and dissipationless transport devices.
NASA Astrophysics Data System (ADS)
Xi, Jianqi; Liu, Bin; Xu, Haixuan; Zhang, Yanwen; Weber, William J.
2018-02-01
Grain boundaries (GBs) are the most abundant structural defects in nanostructured nuclear fuels and play an important role in determining fission product behavior, which further affects the performance of nuclear fuels. In this work, cerium dioxide (CeO2) is used as a surrogate material for mixed oxide fuels to understand gaseous fission product behavior, specifically Xe. First-principles calculations are employed to comprehensively study the behavior of Xe and trap sites for Xe near the Σ 3 (111)/[11 bar0] grain boundary in CeO2, which will provide guidance on overall trends for Xe stability and diffusion at grain boundaries vs in the bulk. Significant segregation behavior of trap sites, regardless of charge states, is observed near the GB. This is mainly ascribed to the local atomic structure near the GB, which results in weaker bond strength and more negative segregation energies. For Xe, however, the segregation profile near the GB is different. Our calculations show that, as the size of trap sites increases, the segregation propensity of Xe is reduced. In addition, under hyper-stoichiometric conditions, the solubility of Xe trapped at the GB is significantly higher than that in the bulk, suggesting higher Xe concentration than that in the bulk. The results of this work demonstrate that the diffusion mechanism of Xe in CeO2 is comparable to that in UO2. The diffusion activation energies of Xe atoms in the Σ 3 GB are lower than that in the bulk CeO2. These results suggest that the diffusivity of Xe atoms is higher along the GB than that in the bulk, which enhances the aggregation of Xe atoms near the GB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahakian, Vatche
Zero modes of the world-sheet spinors of a closed string can source higher order moments of the bulk supergravity fields. In this work, we analyze various configurations of closed strings focusing on the imprints of the quantized spinor vacuum expectation values onto the tails of bulk fields. We identify supersymmetric arrangements for which all multipole charges vanish; while for others, we find that one is left with Neveu-Schwarz-Neveu-Schwarz, and Ramond-Ramond dipole and quadrupole moments. Our analysis is exhaustive with respect to all the bosonic fields of the bulk and to all higher order moments. We comment on the relevance ofmore » these results to entropy computations of hairy black holes of a single charge or more, and to open/closed string duality.« less
Nusselt number and bulk temperature in turbulent Rayleigh-Bénard convection
NASA Astrophysics Data System (ADS)
Bodenschatz, Eberhard; Weiss, Stephan; Shishkina, Olga; International CollaborationTurbulence Research Collaboration
2017-11-01
We present an algorithm to calculate the Nusselt number (Nu) in measurements of the heat transport in turbulent Rayleigh-Bénard convection under general non-Oberbeck-Boussinesq (NOB) conditions. We further critically analyze the different ways to evaluate the dependences of Nu over the Rayleigh number (Ra) and show the sensitivity of these dependences to the reference temperatures in the bulk, top and bottom boundary layers (BLs). Finally we propose a method to predict the bulk temperature and a way to calculate the reference temperatures of the top and bottom BLs and validate them against the Göttingen measurements. The work is supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.
Unexpected significant increase in bulk conductivity of a dielectric arising from charge injection
NASA Astrophysics Data System (ADS)
Wang, Jian-Jun; Bayer, Thorsten J. M.; Wang, Rui; Carter, Jared J.; Randall, Clive A.; Chen, Long-Qing
2017-06-01
Charge injection is a common phenomenon in heterostructures or devices containing metal-insulator interfaces under a voltage bias ranging from dielectric capacitors to electroluminescent and lasing devices. It is generally believed that charge injection only significantly increases the conductivity near the interfacial region or in capacitors with very thin dielectric layers. In this work, the impact of charge injection on bulk conductivity of a 0.5 mm thick Fe-doped SrTiO3 single crystal is investigated with a combination of experimental impedance measurements and computational modelling. It is found that the interfacial charge injection may increase the predicted bulk conductivity of a dielectric by more than one order of magnitude as a consequence of Schottky barrier height lowering.
Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang
2015-01-23
The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.
Dawkins, Karim; Esiobu, Nwadiuto
2018-01-01
Little is known about the rhizosphere microbiome of the Brazilian pepper tree (BP) - a noxious category 1 invasive plant inducing an enormous economic and ecological toll in Florida. Some invasive plants have been shown to drastically change the soil microbiome compared to other native plants. The rhizobacteria community structure of BP, two Florida native plants ( Hamelia patens and Bidens alba ) and bulk soils were characterized across six geographical sites. Although all 19 well-known and 10 poorly described phyla were observed in all plant rhizospheres, BP contained the least total bacterial abundance (OTUs) with a distinct bacteria community structure and clustering patterns differing significantly (pCOA and PERMANOVA) from the natives and bulk soil. The BP rhizosphere community contained the highest overall Proteobacteria diversity (Shannon's diversity 3.25) in spite of a twofold reduction in richness of the Gammaproteobacteria. Remarkably, the invasive BP rhizosphere was highly enriched with Alphaproteobacteria, dominated by Rhizobiales, including Rhodoplanes and Bradyrhizobiaceae. Also, the relative abundance of Spartobacteria under BP rhizosphere was more than twice that of native plants and bulk soil; featuring unique members of the family Chthoniobacteraceae (DA101 genus). The trend was different for the family Pedosphaerae in the phylum Verrucomicrobia where the abundance declined under BP (26%) compared to (33-66%) for the H. patens native plant and bulk soil. BP shared the lowest number of unique phylotypes with bulk soil (146) compared to the other native plants with bulk soil ( B. alba - 222, H. patens - 520) suggestive of its capacity to overcome biotic resistance. Although there were no specific biomarkers found, taken together, our data suggests that the occurrence of key bacteria groups across multiple taxonomic ranks provides a somewhat consistent profile of the invasive BP rhizo-community. Furthermore, based on the observed prevalence of a bacteria group (Spartobacteria - Chthoniobacteraceae - DA101); we propose that they have a possible role in BP biology. Our results emphasize the need to further investigate the potential value of "unique phylotypes" in the rhizosphere relative to bulk soil as an ecological tool for monitoring plant-cover/invasion history; or even detecting exotic plants with invasion tendencies.
Self-assembled pentacenequinone derivative for trace detection of picric acid.
Bhalla, Vandana; Gupta, Ankush; Kumar, Manoj; Rao, D S Shankar; Prasad, S Krishna
2013-02-01
Pentacenequinone derivative 3 forms luminescent supramolecular aggregates both in bulk as well as in solution phase. In bulk phase at high temperature, long-range stacking of columns leads to formation of stable and ordered columnar mesophase. Further, derivative 3 works as sensitive chemosensor for picric acid (PA) and gel-coated paper strips detect PA at nanomolar level and provide a simple, portable, and low-cost method for detection of PA in aqueous solution, vapor phase, and in contact mode.
NASA Technical Reports Server (NTRS)
Burton, S.; Berger, E. L.; Locke, D. R.; Lewis, E. K.
2018-01-01
Amino acids, the building blocks of proteins, have been found to be indigenous in the eight carbonaceous chondrite groups. The abundances, structural, enantiomeric and isotopic compositions of amino acids differ significantly among meteorites of different groups and petrologic types. These results suggest parent-body conditions (thermal or aqueous alteration), mineralogy, and the preservation of amino acids are linked. Previously, elucidating specific relationships between amino acids and mineralogy was not possible because the samples analyzed for amino acids were much larger than the scale at which petrologic heterogeneity is observed (sub mm-scale differences corresponding to sub-mg samples); for example, Pizzarello and coworkers measured amino acid abundances and performed X-ray diffraction (XRD) on several samples of the Murchison meteorite, but these analyses were performed on bulk samples that were 500 mg or larger. Advances in the sensitivity of amino acid measurements by liquid chromatography with fluorescence detection/time-of-flight mass spectrometry (LC-FD/TOF-MS), and application of techniques such as high resolution X-ray diffraction (HR-XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) for mineralogical characterizations have now enabled coordinated analyses on the scale at which mineral heterogeneity is observed. In this work, we have analyzed samples of the Lonewolf Nunataks (LON) 94101 CM2 carbonaceous chondrite. We are investigating the link(s) between parent body processes, mineralogical context, and amino acid compositions in meteorites on bulk samples (approx. 20mg) and mineral separates (< or = 3mg) from several of spatial locations within our allocated samples. Preliminary results of these analyses are presented here.
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2012 CFR
2012-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure discribed in paragraph (d) of this section; (3) Date of the last test made...
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2011 CFR
2011-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure discribed in paragraph (d) of this section; (3) Date of the last test made...
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2013 CFR
2013-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure discribed in paragraph (d) of this section; (3) Date of the last test made...
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2010 CFR
2010-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure discribed in paragraph (d) of this section; (3) Date of the last test made...
46 CFR 153.940 - Standards for marking of cargo hose.
Code of Federal Regulations, 2014 CFR
2014-10-01
... abnormally distort under static liquid pressure at least as great as the recommended working pressure. [CGD... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Marking of... manufacture; (2) Working pressure described in paragraph (d) of this section; (3) Date of the last test made...
Humans are potentially exposed to thousands of anthropogenic chemicals in commerce. Recent work has shown that the bulk of this exposure may occur in near-field indoor environments (e.g., home, school, work, etc.). Advances in suspect screening analyses (SSA) now allow an improve...
Bulk Group-III Nitride Crystal Growth in Supercritical Ammonia-Sodium Solutions
NASA Astrophysics Data System (ADS)
Griffiths, Steven Herbert
Gallium nitride (GaN) and its alloys with indium nitride (InGaN) and aluminum nitride (AlGaN), collectively referred to as Group-III Nitride semiconductors, have enabled white solid-state lighting (SSL) sources and power electronic devices. While these technologies have already made a lasting, positive impact on society, improvements in design and efficiency are anticipated by shifting from heteroepitaxial growth on foreign substrates (such as sapphire, Si, SiC, etc.) to homoepitaxial growth on native, bulk GaN substrates. Bulk GaN has not supplanted foreign substrate materials due to the extreme conditions required to achieve a stoichiometric GaN melt (temperatures and pressures in excess of 2200°C and 6 GPa, respectively). The only method used to produce bulk GaN on an industrial scale is hydride vapor phase epitaxy (HVPE), but the high cost of gaseous precursors and relatively poor crystal quality have limited the adoption of this technology. A solution growth technique known as the ammonothermal method has attracted interest from academia and industry alike for its ability to produce bulk GaN boules of exceedingly high crystal quality. The ammonothermal method employs supercritical ammonia (NH3) solutions to dissolve, transport, and crystallize GaN. However, ammonothermal growth pressures are still relatively high (˜200 MPa), which has thus far prevented the acquisition of fundamental crystal growth knowledge needed to efficiently (i.e. through data-driven approaches) advance the field. This dissertation focused on addressing the gaps in the literature through two studies employing in situ fluid temperature analysis. The first study focused on identifying the solubility of GaN in supercritical NH3-Na solutions. The design and utilization of in situ and ex situ monitoring equipment enabled the first reports of the two-phase nature of supercritical NH3-Na solutions, and of Ga-alloying of Ni-containing autoclave components. The effects of these error sources on the gravimetric determination of GaN solubility were explored in detail. The second study was aimed at correlating autoclave dissolution and growth zone fluid temperatures with bulk GaN crystal growth kinetics, crystal quality, and impurity incorporation. The insights resulting from this analysis include the identification of the barrier between mass transport and surface integration-limited GaN growth regimes, GaN crystal shape evolution with fluid temperature, the sensitivity of (0001)-orientation crystal quality with fluid temperature, and impurity-specific incorporation activated from the dissolution and growth zones of the autoclave. The results of the aforementioned studies motivated a paradigm-shift in ammonothermal growth. To address this need, a fundamentally different crystal growth approach involving isothermal solutions and tailor-made Group-III alloy source materials was developed/demonstrated. This growth method enabled impurity incorporation reduction compared to traditional ammonothermal GaN growth, and the realization of bulk, ternary Group-III Nitride crystals.
NASA Astrophysics Data System (ADS)
Eliëns, I. S.; Ramos, F. B.; Xavier, J. C.; Pereira, R. G.
2016-05-01
We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations. The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk, but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model. For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective field theory are compared with numerical results obtained by time-dependent density matrix renormalization group (tDMRG) for both integrable and nonintegrable critical spin-S chains with S =1 /2 , 1, and 3 /2 .
Tian, Chixia; Lin, Feng; Doeff, Marca M
2018-01-16
Layered lithium transition metal oxides, in particular, NMCs (LiNi x Co y Mn z O 2 ) represent a family of prominent lithium ion battery cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety for electric vehicles and grid storage. Our work has focused on various strategies to improve performance and to understand the limitations to these strategies, which include altering compositions, utilizing cation substitutions, and charging to higher than usual potentials in cells. Understanding the effects of these strategies on surface and bulk behavior and correlating structure-performance relationships advance our understanding of NMC materials. This also provides information relevant to the efficacy of various approaches toward ensuring reliable operation of these materials in batteries intended for demanding traction and grid storage applications. In this Account, we start by comparing NMCs to the isostructural LiCoO 2 cathode, which is widely used in consumer batteries. Effects of changing the metal content (Ni, Mn, Co) upon structure and performance of NMCs are briefly discussed. Our early work on the effects of partial substitution of Al, Fe, and Ti for Co on the electrochemical and bulk structural properties is then covered. The original aim of this work was to reduce the Co content (and thus the raw materials cost) and to determine the effect of the substitutions on the electrochemical and bulk structural properties. More recently, we have turned to the application of synchrotron and advanced microscopy techniques to understand both bulk and surface characteristics of the NMCs. Via nanoscale-to-macroscale spectroscopy and atomically resolved imaging techniques, we were able to determine that the surfaces of NMC undergo heterogeneous reconstruction from a layered structure to rock salt under a variety of conditions. Interestingly, formation of rock salt also occurs under abuse conditions. The surface structural and chemical changes affect the charge distribution, the charge compensation mechanisms, and ultimately, the battery performance. Surface reconstruction, cathode/electrolyte interface layer formation, and oxygen loss are intimately related, making it difficult to disentangle the effects of each of these phenomena. They are driven by the different redox activities of Ni and O on the surface and in the bulk; there is a greater tendency for charge compensation to occur on oxygen anions at particle surfaces rather than on Ni, whereas the Ni in the bulk is more redox active than on the surface. Finally, our latest research efforts are directed toward understanding the thermal properties of NMCs, which is highly relevant to their safety in operating cells.
Bulk locality and quantum error correction in AdS/CFT
NASA Astrophysics Data System (ADS)
Almheiri, Ahmed; Dong, Xi; Harlow, Daniel
2015-04-01
We point out a connection between the emergence of bulk locality in AdS/CFT and the theory of quantum error correction. Bulk notions such as Bogoliubov transformations, location in the radial direction, and the holographic entropy bound all have natural CFT interpretations in the language of quantum error correction. We also show that the question of whether bulk operator reconstruction works only in the causal wedge or all the way to the extremal surface is related to the question of whether or not the quantum error correcting code realized by AdS/CFT is also a "quantum secret sharing scheme", and suggest a tensor network calculation that may settle the issue. Interestingly, the version of quantum error correction which is best suited to our analysis is the somewhat nonstandard "operator algebra quantum error correction" of Beny, Kempf, and Kribs. Our proposal gives a precise formulation of the idea of "subregion-subregion" duality in AdS/CFT, and clarifies the limits of its validity.
NASA Astrophysics Data System (ADS)
Wu, Mingching; Fang, Weileun
2006-02-01
This work attempts to integrate poly-Si thin film and single-crystal-silicon (SCS) structures in a monolithic process. The process integrated multi-depth DRIE (deep reactive ion etching), trench-refilled molding, a two poly-Si MUMPs process and (1 1 1) Si bulk micromachining to accomplish multi-thickness and multi-depth structures for superior micro-optical devices. In application, a SCS scanning mirror driven by self-aligned vertical comb-drive actuators was demonstrated. The stiffness of the mirror was significantly increased by thick SCS structures. The thin poly-Si film served as flexible torsional springs and electrical routings. The depth difference of the vertical comb electrodes was tuned by DRIE to increase the devices' stroke. Finally, a large moving space was available after the bulk Si etching. In summary, the present fabrication process, named (1 1 1) MOSBE (molded surface-micromachining and bulk etching release on (1 1 1) Si substrate), can further integrate with the MUMPs devices to establish a more powerful platform.
Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity
NASA Astrophysics Data System (ADS)
Liu, Liping; Yu, Miao; Lin, Hao; Foty, Ramsey
2017-01-01
Measuring mechanical properties of cells or cell aggregates has proven to be an involved process due to their geometrical and structural complexity. Past measurements are based on material models that completely neglect the elasticity of either the surface membrane or the interior bulk. In this work, we consider general material models to account for both surface and bulk viscoelasticity. The boundary value problems are formulated for deformations and relaxations of a closed viscoelastic surface coupled with viscoelastic media inside and outside of the surface. The linearized surface elasticity models are derived for the constant surface tension model and the Helfrich-Canham bending model for coupling with the bulk viscoelasticity. For quasi-spherical surfaces, explicit solutions are obtained for the deformation, stress-strain and relaxation behaviors under a variety of loading conditions. These solutions can be applied to extract the intrinsic surface and bulk viscoelastic properties of biological cells or cell aggregates in the indentation, electro-deformation and relaxation experiments.
Gapless edges of 2d topological orders and enriched monoidal categories
NASA Astrophysics Data System (ADS)
Kong, Liang; Zheng, Hao
2018-02-01
In this work, we give a mathematical description of a chiral gapless edge of a 2d topological order (without symmetry). We show that the observables on the 1+1D world sheet of such an edge consist of a family of topological edge excitations, boundary CFT's and walls between boundary CFT's. These observables can be described by a chiral algebra and an enriched monoidal category. This mathematical description automatically includes that of gapped edges as special cases. Therefore, it gives a unified framework to study both gapped and gapless edges. Moreover, the boundary-bulk duality also holds for gapless edges. More precisely, the unitary modular tensor category that describes the 2d bulk phase is exactly the Drinfeld center of the enriched monoidal category that describes the gapless/gapped edge. We propose a classification of all gapped and chiral gapless edges of a given bulk phase. In the end, we explain how modular-invariant bulk rational conformal field theories naturally emerge on certain gapless walls between two trivial phases.
Bulk versus surface contributions to the Shubnikov-de Haas Effect
NASA Astrophysics Data System (ADS)
Maniv, E.; Petrushevsky, M.; Lahoud, E.; Ron, A.; Neder, I.; Wiedmann, S.; Guduru, V. K.; Zeitler, U.; Maan, J. C.; Chashka, K.; Kanigel, A.; Dagan, Y.
2013-03-01
Among the bulk materials that are considered as experimental realizations of topological insulators Bi2Se3 is of particular interest due to its large bulk band gap and surface states with a single Dirac cone. It has been recently shown that Bi2Se3 can become superconducting when Cuintercalation is introduced (Hor, Y. S.; Williams, A. J. et al. Phys. Rev. Lett.2010, 104, 057001). We report on transport measurements of cleaved flakes ~1 -100 μm thick of Cu intercalated Bi2Se2. Clear Shubnikov-de Haas oscillations are observed. We study the temperature and angular dependence of these oscillations together with the Hall coefficient at low temperatures for various Cu concentrations. We discuss possible contributions from bulk and the protected surface states to the various transport channels. Support from the infrastructure program of the Israeli Ministry of Science and Technology is acknowledged. Part of this work has been supported by EuroMagNET under the EU Contract No. 228043.
NASA Astrophysics Data System (ADS)
Derishev, E.; Aharonian, F.
We show that, in the presence of radiation field, relativistic bulk flows can very quikly accelerate protons and electrons up to the energies limited either by Hillas criterion or by synchrotron losses. Unlike the traditional approach, we take advantage of continuous photon-induced conversion of charged particle species to neutral ones, and vice versa (proton-neutron or electron-photon). Such a conversion, though it leads to considerable energy losses, allows accelerated particles to increase their energies in each scattering by a factor roughly equal to the bulk Lorentz factor, thus avoiding the need in slow and relatively inefficient diffusive acceleration. The optical depth of accelerating region with respect to inelastic photon-induced reactions (pair production for electrons and photomeson reactions for protons) should be a substancial fraction of unity. Remarkably, self-tuning of the optical depth is automatically achieved as long as the photon density depends on the distance along the bulk flow. This mechanism can work in Gamma-Ray Bursts (GRBs), Active Galactic Nuclei (AGNs), microquasars, or any other object with relativistic bulk flows embedded in radiation-reach environment. Both GRBs and AGNs turn out to be capable of producing 1020 eV cosmic rays.
Idealized simulation of the Colorado hailstorm case: comparison of bulk and detailed microphysics
NASA Astrophysics Data System (ADS)
Geresdi, I.
One of the purposes of the Fourth Cloud Modeling Workshop was to compare different microphysical treatments. In this paper, the results of a widely used bulk treatment and five versions of a detailed microphysical model are presented. Sensitivity analysis was made to investigate the effect of bulk parametrization, ice initiation technique, CCN concentration and collision efficiency of rimed ice crystal-drop collision. The results show that: (i) The mixing ratios of different species of hydrometeors calculated by bulk and one of the detailed models show some similarity. However, the processes of hail/graupel formation are different in the bulk and the detailed models. (ii) Using different ice initiation in the detailed models' different processes became important in the hail and graupel formation. (iii) In the case of higher CCN concentration, the mixing ratio of liquid water, hail and graupel were more sensitive to the value of collision efficiency of rimed ice crystal-drop collision. (iv) The Bergeron-Findeisen process does not work in the updraft core of a convective cloud. The vapor content was always over water saturation; moreover, the supersaturation gradually increased after the appearance of precipitation ice particles.
Exploring packaging strategies of nano-embedded thermoelectric generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singha, Aniket; Muralidharan, Bhaskaran, E-mail: bm@ee.iitb.ac.in; Mahanti, Subhendra D.
2015-10-15
Embedding nanostructures within a bulk matrix is an important practical approach towards the electronic engineering of high performance thermoelectric systems. For power generation applications, it ideally combines the efficiency benefit offered by low dimensional systems along with the high power output advantage offered by bulk systems. In this work, we uncover a few crucial details about how to embed nanowires and nanoflakes in a bulk matrix so that an overall advantage over pure bulk may be achieved. First and foremost, we point out that a performance degradation with respect to bulk is inevitable as the nanostructure transitions to a multimore » moded one. It is then shown that a nano embedded system of suitable cross-section offers a power density advantage over a wide range of efficiencies at higher packing fractions, and this range gradually narrows down to the high efficiency regime, as the packing fraction is reduced. Finally, we introduce a metric - the advantage factor, to elucidate quantitatively, the enhancement in the power density offered via nano-embedding at a given efficiency. In the end, we explore the maximum effective width of nano-embedding which serves as a reference in designing generators in the efficiency range of interest.« less
NASA Astrophysics Data System (ADS)
Hou, Hongjuan; Wang, Leilei; Wang, Rui; Yang, Yanzhao
2017-04-01
A turbocharger compressor working in commercial vehicles, especially in some passenger cars, often works together with some pipes with complicated geometry as an air intake system, due to limit of available space in internal combustion engine compartments. These pipes may generate various distortions of physical parameters of the air at the inlet of the compressor and therefore the compressor aerodynamic performance deteriorates. Sometimes, the turbocharging engine fails to work at some operation points. This paper investigates the effects of various swirl distortions induced by different bending-torsional intake ducts on the aerodynamic performance of a turbocharger compressor by both 3D numerical simulations and experimental measurements. It was found that at the outlet of the pipes the different inlet ducts can generate different swirl distortions, twin vortices and bulk-like vortices with different rotating directions. Among them, the bulk-like vortices not only affect seriously the pressure distribution in the impeller domain, but also significantly deteriorate the compressor performance, especially at high flow rate region. And the rotating direction of the bulk-like vortices is also closely associated with the efficiency penalty. Besides the efficiency, the transient flow rate through a single impeller channel, or the asymmetric mass flow crossing the whole impeller, can be influenced by two disturbances. One is from the upstream bending-torsional ducts; other one is from the downstream volute.
Quantum size effects on the (0001) surface of double hexagonal close packed americium
NASA Astrophysics Data System (ADS)
Gao, D.; Ray, A. K.
2007-01-01
Electronic structures of double hexagonal close-packed americium and the (0001) surface have been studied via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and antiferromagnetic configurations with and without spin orbit coupling. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of dhcp Am with the 5f electrons primarily localized. Our results show that both magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Our calculated equilibrium lattice constant and bulk modulus at the ground state are in good agreement with the experimental values respectively. The work function of dhcp Am (0001) 7-layer surface at the ground state is predicted to be 2.90 eV. The surface energy for dhcp Am (0001) semi-infinite surface energy at the ground state is predicted to be 0.84 J/m2. Quantum size effects are found to be more pronounced in work functions than in surface energies.
Horizon as critical phenomenon
NASA Astrophysics Data System (ADS)
Lee, Sung-Sik
2016-09-01
We show that renormalization group flow can be viewed as a gradual wave function collapse, where a quantum state associated with the action of field theory evolves toward a final state that describes an IR fixed point. The process of collapse is described by the radial evolution in the dual holographic theory. If the theory is in the same phase as the assumed IR fixed point, the initial state is smoothly projected to the final state. If in a different phase, the initial state undergoes a phase transition which in turn gives rise to a horizon in the bulk geometry. We demonstrate the connection between critical behavior and horizon in an example, by deriving the bulk metrics that emerge in various phases of the U( N ) vector model in the large N limit based on the holographic dual constructed from quantum renormalization group. The gapped phase exhibits a geometry that smoothly ends at a finite proper distance in the radial direction. The geometric distance in the radial direction measures a complexity: the depth of renormalization group transformation that is needed to project the generally entangled UV state to a direct product state in the IR. For gapless states, entanglement persistently spreads out to larger length scales, and the initial state can not be projected to the direct product state. The obstruction to smooth projection at charge neutral point manifests itself as the long throat in the anti-de Sitter space. The Poincare horizon at infinity marks the critical point which exhibits a divergent length scale in the spread of entanglement. For the gapless states with non-zero chemical potential, the bulk space becomes the Lifshitz geometry with the dynamical critical exponent two. The identification of horizon as critical point may provide an explanation for the universality of horizon. We also discuss the structure of the bulk tensor network that emerges from the quantum renormalization group.
Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)
NASA Astrophysics Data System (ADS)
Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola
2016-10-01
We present the results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses, and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from Γ to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 ± 0.02 eV. We thoroughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accurately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.
Constraining the physics of jet quenching
NASA Astrophysics Data System (ADS)
Renk, Thorsten
2012-04-01
Hard probes in the context of ultrarelativistic heavy-ion collisions represent a key class of observables studied to gain information about the QCD medium created in such collisions. However, in practice, the so-called jet tomography has turned out to be more difficult than expected initially. One of the major obstacles in extracting reliable tomographic information from the data is that neither the parton-medium interaction nor the medium geometry are known with great precision, and thus a difference in model assumptions in the hard perturbative Quantum Choromdynamics (pQCD) modeling can usually be compensated by a corresponding change of assumptions in the soft bulk medium sector and vice versa. The only way to overcome this problem is to study the full systematics of combinations of parton-medium interaction and bulk medium evolution models. This work presents a meta-analysis summarizing results from a number of such systematical studies and discusses in detail how certain data sets provide specific constraints for models. Combining all available information, only a small group of models exhibiting certain characteristic features consistent with a pQCD picture of parton-medium interaction is found to be viable given the data. In this picture, the dominant mechanism is medium-induced radiation combined with a surprisingly small component of elastic energy transfer into the medium.
Reassessing the Formation of CK7 Northwest Africa (NWA) 8186
NASA Technical Reports Server (NTRS)
Srinivasan, P.; McCubbin, F. M.; Lapen, T. J.; Righter, M.; Agee, C. B.
2017-01-01
The classification of meteorites is commonly determined using isotopes, modal mineralogy, and bulk compositions [1]. Bulk rare earth elements (REEs) in meteorites are additionally utilized to understand parent body processes. Numerous authors have shown that chondritic groups exhibit REE patterns that may be attributable to their parent bodies [e.g. 2-4], and variations in abundances and concentrations of REEs may reflect early nebular processes, thermal metamorphism, and aqueous alteration on the parent body [5-6].
Floquet topological phases with symmetry in all dimensions
NASA Astrophysics Data System (ADS)
Roy, Rahul; Harper, Fenner
2017-05-01
Dynamical systems may host a number of remarkable symmetry-protected phases that are qualitatively different from their static analogs. In this work, we consider the phase space of symmetry-respecting unitary evolutions in detail and identify several distinct classes of evolution that host dynamical order. Using ideas from group cohomology, we construct a set of interacting Floquet drives that generate dynamical symmetry-protected topological order for each nontrivial cohomology class in every dimension, illustrating our construction with explicit two-dimensional examples. We also identify a set of symmetry-protected Floquet drives that lie outside of the group cohomology construction, and a further class of symmetry-respecting topological drives which host chiral edge modes. We use these special drives to define a notion of phase (stable to a class of local perturbations in the bulk) and the concepts of relative and absolute topological order, which can be applied to many different classes of unitary evolutions. These include fully many-body localized unitary evolutions and time crystals.
NASA Astrophysics Data System (ADS)
Wu, Bozhao; Liu, Xinghui; Yin, Jiuren; Lee, Hyoyoung
2017-09-01
Herein we report a prediction of a highly kinetic stable layered structure of tellurium (namely, bulk β-Te), which is similar to these layered bulk materials such as graphite, black phosphorus, and gray arsenic. Bulk β-Te turns out to be a semiconductor that has a band gap of 0.325 eV (HSE06: 0.605 eV), based on first-principles calculations. Moreover, the single-layer form of the bulk β-Te, called β-tellurene, is predicted to have a high stability. When the bulk β-Te is thinned to one atomic layer, an indirect semiconductor of band gap is changed to 1.265 eV (HSE06: 1.932 eV) with a very high kinetic stability. Interestingly, an increase of the number of the β-tellurene layers from one to three is accompanied by a shift from an indirect to direct band gap. Furthermore, the effective carrier masses, the optical properties and phonon modes of few-layer β-tellurenes are characterized. Few-layer β-tellurenes strongly absorb the ultraviolet and blue-violet visible lights. The dramatic changes in the electronic structure and excellent photo absorptivities are expected to pave the way for high speed ultrathin transistors, as well as optoelectronic devices working in the UV or blue-green visible regions.
Li, Keyan; Xie, Hui; Liu, Jun; Ma, Zengsheng; Zhou, Yichun; Xue, Dongfeng
2013-10-28
Toward engineering high performance anode alloys for Li-ion batteries, we proposed a useful method to quantitatively estimate the bulk modulus of binary alloys in terms of metallic electronegativity (EN), alloy composition and formula volume. On the basis of our proposed potential viewpoint, EN as a fundamental chemistry concept can be extended to be an important physical parameter to characterize the mechanical performance of Li-Si and Li-Sn alloys as anode materials for Li-ion batteries. The bulk modulus of binary alloys is linearly proportional to the combination of average metallic EN and atomic density of alloys. We calculated the bulk moduli of Li-Si and Li-Sn alloys with different Li concentrations, which can agree well with the reported data. The bulk modulus of Li-Si and Li-Sn alloys decreases with increasing Li concentration, leading to the elastic softening of the alloys, which is essentially caused by the decreased strength of constituent chemical bonds in alloys from the viewpoint of EN. This work provides a deep understanding of mechanical failure of Si and Sn anodes for Li-ion batteries, and permits the prediction of the composition dependent bulk modulus of various lithiated alloys on the basis of chemical formula, metallic EN and cell volume (or alloy density), with no structural details required.
NASA Astrophysics Data System (ADS)
Brus, Dick J.; van den Akker, Jan J. H.
2018-02-01
Although soil compaction is widely recognized as a soil threat to soil resources, reliable estimates of the acreage of overcompacted soil and of the level of soil compaction parameters are not available. In the Netherlands data on subsoil compaction were collected at 128 locations selected by stratified random sampling. A map showing the risk of subsoil compaction in five classes was used for stratification. Measurements of bulk density, porosity, clay content and organic matter content were used to compute the relative bulk density and relative porosity, both expressed as a fraction of a threshold value. A subsoil was classified as overcompacted if either the relative bulk density exceeded 1 or the relative porosity was below 1. The sample data were used to estimate the means of the two subsoil compaction parameters and the overcompacted areal fraction. The estimated global means of relative bulk density and relative porosity were 0.946 and 1.090, respectively. The estimated areal fraction of the Netherlands with overcompacted subsoils was 43 %. The estimates per risk map unit showed two groups of map units: a low-risk
group (units 1 and 2, covering only 4.6 % of the total area) and a high-risk
group (units 3, 4 and 5). The estimated areal fraction of overcompacted subsoil was 0 % in the low-risk unit and 47 % in the high-risk unit. The map contains no information about where overcompacted subsoils occur. This was caused by the poor association of the risk map units 3, 4 and 5 with the subsoil compaction parameters and subsoil overcompaction. This can be explained by the lack of time for recuperation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhenhai; Wang, Qinglin; Ma, Yanzhang
Nanoscale materials exhibit properties that are quite distinct from those of bulk materials because of their size restricted nature. Here, we investigated the high-pressure structural stability of cubic (C-type) nano-Eu2O3 using in situ synchrotron X-ray diffraction (XRD), Raman and luminescence spectroscopy, and impedance spectra techniques. Our high-pressure XRD experimental results revealed a pressure-induced structural phase transition in nano-Eu2O3 from the C-type phase (space group: Ia-3) to a hexagonal phase (A-type, space group: P-3m1). Our reported transition pressure (9.3 GPa) in nano-Eu2O3 is higher than that of the corresponding bulk-Eu2O3 (5.0 GPa), which is contrary to the preceding reported experimental result.more » After pressure release, the A-type phase of Eu2O3 transforms into a new monoclinic phase (B-type, space group: C2/m). Compared with bulk-Eu2O3, C-type and A-type nano-Eu2O3 exhibits a larger bulk modulus. Our Raman and luminescence findings and XRD data provide consistent evidence of a pressure-induced structural phase transition in nano-Eu2O3. To our knowledge, we have performed the first high-pressure impedance spectra investigation on nano-Eu2O3 to examine the effect of the structural phase transition on its transport properties. We propose that the resistance inflection exhibited at ~12 GPa results from the phase boundary between the C-type and A-type phases. Besides, we summarized and discussed the structural evolution process by the phase diagram of lanthanide sesquioxides (Ln2O3) under high pressure.« less
Yuan, Jian-Min; Zhao, Rui; Wu, Zhen-Jun; Li, Wei; Yang, Xin-Guo
2018-04-17
Graphene oxide quantum dots (GOQDs) attract great attention for their unique properties and promising application potential. The difficulty in the formation of a confined structure, and the numerous and diverse oxygen-containing functional groups results in a low emission yield to GOQDs. Here, GOQDs with a size of about 5 nm, exfoliated from carbon fibers by microwave irradiation, are detected and analyzed. The exfoliated GOQDs are deeply oxidized and induce large numbers of epoxy groups and ether bonds, but only a small amount of carbonyl groups and hydroxyl groups. The subdomains of sp 2 clusters, involving epoxy groups and ether bonds, are responsible for the two strong photoluminescence emissions of GOQDs under different excitation wavelengths. Moreover, GOQDs tend to self-assemble at the edges of their planes to form self-assembly films (SAFs) with the evaporation of water. SAFs can further assemble into different 3D patterns with unique microstructures such as sponge bulk, sponge ball, microsheet, sisal, and schistose coral, which are what applications such as supercapacitors, cells, catalysts, and electrochemical sensors need. This method for preparation of GOQDs is easy, quick, and environmentally friendly, and this work may open up new research interests about GOQDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extraction of mobility and Degradation coefficients in double gate junctionless transistors
NASA Astrophysics Data System (ADS)
Bhuvaneshwari, Y. V.; Kranti, Abhinav
2017-12-01
In this work, we use the modified McLarty function to understand and extract accumulation (μ acc) and bulk (μ bulk) mobility in Double Gate (DG) Junctionless (JL) MOSFETs over a wide range of doping concentration (N d) and temperature range (250 K to 520 K). The approach enables the estimation of mobility and its attenuation factors (θ 1 and θ 2) by a single method. The extracted results indicate that μ acc can reach higher values than μ bulk due to the screening effect. Results also show that θ 2 extracted in the accumulation regime of JL transistors exhibit relatively low values in comparison to inversion and accumulation mode devices. It is shown that the attenuation factor (θ 1) in JL devices designed with higher N d (≥1019 cm-3) is mainly affected by series resistance (R sd) whereas, in inversion mode (IM) and Accumulation mode (AM) devices, θ 1 factor is governed by both the intrinsic mobility reduction factor (θ 10) and R sd. Additionally, the impact of variation in oxide thickness (T ox), gate length (L g), N d and temperature on θ 1 and θ 2 has been investigated for JL transistor. The weak dependence of μ bulk and μ acc on temperature shows the prevalence of coulomb scattering over phonon scattering for heavily doped JL transistors. The work provides insights into different modes of operation, extraction of mobility and attenuation factors which will be useful for the development of compact models for JL transistors.
The Prospect of Y2SiO5-Based Materials as Protective Layer in Environmental Barrier Coatings
NASA Astrophysics Data System (ADS)
García, E.; Miranzo, P.; Osendi, M. I.
2013-06-01
Bulk yttrium monosilicate (Y2SiO5) possesses interesting properties, such as low thermal expansion coefficient and stability in water vapor atmospheres, which make it a promising protective layer for SiC-based composites, intended for the hottest parts in the future gas turbines. Because protective layers are commonly applied by thermal spraying techniques, it is important to analyze the changes in structure and properties that these methods may produce in yttrium silicate coatings. In this work, two SiO2-Y2O3 compositions were flame sprayed in the form of coatings and beads. In parallel, the beads were spark plasma sintered at relatively low temperature to obtain partially amorphous bulk specimens that are used as model bulk material. The thermal aging—air and water vapor atmosphere—caused extensive nucleation of Y2SiO5 and Y2Si2O7 in both the bulk and coating. The rich water vapor condition caused the selective volatilization of SiO2 from Y2Si2O7 at the specimen surface leaving a very characteristic micro-ridged Y2SiO5 zones—either in coatings or sintered bodies. An important increase in the thermal conductivity of the aged materials was measured. The results of this work may be used as a reference body for the production of Y2SiO5 coatings using thermal spraying techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, Yamila M.; Al Ghaferi, Amal, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae; Chiesa, Matteo, E-mail: aalghaferi@masdar.ac.ae, E-mail: mchiesa@masdar.ac.ae
2015-07-20
Extensive work has been done in order to determine the bulk elastic modulus of isotropic samples from force curves acquired with atomic force microscopy. However, new challenges are encountered given the development of new materials constructed of one-dimensional anisotropic building blocks, such as carbon nanostructured paper. In the present work, we establish a reliable framework to correlate the elastic modulus values obtained by amplitude modulation atomic force microscope force curves, a nanoscopic technique, with that determined by traditional macroscopic tensile testing. In order to do so, several techniques involving image processing, statistical analysis, and simulations are used to find themore » appropriate path to understand how macroscopic properties arise from anisotropic nanoscale components, and ultimately, being able to calculate the value of bulk elastic modulus.« less
A comparison of partially specular radiosity and ray tracing for room acoustics modeling
NASA Astrophysics Data System (ADS)
Beamer, C. Walter; Muehleisen, Ralph T.
2005-04-01
Partially specular (PS) radiosity is an extended form of the general radiosity method. Acoustic radiosity is a form of bulk transfer of radiant acoustic energy. This bulk transfer is accomplished through a system of energy balance equations that relate the bulk energy transfer of each surface in the system to all other surfaces in the system. Until now acoustic radiosity has been limited to modeling only diffuse surface reflection. The new PS acoustic radiosity method can model all real surface types, diffuse, specular and everything in between. PS acoustic radiosity also models all real source types and distributions, not just point sources. The results of the PS acoustic radiosity method are compared to those of well known ray tracing programs. [Work supported by NSF.
Abbasi, Amir Reza; Rizvandi, Maryam; Azadbakht, Azadeh; Rostamnia, Sadegh
2016-06-01
The porosity of metal-organic frameworks (MOFs) is an important point concerning the possible use of such functional materials for different purposes. In this work, we study uptake and release properties of imatinib (IM) from nano Cu(II)-MOF in comparison with bulk Cu(II)-MOF. To explore the absorption ability of the Cu(II)-MOF to IM, fresh sample of Cu3(BTC)2 was immersed in an aqueous solution of IM and were monitored in real time with UV/vis spectroscopy. Results show that the adsorbed quantity of IM over nano Cu3(BTC)2 (I) is much higher than those over a bulk Cu3(BTC)2 (II). Copyright © 2016. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu; Petrovic, C.
CrI 3 is a promising candidate for the van der Waals bonded ferromagnetic devices since its ferromagnetism can be maintained upon exfoliating of bulk crystals down to single layer. In this work we studied critical properties of bulk CrI 3 single crystals around the paramagnetic to ferromagnetic phase transition. Critical exponents β= 0.260(4) with a critical temperature T c= 60.05(13) K and γ= 1.136(6) with T c= 60.43(4) K are obtained by the Kouvel-Fisher method, whereas δ= 5.32(2) is obtained by a critical isotherm analysis at T c= 60 K. In conclusion, the critical exponents determined in bulk CrI 3more » single crystals suggest a three-dimensional long-range magnetic coupling with the exchange distance decaying as J(r)≈r -4:69« less
Accardo, Grazia; Cioffi, Raffaeke; Colangelo, Francesco; d’Angelo, Raffaele; De Stefano, Luca; Paglietti, Fderica
2014-01-01
Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy is a well-known technique for thin film characterization. Since all asbestos species exhibit intense adsorptions peaks in the 4000–400 cm−1 region of the infrared spectrum, a quantitative analysis of asbestos in bulk samples by DRIFT is possible. In this work, different quantitative analytical procedures have been used to quantify chrysotile content in bulk materials produced by building requalification: partial least squares (PLS) chemometrics, the Linear Calibration Curve Method (LCM) and the Method of Additions (MoA). Each method has its own pros and cons, but all give affordable results for material characterization: the amount of asbestos (around 10%, weight by weight) can be determined with precision and accuracy (errors less than 0.1). PMID:28788467
de Oliveira Correia, Ayla Macyelle; Tribst, João Paulo Mendes; de Souza Matos, Felipe; Platt, Jeffrey A; Caneppele, Taciana Marco Ferraz; Borges, Alexandre Luiz Souto
2018-06-20
This study evaluated the effect of different restorative techniques for non-carious cervical lesions (NCCL) on polymerization shrinkage stress of resins using three-dimensional (3D) finite element analysis (FEA). 3D-models of a maxillary premolar with a NCCL restored with different filling techniques (bulk filling and incremental) were generated to be compared by nonlinear FEA. The bulk filling technique was used for groups B (NCCL restored with Filtek™ Bulk Fill) and C (Filtek™ Z350 XT). The incremental technique was subdivided according to mode of application: P (2 parallel increments of the Filtek™ Z350 XT), OI (2 oblique increments of the Filtek™ Z350 XT, with incisal first), OIV (2 oblique increments of the Filtek™ Z350 XT, with incisal first and increments with the same volume), OG (2 oblique increments of the Filtek™ Z350 XT, with gingival first) and OGV (2 oblique increments of the Filtek™ Z350 XT, with gingival first and increments with the same volume), resulting in 7 models. All materials were considered isotropic, elastic and linear. The results were expressed in maximum principal stress (MPS). The tension stress distribution was influenced by the restorative technique. The lowest stress concentration occurred in group B followed by OG, OGV, OI, OIV, P and C; the incisal interface was more affected than the gingival. The restoration of NCCLs with bulk fill composite resulted in lower shrinkage stress in the gingival and incisal areas, followed by incremental techniques with the initial increment placed on the gingival wall. The non-carious cervical lesions (NCCLs) restored with bulk fill composite have a more favorable biomechanical behavior. Copyright © 2018. Published by Elsevier Ltd.
Twisted quantum double model of topological order with boundaries
NASA Astrophysics Data System (ADS)
Bullivant, Alex; Hu, Yuting; Wan, Yidun
2017-10-01
We generalize the twisted quantum double model of topological orders in two dimensions to the case with boundaries by systematically constructing the boundary Hamiltonians. Given the bulk Hamiltonian defined by a gauge group G and a 3-cocycle in the third cohomology group of G over U (1 ) , a boundary Hamiltonian can be defined by a subgroup K of G and a 2-cochain in the second cochain group of K over U (1 ) . The consistency between the bulk and boundary Hamiltonians is dictated by what we call the Frobenius condition that constrains the 2-cochain given the 3-cocyle. We offer a closed-form formula computing the ground-state degeneracy of the model on a cylinder in terms of the input data only, which can be naturally generalized to surfaces with more boundaries. We also explicitly write down the ground-state wave function of the model on a disk also in terms of the input data only.
'Right-to-Work' Laws and Economic Development in Oklahoma. Briefing Paper.
ERIC Educational Resources Information Center
Mishel, Lawrence, Ed.
The bulk of this position paper consists of statements in opposition to a September 2001 referendum on adopting 'right-to-work' (RTW) legislation in Oklahoma. The statements are by Joan Fitzgerald, William Sschweke, Raymond Hogler, Steven Shulman, Stephan Weiler, Ann Markusen, Robert G. Lynch, David R. Howell, James Galbraith, Colin Gordon, Wim…
Bulk Viscosity of Bubbly Magmas and the Amplification of Pressure Waves
NASA Astrophysics Data System (ADS)
Navon, O.; Lensky, N. G.; Neuberg, J. W.; Lyakhovsky, V.
2001-12-01
The bulk viscosity of magma is needed in order to describe the dynamics of a compressible bubbly magma flowing in conduits and to follow the attenuation of pressure waves travelling through a compressible magma. We developed a model for the bulk viscosity of a suspension of gas bubbles in an incompressible Newtonian liquid that exsolves volatiles (e.g. magma). The suspension is modeled as a close pack of spherical cells, consisting of gas bubbles centered in spherical shells of a volatile-bearing liquid. Following a drop in the ambient pressure the resulting dilatational motion and driving pressure are obtained in terms of the two-phase cell parameters, i.e. bubble radius and gas pressure. By definition, the bulk viscosity of a fluid is the relation between changes of the driving pressure with respect to changes in the resulted expansion strain-rate. Thus, we can use the two-phase solution to define the bulk viscosity of a hypothetical cell, composed of a homogeneously compressible, one-phase, continuous fluid. The resulted bulk viscosity is highly non-linear. At the beginning of the expansion process, when gas exsolution is efficient, the expansion rate grows exponentially while the driving pressure decreases slightly. That means that bulk viscosity is formally negative. The negative value reflects the release of the energy stored in the supersaturated liquid (melt) and its conversion to mechanical work during exsolution. Later, when bubbles are large enough and the gas influx decreases significantly, the strain rate decelerates and the bulk viscosity becomes positive as expected in a dissipative system. We demonstrate that amplification of seismic wave travelling through a volcanic conduit filled with a volatile saturated magma may be attributed to the negative bulk viscosity of the compressible magma. Amplification of an expansion wave may, at some level in the conduit, damage the conduit walls and initiate opening of new pathways for magma to erupt.
High energy power-law tail in X-ray binaries and bulk Comptonization due to an outflow from a disk
NASA Astrophysics Data System (ADS)
Kumar, Nagendra
2018-02-01
We study the high energy power-law tail emission of X-ray binaries (XRBs) by a bulk Comptonization process which is usually observed in the very high soft (VHS) state of black hole (BH) XRBs and the high soft (HS) state of the neutron star (NS) and BH XRBs. Earlier, to generate the power-law tail in bulk Comptonization framework, a free-fall converging flow into BH or NS had been considered as a bulk region. In this work, for a bulk region we consider mainly an outflow geometry from the accretion disk which is bounded by a torus surrounding the compact object. We have two choices for an outflow geometry: (i) collimated flow and (ii) conical flow of opening angle θ _b and the axis is perpendicular to the disk. We also consider an azimuthal velocity of the torus fluids as a bulk motion where the fluids are rotating around the compact object (a torus flow). We find that the power-law tail can be generated in a torus flow having large optical depth and bulk speed (>0.75 c), and in conical flow with θ _b > ˜ 30° for a low value of Comptonizing medium temperature. Particularly, in conical flow the low opening angle is more favourable to generate the power-law tail in both the HS state and the VHS state. We notice that when the outflow is collimated, then the emergent spectrum does not have power-law component for a low Comptonizing medium temperature.
Cooling rates of group IVA iron meteorites
NASA Technical Reports Server (NTRS)
Willis, J.; Wasson, J. T.
1978-01-01
Cooling rates of six group IVA iron meteorites were estimated by a taenite central Ni concentration-taenite half-width method. Calculated cooling rates range from 13 to 25 C/Myr, with an average of 20 C/Myr. No correlation between cooling rate and bulk Ni content is observed, and the data appear to be consistent with a uniform cooling rate as expected from an igneous core origin. This result differs from previous studies reporting a wide range in cooling rates that were strongly correlated with bulk Ni content. The differences result mainly from differences in the phase diagram and the selected diffusion coefficients. Cooling rates inferred from taenite Ni concentrations at the interface with kamacite are consistent with those based on taenite central Ni content.
A holographic c-theorem for Schrödinger spacetimes
Liu, James T.; Zhong, Weishun
2015-12-29
We prove a c-theorem for holographic renormalization group flows in a Schrodinger spacetime that demonstrates that the effective radius L(r) monotonically decreases from the UV to the IR, where r is the bulk radial coordinate. This result assumes that the bulk matter satisfies the null energy condition, but holds regardless of the value of the critical exponent z. We also construct several numerical examples in a model where the Schrodinger background is realized by a massive vector coupled to a real scalar. Finally, the full Schrodinger group is realized when z = 2, and in this case it is possiblemore » to construct solutions with constant effective z(r) = 2 along the entire flow.« less
Non-local geometry inside Lifshitz horizon
NASA Astrophysics Data System (ADS)
Hu, Qi; Lee, Sung-Sik
2017-07-01
Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U( N ) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.
Optical dipole forces: Working together
NASA Astrophysics Data System (ADS)
Aiello, Clarice D.
2017-03-01
Strength lies in numbers and in teamwork: tens of thousands of artificial atoms tightly packed in a nanodiamond act cooperatively, enhancing the optical trapping forces beyond the expected classical bulk polarizability contribution.
Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals
NASA Astrophysics Data System (ADS)
Sun, Yan; Zhang, Yang; Felser, Claudia; Yan, Binghai
2016-09-01
Since their discovery, topological insulators are expected to be ideal spintronic materials owing to the spin currents carried by surface states with spin-momentum locking. However, the bulk doping problem remains an obstacle that hinders such an application. In this work, we predict that a newly discovered family of topological materials, the Weyl semimetals, exhibits a large intrinsic spin Hall effect that can be utilized to generate and detect spin currents. Our ab initio calculations reveal a large spin Hall conductivity in the TaAs family of Weyl materials. Considering the low charge conductivity of semimetals, Weyl semimetals are believed to present a larger spin Hall angle (the ratio of the spin Hall conductivity over the charge conductivity) than that of conventional spin Hall systems such as the 4 d and 5 d transition metals. The spin Hall effect originates intrinsically from the bulk band structure of Weyl semimetals, which exhibit a large Berry curvature and spin-orbit coupling, so the bulk carrier problem in the topological insulators is naturally avoided. Our work not only paves the way for employing Weyl semimetals in spintronics, but also proposes a new guideline for searching for the spin Hall effect in various topological materials.
A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film
NASA Astrophysics Data System (ADS)
Tian, Yingwei; Li, Guimiao; Yi, Zhiran; Liu, Jingquan; Yang, Bin
2018-06-01
This paper presents a high performance piezoelectric energy harvester (PEH) with a rectangular hole to work at low-frequency. This PEH used thinned bulk PZT film on flexible phosphor bronze, and its structure included piezoelectric layer, supporting layer and proof mass to reduce the resonant frequency of the device. Here, thinned bulk PZT thick film was used as piezoelectric layer due to its high piezoelectric coefficient. A Phosphor bronze was deployed as supporting layer because it had better flexibility compared to silicon and could work under high acceleration ambient with good durability. The maximum open-circuit voltage of the PEH was 15.7 V at low resonant frequency of 34.3 Hz when the input vibration acceleration was 1.5 g (g = 9.81 m/s2). Moreover, the maximum output power, the output power density and the actually current at the same acceleration were 216.66 μW, 1713.58 μW/cm3 and 170 μA, respectively, when the optimal matched resistance of 60 kΩ was connected. The fabricated PEH scavenged the vibration energy of the vacuum compression pump and generated the maximum output voltage of 1.19 V.
[Comparison of wear resistance and flexural strength of three kinds of bulk-fill composite resins].
Zhang, Huan; Zhang, Meng-Long; Qiu, Li-Hong; Yu, Jing-Tao; Zhan, Fu-Liang
2016-06-01
To compare the abrasion resistance and flexure strength of three bulk-fill resin composites with an universal nano-hybrid composite resins. The specimens were prepared with three kinds of bulk fill composites (SDR , sonicfill, Tetric N-Ceram Bulk Fill) and an universal nano-hybrid composite resins(Herculite Precis). 10 mm in diameter × 2mm in height specimens were prepared for abrasion resistance, while 2 mm in width × 2 mm in depth×25 mm in length specimens were prepared for flexure strength. The specimens were mounted in a bal1-on-disc wear testing machine and abraded with the media artificial saliva(50 N loads, 10000 cycles).Flexural test was performed with an Universal Testing Machine at a cross-head speed of 1mm/min. One-way variance analysis was used to determine the statistical differences of volume loss and flexural strength among groups with SPSS 13.0 software package(P<0.05). The volume loss was as follows: SDR (1.2433±0.11) mm3
Liu, Jun; Xue, Yuhua; Gao, Yunxiang; Yu, Dingshan; Durstock, Michael; Dai, Liming
2012-05-02
By charge neutralization of carboxylic acid groups in graphene oxide (GO) with Cs(2)CO(3) to afford Cesium-neutralized GO (GO-Cs), GO derivatives with appropriate modification are used as both hole- and electron-extraction layers for bulk heterojunction (BHJ) solar cells. The normal and inverted devices based on GO hole- and GO-Cs electron-extraction layers both outperform the corresponding standard BHJ solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Studies of QCD structure in high-energy collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadolsky, Pavel M.
2016-06-26
”Studies of QCD structure in high-energy collisions” is a research project in theoretical particle physics at Southern Methodist University funded by US DOE Award DE-SC0013681. The award furnished bridge funding for one year (2015/04/15-2016/03/31) between the periods funded by Nadolsky’s DOE Early Career Research Award DE-SC0003870 (in 2010-2015) and a DOE grant DE-SC0010129 for SMU Department of Physics (starting in April 2016). The primary objective of the research is to provide theoretical predictions for Run-2 of the CERN Large Hadron Collider (LHC). The LHC physics program relies on state-of-the-art predictions in the field of quantum chromodynamics. The main effort ofmore » our group went into the global analysis of parton distribution functions (PDFs) employed by the bulk of LHC computations. Parton distributions describe internal structure of protons during ultrarelivistic collisions. A new generation of CTEQ parton distribution functions (PDFs), CT14, was released in summer 2015 and quickly adopted by the HEP community. The new CT14 parametrizations of PDFs were obtained using benchmarked NNLO calculations and latest data from LHC and Tevatron experiments. The group developed advanced methods for the PDF analysis and estimation of uncertainties in LHC predictions associated with the PDFs. We invented and refined a new ’meta-parametrization’ technique that streamlines usage of PDFs in Higgs boson production and other numerous LHC processes, by combining PDFs from various groups using multivariate stochastic sampling. In 2015, the PDF4LHC working group recommended to LHC experimental collaborations to use ’meta-parametrizations’ as a standard technique for computing PDF uncertainties. Finally, to include new QCD processes into the global fits, our group worked on several (N)NNLO calculations.« less
Bulk flow in the combined 2MTF and 6dFGSv surveys
NASA Astrophysics Data System (ADS)
Qin, Fei; Howlett, Cullan; Staveley-Smith, Lister; Hong, Tao
2018-07-01
We create a combined sample of 10 904 late- and early-type galaxies from the 2MTF and 6dFGSv surveys in order to accurately measure bulk flow in the local Universe. Galaxies and groups of galaxies common between the two surveys are used to verify that the difference in zero-points is <0.02 dex. We introduce a maximum likelihood estimator (ηMLE) for bulk flow measurements that allows for more accurate measurement in the presence of non-Gaussian measurement errors. To calibrate out residual biases due to the subtle interaction of selection effects, Malmquist bias and anisotropic sky distribution, the estimator is tested on mock catalogues generated from 16 independent large-scale GiggleZ and SURFS simulations. The bulk flow of the local Universe using the combined data set, corresponding to a scale size of 40 h-1 Mpc, is 288 ± 24 km s-1 in the direction (l, b) = (296 ± 6°, 21 ± 5°). This is the most accurate bulk flow measurement to date, and the amplitude of the flow is consistent with the Λ cold dark matter expectation for similar size scales.
Bulk flow in the combined 2MTF and 6dFGSv surveys
NASA Astrophysics Data System (ADS)
Qin, Fei; Howlett, Cullan; Staveley-Smith, Lister; Hong, Tao
2018-04-01
We create a combined sample of 10,904 late and early-type galaxies from the 2MTF and 6dFGSv surveys in order to accurately measure bulk flow in the local Universe. Galaxies and groups of galaxies common between the two surveys are used to verify that the difference in zero-points is <0.02 dex. We introduce a new maximum likelihood estimator (ηMLE) for bulk flow measurements which allows for more accurate measurement in the presence non-Gaussian measurement errors. To calibrate out residual biases due to the subtle interaction of selection effects, Malmquist bias and anisotropic sky distribution, the estimator is tested on mock catalogues generated from 16 independent large-scale GiggleZ and SURFS simulations. The bulk flow of the local Universe using the combined data set, corresponding to a scale size of 40 h-1 Mpc, is 288 ± 24 km s-1 in the direction (l, b) = (296 ± 6°, 21 ± 5°). This is the most accurate bulk flow measurement to date, and the amplitude of the flow is consistent with the ΛCDM expectation for similar size scales.
Detection of bulk explosives using the GPR only portion of the HSTAMIDS system
NASA Astrophysics Data System (ADS)
Tabony, Joshua; Carlson, Douglas O.; Duvoisin, Herbert A., III; Torres-Rosario, Juan
2010-04-01
The legacy AN/PSS-14 (Army-Navy Portable Special Search-14) Handheld Mine Detecting Set (also called HSTAMIDS for Handheld Standoff Mine Detection System) has proven itself over the last 7 years as the state-of-the-art in land mine detection, both for the US Army and for Humanitarian Demining groups. Its dual GPR (Ground Penetrating Radar) and MD (Metal Detection) sensor has provided receiver operating characteristic curves (probability of detection or Pd versus false alarm rate or FAR) that routinely set the mark for such devices. Since its inception and type-classification in 2003 as the US (United States) Army standard, the desire for use of the AN/PSS-14 against alternate threats - such as bulk explosives - has recently become paramount. To this end, L-3 CyTerra has developed and tested bulk explosive detection and discrimination algorithms using only the Stepped Frequency Continuous Wave (SFCW) Ground Penetrating Radar (GPR) portion of the system, versus the fused version that is used to optimally detect land mines. Performance of the new bulk explosive algorithm against representative zero-metal bulk explosive target and clutter emplacements is depicted, with the utility to the operator also described.
Bulk Superconductors in Mobile Application
NASA Astrophysics Data System (ADS)
Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.
We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.
Dry bulk cargo shipping - An overlooked threat to the marine environment?
Grote, Matthias; Mazurek, Nicole; Gräbsch, Carolin; Zeilinger, Jana; Le Floch, Stéphane; Wahrendorf, Dierk-Steffen; Höfer, Thomas
2016-09-15
Approximately 9.5billiontonnes of goods is transported over the world oceans annually with dry bulk representing the largest cargo group. This paper aims to analyse whether the transport and associated inputs of dry bulks into the sea create a risk for the marine environment. For this purpose, we analyse the international regulatory background concerning environmental protection (MARPOL), estimate quantities and identify inputs of such cargoes into the oceans (accidental and operational), and use available information for hazard assessment. Annually, more than 2.15milliontonnes of dry bulk cargoes are likely to enter the oceans, of which 100,000tonnes are potentially harmful to the marine environment according to the definition included in draft maritime regulation. The assessment of the threat to the marine environment is hampered by a lack of available information on chemical composition, bioavailability and toxicity. Perspectives for amendments of the unsatisfying pollution prevention regulations are discussed. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhattacharya, Purba; Bhattacharya, Deb Sankar; Mukhopadhyay, Supratik; Majumdar, Nayana; Bhattacharya, Sudeb; Colas, Paul; Attié, David
2018-02-01
The R&D activities for the linear collider TPC (LC-TPC) are currently working on the adoption of the micro pattern devices for the gaseous amplification stage. Several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. We worked on a large prototype TPC with an end-plate that was built, for the first time, using seven resistive bulk Micromegas modules. During experiments, reduced signal sensitivity was observed at the boundary of these modules. Electrostatic field distortion near the module boundaries was considered to be the possible major reason behind these observations. In the present work, we will explore this hypothesis through numerical simulation. Our aim has been to understand the origin of distortions observed close to the edges of the test beam modules and to explore the possibility of using the Garfield simulation framework for investigating a phenomenon as complex as distortion.
Spinning AdS loop diagrams: two point functions
NASA Astrophysics Data System (ADS)
Giombi, Simone; Sleight, Charlotte; Taronna, Massimo
2018-06-01
We develop a systematic approach to evaluating AdS loop amplitudes with spinning legs based on the spectral (or "split") representation of bulk-to-bulk propagators, which re-expresses loop diagrams in terms of spectral integrals and higher-point tree diagrams. In this work we focus on 2pt one-loop Witten diagrams involving totally symmetric fields of arbitrary mass and integer spin. As an application of this framework, we study the contribution to the anomalous dimension of higher-spin currents generated by bubble diagrams in higher-spin gauge theories on AdS.
Ti, Ni and TiNi nanoparticles physically synthesized by Ar+ beam milling.
Torres Castro, A; López Cuéllar, E; José Yacamán, M; Ortiz Méndez, U
2008-12-01
When the size of a particle decreases around 100 nm or less, there is a change in properties from those shown in the bulk material. In this work approximately 3 nm nanoparticles of Ni, Ti and TiNi bimetallic are produced using physical vapor deposition (PVD). Nanoparticles are characterized by High Resolution Transmission Electron Microscopy (HRTEM), High Angle Annular Dark Field (HAADF), Electron Diffraction (ED). The results show that all nanoparticles maintain the same crystal structure of bulk material but a change in their lattice parameter is produced.
Bianchi type-VIh string cloud cosmological models with bulk viscosity
NASA Astrophysics Data System (ADS)
Tripathy, Sunil K.; Behera, Dipanjali
2010-11-01
String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.
Nuclear techniques for the on-line bulk analysis of carbon in coal-fired power stations.
Sowerby, B D
2009-09-01
Carbon trading schemes usually require large emitters of CO(2), such as coal-fired power stations, to monitor, report and be audited on their CO(2) emissions. The emission price provides a significant additional incentive for power stations to improve efficiency. In the present paper, previous work on the bulk determination of carbon in coal is reviewed and assessed. The most favourable method is that based on neutron inelastic scattering. The potential role of on-line carbon analysers in improving boiler efficiency and in carbon accounting is discussed.
Ab initio study of perovskite type oxide materials for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin
2011-12-01
Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen exchange rates, and key OR energetics of the SOFC cathode perovskites, can be described by a single descriptor, either the bulk O p-band or the bulk oxygen vacancy formation energy. These simple descriptors will further enable first-principles optimization/design of new SOFC cathodes.
Analytical and Radiochemistry for Nuclear Forensics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, Robert Ernest; Dry, Donald E.; Kinman, William Scott
Information about nonproliferation nuclear forensics, activities in forensics at Los Alamos National Laboratory, radio analytical work at LANL, radiochemical characterization capabilities, bulk chemical and materials analysis capabilities, and future interests in forensics interactions.
NASA Technical Reports Server (NTRS)
1988-01-01
The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.
46 CFR 154.1365 - Audible and visual alarms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment... it to be turned off after sounding. For remote group alarms this arrangement must not interrupt the..., except for remote group alarms, the location of each fault that actuates it. (d) Each vessel must have...
Mechanical properties of Fe rich Fe-Si alloys: ab initio local bulk-modulus viewpoint
NASA Astrophysics Data System (ADS)
Bhattacharya, Somesh Kr; Kohyama, Masanori; Tanaka, Shingo; Shiihara, Yoshinori; Saengdeejing, Arkapol; Chen, Ying; Mohri, Tetsuo
2017-11-01
Fe-rich Fe-Si alloys show peculiar bulk-modulus changes depending on the Si concentration in the range of 0-15 at.%Si. In order to clarify the origin of this phenomenon, we have performed density-functional theory calculations of supercells of Fe-Si alloy models with various Si concentrations. We have applied our recent techniques of ab initio local energy and local stress, by which we can obtain a local bulk modulus of each atom or atomic group as a local constituent of the cell-averaged bulk modulus. A2-phase alloy models are constructed by introducing Si substitution into bcc Fe as uniformly as possible so as to prevent mutual neighboring, while higher Si concentrations over 6.25 at.%Si lead to contacts between SiFe8 cubic clusters via sharing corner Fe atoms. For 12.5 at.%Si, in addition to an A2 model, we deal with partial D03 models containing local D03-like layers consisting of edge-shared SiFe8 cubic clusters. For the cell-averaged bulk modulus, we have successfully reproduced the Si-concentration dependence as a monotonic decrease until 11.11 at.%Si and a recovery at 12.5 at.%Si. The analysis of local bulk moduli of SiFe8 cubic clusters and Fe regions is effective to understand the variations of the cell-averaged bulk modulus. The local bulk moduli of Fe regions become lower for increasing Si concentration, due to the suppression of bulk-like d-d bonding states in narrow Fe regions. For higher Si concentrations till 11.11 at.%Si, corner-shared contacts or 1D chains of SiFe8 clusters lead to remarkable reduction of local bulk moduli of the clusters. At 12 at.%Si, on the other hand, two- or three-dimensional arrangements of corner- or edge-shared SiFe8 cubic clusters show greatly enhanced local bulk moduli, due to quite different bonding nature with much stronger p-d hybridization. The relation among the local bulk moduli, local electronic and magnetic structures, and local configurations such as connectivity of SiFe8 clusters and Fe-region sizes has been analyzed. The ab initio local stress has opened the way for obtaining accurate local elastic properties reflecting local valence-electron behaviors.
Continuum limit and symmetries of the periodic gℓ(1|1) spin chain
NASA Astrophysics Data System (ADS)
Gainutdinov, A. M.; Read, N.; Saleur, H.
2013-06-01
This paper is the first in a series devoted to the study of logarithmic conformal field theories (LCFT) in the bulk. Building on earlier work in the boundary case, our general strategy consists in analyzing the algebraic properties of lattice regularizations (quantum spin chains) of these theories. In the boundary case, a crucial step was the identification of the space of states as a bimodule over the Temperley-Lieb (TL) algebra and the quantum group Uqsℓ(2). The extension of this analysis in the bulk case involves considerable difficulties, since the Uqsℓ(2) symmetry is partly lost, while the TL algebra is replaced by a much richer version (the Jones-Temperley-Lieb — JTL — algebra). Even the simplest case of the gℓ(1|1) spin chain — corresponding to the c=-2 symplectic fermions theory in the continuum limit — presents very rich aspects, which we will discuss in several papers. In this first work, we focus on the symmetries of the spin chain, that is, the centralizer of the JTL algebra in the alternating tensor product of the gℓ(1|1) fundamental representation and its dual. We prove that this centralizer is only a subalgebra of Uqsℓ(2) at q=i that we dub Uqoddsℓ(2). We then begin the analysis of the continuum limit of the JTL algebra: using general arguments about the regularization of the stress-energy tensor, we identify families of JTL elements going over to the Virasoro generators Ln,L in the continuum limit. We then discuss the sℓ(2) symmetry of the (continuum limit) symplectic fermions theory from the lattice and JTL point of view. The analysis of the spin chain as a bimodule over Uqoddsℓ(2) and JTLN is discussed in the second paper of this series.
Turbulent Surface Flux Measurements over Snow-Covered Sea Ice
NASA Astrophysics Data System (ADS)
Andreas, E. L.; Fairall, C. W.; Grachev, A. A.; Guest, P. S.; Jordan, R. E.; Persson, P. G.
2006-12-01
Our group has used eddy correlation to make over 10,000 hours of measurements of the turbulent momentum and heat fluxes over snow-covered sea ice in both the Arctic and the Antarctic. Polar sea ice is an ideal site for studying fundamental processes for turbulent exchange over snow. Both our Arctic and Antarctic sites---in the Beaufort Gyre and deep into the Weddell Sea, respectively---were expansive, flat areas with continuous snow cover; and both were at least 300 km from any topography that might have complicated the atmospheric flow. In this presentation, we will review our measurements of the turbulent fluxes of momentum and sensible and latent heat. In particular, we will describe our experiences making turbulence instruments work in the fairly harsh polar, marine boundary layer. For instance, several of our Arctic sites were remote from our main camp and ran unattended for a week at a time. Besides simply making flux measurements, we have been using the data to develop a bulk flux algorithm and to study fundamental turbulence processes in the atmospheric surface layer. The bulk flux algorithm predicts the turbulent surface fluxes from mean meteorological quantities and, thus, will find use in data analyses and models. For example, components of the algorithm are already embedded in our one- dimensional mass and energy budget model SNTHERM. Our fundamental turbulence studies have included deducing new scaling regimes in the stable boundary layer; examining the Monin-Obukhov similarity functions, especially in stable stratification; and evaluating the von Kármán constant with the largest atmospheric data set ever applied to such a study. During this presentation, we will highlight some of this work.
Brown, David M; Okoro, Samson; van Gils, Juami; van Spanning, Rob; Bonte, Matthijs; Hutchings, Tony; Linden, Olof; Egbuche, Uzoamaka; Bruun, Kim Bye; Smith, Jonathan W N
2017-10-15
Large scale landfarming experiments, using an extensive range of treatments, were conducted in the Niger-Delta, Nigeria to study the degradation of oil in contaminated soils. In this work the effect of nutrient addition, biosurfactant, Eisenia fetida (earthworm) enzyme extract, bulking and sorption agents and soil neutralization were tested. It was found that these treatments were successful in removing up to 53% of the total petroleum hydrocarbon in the soil within 16 weeks. A comparison between treatments demonstrated that most were no more effective than agricultural fertilizer addition alone. One strategy that did show better performance was a combination of nutrients, biochar and biosurfactant, which was found to remove 23% more Total Petroleum Hydrocarbons (TPH) than fertilizer alone. However, when performance normalized costs were considered, this treatment became less attractive as a remedial option. Based on this same analysis it was concluded that fertilizer only was the most cost effective treatment. As a consequence, it is recommended that fertilizer is used to enhance the landfarming of hydrocarbon contaminated soils in the Niger Delta. The attenuation rates of both bulk TPH and Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) fractions are also provided. These values represent one of the first large scale and scientifically tested datasets for treatment of contaminated soil in the Niger Delta region. An inverse correlation between attenuation rates and hydrocarbon molecular weight was observed with heavy fractions showing much slower degradation rates than lighter fractions. Despite this difference, the bioremediation process resulted in significant removal of all TPH compounds independent of carbon number. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Effect of Opalescence(®) bleaching gels on the elution of bulk-fill composite components.
Schuster, Lena; Reichl, Franz-Xaver; Rothmund, Lena; He, Xiuli; Yang, Yang; Van Landuyt, Kirsten L; Kehe, Kai; Polydorou, Olga; Hickel, Reinhard; Högg, Christof
2016-02-01
Bleaching treatments can affect release of components from conventional composites. In this continuing study the influence of two different bleaching gels on the elution of bulk-fill composite components was investigated. The composites Tetric EvoCeram(®) Bulk Fill, QuiXFil™ and X-tra fil were treated with the bleaching gels Opalescence PF 15% (PF 15%) for 5 h and PF 35% (PF 35%) for 30 min and then stored in methanol and water for 24 h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). Unbleached specimens were used as control group. A total of 7 different elutable substances have been identified from the investigated composites after bleaching-treatment. Three of them were methacrylates: 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate (TEGDMA) and trimethylolpropane trimethacrylate (TMPTMA). Compared to the unbleached controls an increase in elution after PF 15%-treatment of following compounds was found: HEMA (Tetric EvoCeram(®) Bulk Fill), TEGDMA (QuiXFil™, X-tra fil) and 4-N,N-dimethylaminobenzoic acid butyl ethoxy ester (DMABEE) (Tetric EvoCeram(®) Bulk Fill, QuiXFil™, X-tra fil). Following compounds showed a reduction in elution after PF 35%-treatment compared to controls: TEGDMA (QuiXFil™) and DMABEE (Tetric EvoCeram(®) Bulk Fill). The highest concentration of HEMA was 0.22 mmol/l (Tetric EvoCeram(®) Bulk Fill, methanol, 7 d, PF 15%), the highest concentration of TEGDMA was 0.3 mmol/l (X-tra fil, water, 7 d, PF 15%) and the highest concentration of DMABEE was 0.05 mmol/l (QuiXFil™, water, 7 d, PF 35%). PF 15% and PF 35% can lead to reduced and/or increased elution of some bulk-fill components, compared to unbleached bulk-fill composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Theoretical studies of damage to 3'-uridine monophosphate induced by electron attachment.
Zhang, Ru Bo; Zhang, Ke; Eriksson, Leif A
2008-01-01
Low-energy electrons (LEE) are well known to induce nucleic acid damage. However, the damage mechanisms related to charge state and structural features remain to be explored in detail. In the present work, we have investigated the N1-glycosidic and C3'-O(P) bond ruptures of 3'-UMP (UMP=uridine monophosphate) and the protonated form 3'-UMPH with -1 and zero charge, respectively, based on hybrid density functional theory (DFT) B3 LYP together with the 6-31+G(d,p) basis set. The glycosidic bond breakage reactions of the 3'UMP and 3'UMPH electron adducts are exothermic in both cases, with barrier heights of 19-20 kcal mol(-1) upon inclusion of bulk solvation. The effects of the charge state on the phosphate group are marginal, but the C2'-OH group destabilizes the transition structure of glycosidic bond rupture of 3'-UMPH in the gas phase by approximately 5.0 kcal mol(-1). This is in contrast with the C3'-O(P) bond ruptures induced by LEE in which the charge state on the phosphate influences the barrier heights and reaction energies considerably. The barrier towards C3'-O(P) bond dissociation in the 3'UMP electron adduct is higher in the gas phase than the one corresponding to glycosidic bond rupture and is dramatically influenced by the C2'-OH group and bulk salvation, which decreases the barrier to 14.7 kcal mol(-1). For the C3'-O(P) bond rupture of the 3'UMPH electron adduct, the reaction is exothermic and the barrier is even lower, 8.2 kcal mol(-1), which is in agreement with recent results for 3'-dTMPH and 5'-dTMPH (dTMPH=deoxythymidine monophosphate). Both the Mulliken atomic charges and unpaired-spin distribution play significant roles in the reactions.
Srivastav, Anurag Kumar; Kumar, Mahadeo; Ansari, Nasreen Ghazi; Jain, Abhishek Kumar; Shankar, Jai; Arjaria, Nidhi; Jagdale, Pankaj; Singh, Dhirendra
2016-12-01
The purpose of this study was to characterize the zinc oxide nanoparticles (ZnO-NPs) and their bulk counterpart in suspensions and to access the impact of their acute oral toxicity at doses of 300 and 2000 mg/kg in healthy female Wistar rats. The hematological, biochemical, and urine parameters were accessed at 24 and 48 h and 14 days posttreatment. The histopathological evaluations of tissues were also performed. The distribution of zinc content in liver, kidney, spleen, plasma, and excretory materials (feces and urine) at 24 and 48 h and 14 days posttreatment were accessed after a single exposure at dose of 2000 mg/kg body weight. The elevated level of alanine amino transferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were observed in ZnO-NPs at a dose of 2000 mg/kg at all time points. There was a decrease in iron levels in all the treated groups at 24 h posttreatment as compared to control groups but returned to their normal level at 14 days posttreatment. The hematological parameters red blood cells, hemoglobin, hematocrit, platelets, and haptoglobin were reduced at 48 h posttreatment at a dose of 2000 mg/kg ZnO-NPs and showed hemolytic condition. All the treated groups were comparable to control group at the end of 14 days posttreatment. The zinc concentration in the kidney, liver, plasma, feces, and urine showed a significant increase in both groups as compared to control. This study explained that ZnO-NPs produced more toxicological effect as compared to their bulk particles as evidenced through alteration in some hemato-biochemical parameters and with few histopathological lesions in liver and kidney tissues. © The Author(s) 2016.
Effect of Cryorolling and Aging on Fatigue Behavior of Ultrafine-grained Al6061
NASA Astrophysics Data System (ADS)
Yadollahpour, M.; Hosseini-Toudeshky, H.; Karimzadeh, F.
2016-05-01
The effects of cryorolling (rolling at liquid nitrogen temperature) and heat treatment on tensile and high-cycle fatigue properties and fatigue crack growth rate of Al6061 alloy have been investigated in the present work. First, the solid solution-treated bulk Al6061 alloy was subjected to cryorolling with 90% total thickness reduction and subsequent short annealing at 205°C for 5 min and peak aging at 148°C for 39 h to achieve grain refinement and simultaneous improvement of the strength and ductility. Then, hardness measurements, tensile tests, fatigue life, and fatigue crack growth rate tests including fractography analyses using scanning electron microscopy were performed on bulk Al6061 alloy, cryorolled (CR), and cryorolled material followed by peak aging (PA). The PA specimen showed improved yield strength by 24%, ultimate tensile strength by 20%, and ductility by 12% as compared with the bulk Al6061 alloy. It is shown that the fatigue strength of both CR and PA specimens under a high-cycle fatigue regime are larger than that of the bulk Al6061 alloy. Also, fatigue crack growth rates of the CR and PA specimens show significant enhancement in fatigue crack growth resistances as compared with the bulk Al6061 alloy, as a result of grain refinement.
The Ultra Light Aircraft Testing
NASA Technical Reports Server (NTRS)
Smith, Howard W.
1993-01-01
The final report for grant NAG1-345 is presented. Recently, the bulk of the work that the grant has supported has been in the areas of ride quality and the structural analysis and testing of ultralight aircraft. The ride quality work ended in May 1989. Hence, the papers presented in this final report are concerned with ultralight aircraft.
Stability analysis of nanoscale surface patterns in stressed solids
NASA Astrophysics Data System (ADS)
Kostyrko, Sergey A.; Shuvalov, Gleb M.
2018-05-01
Here, we use the theory of surface elasticity to extend the morphological instability analysis of stressed solids developed in the works of Asaro, Tiller, Grinfeld, Srolovitz and many others. Within the framework of Gurtin-Murdoch model, the surface phase is assumed to be a negligibly thin layer with the elastic properties which differ from those of the bulk material. We consider the mass transport mechanism driven by the variation of surface and bulk energy along undulated surface of stressed solid. The linearized surface evolution equation is derived in the case of plane strain conditions and describes the amplitude change of surface perturbations with time. A parametric analysis of this equation leads to the definition of critical conditions which depend on undulation wavelength, residual surface stress, applied loading, surface and bulk elastic constants and predict the surface morphological stability.
First-principles studies of electronic, transport and bulk properties of pyrite FeS2
NASA Astrophysics Data System (ADS)
Banjara, Dipendra; Mbolle, Augustine; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola
We present results of ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of pyrite FeS2. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) formalism, following the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method requires successive, self consistent calculations with increasing basis sets to reach the ground state of the system under study. We report the band structure, the band gap, total and partial densities of states, effective masses, and the bulk modulus. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.
Three-dimensional magnetic critical behavior in CrI 3
Liu, Yu; Petrovic, C.
2018-01-18
CrI 3 is a promising candidate for the van der Waals bonded ferromagnetic devices since its ferromagnetism can be maintained upon exfoliating of bulk crystals down to single layer. In this work we studied critical properties of bulk CrI 3 single crystals around the paramagnetic to ferromagnetic phase transition. Critical exponents β= 0.260(4) with a critical temperature T c= 60.05(13) K and γ= 1.136(6) with T c= 60.43(4) K are obtained by the Kouvel-Fisher method, whereas δ= 5.32(2) is obtained by a critical isotherm analysis at T c= 60 K. In conclusion, the critical exponents determined in bulk CrI 3more » single crystals suggest a three-dimensional long-range magnetic coupling with the exchange distance decaying as J(r)≈r -4:69« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, S. G.; Walentosky, M. J.; Messinger, Justin
We present a new computational method for calculating the motion of stars in a dwarf spheroidal galaxy (dSph) that can use either Newtonian gravity or Modified Newtonian Dynamics (MOND). In our model, we explicitly calculate the motion of several thousand stars in a spherically symmetric gravitational potential, and we statistically obtain both the line-of-sight bulk velocity dispersion and dispersion profile. Our results for MOND calculated bulk dispersions for Local Group dSph’s agree well with previous calculations and observations. Our MOND calculated dispersion profiles are compared with the observations of Walker et al. for Milky Way dSph’s, and we present calculatedmore » dispersion profiles for a selection of Andromeda dSph’s.« less
Magnetism of internal surfaces in a fractal structure
NASA Astrophysics Data System (ADS)
Branco, N. S.; Chame, Anna
1993-09-01
We study the inhomogeneous magnetization behavior of an Ising ferromagnet in Sierpiński pastry shells, using a real-space renormalization group approach. Two qualitatively different regions on the fractal are distinguished: the bulk and the set of internal surfaces which border the eliminated portions. We obtain the spontaneous mean magnetizations for these regions as a function of the temperature for different values of α = JS/ JB (J S and J B are the internal surface and bulk coupling constants respectively) and different geometrical parameters b and l. The critical β exponents are obtained for the several transitions. We obtain different universality classes for the bulk transitions, depending on what occurs at the surfaces, and a step-like behavior of the magnetization as a function of the temperature of some values of b and l.
Ruiz, Amaliris; Rathnam, Kashmila R.; Masters, Kristyn S.
2014-01-01
The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk vs. surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies. PMID:24276670
A method to enhance the curve negotiation performance of HTS Maglev
NASA Astrophysics Data System (ADS)
Che, T.; Gou, Y. F.; Deng, Z. G.; Zheng, J.; Zheng, B. T.; Chen, P.
2015-09-01
High temperature superconducting (HTS) Maglev has attracted more and more attention due to its special self-stable characteristic, and much work has been done to achieve its actual application, but the research about the curve negotiation is not systematic and comprehensive. In this paper, we focused on the change of the lateral displacements of the Maglev vehicle when going through curves under different velocities, and studied the change of the electromagnetic forces through experimental methods. Experimental results show that setting an appropriate initial eccentric distance (ED), which is the distance between the center of the bulk unit and the center of the permanent magnet guideway (PMG), when cooling the bulks is favorable for the Maglev system’s curve negotiation. This work will provide some available suggestions for improving the curve negotiation performance of the HTS Maglev system.
NASA Astrophysics Data System (ADS)
Kinaci, Alper
The ability to manipulate material response to dynamical processes depends on the extent of understanding of transport properties and their variation with chemical and structural features in materials. In this perspective, current work focuses on the thermal and electronic transport behavior of technologically important bulk and nanomaterials. Strontium titanate is a potential thermoelectric material due to its large Seebeck coefficient. Here, first principles electronic band structure and Boltzmann transport calculations are employed in studying the thermoelectric properties of this material in doped and deformed states. The calculations verified that excessive carrier concentrations are needed for this material to be used in thermoelectric applications. Carbon- and boron nitride-based nanomaterials also offer new opportunities in many applications from thermoelectrics to fast heat removers. For these materials, molecular dynamics calculations are used to evaluate lattice thermal transport. To do this, first, an energy moment term is reformulated for periodic boundary conditions and tested to calculate thermal conductivity from Einstein relation in various systems. The influences of the structural details (size, dimensionality) and defects (vacancies, Stone-Wales defects, edge roughness, isotopic disorder) on the thermal conductivity of C and BN nanostructures are explored. It is observed that single vacancies scatter phonons stronger than other type of defects due to unsatisfied bonds in their structure. In pristine states, BN nanostructures have 4-6 times lower thermal conductivity compared to C counterparts. The reason of this observation is investigated on the basis of phonon group velocities, life times and heat capacities. The calculations show that both phonon group velocities and life times are smaller in BN systems. Quantum corrections are also discussed for these classical simulations. The chemical and structural diversity that could be attained by mixing hexagonal boron nitride and graphene provide further avenues for tuning thermal and electronic properties. In this work, the thermal conductivity of hybrid graphene/hexagonal-BN structures: stripe superlattices and BN (graphene) dots embedded in graphene (BN) are studied. The largest reduction in thermal conductivity is observed at 50% chemical mixture in dot superlattices. The dot radius appears to have little effect on the magnitude of reduction around large concentrations while smaller dots are more influential at dilute systems.
Low field magnetocaloric effect in bulk and ribbon alloy La(Fe0.88Si0.12)13
NASA Astrophysics Data System (ADS)
Vuong, Van-Hiep; Do-Thi, Kim-Anh; Nguyen, Duy-Thien; Nguyen, Quang-Hoa; Hoang, Nam-Nhat
2018-03-01
Low-field magnetocaloric effect occurred in itinerant metamagnetic materials is at core for magnetic cooling application. This works reports the magnetocaloric responses obtained at 1.35 T for the silicon-doped iron-based binary alloy La(Fe0.88Si0.12)13 in the bulk and ribbon form. Both samples possess a same symmetry but with different crystallite sizes and lattice parameters. The ribbon sample shows a larger maximum entropy change (nearly 8.5 times larger) and a higher Curie temperature (5 K higher) in comparison with that of the bulk sample. The obtained relative cooling power for the ribbon is also larger and very promising for application (RCP = 153 J/kg versus 25.2 J/kg for the bulk). The origin of the effect observed is assigned to the occurrence of negative magnetovolume effect in the ribbon structure with limit crystallization, caused by rapid cooling process at the preparation, which induced smaller crystallite size and large lattice constant at the overall weaker local crystal field.
NASA Astrophysics Data System (ADS)
Dai, Zhongwei; Jin, Wencan; Grady, Maxwell; Sadowski, Jerzy T.; Dadap, Jerry I.; Osgood, Richard M.; Pohl, Karsten
2017-06-01
We have used selected area low energy electron diffraction intensity-voltage (μLEED-IV) analysis to investigate the surface structure of crystalline 2H molybdenum disulfide (MoS2) and mechanically exfoliated and suspended monolayer MoS2. Our results show that the surface structure of bulk 2H-MoS2 is distinct from its bulk and that it has a slightly smaller surface relaxation at 320 K than previously reported at 95 K. We concluded that suspended monolayer MoS2 shows a large interlayer relaxation compared to the MoS2 sandwich layer terminating the bulk surface. The Debye temperature of MoS2 was concluded to be about 600 K, which agrees with a previous theoretical study. Our work has shown that the dynamical μLEED-IV analysis performed with a low energy electron microscope (LEEM) is a powerful technique for determination of the local atomic structures of currently extensively studied two-dimensional (2-D) materials.
Dai, Zhongwei; Jin, Wencan; Grady, Maxwell; ...
2017-02-10
Here, we used selected area low energy electron diffraction intensity-voltage (μLEED-IV) analysis to investigate the surface structure of crystalline 2H molybdenum disulfide (MoS 2) and mechanically exfoliated and suspended monolayer MoS 2. Our results show that the surface structure of bulk 2H-MoS 2 is distinct from its bulk and that it has a slightly smaller surface relaxation at 320 K than previously reported at 95 K. We concluded that suspended monolayer MoS 2 shows a large interlayer relaxation compared to the MoS 2 sandwich layer terminating the bulk surface. The Debye temperature of MoS 2 was concluded to be aboutmore » 600 K, which agrees with a previous theoretical study. Our work has shown that the dynamical μLEED-IV analysis performed with a low energy electron microscope (LEEM) is a powerful technique for determination of the local atomic structures of currently extensively studied two-dimensional (2-D) materials.« less
Bulk assembly of organic metal halide nanotubes
Lin, Haoran; Zhou, Chenkun; Tian, Yu; ...
2017-10-16
The organic metal halide hybrids welcome a new member with a one-dimensional (1D) tubular structure. Herein we report the synthesis and characterization of a single crystalline bulk assembly of organic metal halide nanotubes, (C 6H 13N 4) 3Pb 2Br 7. In a metal halide nanotube, six face-sharing metal halide dimers (Pb 2Br 9 5–) connect at the corners to form rings that extend in one dimension, of which the inside and outside surfaces are coated with protonated hexamethylenetetramine (HMTA) cations (C 6H 13N 4 +). This unique 1D tubular structure possesses highly localized electronic states with strong quantum confinement, resultingmore » in the formation of self-trapped excitons that give strongly Stokes shifted broadband yellowish-white emission with a photoluminescence quantum efficiency (PLQE) of ~7%. Finally, having realized single crystalline bulk assemblies of two-dimensional (2D) wells, 1D wires, and now 1D tubes using organic metal halide hybrids, our work significantly advances the research on bulk assemblies of quantum-confined materials.« less
Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells
2014-01-01
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107
Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.
Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo
2014-01-01
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.
Xi, Jianqi; Liu, Bin; Xu, Haixuan; ...
2017-12-02
We presenmore » t that grain boundaries (GBs) are the most abundant structural defects in nanostructured nuclear fuels and play an important role in determining fission product behavior, which further affects the performance of nuclear fuels. In this work, cerium dioxide (CeO 2) is used as a surrogate material for mixed oxide fuels to understand gaseous fission product behavior, specifically Xe. First-principles calculations are employed to comprehensively study the behavior of Xe and trap sites for Xe near the Σ 3 (111)/[1 1 ¯ 0] grain boundary in CeO 2, which will provide guidance on overall trends for Xe stability and diffusion at grain boundaries vs in the bulk. Significant segregation behavior of trap sites, regardless of charge states, is observed near the GB. This is mainly ascribed to the local atomic structure near the GB, which results in weaker bond strength and more negative segregation energies. For Xe, however, the segregation profile near the GB is different. Our calculations show that, as the size of trap sites increases, the segregation propensity of Xe is reduced. In addition, under hyper-stoichiometric conditions, the solubility of Xe trapped at the GB is significantly higher than that in the bulk, suggesting higher Xe concentration than that in the bulk. The results of this work demonstrate that the diffusion mechanism of Xe in CeO 2 is comparable to that in UO 2. The diffusion activation energies of Xe atoms in the Σ3GB are lower than that in the bulk CeO 2. Lastly, these results suggest that the diffusivity of Xe atoms is higher along the GB than that in the bulk, which enhances the aggregation of Xe atoms near the GB.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Jianqi; Liu, Bin; Xu, Haixuan
We presenmore » t that grain boundaries (GBs) are the most abundant structural defects in nanostructured nuclear fuels and play an important role in determining fission product behavior, which further affects the performance of nuclear fuels. In this work, cerium dioxide (CeO 2) is used as a surrogate material for mixed oxide fuels to understand gaseous fission product behavior, specifically Xe. First-principles calculations are employed to comprehensively study the behavior of Xe and trap sites for Xe near the Σ 3 (111)/[1 1 ¯ 0] grain boundary in CeO 2, which will provide guidance on overall trends for Xe stability and diffusion at grain boundaries vs in the bulk. Significant segregation behavior of trap sites, regardless of charge states, is observed near the GB. This is mainly ascribed to the local atomic structure near the GB, which results in weaker bond strength and more negative segregation energies. For Xe, however, the segregation profile near the GB is different. Our calculations show that, as the size of trap sites increases, the segregation propensity of Xe is reduced. In addition, under hyper-stoichiometric conditions, the solubility of Xe trapped at the GB is significantly higher than that in the bulk, suggesting higher Xe concentration than that in the bulk. The results of this work demonstrate that the diffusion mechanism of Xe in CeO 2 is comparable to that in UO 2. The diffusion activation energies of Xe atoms in the Σ3GB are lower than that in the bulk CeO 2. Lastly, these results suggest that the diffusivity of Xe atoms is higher along the GB than that in the bulk, which enhances the aggregation of Xe atoms near the GB.« less
NASA Astrophysics Data System (ADS)
Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An
2018-05-01
The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.
Mechanisms of the anomalous Pockels effect in bulk water
NASA Astrophysics Data System (ADS)
Yukita, Shunpei; Suzuki, Yuto; Shiokawa, Naoyuki; Kobayashi, Takayoshi; Tokunaga, Eiji
2018-04-01
The "anomalous" Pockels effect is a phenomenon that a light beam passing between two electrodes in an aqueous electrolyte solution is deflected by an AC voltage applied between the electrodes: the deflection angle is proportional to the voltage such that the incident beam alternately changes its direction. This phenomenon, the Pockels effect in bulk water, apparently contradicts what is believed in nonlinear optics, i.e., macroscopic inversion symmetry should be broken for the second-order nonlinear optical effect to occur such as the first-order electro-optic effect, i.e., the Pockels effect. To clarify the underlying mechanism, the dependence of the effect on the electrode material is investigated to find that the Pockels coefficient with Pt electrodes is two orders of magnitude smaller than with indium tin oxide (ITO) electrodes. It is experimentally confirmed that the Pockels effect of interfacial water in the electric double layer (EDL) on these electrodes shows an electrode dependence similar to the effect in bulk water while the effects depend on the frequency of the AC voltage such that the interfacial signal decreases with frequency but the bulk signal increases with frequency up to 221 Hz. These experimental results lead to a conclusion that the beam deflection is caused by the refractive index gradient in the bulk water region, which is formed transiently by the Pockels effect of interfacial water in the EDL when an AC electric field is applied. The refractive index gradient is caused by the diffuse layer spreading into the bulk region to work as a breaking factor of inversion symmetry of bulk water due to its charge-biased ionic distribution. This mechanism does not contradict the principle of nonlinear optics.
Hybrid Defect Phase Transition: Renormalization Group and Monte Carlo Analysis
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Diep, H. T.
2010-03-01
For the q-state Potts model with 2 < q <= 4 on the square lattice with a defect line, the order parameter on the defect line jumps discontinuously from zero to a nonzero value while the defect energy varies continuously with the temperature at the critical temperature. Monte-Carlo simulations (H. T. Diep, M. Kaufman, Phys Rev E 2009) of the q-state Potts model on a square lattice with a line of defects verify the renormalization group prediction (M. Kaufman, R. B. Griffiths, Phys Rev B 1982) on the occurrence of the hybrid transition on the defect line. This is interesting since for those q values the bulk transition is continuous. This hybrid (continuous - discontinuous) defect transition is induced by the infinite range correlations at the bulk critical point.
Generating Ship-to-Shore Bulk Fuel Delivery Schedules for the Marine Expeditionary Unit
2017-06-01
Amphibious Ready Group . . . . . . . . . . . . . . . . . . . . . 9 2.2 Amphibious Connectors . . . . . . . . . . . . . . . . . . . . . 11 2.3 Fuel Containers...ARG Amphibious Ready Group BLT Battalion Landing Team COMPHIBRON Commander, Amphibious Squadron CSV Comma Separated Values LCAC Landing Craft Air...in the world. The MEU and the Amphibious Ready Group (ARG) create a highly capable amphibious force able to strike and conduct operations from the sea
NASA Technical Reports Server (NTRS)
Rubin, Alan E.; Pernicka, Ernst
1989-01-01
Bulk compositions of 19 chondrules and one matrix-rich sample from H3.4 Sharps were determined by instrumental neutron activation analysis. Samples were characterized petrographically, and mineral compositions were determined by electron microprobe analysis. There is constancy among ordinary chondrite (OC) groups in the compositional interrelationships of different chondrule types; e.g., in H3 as well as L3 and LL3 chondrites, porphyritic chondrules are more refractory than nonporphyritic chondrules. Precursor components of H3 chondrules are closely related to those of LL3 chondrules. The mean Ir/Ni, Ir/Co, and Ir/Au ratios of H3 chondrules differ from the corresponding ratios of LL3 chondrules at the 99, 90, and 79 percent confidence levels, respectively. The ratios in H3 chondrules exceed those in LL3 chondrules by amounts similar to those by which H whole-rocks exceed LL whole-rocks. These data suggest that there are primary systematic differences in bulk composition between H and LL chondrules. These differences support the inference that chondrule formation occurred after major nebular fractionation events had established the observed bulk compositional differences among OC groups.
NASA Astrophysics Data System (ADS)
McColgan, Patrick T.; Meraki, Adil; Boltnev, Roman E.; Lee, David M.; Khmelenko, Vladimir V.
2017-04-01
We studied optical and electron spin resonance spectra during destruction of porous structures formed by nitrogen-rare gas (RG) nanoclusters in bulk superfluid helium containing high concentrations of stabilized nitrogen atoms. Samples were created by injecting products of a radio frequency discharge of nitrogen-rare gas-helium gas mixtures into bulk superfluid helium. These samples have a high energy density allowing the study of energy release in chemical processes inside of nanocluster aggregates. The rare gases used in the studies were neon, argon, and krypton. We also studied the effects of changing the relative concentrations between nitrogen and rare gas on thermoluminescence spectra during destruction of the samples. At the beginning of the destructions, α -group of nitrogen atoms, Vegard-Kaplan bands of N_2 molecules, and β -group of O atoms were observed. The final destruction of the samples were characterized by a series bright flashes. Spectra obtained during these flashes contain M- and β -bands of NO molecules, the intensities of which depend on the concentration of molecular nitrogen in the gas mixture as well as the type of rare gas present in the gas mixture.
NASA Technical Reports Server (NTRS)
Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)
2002-01-01
The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel Baldwin in the preparation of their publication "Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements". The remainder of this report is drawn from these publications and presentations.
Trudeau, Maeve O'Neill; Baron, Emmanuel; Hérard, Patrick; Labar, Amy S; Lassalle, Xavier; Teicher, Carrie Lee; Rothstein, David H
2015-11-01
Little is known about the scope of practice and outcomes in pediatric surgery performed by humanitarian organizations in resource-poor settings and conflict zones. This study provides the largest report to date detailing such data for a major nongovernmental organization providing humanitarian surgical relief support in these settings. To characterize pediatric surgical care provision by a major nongovernmental organization in specialized humanitarian settings and conflict zones. A retrospective cohort study was conducted from August 15, 2014, to March 9, 2015, of 59,928 surgical interventions carried out from January 1, 2012, to December 31, 2013, by the Médecins Sans Frontières Operational Centre Paris (MSF-OCP) program in 20 locations, including South Sudan, Yemen, Syria, Gaza, Pakistan, Nigeria, Central African Republic, Democratic Republic of Congo, and the Philippines. Surgical interventions were primarily for general surgical, traumatic, and obstetric emergencies and were categorized by mechanism, type of intervention, American Society of Anesthesia risk classification, and urgency of intervention. Operative indications, type of intervention, and operative case mortality. Among all age groups, 59,928 surgical interventions were performed in dedicated trauma, obstetric, and reconstructive centers for 2 years. Nearly one-third of interventions (18,040 [30.1%]) involved preteen patients (aged <13 years) and 4571 (7.6%) involved teenaged patients (aged 13-17 years). The proportion of violence-related injuries in the preteen group was significantly lower than in the teenage group (4.8% vs 17.5%; P < .001). Burns (50.1%), other accidental injuries (16.4%), and infections (23.4%) composed the bulk of indications in the preteen group. Interventions in the teenage group were principally caused by trauma-related injuries (burns, 22.9%; traffic accidents, 10.1%; gunshot wounds, 8.0%). Crude perioperative case mortality rates were 0.07% in the preteen group, 0.15% in the teenage group, and 0.22% in the adult group (>17 years) (P = .001). One-third of the cases (33.4%) were deemed urgent, while most of the remaining cases (57.7%) were deemed semielective (surgical intervention to be performed within 48 hours). When examining surgical interventions in a population of pediatric patients cared for in the specialized setting of humanitarian aid and conflict zones, burns, other accidental injuries, and infection composed the bulk of indications in the preteen group; interventions in the teenage group were principally caused by trauma-related injuries. Crude perioperative case mortality rates in the preteen group were significantly lower than in the adult group. Further work is needed to examine long-term outcomes of pediatric operations in these settings and to guide context-specific surgical program development.
Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C
2014-12-01
Bulk deposition can remove atmospheric organic and inorganic pollutants that may be associated with gaseous, liquid or particulate phases. To the best of our knowledge, few studies have been carried out, which simultaneously analyse the presence of organic and inorganic fractions in rainwater. In the present work, the complementarity of organic and inorganic data was assessed, through crossing data of some organic [DOC (dissolved organic carbon), absorbance at 250 nm (UV250nm), integrated fluorescence] and inorganic [H(+), NH4(+), NO3(-), non sea salt sulphate (NSS-SO4(2-))] parameters measured in bulk deposition in the coastal urban area of Aveiro. The organic and inorganic parameters analysed were positively correlated (p<0.001) except for H(+), which suggests that a constant fraction of chromophoric dissolved organic matter (CDOM) came from anthropogenic sources. Furthermore, the inverse correlations observed for the organic and inorganic parameters with the precipitation amount suggest that organic and inorganic fractions were incorporated into the rainwater partially by below-cloud scavenging of airborne particulate matter. This is in accordance with the high values of DOC and NO3(-) found in samples associated with marine air masses, which were linked in part to the contribution of local emissions from vehicular traffic. DOC of bulk deposition was the predominant constituent when compared with the constituents H(+), NH4(+), NO3(-) and NSS-SO4(2-), and consequently bulk deposition flux was also highest for DOC, highlighting the importance of DOC and of anthropogenic ions being simultaneously removed from the atmosphere by bulk deposition. However, it was verified that the contribution of anthropogenic sources to the DOC of bulk deposition may be different for distinct urban areas. Thus, it is recommended that organic and inorganic fractions of bulk deposition are studied together. Copyright © 2014. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun
Our group has been working with ANL collaborators on the topic bridging the gap between parallel file system and local file system during the course of this project period. We visited Argonne National Lab -- Dr. Robert Ross's group for one week in the past summer 2007. We looked over our current project progress and planned the activities for the incoming years 2008-09. The PI met Dr. Robert Ross several times such as HEC FSIO workshop 08, SC08 and SC10. We explored the opportunities to develop a production system by leveraging our current prototype to (SOGP+PVFS) a new PVFS version.more » We delivered SOGP+PVFS codes to ANL PVFS2 group in 2008.We also talked about exploring a potential project on developing new parallel programming models and runtime systems for data-intensive scalable computing (DISC). The methodology is to evolve MPI towards DISC by incorporating some functions of Google MapReduce parallel programming model. More recently, we are together exploring how to leverage existing works to perform (1) coordination/aggregation of local I/O operations prior to movement over the WAN, (2) efficient bulk data movement over the WAN, (3) latency hiding techniques for latency-intensive operations. Since 2009, we start applying Hadoop/MapReduce to some HEC applications with LANL scientists John Bent and Salman Habib. Another on-going work is to improve checkpoint performance at I/O forwarding Layer for the Road Runner super computer with James Nuetz and Gary Gridder at LANL. Two senior undergraduates from our research group did summer internships about high-performance file and storage system projects in LANL since 2008 for consecutive three years. Both of them are now pursuing Ph.D. degree in our group and will be 4th year in the PhD program in Fall 2011 and go to LANL to advance two above-mentioned works during this winter break. Since 2009, we have been collaborating with several computer scientists (Gary Grider, John bent, Parks Fields, James Nunez, Hsing-Bung Chen, etc) from HPC5 and James Ahrens from Advanced Computing Laboratory in Los Alamos National Laboratory. We hold a weekly conference and/or video meeting on advancing works at two fronts: the hardware/software infrastructure of building large-scale data intensive cluster and research publications. Our group members assist in constructing several onsite LANL data intensive clusters. Two parties have been developing software codes and research papers together using both sides resources.« less
NASA Astrophysics Data System (ADS)
Ta, Jin-Xing; Han, Yu; Lan, Cheng
2016-02-01
Bulk magneto-phonon and magnetic polaritons of lateral antiferromagnetic superlattices for potential THz applications have been investigated in the framework of the effective medium theory. The dispersion relations applied for the system are displayed. In contrast with lateral FeF2/SiO2 superlattice, some fascinating polariton modes with negative group velocity signifying photonic band gap scenarios and attractive optical properties are observed from the numerical results presented with the example, lateral FeF2/TlBr superlattice.
Leone Roberti Maggiore, Umberto; Bogani, Giorgio; Meschia, Michele; Sorice, Paola; Braga, Andrea; Salvatore, Stefano; Ghezzi, Fabio; Serati, Maurizio
2015-06-01
Bulking agents provide an alternative option in the management of women with stress urinary incontinence and they seem to have an important role in the management flow chart of SUI. However, evidence on this issue is scanty. The most important aspect is to understand whether bulking agents are comparable with the other first-line anti-incontinence surgical procedure (MUS, Burch colposuspension and pubovaginal slings). Hence, the primary aim of the current review was to assess the objective and subjective outcomes of bulking agents in comparison with the other surgical procedures for the treatment of SUI. PubMed and Medline were systematically searched and we included studies evaluating the use of bulking agents in comparison with other surgical approaches for either primary or recurrent treatment of female SUI. Three studies meeting the inclusion criteria were identified. Two of these studies were RCTs evaluating the use of bulking agents versus other surgical procedures for the treatment of primary female SUI; the remnant article was a retrospective cohort study that compared the effectiveness and safety of repeat midurethral sling with urethral bulking after failed midurethral sling. The combined results of all analyses showed that the objective recurrence rate of peri- or trans-urethral injections is significantly higher in comparison with the other surgical procedures. Similar findings were observed when considering separately the treatment for primary or recurrent SUI. Furthermore, lower subjective recurrence rate was observed among patients undergoing other surgical treatment in comparison with those undergoing bulking agents; however, this trend was not statistically significant. Moreover, patients undergoing injection of bulking agents experienced a lower rate of voiding dysfunctions in comparison to the control group. According to current evidence, bulking agents should not be proposed as first-line treatment in those women seeking permanent cure for both primary and recurrent SUI. However, the effectiveness of a procedure should be balanced with its invasiveness and patients' expectations. Bulking agents are a minimally invasive approach to treat SUI and their use should be considered as an alternative strategy particularly in special conditions: patients who are fragile, in those who do not wish to have surgery, or in whom surgical options are restricted (postoperatively, after irradiation). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Human Factors and Modeling Methods in the Development of Control Room Modernization Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugo, Jacques V.; Slay III, Lorenzo
nuclear power plants. Although the nuclear industry has made steady improvement in outage optimization, each day of a refueling outage still represents an opportunity to save millions of dollars and each day an outage extends past its planned end date represents millions of dollars that may have been spent unnecessarily. Reducing planned outage duration or preventing outage extensions requires careful management of the outage schedule as well as constant oversight and monitoring of work completion during the outage execution. During a typical outage, there are typically more than 10,000 activities on the schedule that, if not managed efficiently, may causemore » expensive outage delays. Management of outages currently relies largely on paper-based resources and general-purpose office software. A typical tool currently used to monitor work performance is a burn-down curve, where total remaining activities are plotted against the baseline schedule to track bulk work completion progress. While these tools are useful, there is still considerable uncertainty during a typical outage that bulk work progress is adequate and therefore a lot of management time is spent analyzing the situation on a daily basis. This paper describes recent advances made in developing a framework for the design of visual outage information presentation, as well as an overview of the scientific principles that informed the development of the visualizations. To test the utility of advanced visual outage information presentation, an outage management dashboard software application was created as part of the Department of Energy’s Advanced Outage Control Center project. This dashboard is intended to present all the critical information an outage manager would need to understand the current status of a refueling outage. The dashboard presents the critical path, bulk work performance, key performance indicators, outage milestones and metrics relating current performance to historical performance. Additionally, the dashboard includes data analysis tools to allow outage managers to drill down into the underlying data to understand the drivers of the indicators.« less
Rotational Properties of Jupiter Trojan 1173 Anchises
NASA Astrophysics Data System (ADS)
Chatelain, Joseph; Henry, Todd; French, Linda; Trilling, David
2015-11-01
Anchises (1173) is a large Trojan asteroid librating about Jupiter’s L5 Lagrange point. Here we examine its rotational and lightcurve properties by way of data collected over a 3.5 year observing campaign. The length of the campaign means that data were gathered for more than a quarter of Anchises' full orbital revolution which allows for accurate determinations of pole orientation and bulk shape properties for the asteroid that can then be compared to results of previous work (i.e. French 1987, Horner et al. 2012). In addition to light curves, photometric data taken during this campaign could potentially detect color differences between hemispheres as the viewing geometry changes over time. Understanding these details about a prominent member of the Jupiter Trojans may help us better understand the history of this fascinating and important group of asteroids.
Industrial minerals and rocks: Present trends in exploration, exploitation and use
NASA Astrophysics Data System (ADS)
Lüttig, Gred W.
Today the industrial minerals and rocks are the most important mineral resource group as far as quantity goes and after the energy carriers the most significant as far as value goes. Their value is rising constantly and in their use there are possibilities for projects with low investment costs and quick cash flow. This is important for the developing countries in particular. Since it is partly a matter of near surface bulk raw materials; their use involves local conflicts with other utilization claims. It is necessary for the geoscience to work out suggestions for solutions to these conflicts, to simultaneously mobilize research and training capacities and in face of the present desperate situation to improve them so that a better contribution than is presently being made can be made by this professional field for the public welfare.
NASA Astrophysics Data System (ADS)
Jonell, T. N.; Li, Y.; Blusztajn, J.; Giosan, L.; Clift, P. D.
2017-12-01
Rare earth element (REE) radioisotope systems, such as neodymium (Nd), have been traditionally used as powerful tracers of source provenance, chemical weathering intensity, and sedimentary processes over geologic timescales. More recently, the effects of physical fractionation (hydraulic sorting) of sediments during transport have called into question the utility of Nd isotopes as a provenance tool. Is source terrane Nd provenance resolvable if sediment transport strongly induces noise? Can grain-size sorting effects be quantified? This study works to address such questions by utilizing grain size analysis, trace element geochemistry, and Nd isotope geochemistry of bulk and grain-size fractions (<63μm, 63-125 μm, 125-250 μm) from the Indus delta of Pakistan. Here we evaluate how grain size effects drive Nd isotope variability and further resolve the total uncertainties associated with Nd isotope compositions of bulk sediments. Results from the Indus delta indicate bulk sediment ɛNd compositions are most similar to the <63 µm fraction as a result of strong mineralogical control on bulk compositions by silt- to clay-sized monazite and/or allanite. Replicate analyses determine that the best reproducibility (± 0.15 ɛNd points) is observed in the 125-250 µm fraction. The bulk and finest fractions display the worst reproducibility (±0.3 ɛNd points). Standard deviations (2σ) indicate that bulk sediment uncertainties are no more than ±1.0 ɛNd points. This argues that excursions of ≥1.0 ɛNd points in any bulk Indus delta sediments must in part reflect an external shift in provenance irrespective of sample composition, grain size, and grain size distribution. Sample standard deviations (2s) estimate that any terrigenous bulk sediment composition should vary no greater than ±1.1 ɛNd points if provenance remains constant. Findings from this study indicate that although there are grain-size dependent Nd isotope effects, they are minimal in the Indus delta such that resolvable provenance-driven trends can be identified in bulk sediment ɛNd compositions over the last 20 k.y., and that overall provenance trends remain consistent with previous findings.
NASA Astrophysics Data System (ADS)
Sumida, John P.; Forsythe, Elizabeth L.; Pusey, Marc L.
2001-11-01
Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp 101 using a carbodiimide coupling procedure. Asp 101 lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. Lucifer yellow and EDANS probes with iodoacetamide reactive groups have been bound to His 15, located on the "back side" of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp 101-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His 15 have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.
Morris, Eric A; Kirk, Donald W; Jia, Charles Q; Morita, Kazuki
2012-07-17
This work addresses the discrepancy in the literature regarding the effects of sulfuric acid (H(2)SO(4)) on elemental Hg uptake by activated carbon (AC). H(2)SO(4) in AC substantially increased Hg uptake by absorption particularly in the presence of oxygen. Hg uptake increased with acid amount and temperature exceeding 500 mg-Hg/g-AC after 3 days at 200 °C with AC treated with 20% H(2)SO(4). In the absence of other strong oxidizers, oxygen was able to oxidize Hg. Upon oxidation, Hg was more readily soluble in the acid, greatly enhancing its uptake by acid-treated AC. Without O(2), S(VI) in H(2)SO(4) was able to oxidize Hg, thus making it soluble in H(2)SO(4). Consequently, the presence of a bulk H(2)SO(4) phase within AC pores resulted in an orders of magnitude increase in Hg uptake capacity. However, the bulk H(2)SO(4) phase lowered the AC pore volume and could block the access to the active surface sites and potentially hinder Hg uptake kinetics. AC treated with SO(2) at 700 °C exhibited a much faster rate of Hg uptake attributed to sulfur functional groups enhancing adsorption kinetics. SO(2)-treated carbon maintained its fast uptake kinetics even after impregnation by 20% H(2)SO(4).
NASA Astrophysics Data System (ADS)
Bhowmik, R. N.; Siva, K. Venkata
2018-07-01
The samples of Ga-doped Cr2O3 system in rhombohedral crystal structure with space group R 3 bar C were prepared by chemical co-precipitation route and annealing at 800 °C. The current-voltage (I-V) curves exhibited many unique non-linear properties, e.g., hysteresis loop, resistive switching, and negative differential resistance (NDR). In this work, we report non-equilibrium properties of resistive switching and NDR phenomena. The non-equilibrium I-V characteristics were confirmed by repetiting measurement and time relaxation of current. The charge conduction process was understood by analysing the I-V curves using electrode-limited and bulk-limited charge conduction mechanisms, which were proposed for metal electrode/metal oxide/metal electrode structure. The I-V curves in the NDR regime and at higher bias voltage regime in our samples did not obey Fowler-Nordheim equation, which was proposed for charge tunneling mechanism in many thin film junctions. The non-equilibrium I-V phenomena were explained by considering the competitions between the injection of charge carriers from metal electrode to metal oxide, the charge flow through bulk material mediated by trapping/de-trapping and recombination of charge carriers at the defect sites of ions, the space charge effects at the junctions of electrodes and metal oxides, and finally, the out flow of electrons from metal oxide to metal electrode.
Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)
Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Franklin, Lashounda; ...
2016-10-11
Here, we present the results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses,more » and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from C to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 6 0.02 eV. We thor-oughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accu-rately properties of materials, provides a confirmation of the capability of DFT to describe accu-rately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.« less
Antiferromagnetism in Bulk Rutile RuO2
NASA Astrophysics Data System (ADS)
Berlijn, T.; Snijders, P. C.; Kent, P. R. C.; Maier, T. A.; Zhou, H.-D.; Cao, H.-B.; Delaire, O.; Wang, Y.; Koehler, M.; Weitering, H. H.
While bulk rutile RuO2 has long been considered to be a Pauli paramagnet, we conclude it to host antiferromagnetism based on our combined theoretical and experimental study. This constitutes an important finding given the large amount of applications of RuO2 in the electrochemical and electronics industry. Furthermore the high onset temperature of the antiferromagnetism around 1000K together with the high electrical conductivity makes RuO2 unique among the ruthenates and among oxide materials in general. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Temperature-induced band shift in bulk γ-InSe by angle-resolved photoemission spectroscopy
NASA Astrophysics Data System (ADS)
Xu, Huanfeng; Wang, Wei; Zhao, Yafei; Zhang, Xiaoqian; Feng, Yue; Tu, Jian; Gu, Chenyi; Sun, Yizhe; Liu, Chang; Nie, Yuefeng; Edmond Turcu, Ion C.; Xu, Yongbing; He, Liang
2018-05-01
Indium selenide (InSe) has recently become popular research topics because of its unique layered crystal structure, direct band gap and high electron mobilities. In this work, we have acquired the electronic structure of bulk γ-InSe at various temperatures using angle-resolved photoemission spectroscopy (ARPES). We have also found that as the temperature decreases, the valence bands of γ-InSe exhibit a monotonic shift to lower binding energies. This band shift is attributed to the change of lattice parameters and has been validated by variable temperature X-ray diffraction measurements and theoretical calculations.
Role of Alloying Additions in Glass Formation and Properties of Bulk Metallic Glasses
Chen, Na; Martin, Laura; Luzguine-Luzgin, Dmitri V.; Inoue, Akihisa
2010-01-01
Alloying addition, as a means of improving mechanical properties and saving on costs of materials, has been applied to a broad range of uses and products in the metallurgical fields. In the field of bulk metallic glasses (BMGs), alloying additions have also proven to play effective and important roles in promoting glass formation, enhancing thermal stability and improving plasticity of the materials. Here, we review the work on the role of alloying additions in glass formation and performance improvement of BMGs, with focus on our recent results of alloying additions in Pd-based BMGs. PMID:28883386
Analytical Chemistry Developmental Work Using a 243Am Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Khalil J.; Stanley, Floyd E.; Porterfield, Donivan R.
2015-02-24
This project seeks to reestablish our analytical capability to characterize Am bulk material and develop a reference material suitable to characterizing the purity and assay of 241Am oxide for industrial use. The tasks associated with this phase of the project included conducting initial separations experiments, developing thermal ionization mass spectrometry capability using the 243Am isotope as an isotope dilution spike , optimizing the spike for the determination of 241Pu- 241 Am radiochemistry, and, additionally, developing and testing a methodology which can detect trace to ultra- trace levels of Pu (both assay and isotopics) in bulk Am samples .
Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond
NASA Astrophysics Data System (ADS)
Wan, Noel H.; Mouradian, Sara; Englund, Dirk
2018-04-01
Color centers in diamond are promising spin qubits for quantum computing and quantum networking. In photon-mediated entanglement distribution schemes, the efficiency of the optical interface ultimately determines the scalability of such systems. Nano-scale optical cavities coupled to emitters constitute a robust spin-photon interface that can increase spontaneous emission rates and photon extraction efficiencies. In this work, we introduce the fabrication of 2D photonic crystal slab nanocavities with high quality factors and cubic wavelength mode volumes—directly in bulk diamond. This planar platform offers scalability and considerably expands the toolkit for classical and quantum nanophotonics in diamond.
Impact of Electrodes on Recombination in Bulk Heterojunction Organic Solar Cells
2018-01-01
In recent years, the efficiency of organic solar cells (OSCs) has increased to more than 13%, although different barriers are on the way for reaching higher efficiencies. One crucial barrier is the recombination of charge carriers, which can either occur as the bulk recombination of photogenerated charges or the recombination of photogenerated charges and electrodic induced charges (EICs). This work studies the impact of EICs on the recombination lifetime in OSCs. To this end, the net recombination lifetime of photogenerated charge carriers in the presence of EICs is measured by means of conventional and newly developed transient photovoltage techniques. Moreover, a new approach has been introduced to exclusively measure the bulk recombination lifetime, i.e., in the absence of EICs; this approach was conducted by depositing transparent insulating layers on both sides of the OSC active layer. An examination of these approaches on OSCs with different active layer materials, thicknesses, and varying light intensities determined that the EICs can only reduce the recombination lifetime of the photogenerated charges in OSCs with very weak recombination strength. This work supports that for OSCs with highly reduced recombination strength, eliminating the recombination of photogenerated charges and EICs is critical for achieving better performance. Therefore, the use of a proper blocking layer suppresses EIC recombination in systems with very weak recombination. PMID:29546982
The synthesis, characterization, and application of multifunctional magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Tackett, Ronald J.
In recent years, the field of nanotechnology has been one of extreme activity. Among other things, this activity is driven by the push for consumer technologies that are lighter, stronger, and most importantly smaller. With this push from the everyday consumer, the need for a basic understanding of the underlying physics of nanoscale materials has never been more evident. In this dissertation, the author investigates the many physical differences, in particular the differences in the magnetic properties, between nanoscale materials and their bulk counterparts. Starting out with a brief overview of magnetism, the author sets out to explore the fantastic changes in the magnetic properties of materials that occur when the physical dimensions of the materials become smaller than typical magnetic length scales. Among the first differences noticed arises when nanoscale ferromagnets are investigated. While the magnetic properties of bulk ferromagnets are governed by magnetic domain dynamics, when a material becomes small enough that only one domain is possible, a new type of magnetic behavior known as superparamagnetism arises. While this superparamagnetic behavior is well understood in terms of thermally activated spin reversal through an energy barrier, many factors, such as interactions between separate nanoparticles, cause deviations from this simple picture. The effects of these factors are investigated. In addition to the effects of interactions, the relation of nanoscale magnetics and its coupling to the dielectric properties of nanoparticles is investigated. This investigation, motivated by recent research focusing on the search for materials whose magnetic and electronic properties are influenced by each other, shows that nanomaterials can show a coupling between these properties that isn't necessarily the intrinsic coupling of the two properties, but an effect from the surface layers of nanoparticles, which are generally ignored in bulk systems due to the fact that they make up such a small percentage of the overall material. However, in nanoscale systems, the surface layers become much more involved in the determination of the overall behavior of the system as they are no longer a small percentage of the overall system, and cannot be ignored. A third investigation looks at magnetodielectric coupling that occurs in bulk Mn3O4 as a result of spin-lattice coupling with the lattice and the long-range magnetic order that develops in the system at low temperature. The motivation to study this bulk system becomes evident to the general theme of this dissertation when one asks the question, can this long-range order (extending over many unit cells of the lattice) occur in nanoscale systems (where only a few unit cells of material are present)? Preliminary data suggests that these long-range orders that occur in the bulk are not feasible in the nanoscale material. Finally, as consumer driven technology grows, the need for a single material that can be altered for use in a wide variety of applications becomes increasingly more evident. It is with this motivation that the author investigates the ability to tune the blocking temperature of an Fe3O4 nanoparticle system through cobalt doping, effectively changing the magnetocrystalline anisotropy of the system. The author finds that up to small cobalt concentrations, the magnetocrystalline anisotropy was able to be linearly increased by increasing the amount of cobalt in the system, thus providing a nanoparticle system whose blocking temperature is effectively tunable. In addition to this tuning using the cobalt doping to change the anisotropy, it was found that altering the size of the nanoparticles was also an effective way to controllably tune the blocking temperature of a nanoparticle system. In addition to the author's main research aimed at this dissertation, the author provides a small outline of some work that was done outside of the scope of his dissertation research. It is shown that while this work did not directly contribute to the dissertation topic, it did broaden the author's skill set and lead to additional collaborations between the author's research group and groups around the world.
Holographic reconstruction and renormalization in asymptotically Ricci-flat spacetimes
NASA Astrophysics Data System (ADS)
Caldeira Costa, R. N.
2012-11-01
In this work we elaborate on an extension of the AdS/CFT framework to a sub-class of gravitational theories with vanishing cosmological constant. By building on earlier ideas, we construct a correspondence between Ricci-flat spacetimes admitting asymptotically hyperbolic hypersurfaces and a family of conformal field theories on a codimension two manifold at null infinity. By truncating the gravity theory to the pure gravitational sector, we find the most general spacetime asymptotics, renormalize the gravitational action, reproduce the holographic stress tensors and Ward identities of the family of CFTs and show how the asymptotics is mapped to and reconstructed from conformal field theory data. In even dimensions, the holographic Weyl anomalies identify the bulk time coordinate with the spectrum of central charges with characteristic length the bulk Planck length. Consistency with locality in the bulk time direction requires a notion of locality in this spectrum.
NASA Astrophysics Data System (ADS)
Wu, Mingching; Fang, Weileun
2005-03-01
This work integrates multi-depth DRIE etching, trench-refilled molding, two poly-Si layers MUMPs and bulk releasing to improve the variety and performance of MEMS devices. In summary, the present fabrication process, named MOSBE II, has three merits. First, this process can monolithically fabricate and integrate poly-Si thin-film structures with different thicknesses and stiffnesses, such as the flexible spring and the stiff mirror plate. Second, multi-depth structures, such as vertical comb electrodes, are available from the DRIE processes. Third, a cavity under the micromachined device is provided by the bulk silicon etching process, so that a large out-of-plane motion is allowed. In application, an optical scanner driven by the self-aligned vertical comb actuator was demonstrated. The poly-Si micromachined components fabricated by MOSBE II can further integrate with the MUMPs devices to establish a more powerful MOEMS platform.
Efficient nonlinear optical conversion of 1.319-micron laser radiation
NASA Astrophysics Data System (ADS)
Byer, Robert L.; Eckardt, Robert C.
1993-01-01
The accomplishments of this program are in the development and application of periodically poled nonlinear optical materials for nonlinear frequency-conversion. We have demonstrated the use of periodically poled lithium niobate (PPLN) as a bulk material for external resonant cavity second-harmonic generation with continuous-wave (cw) output power of 1.7 W. Work that is following this investigation is showing that planar waveguides of PPLN may well be the most satisfactory method of generation of 10's of mW of the 659-nm harmonic of the 1.32-micrometer Nd:YAG laser. We encountered major obstacles obtaining multilayer dielectric coatings necessary to pursue our proposed design of monolithic bulk optical harmonic generators. Additional alternative approaches such as discrete component resonant second harmonic generation employing single domain and periodically poled bulk crystals and monolithic single domain resonators formed by total internal reflection remain under investigation.
Effect of size on bulk and surface cohesion energy of metallic nano-particles
NASA Astrophysics Data System (ADS)
Yaghmaee, M. S.; Shokri, B.
2007-04-01
The knowledge of nano-material properties not only helps us to understand the extreme behaviour of small-scale materials better (expected to be different from what we observe from their bulk value) but also helps us to analyse and design new advanced functionalized materials through different nano technologies. Among these fundamental properties, the cohesion (binding) energy mainly describes most behaviours of materials in different environments. In this work, we discuss this fundamental property through a nano-thermodynamical approach using two algorithms, where in the first approach the size dependence of the inner (bulk) cohesion energy is studied, and in the second approach the surface cohesion energy is considered too. The results, which are presented through a computational demonstration (for four different metals: Al, Ga, W and Ag), can be compared with some experimental values for W metallic nano-particles.
A predictive structural model for bulk metallic glasses
Laws, K. J.; Miracle, D. B.; Ferry, M.
2015-01-01
Great progress has been made in understanding the atomic structure of metallic glasses, but there is still no clear connection between atomic structure and glass-forming ability. Here we give new insights into perhaps the most important question in the field of amorphous metals: how can glass-forming ability be predicted from atomic structure? We give a new approach to modelling metallic glass atomic structures by solving three long-standing problems: we discover a new family of structural defects that discourage glass formation; we impose efficient local packing around all atoms simultaneously; and we enforce structural self-consistency. Fewer than a dozen binary structures satisfy these constraints, but extra degrees of freedom in structures with three or more different atom sizes significantly expand the number of relatively stable, ‘bulk' metallic glasses. The present work gives a new approach towards achieving the long-sought goal of a predictive capability for bulk metallic glasses. PMID:26370667
Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials
NASA Technical Reports Server (NTRS)
Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn
2015-01-01
Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.
Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells
2013-01-01
Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating an interpenetration and compacted contact of NTs and QDs. Electrical measurements show enhanced charge transfer at the hybrid bulk heterojunction interface of NTs and QDs after ligand exchange which accordingly improves the performance of solar cells. Photovoltaic and light response tests exhibit a combined optic-electric contribution from both CdTe NTs and CdSe QDs through a formation of interpercolation in morphology as well as a type II energy level distribution. The NT and QD hybrid bulk heterojunction is applicable and promising in other highly efficient photovoltaic materials such as PbS QDs. PMID:24139059
Evaluating and extending user-level fault tolerance in MPI applications
Laguna, Ignacio; Richards, David F.; Gamblin, Todd; ...
2016-01-11
The user-level failure mitigation (ULFM) interface has been proposed to provide fault-tolerant semantics in the Message Passing Interface (MPI). Previous work presented performance evaluations of ULFM; yet questions related to its programability and applicability, especially to non-trivial, bulk synchronous applications, remain unanswered. In this article, we present our experiences on using ULFM in a case study with a large, highly scalable, bulk synchronous molecular dynamics application to shed light on the advantages and difficulties of this interface to program fault-tolerant MPI applications. We found that, although ULFM is suitable for master–worker applications, it provides few benefits for more common bulkmore » synchronous MPI applications. Furthermore, to address these limitations, we introduce a new, simpler fault-tolerant interface for complex, bulk synchronous MPI programs with better applicability and support than ULFM for application-level recovery mechanisms, such as global rollback.« less
Si, W.; Zhang, C.; Wu, L.; ...
2015-09-01
Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less
Engineering Surface Critical Behavior of (2 +1 )-Dimensional O(3) Quantum Critical Points
NASA Astrophysics Data System (ADS)
Ding, Chengxiang; Zhang, Long; Guo, Wenan
2018-06-01
Surface critical behavior (SCB) refers to the singularities of physical quantities on the surface at the bulk phase transition. It is closely related to and even richer than the bulk critical behavior. In this work, we show that three types of SCB universality are realized in the dimerized Heisenberg models at the (2 +1 )-dimensional O(3) quantum critical points by engineering the surface configurations. The ordinary transition happens if the surface is gapped in the bulk disordered phase, while the gapless surface state generally leads to the multicritical special transition, even though the latter is precluded in classical phase transitions because the surface is in the lower critical dimension. An extraordinary transition is induced by the ferrimagnetic order on the surface of the staggered Heisenberg model, in which the surface critical exponents violate the results of the scaling theory and thus seriously challenge our current understanding of extraordinary transitions.
Indications of Bulk-Fluid Motion in Direct-Drive Implosions
NASA Astrophysics Data System (ADS)
Mannion, O. M.; Anderson, K. S.; Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.
2017-10-01
The neutron spectrum produced by a burning plasma encodes essential information about the fusion products and serves as an important diagnostic for inertial confinement fusion experiments. At the Omega Laser Facility, neutron time-of-flight measurements are used to interpret the first and second moment of the neutron spectrum. These moments have been shown to be directly related to properties of the plasma, such as bulk fluid motion and apparent ion temperature. New measurement devices allow for unprecedented accuracy in the measurement of these moments and will provide a better understanding of the performance of direct-drive implosions. We present measurements of the first moment of the DT and D2 peaks in DT implosions and show that variations in the first moment indicate bulk fluid motion of the plasma. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Solid-State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials.
Zhao, Kunpeng; Duan, Haozhi; Raghavendra, Nunna; Qiu, Pengfei; Zeng, Yi; Zhang, Wenqing; Yang, Jihui; Shi, Xun; Chen, Lidong
2017-11-01
High-performance thermoelectric materials require ultralow lattice thermal conductivity typically through either shortening the phonon mean free path or reducing the specific heat. Beyond these two approaches, a new unique, simple, yet ultrafast solid-state explosive reaction is proposed to fabricate nanoporous bulk thermoelectric materials with well-controlled pore sizes and distributions to suppress thermal conductivity. By investigating a wide variety of functional materials, general criteria for solid-state explosive reactions are built upon both thermodynamics and kinetics, and then successfully used to tailor material's microstructures and porosity. A drastic decrease in lattice thermal conductivity down below the minimum value of the fully densified materials and enhancement in thermoelectric figure of merit are achieved in porous bulk materials. This work demonstrates that controlling materials' porosity is a very effective strategy and is easy to be combined with other approaches for optimizing thermoelectric performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, Weidong, E-mail: wds@bnl.gov, E-mail: qiangli@bnl.gov; Zhang, Cheng; Wu, Lijun
2015-08-31
Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF{sub 2} crystalline substrates, respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. Withmore » large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less
Ions, metabolites, and cells: Water as a reporter of surface conditions during bacterial growth.
Jarisz, Tasha A; Lane, Sarah; Gozdzialski, Lea; Hore, Dennis K
2018-06-14
Surface-specific nonlinear vibrational spectroscopy, combined with bulk solution measurements and imaging, is used to study the surface conditions during the growth of E. coli. As a result of the silica high surface charge density, the water structure at the silica-aqueous interface is known to be especially sensitive to pH and ionic strength, and surface concentration profiles develop that can be appreciably different from the bulk solution conditions. We illustrate that, in the presence of growing cells, a unique surface micro-environment is established as a result of metabolites accumulating on the silica surface. Even in the subsequent absence of the cells, this surface layer works to reduce the interfacial ionic strength as revealed by the enhanced signal from surface water molecules. In the presence of growing cells, an additional boost in surface water signal is attributed to a local pH that is higher than that of the bulk solution.
Butterfly velocities for holographic theories of general spacetimes
Nomura, Yasunori; Salzetta, Nico
2017-10-01
The butterfly velocity characterizes the spread of correlations in a quantum system. Recent work has provided a method of calculating the butterfly velocity of a class of boundary operators using holographic duality. Utilizing this and a presumed extension of the canonical holographic correspondence of AdS/CFT, we investigate the butterfly velocities of operators with bulk duals living in general spacetimes. We analyze some ubiquitous issues in calculating butterfly velocities using the bulk effective theory, and then extend the previously proposed method to include operators in entanglement shadows. Here in this paper, we explicitly compute butterfly velocities for bulk local operators inmore » the holographic theory of flat Friedmann-Robertson-Walker spacetimes and find a universal scaling behavior for the spread of operators in the boundary theory, independent of dimension and fluid components. This result may suggest that a Lifshitz field theory with z = 4 is the appropriate holographic dual for these spacetimes.« less
Ions, metabolites, and cells: Water as a reporter of surface conditions during bacterial growth
NASA Astrophysics Data System (ADS)
Jarisz, Tasha A.; Lane, Sarah; Gozdzialski, Lea; Hore, Dennis K.
2018-06-01
Surface-specific nonlinear vibrational spectroscopy, combined with bulk solution measurements and imaging, is used to study the surface conditions during the growth of E. coli. As a result of the silica high surface charge density, the water structure at the silica-aqueous interface is known to be especially sensitive to pH and ionic strength, and surface concentration profiles develop that can be appreciably different from the bulk solution conditions. We illustrate that, in the presence of growing cells, a unique surface micro-environment is established as a result of metabolites accumulating on the silica surface. Even in the subsequent absence of the cells, this surface layer works to reduce the interfacial ionic strength as revealed by the enhanced signal from surface water molecules. In the presence of growing cells, an additional boost in surface water signal is attributed to a local pH that is higher than that of the bulk solution.
Superparamagnetic Fe3O4 particles formed by oxidation of pyrite heated in an anoxic atmosphere
Thorpe, A.N.; Senftle, F.E.; Talley, R.; Hetherington, S.; Dulong, F.
1990-01-01
As a follow-up to previous gas analysis experiments in which pyrite was heated to 681 K in an anoxic (oxygen starved) atmosphere, the first oxidation product, FeSO4, was studied as a bulk material. No decomposition of FeSO4 to Fe3O4 was observed in the temperature range studied. The lack of decomposition of bulk FeSO4 to Fe3O4 suggests that FeS2 oxidizes directly to Fe3O4, or that FeSO4, FeS2 and O2 react together to form Fe3O4. Magnetic susceptibility and magnetization measurements, along with magnetic hysteresis curves, show that small particles of Fe3O4 form on the pyrite surface, rather than a continuous layer of bulk Fe3O4. A working model describing the oxidation steps is presented. ?? 1990.
Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl
Belton, M.J.S.; Chapman, C.R.; Thomas, P.C.; Davies, M.E.; Greenberg, R.; Klaasen, K.; Byrnes, D.; D'Amario, L.; Synnott, S.; Johnson, T.V.; McEwen, A.; Merline, W.J.; Davis, D.R.; Petit, J.-M.; Storrs, A.; Veverka, J.; Zellner, B.
1995-01-01
DURING its reconnaissance of the asteroid 243 Ida, the Galileo spacecraft returned images of a second object, 1993(243)1 Dactyl1 - the first confirmed satellite of an asteroid. Sufficient data were obtained on the motion of Dactyl to determine its orbit as a function of Ida's mass. Here we apply statistical and dynamical arguments to constrain the range of possible orbits, and hence the mass of Ida. Combined with the volume of Ida2, this yields a bulk density of 2.6 ?? 0.5 g cm-3. Allowing for the uncertainty in the porosity of Ida, this density range is consistent with a bulk chon-dritic composition, and argues against some (but not all) classes of meteoritic igneous rock types that have been suggested as compositionally representative of S-type asteroids like Ida. ?? 2002 Nature Publishing Group.
A wireless electronic monitoring system for securing milk from farm to processor
NASA Astrophysics Data System (ADS)
Womble, Phillip; Hopper, Lindsay; Thompson, Chris; Alexander, Suraj M.; Crist, William; Payne, Fred; Stombaugh, Tim; Paschal, Jon; Moore, Ryan; Luck, Brian; Tabayehnejab, Nasrin
2008-04-01
The Department of Homeland Security and the Department of Health and Human Services have targeted bulk food contamination as a focus for attention. The contamination of bulk food poses a high consequence threat to our society. Milk transport falls into three of the 17 targeted NIPP (National Infrastructure Protection Plan) sectors including agriculture-food, public health, and commercial facilities. Minimal security safeguards have been developed for bulk milk transport. The current manual methods of securing milk are paper intensive and prone to errors. The bulk milk transportation sector requires a security enhancement that will both reduce recording errors and enable normal transport activities to occur while providing security against unauthorized access. Milk transportation companies currently use voluntary seal programs that utilize plastic, numbered seals on milk transport tank openings. Our group has developed a Milk Transport Security System which is an electromechanical access control and communication system that assures the secure transport of milk, milk samples, milk data, and security data between locations and specifically between dairy farms, transfer stations, receiving stations, and milk plants. It includes a security monitoring system installed on the milk transport tank, a hand held device, optional printers, data server, and security evaluation software. The system operates automatically and requires minimal or no attention by the bulk milk hauler/sampler. The system is compatible with existing milk transport infrastructure, and has the support of the milk producers, milk transportation companies, milk marketing agencies, and dairy processors. The security protocol developed is applicable for transport of other bulk foods both nationally and internationally. This system adds significantly to the national security infrastructure for bulk food transport. We are currently demonstrating the system in central Kentucky and will report on the results of the demonstration.
Mathioudakis, V L; Aivasidis, A
2009-01-01
Artificial dosage of nitrate in sewer networks is considered as one of the most effective methods for odor and corrosion control. However, there is limited knowledge on the effect of temperature on the transformations that takes place during anoxic conditions. Thus, two groups of batch experiments were conducted to gain insight in the involved processes in bulk phase of a septic municipal wastewater. It can be concluded that sewer denitrification, in bulk phase, can be simplified in three stages. According to the experimental results, nitrate or nitrite is utilized for autotrophic denitrification with sulfide, while heterotrophic utilization is initiated after the completion of anoxic sulfide oxidation. Moreover, temperature is proved to have a significant impact on sewer denitrification kinetic profile, as it determines the extent of temporal nitrite accumulation. The temperature coefficient of each anoxic process, including sulfide oxidation, nitrate utilization and denitrification/nitrite utilization is experimentally calculated and temperature dependent equations are developed, providing the rate of all anoxic processes in bulk phase of sewer wastewater, in any given temperature.
8. VIEW OF AFTERCOOLER FOR ALLISCHALMER AXIAL AIR COMPRESSORS IN ...
8. VIEW OF AFTERCOOLER FOR ALLIS-CHALMER AXIAL AIR COMPRESSORS IN THE LOW PURITY BULK OXYGEN BUILDING LOOKING WEST. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
9. VIEW OF AFTERCOOLER FOR ALLISCHALMER AXIAL AIR COMPRESSORS IN ...
9. VIEW OF AFTERCOOLER FOR ALLIS-CHALMER AXIAL AIR COMPRESSORS IN THE LOW PURITY BULK OXYGEN BUILDING LOOKING WEST. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Performance of current-in-plane pseudo-spin-valve devices on CMOS silicon-on-insulator underlayers
NASA Astrophysics Data System (ADS)
Katti, R. R.; Zou, D.; Reed, D.; Schipper, D.; Hynes, O.; Shaw, G.; Kaakani, H.
2003-05-01
Prior work has shown that current-in-plane (CIP) giant magnetoresistive (GMR) pseudo-spin-valve (PSV) devices grown on bulk Si wafers and bulk complementary metal-oxide semiconductor (CMOS) underlayers exhibit write and read characteristics that are suitable for application as nonvolatile memory devices. In this work, CIP GMR PSV devices fabricated on silicon-on-insulator CMOS underlayers are shown to support write and read performance. Reading and writing fields for selected devices are shown to be approximately 25%-50% that of unselected devices, which provides a margin for reading and writing specific bits in a memory without overwriting bits and without disturbing other bits. The switching characteristics of experimental devices were compared to and found to be similar with Landau-Lifschitz-Gilbert micromagnetic modeling results, which allowed inferring regions of reversible and irreversible rotations in magnetic reversal processes.
NASA Astrophysics Data System (ADS)
Wilczek, Sebastian; Trieschmann, Jan; Schulze, Julian; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Derzsi, Aranka; Korolov, Ihor; Donkó, Zoltan
2013-09-01
The electron heating in capacitive discharges at very low pressures (~1 Pa) is dominated by stochastic heating. In this regime electrons are accelerated by the oscillating sheaths, traverse through the plasma bulk and interact with the opposite sheath. By varying the driving frequency or the gap size of the discharge, energetic electrons reach the sheath edge at different temporal phases, i.e., the collapsing or expanding phase, or the moment of minimum sheath width. This work reports numerical experiments based on Particle-In-Cell simulations which show that at certain frequencies the discharge switches abruptly from a low density mode in a high density mode. The inverse transition is also abrupt, but shows a significant hysteresis. This behavior is explained by the complex interaction of the bulk and the sheath. This work is supported by the German Research Foundation in the frame of TRR 87.
NASA Astrophysics Data System (ADS)
Song, Jun; Liu, Juanfang; Chen, Qinghua
For lithium-ion batteries, the composite silicon-based electrodes can prevent from losing electrical contact and hence retain the capacity over many cycles. To uncover the adhesion mechanism on the interface formed by the copper foil and the thin silicon coatings during the cold gas dynamic spraying (CGDS) at the microscopic level, the first-principle calculations are performed to investigate the interface properties between them. The ideal work of adhesion, fracture toughness and the interface electronic properties are analyzed. It is found that all the atoms on the interface have vertical displacements, and covalent and ionic bonds are formed between the interfacial Cu and Si atoms which increases the bonding strength. However, the ideal work of adhesion on the interface is lower than one of the Cu bulk and Si bulk, so that fracture would be easier to take place on the interface.
Xu, Weizhe; Tan, Furui; Liu, Xiansheng; Zhang, Weifeng; Qu, Shengchun; Wang, Zhijie; Wang, Zhanguo
2017-12-01
Constructing a highly efficient bulk-heterojunction is of critical importance to the hybrid organic/inorganic solar cells. Here in this work, we introduce a novel hybrid architecture containing P3HT nanowire and CdSe nanotetrapod as bicontinuous charge channels for holes and electrons, respectively. Compared to the traditionally applied P3HT molecules, the well crystallized P3HT nanowires qualify an enhanced light absorption at the long wavelength as well as strengthened charge carrier transport in the hybrid active layer. Accordingly, based on efficient dissociation of photogenerated excitons, the interpercolation of these two nano-building blocks allows a photovoltaic conversion efficiency of 1.7% in the hybrid solar cell, up to 42% enhancement compared to the reference solar cell with traditional P3HT molecules as electron donor. Our work provides a promising hybrid structure for efficient organic/inorganic bulk-heterojunction solar cells.
The bulk, surface and corner free energies of the square lattice Ising model
NASA Astrophysics Data System (ADS)
Baxter, R. J.
2017-01-01
We use Kaufman’s spinor method to calculate the bulk, surface and corner free energies {f}{{b}},{f}{{s}},{f}{{s}}\\prime ,{f}{{c}} of the anisotropic square lattice zero-field Ising model for the ordered ferromagnetic case. For {f}{{b}},{f}{{s}},{f}{{s}}\\prime our results of course agree with the early work of Onsager, McCoy and Wu. We also find agreement with the conjectures made by Vernier and Jacobsen (VJ) for the isotropic case. We note that the corner free energy f c depends only on the elliptic modulus k that enters the working, and not on the argument v, which means that VJ’s conjecture applies for the full anisotropic model. The only aspect of this paper that is new is the actual derivation of f c, but by reporting all four free energies together we can see interesting structures linking them.
Apical extrusion of debris by supplementary files used for retreatment: An ex vivo comparative study
Pawar, Ajinkya M.; Pawar, Mansing; Metzger, Zvi; Thakur, Bhagyashree
2016-01-01
Aim: This study evaluated whether using supplementary files for removing root canal filling residues after ProTaper Universal Retreatment files (RFs) increased the debris extrusion apically. Materials and Methods: Eighty mandibular premolars with single root and canal were instrumented with ProTaper Universal rotary system (SX-F3) and obturated. The samples were divided randomly into four groups (n = 20). Group 1 served as a control; only ProTaper Universal RFs D1–D3 were used, and the extruded debris was weighed. Groups 2, 3, and 4 were the experimental groups, receiving a twofold retreatment protocol: Removal of the bulk, followed by the use of supplementary files. The bulk was removed by RFs, followed by the use of ProTaper NEXT (PTN), WaveOne (WO), and Self-Adjusting File (SAF) for removal of the remaining root filling residues. Debris extruded apically were weighed and compared to the control group. Statistical analysis was performed using one-way analysis of variance (ANOVA) and post hoc Tukey's test. Results: All the three experimental groups presented significant difference (P < .01). The post hoc Tukey's test confirmed that Group 4 (SAF) exhibited significantly less (P < .01) debris extrusion between the three groups tested. Conclusion: SAF results in less extrusion of debris when used as supplementary file to remove root-filling residues, compared to WO and PTN. PMID:27099416
Entanglement spectrum and boundary theories with projected entangled-pair states
NASA Astrophysics Data System (ADS)
Cirac, J. Ignacio; Poilblanc, Didier; Schuch, Norbert; Verstraete, Frank
2011-06-01
In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated with their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using projected entangled-pair states. This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various specific models: a deformed AKLT model [I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.59.799 59, 799 (1987)], an Ising-type model [F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.96.220601 96, 220601 (2006)], and Kitaev’s toric code [A. Kitaev, Ann. Phys.APNYA60003-491610.1016/S0003-4916(02)00018-0 303, 2 (2003)], both in finite ladders and in infinite square lattices. In the second case, some of those models display quantum phase transitions. We find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield nonlocal Hamiltonians. Because our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.
NASA Astrophysics Data System (ADS)
Århammar, C.; Moyses Araujo, C.; Rao, K. V.; Norgren, Susanne; Johansson, Börje; Ahuja, Rajeev
2010-10-01
In this work, a first-principles study of the energetic and magnetic properties of V-doped MgO is presented, where both the bulk and (001) surface were investigated. It is found that V assumes a high-spin state with a local moment of about 3μB . In the bulk, the interaction between these local moments is very short ranged and the antiferromagnetic (AFM) ordering is energetically more favorable. The formation of V-VMg-V defect clusters is found to weaken the antiferromagnetic coupling in bulk MgO, degenerating the AFM and ferromagnetic state. However, these clusters are high in energy and will not form at equilibrium conditions. By employing the GGA+U approach, with U=5eV , the V3d states on the (001) surface are shifted below the Fermi level, and a reasonable surface geometry was achieved. A calculation with the hybrid HSE03 functional, contradicts the GGA+U results, indicating that the V-MgO surface should be metallic at this concentration. From the energetics it is concluded that, at the modeled concentration, VxOy phases will limit the solubility of V in MgO at equilibrium conditions, which is in agreement with previous experimental findings. In order to achieve higher concentrations of V, an off-equilibrium synthesis method is needed. Finally, we find that the formation energy of V at the surface is considerably higher than in the bulk and V is thus expected to diffuse from the surface into the bulk of MgO.
Effect of bulk modulus on deformation of the brain under rotational accelerations
NASA Astrophysics Data System (ADS)
Ganpule, S.; Daphalapurkar, N. P.; Cetingul, M. P.; Ramesh, K. T.
2018-01-01
Traumatic brain injury such as that developed as a consequence of blast is a complex injury with a broad range of symptoms and disabilities. Computational models of brain biomechanics hold promise for illuminating the mechanics of traumatic brain injury and for developing preventive devices. However, reliable material parameters are needed for models to be predictive. Unfortunately, the properties of human brain tissue are difficult to measure, and the bulk modulus of brain tissue in particular is not well characterized. Thus, a wide range of bulk modulus values are used in computational models of brain biomechanics, spanning up to three orders of magnitude in the differences between values. However, the sensitivity of these variations on computational predictions is not known. In this work, we study the sensitivity of a 3D computational human head model to various bulk modulus values. A subject-specific human head model was constructed from T1-weighted MRI images at 2-mm3 voxel resolution. Diffusion tensor imaging provided data on spatial distribution and orientation of axonal fiber bundles for modeling white matter anisotropy. Non-injurious, full-field brain deformations in a human volunteer were used to assess the simulated predictions. The comparison suggests that a bulk modulus value on the order of GPa gives the best agreement with experimentally measured in vivo deformations in the human brain. Further, simulations of injurious loading suggest that bulk modulus values on the order of GPa provide the closest match with the clinical findings in terms of predicated injured regions and extent of injury.
NASA Technical Reports Server (NTRS)
Mohapatra, R. K.; Murty, S. V. S.
2002-01-01
Chemical and (oxygen) isotopic compositions of SNC meteorites have been used by a number of workers to infer the nature of precursor materials for the accretion of Mars. The idea that chondritic materials played a key role in the formation of Mars has been the central assumption in these works. Wanke and Dreibus have proposed a mixture of two types of chondritic materials, differing in oxygen fugacity but having CI type bulk chemical composition for the nonvolatile elements, for Mars' precursor. But a number of studies based on high pressure and temperature melting experiments do not favor a CI type bulk planet composition for Mars, as it predicts a bulk planet Fe/Si ratio much higher than that reported from the recent Pathfinder data. Oxygen forms the bulk of Mars (approximately 40% by wt.) and might provide clues to the type of materials that formed Mars. But models based on the oxygen isotopic compositions of SNC meteorites predict three different mixtures of precursor materials for Mars: 90% H + 10% CM, 85% H + 11% CV + 4% CI and 45% EH + 55% H. As each of these models has been shown to be consistent with the bulk geophysical properties (such as mean density, and moment of inertia factor) of Mars, the nature of the material that accreted to form Mars remains ambiguous.
Multi-scale analytical investigation of fly ash in concrete
NASA Astrophysics Data System (ADS)
Aboustait, Mohammed B.
Much research has been conducted to find an acceptable concrete ingredient that would act as cement replacement. One promising material is fly ash. Fly ash is a by-product from coal-fired power plants. Throughout this document work on the characterization of fly ash structure and composition will be explored. This effort was conducted through a mixture of cutting edge multi-scale analytical X-ray based techniques that use both bulk experimentation and nano/micro analytical techniques. Furtherly, this examination was coupled by performing Physical/Mechanical ASTM based testing on fly ash-enrolled-concrete to examine the effects of fly ash introduction. The most exotic of the cutting edge characterization techniques endorsed in this work uses the Nano-Computed Tomography and the Nano X-ray Fluorescence at Argonne National Laboratory to investigate single fly ash particles. Additional Work on individual fly ash particles was completed by laboratory-based Micro-Computed Tomography and Scanning Electron Microscopy. By combining the results of individual particles and bulk property tests, a compiled perspective is introduced, and accessed to try and make new insights into the reactivity of fly ash within concrete.
Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate
NASA Astrophysics Data System (ADS)
Brehm, Martin; Sebastiani, Daniel
2018-05-01
To investigate the structure and dynamics of small ionic liquid droplets in gas phase, we performed a DFT-based ab initio molecular dynamics study of several 1-ethyl-3-methylimidazolium acetate clusters in vacuum as well as a bulk phase simulation. We introduce an unbiased criterion for average droplet diameter and density. By extrapolation of the droplet densities, we predict the experimental bulk phase density with a deviation of only a few percent. The hydrogen bond geometry between cations and anions is very similar in droplets and bulk, but the hydrogen bond dynamics is significantly slower in the droplets, becoming slower with increasing system size, with hydrogen bond lifetimes up to 2000 ps. From a normal mode analysis of the trajectories, we identify the modes of the ring proton C-H stretching, which are strongly affected by hydrogen bonding. From analyzing these, we find that the hydrogen bond becomes weaker with increasing system size. The cations possess an increased concentration inside the clusters, whereas the anions show an excess concentration on the outside. Almost all anions point towards the droplet center with their carboxylic groups. Ring stacking is found to be a very important structural motif in the droplets (as in the bulk), but side chain interactions are only of minor importance. By using Voronoi tessellation, we define the exposed droplet surface and find that it consists mainly of hydrogen atoms from the cation's and anion's methyl and ethyl groups. Polar atoms are rarely found on the surface, such that the droplets appear completely hydrophobic on the outside.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng
Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etchmore » the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.« less
Bioinspired Zwitterionic Surface Coatings with Robust Photostability and Fouling Resistance.
Huang, Chun-Jen; Chu, Sz-Hau; Wang, Lin-Chuan; Li, Chien-Hung; Lee, T Randall
2015-10-28
Great care has been paid to the biointerface between a bulk material and the biological environment, which plays a key role in the optimized performance of medical devices. In this work, we report a new superhydrophilic adsorbate, called L-cysteine betaine (Cys-b), having branched zwitterionic groups that give rise to surfaces and nanoparticles with enhanced chemical stability, biofouling resistance, and inertness to environmental changes. Cys-b was synthesized from the amphoteric sulfur-containing amino acid, L-cysteine (Cys), by quaternization of its amino group. Gold surfaces modified with Cys-b exhibited prominent repellence against the nonspecific adsorption of proteins, bacteria, and fibroblast cells. In addition, Cys-b existed in zwitterionic form over a wide pH range (i.e., pH 3.4 to 10.8), and showed excellent suppression in photoinduced oxidation on gold substrates. Furthermore, the modification of hollow Ag@Au nanoshells with Cys-b gave rise to nanoparticles with excellent colloidal stability and resistance to coordinative interaction with Cu(2+). Taken together, the unique features of Cys-b offer a new nanoscale coating for use in a wide spectrum of applications.
49 CFR 173.24a - Additional general requirements for non-bulk packagings and packages.
Code of Federal Regulations, 2011 CFR
2011-10-01
... design. Except as provided in § 172.312 of this subchapter: (1) Inner packaging closures. A combination... packed, secured and cushioned to prevent their breakage or leakage and to control their shifting within... Group I packaging may be used for a Packing Group II material with a specific gravity not exceeding the...
49 CFR 173.24a - Additional general requirements for non-bulk packagings and packages.
Code of Federal Regulations, 2014 CFR
2014-10-01
... design. Except as provided in § 172.312 of this subchapter: (1) Inner packaging closures. A combination... packed, secured and cushioned to prevent their breakage or leakage and to control their shifting within... Group I packaging may be used for a Packing Group II material with a specific gravity not exceeding the...
Experimental and theoretical study on Raman spectra of magnesium fluoride clusters and solids.
Neelamraju, S; Bach, A; Schön, J C; Fischer, D; Jansen, M
2012-11-21
In this study, the Raman and IR spectra of a large number of isomers of MgF(2) clusters and of possible bulk polymorphs of MgF(2) are calculated and compared with experimental data observed using a low-temperature atom beam deposition. The bulk polymorphs were taken from earlier work, while the cluster modifications for the neutral (MgF(2))(n) (n = 1-10) clusters and charged clusters (up to the trimer anion and cation, (Mg(3)F(7))(-) and (Mg(3)F(5))(+), respectively) are determined in the present work by global energy landscape explorations using simulated annealing. These theoretical calculations are complemented by an experimental study on both the vapor phase and the deposited films of MgF(2), which are generated in a low-temperature atom beam deposition setup for the synthesis of MgF(2) bulk phases. The MgF(2) vapor and film are characterized via Raman spectroscopy of the MgF(2) gas phase species embedded in an Ar-matrix and of the MgF(2)-films deposited onto a cooled substrate, respectively. We find that, in the vapor phase, there are monomers and dimers and charged species to be present in our experimental setup. Furthermore, the results suggest that in the amorphous bulk MgF(2), rutile-like domains are present and MgF(2) clusters similar to those in the matrix. Finally, peaks at about 800 cm(-1), which are in the same range as the A(g) modes of clusters with dangling fluorine atoms connected to three-coordinated Mg atoms, indicate that such dangling bonds are also present in amorphous MgF(2).
Phase transition transistors based on strongly-correlated materials
NASA Astrophysics Data System (ADS)
Nakano, Masaki
2013-03-01
The field-effect transistor (FET) provides electrical switching functions through linear control of the number of charges at a channel surface by external voltage. Controlling electronic phases of condensed matters in a FET geometry has long been a central issue of physical science. In particular, FET based on a strongly correlated material, namely ``Mott transistor,'' has attracted considerable interest, because it potentially provides gigantic and diverse electronic responses due to a strong interplay between charge, spin, orbital and lattice. We have investigated electric-field effects on such materials aiming at novel physical phenomena and electronic functions originating from strong correlation effects. Here we demonstrate electrical switching of bulk state of matter over the first-order metal-insulator transition. We fabricated FETs based on VO2 with use of a recently developed electric-double-layer transistor technique, and found that the electrostatically induced carriers at a channel surface drive all preexisting localized carriers of 1022 cm-3 even inside a bulk to motion, leading to bulk carrier delocalization beyond the electrostatic screening length. This non-local switching of bulk phases is achieved with just around 1 V, and moreover, a novel non-volatile memory like character emerges in a voltage-sweep measurement. These observations are apparently distinct from those of conventional FETs based on band insulators, capturing the essential feature of collective interactions in strongly correlated materials. This work was done in collaboration with K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''
7. SOUTHEASTERN VIEW TOWARD THE COMPRESSOR END OF TWO ALLISCHALMER ...
7. SOUTHEASTERN VIEW TOWARD THE COMPRESSOR END OF TWO ALLIS-CHALMER AXIAL AIR COMPRESSORS IN THE LOW PURITY BULK OXYGEN BUILDING. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
10. LOOKING NORTHEAST AT THE LINDE 400 TONS PER DAY ...
10. LOOKING NORTHEAST AT THE LINDE 400 TONS PER DAY LOW PURITY OXYGEN MAKING PLANT IN THE LOW PURITY BULK OXYGEN BUILDING. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
12. LOOKING WEST AT THE LINDE 400 TONS PER DAY ...
12. LOOKING WEST AT THE LINDE 400 TONS PER DAY LOW PURITY OXYGEN MAKING PLANT IN THE LOW PURITY BULK OXYGEN BUILDING. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
13. LOOKING WEST AT THE LINDE 400 TONS PER DAY ...
13. LOOKING WEST AT THE LINDE 400 TONS PER DAY LOW PURITY OXYGEN MAKING PLANT IN THE LOW PURITY BULK OXYGEN BUILDING. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Effect of composition on the structure of lithium- and manganese-rich transition metal oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin
In this work, we establish a definitive structural model for lithium- and manganese-rich transition metal oxides and demonstrate the effect of composition on their bulk as well as the surface structure.
Effect of composition on the structure of lithium- and manganese-rich transition metal oxides
Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; ...
2018-01-01
In this work, we establish a definitive structural model for lithium- and manganese-rich transition metal oxides and demonstrate the effect of composition on their bulk as well as the surface structure.
Without Speaking, Youth Enters Adult Work Scene, Copes with Autism a Day at a Time
ERIC Educational Resources Information Center
Murphy, Patti
2010-01-01
This article presents the story of Chad Roberts of Canton, Georgia, who is proving himself a promising employee day by day. He works several jobs in increments of up to 90 minutes. Some days, he completes bulk mailings at a law firm. On others, he's at local restaurants stocking the wait staff stations with supplies. The community-based vocational…
NASA Astrophysics Data System (ADS)
Vögeli, Natalie; Najman, Yani; van der Beek, Peter; Huyghe, Pascale; Wynn, Peter M.; Govin, Gwladys; van der Veen, Iris; Sachse, Dirk
2017-08-01
The Himalaya has a major influence on global and regional climate, in particular on the Asian monsoon system. The foreland basin of the Himalaya contains a record of tectonics and paleoclimate since the Miocene. Previous work on the evolution of vegetation and climate has focused on the central and western Himalaya, where a shift from C3 to C4 vegetation has been observed at ∼7 Ma and linked to increased seasonality, but the climatic evolution of the eastern part of the orogen is less well understood. In order to track vegetation as a marker of monsoon intensity and seasonality, we analyzed δ13 C and δ18 O values of soil carbonate and associated δ13 C values of bulk organic carbon from previously dated sedimentary sections exposing the syn-orogenic detrital Dharamsala and Siwalik Groups in the west, and, for the first time, the Siwalik Group in the east of the Himalayan foreland basin. Sedimentary records span from 20 to 1 Myr in the west (Joginder Nagar, Jawalamukhi, and Haripur Kolar sections) and from 13 to 1 Myr in the east (Kameng section), respectively. The presence of soil carbonate in the west and its absence in the east is a first indication of long-term lateral climatic variation, as soil carbonate requires seasonally arid conditions to develop. δ13 C values in soil carbonate show a shift from around -10‰ to -2‰ at ∼7 Ma in the west, which is confirmed by δ13 C analyses on bulk organic carbon that show a shift from around -23‰ to -19‰ at the same time. Such a shift in isotopic values is likely to be associated with a change from C3 to C4 vegetation. In contrast, δ13 C values of bulk organic carbon remain at ∼ - 23 ‰ in the east. Thus, our data show that the current east-west variation in climate was established at 7 Ma. We propose that the regional change towards a more seasonal climate in the west is linked to a decrease of the influence of the Westerlies, delivering less winter precipitation to the western Himalaya, while the east remained annually humid due to its proximity to the monsoonal moisture source.
Gilroy, Kyle D.; Elnabawy, Ahmed O.; Yang, Tung -Han; ...
2017-04-27
Despite the remarkable success in controlling the synthesis of metal nanocrystals, it still remains a grand challenge to stabilize and preserve the shapes or internal structures of metastable kinetic products. In this work, we address this issue by systematically investigating the surface and bulk reconstructions experienced by a Pd concave icosahedron when subjected to heating up to 600 °C in vacuum. We used in situ high-resolution transmission electron microscopy to identify the equilibration pathways of this far-from-equilibrium structure. We were able to capture key structural transformations occurring during the thermal annealing process, which were mechanistically rationalized by implementing self-consistent plane-wavemore » density functional theory (DFT) calculations. Specifically, the concave icosahedron was found to evolve into a regular icosahedron via surface reconstruction in the range of 200–400 °C, and then transform into a pseudospherical crystalline structure through bulk reconstruction when further heated to 600 °C. As a result, the mechanistic understanding may lead to the development of strategies for enhancing the thermal stability of metal nanocrystals.« less
Topological mechanical metamaterials have perfectly directional bulk response
NASA Astrophysics Data System (ADS)
Rocklin, D. Zeb
The elastic response of typical materials to a local load is stress and strain in all directions. Here, we show contrariwise that mechanical frames with balanced numbers of constraints and degrees of freedom (the ''Maxwell'' condition) can experience stress and/or strain on only one side of a load. Kane and Lubensky showed, in a recent, seminal work, that such systems possess a topologically nontrivial phonon band structure corresponding to the electronic modes of topological insulators. Applying bulk-boundary correspondence, they demonstrated a signature physical consequence: the shifting of zero modes resultant from missing bonds from one edge to another. We now show that the same topological invariant governs such a system's bulk response: when bonds are swollen at one point the lattice does not distort evenly around it but instead only on one side dictated by the topological polarization. Similarly, when general forces are applied to a polarized lattice tension is induced in bonds only on one side of the applied force. Hence, topological polarization represents a sharp and robust way to direct force and motion and the response (Green's) function is a fundamental bulk signature of topological polarization. Bethe/KIC Fellowship, and the National Science Foundation Grant No. NSF DMR- 1308089.
Huang, Xiaoguang; Woo, Heechul; Wu, Peinian; Hong, Hyo Jin; Jung, Wan Gil; Kim, Bong-Joong; Vanel, Jean-Charles; Choi, Jin Woo
2017-11-28
A simple, low cost, non-toxic and eco-friendly pathway for synthesizing efficient sunlight-driven tin sulfide photocatalyst was studied. SnS nanocrystals were prepared by using mechanical method. The bulk SnS was obtained by evaporation of SnS nanocrystal solution. The synthesized samples were characterized by using XRD, SEM, TEM, UV-vis, and Raman analyses. Well crystallized SnS nanocrystals were verified and the electrochemical characterization was also performed under visible light irradiation. The SnS nanocrystals have shown remarkable photocurrent density of 7.6 mA cm -2 under 100 mW cm -2 which is about 10 times larger than that of the bulk SnS under notably stable operation conditions. Furthermore, the SnS nanocrystals presented higher stability than the bulk form. The IPCE(Incident photon to current conversion efficiency) of 9.3% at 420 nm was obtained for SnS nanocrystal photoanode which is strikingly higher than that of bulk SnS, 0.78%. This work suggests that the enhancement of reacting area by using SnS nanocrystal absorbers could give rise to the improvement of photoelectrochemical cell efficiency.
NASA Astrophysics Data System (ADS)
Wunderlich, Ralf; Kohlrautz, Jonas; Abel, Bernd; Haase, Jürgen; Meijer, Jan
2017-12-01
In this Rapid Communication we utilize nuclear magnetic resonance to investigate the hyperpolarization effect of negatively charged nitrogen vacancy (NV) centers on bulk 13C nuclei in a diamond single crystal. We were able to identify several polarization peaks of a different sign at different magnetic fields in a region of some tens of Gauss centered around 50 mT . The bulk 13C hyperpolarization in the investigated field range is usually attributed to the excited state level anticrossing of the NV center. However, we found that this bulk hyperpolarization is caused by optically induced cross relaxation and that it takes place in the NV center ground state. The four-spin coupling between the polarized NV electron spin, the electron spin of a substitutional nitrogen impurity (P1), as well as its 14N nuclei and the 13C nuclear spin have to be considered. We introduce a simple theoretical model which completely fits with the experimental data and which clearly shows that the P1 centers are involved in the polarization process. We expect that the current work has a significant impact on future NV-based polarization applications.
Xu, X.; Sumption, M. D.
2016-01-12
In this work we explore the compositions of non-stoichiometric intermediate phases formed by diffusion reactions: a mathematical framework is developed and tested against the specific case of Nb 3Sn superconductors. In the first part, the governing equations for the bulk diffusion and interphase interface reactions during the growth of a compound are derived, numerical solutions to which give both the composition profile and growth rate of the compound layer. The analytic solutions are obtained with certain approximations made. In the second part, we explain an effect that the composition characteristics of compounds can be quite different depending on whether itmore » is the bulk diffusion or grain boundary diffusion that dominates in the compounds, and that “frozen” bulk diffusion leads to unique composition characteristics that the bulk composition of a compound layer remains unchanged after its initial formation instead of varying with the diffusion reaction system; here the model is modified for the case of grain boundary diffusion. Lastly, we apply this model to the Nb 3Sn superconductors and propose approaches to control their compositions.« less
Statistical and Multifractal Evaluation of Soil Compaction in a Vineyard
NASA Astrophysics Data System (ADS)
Marinho, M.; Raposo, J. R.; Mirás Avalos, J. M.; Paz González, A.
2012-04-01
One of the detrimental effects caused by agricultural machines is soil compaction, which can be defined by an increase in soil bulk density. Soil compaction often has a negative impact on plant growth, since it reduces the macroporosity and soil permeability and increases resistance to penetration. Our research explored the effect of the agricultural machinery on soil when trafficking through a vineyard at a small spatial scale, based on the evaluation of the soil compaction status. The objectives of this study were: i) to quantify soil bulk density along transects following wine row, wheel track and outside track, and, ii) to characterize the variability of the bulk density along these transects using multifractal analysis. The field work was conducted at the experimental farm of EVEGA (Viticulture and Enology Centre of Galicia) located in Ponte San Clodio, Leiro, Orense, Spain. Three parallel transects were marked on positions with contrasting machine traffic effects, i.e. vine row, wheel-track and outside-track. Undisturbed samples were collected in 16 points of each transect, spaced 0.50 m apart, for bulk density determination using the cylinder method. Samples were taken in autumn 2011, after grape harvest. Since soil between vine rows was tilled and homogenized beginning spring 2011, cumulative effects of traffic during the vine growth period could be evaluated. The distribution patterns of soil bulk density were characterized by multifractal analysis carried out by the method of moments. Multifractality was assessed by several indexes derived from the mass exponent, τq, the generalized dimension, Dq, and the singularity spectrum, f(α), curves. Mean soil bulk density values determined for vine row, outside-track and wheel-track transects were 1.212 kg dm-3, 1.259 kg dm-3and 1.582 kg dm-3, respectively. The respective coefficients of variation (CV) for these three transects were 7.76%, 4.82% and 2.03%. Therefore mean bulk density under wheel-track was 30.5% higher than along the vine row. Vine row and outside-track positions showed not significant differences between means. The bulk density of the wheel-track transect also showed the lowest CV. The multifractal spectra of the three transects were asymmetric curves, rather short toward the left and much longer toward the right. The width of the right deviating shaped multifractal spectra was ranked as: wine row > outside-track ≈ wheel-track. Entropy dimension, D1, was 0.998, 0.992 and 0.992 for vine row, outside-track and track transects, respectively. These results show different patterns of variability of bulk density for parallel transects. They also suggest that multifractal parameters may be useful in assessing the variability of other soil properties such as soil particle density, soil porosity or soil water content, at different spatial scales as well. Acknowledgments. This work was funded in part by Spanish Ministry of Science and Innovation (MICINN) in the frame of project CGL2009-13700-C02. Financial support from CAPES/GOV., Brazil, is also acknowledged by Prof. M. Marinho.
Plotnikoff, Ronald C; Pickering, Michael A; McCargar, Linda J; Loucaides, Constantinos A; Hugo, Kylie
2010-01-01
To evaluate the effects of a 12-week e-mail intervention promoting physical activity and nutrition, and to describe participant use and satisfaction feedback. A longitudinal, randomized trial. Five large workplaces in Alberta, Canada. One thousand forty-three participants completed all three assessments, and 1263 participants in the experimental group provided use and satisfaction feedback after receiving the 12-week intervention. Paired physical activity and nutrition messages were e-mailed weekly to the experimental group. The control group received all messages in bulk (i.e., within a single e-mail message) at the conclusion of the intervention. Self-report measures of knowledge, cognitions, and behaviors related to physical activity and nutrition were used. Satisfaction with e-mail messages was assessed at Time 2. Planned contrasts compared the experimental group measures at Time 3 with those reported at Time 2 and with control group measures reported at Time 3. Control group measures at Time 3 were also compared with control group measures at Time 2. The small intervention effects previously reported between Time 1 and Time 2 were maintained at Time 3. Providing the e-mail messages in bulk also had a significant positive effect on many of the physical activity and nutrition variables. E-mail offers a promising medium for promoting health-enhancing knowledge, attitudes, and behaviors. Additional research is needed to determine optimal message dose and content.
46 CFR 148.330 - Zinc ashes; zinc dross; zinc residues; zinc skimmings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CARGOES CARRIAGE OF BULK SOLID MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain...-proof motors approved for use in Class I, Division 1, Group B atmospheres or equivalent motors approved...
46 CFR 148.330 - Zinc ashes; zinc dross; zinc residues; zinc skimmings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CARGOES CARRIAGE OF BULK SOLID MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain...-proof motors approved for use in Class I, Division 1, Group B atmospheres or equivalent motors approved...
46 CFR 148.330 - Zinc ashes; zinc dross; zinc residues; zinc skimmings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CARGOES CARRIAGE OF BULK SOLID MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain...-proof motors approved for use in Class I, Division 1, Group B atmospheres or equivalent motors approved...
Electronic and geometric properties of ETS-10: QM/MM studies of cluster models.
Zimmerman, Anne Marie; Doren, Douglas J; Lobo, Raul F
2006-05-11
Hybrid DFT/MM methods have been used to investigate the electronic and geometric properties of the microporous titanosilicate ETS-10. A comparison of finite length and periodic models demonstrates that band gap energies for ETS-10 can be well represented with relatively small cluster models. Optimization of finite clusters leads to different local geometries for bulk and end sites, where the local bulk TiO6 geometry is in good agreement with recent experimental results. Geometry optimizations reveal that any asymmetry within the axial O-Ti-O chain is negligible. The band gap in the optimized model corresponds to a O(2p) --> Tibulk(3d) transition. The results suggest that the three Ti atom, single chain, symmetric, finite cluster is an effective model for the geometric and electronic properties of bulk and end TiO6 groups in ETS-10.
String-inspired special grand unification
NASA Astrophysics Data System (ADS)
Yamatsu, Naoki
2017-10-01
We discuss a grand unified theory (GUT) based on an SO(32) GUT gauge group broken to its subgroups including a special subgroup. In the SO(32) GUT on the six-dimensional (6D) orbifold space M^4× T^2/\\mathbb{Z}_2, one generation of the standard model fermions can be embedded into a 6D bulk Weyl fermion in the SO(32) vector representation. We show that for a three-generation model, all the 6D and 4D gauge anomalies in the bulk and on the fixed points are canceled out without exotic chiral fermions at low energies.
Ovarian tissue characterization using bulk optical properties
NASA Astrophysics Data System (ADS)
Tavakoli, B.; Xu, Y.; Zhu, Q.
2013-03-01
Ovarian cancer, the deadliest of all gynecologic cancers, is not often found in its early stages due to few symptoms and no reliable screening test. Optical imaging has a great potential to improve the ovarian cancer detection and diagnosis. In this study we have characterized the bulk optical properties of 26 ex-vivo human ovaries using a Diffuse Optical Tomography system. The quantitative values indicated that, in the postmenopausal group, malignant ovaries showed significantly lower scattering coefficient than normal ones. The scattering parameter is largely related to the collagen content that has shown a strong correlation with the cancer development.
Adsorption of halogens on metal surfaces
NASA Astrophysics Data System (ADS)
Andryushechkin, B. V.; Pavlova, T. V.; Eltsov, K. N.
2018-06-01
This paper presents a review of the experimental and theoretical investigations of halogen interaction with metal surfaces. The emphasis was placed on the recent measurements performed with a scanning tunneling microscope in combination with density functional theory calculations. The surface structures formed on metal surface after halogen interaction are classified into three groups: chemisorbed monolayer, surface halide, bulk-like halide. Formation of monolayer structures is described in terms of surface phase transitions. Surface halide phases are considered to be intermediates between chemisorbed halogen and bulk halide. The modern theoretical approaches in studying the dynamics of metal halogenation reactions are also presented.
NASA Astrophysics Data System (ADS)
Bai, M.; Miskowiec, A.; Hansen, F. Y.; Taub, H.; Jenkins, T.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.; Wang, S.-K.
2012-05-01
High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules.
Yuan, Rongfeng; Yan, Chang; Nishida, Jun; Fayer, Michael D
2017-05-04
The dynamics of water molecules near the surfactant interface in large Aerosol-OT reverse micelles (RMs) (w 0 = 16-25) was investigated with IR polarization-selective pump-probe experiments using the SeCN - anion as a vibrational probe. Linear absorption spectra of RMs (w 0 = 25-2) can be decomposed into the weighted sum of the SeCN - spectra in bulk water and the spectrum of the SeCN - anion interacting with the interfacial sulfonate head groups (w 0 = 1). The spectra of the large RMs, w 0 ≥ 16, are overwhelmingly dominated by the bulk water component. Anisotropy decays (orientational relaxation) of the anion for w 0 ≥ 16 displayed bulk water relaxation (1.4 and 4.5 ps) plus an additional slow decay with a time constant of ∼13 ps. The amplitude of the slow decay was too large to be associated with SeCN - in contact with the interface on the basis of the linear spectrum decomposition. The results indicate that the observed slow components arise from SeCN - in a water boundary layer, in which water molecules are perturbed by the interface but are not directly associated with it. This layer is the transition between water in direct contact with the interface and bulk water in the large RM cores. In the boundary layer, the water dynamics is slow compared to that in bulk water.
Effect of Concentration on the Interfacial and Bulk Structure of Ionic Liquids in Aqueous Solution.
Cheng, H-W; Weiss, H; Stock, P; Chen, Y-J; Reinecke, C R; Dienemann, J-N; Mezger, M; Valtiner, M
2018-02-27
Bio and aqueous applications of ionic liquids (IL) such as catalysis in micelles formed in aqueous IL solutions or extraction of chemicals from biologic materials rely on surface-active and self-assembly properties of ILs. Here, we discuss qualitative relations of the interfacial and bulk structuring of a water-soluble surface-active IL ([C 8 MIm][Cl]) on chemically controlled surfaces over a wide range of water concentrations using both force probe and X-ray scattering experiments. Our data indicate that IL structuring evolves from surfactant-like surface adsorption at low IL concentrations, to micellar bulk structure adsorption above the critical micelle concentration, to planar bilayer formation in ILs with <1 wt % of water and at high charging of the surface. Interfacial structuring is controlled by mesoscopic bulk structuring at high water concentrations. Surface chemistry and surface charges decisively steer interfacial ordering of ions if the water concentration is low and/or the surface charge is high. We also demonstrate that controlling the interfacial forces by using self-assembled monolayer chemistry allows tuning of interfacial structures. Both the ratio of the head group size to the hydrophobic tail volume as well as the surface charging trigger the bulk structure and offer a tool for predicting interfacial structures. Based on the applied techniques and analyses, a qualitative prediction of molecular layering of ILs in aqueous systems is possible.
OBJECT KINETIC MONTE CARLO SIMULATIONS OF CASCADE ANNEALING IN TUNGSTEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.
2014-03-31
The objective of this work is to study the annealing of primary cascade damage created by primary knock-on atoms (PKAs) of various energies, at various temperatures in bulk tungsten using the object kinetic Monte Carlo (OKMC) method.
11. VIEW OF THE LINDE 400 TONS PER DAY LOW ...
11. VIEW OF THE LINDE 400 TONS PER DAY LOW PURITY OXYGEN MAKING PLANT IN THE LOW PURITY BULK OXYGEN BUILDING LOOKING NORTH. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Krylov, Nikolay A; Pentkovsky, Vladimir M; Efremov, Roman G
2013-10-22
The atomic-scale diffusion of water in the presence of several lipid bilayers mimicking biomembranes is characterized via unconstrained molecular dynamics (MD) simulations. Although the overall water dynamics corresponds well to literature data, namely, the efficient braking near polar head groups of lipids, a number of interesting and biologically relevant details observed in this work have not been sufficiently discussed so far; for instance, the fact that waters "sense" the membrane unexpectedly early, before water density begins to decrease. In this "transitional zone" the velocity distributions of water and their H-bonding patterns deviate from those in the bulk solution. The boundaries of this zone are well preserved even despite the local (<1 nm size) perturbation of the lipid bilayer, thus indicating a decoupling of the surface and bulk dynamics of water. This is in excellent agreement with recent experimental data. Near the membrane surface, water movement becomes anisotropic, that is, solvent molecules preferentially move outward the bilayer. Deep in the membrane interior, the velocities can even exceed those in the bulk solvent and undergo large-scale fluctuations. The analysis of MD trajectories of individual waters in the middle part of the acyl chain region of lipids reveals a number of interesting rare phenomena, such as the fast (ca. 50 ps) breakthrough across the membrane or long-time (up to 750 ps) "roaming" between lipid leaflets. The analysis of these events was accomplished to delineate the mechanisms of spontaneous water permeation inside the hydrophobic membrane core. It was shown that such nontrivial dynamics of water in an "alien" environment is driven by the dynamic heterogeneities of the local bilayer structure and the formation of transient atomic-scale "defects" in it. The picture observed in lipid bilayers is drastically different from that in a primitive membrane mimic, a hydrated cyclohexane slab. The possible biological impact of such phenomena in equilibrated lipid bilayers is discussed.
Atomistic determination of flexoelectric properties of crystalline dielectrics
NASA Astrophysics Data System (ADS)
Maranganti, R.; Sharma, P.
2009-08-01
Upon application of a uniform strain, internal sublattice shifts within the unit cell of a noncentrosymmetric dielectric crystal result in the appearance of a net dipole moment: a phenomenon well known as piezoelectricity. A macroscopic strain gradient on the other hand can induce polarization in dielectrics of any crystal structure, even those which possess a centrosymmetric lattice. This phenomenon, called flexoelectricity, has both bulk and surface contributions: the strength of the bulk contribution can be characterized by means of a material property tensor called the bulk flexoelectric tensor. Several recent studies suggest that strain-gradient induced polarization may be responsible for a variety of interesting and anomalous electromechanical phenomena in materials including electromechanical coupling effects in nonuniformly strained nanostructures, “dead layer” effects in nanocapacitor systems, and “giant” piezoelectricity in perovskite nanostructures among others. In this work, adopting a lattice dynamics based microscopic approach we provide estimates of the flexoelectric tensor for certain cubic crystalline ionic salts, perovskite dielectrics, III-V and II-VI semiconductors. We compare our estimates with experimental/theoretical values wherever available and also revisit the validity of an existing empirical scaling relationship for the magnitude of flexoelectric coefficients in terms of material parameters. It is interesting to note that two independent groups report values of flexoelectric properties for perovskite dielectrics that are orders of magnitude apart: Cross and co-workers from Penn State have carried out experimental studies on a variety of materials including barium titanate while Catalan and co-workers from Cambridge used theoretical ab initio techniques as well as experimental techniques to study paraelectric strontium titanate as well as ferroelectric barium titanate and lead titanate. We find that, in the case of perovskite dielectrics, our estimates agree to an order of magnitude with the experimental and theoretical estimates for strontium titanate. For barium titanate however, while our estimates agree to an order of magnitude with existing ab initio calculations, there exists a large discrepancy with experimental estimates. The possible reasons for the observed deviations are discussed.
Mikutta, Christian; Langner, Peggy; Bargar, John R; Kretzschmar, Ruben
2016-10-04
Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work was to investigate the spatial distribution and molecular binding mechanisms of U in soils of an alpine minerotrophic peatland (pH 4.7-6.6, E h = -127 to 463 mV) using microfocused X-ray fluorescence spectrometry and bulk and microfocused U L 3 -edge X-ray absorption spectroscopy. The soils contained 2.3-47.4 wt % organic C, 4.1-58.6 g/kg Fe, and up to 335 mg/kg geogenic U. Uranium was found to be heterogeneously distributed at the micrometer scale and enriched as both U(IV) and U(VI) on fibrous and woody plant debris (48 ± 10% U(IV), x̅ ± σ, n = 22). Bulk U X-ray absorption near edge structure (XANES) spectroscopy revealed that in all samples U(IV) comprised 35-68% of total U (x̅ = 50%, n = 15). Shell-fit analyses of bulk U L 3 -edge extended X-ray absorption fine structure (EXAFS) spectra showed that U was coordinated to 1.3 ± 0.2 C atoms at a distance of 2.91 ± 0.01 Å (x̅ ± σ), which implies the formation of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ∼3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. Our data indicates that U(IV/VI) complexation by natural organic matter prevents the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI).
Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality
NASA Astrophysics Data System (ADS)
Dong, Xi; Harlow, Daniel; Wall, Aron C.
2016-07-01
In this Letter we prove a simple theorem in quantum information theory, which implies that bulk operators in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion A , provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.
Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality.
Dong, Xi; Harlow, Daniel; Wall, Aron C
2016-07-08
In this Letter we prove a simple theorem in quantum information theory, which implies that bulk operators in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion A, provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.
Baldenebro-Lopez, Francisco J.; Gomez-Esparza, Cynthia D.; Corral-Higuera, Ramon; Arredondo-Rea, Susana P.; Pellegrini-Cervantes, Manuel J.; Ledezma-Sillas, Jose E.; Martinez-Sanchez, Roberto; Herrera-Ramirez, Jose M.
2015-01-01
In this work, the mechanical properties and microstructural features of an AISI 304L stainless steel in two presentations, bulk and fibers, were systematically studied in order to establish the relationship among microstructure, mechanical properties, manufacturing process and effect on sample size. The microstructure was analyzed by XRD, SEM and TEM techniques. The strength, Young’s modulus and elongation of the samples were determined by tensile tests, while the hardness was measured by Vickers microhardness and nanoindentation tests. The materials have been observed to possess different mechanical and microstructural properties, which are compared and discussed. PMID:28787949
NASA Astrophysics Data System (ADS)
Singh, Ranbir; Shukla, Vivek Kumar
2018-05-01
In this work, we compare the planar and bulk heterojunction (BHJ) perovskite thin films for their morphologies, photovoltaic properties, and recombination dynamics. The BHJ perovskite thin films were prepared with the addition of fullerene derivative [6, 6]-Phenyl-C60 butyric acid methyl ester (PC60BM). The addition of PC60BM in perovskite provides a pinhole free film with high absorption coefficient and better charge transfer. The solar cells fabricated with BHJ perovskite exhibits power conversion efficiency (PCE) of 13.5%, with remarkably increased short-circuit current density (JSC) of 20.1 mAcm-2 and reduced recombination rate.
Moulding techniques in lipstick manufacture: a comparative evaluation.
Dweck, A C; Burnham, C A
1980-06-01
Synopsis This paper examines two methods of lipstick bulk manufacture: one via a direct method and the other via stock concentrates. The paper continues with a comparison of two manufactured bulks moulded in three different ways - first by split moulding, secondly by Rotamoulding, and finally by Ejectoret moulding. Full consideration is paid to time, labour and cost standards of each approach and the resultant moulding examined using some novel physical testing methods. The results of these tests are statistically analysed. Finally, on the basis of the gathered data and photomicrographical work a theoretical lipstick structure is proposed by which the results may be explained.
NASA Astrophysics Data System (ADS)
Garric, G.; Pirani, A.; Belamari, S.; Caniaux, G.
2006-12-01
order to improve the air/sea interface for the future MERCATOR global ocean operational system, we have implemented the new bulk formulation developed by METEO-FRANCE (French Meteo office) in the MERCATOR 2 degree global ocean-ice coupled model (ORCA2/LIM). A single bulk formulation for the drag, temperature and moisture exchange coefficients is derived from an extended consistent database gathering 10 years of measurements issued from five experiments dedicated to air-sea fluxes estimates (SEMAPHORE, CATCH, FETCH, EQUALANT99 and POMME) in various oceanic basins (from Northern to equatorial Atlantic). The available database (ALBATROS) cover the widest range of atmospheric and oceanic conditions, from very light (0.3 m/s) to very strong (up to 29 m/s) wind speeds, and from unstable to extremely stable atmospheric boundary layer stratification. We have defined a work strategy to test this new formulation in a global oceanic context, by using this multi- campaign bulk formulation to derive air-sea fluxes from base meteorological variables produces by the ECMWF (European Centre for Medium Range and Weather Forecast) atmospheric forecast model, in order to get surface boundary conditions for ORCA2/LIM. The simulated oceanic upper layers forced at the surface by the previous air/sea interface are compared to those forced by the optimal bulk formulation. Consecutively with generally weaker transfer coefficient, the latter formulation reduces the cold bias in the equatorial Pacific and increases the too weak summer sea ice extent in Antarctica. Compared to a recent mixed layer depth (MLD) climatology, the optimal bulk formulation reduces also the too deep simulated MLDs. Comparison with in situ temperature and salinity profiles in different areas allowed us to evaluate the impact of changing the air/sea interface in the vertical structure.
Recent advances in bulk metallic glasses for biomedical applications.
Li, H F; Zheng, Y F
2016-05-01
With a continuously increasing aging population and the improvement of living standards, large demands of biomaterials are expected for a long time to come. Further development of novel biomaterials, that are much safer and of much higher quality, in terms of both biomedical and mechanical properties, are therefore of great interest for both the research scientists and clinical surgeons. Compared with the conventional crystalline metallic counterparts, bulk metallic glasses have unique amorphous structures, and thus exhibit higher strength, lower Young's modulus, improved wear resistance, good fatigue endurance, and excellent corrosion resistance. For this purpose, bulk metallic glasses (BMGs) have recently attracted much attention for biomedical applications. This review discusses and summarizes the recent developments and advances of bulk metallic glasses, including Ti-based, Zr-based, Fe-based, Mg-based, Zn-based, Ca-based and Sr-based alloying systems for biomedical applications. Future research directions will move towards overcoming the brittleness, increasing the glass forming ability (GFA) thus obtaining corresponding bulk metallic glasses with larger sizes, removing/reducing toxic elements, and surface modifications. Bulk metallic glasses (BMGs), also known as amorphous alloys or liquid metals, are relative newcomers in the field of biomaterials. They have gained increasing attention during the past decades, as they exhibit an excellent combination of properties and processing capabilities desired for versatile biomedical implant applications. The present work reviewed the recent developments and advances of biomedical BMGs, including Ti-based, Zr-based, Fe-based, Mg-based, Zn-based, Ca-based and Sr-based BMG alloying systems. Besides, the critical analysis and in-depth discussion on the current status, challenge and future development of biomedical BMGs are included. The possible solution to the BMG size limitation, the brittleness of BMGs has been proposed. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Fabrication of single domain GdBCO bulk superconductors by a new modified TSIG technique
NASA Astrophysics Data System (ADS)
Yang, W. M.; Zhi, X.; Chen, S. L.; Wang, M.; Li, J. W.; Ma, J.; Chao, X. X.
2014-01-01
Single domain GdBCO bulk superconductors have been fabricated with new and traditional solid phases by a top seeded infiltration and growth (TSIG) process technique. In the conventional TSIG process, three types of powders, such as Gd2BaCuO5, GdBa2Cu3O7-x and Ba3Cu5O8, must be prepared, but in our new modified TSIG technique, only BaCuO2 powders are required during the fabrication of the single domain GdBCO bulk superconductors. The solid phase used in the conventional process is Gd2BaCuO5 instead of the solid phase (Gd2O3 + BaCuO2) utilized in the new process. The liquid phase used in the conventional process is a mixture of (GdBa2Cu3O7-x + Ba3Cu5O8), and the liquid phase in the new process is a mixture of (Gd2O3 + 10BaCuO2 + 6CuO). Single domain GdBCO bulk superconductors have been fabricated with the new solid and liquid phases. The levitation force of the GdBCO bulk samples fabricated by the new solid phase is 28 N, which is slightly higher than that of the samples fabricated using the conventional solid phases (26 N). The microstructure and the levitation force of the samples indicate that this new method can greatly simplify the fabrication process, introduce nanometer-sized flux centers, improve the levitation force and working efficiency, and greatly reduce the cost of fabrication of single domain GdBCO bulk superconductors by the TSIG process.
Waknis, Vrushali; Chu, Elza; Schlam, Roxana; Sidorenko, Alexander; Badawy, Sherif; Yin, Shawn; Narang, Ajit S
2014-01-01
The molecular basis of crystal surface adhesion leading to sticking was investigated by exploring the correlation of crystal adhesion to oxidized iron coated atomic force microscope (AFM) tips and bulk powder sticking behavior during tableting of two morphologically different crystals of a model drug, mefenamic acid (MA), to differences in their surface functional group orientation and energy. MA was recrystallized into two morphologies (plates and needles) of the same crystalline form. Crystal adhesion to oxidized iron coated AFM tips and bulk powder sticking to tablet punches was assessed using a direct compression formulation. Surface functional group orientation and energies on crystal faces were modeled using Accelrys Material Studio software. Needle-shaped morphology showed higher sticking tendency than plates despite similar particle size. This correlated with higher crystal surface adhesion of needle-shaped morphology to oxidized iron coated AFM probe tips, and greater surface energy and exposure of polar functional groups. Higher surface exposure of polar functional groups correlates with higher tendency to stick to metal surfaces and AFM tips, indicating involvement of specific polar interactions in the adhesion behavior. In addition, an AFM method is identified to prospectively assess the risk of sticking during the early stages of drug development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Binghong; Key, Baris; Lapidus, Saul H.
Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this work, we systematically studied the effect of the composition of Ni-rich LiNi xMn yCo 1–x–yO 2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) to LiNi 0.6Mn 0.2Co 0.2O 2 (NMC622) and LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) was found to facilitate the diffusion ofmore » surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials.In conclusion, these results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.« less
Han, Binghong; Key, Baris; Lapidus, Saul H.; ...
2017-11-01
Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this work, we systematically studied the effect of the composition of Ni-rich LiNi xMn yCo 1–x–yO 2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) to LiNi 0.6Mn 0.2Co 0.2O 2 (NMC622) and LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) was found to facilitate the diffusion ofmore » surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials.In conclusion, these results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.« less
Irritable Bowel Syndrome and Complementary Health Practices
... series of yoga classes, compared with a waitlist control group. They were still feeling better at the study’s ... 18(7):589–600. Ruepert L, Quartero AO, de Wit NJ, et al. Bulking agents, antispasmodics and ...
Bulk semiconducting scintillator device for radiation detection
Stowe, Ashley C.; Burger, Arnold; Groza, Michael
2016-08-30
A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.
Sequestered gravity in gauge mediation.
Antoniadis, Ignatios; Benakli, Karim; Quiros, Mariano
2016-01-01
We present a novel mechanism of supersymmetry breaking embeddable in string theory and simultaneously sharing the main advantages of (sequestered) gravity and gauge mediation. It is driven by a Scherk-Schwarz deformation along a compact extra dimension, transverse to a brane stack supporting the supersymmetric extension of the Standard Model. This fixes the magnitude of the gravitino mass, together with that of the gauginos of a bulk gauge group, at a scale as high as [Formula: see text] GeV. Supersymmetry breaking is mediated to the observable sector dominantly by gauge interactions using massive messengers transforming non-trivially under the bulk and Standard Model gauge groups and leading to a neutralino LSP as dark matter candidate. The Higgsino mass [Formula: see text] and soft Higgs-bilinear [Formula: see text] term could be generated at the same order of magnitude as the other soft terms by effective supergravity couplings as in the Giudice-Masiero mechanism.
Some heat transfer and hydrodynamic problems associated with superconducting cables (SPTL)
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Daney, D. E.; Yeroshenko, V. M.; Kuznetsov, Y. V.; Shevckenko, O. A.
1978-01-01
To study some effects of thermogravitation on (CIIK-SPTL) systems, a heated tube experiment was set up at Krzhizhanovsky Power Engineering Institute Moscow, U.S.S.R. Heat transfer data were taken with fluid helium flowing through a 2.85 m, 19 mm diameter uniformly heated horizontal tube. Temperatures were measured on the top and bottom of the tube at six axial locations with three other circumferential measurements made at (X/L) =57. Typical temperature profiles show significant variations both axially and circumferentially. The data are grouped using reduced Nusselt number (NuR) and the bulk expansion parameter for each axial location. The average data for 0.26 less than or equal to X/L less than or equal to 0.76 follow a power law relation with the average expansion parameter. System instabilities are noted and discussed. Future work including heat transfer in coaxial cylinders is discussed.
Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.
Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Björneholm, Olle
2017-04-27
Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied X-ray photoelectron spectroscopy (XPS) to study aqueous solutions of four amino acids, glycine, alanine, valine, and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidence that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interactions play a central role in cloud droplet formation, and they should be considered in climate models.
Point Defects and p -Type Doping in ScN from First Principles
NASA Astrophysics Data System (ADS)
Kumagai, Yu; Tsunoda, Naoki; Oba, Fumiyasu
2018-03-01
Scandium nitride (ScN) has been intensively researched as a prototype of rocksalt nitrides and a potential counterpart of the wurtzite group IIIa nitrides. It also holds great promise for applications in various fields, including optoelectronics, thermoelectrics, spintronics, and piezoelectrics. We theoretically investigate the bulk properties, band-edge positions, chemical stability, and point defects, i.e., native defects, unintentionally doped impurities, and p -type dopants of ScN using the Heyd-Scuseria-Ernzerhof hybrid functional. We find several fascinating behaviors: (i) a high level for the valence-band maximum, (ii) the lowest formation energy among binary nitrides, (iii) high formation energies of native point defects, (iv) low formation energies of donor-type impurities, and (v) a p -type conversion by Mg doping. Furthermore, we uncover the origins of the Burstein-Moss shift commonly observed in ScN. Our work sheds light on a fundamental understanding of ScN in regard to its technological applications.
Mechanisms of Pyroelectricity in Three- and Two-Dimensional Materials
NASA Astrophysics Data System (ADS)
Liu, Jian; Pantelides, Sokrates T.
2018-05-01
Pyroelectricity is a very promising phenomenon in three- and two-dimensional materials, but first-principles calculations have not so far been used to elucidate the underlying mechanisms. Here we report density-functional theory (DFT) calculations based on the Born-Szigeti theory of pyroelectricity, by combining fundamental thermodynamics and the modern theory of polarization. We find satisfactory agreement with experimental data in the case of bulk benchmark materials, showing that the so-called electron-phonon renormalization, whose contribution has been traditionally viewed as negligible, is important. We predict out-of-plane pyroelectricity in the recently synthesized Janus MoSSe monolayer and in-plane pyroelectricity in the group-IV monochalcogenide GeS monolayer. It is notable that the so-called secondary pyroelectricity is found to be dominant in GeS monolayer. The present work opens a theoretical route to study the pyroelectric effect using DFT and provides a valuable tool in the search for new candidates for pyroelectric applications.
Bulk Data Dissemination in Low Power Sensor Networks: Present and Future Directions
Xu, Zhirong; Hu, Tianlei; Song, Qianshu
2017-01-01
Wireless sensor network-based (WSN-based) applications need an efficient and reliable data dissemination service to facilitate maintenance, management and data distribution tasks. As WSNs nowadays are becoming pervasive and data intensive, bulk data dissemination protocols have been extensively studied recently. This paper provides a comprehensive survey of the state-of-the-art bulk data dissemination protocols. The large number of papers available in the literature propose various techniques to optimize the dissemination protocols. Different from the existing survey works which separately explores the building blocks of dissemination, our work categorizes the literature according to the optimization purposes: Reliability, Scalability and Transmission/Energy efficiency. By summarizing and reviewing the key insights and techniques, we further discuss on the future directions for each category. Our survey helps unveil three key findings for future direction: (1) The recent advances in wireless communications (e.g., study on cross-technology interference, error estimating codes, constructive interference, capture effect) can be potentially exploited to support further optimization on the reliability and energy efficiency of dissemination protocols; (2) Dissemination in multi-channel, multi-task and opportunistic networks requires more efforts to fully exploit the spatial-temporal network resources to enhance the data propagation; (3) Since many designs incur changes on MAC layer protocols, the co-existence of dissemination with other network protocols is another problem left to be addressed. PMID:28098830
Comparison of platelet activation through hinge vs bulk flow in mechanical heart valves
NASA Astrophysics Data System (ADS)
Hedayat, Mohammadali; Borazjani, Iman
2017-11-01
Bileaflet mechanical heart valves increase the risk of thrombus formation in patients which is believed to be initiated by platelet activation. Platelets can be activated by the elevated shear stresses in the bulk flow during the systole phase or the flow through the hinge during the diastole. However, the importance of platelet activation by the bulk flow vs the hinge in MHVs has yet to be studied. Here, we investigate the contribution of each of the above mechanisms to the activation of platelets in MHs by performing simulation of the flow through a 25mm St. Jude Medical valve placed in a straight aorta. Two different gap sizes (250 and 150 micrometer) are used in this study. The simulations are done using a sharp interface curvilinear immersed boundary method along with a strong-coupling algorithm for FSI solver on overset grids. The platelet activation through the hinge for different gap sizes is compared to the activation in the bulk flow using two platelet activation models to ensure the consistency of the results. Our results for all gap sizes using different activation models show that the integration of platelet activation caused by the bulk flow is several times higher in comparison to the activation through the hinge. This work is supported by the American Heart Association Grant 13SDG17220022, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.
Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)
NASA Astrophysics Data System (ADS)
Ergin, M. Fatih; Aydin, Ismail
2013-12-01
Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.
Martí-De Olives, Ana; Navarro-Ríos, María Jesús; Rubert-Alemán, Joaquín; Fernández, Nemesio; Molina, Maria Pilar
2015-08-01
The aim of this study was to assess the effect of ovine bulk tank somatic cell count (BTSCC) on composition, proteose-peptone (p-p) content and casein fractions as indicating parameters for proteolysis and coagulating properties of milk. A total of 97 samples of bulk tank milk from Manchega breed ewe flocks were grouped according to somatic cell count (SCC) into four classes: fewer than 500,000 cells/ml, from 500,000 to 10,00000 cells/ml, from 10,00000 to 15,00000 and more than 15,00000 cells/ml. The casein : protein ratio and lactose content decreased with BTSCC. Proteolysis increased with BTSCC, causing a drop in β-casein and an increase in the γ-caseins from a concentration of 500,000 cells/ml. Regarding coagulation behaviour, the rennet clotting time (RCT) and firming time (k20) rose from 10,00000-15,00000 cells/ml of milk. The results showed that the impairment of milk quality and milk ability to make cheese as affected by intramammary infection (IMI) can be inferred from the bulk tank milk of flocks with poor udder health.
Structural and magnetic properties of Prussian blue analogue molecular magnet Fe1.5[Cr(CN)6].mH2O
NASA Astrophysics Data System (ADS)
Bhatt, Pramod; Meena, S. S.; Mukadam, M. D.; Yusuf, S. M.
2016-05-01
Molecular magnets, based on Prussian blue analogues, Fe1.5[Cr(CN)6].mH2O have been synthesized in the bulk as well as nanoparticle forms using a co-precipitation method, and their structural and magnetic properties have been investigated using x-ray diffraction (XRD) Mössbauer spectroscopy and dc magnetization. The XRD study confirms the single phase crystalline and nanoparticle nature of the compounds with a face centered cubic (fcc) structure of space group Fm3m. The values of lattice constant are found to be ~10.18(5) Å and ~9.98(9)Å, for the bulk and nanoparticle samples, respectively. The dc magnetization shows a Curie temperature (TC) of ~17 K and ~5 K for the bulk and nanopartcile samples, respectively. The Mossouber spectroscopy reveal that the compound shows spin flipping from the high spin (HS) Fe (CrIII-C≡N-FeII) to low spin (LS) FeII ions (CrIII-N≡C-FeII). Moreover, the TC and the HS state of the Fe ions decreases (converts to its LS states) with time as well as in the nanoparticle form compared to bulk.
40 CFR 442.1 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... under a wide variety of Standard Industrial Classification (SIC) codes. Several of the most common SIC... industrial, commercial, or Publicly Owned Treatment Works (POTW) operations, provided that the cleaning is... drums, intermediate bulk containers, or closed-top hoppers. (3) Wastewater from a facility that...
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Ayvazian, Talin; Brodie, Miles; Lingley, Zachary
2018-03-01
High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to catastrophic optical damage (COD), it is especially crucial for space satellite applications to investigate reliability, failure modes, precursor signatures of failure, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we continued our physics of failure investigation by performing long-term life-tests followed by failure mode analysis (FMA) using nondestructive and destructive micro-analytical techniques. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs- AlGaAs strained QW lasers under ACC mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. We first employed electron beam induced current (EBIC) technique to identify failure modes of degraded SM lasers by observing dark line defects. All the SM failures that we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Keywor
Predicting the pKa and stability of organic acids and bases at an oil-water interface.
Andersson, M P; Olsson, M H M; Stipp, S L S
2014-06-10
We have used density functional theory and the implicit solvent model, COSMO-RS, to investigate how the acidity constant, pKa, of organic acids and bases adsorbed at the organic compound-aqueous solution interface changes, compared to its value in the aqueous phase. The pKa determine the surface charge density of the molecules that accumulate at the fluid-fluid interface. We have estimated the pKa by comparing the stability of the protonated and unprotonated forms of a series of molecules in the bulk aqueous solution and at an interface where parts of each molecule reside in the hydrophobic phase and the rest remains in the hydrophilic phase. We found that the pKa for acids is shifted by ∼1 pH unit to higher values compared to the bulk water pKa, whereas they are shifted to lower values by a similar amount for bases. Because this pKa shift is similar in magnitude for each of the molecules studied, we propose that the pKa for molecules at a water-organic compound interface can easily be predicted by adding a small shift to the aqueous pKa. This shift is general and correlates with the functional group. We also found that the relative composition of molecules at the fluid-fluid interface is not the same as in the bulk. For example, species such as carboxylic acids are enriched at the interface, where they can dominate surface properties, even when they are a modest component in the bulk fluid. For high surface concentrations of carboxylic acid groups at an interface, such as a self-assembled monolayer, we have demonstrated that the pKa depends on the degree of deprotonation through direct hydrogen bonding between protonated and deprotonated acidic headgroups.
Paleomagnetism of a primitive achondrite parent body: The acapulcoite-lodranites
NASA Astrophysics Data System (ADS)
Schnepf, N. R.; Weiss, B. P.; Andrade Lima, E.; Fu, R. R.; Uehara, M.; Gattacceca, J.; Wang, H.; Suavet, C. R.
2014-12-01
Primitive achondrites are a recently recognized meteorite grouping with textures and compositions intermediate between unmelted meteorites (chondrites) and igneous meteorites (achondrites). Their existence demonstrates prima facie that some planetesimals only experienced partial rather than complete melting. We present the first paleomagnetic measurements of acapulcoite-lodranite meteorites to determine the existence and intensity of ancient magnetic fields on their parent body. Our paleomagnetic study tests the hypothesis that their parent body had an advecting metallic core, with the goal of providing one of the first geophysical constraints on its large-scale structure and the extent of interior differentiation. In particular, by analyzing samples whose petrologic textures require an origin on a partially differentiated body, we will be able to critically test a recent proposal that some achondrites and chondrite groups could have originated on a single body (Weiss and Elkins-Tanton 2013). We analyzed samples of the meteorites Acapulco and Lodran. Like other acapulcoites and lodranites, these meteorites are granular rocks containing large (~0.1-0.3 mm) kamacite and taenite grains along with similarly sized silicate crystals. Many silicate grains contain numerous fine (1-10 μm) FeNi metal inclusions. Our compositional measurements and rock magnetic data suggest that tetrataenite is rare or absent. Bulk paleomagnetic measurements were done on four mutually oriented bulk samples of Acapulco and one bulk sample of Lodran. Alternating field (AF) demagnetization revealed that the magnetization of the bulk samples is highly unstable, likely due to the large (~0.1-0.3 mm) interstitial kamacite grains throughout the samples. To overcome this challenge, we are analyzing individual ~0.2 mm mutually oriented silicate grains extracted using a wire saw micromill. Preliminary SQUID microscopy measurements of a Lodran silicate grain suggest magnetization stable to AF levels of at least 25-40 mT.
Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.
Vila Verde, Ana; Bolhuis, Peter G; Campen, R Kramer
2012-08-09
We use classical atomistic molecular dynamics simulations of two water models (SPC/E and TIP4P/2005) to investigate the orientation and reorientation dynamics of two subpopulations of OH groups belonging to water molecules at the air/water interface at 300 K: those OH groups that donate a hydrogen bond (called "bonded") and those that do not (called "free"). Free interfacial OH groups reorient in two distinct regimes: a fast regime from 0 to 1 ps and a slow regime thereafter. Qualitatively similar behavior was reported by others for free OH groups near extended hydrophobic surfaces. In contrast, the net reorientation of bonded OH groups occurs at a rate similar to that of bulk water. This similarity in reorientation rate results from compensation of two effects: decreasing frequency of hydrogen-bond breaking/formation (i.e., hydrogen-bond exchange) and faster rotation of intact hydrogen bonds. Both changes result from the decrease in density at the air/water interface relative to the bulk. Interestingly, because of the presence of capillary waves, the slowdown of hydrogen-bond exchange is significantly smaller than that reported for water near extended hydrophobic surfaces, but it is almost identical to that reported for water near small hydrophobic solutes. In this sense water at the air/water interface has characteristics of water of hydration of both small and extended hydrophobic solutes.
Pinet, C; Scillia, P; Cassart, M; Lamotte, M; Knoop, C; Mélot, C; Estenne, M
2004-09-01
In the absence of complications, recipients of lung transplants for cystic fibrosis have normal pulmonary function but the impact of the procedure on the strength and bulk of respiratory and limb muscles has not been studied. Twelve stable patients who had undergone lung transplantation for cystic fibrosis 48 months earlier (range 8-95) and 12 normal subjects matched for age, height, and sex were studied. The following parameters were measured: standard lung function, peak oxygen uptake by cycle ergometry, diaphragm surface area by computed tomographic (CT) scanning, diaphragm and abdominal muscle thickness by ultrasonography, twitch transdiaphragmatic and gastric pressures, quadriceps isokinetic strength, and quadriceps cross section by CT scanning, and lean body mass. Diaphragm mass was computed from diaphragm surface area and thickness. Twitch transdiaphragmatic and gastric pressures, diaphragm mass, and abdominal muscle thickness were similar in the two groups but quadriceps strength and cross section were decreased by nearly 30% in the patients. Patients had preserved quadriceps strength per unit cross section but reduced quadriceps cross section per unit lean body mass. The cumulative dose of corticosteroids was an independent predictor of quadriceps atrophy. Peak oxygen uptake showed positive correlations with quadriceps strength and cross section in the two groups, but peak oxygen uptake per unit quadriceps strength or cross section was reduced in the patient group. The diaphragm and abdominal muscles have preserved strength and bulk in patients transplanted for cystic fibrosis but the quadriceps is weak due to muscle atrophy. This atrophy is caused in part by corticosteroid therapy and correlates with the reduction in exercise capacity.
Structure and optical properties of evaporated films of the Cr- and V-group metals
NASA Technical Reports Server (NTRS)
Nestell, J. E., Jr.; Christy, R. W.; Cohen, M. H.; Ruben, G. C.
1980-01-01
Thin films of Cr, Mo, and W rapidly evaporated in high vacuum (5 x 10 to the -7th torr) onto room-temperature substrates show anomalously low reflectance (compared to bulk samples). From electron and X-ray diffraction and electron microscopy, the normal bcc crystal structure is found, but with very fine grains. Columnar grains about 100 A in diameter were separated by a less dense grain-boundary network about 10-A wide. The measured optical conductivity agrees with an inhomogeneous-medium model that assumes the normal crystalline conductivity for the grain interiors, with model parameters that correlate to the observed columnar grain size. In contrast, V and Nb films rapidly evaporated onto room-temperature substrates have the reflectance of bulk crystalline material. On liquid-nitrogen temperature substrates, however, V and Nb have normal bcc crystal structure but with small flat-plate grains, and the same model, with appropriate parameters, accounts for the optical conductivity. The difference between these two groups apparently depends on residual gases segregated at the grain boundaries in the Cr-group films.
Lee, Sooheyong; Jo, Wonhyuk; Cho, Yong Chan; Lee, Hyun Hwi; Lee, Geun Woo
2017-05-01
We report on the first integrated apparatus for measuring surface and thermophysical properties and bulk structures of a highly supersaturated solution by combining electrostatic levitation with real-time laser/x-ray scattering. Even today, a proper characterization of supersaturated solutions far above their solubility limits is extremely challenging because heterogeneous nucleation sites such as container walls or impurities readily initiate crystallization before the measurements can be performed. In this work, we demonstrate simultaneous measurements of drying kinetics and surface tension of a potassium dihydrogen phosphate (KH 2 PO 4 ) aqueous solution droplet and its bulk structural evolution beyond the metastable zone width limit. Our experimental finding shows that the noticeable changes of the surface properties are accompanied by polymerizations of hydrated monomer clusters. The novel electrostatic levitation apparatus presented here provides an effective means for studying a wide range of highly concentrated solutions and liquids in deep metastable states.
Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior.
Fries, Madeleine R; Stopper, Daniel; Braun, Michal K; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M J; Skoda, Maximilian W A; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank
2017-12-01
Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration c_{s} is reflected in an intriguing way in the protein adsorption d(c_{s}) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.
Bubble bursting at an interface
NASA Astrophysics Data System (ADS)
Kulkarni, Varun; Sajjad, Kumayl; Anand, Sushant; Fezzaa, Kamel
2017-11-01
Bubble bursting is crucial to understanding the life span of bubbles at an interface and more importantly the nature of interaction between the bulk liquid and the outside environment from the point of view of chemical and biological material transport. The dynamics of the bubble as it rises from inside the liquid bulk to its disappearance on the interface after bursting is an intriguing process, many aspects of which are still being explored. In our study, we make detailed high speed imaging measurements to examine carefully the hole initiation and growth in bursting bubbles that unearth some interesting features of the process. Previous analyses available in literature are revisited based on our novel experimental visualizations. Using a combination of experiments and theory we investigate the role of various forces during the rupturing process. This work aims to further our current knowledge of bubble dynamics at an interface with an aim of predicting better the bubble evolution from its growth to its eventual integration with the liquid bulk.
Kanevce, A.; Reese, Matthew O.; Barnes, T. M.; ...
2017-06-06
CdTe devices have reached efficiencies of 22% due to continuing improvements in bulk material properties, including minority carrier lifetime. Device modeling has helped to guide these device improvements by quantifying the impacts of material properties and different device designs on device performance. One of the barriers to truly predictive device modeling is the interdependence of these material properties. For example, interfaces become more critical as bulk properties, particularly, hole density and carrier lifetime, increase. We present device-modeling analyses that describe the effects of recombination at the interfaces and grain boundaries as lifetime and doping of the CdTe layer change. Themore » doping and lifetime should be priorities for maximizing open-circuit voltage (V oc) and efficiency improvements. However, interface and grain boundary recombination become bottlenecks for device performance at increased lifetime and doping levels. In conclusion, this work quantifies and discusses these emerging challenges for next-generation CdTe device efficiency.« less
Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior
NASA Astrophysics Data System (ADS)
Fries, Madeleine R.; Stopper, Daniel; Braun, Michal K.; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M. J.; Skoda, Maximilian W. A.; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank
2017-12-01
Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration cs is reflected in an intriguing way in the protein adsorption d (cs) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.
Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient
NASA Astrophysics Data System (ADS)
Tan, Teng; Wolak, M. A.; Xi, X. X.; Tajima, T.; Civale, L.
2016-10-01
Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.
Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient.
Tan, Teng; Wolak, M A; Xi, X X; Tajima, T; Civale, L
2016-10-24
Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (H vp ). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases H vp . In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of H vp was observed. At 2.8 K, H vp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB 2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.
Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient
NASA Astrophysics Data System (ADS)
Civale, Leonardo; Tan, Teng; Wolak, M.; Xi, Xiaoxing; Tajima, Tsuyoshi
Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoids to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with 200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.
Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient
Tan, Teng; Wolak, M. A.; Xi, X. X.; Tajima, T.; Civale, L.
2016-01-01
Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb. PMID:27775087
Application of textured YBCO bulks with artificial holes for superconducting magnetic bearing
NASA Astrophysics Data System (ADS)
Dias, D. H. N.; Sotelo, G. G.; Moysés, L. A.; Telles, L. G. T.; Bernstein, P.; Kenfaui, D.; Aburas, M.; Chaud, X.; Noudem, J. G.
2015-07-01
The levitation force between a superconductor and a permanent magnet has been investigated for the development of superconducting magnetic bearings (SMBs). Depending on the proposed application, the SMBs can be arranged with two kinds of symmetries: rotational or linear. The SMBs present passive operation, low level of noise and no friction, but they need a cooling system for their operation. Nowadays the cooling problem may be easily solved by the use of a commercial cryocooler. The levitation force of SMBs is directly related to the quality of the superconductor material (which depends on its critical current density) and the permanent magnet arrangement. Also, research about the YBa2Cu3Ox (Y123) bulk materials has shown that artificial holes enhance the superconducting properties, in particular the magnetic trapped field. In this context, this work proposes the investigation of the levitation force of a bulk Y123 sample with multiple holes and the comparison of its performances with those of conventional plain Y123 superconductors.
Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Daniel R.; National High Magnetic Field Laboratory, Tallahassee, FL 32310; Han, Ke
2016-05-15
Mn-Ga alloys have shown hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before rare-earth magnets can be replaced. We have examined the magnetic properties of bulk alloys made with partial replacement of both the Mn and Ga elements in the Mn{sub 0.8}Ga{sub 0.2} system. Bulk samples of Mn-Ga-Bi, Mn-Ga-Al, Mn-Fe-Ga and Mn-(FeB)-Ga alloys were fabricated and studied using mechanically milling and heat treatments while altering the atomic percentage of the third element between 2.5 and 20 at%. The ternary alloy exhibits all hard magnetic properties at room temperature with large coercivity. Annealedmore » Mn-Ga-X bulk composites exhibit high coercivities up to 16.6 kOe and remanence up to 9.8 emu/g, that is increased by 115% over the binary system.« less
Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells
2012-01-01
With particular focus on bulk heterojunction solar cells incorporating ZnO nanorods, we study how different annealing environments (air or Zn environment) and temperatures impact on the photoluminescence response. Our work gives new insight into the complex defect landscape in ZnO, and it also shows how the different defect types can be manipulated. We have determined the emission wavelengths for the two main defects which make up the visible band, the oxygen vacancy emission wavelength at approximately 530 nm and the zinc vacancy emission wavelength at approximately 630 nm. The precise nature of the defect landscape in the bulk of the nanorods is found to be unimportant to photovoltaic cell performance although the surface structure is more critical. Annealing of the nanorods is optimum at 300°C as this is a sufficiently high temperature to decompose Zn(OH)2 formed at the surface of the nanorods during electrodeposition and sufficiently low to prevent ITO degradation. PMID:23186280
NASA Technical Reports Server (NTRS)
Castro, Sandra L.; Emery, William J.
2002-01-01
The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.
Yang, Chun Cheng; Li, Sean
2011-12-23
Recently, nanostructured silicon-based thermoelectric materials have drawn great attention owing to their excellent thermoelectric performance in the temperature range around 450 °C, which is eminently applicable for concentrated solar thermal technology. In this work, a unified nanothermodynamic model is developed to investigate the predominant factors that determine the lattice thermal conductivity of nanocrystalline, nanoporous, and nanostructured bulk Si. A systematic study shows that the thermoelectric performance of these materials can be substantially enhanced by the following three basic principles: 1) artificial manipulation and optimization of roughness with surface/interface patterning/engineering; 2) grain-size reduction with innovative fabrication techniques in a controllable fashion; and 3) optimization of material parameters, such as bulk solid-vapor transition entropy, bulk vibrational entropy, dimensionality, and porosity, to decrease the lattice thermal conductivity. These principles may be used to rationally design novel nanostructured Si-based thermoelectric materials for renewable energy applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic and optical properties of graphene-like InAs: An ab initio study
NASA Astrophysics Data System (ADS)
Sohrabi, Leila; Boochani, Arash; Ali Sebt, S.; Mohammad Elahi, S.
2018-03-01
The present work initially investigates structural, optical, and electronic properties of graphene-like InAs by using the full potential linear augmented plane wave method in the framework of density functional theory and is then compared with the bulk Indium Arsenide in the wurtzite phase. The lattice parameters are optimized with GGA-PBE and LDA approximations for both 2D- and 3D-InAs. In order to study the electronic properties of graphene-like InAs and bulk InAs in the wurtzite phase, the band gap is calculated by GGA-PBG and GGA-EV approximations. Moreover, optical parameters of graphene-like InAs and bulk InAs such as the real and imaginary parts of dielectric function, electron energy loss function, refractivity, extinction and absorption coefficients, and optical conductivity are investigated. Plasmonic frequencies of 2D- and 3D-InAs are also calculated by using maximum electron energy loss function and the roots of the real part of the dielectric function.
Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Teng; Wolak, M. A.; Xi, X. X.
2016-10-24
Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (H vp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases H vp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significantmore » enhancement of H vp was observed. At 2.8 K, H vp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB 2 thin film. In conclusion, this finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.« less
One-dimensional organic lead halide perovskites with efficient bluish white-light emission
NASA Astrophysics Data System (ADS)
Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu
2017-01-01
Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.
Size dependent compressibility of nano-ceria: Minimum near 33 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodenbough, Philip P.; Chemistry Department, Columbia University, New York, New York 10027; Song, Junhua
2015-04-20
We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite sizemore » decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.« less
One-dimensional organic lead halide perovskites with efficient bluish white-light emission
Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu
2017-01-01
Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials. PMID:28051092
One-dimensional organic lead halide perovskites with efficient bluish white-light emission.
Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C; van de Burgt, Lambertus J; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu
2017-01-04
Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C 4 N 2 H 14 PbBr 4 , in which the edge sharing octahedral lead bromide chains [PbBr 4 2- ] ∞ are surrounded by the organic cations C 4 N 2 H 14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.
Pastorczak, Marcin; Dominguez-Espinosa, Gustavo; Okrasa, Lidia; Pyda, Marek; Kozanecki, Marcin; Kadlubowski, Slawomir; Rosiak, Janusz M; Ulanski, Jacek
2014-01-01
Water interacting with a polymer reveals a number of properties very different to bulk water. These interactions lead to the redistribution of hydrogen bonds in water. It results in modification of thermodynamic properties of water and the molecular dynamics of water. That kind of water is particularly well observable at temperatures below the freezing point of water, when the bulk water crystallizes. In this work, we determine the amount of water bound to the polymer and of the so-called pre-melting water in poly(vinyl methyl ether) hydrogels with the use of Raman spectroscopy, dielectric spectroscopy, and calorimetry. This analysis allows us to compare various physical properties of the bulk and the pre-melting water. We also postulate the molecular mechanism responsible for the pre-melting of part of water in poly(vinyl methyl ether) hydrogels. We suggest that above -60 °C, the first segmental motions of the polymer chain are activated, which trigger the process of the pre-melting.
Surface electronic properties of polycrystalline bulk and thin film In2O3(ZnO)k compounds
NASA Astrophysics Data System (ADS)
Hopper, E. Mitchell; Zhu, Qimin; Gassmann, Jürgen; Klein, Andreas; Mason, Thomas O.
2013-01-01
The surface electronic potentials of In2O3(ZnO)k compounds were measured by X-ray and ultraviolet photoelectron spectroscopy. Both thin film (k = 2) and bulk specimens (k = 3, 5, 7, 9) were studied. All bulk specimens exhibited In enrichment at the surface. All samples showed an increase of In core level binding energies compared to pure and Sn-doped In2O3. The work functions and Fermi levels spanned a range similar to those of the basis oxides In2O3 and ZnO, and the ionization potential was similar to that of both In2O3 and ZnO processed under similar conditions (7.7 eV). This ionization potential was independent of both composition and post-deposition oxidation and reduction treatments. Kelvin probe measurements of cleaned and UV-ozone treated specimens under ambient conditions were in agreement with the photoelectron spectroscopy measurements.
Contact spectroscopy on S/TI/N devices: Induced pairing on the surface of a topological insulator
NASA Astrophysics Data System (ADS)
Stehno, Martin P.; Ngabonziza, Prosper; Snelder, Marieke; Myoren, Hiroaki; Pan, Yu; de Visser, Anne; Huang, Y.; Golden, Mark S.; Brinkman, Alexander
Translating concepts of topological quantum computation into applications requires fine-tuning of parameters in the model Hamiltonians of candidate systems. Such level of control has proven difficult to achieve in devices where superconductors are used to induce pairing in topological insulator (TI) materials. While local probe experiments have indicated features of p-wave superconducting correlations in TIs (as suggested by theory), results on extended devices often remain ambiguous. We present contact spectroscopy data on superconductor/topological insulator/normal metal devices with bulk-insulating TI material and compare these with bulk conducting samples. We discuss the magnitude of the induced gap and unusual features in the conductance traces of the bulk-insulating samples that may suggest the presence of p-wave type correlations in the TI. This work is financially supported by the Dutch Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC).
Zhou, Shiqi; Jamnik, Andrej
2005-09-22
The structure of a Lennard-Jones (LJ) fluid subjected to diverse external fields maintaining the equilibrium with the bulk LJ fluid is studied on the basis of the third-order+second-order perturbation density-functional approximation (DFA). The chosen density and potential parameters for the bulk fluid correspond to the conditions situated at "dangerous" regions of the phase diagram, i.e., near the critical temperature or close to the gas-liquid coexistence curve. The accuracy of DFA predictions is tested against the results of a grand canonical ensemble Monte Carlo simulation. It is found that the DFA theory presented in this work performs successfully for the nonuniform LJ fluid only on the condition of high accuracy of the required bulk second-order direct correlation function. The present report further indicates that the proposed perturbation DFA is efficient and suitable for both supercritical and subcritical temperatures.
Saltas, V.; Chroneos, A.; Cooper, Michael William D.; ...
2016-01-01
In the present work, the defect properties of oxygen self-diffusion in PuO 2 are investigated over a wide temperature (300–1900 K) and pressure (0–10 GPa) range, by combining molecular dynamics simulations and thermodynamic calculations. Based on the well-established cBΩ thermodynamic model which connects the activation Gibbs free energy of diffusion with the bulk elastic and expansion properties, various point defect parameters such as activation enthalpy, activation entropy, and activation volume were calculated as a function of T and P. Molecular dynamics calculations provided the necessary bulk properties for the proper implementation of the thermodynamic model, in the lack of anymore » relevant experimental data. The estimated compressibility and the thermal expansion coefficient of activation volume are found to be more than one order of magnitude greater than the corresponding values of the bulk plutonia. As a result, the diffusion mechanism is discussed in the context of the temperature and pressure dependence of the activation volume.« less
Photodimerisation of a coumarin-dipeptide gelator.
Draper, Emily R; McDonald, Tom O; Adams, Dave J
2015-08-18
Here we report a coumarin based hydrogelator that can form bulk gels, or homogeneous thin gels via an electrochemical pH drop. The gel can then be strengthened by post-gelation photodimerisation of the coumarin groups by irradiating with UV light.
NASA Astrophysics Data System (ADS)
Hezel, Dominik C.; Wilden, Johanna S.; Becker, Daniel; Steinbach, Sonja; Wombacher, Frank; Harak, Markus
2018-05-01
Chondrules are a major constituent of primitive meteorites. The formation of chondrules is one of the most elusive problems in cosmochemistry. We use Fe isotope compositions of chondrules and bulk chondrites to constrain the conditions of chondrule formation. Iron isotope compositions of bulk chondrules are so far only known from few studies on CV and some ordinary chondrites. We studied 37 chondrules from the CM chondrite Murchison. This is particularly challenging, as CM chondrites contain the smallest chondrules of all chondrite groups, except for CH chondrites. Bulk chondrules have δ56Fe between -0.62 and +0.24‰ relative to the IRMM-014 standard. Bulk Murchison has as all chondrites a δ56Fe of 0.00‰ within error. The δ56Fe distribution of the Murchison chondrule population is continuous and close to normal. The width of the δ56Fe distribution is narrower than that of the Allende chondrule population. Opaque modal abundances in Murchison chondrules is in about 67% of the chondrules close to 0 vol.%, and in 33% typically up to 6.5 vol.%. Chondrule Al/Mg and Fe/Mg ratios are sub-chondritic, while bulk Murchison has chondritic ratios. We suggest that the variable bulk chondrule Fe isotope compositions were established during evaporation and recondensation prior to accretion in the Murchison parent body. This range in isotope composition was likely reduced during aqueous alteration on the parent body. Murchison has a chondritic Fe isotope composition and a number of chondritic element ratios. Chondrules, however, have variable Fe isotope compositions and chondrules and matrix have complementary Al/Mg and Fe/Mg ratios. In combination, this supports the idea that chondrules and matrix formed from a single reservoir and were then accreted in the parent body. The formation in a single region also explains the compositional distribution of the chondrule population in Murchison.
McHugh, Lauren E J; Politi, Ioanna; Al-Fodeh, Rami S; Fleming, Garry J P
2017-09-01
To assess the cuspal deflection of standardised large mesio-occluso-distal (MOD) cavities in third molar teeth restored using conventional resin-based composite (RBC) or their bulk fill restorative counterparts compared with the unbound condition using a twin channel deflection measuring gauge. Following thermocycling, the cervical microleakage of the restored teeth was assessed to determine marginal integrity. Standardised MOD cavities were prepared in forty-eight sound third molar teeth and randomly allocated to six groups. Restorations were placed in conjunction with (and without) a universal bonding system and resin restorative materials were irradiated with a light-emitting-diode light-curing-unit. The dependent variable was the restoration protocol, eight oblique increments for conventional RBCs or two horizontal increments for the bulk fill resin restoratives. The cumulative buccal and palatal cuspal deflections from a twin channel deflection measuring gauge were summed, the restored teeth thermally fatigued, immersed in 0.2% basic fuchsin dye for 24h, sectioned and examined for cervical microleakage score. The one-way analysis of variance (ANOVA) identified third molar teeth restored using conventional RBC materials had significantly higher mean total cuspal deflection values compared with bulk fill resin restorative restoration (all p<0.0001). For the conventional RBCs, Admira Fusion (bonded) third molar teeth had significantly the lowest microleakage scores (all p<0.001) while the Admira Fusion x-tra (bonded) bulk fill resin restored teeth had significantly the lowest microleakage scores compared with Tetric EvoCeram Bulk Fill (bonded and non-bonded) teeth (all p<0.001). Not all conventional RBCs or bulk fill resin restoratives behave in a similar manner when used to restore standardised MOD cavities in third molar teeth. It would appear that light irradiation of individual conventional RBCs or bulk fill resin restoratives may be problematic such that material selection is vital in the absence of clinical data. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sumida, John; Forsythe, Elizabeth L.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp(sup 101) using a carbodiimide coupling procedure. Asp(sup 101) lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive groups have been bound to His(sup 15), located on the "back side" of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp(sup 101)-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His(sup 15) have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.
NASA Technical Reports Server (NTRS)
Sumida, John P.; Forsythe, Elizabeth L.; Pusey, Marc L.
2001-01-01
Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-i-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp(sup 101) using a carbodiimide coupling procedure. Asp(sup 101) lies within the active site cleft, and it is believed that the probes are 'buried' within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive five groups have been bound to His(sup 15), located on the 'back side' of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp(sup 101)-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His(sup 15) have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.
Mechanisms of red blood cells agglutination in antibody-treated paper.
Jarujamrus, Purim; Tian, Junfei; Li, Xu; Siripinyanond, Atitaya; Shiowatana, Juwadee; Shen, Wei
2012-05-07
Recent reports on using bio-active paper and bio-active thread to determine human blood type have shown a tremendous potential of using these low-cost materials to build bio-sensors for blood diagnosis. In this work we focus on understanding the mechanisms of red blood cell agglutination in the antibody-loaded paper. We semi-quantitatively evaluate the percentage of antibody molecules that are adsorbed on cellulose fibres and can potentially immobilize red blood cells on the fibre surface, and the percentage of the molecules that can desorb from the cellulose fibre surface into the blood sample and cause haemagglutination reaction in the bulk of a blood sample. Our results show that 34 to 42% of antibody molecules in the papers treated with commercial blood grouping antibodies can desorb from the fibre surface. When specific antibody molecules are released into the blood sample via desorption, haemagglutination reaction occurs in the blood sample. The reaction bridges the red cells in the blood sample bulk to the layer of red cells immobilized on the fibre surface by the adsorbed antibody molecules. The desorbed antibody also causes agglutinated lumps of red blood cells to form. These lumps cannot pass through the pores of the filter paper. The immobilization and filtration of agglutinated red cells give reproducible identification of positive haemagglutination reaction. Results from this study provide information for designing new bio-active paper-based devices for human blood typing with improved sensitivity and specificity.
Magnetic and electrical properties in Co-doped KNbO3 bulk samples
NASA Astrophysics Data System (ADS)
Astudillo, Jairo A.; Dionizio, Stivens A.; Izquierdo, Jorge L.; Morán, Oswaldo; Heiras, Jesús; Bolaños, Gilberto
2018-05-01
Multiferroic materials exhibit in the same phase at least two of the ferroic properties: ferroelectricity, ferromagnetism, and ferroelasticity, which may be coupled to each other. In this work, we investigated bulk materials with a nominal composition KNb0.95Co0.05O3 (KN:Co) fabricated by the standard solid-state reaction technique. X-ray diffraction analysis of the polycrystalline sample shows the respective polycrystalline perovskite structure of the KNbO3 phase with only small variation due to the Co doping. No secondary or segregated phases are observed. The values of the extracted lattice parameters are very close to those reported in the literature for KNbO3 with orthorhombic symmetry (a = 5.696 Å, b = 3.975 Å, and c = 5.721 Å) with space group Bmm2. Measurements of the electric polarization as a function of the electric field at different temperatures indicate the presence of ferroelectricity in our samples. Magnetic response of the pellets, detected by high sensitivity measurements of magnetization as a function of field, reveal weak ferromagnetic behavior in the doped sample at room temperature. Also, ferroelectric hysteresis loops were measured in a magnetic field of 1 T, applied perpendicular to the plane of the sample. Values of the remnant polarization as high as 7.19 and 7.69 μC/cm2 are obtained for 0 applied field and for 1 T, respectively; the value for the strength of the magnetoelectric coupling obtained is 6.9 %.
Chen, Ke; Ding, Jin; Zhang, Shuhao; Tang, Xuke; Yue, Yonghai; Guo, Lin
2017-03-28
Creating lightweight engineering materials combining high strength and great toughness remains a significant challenge. Despite possessing-enhanced strength and stiffness, bioinspired/polymeric materials usually suffer from clearly reduced extensibility and toughness when compared to corresponding bulk polymer materials. Herein, inspired by tiny amounts of various inorganic impurities for mechanical improvement in natural materials, we present a versatile and effective metal ion (M n+ )-based synergic cross-linking (MSC) strategy incorporating eight types of metal ions into material bulks that can drastically enhance the tensile strength (∼24.1-70.8%), toughness (∼18.6-110.1%), modulus (∼21.6-66.7%), and hardness (∼6.4-176.5%) of multiple types of pristine materials (from hydrophilic to hydrophobic and from unary to binary). More importantly, we also explore the primarily elastic-plastic deformation mechanism and brittle fracture behavior (indentation strain of >5%) of the synergic cross-linked graphene oxide (Syn-GO) paper by means of in situ nanoindentation SEM. The MSC strategy for mechanically enhanced integration can be readily attributed to the formation of the complicated metals-based cross-linking/complex networks in the interfaces and intermolecules between functional groups of materials and various metal ions that give rise to efficient energy dissipation. This work suggests a promising MSC strategy for designing advanced materials with outstanding mechanical properties by adding low amounts (<1.0 wt %) of synergic metal ions serving as synergic ion-bonding cross-linkers.
Compression and Instrumented Indentation Measurements on Biomimetic Polymers
2006-09-01
styrene- isoprene triblock copolymer gels are tested and compared using both macro-scale and micro-scale measurements. A methodology is presented to...at stress states and strain rates not available to bulk measurement equipment. In this work, a ballistic gelatin and two styrene- isoprene triblock
40 CFR 35.2116 - Collection system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2116 Collection system... adequately treat such collected wastewater and where the bulk (generally two-thirds) of the expected flow (flow from existing plus future residential users) will be from the resident population on October 18...
Local melting to design strong and plastically deformable bulk metallic glass composites
Qin, Yue-Sheng; Han, Xiao-Liang; Song, Kai-Kai; Tian, Yu-Hao; Peng, Chuan-Xiao; Wang, Li; Sun, Bao-An; Wang, Gang; Kaban, Ivan; Eckert, Jürgen
2017-01-01
Recently, CuZr-based bulk metallic glass (BMG) composites reinforced by the TRIP (transformation-induced plasticity) effect have been explored in attempt to accomplish an optimal of trade-off between strength and ductility. However, the design of such BMG composites with advanced mechanical properties still remains a big challenge for materials engineering. In this work, we proposed a technique of instantaneously and locally arc-melting BMG plate to artificially induce the precipitation of B2 crystals in the glassy matrix and then to tune mechanical properties. Through adjusting local melting process parameters (i.e. input powers, local melting positions, and distances between the electrode and amorphous plate), the size, volume fraction, and distribution of B2 crystals were well tailored and the corresponding formation mechanism was clearly clarified. The resultant BMG composites exhibit large compressive plasticity and high strength together with obvious work-hardening ability. This compelling approach could be of great significance for the steady development of metastable CuZr-based alloys with excellent mechanical properties. PMID:28211890
NASA Astrophysics Data System (ADS)
Discher, Dennis
2005-03-01
Degradable polymeric materials with hydrolysable backbones have attracted much attention because they break down to non-toxic metabolites. They are the key solutions to many environmental problems, and are particularly useful for various biomedical applications. Much work has been focused on degradable polymers and their co-polymers as bulk, or films and monolayers.^2 Only limited work has explored the degradable amphiphilic copolymer self-assemblies (spherical micelles, worm micelles and vesicles) in solutions, which are quite important for soft-material engineering. Mostly spherical micelles, and in rare cases, vesicles, have been reported made from copolymers with degradable polyester, typically polylactide or polycaprolactone, as the hydrophobic block, connected to biocompatible, stealthy poly (ethylene oxide) as hydrophilic block. Morphological change of such spherical micelles induced by degradation is subtle, and the degradation kinetics and mechanism in assemblies, which can be quite different from that in bulk or film, are not well understood. Here we will describe the phase transformations of worm micelles and vesicles as they degrade and also highlight how these polymeric self-assemblies interact with lipid membranes.
Topological-insulator-based terahertz modulator
Wang, X. B.; Cheng, L.; Wu, Y.; ...
2017-10-18
Three dimensional topological insulators, as a new phase of quantum matters, are characterized by an insulating gap in the bulk and a metallic state on the surface. Particularly, most of the topological insulators have narrow band gaps, and hence have promising applications in the area of terahertz optoelectronics. In this work, we experimentally demonstrate an electronically-tunable terahertz intensity modulator based on Bi 1:5Sb 0:5Te 1:8Se 1:2 single crystal, one of the most insulating topological insulators. A relative frequency-independent modulation depth of ~62% over a wide frequency range from 0.3 to 1.4 THz has been achieved at room temperature, by applyingmore » a bias current of 100 mA. The modulation in the low current regime can be further enhanced at low temperature. We propose that the extraordinarily large modulation is a consequence of thermally-activated carrier absorption in the semiconducting bulk states. Our work provides a new application of topological insulators for terahertz technology.« less
Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing
2014-06-01
In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.
NASA Technical Reports Server (NTRS)
Bott, R. H.; Summers, J. D.; Arnold, C. A.; Blankenship, C. P., Jr.; Taylor, L. T.
1988-01-01
The improved properties that have been demonstrated through thermal solution imidization in the case of polyimides and poly(imide-siloxane) segmented copolymers suggests significant potential for application of these new materials. Specifically, the enhancement in solubility, moisture reduction, and processability observed through this solution technique is quite dramatic. Previous work has shown that the presence of low amounts of siloxane does not detract significantly from the lap shear strength of these materials to titanium in the case of bulk thermal imidization synthesis. In addition, the siloxane incorporation results in the added advantage of resistance to hot, wet environments. This added durability is presumably due to the hydrophobic siloxane segments preventing the uptake of water at the critical interphase between the adhesive and the adherend. This paper discusses the extension of this work to the solution imidization synthesis technique recently developed in our laboratory. Results dealing with the absolute bond strengths as well as durability and failure surface analysis will be presented.
NASA Astrophysics Data System (ADS)
Senty, Tess; Joshi, Toyanath; Trappen, Robbyn; Zhou, Jinling; Chen, Song; Ferrari, Piero; Borisov, Pavel; Song, Xueyan; Holcomb, Mikel; Bristow, Alan; Cabrera, Alejandro; Lederman, David
2015-03-01
Growth of pure phase delafossite CuFeO2 thin films on Al2O3 (00.1) substrates by pulsed laser deposition was systematically investigated as function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO2 films demonstrated a phase transition at TC = 15K, which agrees with the first antiferromagnetic transition at 14K in the bulk CuFeO2. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis. This work was supported by a Research Challenge Grant from the West Virginia Higher Education Policy Commission (HEPC.dsr.12.29) and the Microelectronics Advanced Research Corporation (Contract #2013-MA-2382) at WVU. Work at PUC was supported by FONDECyT.
Exploring the mechanisms of DNA hybridization on a surface
NASA Astrophysics Data System (ADS)
Schmitt, Terry J.; Rogers, J. Brandon; Knotts, Thomas A.
2013-01-01
DNA microarrays are a potentially disruptive technology in the medical field, but their use in such settings is limited by poor reliability. Microarrays work on the principle of hybridization and can only be as reliable as this process is robust, yet little is known at the molecular level about how the surface affects the hybridization process. This work uses advanced molecular simulation techniques and an experimentally parameterized coarse-grain model to determine the mechanism by which hybridization occurs on surfaces. The results show that hybridization proceeds through a mechanism where the untethered (target) strand often flips orientation. For evenly lengthed strands, the surface stabilizes hybridization (compared to the bulk system) by reducing the barriers involved in the flipping event. For unevenly lengthed strands, the surface destabilizes hybridization compared to the bulk, but the degree of destabilization is dependent on the location of the matching sequence. Taken as a whole, the results offer an unprecedented view into the hybridization process on surfaces and provide some insights as to the poor reproducibility exhibited by microarrays.
Thrust chamber material technology program
NASA Technical Reports Server (NTRS)
Andrus, J. S.; Bordeau, R. G.
1989-01-01
This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.
Topological-insulator-based terahertz modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X. B.; Cheng, L.; Wu, Y.
Three dimensional topological insulators, as a new phase of quantum matters, are characterized by an insulating gap in the bulk and a metallic state on the surface. Particularly, most of the topological insulators have narrow band gaps, and hence have promising applications in the area of terahertz optoelectronics. In this work, we experimentally demonstrate an electronically-tunable terahertz intensity modulator based on Bi 1:5Sb 0:5Te 1:8Se 1:2 single crystal, one of the most insulating topological insulators. A relative frequency-independent modulation depth of ~62% over a wide frequency range from 0.3 to 1.4 THz has been achieved at room temperature, by applyingmore » a bias current of 100 mA. The modulation in the low current regime can be further enhanced at low temperature. We propose that the extraordinarily large modulation is a consequence of thermally-activated carrier absorption in the semiconducting bulk states. Our work provides a new application of topological insulators for terahertz technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shupeng; Zhang, Zhihui, E-mail: zhzh@jlu.edu.cn; Ren, Luquan
2014-06-15
In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principlemore » of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.« less