Science.gov

Sample records for bumps precision extraction

  1. Procedures For Making Precision CH Bumps On Capsules

    SciTech Connect

    Letts, S; Fearon, E; Buckley, S; Klingmann, J; Cook, B

    2004-11-10

    Recently we were asked to produce target capsules with bumps on the surface. The bumps were to test the effects of fill tubes in future targets. The bumps desired were to be Gaussian in shape and from 60 to 40 {micro}m in diameter and from 1 to 6 {micro}m high. The capsules had a nominal diameter of 500 {micro}m. The approach we used was to align a precision aperture to the capsule and coat through the aperture onto the capsule surface using plasma polymer coating. The bumps were characterized using optical microscopy, Wyko interferometry, and AFM sphere mapping.

  2. NSRL Extraction Bump Control in the Booster

    SciTech Connect

    Brennan,L.

    2008-10-01

    Due to inadequacies in the user interface of the booster orbit control system, a number of new tools were developed. The first priority was an accurate calculation of the winding currents given specific displacements at each extraction septa. Next, the physical limits of the power supplies ({+-}600 amps) needed to be taken into account. In light of this limit, a system is developed that indicates to the user what the allowed values of one bump parameter are once the other two have been specified. Finally, techniques are developed to account for the orbit behavior once power supplies are requested to exceed their {+-}600 amp limit. This includes a recalculation of bump parameters and a calculation of the amplitude of the residuals. Following this, possible areas for further development are outlined. These techniques were computationally developed in Mathematica and tested in the Methodical Accelerator Design (MAD) program before they were implemented into the control system. At the end, a description of the implementation of these techniques in a new interface is described. This includes a depiction of the appearance and functionality of the graphical user interface, a description of the input and output flow, and an outline of how each important calculation is performed.

  3. Apparatus for Precise Indium-Bump Bonding of Microchips

    NASA Technical Reports Server (NTRS)

    Wild, Larry; Mulder, Jerry; Alvarado, Nicholas

    2005-01-01

    An improved apparatus has been designed and built for use in precise positioning and pressing of a microchip onto a substrate (which could, optionally, be another microchip) for the purpose of indium-bump bonding. The apparatus (see figure) includes the following: A stereomicroscope, A stage for precise positioning of the microchip in rotation angle (theta) about the nominally vertical pressing axis and in translation along two nominally horizontal coordinate axes (x and y), and An actuator system that causes a bonding tip to press the microchip against the substrate with a precisely controlled force. In operation, the microscope and the stage are used to position the microchip under the bonding tip and to align the indium bumps on the chip and the substrate, then the actuator system is used to apply a prescribed bonding force for a prescribed time. The improved apparatus supplants a partly similar prior apparatus that operated with less precision and repeatability, producing inconsistent and unreliable bonds. Results of the use of the prior apparatus included broken microchips, uneven bonds, and bonds characterized, variously, by overcompression or undercompression. In that apparatus, the bonding force was generated and controlled by use of a micrometer head positioned over the center of a spring-loaded scale, and the force was applied to the microchip via the scale, which was equipped for digital readout of the force. The inconsistency of results was attributed to the following causes: It was not possible to control the bonding force with sufficient precision or repeatability. Particularly troublesome was the inability to control the force at levels less than the weight of 150 g. Excessive compliance in the spring-loaded scale, combined with deviations from parallelarity of the substrate and bonding-tip surfaces, gave rise to nonuniformity in the pressure applied to the microchip, thereby generating excessive stresses and deformations in the microchip. In the

  4. Controlling coal mine bumps

    SciTech Connect

    Goode, C.A.; Campoli, A.A.; Zona, A.

    1984-10-01

    A coal bump or burst is defined as the instantaneous violent failure of a coal pillar(s) from overstress. The causes of coal bumps are not well understood, even though minor disturbances are a daily occurrence in bump prone seams. Lack of knowledge about coal bumps coupled with questionable mining practices can create disastrous consequences. Much of the early work on bumps was documented by US Bureau of Mines (BOM) researchers and operators of mines prone to bumps. In 1954 the BOM published Bulletin 535, This study compares recent events with those findings and suggests measures that can be taken to minimize the potential occurrence and severity of coal bumps.

  5. Tank bump consequence analysis

    SciTech Connect

    Board, B.D.

    1996-08-07

    The purpose of this document is to derive radiological and toxicological consequences for a tank bump event based on analysis performed using the GOTH computer model, to estimate the mitigative effect of pump and sluice pit cover blocks, and to discuss preventative measures.

  6. Tank bump consequence analysis

    SciTech Connect

    Board, B.D.

    1996-09-01

    The purpose of this document is to derive radiological and toxicological consequences for a tank bump event based on analysis performed using the GOTH computer model, to estimate the mitigative effect of pump and sluice pit cover blocks, and to discuss preventative measures.

  7. Creep characterization of solder bumps using nanoindentation

    NASA Astrophysics Data System (ADS)

    Du, Yingjie; Liu, Xiao Hu; Fu, Boshen; Shaw, Thomas M.; Lu, Minhua; Wassick, Thomas A.; Bonilla, Griselda; Lu, Hongbing

    2017-08-01

    Current nanoindentation techniques for the measurement of creep properties are applicable to viscoplastic materials with negligible elastic deformations. A new technique for characterization of creep behavior is needed for situations where the elastic deformation plays a significant role. In this paper, the effect of elastic deformation on the determination of creep parameters using nanoindentation with a self-similar nanoindenter tip is evaluated using finite element analysis (FEA). It is found that the creep exponent measured from nanoindentation without taking into account of the contribution of elastic deformation tends to be higher than the actual value. An effective correction method is developed to consider the elastic deformation in the calculation of creep parameters. FEA shows that this method provides accurate creep exponent. The creep parameters, namely the creep exponent and activation energy, were measured for three types of reflowed solder bumps using the nanoindentation method. The measured parameters were verified using FEA. The results show that the new correction approach allows extraction of creep parameters with precision from nanoindentation data.

  8. Creep characterization of solder bumps using nanoindentation

    NASA Astrophysics Data System (ADS)

    Du, Yingjie; Liu, Xiao Hu; Fu, Boshen; Shaw, Thomas M.; Lu, Minhua; Wassick, Thomas A.; Bonilla, Griselda; Lu, Hongbing

    2016-10-01

    Current nanoindentation techniques for the measurement of creep properties are applicable to viscoplastic materials with negligible elastic deformations. A new technique for characterization of creep behavior is needed for situations where the elastic deformation plays a significant role. In this paper, the effect of elastic deformation on the determination of creep parameters using nanoindentation with a self-similar nanoindenter tip is evaluated using finite element analysis (FEA). It is found that the creep exponent measured from nanoindentation without taking into account of the contribution of elastic deformation tends to be higher than the actual value. An effective correction method is developed to consider the elastic deformation in the calculation of creep parameters. FEA shows that this method provides accurate creep exponent. The creep parameters, namely the creep exponent and activation energy, were measured for three types of reflowed solder bumps using the nanoindentation method. The measured parameters were verified using FEA. The results show that the new correction approach allows extraction of creep parameters with precision from nanoindentation data.

  9. Optimization of Indium Bump Morphology for Improved Flip Chip Devices

    NASA Technical Reports Server (NTRS)

    Jones, Todd J.; Nikzad, Shouleh; Cunningham, Thomas J.; Blazejewski, Edward; Dickie, Matthew R.; Hoenk, Michael E.; Greer, Harold F.

    2011-01-01

    Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place.

  10. Precision of the CAESAR scan-extracted measurements.

    PubMed

    Robinette, Kathleen M; Daanen, Hein A M

    2006-05-01

    Three-dimensional (3D) body scanners are increasingly used to derive 1D body dimensions from 3D whole body scans for instance, as input for clothing grading systems to make made-to-measure clothing or for width and depth dimensions of a seated workstation. In this study, the precision of the scanner-derived 1D dimensions from the CAESAR survey, a multinational anthropometric survey, was investigated. Two combinations of scanning teams with 3D whole body scanners were compared, one called the US Team and the other the Dutch Team. Twenty subjects were measured three times by one scanner and one team, and three times by the other combination. The subjects were marked prior to scanning using small dots, and the linear distances between the dots were calculated after processing the scans. The mean absolute difference (MAD) of the repetitions was calculated and this was compared to reported acceptable errors in manual measurements from the US Army's ANSUR survey when similar measurements were available. In addition, the coefficient of variation (CV) was calculated for all measurements. The results indicate that the CAESAR scan-extracted measurements are highly reproducible; for most measures the MAD is less than 5mm. In addition, more than 93% of the MAD values for CAESAR are significantly smaller than the ANSUR survey acceptable errors. Therefore, it is concluded that the type of scan-extracted measures used in CAESAR are as good as or better than comparable manual measurements. Scan-extracted measurements that do not use markers or are not straight-line distances are not represented here and additional studies would be needed to verify their precision.

  11. Symbolic dynamics of magnetic bumps

    NASA Astrophysics Data System (ADS)

    Knauf, Andreas; Seri, Marcello

    2017-07-01

    For n convex magnetic bumps in the plane, whose boundary has a curvature somewhat smaller than the absolute value of the constant magnetic field inside the bump, we construct a complete symbolic dynamics of a classical particle moving with speed one.

  12. Study of bump bonding technology

    SciTech Connect

    Selcuk Cihangir et al.

    2003-10-17

    Pixel detectors proposed for the new generation of hadron collider experiments will use bump-bonding technology based on either indium or Pb/Sn solder to connect the front-end readout chips to the silicon pixel sensors. We have previously reported large-scale tests of the yield using both indium and Pb/Sn solder bump [1]. The conclusion is that both seem to be viable for pixel detectors. We have also carried out studies of various effects (e.g. storage over long period, effect of heating and cooling, and radiation) on both types of bump bonds using daisy-chained parts on a small scale [2], [3]. Overall, these tests showed little changes in the integrity of the bump connections. Nevertheless, questions still remain on the long-term reliability of the bumps due to thermal cycle effects, attachment to a substrate with a different coefficient of thermal expansion (CTE), and radiation.

  13. The bumps on the hippocampus

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Ver Hoef, Lawrence

    2016-03-01

    The hippocampus has been the focus of more imaging research than any other subcortical structure in the human brain. However a feature that has been almost universally overlooked are the bumpy ridges on the inferior aspect of the hippocampus, which we refer to as hippocampal dentation. These bumps arise from folds in the CA1 layer of Ammon's horn. Similar to the folding of the cerebral cortex, hippocampal dentation allows for greater surface area in a confined space. However, while quantitative studies of radiologic brain images have been advancing for decades, examining numerous approaches to hippocampal segmentation and morphology analysis, virtually all published 3D renderings of the hippocampus show the under surface to be quite smooth or mildly irregular; we have rarely seen the characteristic bumpy structure in the reconstructed 3D scene, one exception being the 9.4T postmortem study. This is presumably due to the fact that, based on our experience with high resolution images, there is a dramatic degree of variability in hippocampal dentation between individuals from very smooth to highly dentated. An apparent question is, does this indicate that this specific morphological signature can only be captured using expensive ultra-high field techniques? Or, is such information buried in the data we commonly acquire, awaiting a computation technique that can extract and render it clearly? In this study, we propose a super-resolution technique that captures the fine scale morphometric features of the hippocampus based on common T1-weighted 3T MR images.

  14. Fabrication Of Surface Bumps On A Capsule To Simulate Fill Tube Mass Defects

    SciTech Connect

    Letts, S; Fearon, E; Buckley, S; King, C; Cook, R

    2005-06-30

    Precision single bumps were deposited on the surface of ICF capsules to simulate the hydrodynamic instability caused by a fill tube. The bump is fabricated by placing an aperture mask on the capsule and coating plasma polymer through the aperture. The apparatus and procedures used to align and hold the shell for coating will be described. Bumps were made having a width of about 50 {micro}m and from 1 to 10 {micro}m in height. The bumps were characterized using interference microscopy and AFM.

  15. Beam Based Calibration of Slow Orbit Bump in the NSLS Booster

    SciTech Connect

    Yang, X.; Shaftan, T.; Rose, J.

    2009-05-04

    The orbit bumps in NSLS booster are used to move the beam orbit within 2mm of the extraction septum aperture on a time scale of millisecond at extraction in order to reduce the requirement on the amplitude of the fast extraction kicker. This may cause charge losses since before extraction, the beam stays on the distorted orbit for thousands of revolutions. In order to find the optimal orbit bump setpoint, which brings the maximum distortion at the extraction position and minimum distortions everywhere else, we developed an extraction model and performed an experiment to validate it. Afterwards, the model was applied to optimize the extraction process.

  16. Using active thermography and modified SVM for intelligent diagnosis of solder bumps

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wei, Li; Nie, Lei; Su, Lei; Lu, Xiangning

    2015-09-01

    Solder bump technology has been used extensively in microelectronic packaging. But defect inspection becomes increasingly difficult due to the decrease of solder bumps in dimension and pitch. To overcome the shortages of traditional methods, we have developed an intelligent system using the active thermography for defects inspection of the solder bumps. A modified support vector machine (M-SVM) was investigated to solve the problem of small sample size in solder bumps classification. The chip SFA1 and SFA2 were chosen as the test vehicles. Captured thermal images were preprocessed using the improved wiener filter and moving average technique to remove the peak noise. The principal component analysis (PCA) algorithm was then adopted to reconstruct the thermal image, in which the hot spots were segmented. The statistical features corresponding to every solder bump were extracted and input into the M-SVM for solder bumps classification. The defective bumps w distinguished from the good bumps, which proves that the intelligent system using the modified SVM is effective for defects inspection in microelectronic packages.

  17. Condensation on Slippery Asymmetric Bumps

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    2016-11-01

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  18. Condensation on Slippery Asymmetric Bumps

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  19. Process for Patterning Indium for Bump Bonding

    NASA Technical Reports Server (NTRS)

    Denis, Kevin

    2012-01-01

    An innovation was created for the Cosmology Large Angular Scale Surveyor for integration of low-temperature detector chips with a silicon backshort and a silicon photonic choke through flipchip bonding. Indium bumps are typically patterned using liftoff processes, which require thick resist. In some applications, it is necessary to locate the bumps close to high-aspect-ratio structures such as wafer through-holes. In those cases, liftoff processes are challenging, and require complicated and time-consuming spray coating technology if the high-aspect-ratio structures are delineated prior to the indium bump process. Alternatively, processing the indium bumps first is limited by compatibility of the indium with subsequent processing. The present invention allows for locating bumps arbitrarily close to multiple-level high-aspect-ratio structures, and for indium bumps to be formed without liftoff resist. The process uses the poor step coverage of indium deposited on a silicon wafer that has been previously etched to delineate the location of the indium bumps. The silicon pattern can be processed through standard lithography prior to adding the high-aspect-ratio structures. Typically, high-aspectratio structures require a thick resist layer so this layer can easily cover the silicon topography. For multiple levels of topography, the silicon can be easily conformally coated through standard processes. A blanket layer of indium is then deposited onto the full wafer; bump bonding only occurs at the high points of the topography.

  20. Condensation on slippery asymmetric bumps.

    PubMed

    Park, Kyoo-Chul; Kim, Philseok; Grinthal, Alison; He, Neil; Fox, David; Weaver, James C; Aizenberg, Joanna

    2016-03-03

    Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach--based on principles derived from Namib desert beetles, cacti, and pitcher plants--that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be

  1. Condensation on slippery asymmetric bumps

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-Chul; Kim, Philseok; Grinthal, Alison; He, Neil; Fox, David; Weaver, James C.; Aizenberg, Joanna

    2016-03-01

    Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach—based on principles derived from Namib desert beetles, cacti, and pitcher plants—that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle’s bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be

  2. High-precision simulation of slow-extraction spill from a hadrontherapy synchrotron

    NASA Astrophysics Data System (ADS)

    Méot, F.

    2008-10-01

    This report reviews the reconstruction, by means of multiturn, stepwise ray-tracing, of a slow-extracted particle beam from a synchrotron. The goal is to show that very precise descriptions of the transverse beam densities and the slow-spill intensity, which are crucial parameters in hadrontherapy, can be obtained in this way.

  3. Precision and Selection of Extraction Methods of Aphelenchid Nematodes from Maritime Pine Wood, Pinus pinaster L.

    PubMed Central

    Penas, Ana C.; DIias, Luis S.; Mota, Manuel M.

    2002-01-01

    Four extraction methods for Bursaphelenchus xylophilus and other aphelenchid nematodes were compared on the number of nematodes per gram recovered, and on the precision of the mean number of nematodes per gram of pine wood. The number of nematodes per gram recovered by each method, in addition to its inherent shortcomings when the actual number of nematodes is unknown, failed to provide clear rankings among the extraction methods. The precision of the mean number of nematodes per gram did provide clear guidelines for selection. Selection of the method may be based on prior knowledge about the range of nematodes to be expected or the independence of precision from the mean number of nematodes. PMID:19265909

  4. Single Bump on a Shell Fabrication

    SciTech Connect

    Cook, R C

    2004-02-17

    At this morning's fill-tube surrogate working group meeting we tentatively decided on a single bump on a shell for the single March shot. This memo shows the calculations needed as background to fabricate such a bump by depositing an appropriate sized drop of polystyrene solution (i.e. the glue) to a shell as discussed in this mornings meeting. While writing this I had another idea for fabricating a bump, which I quickly outlined at the end of this memo. I am distributing this calculation primarily so that group members can quickly check the calculations and ideas and if without error to provide a framework for initial fabrication efforts.

  5. Bumps in Small-World Networks

    PubMed Central

    Laing, Carlo R.

    2016-01-01

    We consider a network of coupled excitatory and inhibitory theta neurons which is capable of supporting stable spatially-localized “bump” solutions. We randomly add long-range and simultaneously remove short-range connections within the network to form a small-world network and investigate the effects of this rewiring on the existence and stability of the bump solution. We consider two limits in which continuum equations can be derived; bump solutions are fixed points of these equations. We can thus use standard numerical bifurcation analysis to determine the stability of these bumps and to follow them as parameters (such as rewiring probabilities) are varied. We find that under some rewiring schemes bumps are quite robust, whereas in other schemes they can become unstable via Hopf bifurcation or even be destroyed in saddle-node bifurcations. PMID:27378897

  6. Computer tomography-based precision inspection and shape extraction using facet model

    NASA Astrophysics Data System (ADS)

    Wang, Wenjian; Wu, Xiaogu; Wee, William G.

    2000-01-01

    We apply the facet mode to extract edge and surface information from computed tomography (CT) images for precision inspection and shape extraction. First we explore the application of the facet model in a 3D filter design. A 3D directional-derivative-based surface detector is developed to extract surface points from the CT images. Subpixel accuracy is achieved by locating the zeros of the 3D second directional derivative along the estimated gradient direction. Then we develop a precision inspection system to take turbine blade wall width measurements from CT images and compare them to the corresponding optical measurements. Least mean squares methods are used to enhance prediction accuracy with the adaptive property of increasing accuracy when additional variable data are available. The system accuracy is within 3 mil. Unverified measurements are adjusted based on the verified measurements, and experiments show increasing accuracy of the adjusted measurements as additional verified measurements are available. Also, quantitative analysis of a trapezoid-shaped workpiece is performed. The results indicate that the CT system performance is affected by the structure and size of a workpiece. We also present an algorithm to extract 3D shapes from detected surface points interactively and use them for visual inspection.

  7. Electromagnetic Scattering from Rectangular Cylinders with Various Wedge Cavities and Bumps

    NASA Astrophysics Data System (ADS)

    Ohnuki, Shinichiro; Ohsawa, Ryuichi; Yamasaki, Tsuneki

    Radar cross sections of polygonal cylinders are investigated by using a kind of mode matching methods. Applying two types of novel field-decomposition techniques, electromagnetic scattering analysis can be performed very precisely. We will discuss computational accuracy of our proposed method and the proper choice of field-decomposition techniques for a rectangular cylinder with various shapes of wedge cavities and bumps.

  8. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  9. Good Teaching: The Goose Bump Response.

    ERIC Educational Resources Information Center

    Ricciotti, Joseph A.

    1988-01-01

    Teachers who can trigger the "goose bump" response have probably mastered the fine art of teaching. Such teachers are enthusiastic, excited about their subject matter, and genuinely care about their students. When "artistic" teachers manifest glaring teaching deficiencies, the sensitive principal overlooks these flaws or handles them without…

  10. Good Teaching: The Goose Bump Response.

    ERIC Educational Resources Information Center

    Ricciotti, Joseph A.

    1988-01-01

    Teachers who can trigger the "goose bump" response have probably mastered the fine art of teaching. Such teachers are enthusiastic, excited about their subject matter, and genuinely care about their students. When "artistic" teachers manifest glaring teaching deficiencies, the sensitive principal overlooks these flaws or handles them without…

  11. Defect Inspection of Flip Chip Solder Bumps Using an Ultrasonic Transducer

    PubMed Central

    Su, Lei; Shi, Tielin; Xu, Zhensong; Lu, Xiangning; Liao, Guanglan

    2013-01-01

    Surface mount technology has spurred a rapid decrease in the size of electronic packages, where solder bump inspection of surface mount packages is crucial in the electronics manufacturing industry. In this study we demonstrate the feasibility of using a 230 MHz ultrasonic transducer for nondestructive flip chip testing. The reflected time domain signal was captured when the transducer scanning the flip chip, and the image of the flip chip was generated by scanning acoustic microscopy. Normalized cross-correlation was used to locate the center of solder bumps for segmenting the flip chip image. Then five features were extracted from the signals and images. The support vector machine was adopted to process the five features for classification and recognition. The results show the feasibility of this approach with high recognition rate, proving that defect inspection of flip chip solder bumps using the ultrasonic transducer has high potential in microelectronics packaging.

  12. THE ACS LCID PROJECT. IV. DETECTION OF THE RED GIANT BRANCH BUMP IN ISOLATED GALAXIES OF THE LOCAL GROUP

    SciTech Connect

    Monelli, M.; Hidalgo, S. L; Aparicio, A.; Gallart, C.; Cassisi, S.; Bernard, E. J.; Skillman, E. D. E-mail: carme@iac.e E-mail: shidalgo@iac.e E-mail: ejb@roe.ac.u

    2010-08-01

    We report the detection and analysis of the red giant branch (RGB) luminosity function bump in a sample of isolated dwarf galaxies in the Local Group. We have designed a new analysis approach comparing the observed color-magnitude diagrams (CMDs) with theoretical best-fit CMDs derived from precise estimates of the star formation histories of each galaxy. This analysis is based on studying the difference between the V magnitude of the RGB bump and the horizontal branch at the level of the RR Lyrae instability strip ({Delta}V {sup bump}{sub HB}) and we discuss here a technique for reliably measuring this quantity in complex stellar systems. By using this approach, we find that the difference between the observed and predicted values of {Delta}V {sup bump}{sub HB} is +0.13 {+-} 0.14 mag. This is smaller, by about a factor of 2, than the well-known discrepancy between theory and observation at low metallicity commonly derived for Galactic globular clusters (GCs). This result is confirmed by a comparison between the adopted theoretical framework and empirical estimates of the {Delta}V {sup bump}{sub HB} parameter for both a large database of Galactic GCs and for four other dwarf spheroidal galaxies for which this estimate is available in the literature. We also investigate the strength of the RGB bump feature (R{sub bump}), and find very good agreement between the observed and theoretically predicted R{sub bump} values. This agreement supports the reliability of the evolutionary lifetimes predicted by theoretical models of the evolution of low-mass stars.

  13. Rapid and simple UPLC-MS/MS method for precise phytochelatin quantification in alga extracts.

    PubMed

    Bräutigam, Anja; Wesenberg, Dirk; Preud'homme, Hugues; Schaumlöffel, Dirk

    2010-09-01

    Quantitative phytochelatin (PC) analysis is, due to oxidation sensitivity of the PCs, matrix effects, and time consuming sample preparation, still a challenging analytical task. In this study, a rapid, simple, and sensitive method for precise determination of native PCs in crude extracts of the green alga Chlamydomonas reinhardtii was developed. Algae were exposed 48 h to 70 μM Cd. Coupling of ultra performance liquid chromatography and electrospray ionization tandem mass spectrometry with multi-reaction mode transitions for detection permitted the required short-time, high-resolution separation and detection specificity. Thus, under optimized chromatographic conditions, 10 thiol peptides were baseline-separated within 7 min. Relative detection limits in the nanomolar range in microliter sample volumes were achieved (corresponding to absolute detection limits at femtomole level). Next to glutathione (GSH), the most abundant cadmium-induced PCs in C. reinhardtii, namely CysGSH, PC(2), PC(3), CysPC(2), and CysPC(3), were quantified with high reproducibility at concentrations between 15 and 198 nmol g(-1) fresh weight. The biological variation of PC synthesis of nine independently grown alga cultures was determined to be on average 13.7%.

  14. Structure of Three-Dimensional Separated Flow on Symmetric Bumps

    DTIC Science & Technology

    2005-11-30

    7300 and of thickness 6 over 2 circular based axisymmetric bumps of height H = 6 and 26 and one rectangular based symmetric bump of H = 26. LDV data...8217 v’) Re,, Reynolds number based on bump height, II / 1 , Reo, Momentum thickness Reynolds number. U,, 0 / m’ S Skewness, / (u )’ 1/S Reynolds stresses...analysis and the critical point saddle, node and focus theory which arc based on flow visualization ([Delery. 1992; Hunt et al.. 1978: Tobak and Peake

  15. A novel method for direct solder bump pull testing using lead-free solders

    NASA Astrophysics Data System (ADS)

    Turner, Gregory Alan

    This thesis focuses on the design, fabrication, and evaluation of a new method for testing the adhesion strength of lead-free solders, named the Isotraction Bump Pull method (IBP). In order to develop a direct solder joint-strength testing method that did not require customization for different solder types, bump sizes, specific equipment, or trial-and-error, a combination of two widely used and accepted standards was created. First, solder bumps were made from three types of lead free solder were generated on untreated copper PCB substrates using an in-house fabricated solder bump-on-demand generator, Following this, the newly developed method made use of a polymer epoxy to encapsulate the solder bumps that could then be tested under tension using a high precision universal vertical load machine. The tests produced repeatable and predictable results for each of the three alloys tested that were in agreement with the relative behavior of the same alloys using other testing methods in the literature. The median peak stress at failure for the three solders tested were 2020.52 psi, 940.57 psi, and 2781.0 psi, and were within one standard deviation of the of all data collected for each solder. The assumptions in this work that brittle fracture occurred through the Intermetallic Compound layer (IMC) were validated with the use of Energy-Dispersive X-Ray Spectrometry and high magnification of the fractured surface of both newly exposed sides of the test specimens. Following this, an examination of the process to apply the results from the tensile tests into standard material science equations for the fracture of the systems was performed..

  16. Cascading reminiscence bumps in popular music.

    PubMed

    Krumhansl, Carol Lynne; Zupnick, Justin Adam

    2013-10-01

    Autobiographical memories are disproportionately recalled for events in late adolescence and early adulthood, a phenomenon called the reminiscence bump. Previous studies on music have found autobiographical memories and life-long preferences for music from this period. In the present study, we probed young adults' personal memories associated with top hits over 5-and-a-half decades, as well as the context of their memories and their recognition of, preference for, quality judgments of, and emotional reactions to that music. All these measures showed the typical increase for music released during the two decades of their lives. Unexpectedly, we found that the same measures peaked for the music of participants' parents' generation. This finding points to the impact of music in childhood and suggests that these results reflect the prevalence of music in the home environment. An earlier peak occurred for 1960s music, which may be explained by its quality or by its transmission through two generations. We refer to this pattern of musical cultural transmission over generations as cascading reminiscence bumps.

  17. The Physics of Bump Drafting in Car Racing

    ERIC Educational Resources Information Center

    Fiolhais, Miguel C. N.; Amor dos Santos, Susana

    2014-01-01

    The technique of bump drafting, also known as two-car drafting in motorsports, is analysed in the framework of Newtonian mechanics and simple aerodynamic drag forces. As an apparent unnatural effect that often pleases the enthusiasts of car racing, bump drafting provides a unique pedagogical opportunity for students to gain insights into the…

  18. Tank Bump Accident Potential and Consequences During Waste Retrieval

    SciTech Connect

    BRATZEL, D.R.

    2000-09-27

    This report provides an evaluation of Hanford tank bump accident potential and consequences during waste retrieval operations. The purpose of this report is to consider the best available new information to support recommendations for safety controls. A new tank bump accident analysis for safe storage (Epstein et al. 2000) is extended for this purpose. A tank bump is a postulated event in which gases, consisting mostly of water vapor, are suddenly emitted from the waste and cause tank headspace pressurization. Tank bump scenarios, physical models, and frequency and consequence methods are fully described in Epstein et al. (2000). The analysis scope is waste retrieval from double-shell tanks (DSTs) including operation of equipment such as mixer pumps and air lift circulators. The analysis considers physical mechanisms for tank bump to formulate criteria for bump potential during retrieval, application of the criteria to the DSTs, evaluation of bump frequency, and consequence analysis of a bump. The result of the consequence analysis is the mass of waste released from tanks; radiological dose is calculated using standard methods (Cowley et al. 2000).

  19. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  20. A fundamental experimental approach for optimal design of speed bumps.

    PubMed

    Lav, A Hakan; Bilgin, Ertugrul; Lav, A Hilmi

    2017-06-02

    Speed bumps and humps are utilized as means of calming traffic and controlling vehicular speed. Needless to say, bumps and humps of large dimensions in length and width force drivers to significantly reduce their driving speeds so as to avoid significant vehicle vertical acceleration. It is thus that this experimental study was conducted with the aim of determining a speed bump design that performs optimally when leading drivers to reduce the speed of their vehicles to safe levels. The first step of the investigation starts off by considering the following question: "What is the optimal design of a speed bump that will - at the same time - reduce the velocity of an incoming vehicle significantly and to a speed that resulting vertical acceleration does not jeopardize road safety? The experiment has been designed to study the dependent variables and collect data in order to propose an optimal design for a speed bump. To achieve this, a scaled model of 1:6 to real life was created to simulate the interaction between a car wheel and a speed bump. During the course of the experiment, a wheel was accelerated down an inclined plane onto a horizontal plane of motion where it was allowed to collide with a speed bump. The speed of the wheel and the vertical acceleration at the speed bump were captured by means of a Vernier Motion Detector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bump Bonding Using Metal-Coated Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Bump bonding hybridization techniques use arrays of indium bumps to electrically and mechanically join two chips together. Surface-tension issues limit bump sizes to roughly as wide as they are high. Pitches are limited to 50 microns with bumps only 8-14 microns high on each wafer. A new process uses oriented carbon nanotubes (CNTs) with a metal (indium) in a wicking process using capillary actions to increase the aspect ratio and pitch density of the connections for bump bonding hybridizations. It merges the properties of the CNTs and the metal bumps, providing enhanced material performance parameters. By merging the bumps with narrow and long CNTs oriented in the vertical direction, higher aspect ratios can be obtained if the metal can be made to wick. Possible aspect ratios increase from 1:1 to 20:1 for most applications, and to 100:1 for some applications. Possible pitch density increases of a factor of 10 are possible. Standard capillary theory would not normally allow indium or most other metals to be drawn into the oriented CNTs, because they are non-wetting. However, capillary action can be induced through the ability to fabricate oriented CNT bundles to desired spacings, and the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. This hybridization of two technologies (indium bumps and CNTs) may also provide for some additional benefits such as improved thermal management and possible current density increases.

  2. The Physics of Bump Drafting in Car Racing

    ERIC Educational Resources Information Center

    Fiolhais, Miguel C. N.; Amor dos Santos, Susana

    2014-01-01

    The technique of bump drafting, also known as two-car drafting in motorsports, is analysed in the framework of Newtonian mechanics and simple aerodynamic drag forces. As an apparent unnatural effect that often pleases the enthusiasts of car racing, bump drafting provides a unique pedagogical opportunity for students to gain insights into the…

  3. Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron

    SciTech Connect

    Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.; Singh, Gurnam

    2013-08-15

    Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle of the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.

  4. Equations of state and bump Cepheids

    NASA Astrophysics Data System (ADS)

    Kanbur, Shashi

    The paper presents results of calculations investigating the consequences of a number of recent advances in atomic physics for stellar pulsations, i.e., the Hummer-Mihalas-Dappen (HMD) equation of state and opacities generated with new atomic data (Seaton, 1987). The sensitivity of theoretical linear nonadiabatic (LNA) bump Cepheid calculations to the equation used in such calculations is examined. LNA periods, growth rates, and period ratios for a specified model grid were calculated using both the HMD and the Saha equations of state. The model grid is taken from Simon and Davis (1983), who used the Los Alamos equastion of state in their calculations. A comparison in terms of theoretical linear pulsation results can thus be made between three equations of state.

  5. Bump in the blue axion isocurvature spectrum

    NASA Astrophysics Data System (ADS)

    Chung, Daniel J. H.; Upadhye, Amol

    2017-01-01

    Blue axion isocurvature perturbations are both theoretically well motivated and interesting from a detectability perspective. These power spectra generically have a break from the blue region to a flat region. Previous investigations of the power spectra were analytic, which left a gap in the predicted spectrum in the break region due to the nonapplicability of the used analytic techniques. We therefore compute the isocurvature spectrum numerically for an explicit supersymmetric axion model. We find a bump that enhances the isocurvature signal for this class of scenarios. A fitting function of three parameters is constructed that fits the spectrum well for the particular axion model we study. This fitting function should be useful for blue isocurvature signal hunting in data and making experimental sensitivity forecasts.

  6. A precise study on effects that trigger alkaline hemicellulose extraction efficiency.

    PubMed

    Hutterer, Christian; Schild, Gabriele; Potthast, Antje

    2016-08-01

    The conversion of paper-grade pulps into dissolving pulps requires efficient strategies and process steps to remove low-molecular noncellulosic macromolecules generally known as hemicelluloses. Current strategies include alkaline extractions and enzymatic treatments. This study focused on the evaluation of extraction efficiencies in alkaline extractions of three economically interesting hardwood species: beech (Fagus sylvatica), birch (Betula papyrifera), and eucalyptus (Eucalyptus globulus). Substrate pulps were subjected to alkaline treatments at different temperatures and alkalinities using white liquor as the alkali source, followed by analyses of both pulps and hemicellulose-containing extraction lyes. The extracted hardwood xylans have strong potential as an ingredient in the food and pharmaceutical industries. Subsequent analyses revealed strong dependencies of the extraction efficiencies and molar mass distributions of hemicelluloses on the process variables of temperature and effective alkalinity. The hemicellulose content of the initial pulps, the hardwood species, and the type of applied base played minor roles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Improved Precision of iTRAQ and TMT Quantification by an Axial Extraction Field in an Orbitrap HCD Cell

    PubMed Central

    2011-01-01

    Improving analytical precision is a major goal in quantitative differential proteomics as high precision ensures low numbers of outliers, a source of false positives with regard to quantification. In addition, higher precision increases statistical power, i.e., the probability to detect significant differences. With chemical labeling using isobaric tags for relative and absolute quantitation (iTRAQ) or tandem mass tag (TMT) reagents, quantification is based on the extraction of reporter ions from tandem mass spectrometry (MS/MS) spectra. We compared the performance of two versions of the LTQ Orbitrap higher energy collisional dissociation (HCD) cell with and without an axial electric field with regard to reporter ion quantification. The HCD cell with the axial electric field was designed to push fragment ions into the C-trap and this version is mounted in current Orbitrap XL ETD and Orbitrap Velos instruments. Our goal was to evaluate whether the purported improvement in ion transmission had a measurable impact on the precision of MS/MS based quantification using peptide labeling with isobaric tags. We show that the axial electric field led to an increased percentage of HCD spectra in which the complete set of reporter ions was detected and, even more important, to a reduction in overall variance, i.e., improved analytical precision of the acquired data. Notably, adequate precision of HCD-based quantification was maintained even for low precursor ion intensities of a complex biological sample. These findings may help researchers in their design of quantitative proteomics studies using isobaric tags and establish HCD-based quantification on the LTQ Orbitrap as a highly precise approach in quantitative proteomics. PMID:21275378

  8. Improved precision of iTRAQ and TMT quantification by an axial extraction field in an Orbitrap HCD cell.

    PubMed

    Pichler, Peter; Köcher, Thomas; Holzmann, Johann; Möhring, Thomas; Ammerer, Gustav; Mechtler, Karl

    2011-02-15

    Improving analytical precision is a major goal in quantitative differential proteomics as high precision ensures low numbers of outliers, a source of false positives with regard to quantification. In addition, higher precision increases statistical power, i.e., the probability to detect significant differences. With chemical labeling using isobaric tags for relative and absolute quantitation (iTRAQ) or tandem mass tag (TMT) reagents, quantification is based on the extraction of reporter ions from tandem mass spectrometry (MS/MS) spectra. We compared the performance of two versions of the LTQ Orbitrap higher energy collisional dissociation (HCD) cell with and without an axial electric field with regard to reporter ion quantification. The HCD cell with the axial electric field was designed to push fragment ions into the C-trap and this version is mounted in current Orbitrap XL ETD and Orbitrap Velos instruments. Our goal was to evaluate whether the purported improvement in ion transmission had a measurable impact on the precision of MS/MS based quantification using peptide labeling with isobaric tags. We show that the axial electric field led to an increased percentage of HCD spectra in which the complete set of reporter ions was detected and, even more important, to a reduction in overall variance, i.e., improved analytical precision of the acquired data. Notably, adequate precision of HCD-based quantification was maintained even for low precursor ion intensities of a complex biological sample. These findings may help researchers in their design of quantitative proteomics studies using isobaric tags and establish HCD-based quantification on the LTQ Orbitrap as a highly precise approach in quantitative proteomics.

  9. How bumps on whale flippers delay stall: an aerodynamic model.

    PubMed

    van Nierop, Ernst A; Alben, Silas; Brenner, Michael P

    2008-02-08

    Wind tunnel experiments have shown that bumps on the leading edge of model humpback whale flippers cause them to "stall" (i.e., lose lift dramatically) more gradually and at a higher angle of attack. Here we develop an aerodynamic model which explains the observed increase in stall angle. The model predicts that as the amplitude of the bumps is increased, the lift curve flattens out, leading to potentially desirable control properties. We find that stall delay is insensitive to the wavelength of the bumps, in accordance with experimental observations.

  10. Low-cost bump bonding activities at CERN

    NASA Astrophysics Data System (ADS)

    Vähänen, S.; Tick, T.; Campbell, M.

    2010-11-01

    Conventional bumping processes used in the fabrication of hybrid pixel detectors for High Energy Physics (HEP) experiments use electroplating for Under Bump Metallization (UBM) and solder bump deposition. This process is laborious, involves time consuming photolithography and can only be performed using whole wafers. Electroplating has been found to be expensive when used for the low volumes which are typical of HEP experiments. In the low-cost bump bonding development work, electroless deposition technology of UBM is studied as an alternative to the electroplating process in the bump size / pitch window beginning from 20 μm / 50 μm. Electroless UBM deposition used in combination with solder transfer techniques has the potential to significantly lower the cost of wafer bumping without requiring increased wafer volumes. A test vehicle design of sensor and readout chip, having daisy chains and Kelvin bump structures, was created to characterize the flip chip process with electroless UBM. Two batches of test vehicle wafers were manufactured with different bump pad metallization. Batch #1 had AlSi(1%) metallization, which is similar to the one used on sensor wafers, and Batch #2 had AlSi(2%)Cu(1%) metallization, which is very similar to the one used on readout wafers. Electroless UBMs were deposited on both wafer batches. In addition, electroplated Ni UBM and SnPb solder bumps were grown on the test sensor wafers. Test assemblies were made by flip chip bonding the solder-bumped test sensors against the test readout chips with electroless UBMs. Electrical yields and individual joint resistances were measured from assemblies, and the results were compared to a well known reference technique based on electroplated solder bumps structures on both chips. The electroless UBMs deposited on AlSi(2%)Cu(1%) metallization showed excellent electrical yields and small tolerances in individual joint resistance. The results from the UBMs deposited on AlSi(1%) metallization were non

  11. The 2200Å bump and the interstellar extinction curve

    NASA Astrophysics Data System (ADS)

    Zagury, F.

    2013-12-01

    The 2200 Å bump is a major figure of interstellar extinction. However, extinction curves with no bump exist and are, with no exception, linear from the near-infrared down to 2500 Å at least, often over all the visible-UV spectrum. The duality linear versus bump-like extinction curves can be used to re-investigate the relationship between the bump and the continuum of interstellar extinction, and answer questions as why do we observe two different kinds of extinction (linear or with a bump) in interstellar clouds? How are they related? How does the existence of two different extinction laws fits with the requirement that extinction curves depend exclusively on the reddening E(B-V) and on a single additional parameter? What is this free parameter? It will be found that (1) interstellar dust models, which suppose the existence of three different types of particles, each contributing to the extinction in a specific wavelength range, fail to account for the observations; (2) the 2200 Å bump is very unlikely to be absorption by some yet unidentified molecule; (3) the true law of interstellar extinction must be linear from the visible to the far-UV, and is the same for all directions including other galaxies (as the Magellanic Clouds). In extinction curves with a bump the excess of starlight (or the lack of extinction) observed at wavelengths less than {λ=4000} Å arises from a large contribution of light scattered by hydrogen on the line of sight. Although counter-intuitive this contribution is predicted by theory. The free parameter of interstellar extinction is related to distances between the observer, the cloud on the line of sight, and the star behind it (the parameter is likely to be the ratio of the distances from the cloud to the star and to the observer). The continuum of the extinction curve and the bump contain no information on the chemical composition of interstellar clouds.

  12. Precise Evaluation of Leaked Information with Secure Randomness Extraction in the Presence of Quantum Attacker

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito

    2015-01-01

    We treat secret key extraction when the eavesdropper has correlated quantum states. We propose quantum privacy amplification theorems different from Renner's, which are based on quantum conditional Rényi entropy of order 1 + s. Using those theorems, we derive an exponential rate of decrease for leaked information and the asymptotic equivocation rate, which have not been derived hitherto in the quantum setting.

  13. Stellar acoustics. I - Adiabatic pulse propagation and modal resonance in polytropic models of bump Cepheids

    NASA Astrophysics Data System (ADS)

    Whitney, C. A.

    1983-11-01

    An understanding of the Hertzsprung progression among bump Cepheids is sought in a dualistic viewpoint which combines the idea of propagating pulse echoes with that of modal resonance. Attention is focused on the spherically symmetric pulses that can be regenerated once per cycle if their round trip propagation time equals the period of the overall pulsation. The acoustic properties of polytropic models reveal that the conditions for such reinforcement are likely to be met in models for which the periods of the fundamental and the second overtone pulsation are in the ratio 2:1. Systematic departures from precise resonance may be responsible for the Hertzsprung progression.

  14. On the accuracy and precision of numerical waveforms: effect of waveform extraction methodology

    NASA Astrophysics Data System (ADS)

    Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2016-08-01

    We present a new set of 95 numerical relativity simulations of non-precessing binary black holes (BBHs). The simulations sample comprehensively both black-hole spins up to spin magnitude of 0.9, and cover mass ratios 1-3. The simulations cover on average 24 inspiral orbits, plus merger and ringdown, with low initial orbital eccentricities e\\lt {10}-4. A subset of the simulations extends the coverage of non-spinning BBHs up to mass ratio q = 10. Gravitational waveforms at asymptotic infinity are computed with two independent techniques: extrapolation and Cauchy characteristic extraction. An error analysis based on noise-weighted inner products is performed. We find that numerical truncation error, error due to gravitational wave extraction, and errors due to the Fourier transformation of signals with finite length of the numerical waveforms are of similar magnitude, with gravitational wave extraction errors dominating at noise-weighted mismatches of ˜ 3× {10}-4. This set of waveforms will serve to validate and improve aligned-spin waveform models for gravitational wave science.

  15. A high-precision rule-based extraction system for expanding geospatial metadata in GenBank records

    PubMed Central

    Weissenbacher, Davy; Rivera, Robert; Beard, Rachel; Firago, Mari; Wallstrom, Garrick; Scotch, Matthew; Gonzalez, Graciela

    2016-01-01

    Objective The metadata reflecting the location of the infected host (LOIH) of virus sequences in GenBank often lacks specificity. This work seeks to enhance this metadata by extracting more specific geographic information from related full-text articles and mapping them to their latitude/longitudes using knowledge derived from external geographical databases. Materials and Methods We developed a rule-based information extraction framework for linking GenBank records to the latitude/longitudes of the LOIH. Our system first extracts existing geospatial metadata from GenBank records and attempts to improve it by seeking additional, relevant geographic information from text and tables in related full-text PubMed Central articles. The final extracted locations of the records, based on data assimilated from these sources, are then disambiguated and mapped to their respective geo-coordinates. We evaluated our approach on a manually annotated dataset comprising of 5728 GenBank records for the influenza A virus. Results We found the precision, recall, and f-measure of our system for linking GenBank records to the latitude/longitudes of their LOIH to be 0.832, 0.967, and 0.894, respectively. Discussion Our system had a high level of accuracy for linking GenBank records to the geo-coordinates of the LOIH. However, it can be further improved by expanding our database of geospatial data, incorporating spell correction, and enhancing the rules used for extraction. Conclusion Our system performs reasonably well for linking GenBank records for the influenza A virus to the geo-coordinates of their LOIH based on record metadata and information extracted from related full-text articles. PMID:26911818

  16. A high-precision rule-based extraction system for expanding geospatial metadata in GenBank records.

    PubMed

    Tahsin, Tasnia; Weissenbacher, Davy; Rivera, Robert; Beard, Rachel; Firago, Mari; Wallstrom, Garrick; Scotch, Matthew; Gonzalez, Graciela

    2016-09-01

    The metadata reflecting the location of the infected host (LOIH) of virus sequences in GenBank often lacks specificity. This work seeks to enhance this metadata by extracting more specific geographic information from related full-text articles and mapping them to their latitude/longitudes using knowledge derived from external geographical databases. We developed a rule-based information extraction framework for linking GenBank records to the latitude/longitudes of the LOIH. Our system first extracts existing geospatial metadata from GenBank records and attempts to improve it by seeking additional, relevant geographic information from text and tables in related full-text PubMed Central articles. The final extracted locations of the records, based on data assimilated from these sources, are then disambiguated and mapped to their respective geo-coordinates. We evaluated our approach on a manually annotated dataset comprising of 5728 GenBank records for the influenza A virus. We found the precision, recall, and f-measure of our system for linking GenBank records to the latitude/longitudes of their LOIH to be 0.832, 0.967, and 0.894, respectively. Our system had a high level of accuracy for linking GenBank records to the geo-coordinates of the LOIH. However, it can be further improved by expanding our database of geospatial data, incorporating spell correction, and enhancing the rules used for extraction. Our system performs reasonably well for linking GenBank records for the influenza A virus to the geo-coordinates of their LOIH based on record metadata and information extracted from related full-text articles. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Towards Evidence-based Precision Medicine: Extracting Population Information from Biomedical Text using Binary Classifiers and Syntactic Patterns

    PubMed Central

    Raja, Kalpana; Dasot, Naman; Goyal, Pawan; Jonnalagadda, Siddhartha R

    2016-01-01

    Precision Medicine is an emerging approach for prevention and treatment of disease that considers individual variability in genes, environment, and lifestyle for each person. The dissemination of individualized evidence by automatically identifying population information in literature is a key for evidence-based precision medicine at the point-of-care. We propose a hybrid approach using natural language processing techniques to automatically extract the population information from biomedical literature. Our approach first implements a binary classifier to classify sentences with or without population information. A rule-based system based on syntactic-tree regular expressions is then applied to sentences containing population information to extract the population named entities. The proposed two-stage approach achieved an F-score of 0.81 using a MaxEnt classifier and the rule- based system, and an F-score of 0.87 using a Nai've-Bayes classifier and the rule-based system, and performed relatively well compared to many existing systems. The system and evaluation dataset is being released as open source. PMID:27570671

  18. A comparison of high precision F0 extraction algorithms for sustained vowels.

    PubMed

    Parsa, V; Jamieson, D G

    1999-02-01

    Perturbation analysis of sustained vowel waveforms is used routinely in the clinical evaluation of pathological voices and in monitoring patient progress during treatment. Accurate estimation of voice fundamental frequency (F0) is essential for accurate perturbation analysis. Several algorithms have been proposed for fundamental frequency extraction. To be appropriate for clinical use, a key consideration is that an F0 extraction algorithm be robust to such extraneous factors as the presence of noise and modulations in voice frequency and amplitude that are commonly associated with the voice pathologies under study. This work examines the performance of seven F0 algorithms, based on the average magnitude difference function (AMDF), the input autocorrelation function (AC), the autocorrelation function of the center-clipped signal (ACC), the autocorrelation function of the inverse filtered signal (IFAC), the signal cepstrum (CEP), the Harmonic Product Spectrum (HPS) of the signal, and the waveform matching function (WM) respectively. These algorithms were evaluated using sustained vowel samples collected from normal and pathological subjects. The effect of background noise and of frequency and amplitude modulations on these algorithms was also investigated, using synthetic vowel waveforms.

  19. Circadian rhythms in Limulus photoreceptors. II. Quantum bumps

    PubMed Central

    1990-01-01

    The light response of the lateral eye of the horseshoe crab, Limulus polyphemus, increases at night, while the frequency of spontaneous discrete fluctuations of its photoreceptor membrane potential (quantum bumps) decreases. These changes are controlled by a circadian clock in the brain, which transmits activity to the eye via efferent optic nerve fibers (Barlow, R. B., S. J. Bolanski, and M. L Brachman. 1977. Science. 197:86-89). Here we report the results of experiments in which we recorded from single Limulus photoreceptors in vivo for several days and studied in detail changes in their physiological and membrane properties. We found that: (a) The shape of (voltage) quantum bumps changes with the time of day. At night, spontaneous bumps and bumps evoked by dim light are prolonged. The return of the membrane potential to its resting level is delayed, but the rise time of the bump is unaffected. On average, the area under a bump is 2.4 times greater at night than during the day. (b) The rate of spontaneous bumps decreases at night by roughly a factor of 3, but their amplitude distribution remains unchanged. (c) The resting potential and resistance of the photoreceptor membrane do not change with the time of day. (d) the relationship between injected current and impulse rate of the second order neuron, the eccentric cell, also remains unchanged with the time of day. Thus the efferent input from the brain to the retina modulates some of the membrane properties of photoreceptor cells. Our findings suggest that the efferent input acts on ionic channels in the membrane to increase the sensitivity of the photoreceptor to light. PMID:2230712

  20. Extracting Accurate and Precise Topography from Lroc Narrow Angle Camera Stereo Observations

    NASA Astrophysics Data System (ADS)

    Henriksen, M. R.; Manheim, M. R.; Speyerer, E. J.; Robinson, M. S.; LROC Team

    2016-06-01

    The Lunar Reconnaissance Orbiter Camera (LROC) includes two identical Narrow Angle Cameras (NAC) that acquire meter scale imaging. Stereo observations are acquired by imaging from two or more orbits, including at least one off-nadir slew. Digital terrain models (DTMs) generated from the stereo observations are controlled to Lunar Orbiter Laser Altimeter (LOLA) elevation profiles. With current processing methods, digital terrain models (DTM) have absolute accuracies commensurate than the uncertainties of the LOLA profiles (~10 m horizontally and ~1 m vertically) and relative horizontal and vertical precisions better than the pixel scale of the DTMs (2 to 5 m). The NAC stereo pairs and derived DTMs represent an invaluable tool for science and exploration purposes. We computed slope statistics from 81 highland and 31 mare DTMs across a range of baselines. Overlapping DTMs of single stereo sets were also combined to form larger area DTM mosaics, enabling detailed characterization of large geomorphic features and providing a key resource for future exploration planning. Currently, two percent of the lunar surface is imaged in NAC stereo and continued acquisition of stereo observations will serve to strengthen our knowledge of the Moon and geologic processes that occur on all the terrestrial planets.

  1. AstroImageJ: Image Processing and Photometric Extraction for Ultra-precise Astronomical Light Curves

    NASA Astrophysics Data System (ADS)

    Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G.; Hessman, Frederic V.

    2017-02-01

    ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.

  2. Precision targeting for retinal motion extraction using cross-correlation with a high speed line scanning ophthalmoscope

    NASA Astrophysics Data System (ADS)

    He, Yi; Wei, Ling; Wang, Zhibin; Yang, Jinsheng; Xiqi, Li; Shi, Guohua; Zhang, Yudong

    2015-12-01

    Evaluations to quantify the precise targeting of template features and to select template sizes for retinal motion extraction were carried out using cross-correlation with a high speed line scanning ophthalmoscope (LSO) capable of 160 frames per second. The optimal template targeting was located on a retinal vessel pattern with vessel bifurcation or vessel features occupying approximately eighty percent of the template area preferred. The optimal template size for this LSO system was 80 × 80 pixels and it was able to extract retinal motion up to 300 deg s-1 at a speed of 30 Hz. Although the optimized template size was a compromise between having enough image data on the retinal features to make matches reliably and have good temporal resolution, the optimal targeting of the template location and size described here was appropriate and effective in extracting retinal motion. In addition, the determination of cross-correlation templates could be applied to other images having similar properties; i.e., relatively small features of distinct gray levels on an otherwise fairly uniform background.

  3. Extracting accurate and precise topography from LROC narrow angle camera stereo observations

    NASA Astrophysics Data System (ADS)

    Henriksen, M. R.; Manheim, M. R.; Burns, K. N.; Seymour, P.; Speyerer, E. J.; Deran, A.; Boyd, A. K.; Howington-Kraus, E.; Rosiek, M. R.; Archinal, B. A.; Robinson, M. S.

    2017-02-01

    The Lunar Reconnaissance Orbiter Camera (LROC) includes two identical Narrow Angle Cameras (NAC) that each provide 0.5 to 2.0 m scale images of the lunar surface. Although not designed as a stereo system, LROC can acquire NAC stereo observations over two or more orbits using at least one off-nadir slew. Digital terrain models (DTMs) are generated from sets of stereo images and registered to profiles from the Lunar Orbiter Laser Altimeter (LOLA) to improve absolute accuracy. With current processing methods, DTMs have absolute accuracies better than the uncertainties of the LOLA profiles and relative vertical and horizontal precisions less than the pixel scale of the DTMs (2-5 m). We computed slope statistics from 81 highland and 31 mare DTMs across a range of baselines. For a baseline of 15 m the highland mean slope parameters are: median = 9.1°, mean = 11.0°, standard deviation = 7.0°. For the mare the mean slope parameters are: median = 3.5°, mean = 4.9°, standard deviation = 4.5°. The slope values for the highland terrain are steeper than previously reported, likely due to a bias in targeting of the NAC DTMs toward higher relief features in the highland terrain. Overlapping DTMs of single stereo sets were also combined to form larger area DTM mosaics that enable detailed characterization of large geomorphic features. From one DTM mosaic we mapped a large viscous flow related to the Orientale basin ejecta and estimated its thickness and volume to exceed 300 m and 500 km3, respectively. Despite its ∼3.8 billion year age the flow still exhibits unconfined margin slopes above 30°, in some cases exceeding the angle of repose, consistent with deposition of material rich in impact melt. We show that the NAC stereo pairs and derived DTMs represent an invaluable tool for science and exploration purposes. At this date about 2% of the lunar surface is imaged in high-resolution stereo, and continued acquisition of stereo observations will serve to strengthen our

  4. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    SciTech Connect

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; de Gouvea, A.; Fisher, Peter H.; Formaggio, Joseph Angelo; Jenkins, J.; Karagiorgi, Georgia S.; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  5. Full waveform inversion with an auxiliary bump functional

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Pawan; Mulder, Wim; Drijkoningen, Guy

    2016-08-01

    Least-squares inversion of seismic arrivals can provide remarkably detailed models of the Earth's subsurface. However, cycle skipping associated with these oscillatory arrivals is the main cause for local minima in the least-squares objective function. Therefore, it is often difficult for descent methods to converge to the solution without an accurate initial large-scale velocity estimate. The low frequencies in the arrivals, needed to update the large-scale components in the velocity model, are usually unreliable or absent. To overcome this difficulty, we propose a multi-objective inversion scheme that uses the conventional least-squares functional along with an auxiliary data-domain objective. As the auxiliary objective effectively replaces the seismic arrivals by bumps, we call it the bump functional. The bump functional minimization can be made far less sensitive to cycle skipping and can deal with multiple arrivals in the data. However, it can only be used as an auxiliary objective since it usually does not provide a unique model after minimization even when the regularized-least-squares functional has a unique global minimum and hence a unique solution. The role of the bump functional during the multi-objective inversion is to guide the optimization towards the global minimum by pulling the trapped solution out of the local minima associated with the least-squares functional whenever necessary. The computational complexity of the bump functional is equivalent to that of the least-squares functional. In this paper, we describe various characteristics of the bump functional using simple and illustrative numerical examples. We also demonstrate the effectiveness of the proposed multi-objective inversion scheme by considering more realistic examples. These include synthetic and field data from a cross-well experiment, surface-seismic synthetic data with reflections and synthetic data with refracted arrivals at long offsets.

  6. Growth Characteristics Downstream of a Shallow Bump: Computation and Experiment

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Grosch, Chester E.

    1996-01-01

    Measurements of the velocity field created by a shallow bump on a wall revealed that an energy peak in the spanwise spectrum associated with the driver decays and an initially small-amplitude secondary mode rapidly grows with distance downstream of the bump. Linear theories could not provide an explanation for this growing mode. The present Navier-Stokes simulation replicates and confirms the experimental results. Insight into the structure of the flow was obtained from a study of the results of the calculations and is presented.

  7. The Influence of Road Bumps Characteristics on the Chaotic Vibration of a Nonlinear Full-Vehicle Model with Driver

    NASA Astrophysics Data System (ADS)

    Fakhraei, J.; Khanlo, H. M.; Ghayour, M.; Faramarzi, Kh.

    In this paper, the chaotic behavior of a ground vehicle system with driver subjected to road disturbances is studied and the relationship between the nonlinear vibration of the vehicle and ride comfort is evaluated. The vehicle system is modeled as fully nonlinear with seven degrees of freedom and an additional degree of freedom for driver (8-DOF). The excitation force is the road irregularities that are assumed as road speed control bumps. The sinusoidal, consecutive half-sine and dented-rectangular waveforms are considered to simulate the road speed control bumps. The nonlinearities of the system are due to the nonlinear springs and dampers that are used in the suspension system and tires. The governing differential equations are extracted under Newton-Euler laws and solved via numerical methods. The chaotic behaviors were studied in more detail with special techniques such as bifurcation diagrams, phase plane portrait, Poincaré map and Lyapunov exponents. The ride comfort was evaluated as the RMS value of the vertical displacement of the vehicle body and driver. Firstly, the effect of amplitude (height) and frequency (vehicle’s speed) of these speed control bumps on chaotic vibrations of vehicle are studied. The obtained results show that various forms of vibrations, such as periodic, subharmonic and chaotic vibrations, can be detected in the system behavior with the change of the height and frequency of speed control bumps and present different types of strange attractors in the vehicle with and without driver. Then, the influence of nonlinear vibration on ride comfort and the relationship between chaotic vibrations of the vehicle and driving comfort are investigated. The results of analyzing the RMS diagrams reveal that the chaotic behaviors can directly affect the driving comfort and lead to the driver’s comfort being reduced. The obtained results can be used in the design of vehicle and road bumps pavement.

  8. Reading in Middle School: Bumps in the Literacy Crossroads

    ERIC Educational Resources Information Center

    Hall, Katrina Willard

    2008-01-01

    Certainly a major bump in the literacy road today is the apparent conflict between school literacies and the preferred literacy activities of students outside of school. After family conversation about a nephew who was getting poor grades in language arts, Hall shares her thinking on the dilemmas of what constitutes literacy, how literacies kids…

  9. Actinic characterization of EUV bump-type phase defects

    SciTech Connect

    Goldberg, Kenneth A.; Mochi, Iacopo; Liang, Ted

    2011-01-10

    Despite tremendous progress and learning with EUV lithography, quantitative experimental information about the severity of point-like phase defects remains in short supply. We present a study of measured, EUV aerial images from a series of well-characterized, open-field, bump-type programmed phase defects, created on a substrate before multilayer deposition.

  10. Numerical characterization of bump formation in the runaway electron tail

    NASA Astrophysics Data System (ADS)

    Decker, J.; Hirvijoki, E.; Embreus, O.; Peysson, Y.; Stahl, A.; Pusztai, I.; Fülöp, T.

    2016-02-01

    Runaway electrons are generated in a magnetized plasma when the parallel electric field exceeds a critical value. For such electrons with energies typically reaching tens of MeV, the Abraham-Lorentz-Dirac (ALD) radiation force, in reaction to the synchrotron emission, is significant and can be the dominant process limiting electron acceleration. The effect of the ALD force on runaway electron dynamics in a homogeneous plasma is investigated using the relativistic finite-difference Fokker-Planck codes LUKE (Decker and Peysson 2004 Report EUR-CEA-FC-1736, Euratom-CEA), and CODE (Landreman et al 2014 Comput. Phys. Commun. 185 847). The time evolution of the distribution function is analyzed as a function of the relevant parameters: parallel electric field, background magnetic field, and effective charge. Under the action of the ALD force, we find that runaway electrons are subject to an energy limit, and that the electron distribution evolves towards a steady-state. In addition, a bump is formed in the tail of the electron distribution function if the electric field is sufficiently strong. The mechanisms leading to the bump formation and energy limit involve both the parallel and perpendicular momentum dynamics; they are described in detail. An estimate for the bump location in momentum space is derived. We observe that the energy of runaway electrons in the bump increases with the electric field amplitude, while the population increases with the bulk electron temperature. The presence of the bump divides the electron distribution into a runaway beam and a bulk population. This mechanism may give rise to beam-plasma types of instabilities that could, in turn, pump energy from runaway electrons and alter their confinement.

  11. Reliability Investigations on SnAg Bumps on Substrate Pads with Different Pad Finish

    SciTech Connect

    Bauer, R.; Ebersberger, B.; Kupfer, C.; Alexa, L.

    2006-02-07

    SnAg solder bump is one bump type which is used to replace eutectic SnPb bumps. In this work tests have been done to characterize the reliability properties of this bump type. Electromigration (EM) tests, which were accelerated by high current and high temperature and high temperature storage (HTS) tests were performed. It was found that the reliability properties are sensitive to the material combinations in the interconnect stack. The interconnect stack includes substrate pad, pad finish, bump, underbump metallization (UBM) and the chip pad. Therefore separate test groups for SnAg bumps on Cu substrate pads with organic solderability preservative (OSP) finish and the identical bumps on pads with Ni/Au finish were used. In this paper the reliability test results and the corresponding failure analysis are presented. Some explanations about the differences in formation of intermetallic compounds (IMCs) are given.

  12. Bump formation in a binary attractor neural network

    SciTech Connect

    Koroutchev, Kostadin; Korutcheva, Elka

    2006-02-15

    The conditions for the formation of local bumps in the activity of binary attractor neural networks with spatially dependent connectivity are investigated. We show that these formations are observed when asymmetry between the activity during the retrieval and learning is imposed. An analytical approximation for the order parameters is derived. The corresponding phase diagram shows a relatively large and stable region where this effect is observed, although critical storage and information capacities drastically decrease inside that region. We demonstrate that the stability of the network, when starting from the bump formation, is larger than the stability when starting even from the whole pattern. Finally, we show a very good agreement between the analytical results and the simulations performed for different topologies of the network.

  13. Equations of state and bump Cepheids. I - Linear results

    NASA Astrophysics Data System (ADS)

    Kanbur, S. M.

    1991-10-01

    The Hummer-Mihalas-Dappen (MHD 1988) and a simple Saha-type equation of state are used to obtain linear pulsation characteristics of a grid of models spanning the Hertz-sprung sequence studied by Cox (1974). The grid of models is taken from Simon and Davis (1983), who used the Los Alamos equation of state in their computations. The result is a sensitivity analysis of theoretical linear bump Cepheid models to the equation of state employed in the calculation. The results obtained with these equations of state are different, although not enough to resolve the Cepheid bump mass discrepancy (Stobie, 1969; Simon and Schmidt, 1976; Simon 1986). Calculations of instability strips, transition regions, and nonlinear models with MHD are currently under way.

  14. The physics of bump drafting in car racing

    NASA Astrophysics Data System (ADS)

    Fiolhais, Miguel C. N.; Amor dos Santos, Susana

    2014-11-01

    The technique of bump drafting, also known as two-car drafting in motorsports, is analysed in the framework of Newtonian mechanics and simple aerodynamic drag forces. As an apparent unnatural effect that often pleases the enthusiasts of car racing, bump drafting provides a unique pedagogical opportunity for students to gain insights into the physics of drag in moving vehicles. In the context of a physics undergraduate course, it is shown that the dynamics of two moving cars in the same air slipstream on a straight line allows them to increase their speed up to a factor of \\sqrt{2} . This conclusion is also extended to an arbitrary number of n identical moving cars, resulting in an increase of \\sqrt{n} .

  15. Characterization of indium and solder bump bonding for pixel detectors

    SciTech Connect

    Selcuk Cihangir and Simon Kwan

    2000-09-28

    A review of different bump-bonding processes used for pixel detectors is given. A large scale test on daisy-chained components from two vendors has been carried out at Fermilab to characterize the yield of these processes. The vendors are Advanced Interconnect Technology Ltd. (AIT) of Hong Kong and MCNC in North Carolina, US. The results from this test are presented and technical challenges encountered are discussed.

  16. Electromigration of composite Sn-Ag-Cu solder bumps

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Xu, Di Erick; Chow, Jasper; Mayer, Michael; Sohn, Heung-Rak; Jung, Jae Pil

    2015-11-01

    This study investigates the electromigration (EM) behavior of lead free Sn-Ag-Cu (SAC) solder alloys that were reinforced with different types of nanoparticles [Copper-coated carbon nanotubes (Cu/CNT), La2O3, Graphene, SiC, and ZrO2]. The composite solders were bumped on a Cu substrate at 220°C, and the resistance of the bumped solders was measured using a four wire setup. Current aging was carried out for 4 hours at a temperature of 160°C, and an increase in resistance was noted during this time. Of all the composite solders that were studied, La2O3 and SiC reinforced SAC solders exhibited the smallest resistances after current aging. However, the rate of change in the resistance at room temperature was lower for the SiC-reinforced SAC solder. The SAC and Graphene reinforced SAC solder bumps completely failed within 15 - 20 min of these tests. The SiC nanoparticles were reported to possibly entrap the SAC atoms better than other nanoparticles with a lower rate of EM. [Figure not available: see fulltext.

  17. The reminiscence bump in autobiographical memory and for public events: A comparison across different cueing methods.

    PubMed

    Koppel, Jonathan; Berntsen, Dorthe

    2016-01-01

    The reminiscence bump has been found for both autobiographical memories and memories of public events. However, there have been few comparisons of the bump across each type of event. In the current study, therefore, we compared the bump for autobiographical memories versus the bump for memories of public events. We did so between-subjects, through two cueing methods administered within-subjects, the cue word method and the important memories method. For word-cued memories, we found a similar bump from ages 5 to 19 for both types of memories. However, the bump was more pronounced for autobiographical memories. For most important memories, we found a bump from ages 20 to 29 in autobiographical memory, but little discernible age pattern for public events. Rather, specific public events (e.g., the Fall of the Berlin Wall) dominated recall, producing a chronological distribution characterised by spikes in citations according to the years these events occurred. Follow-up analyses suggested that the bump in most important autobiographical memories was a function of the cultural life script. Our findings did not yield support for any of the dominant existing accounts of the bump as underlying the bump in word-cued memories.

  18. A study of thermal cycling and radiation effects on indium and solder bump bonding

    SciTech Connect

    Selcuk Cihangir et al.

    2001-09-12

    The BTeV hybrid pixel detector is constructed of readout chips and sensor arrays which are developed separately. The detector is assembled by flip-chip mating of the two parts. This method requires the availability of highly reliable, reasonably low cost fine-pitch flip-chip attachment technology. We have tested the quality of two bump-bonding technologies; indium bumps (by Advanced Interconnect Technology Ltd. (AIT) of Hong Kong) and fluxless solder bumps (by MCNC in North Carolina, USA). The results have been presented elsewhere[1]. In this paper we describe tests we performed to further evaluate these technologies. We subjected 15 indium bump-bonded and 15 fluxless solder bump-bonded dummy detectors through a thermal cycle and then a dose of radiation to observe the effects of cooling, heating and radiation on bump-bonds.

  19. Aqueous-based thick photoresist removal for bumping applications

    NASA Astrophysics Data System (ADS)

    Moore, John C.; Brewer, Alex J.; Law, Alman; Pettit, Jared M.

    2015-03-01

    Cleaning processes account for over 25% of processing in microelectronic manufacturing [1], suggesting electronics to be one of the most chemical intensive markets in commerce. Industry roadmaps exist to reduce chemical exposure, usage, and waste [2]. Companies are encouraged to create a safer working environment, or green factory, and ultimately become certified similar to LEED in the building industry [3]. A significant step in this direction is the integration of aqueous-based photoresist (PR) strippers which eliminate regulatory risks and cut costs by over 50%. One of the largest organic solvent usages is based upon thick PR removal during bumping processes [4-6]. Using market projections and the benefits of recycling, it is estimated that over 1,000 metric tons (mt) of residuals originating from bumping processes are incinerated or sent to a landfill. Aqueous-based stripping would eliminate this disposal while also reducing the daily risks to workers and added permitting costs. Positive-tone PR dissolves in aqueous strippers while negative-tone systems are lifted-off from the substrate, bumps, pillars, and redistribution layers (RDL). While the wafers are further processed and rinsed, the lifted-off PR is pumped from the tank, collected onto a filter, and periodically back-flushed to the trash. The PR solids become a non-hazardous plastic waste while the liquids are mixed with the developer stream, neutralized, filtered, and in most cases, disposed to the sewer. Regardless of PR thickness, removal processes may be tuned to perform in <15min, performing at rates nearly 10X faster than solvents with higher bath lives. A balanced formula is safe for metals, dielectrics, and may be customized to any fab.

  20. The role of UV bump in line emission

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Luc, Binette; Fang, Li-Zhi

    1992-05-01

    It is suggested that the UV bump which the low-ionization lines of the Seyfert galaxy Fairall 9 follow has a shape more complicated than a simple blackbody curve and has a rather steep drop around 30 eV. The degree of luminosity dependence of the equivalent width of Ly-alpha, semiforbidden Si IV, and C IV is inversely correlated with an individual emission line's ionization level. This explains why only the C IV equivalent width exhibits a significant luminosity dependence (the Baldwin effect).

  1. Effectiveness of Emittance Bumps in the NLC and US Cold LC Main Linear Accelerators (LCC-0138)

    SciTech Connect

    Tenenbaum, P

    2004-05-13

    We report on a series of studies on the effectiveness of closed orbit bumps in the linacs of the NLC and the USColdLC. In the first study, emittance dilutions of a pure-wakefield or pure-dispersion character are introduced in each linac, and a set of emittance bumps is tested to determine the most effective bump location in the linac, and the net effectiveness. In the second study, a more realistic set of dilutions are introduced and the wakefield bumps used in the first study are applied.

  2. Analysis of Power Generating Speed Bumps Made of Concrete Foam Composite

    NASA Astrophysics Data System (ADS)

    Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.

    2017-03-01

    This paper discusses the analysis of speed bump made of concrete foam composite which is used to generate electrical power. Speed bumps are designed to decelerate the speed of vehicles before passing through toll gates, public areas, or any other safety purposes. In Indonesia a speed bump should be designed in the accordance with KM Menhub 3 year 1994. In this research, the speed bump was manufactured with dimensions and geometry comply to the regulation mentioned above. Concrete foam composite speed bumps were used due to its light weight and relatively strong to receive vertical forces from the tyres of vehicles passing over the bumps. The reinforcement materials are processed from empty fruit bunch of oil palm. The materials were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were analyzed using a FEM-based numerical softwares. It was obtained that the speed bumps coupled with polymeric composite bar (3 inches in diameter) are significantly reduce the radial stresses. In addition, the speed bumps equipped with polymeric composite casing or steel casing are also suitable for use as part of system components in producing electrical energy.

  3. Two-dimensional Amari neural field model with periodic microstructure: Rotationally symmetric bump solutions

    NASA Astrophysics Data System (ADS)

    Burlakov, Evgenii; Wyller, John; Ponosov, Arcady

    2016-03-01

    We investigate existence and stability of rotationally symmetric bump solutions to a homogenized two-dimensional Amari neural field model with periodic micro-variations built in the connectivity strength and by approximating the firing rate function with unit step function. The effect of these variations is parameterized by means of one single parameter, called the degree of heterogeneity. The bumps solutions are assumed to be independent of the micro-variable. We develop a framework for study existence of bumps as a function of the degree of heterogeneity as well as a stability method for the bumps. The former problem is based on the pinning function technique while the latter one uses spectral theory for Hilbert-Schmidt integral operators. We demonstrate numerically these procedures for the case when the connectivity kernel is modeled by means of a Mexican hat function. In this case the generic picture consists of one narrow and one broad bump. The radius of the narrow bumps increases with the heterogeneity. For the broad bumps the radius increases for small and moderate values of the activation threshold while it decreases for large values of this threshold. The stability analysis reveals that the narrow bumps remain unstable while the broad bumps are destabilized when the degree of heterogeneity exceeds a certain critical value.

  4. Can quantum-bumps in photoreceptors be reconstructed from noise-data?

    PubMed

    Schnakenberg, J

    1988-01-01

    The method of reconstructing quantum bumps in photoreceptor cells from noise data by making use of shot noise theory is critically reviewed. The application of this method produces results irrespective of whether the conditions for reconstructing bumps by the method are satisfied or not and even irrespective of whether at high stimulus intensities quantum bumps exist or not. We argue that at high intensities the concept of quantum bumps indeed becomes physically meaningless and degenerates to a purely mathematical concept. In order to investigate the meaning of the results of the reconstruction method, we submit it to a test model for which bumps and single channel opening events can be evaluated analytically. By comparing the analytical results of the test model with that of the reconstruction method applied to the test model we find: (1) even at low intensities, the reconstructed bump values deviate from the analytical results by up to an order of magnitude due to the variability of the bumps, (2) at high intensities, the reconstruction method produces single channel opening events rather than anything like a quantum bump. We also find, however, that there is no continuous transition from a bump at low intensities to a single channel event at high intensities.

  5. Electronic simulation of the supported liquid membrane in electromembrane extraction systems: Improvement of the extraction by precise periodical reversing of the field polarity.

    PubMed

    Moazami, Hamid Reza; Nojavan, Saeed; Zahedi, Pegah; Davarani, Saied Saeed Hosseiny

    2014-09-02

    In order to understand the limitations of electromebrane extraction procedure better, a simple equivalent circuit has been proposed for a supported liquid membrane consisting of a resistor and a low leakage capacitor in series. To verify the equivalent circuit, it was subjected to a simulated periodical polarity changing potential and the resulting time variation of the current was compared with that of a real electromembrane extraction system. The results showed a good agreement between the simulated current patterns and those of the real ones. In order to investigate the impact of various limiting factors, the corresponding values of the equivalent circuit were estimated for a real electromembrane extraction system and were attributed to the physical parameters of the extraction system. A dual charge transfer mechanism was proposed for electromembrane extraction by combining general migration equation and fundamental aspects derived from the simulation. Dual mechanism comprises a current dependent contribution of analyte in total current and could support the possibility of an improvement in performance of an electromembrane extraction by application of an asymmetric polarity changing potential. The optimization of frequency and duty cycle of the asymmetric polarity exchanging potential resulted in a higher recovery (2.17 times greater) in comparison with the conventional electromebrane extraction. The simulation also provided more quantitative approaches toward the investigation of the mechanism of extraction and contribution of different limiting factors in electromembrane extraction. Results showed that the buildup of the double layer is the main limiting factor and the Joule heating has lesser impact on the performance of an electromebrane extraction system. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Sensory feedback in a bump attractor model of path integration.

    PubMed

    Poll, Daniel B; Nguyen, Khanh; Kilpatrick, Zachary P

    2016-04-01

    Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal's current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal's knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541-4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error.

  7. Computer analysis of flow perturbations generated by placement of choke bumps in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Campbell, R. L.

    1981-01-01

    An inviscid analytical study was conducted to determine the upstream flow perturbations caused by placing choke bumps in a wind tunnel. A computer program based on the stream-tube curvature method was used to calculate the resulting flow fields for a nominal free-stream Mach number range of 0.6 to 0.9. The choke bump geometry was also varied to investigate the effect of bump shape on the disturbance produced. Results from the study indicate that a region of significant variation from the free-stream conditions exists upstream of the throat of the tunnel. The extent of the disturbance region was, as a rule, dependent on Mach number and the geometry of the choke bump. In general, the upstream disturbance distance decreased for increasing nominal free-stream Mach number and for decreasing length-to-height ratio of the bump. A polynomial-curve choke bump usually produced less of a disturbance than did a circular-arc bump and going to an axisymmetric configuration (modeling choke bumps on all the tunnel walls) generally resulted in a lower disturbance than with the corresponding two dimensional case.

  8. Experimental and modeling study of the flow over a skewed bump

    NASA Astrophysics Data System (ADS)

    Ching, David S.; Elkins, Christopher J.; Eaton, John K.

    2016-11-01

    Three-dimensional separated flows can be very sensitive to geometry and inlet conditions, such that a small change in the geometry or the upstream boundary layer could cause the flow structure to change drastically. This study examines the geometric sensitivity of a skewed bump with axis ratio 4/3 by changing the angle of the bump with respect to the flow. The three-dimensional, three-component mean velocity field was acquired using Magnetic Resonance Velocimetry (MRV) for several bump angles. The flow is dominated by large coherent vortices in the wake. For a symmetric case, two counter-rotating vortices exist in the wake, but when the bump is skewed relative to the oncoming flow one vortex structure is much stronger and overwhelms the other vortex. A comparison to RANS simulations found that the RANS simulations predict the velocity fields with reasonable accuracy within the separation bubble, but are very inaccurate downstream of reattachment. Using a time-resolved MRV sequence, the shedding frequency of the wake was determined for two bump angles. Hot-wire anemometry confirmed the shedding frequencies found from the MRV data and observed that the shedding frequency is sensitive to the bump angle at low bump angles, but is insensitive at high bump angles. Funding provided by the Office of Naval Research.

  9. IMPLEMENTATION OF A DC BUMP AT THE STORAGE RING INJECTION STRAIGHT SECTION

    SciTech Connect

    Wang, G.M.; Shaftan, T.; Kramer, S.K.; Fliller, R.; Guo, W.; Heese, R.; Yu, L.H.; Parker, B.; Willeke, F.J.

    2011-03-28

    The NSLS II beam injection works with a DC septum, a pulsed septum and four fast kicker magnets. The kicker power supplies each produce a two revolution period pulsed field, 5.2 {micro}s half sine waveform, using {approx}5kA drive voltage. The corresponding close orbit bump amplitude is {approx}15mm. It is desired that the bump is transparent to the users for top-off injection. However, high voltage and short pulse power supplies have challenges to maintain pulse-to-pulse stability and magnet-to-magnet reproducibility. To minimize these issues, we propose implementing a DC local bump on top of the fast bump to reduce the fast kicker strength by a factor of 2/3. This bump uses two storage ring corrector magnets plus one additional magnet at the septum to create a local bump. Additionally, these magnets could provide a DC bump to simulate the septum position effects on the store beam lifetime. This paper presents the detail design of this DC injection bump and related beam dynamics.

  10. Investigation of Intrinsic and External Factors Contributing to the Occurrence of Coal Bumps in the Mining Area of Western Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Jiang, Yaodong; Xue, Sheng; Pang, Xufeng; Lin, Zhinan; Deng, Daixin

    2017-04-01

    An investigation has been made to relate the occurrence of coal bumps to specific geological and mining conditions to the mining area of western Beijing. This investigation demonstrates that the high frequency of coal bumps in this area is due to four localized conditions, namely intrinsic coal properties, the presence of overturned strata and thrust faults, high in situ stress and the extraction of coal from island mining faces. Laboratory tests of coal samples indicated that the coals have a short duration of dynamic fracture, high bursting energy and high elastic strain energy, indicating that the coal is intrinsically prone to the occurrence of coal bumps. This investigation has also revealed that there are overturned strata and well-developed large- and medium-scale thrust faults in this area, and the presence of these structures results in plastic flow, severe discontinuities, rapid changes in overburden thickness and dipping of the coal seams. Well-developed secondary fold structures are also present in the axes and limbs of the primary folds. The instability of thrust faults, in combination with large-scale intrusion of igneous rocks, is closely associated with sudden roof breaking and induces sharp variations in electromagnetic radiation (EMR) and micro-seismic signals, which could be used to help predict coal bumps. In situ stress tests in the mining area demonstrate that the maximum and minimum principal stresses are nearly horizontal and that the intermediate principal stress is approximately vertical. The in situ stress level in the area is higher than the average in the Beijing area, North China and mainland China. In addition to the presence of overturned strata and thrust faults and high in situ stress levels, another external factor contributing to the frequency of coal bumps is coal extraction from island mining faces in this area. Island mining faces experience intermittent mining-induced abutment stress when a fault exists at one side of the

  11. Study of indium and solder bumps for the BTeV Pixel Detector

    SciTech Connect

    Simon W Kwan et al.

    2003-11-05

    The pixel detector proposed for the BTeV experiment at the Fermilab Tevatron will use bump-bonding technology based on either Indium or Pb/Sn solder to connect the front-end readout chips to the silicon pixel sensors. We have studied the strength of the bumps by visual inspection of the bumps bonding silicon sensor modules to dummy chips made out of glass. The studies were done before and after thermal cycles, exposed to intense irradiation, and with the assemblies glued to a graphite substrate. We have also carried out studies on effects of temperature changes on both types of bump bonds by observing the responses of single-chip pixel detectors to an Sr{sup 90} source. We report the results from these studies and our plan to measure the effect of cryogenic temperatures on the bumps.

  12. On the persistence of unstable bump-on-tail electron velocity distributions in the earth's foreshock

    NASA Technical Reports Server (NTRS)

    Klimas, Alexander J.; Fitzenreiter, Richard J.

    1988-01-01

    This paper presents further evidence for the persistence of bump-on-tail unstable reduced velocity distributions in the earth's electron foreshock, which contradicts the understanding of quasi-linear saturation of the bump-on-tail instability. A modified theory for the saturation of the bump-on-tail instability in the earth's foreshock is proposed to explain the mechanism of this persistence, and the predictions are compared to the results of a numerical simulation of the electron plasma in the foreshock. The results support the thesis that quasi-linear saturation of the bump-on-tail instability is modified in the foreshock, due to the driven nature of the region, so that at saturation the stabilized velocity distribution still appears bump-on-tail unstable to linear plasma analysis.

  13. A gas chromatography/pyrolysis/isotope ratio mass spectrometry system for high-precision deltaD measurements of atmospheric methane extracted from ice cores.

    PubMed

    Bock, Michael; Schmitt, Jochen; Behrens, Melanie; Möller, Lars; Schneider, Robert; Sapart, Celia; Fischer, Hubertus

    2010-03-15

    Air enclosures in polar ice cores represent the only direct paleoatmospheric archive. Analysis of the entrapped air provides clues to the climate system of the past in decadal to centennial resolution. A wealth of information has been gained from measurements of concentrations of greenhouse gases; however, little is known about their isotopic composition. In particular, stable isotopologues (deltaD and delta(13)C) of methane (CH(4)) record valuable information on its global cycle as the different sources exhibit distinct carbon and hydrogen isotopic composition. However, CH(4) isotope analysis is limited by the large sample size required and the demanding analysis as high precision is required. Here we present a highly automated, high-precision online gas chromatography/pyrolysis/isotope ratio monitoring mass spectrometry (GC/P/irmMS) technique for the analysis of deltaD(CH(4)). It includes gas extraction from ice, preconcentration, gas chromatographic separation and pyrolysis of CH(4) from roughly 500 g of ice with CH(4) concentrations as low as 350 ppbv. Ice samples with approximately 40 mL air and only approximately 1 nmol CH(4) can be measured with a precision of 3.4 per thousand. The precision for 65 mL air samples with recent atmospheric concentration is 1.5 per thousand. The CH(4) concentration can be obtained along with isotope data which is crucial for reporting ice core data on matched time scales and enables us to detect flaws in the measurement procedure. Custom-made script-based processing of MS raw and peak data enhance the system's performance with respect to stability, peak size dependency, hence precision and accuracy and last but not least time requirement. Copyright 2010 John Wiley & Sons, Ltd.

  14. Precise Extraction of the Induced Polarization in the He4(e,e'p→)H3 Reaction

    NASA Astrophysics Data System (ADS)

    Malace, S. P.; Paolone, M.; Strauch, S.; Albayrak, I.; Arrington, J.; Berman, B. L.; Brash, E. J.; Briscoe, B.; Camsonne, A.; Chen, J.-P.; Christy, M. E.; Chudakov, E.; Cisbani, E.; Craver, B.; Cusanno, F.; Ent, R.; Garibaldi, F.; Gilman, R.; Glamazdin, O.; Glister, J.; Higinbotham, D. W.; Hyde-Wright, C. E.; Ilieva, Y.; de Jager, C. W.; Jiang, X.; Jones, M. K.; Keppel, C. E.; Khrosinkova, E.; Kuchina, E.; Kumbartzki, G.; Lee, B.; Lindgren, R.; Margaziotis, D. J.; Meekins, D.; Michaels, R.; Park, K.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Punjabi, V. A.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Ransome, R. D.; Saha, A.; Sarty, A. J.; Schulte, E.; Solvignon, P.; Subedi, R. R.; Tang, L.; Tedeschi, D.; Tvaskis, V.; Udias, J. M.; Ulmer, P. E.; Vignote, J. R.; Wesselmann, F. R.; Wojtsekhowski, B.; Zhan, X.

    2011-02-01

    We measured with unprecedented precision the induced polarization Py in He4(e,e'p→)H3 at Q2=0.8 and 1.3(GeV/c)2. The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are overestimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin-independent charge-exchange term in the latter calculation.

  15. Precise extraction of the induced polarization in the 4He(e,e'p)3H reaction.

    PubMed

    Malace, S P; Paolone, M; Strauch, S; Albayrak, I; Arrington, J; Berman, B L; Brash, E J; Briscoe, B; Camsonne, A; Chen, J-P; Christy, M E; Chudakov, E; Cisbani, E; Craver, B; Cusanno, F; Ent, R; Garibaldi, F; Gilman, R; Glamazdin, O; Glister, J; Higinbotham, D W; Hyde-Wright, C E; Ilieva, Y; de Jager, C W; Jiang, X; Jones, M K; Keppel, C E; Khrosinkova, E; Kuchina, E; Kumbartzki, G; Lee, B; Lindgren, R; Margaziotis, D J; Meekins, D; Michaels, R; Park, K; Pentchev, L; Perdrisat, C F; Piasetzky, E; Punjabi, V A; Puckett, A J R; Qian, X; Qiang, Y; Ransome, R D; Saha, A; Sarty, A J; Schulte, E; Solvignon, P; Subedi, R R; Tang, L; Tedeschi, D; Tvaskis, V; Udias, J M; Ulmer, P E; Vignote, J R; Wesselmann, F R; Wojtsekhowski, B; Zhan, X

    2011-02-04

    We measured with unprecedented precision the induced polarization P(y) in (4)He(e,e'p)(3)H at Q(2)=0.8 and 1.3  (GeV/c)(2). The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are overestimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin-independent charge-exchange term in the latter calculation.

  16. A precise extraction of the induced polarization in the 4He(e,e'p)3H reaction

    SciTech Connect

    S.P. Malace, M. Paolone, S. Strauch

    2011-01-01

    We measured with unprecedented precision the induced polarization Py in 4He(e,e'p)3H at Q^2 = 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2. The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are over-estimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin independent charge-exchange term in the latter calculation.

  17. Waves, bumps, and patterns in neural field theories.

    PubMed

    Coombes, S

    2005-08-01

    Neural field models of firing rate activity have had a major impact in helping to develop an understanding of the dynamics seen in brain slice preparations. These models typically take the form of integro-differential equations. Their non-local nature has led to the development of a set of analytical and numerical tools for the study of waves, bumps and patterns, based around natural extensions of those used for local differential equation models. In this paper we present a review of such techniques and show how recent advances have opened the way for future studies of neural fields in both one and two dimensions that can incorporate realistic forms of axo-dendritic interactions and the slow intrinsic currents that underlie bursting behaviour in single neurons.

  18. Bumps, witches and bouncing beams: lab investigations of internal waves

    NASA Astrophysics Data System (ADS)

    Peacock, Thomas; Balmforth, Neil; Tabaei, Ali

    2005-11-01

    There is a great, ongoing effort to better understand the processes surrounding internal wave generation, propagation and dissipation in the oceans. To contribute to this effort, we are in the process of establishing a state-of-the-art experimental facility. The facility, based around the digital schlieren method, is designed to investigate both linear and non-linear phenomena in a laboratory setting. We here report the latest experimental results concerning tidal conversion by typical topographic features, such as a Gaussian bump and a knife-edge. The quantitative results compare very well with theoretical predictions developed from the classic work of Bell and Hurley, and more recent analysis of subcritical topography by Balmforth et al. In addition, we present more details on recently published results concerning the nonlinear generation of second-harmonic wavebeams at reflecting boundaries.

  19. Precision measurement of the ratio B(t→Wb)/B(t→Wq) and extraction of V(tb).

    PubMed

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Aoki, M; Arov, M; Askew, A; Åsman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Guo, F; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jamin, D; Jayasinghe, A; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kulikov, S; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Novaes, S F; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Padilla, M; Pal, A; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Piegaia, R; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Polozov, P; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Salcido, P; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stolin, V; Stoyanova, D A; Strauss, M; Strom, D; Stutte, L; Suter, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Welty-Rieger, L; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2011-09-16

    We present a measurement of the ratio of top quark branching fractions R=B(t→Wb)/B(t→Wq), where q can be a d, s, or b quark, in the lepton+jets and dilepton tt final states. The measurement uses data from 5.4 fb(-1) of pp collisions collected with the D0 detector at the Fermilab Tevatron Collider. We measure R=0.90±0.04, and we extract the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V(tb)| as |V(tb)|=0.95±0.02, assuming unitarity of the 3×3 CKM matrix.

  20. A study of thermal cycling and radiation effects on indium and solder bump bonds

    SciTech Connect

    Simon Kwan et al.

    2001-12-11

    The BTeV hybrid pixel detector is constructed of readout chips and sensor arrays which are developed separately. The detector is assembled by flip-chip mating of the two parts. This method requires the availability of highly reliable, reasonably low cost fine-pitch flip-chip attachment technology. We have tested the quality of two bump-bonding technologies; indium bumps (by Advanced Interconnect Technology Ltd. (AIT) of Hong Kong) and fluxless solder bumps (by MCNC in North Carolina, USA). The results have been presented elsewhere [1]. In this paper we describe tests we performed to further evaluate these technologies. We subjected 15 indium bump-bonded and 15 fluxless solder bump-bonded dummy detectors through a thermal cycle and then a dose of radiation to observe the effects of cooling, heating and radiation on bump-bonds. We also exercised the processes of HDI mounting and wire bonding to some of the dummy detectors to see the effect of these processes on bump bonds.

  1. Low-cost bump-bonding processes for high energy physics pixel detectors

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Blank, T.; Colombo, F.; Dierlamm, A.; Husemann, U.; Kudella, S.; Weber, M.

    2016-01-01

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area will be required at reasonable costs. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of five production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin (15 μm) gold wire is presented. This technique allows producing metal bumps with diameters down to 30 μm without using photolithography processes, which are typically required to provide suitable under bump metallization. The short setup time for the bumping process makes gold-stud bump-bonding highly attractive (and affordable) for the flip-chipping of single prototype ICs, which is the main limitation of the current photolithography processes.

  2. Precise determination of the deuteron spin structure at low to moderate Q2 with CLAS and extraction of the neutron contribution

    DOE PAGES

    Guler, N.; Fersch, R. G.; Kuhn, S. E.; ...

    2015-11-02

    In this study, we present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Lab's CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2 and 5.8 GeV were scattered from deuteron (15ND3) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double spin asymmetry, the virtual photon absorption asymmetry Ad1 and the polarized structure function gd1 were extracted over a wide kinematic range (0.05 GeV2 < Q2 < 5 GeV2 and 0.9 GeV < W < 3 GeV). We use an unfolding procedure andmore » a parametrization of the corresponding proton results to extract from these data the polarized structure functions An1 and g1n of the (bound) neutron, which are so far unknown in the resonance region, W < 2 GeV. We compare our final results, including several moments of the deuteron and neutron spin structure functions, with various theoretical models and expectations as well as parametrizations of the world data. The unprecedented precision and dense kinematic coverage of these data can aid in future extractions of polarized parton distributions, tests of perturbative QCD predictions for the quark polarization at large x, a better understanding of quark-hadron duality, and more precise values for higher-twist matrix elements in the framework of the Operator Product Expansion.« less

  3. Precise determination of the deuteron spin structure at low to moderate Q2 with CLAS and extraction of the neutron contribution

    NASA Astrophysics Data System (ADS)

    Guler, N.; Fersch, R. G.; Kuhn, S. E.; Bosted, P.; Griffioen, K. A.; Keith, C.; Minehart, R.; Prok, Y.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Alaoui, A. El; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Garillon, B.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Livingston, K.; Lu, H. Y.; Mayer, M.; MacGregor, I. J. D.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Simonyan, A.; Skorodumina, Iu.; Sokhan, D.; Sparveris, N.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Voutier, E.; Walford, N. K.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-11-01

    We present the final results for the deuteron spin structure functions obtained from the full data set collected in 2000-2001 with Jefferson Lab's continuous electron beam accelerator facility (CEBAF) using the CEBAF large acceptance spectrometer (CLAS). Polarized electrons with energies of 1.6, 2.5, 4.2, and 5.8 GeV were scattered from deuteron (15ND3 ) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double-spin asymmetry, the virtual photon absorption asymmetry A1d and the polarized structure function g1d were extracted over a wide kinematic range (0.05 GeV2extract from these data the polarized structure functions A1n and g1n of the (bound) neutron, which are so far unknown in the resonance region, W <2 GeV. We compare our final results, including several moments of the deuteron and neutron spin structure functions, with various theoretical models and expectations, as well as parametrizations of the world data. The unprecedented precision and dense kinematic coverage of these data can aid in future extractions of polarized parton distributions, tests of perturbative QCD predictions for the quark polarization at large x , a better understanding of quark-hadron duality, and more precise values for higher-twist matrix elements in the framework of the operator product expansion.

  4. Measurement of the ratio σ{tt}/σ{Z/γ{*}→ll} and precise extraction of the tt cross section.

    PubMed

    Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S

    2010-07-02

    We report a measurement of the ratio of the tt to Z/γ{*} production cross sections in sqrt[s]=1.96  TeV pp collisions using data corresponding to an integrated luminosity of up to 4.6  fb{-1}, collected by the CDF II detector. The tt cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/γ{*}→ll cross section predicted by the standard model, the extracted tt cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result σ{tt}=7.70±0.52  pb, for a top-quark mass of 172.5  GeV/c{2}.

  5. Growth of silicon bump induced by swift heavy ion at the silicon oxide-silicon interface

    SciTech Connect

    Carlotti, J.-F.; Touboul, A.D.; Ramonda, M.; Caussanel, M.; Guasch, C.; Bonnet, J.; Gasiot, J.

    2006-01-23

    Thin silicon oxide layers on silicon substrates are investigated by scanning probe microscopy before and after irradiation with 210 MeV Au+ ions. After irradiation and complete chemical etching of the silicon oxide layer, silicon bumps grown on the silicon surface are observed. It is shown that each impinging ion induces one silicon bump at the interface. This observation is consistent with the thermal spike theory. Ion energy loss is transferred to the oxide and induces local melting. Silicon-bump formation is favored when the oxide and oxide-silicon interface are silicon rich.

  6. COMPARISON OF OFF-LINE IR BUMP AND ACTION-ANGLE KICK MINIMIZATION.

    SciTech Connect

    LUO, Y.; PILAT, F.; PTITSYN, V.; TRBOJEVIC, D.; WEI, J.

    2005-05-16

    The interaction region bump (IR bump) nonlinear correction method has been used for the sextupole and octupole field error on-line corrections in the Relativistic Heavy Ion Collider (RHIC) . Some differences were found for the sextupole and octupole corrector strengths between the on-line IR bump correction and the predictions from the action-angle kick minimization. In this article, we compare the corrector strengths from these two methods based on the RHIC Blue ring lattice with the IR nonlinear modeling. The comparison confirms the differences between resulting corrector strengths. And the reason for the differences is found and discussed.

  7. The velocity field created by a shallow bump in a boundary layer

    NASA Technical Reports Server (NTRS)

    Gaster, Michael; Grosch, Chester E.; Jackson, Thomas L.

    1994-01-01

    We report the results of measurements of the disturbance velocity field generated in a boundary layer by a shallow three-dimensional bump oscillating at a very low frequency on the surface of a flat plate. Profiles of the mean velocity, the disturbance velocity at the fundamental frequency and at the first harmonic are presented. These profiles were measured both upstream and downstream of the oscillating bump. Measurements of the disturbance velocity were also made at various spanwise and downstream locations at a fixed distance from the boundary of one displacement thickness. Finally, the spanwise spectrum of the disturbances at three locations downstream of the bump are presented.

  8. Strongly interacting bumps for the Schroedinger-Newton equations

    SciTech Connect

    Wei Juncheng; Winter, Matthias

    2009-01-15

    We study concentrated bound states of the Schroedinger-Newton equations h{sup 2}{delta}{psi}-E(x){psi}+U{psi}=0, {psi}>0, x(set-membership sign)R{sup 3}; {delta}U+(1/2)|{psi}|{sup 2}=0, x(set-membership sign)R{sup 3}; {psi}(x){yields}0, U(x){yields}0 as |x|{yields}{infinity}. Moroz et al. [''An analytical approach to the Schroedinger-Newton equations,'' Nonlinearity 12, 201 (1999)] proved the existence and uniqueness of ground states of {delta}{psi}-{psi}+U{psi}=0, {psi}>0, x(set-membership sign)R{sup 3}; {delta}U+(1/2)|{psi}|{sup 2}=0, x(set-membership sign)R{sup 3}; {psi}(x){yields}0, U(x){yields}0 as |x|{yields}{infinity}. We first prove that the linearized operator around the unique ground state radial solution ({psi}{sub 0},U{sub 0}) with {psi}{sub 0}(r)=(Ae{sup -r}/r)(1+o(1)) as r=|x|{yields}{infinity}, U{sub 0}(r)=(B/r)(1+o(1)) as r=|x|{yields}{infinity} for some A,B>0 has a kernel whose dimension is exactly 3 (corresponding to the translational modes). Using this result we further show that if for some positive integer K the points P{sub i}(set-membership sign)R{sup 3}, i=1,2...,K, with P{sub i}{ne}P{sub j} for i{ne}j are all local minimum or local maximum or nondegenerate critical points of E(P), then for h small enough there exist solutions of the Schroedinger-Newton equations with K bumps which concentrate at P{sub i}. We also prove that given a local maximum point P{sub 0} of E(P) there exists a solution with K bumps which all concentrate at P{sub 0} and whose distances to P{sub 0} are at least O(h{sup 1/3})

  9. Recent Advances in Understanding the Reminiscence Bump: The Importance of Cues in Guiding Recall from Autobiographical Memory.

    PubMed

    Koppel, Jonathan; Rubin, David C

    2016-04-01

    The reminiscence bump is the increased proportion of autobiographical memories from youth and early adulthood observed in adults over 40. It is one of the most robust findings in autobiographical memory research. Although described as a single period of increased memories, a recent meta-analysis which reported the beginning and ending ages of the bump from individual studies found that different classes of cues produce distinct bumps that vary in size and temporal location. The bump obtained in response to cue words is both smaller and located earlier in the lifespan than the bump obtained when important memories are requested. The bump obtained in response to odor cues is even earlier. This variation in the size and location of the reminiscence bump argues for theories based primarily on retrieval rather than encoding and retention, which most current theories stress. Furthermore, it points to the need to develop theories of autobiographical memory that account for this flexibility in the memories retrieved.

  10. Recent Advances in Understanding the Reminiscence Bump: The Importance of Cues in Guiding Recall from Autobiographical Memory

    PubMed Central

    Koppel, Jonathan; Rubin, David C.

    2016-01-01

    The reminiscence bump is the increased proportion of autobiographical memories from youth and early adulthood observed in adults over 40. It is one of the most robust findings in autobiographical memory research. Although described as a single period of increased memories, a recent meta-analysis which reported the beginning and ending ages of the bump from individual studies found that different classes of cues produce distinct bumps that vary in size and temporal location. The bump obtained in response to cue words is both smaller and located earlier in the lifespan than the bump obtained when important memories are requested. The bump obtained in response to odor cues is even earlier. This variation in the size and location of the reminiscence bump argues for theories based primarily on retrieval rather than encoding and retention, which most current theories stress. Furthermore, it points to the need to develop theories of autobiographical memory that account for this flexibility in the memories retrieved. PMID:27141156

  11. Extraction of Precise Gamow-Teller Quenching Value Q, Landau-Migdal Parameter g'{{NΔ }} and Pion Condensation

    NASA Astrophysics Data System (ADS)

    Sakai, Hideyuki

    2003-12-01

    Measurements on 90Zr(p, n) and 90Zr(n, p) reactions at 300 MeV were made and reliable Sβ- and Sβ+ values are successfully extracted. A Gamow-Teller quenching factor (Q) in terms of the spin sum rule of Sβ- - Sβ+ = 3(N - Z) is derived as Q = 0.89 ± 0.04(MDA) ± 0.04(IVSM) apart from the systematic uncertainty of Δ / σ GT <= 15% . The Landau-Migdal (LM) parameters representing a short-range correlation in an isospin-spin channel are deduced to be g'{NN} = 0.60 ± 0.02 and g'{NΔ } = 0.24 ± 0.10 with the Chew-Low coupling constant fΔ/fπ = 2. The critical density of the pion condensation is estimated to be ρc 2ρ0 which can be easily realized in the neutron stars. Recent observation of the surface temperature of the neutron star 3C58 supports the pionic cooling mechanism and consequently manifestation of the pion condensation in neutron stars.

  12. IPUMS-International High Precision Population Census Microdata Samples: Balancing the Privacy-Quality Tradeoff by Means of Restricted Access Extracts

    PubMed Central

    McCaa, Robert; Ruggles, Steven; Davern, Michael; Swenson, Tami; Palipudi, Krishna Mohan

    2016-01-01

    A breakthrough in the tradeoff between privacy and data quality has been achieved for restricted access to population census microdata samples. The IPUMS-International website, as of June 2006, offers integrated microdata for 47 censuses, totaling more than 140 million person records, with 13 countries represented. Over the next four years, the global collaboratory led by the Minnesota Population Center, with major funding by the United States National Science Foundation and the National Institutes of Health, will disseminate samples for more than 100 additional censuses. The statistical authorities of more than 50 countries have already entrusted microdata to the project under a uniform memorandum of understanding which permits researchers to obtain custom extracts without charge and to analyze the microdata using their own hardware and software. This paper describes the disclosure control methods used by the IPUMS initiative to protect privacy and to provide access to high precision census microdata samples.

  13. Planning and drilling geothermal energy extraction hole EE-2: a precisely oriented and deviated hole in hot granitic rock

    SciTech Connect

    Helmick, C.; Koczan, S.; Pettitt, R.

    1982-04-01

    During the preceding work (Phase I) of the Hot Dry Rock (HDR) Geothermal Energy Project at Fenton Hill, two holes were drilled to a depth of nearly 3048 m (10,000 ft) and connected by a vertical hydraulic fracture. In this phase, water was pumped through the underground reservoir for approximately 417 days, producing an energy equivalent of 3 to 5 MW(t). Energy Extraction Hole No. 2 (EE-2) is the first of two deep holes that will be used in the Engineering-Resource Development System (Phase II) of the ongoing HDR Project of the Los Alamos National Laboratory. This phase of the work consists of drilling two parallel boreholes, inclined in their lower, open-hole sections at 35/sup 0/ to the vertical and separated by a vertical distance of 366 m (1200 ft) between the inclined parts of the drill holes. The holes will be connected by a series of vertical, hydraulically produced fractures in the Precambrian granitic rock complex. EE-2 was drilled to a depth of 4660 m (15,289 ft), where the bottom-hole temperature is approximately 320/sup 0/C (608/sup 0/F). Directional drilling techniques were used to control the azimuth and deviation of the hole. Upgrading of the temperature capability of existing hardware, and development of new equipment was necessary to complete the drilling of the hole in the extremely hot, hard, and abrasive granitic formation. The drilling history and the problems with bits, directional tools, tubular goods, cementing, and logging are described. A discussion of the problems and recommendations for overcoming them are also presented.

  14. Bump hunting in LHC t t ¯ events

    NASA Astrophysics Data System (ADS)

    Czakon, Michal; Heymes, David; Mitov, Alexander

    2016-12-01

    We demonstrate that a purposefully normalized next-to-next-to-leading-order mt t ¯ differential spectrum can have very small theoretical uncertainty and, in particular, a small sensitivity to the top quark mass. Such an observable can thus be a very effective bump-hunting tool for resonances decaying to t t ¯ events during LHC run II and beyond. To illustrate how the approach works, we concentrate on one specific example of current interest, namely, the possible 750 GeV digamma excess resonance Φ . Considering only theoretical uncertainties, we demonstrate that it is possible to distinguish p p →Φ →t t ¯ signals studied in the recent literature [Hespel, Maltoni, and Vryonidou, J. High Energy Phys. 10 (2016) 016, 10.1007/JHEP10(2016)016] from the pure Standard Model background with very high significance. Alternatively, in the case of nonobservation, a strong upper limit on the decay rate Φ →t t ¯ can be placed.

  15. Franz Joseph Gall and music: the faculty and the bump.

    PubMed

    Eling, Paul; Finger, Stanley; Whitaker, Harry

    2015-01-01

    The traditional story maintains that Franz Joseph Gall's (1758-1828) scientific program began with his observations of schoolmates with bulging eyes and good verbal memories. But his search to understand human nature, in particular individual differences in capacities, passions, and tendencies, can also be traced to other important observations, one being of a young girl with an exceptional talent for music. Rejecting contemporary notions of cognition, Gall concluded that behavior results from the interaction of a limited set of basic faculties, each with its own processes for perception and memory, each with its own territory in both cerebral or cerebellar cortices. Gall identified 27 faculties, one being the sense of tone relations or music. The description of the latter is identical in both his Anatomie et Physiologie and Sur les Fonctions du Cerveau et sur Celles de Chacune de ses Parties, where he provided positive and negative evidences and discussed findings from humans and lower animals, for the faculty. The localization of the cortical faculty for talented musicians, he explained, is demonstrated by a "bump" on each side of the skull just above the angle of the eye; hence, the lower forehead of musicians is broader or squarer than in other individuals. Additionally, differences between singing and nonsinging birds also correlate with cranial features. Gall even brought age, racial, and national differences into the picture. What he wrote about music reveals much about his science and creative thinking.

  16. Evaluation of advanced microelectronic fluxless solder-bump contacts for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Mandal, R. P.

    1976-01-01

    Technology for interconnecting monolithic integrated circuit chips with other components is investigated. The advantages and disadvantages of the current flip-chip approach as compared to other interconnection methods are outlined. A fluxless solder-bump contact technology is evaluated. Multiple solder-bump contacts were formed on silicon integrated circuit chips. The solder-bumps, comprised of a rigid nickel under layer and a compliant solder overlayer, were electroformed onto gold device pads with the aid of thick dry film photomasks. Different solder alloys and the use of conductive epoxy for bonding were explored. Fluxless solder-bump bond quality and reliability were evaluated by measuring the effects of centrifuge, thermal cycling, and high temperature storage on bond visual characteristics, bond electrical continuity, and bond shear tests. The applicability and suitability of this technology for hybrid microelectronic packaging is discussed.

  17. Multi-bump solutions in a neural field model with external inputs

    NASA Astrophysics Data System (ADS)

    Ferreira, Flora; Erlhagen, Wolfram; Bicho, Estela

    2016-07-01

    We study the conditions for the formation of multiple regions of high activity or "bumps" in a one-dimensional, homogeneous neural field with localized inputs. Stable multi-bump solutions of the integro-differential equation have been proposed as a model of a neural population representation of remembered external stimuli. We apply a class of oscillatory coupling functions and first derive criteria to the input width and distance, which relate to the synaptic couplings that guarantee the existence and stability of one and two regions of high activity. These input-induced patterns are attracted by the corresponding stable one-bump and two-bump solutions when the input is removed. We then extend our analytical and numerical investigation to N-bump solutions showing that the constraints on the input shape derived for the two-bump case can be exploited to generate a memory of N > 2 localized inputs. We discuss the pattern formation process when either the conditions on the input shape are violated or when the spatial ranges of the excitatory and inhibitory connections are changed. An important aspect for applications is that the theoretical findings allow us to determine for a given coupling function the maximum number of localized inputs that can be stored in a given finite interval.

  18. Traveling bumps and their collisions in a two-dimensional neural field.

    PubMed

    Lu, Yao; Sato, Yuzuru; Amari, Shun-Ichi

    2011-05-01

    A neural field is a continuous version of a neural network model accounting for dynamical pattern forming from populational firing activities in neural tissues. These patterns include standing bumps, moving bumps, traveling waves, target waves, breathers, and spiral waves, many of them observed in various brain areas. They can be categorized into two types: a wave-like activity spreading over the field and a particle-like localized activity. We show through numerical experiments that localized traveling excitation patterns (traveling bumps), which behave like particles, exist in a two-dimensional neural field with excitation and inhibition mechanisms. The traveling bumps do not require any geometric restriction (boundary) to prevent them from propagating away, a fact that might shed light on how neurons in the brain are functionally organized. Collisions of traveling bumps exhibit rich phenomena; they might reveal the manner of information processing in the cortex and be useful in various applications. The trajectories of traveling bumps can be controlled by external inputs.

  19. Composition of structural carbohydrates in biomass: precision of a liquid chromatography method using a neutral detergent extraction and a charged aerosol detector.

    PubMed

    Godin, Bruno; Agneessens, Richard; Gerin, Patrick A; Delcarte, Jérôme

    2011-09-30

    We adapted and optimized a method to quantify the cellulose, hemicellulose, xylan, arabinan, mannan, galactan contents in lignocellulosic biomass. This method is based on a neutral detergent extraction (NDE) of the interfering biomass components, followed by a sulfuric acid hydrolysis (SAH) of the structural polysaccharides, and a liquid chromatography with charged aerosol detection (LC-CAD) to analyze the released monosaccharides. The first step of this NDE-SAH-LC-CAD method aims at removing all compounds that interfere with the subsequent sulphuric acid hydrolysis or with the subsequent chromatographic quantification of the cellulosic and hemicellulosic monosaccharides. This step includes starch hydrolysis with an analytical thermostable α-amylase followed by an extraction of soluble compounds by a Van Soest neutral detergent solution (NDE). The aim of this paper was to assess the precision of this method when choosing fiber sorghum (Sorghum bicolor (L.) Moench), tall fescue (Festuca arundinacea Schreb.) and fiber hemp (Cannabis sativa L.) as representative lignocellulosic biomass. The cellulose content of fiber sorghum, tall fescue and fiber hemp determined by the NDE-SAH-LC-CAD method were 28.7 ± 1.0, 29.7 ± 1.0 and 43.6 ± 1.2g/100g dry matter, respectively, and their hemicellulose content were 18.6 ± 0.5, 16.5 ± 0.5 and 14.5 ± 0.2g/100g dry matter, respectively. Cellulose, mannan and galactan contents were higher in fiber hemp (dicotyledon) as compared to tall fescue and fiber sorghum (monocotyledons). The xylan, arabinan and total hemicellulose contents were higher in tall fescue and fiber sorghum as compared to fiber hemp. The precision of the NDE-SAH-LC-CAD method was better for polysaccharide concentration levels above 1g/100g dry matter. Galactan analysis offered a lower precision, due to a lower CAD response intensity to galactose as compared to the other monosaccharides. The dispersions of the results (expanded uncertainty) of the NDE

  20. Inelastic deuteron scattering in the Coulomb nuclear interference region: Procedures for estimating the precision of the extracted B(E2) and B(IS2) values

    SciTech Connect

    Duarte, J.L.; Ukita, G.M.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Gomes, L.C.

    1997-10-01

    Taking {sup 94}Mo(d,d{sup {prime}}){sup 94}Mo(2{sub 1}{sup +}) at 13.2 MeV incident energy as an example, a discussion is made about the influence of known experimental uncertainties in the primary data on the precision of the B(E2) and B(IS2) values, extracted in Coulomb-nuclear interference (CNI) measurements in a correlated way. The reflexes of judicious variations of three optical model parameters (around the global prescription) on the extracted values are also examined. The good quality of the data obtained with the S. Paulo Pelletron-Enge-Spectrograph facility is shown to allow for a 2{endash}3{percent} statistical uncertainty level for these quantities, within a distorted-wave Born approximation-deformed optical model approach. The accuracy of relative values of the ratio B(E2)/B(IS2), which may be linked to the ratio of proton to neutron quadrupole moments, is argued to be of similar order. {copyright} {ital 1997} {ital The American Physical Society}

  1. Sensitive and precise HPLC method with back-extraction clean-up step for the determination of sildenafil in rat plasma and its application to a pharmacokinetic study.

    PubMed

    Strach, Beata; Wyska, Elżbieta; Pociecha, Krzysztof; Krupa, Anna; Jachowicz, Renata

    2015-10-01

    A sensitive HPLC method was developed and validated for the determination of sildenafil concentrations in rat plasma (200 μL) using a liquid-liquid extraction procedure and paroxetine as an internal standard. In order to eliminate interferences and improve the peak shape, a back-extraction into an acidic solution was utilized. Chromatographic separation was achieved on a cyanopropyl bonded-phase column with a mobile phase composed of 50 m m potassium dihydrogen phosphate buffer (pH 4.5) and acetonitrile (75:25, v/v), pumped at the flow rate of 1 mL/min. A UV detector was set at 230 nm. A calibration curve was constructed within a concentration range from 10 to 1500 ng/mL. The limit of detection was 5 ng/mL. The inter- and intra-day precisions of the assay were in the ranges 2.91-7.33 and 2.61-6.18%, respectively, and the accuracies for inter- and intra-day runs were within 0.14-3.92 and 0.44-2.96%, respectively. The recovery of sildenafil was 85.22 ± 4.54%. Tests confirmed the stability of sildenafil in plasma during three freeze-thaw cycles and during long-term storage at -20 and -80°C for up to 2 months. The proposed method was successfully applied to a pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Extraction of CO2 from air samples for isotopic analysis and limits to ultra high precision delta18O determination in CO2 gas.

    PubMed

    Werner, R A; Rothe, M; Brand, W A

    2001-01-01

    be as long as 20 min for high precision delta18O measurements. The presence of traces of air in almost all CO2 gases that we analyzed was another major source of error. Nitrogen and oxygen in the ion source of our mass spectrometer (MAT 252, Finnigan MAT, Bremen, Germany) give rise to the production of NO2 at the hot tungsten filament. NO2+ is isobaric with C16O18O+ (m/z 46) and interferes with the delta18O measurement. Trace amounts of air are present in CO2 extracted cryogenically from air at -196 degrees C. This air, trapped at the cold surface, cannot be pumped away quantitatively. The amount of air present depends on the surface structure and, hence, the alteration of the measured delta18O value varies with the surface conditions. For automated high precision measurement of the isotopic composition of CO2 of air samples stored in glass flasks an extraction interface ('BGC-AirTrap') was developed which allows 18 analyses (including standards) per day to be made. For our reference CO2-in-air, stored in high pressure cylinders, the long term (>9 months) single sample precision was 0.012 per thousand for delta13C and 0.019 per thousand for delta18O.

  3. Development of an Indium bump bond process for silicon pixel detectors at PSI

    NASA Astrophysics Data System (ADS)

    Broennimann, Ch.; Glaus, F.; Gobrecht, J.; Heising, S.; Horisberger, M.; Horisberger, R.; Kästli, H. C.; Lehmann, J.; Rohe, T.; Streuli, S.

    2006-09-01

    The hybrid pixel detectors used in the high-energy physics experiments currently under construction use a vertical connection technique, the so-called bump bonding. As the pitch below 100 μm, required in these applications, cannot be fulfilled with standard industrial processes (e.g. the IBM C4 process), an in-house bump bond process using reflowed indium bumps was developed at PSI as part of the R&D for the CMS-pixel detector. The bump deposition on the sensor is performed in two subsequent lift-off steps. As the first photolithographic step a thin under bump metalization (UBM) is sputtered onto bump pads. It is wettable by indium and defines the diameter of the bump. The indium is evaporated via a second photolithographic step with larger openings and is reflowed afterwards. The height of the balls is defined by the volume of the indium. On the readout chip only one photolithographic step is carried out to deposit the UBM and a thin indium layer for better adhesion. After mating both parts a second reflow is performed for self-alignment and obtaining high mechanical strength. For the placement of the chips a manual and an automatic machine were constructed. The former is very flexible in handling different chip and module geometries but has a limited throughput while the latter features a much higher grade of automatization and is therefore much more suited for producing hundreds of modules with a well-defined geometry. The reliability of this process was proven by the successful construction of the PILATUS detector. The construction of PILATUS 6M (60 modules) and the CMS pixel barrel (roughly 800 modules) has started in early 2006.

  4. The σ-bump in elliptical galaxies - a signature of major mergers?

    NASA Astrophysics Data System (ADS)

    Schauer, Anna T. P.; Schulze, Felix; Remus, Rhea-Silvia; Burkert, Andreas

    2017-03-01

    The stellar radial velocity dispersion profiles of elliptical galaxies can be well described by a power-law σ(r)~r -β. We analyze a set of elliptical galaxies formed by major mergers of isolated disk galaxies with mass ratios of 1:1 and 3:1 for several orbital configurations (Johansson et al. 2009). The galaxies in our sample show a deviation from the power-law at 1 - 3R eff, which we term the σ-bump (Schauer et al. 2014). This feature is most prominent in remnants of 1:1 mergers and weakens for remnants of mergers with smaller mass ratios, indicating that the σ-bump is a signature of an equal mass merger. The σ-bump does not vanish with time but stays constant once it has formed, in contrast to shells. It can be seen under all projections, making it an observable feature in the outskirts of elliptical galaxies. We indeed identify three possible σ-bump candidates in the sample of 12 SLUGGS-survey ellipticals studied by Pota et al. (2013), who use globular clusters as tracers for the outer stellar halos (see Schauer et al. 2014, for more details). For further comparisons, we here provide for the first time a two dimensional map of the velocity dispersion of one simulated σ-bump galaxy, to identify the σ-bump in observations of kinematic maps out to several R eff. The σ-bump appears as a global ring-like feature if seen face-on and as an extended box-like feature in its edge-on projection.

  5. Pulse Propagation Characteristics of a Multi-layered Printed Circuit Board with a Via and a Bump

    NASA Astrophysics Data System (ADS)

    Kobayashi, Daisuke; Furukawa, Shinichi; Hinata, Takashi

    In this paper, we numerically analyze the transient response of pulse propagation in a multi-layered printed circuit board with a via and a bump. FDTD method is used for our models. It is found from numerical results that; (1) Even if the lengths of the striplines are equal, pulse waveforms passed through a via and a bump are different according to the direction of the striplines. (2) The propagating pulses are influenced by the pad size connecting the bump rather than the bump size. (3) For the model consisted of a via and a bump pulse distortion of responses are substantially improved, if the smaller bump part (including pads) can be designed.

  6. A comparison of new thick photoresists for solder bumping

    NASA Astrophysics Data System (ADS)

    Flack, Warren W.; Nguyen, Ha-Ai; Neisser, Mark; Sison, Ernesto; Lu, Ping Hung; Plass, Bob; Makii, Toshimichi; Murakami, Yoshio

    2005-05-01

    The performance requirements for ultra-thick photoresists are rapidly increasing with the dramatic growth in lithographic applications that require electroplating processes. Two of the main applications for ultra-thick photoresists are advanced packaging and nanotechnology (MEMS). Flipchip packaging has become widely adopted to address electrical device performance and chip form factor considerations. The growth in the nanotechnology market is driven by a wide range of products, which include accelerometers, ink jet print heads, biomedical sensors and optical switches. The requirements of thick photoresists for solder electroplating are significantly different from typical thin photoresists used in front end of line applications. As the photoresist becomes thicker, processing times increase for many process steps. Photospeed gets slower due to the requirements for more chemical reactions per area of coating. Coating uniformity and edge bead control also become more difficult as photoresist films get thicker and time delay issues between process steps can arise. This result has led to the requirement for special photoresist formulations for thick photoresist films. These are traditionally positive tone DNQ-Novolak materials such as AZ 50XT. Such materials can be designed to work for a particular range of thicknesses, but as the desired thicknesses increases the processing times can become very long for high volume manufacturing. Many new bumping schemes require photoresists in a 60 to 70 μm thickness range. While DNQ-Novolak chemistry can work, there is a desire for faster alternatives to improve total cost of ownership (COO) of the lithography cell. In order to have fast photospeeds and reasonable processing times a chemistry that is very photo efficient is needed. Negative tone cross linking chemistries, which can give tens of thousands of chemical events for one photochemical event, provide excellent photospeed and process times. Positive tone chemically

  7. Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer

    DOEpatents

    Chiu, Rong-Shi Paul; Hasz, Wayne Charles; Johnson, Robert Alan; Lee, Ching-Pang; Abuaf, Nesim

    2002-01-01

    An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.

  8. Life scripts for emotionally charged autobiographical memories: A cultural explanation of the reminiscence bump.

    PubMed

    Haque, Shamsul; Hasking, Penelope A

    2010-10-01

    Two studies examined the ability of the life script account to explain the reminiscence bump for emotionally charged autobiographical memories among Malaysian participants. In Study 1 volunteers, aged 50-90 years, participated in a two-phased task. In the first phase, participants estimated the timing of 11 life events (both positive and negative) that may occur in a prototypical life course within their own culture. Two weeks later the participants retrieved the same set of events from their lives and reported how old they were when those events occurred. In the second study 92 undergraduate students produced life scripts for the same 11 events. The findings revealed reminiscence bumps in both life script and retrieval curves for the memories judged happiest, most important, most in love, and most jealous. A reminiscence bump was also noted for success, although this was later in the lifespan than other reminiscence bumps. It was suggested that the life scripts can be used as an alternative account for the reminiscence bump, for highly positive and occasionally for negative autobiographical memories.

  9. Application of robust color composite fringe in flip-chip solder bump 3-D measurement

    NASA Astrophysics Data System (ADS)

    Kuo, Chung-Feng Jeffrey; Wu, Han-Cheng

    2017-04-01

    This study developed a 3-D measurement system based on flip-chip solder bump, used fringes with different modulation intensities in color channels, in order to produce color composite fringe with robustness, and proposed a multi-channel composite phase unwrapping algorithm, which uses fringe modulation weights of different channels to recombine the phase information for better measurement accuracy and stability. The experimental results showed that the average measurement accuracy is 0.43μm and the standard deviation is 1.38 μm. The results thus proved that the proposed 3-D measurement system is effective in measuring a plane with a height of 50 μm. In the flip-chip solder bump measuring experiment, different fringe modulation configurations were tested to overcome the problem of reflective coefficient between the flip-chip base board and the solder bump. The proposed system has a good measurement results and robust stability in the solder bump measurement, and can be used for the measurement of 3-D information for micron flip-chip solder bump application.

  10. On the Application of Contour Bumps for Transonic Drag Reduction(Invited)

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Owens, Lewis R.

    2005-01-01

    The effect of discrete contour bumps on reducing the transonic drag at off-design conditions on an airfoil have been examined. The research focused on fully-turbulent flow conditions, at a realistic flight chord Reynolds number of 30 million. State-of-the-art computational fluid dynamics methods were used to design a new baseline airfoil, and a family of fixed contour bumps. The new configurations were experimentally evaluated in the 0.3-m Transonic Cryogenic Tunnel at the NASA Langley Research center, which utilizes an adaptive wall test section to minimize wall interference. The computational study showed that transonic drag reduction, on the order of 12% - 15%, was possible using a surface contour bump to spread a normal shock wave. The computational study also indicated that the divergence drag Mach number was increased for the contour bump applications. Preliminary analysis of the experimental data showed a similar contour bump effect, but this data needed to be further analyzed for residual wall interference corrections.

  11. A gas chromatography/combustion/isotope ratio mass spectrometry system for high-precision delta13C measurements of atmospheric methane extracted from ice core samples.

    PubMed

    Behrens, Melanie; Schmitt, Jochen; Richter, Klaus-Uwe; Bock, Michael; Richter, Ulrike C; Levin, Ingeborg; Fischer, Hubertus

    2008-10-01

    Past atmospheric composition can be reconstructed by the analysis of air enclosures in polar ice cores which archive ancient air in decadal to centennial resolution. Due to the different carbon isotopic signatures of different methane sources high-precision measurements of delta13CH4 in ice cores provide clues about the global methane cycle in the past. We developed a highly automated (continuous-flow) gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) technique for ice core samples of approximately 200 g. The methane is melt-extracted using a purge-and-trap method, then separated from the main air constituents, combusted and measured as CO2 by a conventional isotope ratio mass spectrometer. One CO2 working standard, one CH4 and two air reference gases are used to identify potential sources of isotope fractionation within the entire sample preparation process and to enhance the stability, reproducibility and accuracy of the measurement. After correction for gravitational fractionation, pre-industrial air samples from Greenland ice (1831 +/- 40 years) show a delta13C(VPDB) of -49.54 +/- 0.13 per thousand and Antarctic samples (1530 +/- 25 years) show a delta13C(VPDB) of -48.00 +/- 0.12 per thousand in good agreement with published data.

  12. Imaging of lumps and bumps in pediatric patients: an algorithm for appropriate imaging and pictorial review.

    PubMed

    Morrow, Michael S; Oliveira, Amy M

    2014-08-01

    Superficial lumps and bumps are a common presenting complaint in the pediatric patient population. Although encountered frequently, the path to a definitive diagnosis is not always a straightforward one. Imaging offers a valuable tool to aid in this diagnostic challenge. Radiologists must be familiar with pediatric lumps and bumps, their imaging characteristics, and the best way to further evaluate challenging clinical presentations. This will not only allow the radiologist to serve as a valuable asset to the treating physician in choosing the most appropriate imaging modality but also help in accurate diagnosis, all while ensuring the "image gently" principle. An algorithm for imaging in the pediatric patient with lumps and bumps has been presented in this article and a few example entities along with their imaging findings have also been reviewed.

  13. A 90 GHz Amplifier Assembled Using a Bump-Bonded InP-Based HEMT

    NASA Technical Reports Server (NTRS)

    Pinsukanjana, Paul R.; Samoska, Lorene A.; Gaier, Todd C.; Smith, R. Peter; Ksendzov, Alexander; Fitzsimmons, Michael J.; Martin, Suzanne C.

    1998-01-01

    We report on the performance of a novel W-band amplifier fabricated utilizing very compact bump bonds. We bump-bonded a high-speed, low-noise InP high electron mobility transistor (HEMT) onto a separately fabricated passive circuit having a GaAs substrate. The compact bumps and small chip size were used for efficient coupling and maximum circuit design flexibility. This new quasi-monolithic millimeter-wave integrated circuit (Q-MMIC) amplifier exhibits a peak gain of 5.8 dB at approx. 90 GHz and a 3 dB bandwidth of greater than 25%. To our knowledge, this is the highest frequency amplifier assembled using bump-bonded technology. Our bump-bonding technique is a useful alternative to the high cost of monolithic millimeter-wave integrated circuits (MMIC's). Effects of the bumps on the circuit appear to be minimal. We used the simple matching circuit for demonstrating the technology - future circuits would have all of the elements (resistors, via holes, bias lines, etc.) included 'in conventional MMIC's. Our design in different from other investigators' efforts in that the bumps are only 8 microns thick by 15 microns wide. The bump sizes were sufficiently small that the devices, originally designed for W-band hybrid circuits, could be bonded without alteration. Figure 3 shows the measured and simulated magnitude of S-parameters from 85-120 GHz, of the InP HEMT bump-bonded to the low noise amplifier (LNA) passive. The maximum gain is 5.8 dB at approx. 90 GHz, and gain extends to 117 GHz. Measurement of a single device (without matching networks) shows approx. 1 dB of gain at 90 GHz. The measured gain of the amplifier agrees well with the design in the center of the measurement band, and the agreement falls off at the band edges. Since no accommodation for the bump-bonding parasitics was made in the design, the result implies that the parasitic elements associated with the bonding itself do not dominate the performance of the LNA circuit. It should be noted that this

  14. Spalling of Cu3Sn intermetallics in high-lead 95Pb5Sn solder bumps on Cu under bump metallization during solid-state annealing

    NASA Astrophysics Data System (ADS)

    Jang, Jin-Wook; Ramanathan, Lakshmi N.; Lin, Jong-Kai; Frear, Darrel R.

    2004-06-01

    We report the spalling of Cu3Sn intermetallics in high-lead 95Pb5Sn solder bumps on Cu under bump metallization (UBM) during solid state annealing. Upon reflow, the Cu3Sn intermetallics formed on Cu UBM. However, after solid state annealing at 170 °C, the Cu3Sn intermetallics spalled off from Cu UBM and the Pb phase filled the gap between the Cu3Sn intermetallics and Cu UBM. This is primarily explained by the loss of chemical adhesion between the Cu3Sn intermetallics and Cu UBM due to no additional chemical reaction. Thermodynamic principles are used to interpret the spalling phenomenon and the analysis showed that the interfacial free energy without spalling is greater than that with spalling after solid-state annealing. Spalling of the Cu3Sn intermetallics initiated at an open interface such as the edge of Cu UBM and finally extended to the flat interface at a slower rate.

  15. Numerical simulation of bump-on-tail instability with source and sink

    SciTech Connect

    Berk, H.L.; Pekker, M.; Breizman, B.N. |

    1995-02-01

    This paper presents results of the simulations of the bump-on-tail instability with a weak source and sink. This problem has been posed as a paradigm for the important problem in controlled fusion, that of the unstable excitation of Alfven waves in a tokamak by resonant energetic alpha particles. The source of alpha particles is the controlled fusion reaction produced by the background plasma and the sink is the collisional transport processes that slow down or scatter the energetic particles. The mathematical techniques that are needed to address this applied problem can be demonstrated in the much simpler bump-on-tail problem, which is explained in this paper.

  16. Equations of state and bump Cepheids. II - Non-linear results

    NASA Astrophysics Data System (ADS)

    Kanbur, Shashi M.

    1992-06-01

    The Hummer-Mihalas-Dappen (MHD, 1988) and a simple Saha type equation of state are used to obtain nonlinear pulsation characteristics of a grid of models spanning the Hertzsprung sequence (Cox, 1974). The grid of models is taken from Simon and Davis (1983) who used the Los Alamos equation of state in their computations. The result is a sensitivity analysis of theoretical nonlinear bump Cepheid models to the equation of state employed in the calculation. The results obtained with these equations of state are different, though not enough to resolve the Cepheid bump mass discrepancy (Stobie 1969; Simon and Schmidt, 1976; Simon, 1986).

  17. Design of a local bump feedback system for a variably polarizing undulator.

    PubMed

    Bizen, T; Shimada, T; Takao, M; Hiramatu, Y; Miyahara, Y

    1998-05-01

    A local bump feedback system is under construction to correct the orbit distortion caused by the magnetic field errors of a double-array undulator used to generate linear and circular polarization of light for a soft X-ray beamline. The local bump orbit is created by steering coils several turns long and four sets of steering magnets. The kick angle of the long steering coils and the steering magnets is determined according to the motion of the undulator and by detecting the beam position.

  18. Trapping saturation of the bump-on-tail instability and electrostatic harmonic excitation in earth's foreshock

    NASA Technical Reports Server (NTRS)

    Klimas, Alexander J.

    1990-01-01

    The Vlasov simulation is used to examine the trapping saturation of the bump-on-tail instability both with and without mode-mode coupling and subsequent harmonic excitation. It is found that adding the pumped harmonic modes leads to a significant difference in the behavior of the phase-space distribution function near the unstable bump at the saturation time of the instability. The pumped modes permit rapid plateau formation on the space-averaged velocity distribution, in effect preventing the onset of the quasi-linear velocity-diffusion saturation mechanism.

  19. Precision Measurement.

    ERIC Educational Resources Information Center

    Radius, Marcie; And Others

    The manual provides information for precision measurement (counting of movements per minute of a chosen activity) of achievement in special education students. Initial sections give guidelines for the teacher, parent, and student to follow for various methods of charting behavior. It is explained that precision measurement is a way to measure the…

  20. The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples

    USGS Publications Warehouse

    Mckee, Anna M.; Spear, Stephen F.; Pierson, Todd W.

    2015-01-01

    Isolation of environmental DNA (eDNA) is an increasingly common method for detecting presence and assessing relative abundance of rare or elusive species in aquatic systems via the isolation of DNA from environmental samples and the amplification of species-specific sequences using quantitative PCR (qPCR). Co-extracted substances that inhibit qPCR can lead to inaccurate results and subsequent misinterpretation about a species’ status in the tested system. We tested three treatments (5-fold and 10-fold dilutions, and spin-column purification) for reducing qPCR inhibition from 21 partially and fully inhibited eDNA samples collected from coastal plain wetlands and mountain headwater streams in the southeastern USA. All treatments reduced the concentration of DNA in the samples. However, column purified samples retained the greatest sensitivity. For stream samples, all three treatments effectively reduced qPCR inhibition. However, for wetland samples, the 5-fold dilution was less effective than other treatments. Quantitative PCR results for column purified samples were more precise than the 5-fold and 10-fold dilutions by 2.2× and 3.7×, respectively. Column purified samples consistently underestimated qPCR-based DNA concentrations by approximately 25%, whereas the directional bias in qPCR-based DNA concentration estimates differed between stream and wetland samples for both dilution treatments. While the directional bias of qPCR-based DNA concentration estimates differed among treatments and locations, the magnitude of inaccuracy did not. Our results suggest that 10-fold dilution and column purification effectively reduce qPCR inhibition in mountain headwater stream and coastal plain wetland eDNA samples, and if applied to all samples in a study, column purification may provide the most accurate relative qPCR-based DNA concentrations estimates while retaining the greatest assay sensitivity.

  1. Method to Improve Indium Bump Bonding via Indium Oxide Removal Using a Multi-Step Plasma Process

    NASA Technical Reports Server (NTRS)

    Greer, H. Frank (Inventor); Jones, Todd J. (Inventor); Vasquez, Richard P. (Inventor); Hoenk, Michael E. (Inventor); Dickie, Matthew R. (Inventor); Nikzad, Shouleh (Inventor)

    2012-01-01

    A process for removing indium oxide from indium bumps in a flip-chip structure to reduce contact resistance, by a multi-step plasma treatment. A first plasma treatment of the indium bumps with an argon, methane and hydrogen plasma reduces indium oxide, and a second plasma treatment with an argon and hydrogen plasma removes residual organics. The multi-step plasma process for removing indium oxide from the indium bumps is more effective in reducing the oxide, and yet does not require the use of halogens, does not change the bump morphology, does not attack the bond pad material or under-bump metallization layers, and creates no new mechanisms for open circuits.

  2. Precision Medicine

    PubMed Central

    Cholerton, Brenna; Larson, Eric B.; Quinn, Joseph F.; Zabetian, Cyrus P.; Mata, Ignacio F.; Keene, C. Dirk; Flanagan, Margaret; Crane, Paul K.; Grabowski, Thomas J.; Montine, Kathleen S.; Montine, Thomas J.

    2017-01-01

    Three key elements to precision medicine are stratification by risk, detection of pathophysiological processes as early as possible (even before clinical presentation), and alignment of mechanism of action of intervention(s) with an individual's molecular driver(s) of disease. Used for decades in the management of some rare diseases and now gaining broad currency in cancer care, a precision medicine approach is beginning to be adapted to cognitive impairment and dementia. This review focuses on the application of precision medicine to address the clinical and biological complexity of two common neurodegenerative causes of dementia: Alzheimer disease and Parkinson disease. PMID:26724389

  3. Qualification test report bump protection hat (subassembly of T020/M509 head protective assembly)

    NASA Technical Reports Server (NTRS)

    Willis, D. B.

    1972-01-01

    The bump protection hat (BPH) was subjected to impact testing in which it underwent three impacts at 35 foot-pounds of energy. The impacts generated stress cracks, but no penetration. All impacts resulted in deflections of less than one-half inch. It was shown that the BPH is qualified for Skylab and the rescue vehicle.

  4. Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods.

    PubMed

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J Sunil

    2014-08-01

    We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called "Patient Recursive Survival Peeling" is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called "combined" cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication.

  5. Microstructure of lead-free solder bumps using laser reflow soldering

    NASA Astrophysics Data System (ADS)

    Nishikawa, Hiroshi; Iwata, Noriya; Kubota, Shinya

    2014-08-01

    Compared with conventional reflow soldering using a furnace, laser reflow soldering brings advantages such as localized heating, rapid rise and fall in temperature, non-contact soldering and the fact that it is an easily automated process. In this study, to elucidate the characteristics of laser reflow soldering, we investigated the microstructures of a Sn-Ag-Cu solder bump and a Sn-Bi solder bump on a Cu pad after reflow and aging. In the as-soldered condition, we found obvious microstructural refinement and a thin intermetallic compound (IMC) layer at the interface for both the Sn-Ag-Cu solder bump and the Sn-Bi solder bump using laser reflow soldering. Also, during isothermal aging, the total thickness of the IMC layer increased, and a distinct second layer was observed at the interface between the Cu pad and the first layer, regardless of the soldering method. In particular, the growth of the IMC layer was faster in the case of the laser reflow soldering than in the case of the conventional reflow soldering.

  6. Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods

    PubMed Central

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil

    2015-01-01

    We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called “Patient Recursive Survival Peeling” is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called “combined” cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication. PMID:26997922

  7. Photogrammetric 3d Acquisition and Analysis of Medicamentous Induced Pilomotor Reflex ("goose Bumps")

    NASA Astrophysics Data System (ADS)

    Schneider, D.; Hecht, A.

    2016-06-01

    In a current study at the University Hospital Dresden, Department of Neurology, the autonomous function of nerve fibres of the human skin is investigated. For this purpose, a specific medicament is applied on a small area of the skin of a test person which results in a local reaction (goose bumps). Based on the extent of the area, where the stimulation of the nerve fibres is visible, it can be concluded how the nerve function of the skin works. The aim of the investigation described in the paper is to generate 3D data of these goose bumps. Therefore, the paper analyses and compares different photogrammetric surface measurement techniques in regard to their suitability for the 3D acquisition of silicone imprints of the human skin. Furthermore, an appropriate processing procedure for analysing the recorded point cloud data is developed and presented. It was experimentally proven that by using (low-cost) photogrammetric techniques medicamentous induced goose bumps can be acquired in three dimensions and can be analysed almost fully automatically from the perspective of medical research questions. The relative accuracy was determined with 1% (RMSE) of the area resp. the volume of an individual goose bump.

  8. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H2O Dissociation

    NASA Astrophysics Data System (ADS)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé

    2017-08-01

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we have assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope-Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100-1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST-COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490-1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L(Bump) ≈ 7 × 1029 erg s-1. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ o = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H2 excited by electron -impact. We show that this Bump makes up between 5%-50% of the total FUV continuum emission in the 1490-1690 Å band and emits roughly 10%-80% of the total fluorescent H2 luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Lyα photons. We argue that the most likely mechanism is Lyα-driven dissociation of H2O in the inner disk, r

  9. Precision metrology.

    PubMed

    Jiang, X; Whitehouse, D J

    2012-08-28

    This article is a summary of the Satellite Meeting, which followed on from the Discussion Meeting at the Royal Society on 'Ultra-precision engineering: from physics to manufacture', held at the Kavli Royal Society International Centre, Chicheley Hall, Buckinghamshire, UK. The meeting was restricted to 18 invited experts in various aspects of precision metrology from academics from the UK and Sweden, Government Institutes from the UK and Germany and global aerospace industries. It examined and identified metrology problem areas that are, or may be, limiting future developments in precision engineering and, in particular, metrology. The Satellite Meeting was intended to produce a vision that will inspire academia and industry to address the solutions of those open-ended problems identified. The discussion covered three areas, namely the function of engineering parts, their measurement and their manufacture, as well as their interactions.

  10. Enigmatic extinction: An investigation of the 2175 A extinction bump in M101, the Pinwheel Galaxy

    NASA Astrophysics Data System (ADS)

    Danowski, Meredith Elaine

    Dust is a critical component of the universe, affecting energy flow and the dynamics of star and planetary disk evolution. The light we measure when observing the universe is absorbed and scattered (extinguished) by dust. Studies indicate that active formation of high mass stars modifies the ultraviolet (UV) dust extinction curve, removing the characteristic bump at 2175 A. For a half century, the source of this bump has not been positively identified. Dust grain models suggest that a leading contender is polycyclic aromatic hydrocarbons. The spiral galaxy M101 is an ideal laboratory, with many HII regions, plus steep metallicity and ionization gradients. The role of environment in this enigmatic "bump-less'' extinction was investigated in M101 with observations from both a sounding rocket mission and the Hubble Space Telescope (HST).. The Interstellar Absorption Gradient Experiment Rocket (IMAGER) mission was designed to probe the correlations between dust extinction and environment through photometric observations of the apparent strengths of the 2175 A bump and UV continuum in M101. IMAGER flew and collected data on November 21, 2012. Although in-flight anomalies caused significant cross-talk, the mission demonstrated the feasibility of simultaneous imaging in three medium-width UV bands. With angular resolution poorer than one arcminute in all bands, and inadequate signal in the field-of-view, these data proved unsuitable for aperture photometry. This analysis method cannot be used with these data to draw conclusions about the correlations between environment and ultraviolet extinction. Spectroscopic observations were performed with the Space Telescope Imaging Spectrograph (STIS) instrument aboard the HST. With additional data from the Spitzer Space Telescope, and radiative transfer and stellar evolution models, the correlation between the bump and the aromatic features was probed across HII regions spanning wide ranges of metallicity and radiation field

  11. CFD-Predicted Tile Heating Bump Factors Due to Tile Overlay Repairs

    NASA Technical Reports Server (NTRS)

    Lessard, Victor R.

    2006-01-01

    A Computational Fluid Dynamics investigation of the Orbiter's Tile Overlay Repair (TOR) is performed to assess the aeroheating Damage Assessment Team's (DAT) existing heating correlation method for protuberance interference heating on the surrounding thermal protection system. Aerothermodynamic heating analyses are performed for TORs at the design reference damage locations body points 1800 and 1075 for a Mach 17.9 and a=39deg STS-107 flight trajectory point with laminar flow. Six different cases are considered. The computed peak heating bump factor on the surrounding tiles are below the DAT's heating bump factor values for smooth tile cases. However, for the uneven tiles cases the peak interference heating is shown to be considerably higher than the existing correlation prediction.

  12. Light curves for bump Cepheids computed with a dynamically zoned pulsation code

    NASA Technical Reports Server (NTRS)

    Adams, T. F.; Castor, J. I.; Davis, C. G.

    1980-01-01

    The dynamically zoned pulsation code developed by Castor, Davis, and Davison was used to recalculate the Goddard model and to calculate three other Cepheid models with the same period (9.8 days). This family of models shows how the bumps and other features of the light and velocity curves change as the mass is varied at constant period. The use of a code that is capable of producing reliable light curves demonstrates that the light and velocity curves for 9.8 day Cepheid models with standard homogeneous compositions do not show bumps like those that are observed unless the mass is significantly lower than the 'evolutionary mass.' The light and velocity curves for the Goddard model presented here are similar to those computed independently by Fischel, Sparks, and Karp. They should be useful as standards for future investigators.

  13. Light curves for bump Cepheids computed with a dynamically zoned pulsation code

    NASA Astrophysics Data System (ADS)

    Adams, T. F.; Castor, J. I.; Davis, C. G.

    1980-05-01

    The dynamically zoned pulsation code developed by Castor, Davis, and Davison was used to recalculate the Goddard model and to calculate three other Cepheid models with the same period (9.8 days). This family of models shows how the bumps and other features of the light and velocity curves change as the mass is varied at constant period. The use of a code that is capable of producing reliable light curves demonstrates that the light and velocity curves for 9.8 day Cepheid models with standard homogeneous compositions do not show bumps like those that are observed unless the mass is significantly lower than the 'evolutionary mass.' The light and velocity curves for the Goddard model presented here are similar to those computed independently by Fischel, Sparks, and Karp. They should be useful as standards for future investigators.

  14. Design, modeling and test of a novel speed bump energy harvester

    NASA Astrophysics Data System (ADS)

    Todaria, Prakhar; Wang, Lirong; Pandey, Abhishek; O'Connor, James; McAvoy, David; Harrigan, Terence; Chernow, Barbara; Zuo, Lei

    2015-04-01

    Speed bumps are commonly used to control the traffic speed and to ensure the safety of pedestrians. This paper proposes a novel speed bump energy harvester (SBEH), which can generate large-scale electrical energy up to several hundred watts when the vehicle drives on it. A unique design of the motion mechanism allows the up-and-down pulse motion to drive the generator into unidirectional rotation, yielding time times more energy than the traditional design. Along with the validation of energy harvesting, this paper also addresses the advantages of this motion mechanism over the traditional design, using physical modeling and simulation. Up to 200 watts electrical peak power in one phase of three-phase generator during in-field test can be regenerated when a sedan passage car passes through the SBEH prototype at 2 km/h.

  15. Room-Temperature Cu Microjoining with Ultrasonic Bonding of Cone-Shaped Bump

    NASA Astrophysics Data System (ADS)

    Qiu, Lijing; Ikeda, Akihiro; Noda, Kazuhiro; Nakai, Seiya; Asano, Tanemasa

    2013-04-01

    Room-temperature Cu-Cu bonding was realized by applying ultrasonic vibration together with compression force to the bonding of a cone-shaped bump. The size of the bump was about 10 µm. The connection pitch was 20 µm. Mechanical characterization showed that the bonding strength increases with vibration amplitude and depends on the thickness of the counter electrode made of Cu. The thickness dependence of the bonding strength was found to be caused by an increase in the surface roughness of the counter electrode. It was shown that the bonding strength meets the requirement from application to products. Electrical characterization using a daisy-chain connection test demonstrated that more than 10,000 pins on a chip can be connected with a sufficiently low resistance.

  16. Interstellar extinction in Orion: variation of the strength of the ultraviolet bump across the complex

    NASA Astrophysics Data System (ADS)

    Beitia-Antero, Leire; Gómez de Castro, Ana I.

    2017-08-01

    There is growing observational evidence of dust coagulation in the dense filaments within molecular clouds. Infrared observations show that the dust grain size distribution becomes shallower and the relative fraction of small to large dust grains decreases as the local density increases. Ultraviolet (UV) observations show that the strength of the 2175-Å feature, the so-called UV bump, also decreases with cloud density. In this paper, we apply the technique developed for a study of Taurus to the Orion molecular cloud and confirm that the UV bump decreases over the densest cores of the cloud as well as in the heavily UV-irradiated λ Orionis shell. The study has been extended to the Rosette cloud with uncertain results, given the distance (1.3 kpc).

  17. Precision translator

    DOEpatents

    Reedy, Robert P.; Crawford, Daniel W.

    1984-01-01

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  18. Precision translator

    DOEpatents

    Reedy, R.P.; Crawford, D.W.

    1982-03-09

    A precision translator for focusing a beam of light on the end of a glass fiber which includes two turning fork-like members rigidly connected to each other. These members have two prongs each with its separation adjusted by a screw, thereby adjusting the orthogonal positioning of a glass fiber attached to one of the members. This translator is made of simple parts with capability to keep adjustment even in condition of rough handling.

  19. Precision Cosmology

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.

    2017-04-01

    Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson–Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.

  20. Multipole error analysis using local 3-bump orbit data in Fermilab Recycler

    SciTech Connect

    Yang, M.J.; Xiao, M.; /Fermilab

    2005-05-01

    The magnetic harmonic errors of the Fermilab Recycler ring were examined using circulating beam data taken with closed local orbit bumps. Data was first parsed into harmonic orbits of first, second, and third order. Each of which was analyzed for sources of magnetic errors of corresponding order. This study was made possible only with the incredible resolution of a new BPM system that was commissioned after June of 2003.

  1. Effect of overshooting mixing below the base of the convective envelope on the RGB bump

    NASA Astrophysics Data System (ADS)

    Li, Yan

    2015-08-01

    When a low mass star evolves up along the red giant branch (RGB), it will develop much more extensive convection in its envelope. Such envelope convection penetrates rapidly inward into the stellar interior, and finally results in a composition discontinuity when it develops into the chemical gradient region. Subsequently, when the out-moving hydrogen burning-shell encounters the newly-formed composition discontinuity, the star will develops the so-called RGB bump on the HR diagram. Therefore, comparisons of characteristics of the RGB bump are crucial for the overshooting mixing below the base of the stellar convective envelope.In order to treat overshooting convection below the base of the convective envelope, we used the k-omega model of Li (2012) in RGB models of a 1Msun star. We solved equations of the k-omega model in the stellar envelope, and then found that the turbulent kinetic energy and the frequency of turbulence decay in the overshooting region according approximately to power laws of pressure. The decaying indices are found to be sensitive to the parameters of the k-omega model. We adopted a modified overshooting mixing model of Zhang (2013) to investigate the overshooting mixing below the base of the convection zone. We found that the RGB bump appears at a significantly lower luminosity when using the k-omega model than when using the standard mixing-length theory, and its duration is also considerably reduced. Due to extra dredge-up effect of the overshooting mixing, we obtained a little hotter red giant branch using the k-omega model than the one using the standard MLT. We found that the position and duration of the RGB bump sensitively depend on the decaying law of turbulence in the overshooting region. These predictions could be good candidates for asteroseismology of RGB stars.

  2. The instability of viscous self-gravitating protostellar disk affected by density bump

    NASA Astrophysics Data System (ADS)

    Elyasi, Mahjubeh; Nejad-Asghar, Mohsen

    2017-09-01

    In this work, we study the instability of viscous self-gravitating protostellar disk affected by infalling Low-mass condensations (LMCs) from the envelope of collapsing molecular cloud cores. The infalling low-mass-condensations (LMCs) are considered as density bumps through the nearly Keplerian viscous accretion disk, and their evolutions are analyzed by using the linear perturbation approximation. We investigate occurrence of instability in the evolution of these density bumps. We find the unstable regions of the bumped accretion disk and evaluate the growth time scale (GTS) of the instability. We also study the radial accretion and azimuthal rotation in these unstable regions. The results show that the GTS will be minimum at a special radius so that the unstable regions can be divided in two parts (inner and outer regions). The perturbed radial and azimuthal velocities in the inner unstable regions are strengthened, while in the outer unstable regions are weakened. Decreasing the radial and azimuthal velocities in the outer unstable regions may lead to coagulation of matters. This effect can help the fragmentation of the disk and formation of the self-gravitating bound objects.

  3. Blue wings and bumps via Fermi-like acceleration of Ly α photons across shocks

    NASA Astrophysics Data System (ADS)

    Chung, Andrew S.; Dijkstra, Mark; Ciardi, Benedetta; Gronke, Max

    2016-01-01

    We explore the impact of Fermi-like acceleration of Lyman α (Ly α) photons across shock fronts on the observed Ly α spectral line shape. We first confirm the result of Neufeld & McKee (1988) that this mechanism gives rise to extended blue wings which may have been observed in some radio galaxies. Our Monte Carlo radiative transfer calculations further show that in a minor modification of the shell model, in which we add an additional static shell of hydrogen, this process can naturally explain the small blue bumps observed in a subset of Ly α-emitting galaxies, which have been difficult to explain with conventional shell models. Blue bumps can be produced with an additional column density of static hydrogen as small as N^static_{H I} ≪ N^shell_{H I}, and typically occur at roughly the outflow velocity of the shell. In our model the spectra of so-called blue-bump objects might reflect an evolutionary stage in which the outflows regulating the escape of Ly α photons are still engulfed within a static interstellar medium.

  4. Real-time detection and resolution of atom bumping in crystallographic models.

    PubMed

    Liu, Yu

    2017-09-01

    A basic principle in crystal structure determination is that there should be proper distances between adjacent atoms. Therefore, detection of atom bumping is of fundamental significance in structure determination, especially in the direct-space method where crystallographic models are just randomly generated. Presented in this article is an algorithm that detects atom bonding in a unit cell based on the sweep and prune algorithm of axis-aligned bounding boxes and running in the O(n log n) time bound, where n is the total number of atoms in the unit cell. This algorithm only needs the positions of individual atoms in the unit cell and does not require any prior knowledge of existing bonds, and is thus suitable for modelling of inorganic crystals where the bonding relations are often unknown a priori. With this algorithm, computation routines requiring bonding information, e.g. anti-bumping and computation of coordination numbers and valences, can be performed efficiently. As an example application, an evaluation function for atom bumping is proposed, which can be used for real-time elimination of crystallographic models with unreasonably short bonds during the procedure of global optimization in the direct-space method.

  5. Experiments to measure ablative Richtmyer-Meshkov growth of Gaussian bumps in plastic capsules

    SciTech Connect

    Loomis, Eric; Batha, Steve; Sedillo, Tom; Evans, Scott; Sorce, Chuck; Landen, Otto; Braun, Dave

    2010-06-02

    Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF) due to ablator and fuel non-uniformities have been of primary concern to the ICF program since its inception. To achieve thermonuclear ignition at Megajoule class laser systems such as the NIF, targets must be designed for high implosion velocities, which requires higher in-flight aspect ratios (IFAR) and diminished shell stability. Controlling capsule perturbations is thus of the utmost importance. Recent simulations have shown that features on the outer surface of an ICF capsule as small as 10 microns wide and 100's of nanometers tall such as bumps, divots, or even dust particles can profoundly impact capsule performance by leading to material jetting or mix into the hotspot. Recent x-ray images of implosions on the NIF may be evidence of such mixing. Unfortunately, our ability to accurately predict these effects is uncertain due to disagreement between equation of state (EOS) models. In light of this, we have begun a campaign to measure the growth of isolated defects (Gaussian bumps) due to ablative Richtmyer-Meshkov in CH capsules to validate these models. The platform that has been developed uses halfraums with radiation temperatures near 75 eV (Rev. 4 foot-level) driven by 15-20 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY), which sends a ~2.5 Mbar shock into a planar CH foil. Gaussian-shaped bumps (20 microns wide, 4-7 microns tall) are deposited onto the ablation side of the target. On-axis radiography with a saran (Cl Heα - 2.8 keV) backlighter is used to measure bump evolution prior to shock breakout. Shock speed measurements will also be made with Omega's active shock breakout (ASBO) and streaked optical pyrometery (SOP) diagnostics in conjunction with filtered x-ray photodiode arrays (DANTE) to determine drive conditions in the target. These data will be used to discriminate between EOS models so

  6. Waves and bumps in neuronal networks with axo-dendritic synaptic interactions

    NASA Astrophysics Data System (ADS)

    Coombes, S.; Lord, G. J.; Owen, M. R.

    2003-04-01

    We consider a firing rate model of a neuronal network continuum that incorporates axo-dendritic synaptic processing and the finite conduction velocities of action potentials. The model equation is an integral one defined on a spatially extended domain. Apart from a spatial integral mixing the network connectivity function with space-dependent delays, arising from non-instantaneous axonal communication, the integral model also includes a temporal integration over some appropriately identified distributed delay kernel. These distributed delay kernels are biologically motivated and represent the response of biological synapses to spiking inputs. They are interpreted as Green’s functions of some linear differential operator. Exploiting this Green’s function description we discuss formal reductions of this non-local system to equivalent partial differential equation (PDE) models. We distinguish between those spatial connectivity functions that give rise to local PDE models and those that give rise to PDE models with delayed non-local terms. For cases in which local PDEs are derived, we investigate traveling wave solutions in a comoving frame by numerically computing global heteroclinic connections for sigmoidal firing rate functions. We also calculate exact solutions, parameterized by axonal conduction velocity, for the Heaviside firing rate function (the sigmoidal firing rate function in the limit of infinite gain). The inclusion of synaptic adaptation is shown to alter traveling wave fronts to traveling pulses, which we study analytically and numerically in terms of a global homoclinic orbit. Finally, we consider the impact of dendritic interactions on waves and on static spatially localized solutions. Exact analysis for infinite gain shows that axonal delays do not affect the stability of single bumps. Furthermore, numerical continuation for finite gain leads to multiple bump solutions, and it is demonstrated that such localized multi-bumps are lost (in favor of

  7. Effects of PCB Pad Metal Finishes on the Cu-Pillar/Sn-Ag Micro Bump Joint Reliability of Chip-on-Board (COB) Assembly

    NASA Astrophysics Data System (ADS)

    Kim, Youngsoon; Lee, Seyong; Shin, Ji-won; Paik, Kyung-Wook

    2016-06-01

    While solder bumps have been used as the bump structure to form the interconnection during the last few decades, the continuing scaling down of devices has led to a change in the bump structure to Cu-pillar/Sn-Ag micro-bumps. Cu-pillar/Sn-Ag micro-bump interconnections differ from conventional solder bump interconnections in terms of their assembly processing and reliability. A thermo-compression bonding method with pre-applied b-stage non-conductive films has been adopted to form solder joints between Cu pillar/Sn-Ag micro bumps and printed circuit board vehicles, using various pad metal finishes. As a result, various interfacial inter-metallic compounds (IMCs) reactions and stress concentrations occur at the Cu pillar/Sn-Ag micro bumps joints. Therefore, it is necessary to investigate the influence of pad metal finishes on the structural reliability of fine pitch Cu pillar/Sn-Ag micro bumps flip chip packaging. In this study, four different pad surface finishes (Thin Ni ENEPIG, OSP, ENEPIG, ENIG) were evaluated in terms of their interconnection reliability by thermal cycle (T/C) test up to 2000 cycles at temperatures ranging from -55°C to 125°C and high-temperature storage test up to 1000 h at 150°C. The contact resistances of the Cu pillar/Sn-Ag micro bump showed significant differences after the T/C reliability test in the following order: thin Ni ENEPIG > OSP > ENEPIG where the thin Ni ENEPIG pad metal finish provided the best Cu pillar/Sn-Ag micro bump interconnection in terms of bump joint reliability. Various IMCs formed between the bump joint areas can account for the main failure mechanism.

  8. HUBBLE SPACE TELESCOPE MORPHOLOGIES OF z {approx} 2 DUST-OBSCURED GALAXIES. II. BUMP SOURCES

    SciTech Connect

    Bussmann, R. S.; Dey, Arjun; Lotz, J.; Jannuzi, B. T.; Armus, L.; Desai, V.; Soifer, B. T.; Brown, M. J. I.; Eisenhardt, P.; Higdon, J.; Higdon, S.; Le Floc'h, E.; Melbourne, J.; Weedman, D.

    2011-05-20

    We present Hubble Space Telescope imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z {approx} 2 with extremely red R - [24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6 {mu}m associated with stellar emission. These sources, which we call 'bump DOGs', have star formation rates (SFRs) of 400-4000 M{sub sun} yr{sup -1} and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission-a sign of vigorous ongoing star formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGs (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power law and spectral features that are more typical of obscured active galactic nuclei than starbursts), submillimeter-selected galaxies, and other less-reddened ULIRGs from the Spitzer Extragalactic First Look Survey. Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 {+-} 2.7 kpc versus 5.5 {+-} 2.3 kpc) and exhibit more diffuse and irregular morphologies (median M{sub 20} of -1.08 {+-} 0.05 versus -1.48 {+-} 0.05). These trends are qualitatively consistent with expectations from simulations of major mergers in which merging systems during the peak SFR period evolve from M{sub 20} = -1.0 to M{sub 20} = -1.7. Less-obscured ULIRGs (i.e., non-DOGs) tend to have more regular, centrally peaked, single-object morphologies rather than diffuse and irregular morphologies. This distinction in morphologies may imply that less-obscured ULIRGs sample the merger near the end of the peak SFR period. Alternatively, it may indicate that the intense star formation in these less-obscured ULIRGs is not the result of a recent major merger.

  9. Common mechanisms regulating dark noise and quantum bump amplification in Drosophila photoreceptors

    PubMed Central

    Chu, Brian; Liu, Che-Hsiung; Sengupta, Sukanya; Gupta, Amit; Raghu, Padinjat

    2013-01-01

    Absolute visual thresholds are limited by “dark noise,” which in Drosophila photoreceptors is dominated by brief (∼10 ms), small (∼2 pA) inward current events, occurring at ∼2/s, believed to reflect spontaneous G protein activations. These dark events were increased in rate and amplitude by a point mutation in myosin III (NINAC), which disrupts its interaction with the scaffolding protein, INAD. This phenotype mimics that previously described in null mutants of ninaC (no inactivation no afterpotential; encoding myosin III) and an associated protein, retinophilin (rtp). Dark noise was similarly increased in heterozygote mutants of diacylglycerol kinase (rdgA/+). Dark noise in ninaC, rtp, and rdgA/+ mutants was greatly suppressed by mutations of the Gq α-subunit (Gαq) and the major light-sensitive channel (trp) but not rhodopsin. ninaC, rtp, and rdgA/+ mutations also all facilitated residual light responses in Gαq and PLC hypomorphs. Raising cytosolic Ca2+ in the submicromolar range increased dark noise, facilitated activation of transient receptor potential (TRP) channels by exogenous agonist, and again facilitated light responses in Gαq hypomorphs. Our results indicate that RTP, NINAC, INAD, and diacylglycerol kinase, together with a Ca2+-dependent threshold, share common roles in suppressing dark noise and regulating quantum bump generation; consequently, most spontaneous G protein activations fail to generate dark events under normal conditions. By contrast, quantum bump generation is reliable but delayed until sufficient G proteins and PLC are activated to overcome threshold, thereby ensuring generation of full-size bumps with high quantum efficiency. PMID:23365183

  10. Hubble Space Telescope Morphologies of z ~ 2 Dust-obscured Galaxies. II. Bump Sources

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Dey, Arjun; Lotz, J.; Armus, L.; Brown, M. J. I.; Desai, V.; Eisenhardt, P.; Higdon, J.; Higdon, S.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Soifer, B. T.; Weedman, D.

    2011-05-01

    We present Hubble Space Telescope imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z ≈ 2 with extremely red R - [24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6 μm associated with stellar emission. These sources, which we call "bump DOGs," have star formation rates (SFRs) of 400-4000 M sun yr-1 and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission—a sign of vigorous ongoing star formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGs (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power law and spectral features that are more typical of obscured active galactic nuclei than starbursts), submillimeter-selected galaxies, and other less-reddened ULIRGs from the Spitzer Extragalactic First Look Survey. Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 ± 2.7 kpc versus 5.5 ± 2.3 kpc) and exhibit more diffuse and irregular morphologies (median M 20 of -1.08 ± 0.05 versus -1.48 ± 0.05). These trends are qualitatively consistent with expectations from simulations of major mergers in which merging systems during the peak SFR period evolve from M 20 = -1.0 to M 20 = -1.7. Less-obscured ULIRGs (i.e., non-DOGs) tend to have more regular, centrally peaked, single-object morphologies rather than diffuse and irregular morphologies. This distinction in morphologies may imply that less-obscured ULIRGs sample the merger near the end of the peak SFR period. Alternatively, it may indicate that the intense star formation in these less-obscured ULIRGs is not the result of a recent major merger.

  11. Enigmatic Extinction: An Investigation of the 2175Å Extinction Bump in M101

    NASA Astrophysics Data System (ADS)

    Danowski, Meredith E.; Cook, Timothy; Gordon, Karl D.; Chakrabarti, Supriya; Lawton, Brandon L.; Misselt, Karl A.

    2014-06-01

    Evidence from studies of starburst galaxies indicates that active formation of high mass stars modifies the UV dust extinction curve as seen by a lack of the characteristic 2175Å bump. For over 45 years, the source of the 2175Å extinction feature has yet to be positively identified. Small aromatic/PAH grains are suggested as a leading contender in dust grain models. The face-on spiral galaxy M101 is an ideal laboratory for the study of dust, with many well-studied HII regions and a steep metallicity and ionization gradient.The Interstellar Medium Absorption Gradient Experiment Rocket (IMAGER) probes the correlation between dust extinction, and the metallicity and radiation environment in M101 at ultraviolet wavelengths. IMAGER simultaneously images M101 in three 400Å-wide bandpasses, measuring the apparent strength of the 2175Å bump and the UV continuum.Combining data from IMAGER with high S/N far- and near- UV observations from the MAMA detectors on the Hubble STIS instrument, we examine the apparent strength of the 2175Å bump in HII regions of M101. With additional infrared data from Spitzer, the DIRTY radiative transfer model, and stellar evolution models, we probe the correlation between the 2175Å feature and the aromatic/PAH features across HII regions of varying metallicity and radiation field hardness. The results of this experiment will directly impact our understanding of the nature of dust and our ability to accurately account for the effects of dust on observations at all redshifts.

  12. Precise Extraction of the Neutron Magnetic Form Factor from Quasi-elastic 3He(pol)(e(pol),e') at Q^2 = 0.1-0.6 (GeV/c)^2

    SciTech Connect

    Jens-ole Hansen; Brian Anderson; Leonard Auerbach; Todd Averett; William Bertozzi; Tim Black; John Calarco; Lawrence Cardman; Gordon Cates; Zhengwei Chai; Jiang-Ping Chen; Seonho Choi; Eugene Chudakov; Steve Churchwell; G Corrado; Christopher Crawford; Daniel Dale; Alexandre Deur; Pibero Djawotho; Dipangkar Dutta; John Finn; Haiyan Gao; Ronald Gilman; Oleksandr Glamazdin; Charles Glashausser; Walter Gloeckle; Jacek Golak; Javier Gomez; Viktor Gorbenko; F. Hersman; Douglas Higinbotham; Richard Holmes; Calvin Howell; Emlyn Hughes; Thomas Humensky; Sebastien Incerti; Piotr Zolnierczuk; Cornelis De Jager; John Jensen; Xiaodong Jiang; Cathleen Jones; Mark Jones; R Kahl; H Kamada; A Kievsky; Ioannis Kominis; Wolfgang Korsch; Kevin Kramer; Gerfried Kumbartzki; Michael Kuss; Enkeleida Lakuriqi; Meihua Liang; Nilanga Liyanage; John LeRose; Sergey Malov; Demetrius Margaziotis; Jeffery Martin; Kathy McCormick; Robert McKeown; Kevin McIlhany; Zein-Eddine Meziani; Robert Michaels; Greg Miller; Joseph Mitchell; Sirish Nanda; Emanuele Pace; Tina Pavlin; Gerassimos Petratos; Roman Pomatsalyuk; David Pripstein; David Prout; Ronald Ransome; Yves Roblin; Marat Rvachev; Giovanni Salme; Michael Schnee; Charles Seely; Taeksu Shin; Karl Slifer; Paul Souder; Steffen Strauch; Riad Suleiman; Mark Sutter; Bryan Tipton; Luminita Todor; M Viviani; Branislav Vlahovic; John Watson; Claude Williamson; H Witala; Bogdan Wojtsekhowski; Feng Xiong; Wang Xu; Jen-chuan Yeh

    2006-05-05

    We have measured the transverse asymmetry A{sub T'} in the quasi-elastic {sup 3}/rvec He/(/rvec e/,e') process with high precision at Q{sup 2}-values from 0.1 to 0.6 (GeV/c){sup 2}. The neutron magnetic form factor G{sub M}{sup n} was extracted at Q{sup 2}-values of 0.1 and 0.2 (GeV/c){sup 2} using a non-relativistic Faddeev calculation which includes both final-state interactions (FSI) and meson-exchange currents (MEC). Theoretical uncertainties due to the FSI and MEC effects were constrained with a precision measurement of the spin-dependent asymmetry in the threshold region of {sup 3}/rvec He/(/rvec e/,e'). We also extracted the neutron magnetic form factor G{sub M}{sup n} at Q{sup 2}-values of 0.3 to 0.6 (GeV/c){sup 2} based on Plane Wave Impulse Approximation calculations.

  13. Eyelid bump

    MedlinePlus

    ... cause trouble with your vision. If you have blepharitis , you are more likely to get styes. Other ... you are prone to getting styes or have blepharitis, it may help to carefully clean off excess ...

  14. Interpretation of the gamma-ray bump from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.; Dermer, Charles D.

    1988-01-01

    The strong 0.5-2 MeV gamma-ray bump of Cyg X-1 recently reported by HEAO 3 observers can be interpreted self-consistently as the emission from a hot (kT of about 400 keV) pair-dominated plasma. The emission region parameters are uniquely determined by the spectral fit and observed luminosity via the pair-balance condition, suggesting that the gamma rays are produced in the inner region of the accretion flow at the expense of the normal power-law hard X-rays.

  15. Unsteady features of the flow on a bump in transonic environment

    NASA Astrophysics Data System (ADS)

    Budovsky, A. D.; Sidorenko, A. A.; Polivanov, P. A.; Vishnyakov, O. I.; Maslov, A. A.

    2016-10-01

    The study deals with experimental investigation of unsteady features of separated flow on a profiled bump in transonic environment. The experiments were conducted in T-325 wind tunnel of ITAM for the following flow conditions: P0 = 1 bar, T0 = 291 K. The base flow around the model was studied by schlieren visualization, steady and unsteady wall pressure measurements and PIV. The experimentally data obtained using PIV are analyzed by Proper Orthogonal Decomposition (POD) technique to investigate the underlying unsteady flow organization, as revealed by the POD eigenmodes. The data obtained show that flow pulsations revealed upstream and downstream of shock wave are correlated and interconnected.

  16. An assessment of the potential for a steam bump in Hanford Waste Tank 241-C-106

    SciTech Connect

    Bander, T.J.; Crea, B.

    1994-09-28

    This document is a preliminary assessment of the potential for a ``steam bump`` in Tank 241-C-106. The assessment is based on currently available data from significant transients which occurred in Tank C-106. Recommendations are made for additional data needs to clarify the current behavior of this tank. General criteria are provided for making decisions on removing or returning to work restrictions on Tank Farm operations. Also provided are additional actions which should be taken on C-106 to manage tank heat removal.

  17. In vitro efficacy of bumped kinase inhibitors against Besnoitia besnoiti tachyzoites.

    PubMed

    Jiménez-Meléndez, Alejandro; Ojo, Kayode K; Wallace, Alexandra M; Smith, Tess R; Hemphill, Andrew; Balmer, Vreni; Regidor-Cerrillo, Javier; Ortega-Mora, Luis M; Hehl, Adrian B; Fan, Erkang; Maly, Dustin J; Van Voorhis, Wesley C; Álvarez-García, Gema

    2017-10-01

    Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a chronic and debilitating disease that causes systemic and skin manifestations and sterility in bulls. Neither treatments nor vaccines are currently available. In the search for therapeutic candidates, calcium-dependent protein kinases have arisen as promising drug targets in other apicomplexans (e.g. Neospora caninum, Toxoplasma gondii, Plasmodium spp. and Eimeria spp.) and are effectively targeted by bumped kinase inhibitors. In this study, we identified and cloned the gene coding for BbCDPK1. The impact of a library of nine bumped kinase inhibitor analogues on the activity of recombinant BbCDPK1 was assessed by luciferase assay. Afterwards, those were further screened for efficacy against Besnoitiabesnoiti tachyzoites grown in Marc-145 cells. Primary tests at 5µM revealed that eight compounds exhibited more than 90% inhibition of invasion and proliferation. The compounds BKI 1294, 1517, 1553 and 1571 were further characterised, and EC99 (1294: 2.38µM; 1517: 2.20µM; 1553: 3.34µM; 1571: 2.78µM) were determined by quantitative real-time polymerase chain reaction in 3-day proliferation assays. Exposure of infected cultures with EC99 concentrations of these drugs for up to 48h was not parasiticidal. The lack of parasiticidal action was confirmed by transmission electron microscopy, which showed that bumped kinase inhibitor treatment interfered with cell cycle regulation and non-disjunction of tachyzoites, resulting in the formation of large multi-nucleated complexes which co-existed with viable parasites within the parasitophorous vacuole. However, it is possible that, in the face of an active immune response, parasite clearance may occur. In summary, bumped kinase inhibitors may be effective drug candidates to control Besnoitiabesnoiti infection. Further in vivo experiments should be planned, as attainment and maintenance of therapeutic blood plasma levels in calves, without

  18. Chorionic bump in pregnant patients and associated live birth rate: a systematic review and meta-analysis.

    PubMed

    Arleo, Elizabeth Kagan; Dunning, Allison; Troiano, Robert N

    2015-04-01

    A chorionic bump on first-trimester sonography has been considered a risk factor for nonviability in pregnant patients with this rare finding, although the strength of this association has recently been questioned. We performed a systematic review and meta-analysis to summarize the association between a chorionic bump and nonviability. A comprehensive literature search was performed. We included all studies except case reports. A meta-analysis was performed using a random-effects model. After screening 5 studies, 2 studies with a total of 67 patients met inclusion criteria. These were combined with a study (n = 52) from our institution. Overall, the live birth rate was 62% (74 of 119). Fifty-one chorionic bump pregnancies were otherwise normal (ie, pregnancies in which a gestational sac, a yolk sac, and an embryo with a heartbeat was seen at some point), and in this subset, the live birth rate was 83% (42 of 51). There was no significant relationship found between vaginal bleeding and live birth (P = .857); there was no significant difference in bump volume between live birth and no live birth (P = .198); and for the subset analysis of pooled odds ratios for the relationship between live birth and history of infertility, there was no significant relationship found (P = .186). A chorionic bump remains a risk factor for nonviability in pregnancy; however, if the pregnancy is otherwise normal, then most result in live birth. © 2015 by the American Institute of Ultrasound in Medicine.

  19. An investigation into the effect of suspension configurations on the performance of tracked vehicles traversing bump terrains

    NASA Astrophysics Data System (ADS)

    Ata, W. G.; Oyadiji, S. O.

    2014-07-01

    This is a theoretical investigation into the effect of various suspension configurations on a tracked vehicle performance over bump terrains. The model developed is validated using published experimental data of the modal characteristics of the vehicle. The desired performance is based on ride comfort via the mixed objective function (MOF), which combines the crest factor of bounce acceleration, bounce displacement, angular acceleration, and pitch angle. The optimisation process involves evaluating the MOF for different numbers and locations of dampers and under different rigid bump road conditions and speeds. The system responses of the selected suspension configurations in the time and frequency domains are compared against the undamped suspension. The results show that the suspension configurations have a significant effect on the vehicle mobility over bump road profiles. For a five-road-wheel half model of a tracked vehicle, the maximum number of dampers to use for ride comfort over these road bumps is three with the dampers located at wheel positions 1, 2 and 5. This confirms the current practice for many tracked vehicles with 10 road wheels. However, it is further shown that the suspension fitted with two dampers at the extreme road wheels offer the best performance over various rigid bump terrains.

  20. Precise determination of the deuteron spin structure at low to moderate Q2 with CLAS and extraction of the neutron contribution

    SciTech Connect

    Guler, N.; Fersch, R. G.; Kuhn, S. E.; Bosted, P.; Griffioen, K. A.; Keith, C.; Minehart, R.; Prok, Y.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Alaoui, A. El; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Garillon, B.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Livingston, K.; Lu, H. Y.; Mayer, M.; MacGregor, I. J. D.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Simonyan, A.; Skorodumina, Iu.; Sokhan, D.; Sparveris, N.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Voutier, E.; Walford, N. K.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-11-02

    In this study, we present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Lab's CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2 and 5.8 GeV were scattered from deuteron (15ND3) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double spin asymmetry, the virtual photon absorption asymmetry Ad1 and the polarized structure function gd1 were extracted over a wide kinematic range (0.05 GeV2 < Q2 < 5 GeV2 and 0.9 GeV < W < 3 GeV). We use an unfolding procedure and a parametrization of the corresponding proton results to extract from these data the polarized structure functions An1 and g1n of the (bound) neutron, which are so far unknown in the resonance region, W < 2 GeV. We compare our final results, including several moments of the deuteron and neutron spin structure functions, with various theoretical models and expectations as well as parametrizations of the world data. The unprecedented precision and dense kinematic coverage of these data can aid in future extractions of polarized parton distributions, tests of perturbative QCD predictions for the quark polarization at large x, a better understanding of quark-hadron duality, and more precise values for higher-twist matrix elements in the framework of the Operator Product Expansion.

  1. Viscoplasticity Behavior of a Solder Joint on a Drilled Cu Pillar Bump Under Thermal Cycling Using FEA

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Hyuk; Bang, Hee-Seon; Bang, Han-Sur

    2017-02-01

    Although the copper (Cu) pillar bump (CPB) was developed in accordance with recent trends of miniaturized, multifunctional, and high-performance technology, its thermomechanical reliability remains in question. Accordingly, a hole was drilled into a CPB to increase its thermomechanical reliability, and the viscoplasticity behaviors of the two structures were subsequently compared through finite element analysis. In particular, this study applied the Anand model, which addresses both plastic strain and creep strain, as well as a submodeling technique to increase the accuracy of the analysis and decrease the analysis time. In addition, this study confirmed the superiority of the thermomechanical reliability of drilled Cu pillar bump through a hysteresis loop, which showed the equivalent stress versus equivalent inelastic strain of the solder joint interfaces. Moreover, the study compared the inelastic strain energy density values. The results demonstrated that the drilled copper pillar bump does indeed have a smaller inelastic range and a lower inelastic strain energy density.

  2. Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps.

    PubMed

    Wang, Yuanfeng; Wang, Xiaowen; Lai, Chuilin; Hu, Huawen; Kong, Yeeyee; Fei, Bin; Xin, John H

    2016-02-10

    To develop an efficient water-collecting surface that integrates both fast water-capturing and easy drainage properties is of high current interest for addressing global water issues. In this work, a superhydrophobic surface was fabricated on cotton fabric via manipulation of both the surface roughness and surface energy. This was followed by a subsequent spray coating of TiO2 nanosol that created light-induced superhydrophilic bumps with a unique raised structure as a result of the interfacial tension of the TiO2 nanosol sprayed on the superhydrophobic fiber surface. These raised TiO2 bumps induce both a wettability gradient and a shape gradient, synergistically accelerating water coalescence and water collection. The in-depth study revealed that the quantity and the distribution of the TiO2 had a significant impact on the final water collection efficiency. This inexpensive and facilely fabricated fabric biomimicks the desert beetle's back and spider silk, which are capable of fog harvesting without additional energy consumption.

  3. Direct Reading Particle Counters: Calibration Verification and Multiple Instrument Agreement via Bump Testing.

    PubMed

    Jankovic, John; Zontek, Tracy L; Ogle, Burton R; Hollenbeck, Scott

    2015-01-01

    The calibration records of two direct reading instruments designated as condensation particle counters were examined to determine the number of times they were found to be out of tolerance at annual manufacturer's recalibration. Both instruments were found to be out of tolerance more times than within tolerance. And, it was concluded that annual calibration alone was insufficient to provide operational confidence in an instrument's response. Therefore, a method based on subsequent agreement with data gathered from a newly calibrated instrument was developed to confirm operational readiness between annual calibrations, hereafter referred to as bump testing. The method consists of measuring source particles produced by a gas grille spark igniter in a gallon-size jar. Sampling from this chamber with a newly calibrated instrument to determine the calibrated response over the particle concentration range of interest serves as a reference. Agreement between this reference response and subsequent responses at later dates implies that the instrument is performing as it was at the time of calibration. Side-by-side sampling allows the level of agreement between two or more instruments to be determined. This is useful when simultaneously collected data are compared for differences, i.e., background with process aerosol concentrations. A reference set of data was obtained using the spark igniter. The generation system was found to be reproducible and suitable to form the basis of calibration verification. The bump test is simple enough to be performed periodically throughout the calibration year or prior to field monitoring.

  4. Direct Reading Particle Counters: Calibration Verification and Multiple Instrument Agreement via Bump Testing

    SciTech Connect

    Jankovic, John; Zontek, Tracy L.; Ogle, Burton R.; Hollenbeck, Scott

    2015-01-27

    We examined the calibration records of two direct reading instruments designated as condensation particle counters in order to determine the number of times they were found to be out of tolerance at annual manufacturer's recalibration. For both instruments were found to be out of tolerance more times than within tolerance. And, it was concluded that annual calibration alone was insufficient to provide operational confidence in an instrument's response. Thus, a method based on subsequent agreement with data gathered from a newly calibrated instrument was developed to confirm operational readiness between annual calibrations, hereafter referred to as bump testing. The method consists of measuring source particles produced by a gas grille spark igniter in a gallon-size jar. Sampling from this chamber with a newly calibrated instrument to determine the calibrated response over the particle concentration range of interest serves as a reference. Agreement between this reference response and subsequent responses at later dates implies that the instrument is performing as it was at the time of calibration. Side-by-side sampling allows the level of agreement between two or more instruments to be determined. This is useful when simultaneously collected data are compared for differences, i.e., background with process aerosol concentrations. A reference set of data was obtained using the spark igniter. The generation system was found to be reproducible and suitable to form the basis of calibration verification. Finally, the bump test is simple enough to be performed periodically throughout the calibration year or prior to field monitoring.

  5. Miniaturization of Micro-Solder Bumps and Effect of IMC on Stress Distribution

    NASA Astrophysics Data System (ADS)

    Choudhury, Soud Farhan; Ladani, Leila

    2016-07-01

    As the joints become smaller in more advanced packages and devices, intermetallic (IMCs) volume ratio increases, which significantly impacts the overall mechanical behavior of joints. The existence of only a few grains of Sn (Tin) and IMC materials results in anisotropic elastic and plastic behavior which is not detectable using conventional finite element (FE) simulation with average properties for polycrystalline material. In this study, crystal plasticity finite element (CPFE) simulation is used to model the whole joint including copper, Sn solder and Cu6Sn5 IMC material. Experimental lap-shear test results for solder joints from the literature were used to validate the models. A comparative analysis between traditional FE, CPFE and experiments was conducted. The CPFE model was able to correlate the experiments more closely compared to traditional FE analysis because of its ability to capture micro-mechanical anisotropic behavior. Further analysis was conducted to evaluate the effect of IMC thickness on stress distribution in micro-bumps using a systematic numerical experiment with IMC thickness ranging from 0% to 80%. The analysis was conducted on micro-bumps with single crystal Sn and bicrystal Sn. The overall stress distribution and shear deformation changes as the IMC thickness increases. The model with higher IMC thickness shows a stiffer shear response, and provides a higher shear yield strength.

  6. Indium-bump-free antimonide superlattice membrane detectors on silicon substrates

    SciTech Connect

    Zamiri, M. E-mail: skrishna@chtm.unm.edu; Klein, B.; Schuler-Sandy, T.; Dahiya, V.; Cavallo, F.; Myers, S.; Krishna, S. E-mail: skrishna@chtm.unm.edu

    2016-02-29

    We present an approach to realize antimonide superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN superlattices are grown on top of a 60 nm Al{sub 0.6}Ga{sub 0.4}Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxial-lift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy, and photoluminescence. The interface between the transferred pixels and the new substrate was abrupt, and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.

  7. Initial test results of the Los Alamos proton-storage-ring bump-magnet system

    SciTech Connect

    Rose, C.R.; Barlow, D.B.; Redd, D.B.

    1997-09-01

    An upgrade program for increasing the stored beam current in the LANSCE Proton Storage is presently under way. Part of the upgrade effort has been to design, specify, and add four bump-magnet/modulator systems to the ring. This paper describes the initial test results of the first bump-magnet/modulator system. The paper begins with an overview of the pulsed-power system including important specifications of the modulator, magnet, cabling, and control system. In the main portion of the paper, waveforms and test data are included showing the accuracy, repeatability, and stability of the magnet-current pulses. These magnet pulses are programmable both in rise and fall time as well as in amplitude. The amplitude can be set between 50 and 300 A, the rise-time is fixed at 1 ms, and the linear fall-time can be varied between 500 {mu}s and 1500 {mu}s. Other issues such as loading effects and power dissipation in the magnet-bore beamtube are examined and reported.

  8. R package PRIMsrc: Bump Hunting by Patient Rule Induction Method for Survival, Regression and Classification.

    PubMed

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J Sunil

    2015-08-01

    PRIMsrc is a novel implementation of a non-parametric bump hunting procedure, based on the Patient Rule Induction Method (PRIM), offering a unified treatment of outcome variables, including censored time-to-event (Survival), continuous (Regression) and discrete (Classification) responses. To fit the model, it uses a recursive peeling procedure with specific peeling criteria and stopping rules depending on the response. To validate the model, it provides an objective function based on prediction-error or other specific statistic, as well as two alternative cross-validation techniques, adapted to the task of decision-rule making and estimation in the three types of settings. PRIMsrc comes as an open source R package, including at this point: (i) a main function for fitting a Survival Bump Hunting model with various options allowing cross-validated model selection to control model size (#covariates) and model complexity (#peeling steps) and generation of cross-validated end-point estimates; (ii) parallel computing; (iii) various S3-generic and specific plotting functions for data visualization, diagnostic, prediction, summary and display of results. It is available on CRAN and GitHub.

  9. R package PRIMsrc: Bump Hunting by Patient Rule Induction Method for Survival, Regression and Classification

    PubMed Central

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil

    2015-01-01

    PRIMsrc is a novel implementation of a non-parametric bump hunting procedure, based on the Patient Rule Induction Method (PRIM), offering a unified treatment of outcome variables, including censored time-to-event (Survival), continuous (Regression) and discrete (Classification) responses. To fit the model, it uses a recursive peeling procedure with specific peeling criteria and stopping rules depending on the response. To validate the model, it provides an objective function based on prediction-error or other specific statistic, as well as two alternative cross-validation techniques, adapted to the task of decision-rule making and estimation in the three types of settings. PRIMsrc comes as an open source R package, including at this point: (i) a main function for fitting a Survival Bump Hunting model with various options allowing cross-validated model selection to control model size (#covariates) and model complexity (#peeling steps) and generation of cross-validated end-point estimates; (ii) parallel computing; (iii) various S3-generic and specific plotting functions for data visualization, diagnostic, prediction, summary and display of results. It is available on CRAN and GitHub. PMID:26798326

  10. Measurement of the Ratio {sigma}{sub tt}/{sigma}{sub Z/{gamma}}{sup *}{sub {yields}ll} and Precise Extraction of the tt Cross Section

    SciTech Connect

    Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Remortel, N. van; Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.

    2010-07-02

    We report a measurement of the ratio of the tt to Z/{gamma}* production cross sections in {radical}(s)=1.96 TeV pp collisions using data corresponding to an integrated luminosity of up to 4.6 fb{sup -1}, collected by the CDF II detector. The tt cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/{gamma}{sup *{yields}}ll cross section predicted by the standard model, the extracted tt cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result {sigma}{sub tt}=7.70{+-}0.52 pb, for a top-quark mass of 172.5 GeV/c{sup 2}.

  11. Measurement of the Ratio σtt¯/σZ/γ*→ll and Precise Extraction of the tt¯ Cross Section

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; D'Errico, M.; di Canto, A.; di Giovanni, G. P.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, T.; Dube, S.; Ebina, K.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Lovas, L.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramanov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin, F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Santi, L.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Trovato, M.; Tsai, S.-Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Uozumi, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wolfe, H.; Wright, T.; Wu, X.; Würthwein, F.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zhang, X.; Zheng, Y.; Zucchelli, S.; CDF Collaboration

    2010-07-01

    We report a measurement of the ratio of the tt¯ to Z/γ* production cross sections in s=1.96TeV pp¯ collisions using data corresponding to an integrated luminosity of up to 4.6fb-1, collected by the CDF II detector. The tt¯ cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/γ*→ll cross section predicted by the standard model, the extracted tt¯ cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result σtt¯=7.70±0.52pb, for a top-quark mass of 172.5GeV/c2.

  12. Ultra-fast Movies Resolve Ultra-short Pulse Laser Ablation and Bump Formation on Thin Molybdenum Films

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Rapp, Stephan; Huber, Heinz

    For the monolithic serial interconnection of CIS thin film solar cells, 470 nm molybdenum films on glass substrates must be separated galvanically. The single pulse ablation with a 660 fs laser at a wavelength of 1053 nm is investigated in a fluence regime from 0.5 to 5.0 J/cm2. At fluences above 2.0 J/cm2 bump and jet formation can be observed that could be used for creating microstructures. For the investigation of the underlying mechanisms of the laser ablation process itself as well as of the bump or jet formation, pump probe microscopy is utilized to resolve the transient ablation behavior.

  13. First Measurement of the Ratio sigma_(t-tbar) / sigma_(Z/\\gamma*->ll) and Precise Extraction of the t-tbar Cross Section

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2010-04-01

    We report a measurement of the ratio of the t{bar t} to Z/{gamma}* production cross sections in {radical}s = 1.96 TeV p{bar p} collisions using data corresponding to an integrated luminosity of up to 4.6 fb{sup -1}, collected by the CDF II detector. The t{bar t} cross section ratio is measured using two complementary methods, a b-jet tagging measurement and a topological approach. By multiplying the ratios by the well-known theoretical Z/{gamma}* {yields} ll cross section predicted by the standard model, the extracted t{bar t} cross sections are effectively insensitive to the uncertainty on luminosity. A best linear unbiased estimate is used to combine both measurements with the result {sigma}{sub t{bar t}} = 7.70 {+-} 0.52 pb, for a top-quark mass of 172.5 GeV/c{sup 2}.

  14. Development of a reliable analytical method for the precise extractive spectrophotometric determination of osmium(VIII) with 2-nitrobenzaldehydethiocarbohydrazone: Analysis of alloys and real sample

    NASA Astrophysics Data System (ADS)

    Zanje, Sunil B.; Kokare, Arjun N.; Suryavanshi, Vishal J.; Waghmode, Duryodhan P.; Joshi, Sunil S.; Anuse, Mansing A.

    2016-12-01

    The proposed method demonstrates that the osmium(VIII) forms complex with 2-NBATCH from 0.8 mol L- 1 HCl at room temperature. The complex formed was extracted in 10 mL of chloroform with a 5 min equilibration time. The absorbance of the red colored complex was measured at 440 nm against the reagent blank. The Beer's law was obeyed in the range of 5-25 μg mL- 1, the optimum concentration range was 10-20 μg mL- 1 of osmium(VIII) as evaluated by Ringbom's plot. Molar absorptivity and Sandell's sensitivity of osmium(VIII)-2NBATCH complex in chloroform is 8.94 × 103 L mol- 1 cm- 1 and 0.021 μg cm- 2, respectively. The composition of osmium(VIII)-2NBATCH complex was 1:2 investigated from Job's method of continuous variation, Mole ratio method and slope ratio method. The interference of diverse ions was studied and masking agents were used wherever necessary. The present method was successfully applied for determination of osmium(VIII) from binary, ternary and synthetic mixtures corresponding to alloys and real samples. The validity of the method was confirmed by finding the relative standard deviation for five determinations which was 0.29%.

  15. Development of a reliable analytical method for the precise extractive spectrophotometric determination of osmium(VIII) with 2-nitrobenzaldehydethiocarbohydrazone: Analysis of alloys and real sample.

    PubMed

    Zanje, Sunil B; Kokare, Arjun N; Suryavanshi, Vishal J; Waghmode, Duryodhan P; Joshi, Sunil S; Anuse, Mansing A

    2016-12-05

    The proposed method demonstrates that the osmium(VIII) forms complex with 2-NBATCH from 0.8molL(-1) HCl at room temperature. The complex formed was extracted in 10mL of chloroform with a 5min equilibration time. The absorbance of the red colored complex was measured at 440nm against the reagent blank. The Beer's law was obeyed in the range of 5-25μgmL(-1), the optimum concentration range was 10-20μgmL(-1) of osmium(VIII) as evaluated by Ringbom's plot. Molar absorptivity and Sandell's sensitivity of osmium(VIII)-2NBATCH complex in chloroform is 8.94×10(3)Lmol(-1)cm(-1) and 0.021μgcm(-2), respectively. The composition of osmium(VIII)-2NBATCH complex was 1:2 investigated from Job's method of continuous variation, Mole ratio method and slope ratio method. The interference of diverse ions was studied and masking agents were used wherever necessary. The present method was successfully applied for determination of osmium(VIII) from binary, ternary and synthetic mixtures corresponding to alloys and real samples. The validity of the method was confirmed by finding the relative standard deviation for five determinations which was 0.29%.

  16. Histochemical technique: a general method for quantitative enzyme assays of single cell extracts with a time resolution of seconds and a reading precision of femtomoles

    SciTech Connect

    Outlaw, W.H. Jr.; Springer, S.A.; Tarczynski, M.C.

    1985-03-01

    Biochemists who study single cells have been constrained by the lack of a general methodology of high time resolution and high measurement sensitivity for quantitatively assaying enzyme activities using natural substrates in solution. The methods the authors describe will remove this limitation. In brief, nanogram tissue samples are dissected from frozen-dried tissue. The samples are extracted in microdroplets of assay cocktail. The enzyme activity, indicated fluorometrically by the oxidation/reduction of NAD(P), is followed in real time on a computer display. With these methods, assays of pyruvate orthophosphate dikinase on samples enriched in bundlesheath cells and mesophyll cells of Flaveria brownii yielded the predictable results. Assays of this enzyme in guard cells dissected from Vicia faba leaflets gave results like those recently reported by another laboratory for protoplasts derived from these cells. The results of assays by this method and by enzymic cycling for NAD(P) triose-P dehydrogenase were comparable. Phosphoenolpyruvate carboxylase, the most extensively studied enzyme activity, was present at high levels in guard cells, which has been demonstrated previously in other reports based on diverse assay approaches.

  17. Solderjet Bumping as a Versatile Tool for the Integration of Piezoelectric Deformable Mirrors

    NASA Astrophysics Data System (ADS)

    Burkhardt, Thomas; Goy, Matthias; Hornaff, Marcel; Appelfelder, Michael; Reinlein, Claudia

    A deformable mirror (DM) is a device that aims to compensate laser-induced mirror deformation and thermal lensing in the optical system. The mounting of membrane based DM with screen-printed actuators is crucial, as stress may deform the membrane and change their characteristics (shape, piezoelectric deflection, natural frequency). We present the laser-based Solderjet Bumping (SJB) technique to assemble mounts for piezoelectric-activated DM. The discussed polymer-free joining offers advantages, such as improved temporal stability and low outgassing, over adhesive bonding. We evaluate the optimum number of solder joints with respect to resonance behavior by finite elements analysis and experimental measurements. Long-term evaluation over a period of more than four years shows no significant change of resonance behavior. Thus, we prove the SJB bonding technique to be stable for dynamic applications over several years, and consider it a versatile tool for integration of DM.

  18. Nonuniqueness and multi-bump solutions in parabolic problems with the p-Laplacian

    NASA Astrophysics Data System (ADS)

    Benedikt, Jiří; Girg, Petr; Kotrla, Lukáš; Takáč, Peter

    2016-01-01

    The validity of the weak and strong comparison principles for degenerate parabolic partial differential equations with the p-Laplace operator Δp is investigated for p > 2. This problem is reduced to the comparison of the trivial solution (≡0, by hypothesis) with a nontrivial nonnegative solution u (x , t). The problem is closely related also to the question of uniqueness of a nonnegative solution via the weak comparison principle. In this article, realistic counterexamples to the uniqueness of a nonnegative solution, the weak comparison principle, and the strong maximum principle are constructed with a nonsmooth reaction function that satisfies neither a Lipschitz nor an Osgood standard "uniqueness" condition. Nonnegative multi-bump solutions with spatially disconnected compact supports and zero initial data are constructed between sub- and supersolutions that have supports of the same type.

  19. Interfacial Reaction Characteristics of Au Stud/Sn/Cu Pillar Bump During Annealing and Current Stressing.

    PubMed

    Kim, Jun-Beom; Lee, Byeong-Rok; Kim, Sung-Hyuk; Park, Jong-Myeong; Park, Young-Bae

    2015-11-01

    In this work, intermetallic compound (IMC) growth behavior in Au stud/Sn/Cu pillar bumps was investigated under annealing and current stressing conditions. AuSn2 and AuSn4 IMCs formed at the interface between the Au studs and Sn after bonding. The AuSn2 phase grew significantly as the stressing time increased, causing micro-voids to form near the (Cu, Au)6Sn5, AuSn2 and AuSn4 IMC interfaces. The interfacial reactions resulting from current stressing took place quicker than observed for pure annealing. The apparent activation energies for the growth of the AuSn2 phase during annealing and current stressing were 0.52 eV and 0.47 eV, respectively, which may be closely related to the acceleration of the interfacial reaction by electron wind forces during current stressing.

  20. Solderjet bumping technique used to manufacture a compact and robust green solid-state laser

    NASA Astrophysics Data System (ADS)

    Ribes, P.; Burkhardt, T.; Hornaff, M.; Kousar, S.; Burkhardt, D.; Beckert, E.; Gilaberte, M.; Guilhot, D.; Montes, D.; Galan, M.; Ferrando, S.; Laudisio, M.; Belenguer, T.; Ibarmia, S.; Gallego, P.; Rodríguez, J. A.; Eberhardt, R.; Tünnermann, A.

    2015-06-01

    Solder-joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals due to a localized and minimized input of thermal energy. The Solderjet Bumping technique is used to assemble a miniaturized laser resonator in order to obtain higher robustness, wider thermal conductivity performance, higher vacuum and radiation compatibility, and better heat and long term stability compared with identical glued devices. The resulting assembled compact and robust green diode-pumped solid-state laser is part of the future Raman Laser Spectrometer designed for the Exomars European Space Agency (ESA) space mission 2018.

  1. Recent versus Remote: Flashbulb Memory for 9/11 and Self-Selected Events from the Reminiscence Bump

    ERIC Educational Resources Information Center

    Denver, Jenny Y.; Lane, Sean M.; Cherry, Katie E.

    2010-01-01

    In two related studies, we examined flashbulb memories acquired from different points in the lifespan in younger and older adults. When asked to remember flashbulb memories from their lives, older adults were most likely to recall events from the reminiscence bump (Study 1A). In Study 1B, younger and older adults recalled 9/11 and a personal…

  2. Recent versus Remote: Flashbulb Memory for 9/11 and Self-Selected Events from the Reminiscence Bump

    ERIC Educational Resources Information Center

    Denver, Jenny Y.; Lane, Sean M.; Cherry, Katie E.

    2010-01-01

    In two related studies, we examined flashbulb memories acquired from different points in the lifespan in younger and older adults. When asked to remember flashbulb memories from their lives, older adults were most likely to recall events from the reminiscence bump (Study 1A). In Study 1B, younger and older adults recalled 9/11 and a personal…

  3. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    NASA Astrophysics Data System (ADS)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  4. Direct Reading Particle Counters: Calibration Verification and Multiple Instrument Agreement via Bump Testing

    DOE PAGES

    Jankovic, John; Zontek, Tracy L.; Ogle, Burton R.; ...

    2015-01-27

    We examined the calibration records of two direct reading instruments designated as condensation particle counters in order to determine the number of times they were found to be out of tolerance at annual manufacturer's recalibration. For both instruments were found to be out of tolerance more times than within tolerance. And, it was concluded that annual calibration alone was insufficient to provide operational confidence in an instrument's response. Thus, a method based on subsequent agreement with data gathered from a newly calibrated instrument was developed to confirm operational readiness between annual calibrations, hereafter referred to as bump testing. The methodmore » consists of measuring source particles produced by a gas grille spark igniter in a gallon-size jar. Sampling from this chamber with a newly calibrated instrument to determine the calibrated response over the particle concentration range of interest serves as a reference. Agreement between this reference response and subsequent responses at later dates implies that the instrument is performing as it was at the time of calibration. Side-by-side sampling allows the level of agreement between two or more instruments to be determined. This is useful when simultaneously collected data are compared for differences, i.e., background with process aerosol concentrations. A reference set of data was obtained using the spark igniter. The generation system was found to be reproducible and suitable to form the basis of calibration verification. Finally, the bump test is simple enough to be performed periodically throughout the calibration year or prior to field monitoring.« less

  5. Iron Opacity Bump Changes the Stability and Structure of Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Davis, Shane W.; Stone, James M.

    2016-08-01

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound-bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 108 solar mass black hole with ˜3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free-free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  6. Cross-validation and Peeling Strategies for Survival Bump Hunting using Recursive Peeling Methods

    PubMed Central

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil

    2015-01-01

    We introduce a framework to build a survival/risk bump hunting model with a censored time-to-event response. Our Survival Bump Hunting (SBH) method is based on a recursive peeling procedure that uses a specific survival peeling criterion derived from non/semi-parametric statistics such as the hazards-ratio, the log-rank test or the Nelson--Aalen estimator. To optimize the tuning parameter of the model and validate it, we introduce an objective function based on survival or prediction-error statistics, such as the log-rank test and the concordance error rate. We also describe two alternative cross-validation techniques adapted to the joint task of decision-rule making by recursive peeling and survival estimation. Numerical analyses show the importance of replicated cross-validation and the differences between criteria and techniques in both low and high-dimensional settings. Although several non-parametric survival models exist, none addresses the problem of directly identifying local extrema. We show how SBH efficiently estimates extreme survival/risk subgroups unlike other models. This provides an insight into the behavior of commonly used models and suggests alternatives to be adopted in practice. Finally, our SBH framework was applied to a clinical dataset. In it, we identified subsets of patients characterized by clinical and demographic covariates with a distinct extreme survival outcome, for which tailored medical interventions could be made. An R package PRIMsrc (Patient Rule Induction Method in Survival, Regression and Classification settings) is available on CRAN (Comprehensive R Archive Network) and GitHub. PMID:27034730

  7. Bump evolution driven by the x-ray ablation Richtmyer-Meshkov effect in plastic inertial confinement fusion Ablators

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Braun, Dave; Batha, Steven H.; Landen, Otto L.

    2013-11-01

    Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF) due to ablator and fuel non-uniformities are a primary concern for the ICF program. Recently, observed jetting and parasitic mix into the fuel were attributed to isolated defects on the outer surface of the capsule. Strategies for mitigation of these defects exist, however, they require reduced uncertainties in Equation of State (EOS) models prior to invoking them. In light of this, we have begun a campaign to measure the growth of isolated defects (bumps) due to x-ray ablation Richtmyer-Meshkov in plastic ablators to validate these models. Experiments used hohlraums with radiation temperatures near 70 eV driven by 15 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY), which sent a ˜1.25Mbar shock into a planar CH target placed over one laser entrance hole. Targets consisted of 2-D arrays of quasi-gaussian bumps (10 microns tall, 34 microns FWHM) deposited on the surface facing into the hohlraum. On-axis radiography with a saran (Cl Heα - 2.76keV) backlighter was used to measure bump evolution prior to shock breakout. Shock speed measurements were also performed to determine target conditions. Simulations using the LEOS 5310 and SESAME 7592 models required the simulated laser power be turned down to 80 and 88%, respectively to match observed shock speeds. Both LEOS 5310 and SESAME 7592 simulations agreed with measured bump areal densities out to 6 ns where ablative RM oscillations were observed in previous laser-driven experiments, but did not occur in the x-ray driven case. The QEOS model, conversely, over predicted shock speeds and under predicted areal density in the bump.

  8. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  9. NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2017-01-01

    We perform a combined analysis of recent NEOS and Daya Bay data on the reactor antineutrino spectrum. This analysis includes approximately 1.5 million antineutrino events, which is the largest neutrino event sample analyzed to date. We use a double ratio which cancels flux model dependence and related uncertainties as well as the effects of the detector response model. We find at 3-4 standard deviation significance level, that plutonium-239 and plutonium-241 are disfavored as the single source for the so-called 5 MeV bump. This analysis method has general applicability and, in particular, with higher statistics data sets, will be able to shed significant light on the issue of the bump. With some caveats, this should also allow us to improve the sensitivity for sterile neutrino searches in NEOS.

  10. Does recall of a past music event invoke a reminiscence bump in young adults?

    PubMed

    Schubert, Emery

    2016-08-01

    Many studies of the reminiscence bump (RB) in music invoke memories from different autobiographical times by using stimulus specific prompts (SSPs). This study investigated the utility of a non-SSP paradigm to determine whether the RB would emerge when participants were asked to recall a single memorable musical event from "a time long ago". The presence of a RB in response to music has not been obtained in such a manner for younger participants. Eighty-eight 20-22 year olds reported music episodes that peaked when their autobiographical age was 13-14 years. Self-selected stimuli included a range of musical styles, including classical and non-Western pop forms, such as J-pop and K-pop, as well as generational pop music, such as the Beatles. However, most participants reported pop/rock music that was contemporaneous with encoding age, providing support for the utility of published SSP paradigms using pop music. Implications for and limitations of SSP paradigms are discussed. Participants were also asked to relate the selected musical piece to current musical tastes. Most participants liked the music that they selected, with many continuing to like the music, but most also reported a general broadening of their taste, consistent with developmental literature on open-earedness.

  11. An analysis of reservoir storage contents for the proposed enlargement of Bumping Lake in Washington

    USGS Publications Warehouse

    Bartells, John H.

    1981-01-01

    Monthend contents of the proposed Bumping Lake enlargement in Washington were determined for the period 1917-73 by using the historic streamflow record as a basis for inflow to the reservoir and imposing certain operational requirements on reservoir releases. The operational requirements used were those set forth in the Environmental Statement that was prepared for the project by the U.S. Water and Power Resources Service (formerly the U.S. Bureau of Reclamation). The computations show that after starting with an empty reservoir on October 1, 1917, the 458,000 acre-feet capacity of the enlarged lake could be nearly full (384,000 acre-feet) on November 30, 1925, which is the starting scenario given in the Environmental Statement. From 1925 to 1973 the computations compare favorably with those shown in the Environmental Statement, with minor differences due to releases of fish enhancement water. In all cases studied, all fishwater requirements and all existing irrigation requirements were met, and generally from 30,000 to 90,000 acre-feet of extra irrigation water could be available in most years. (USGS)

  12. Using a shock control bump to improve the performance of an axial compressor blade section

    NASA Astrophysics Data System (ADS)

    Mazaheri, K.; Khatibirad, S.

    2017-03-01

    Here, we use numerical analysis to study the effects of a shock control bump (SCB) on the performance of a transonic axial compressor blade section and to optimize its shape and location to improve the compressor performance. A section of the NASA rotor 67 blade is used for this study. Two Bézier curves, each consisting of seven control points, are used to model the suction and pressure surfaces of the blade section. The SCB is modeled with the Hicks-Henne function and, using five design parameters, is added to the suction side. The total pressure loss through a cascade of blade sections is selected as the cost function. A continuous adjoint optimization method is used along with a RANS solver to find a new blade section shape. A grid independence study is performed, and all optimization and flow solver algorithms are validated. Two single-point optimizations are performed in the design condition and in an off-design condition. It is shown that both optimized shapes have overall better performance for both on-design and off-design conditions. An analysis is given regarding how the SCB has changed the wave structure between blade sections resulting in a more favorable flow pattern.

  13. A Novel Calcium-Dependent Kinase Inhibitor, Bumped Kinase Inhibitor 1517, Cures Cryptosporidiosis in Immunosuppressed Mice.

    PubMed

    Castellanos-Gonzalez, Alejandro; Sparks, Hayley; Nava, Samantha; Huang, Wenlin; Zhang, Zhongsheng; Rivas, Kasey; Hulverson, Matthew A; Barrett, Lynn K; Ojo, Kayode K; Fan, Erkang; Van Voorhis, Wesley C; White, Arthur Clinton

    2016-12-15

    Cryptosporidium is recognized as one of the main causes of childhood diarrhea worldwide. However, the current treatment for cryptosporidiosis is suboptimal. Calcium flux is essential for entry in apicomplexan parasites. Calcium-dependent protein kinases (CDPKs) are distinct from protein kinases of mammals, and the CDPK1 of the apicomplexan Cryptosporidium lack side chains that typically block a hydrophobic pocket in protein kinases. We exploited this to develop bumped kinase inhibitors (BKIs) that selectively target CDPK1. We have shown that several BKIs of Cryptosporidium CDPK1 potently reduce enzymatic activity and decrease parasite numbers when tested in vitro. In the present work, we studied the anticryptosporidial activity of BKI-1517, a novel BKI. The half maximal effective concentration for Cryptosporidium parvum in HCT-8 cells was determined to be approximately 50 nM. Silencing experiments of CDPK1 suggest that BKI-1517 acts on CDPK1 as its primary target. In a mouse model of chronic infection, 5 of 6 SCID/beige mice (83.3%) were cured after treatment with a single daily dose of 120 mg/kg BKI-1517. No side effects were observed. These data support advancing BKI-1517 as a lead compound for drug development for cryptosporidiosis.

  14. Process optimization of Si:As indium bumped focal plane arrays

    NASA Astrophysics Data System (ADS)

    Benninghoven, K. A.

    1992-07-01

    In a particular application, a Si:As focal plane array may experience many thermal cycles from ambient down to its operating temperature (10 Kelvin) at a very rapid cooldown rate. Aerojet Electronic Systems Division's task, under company funds, was to consistently produce focal plane arrays that could reliably survive this kind of thermal cycling with no degradation in performance or mechanical damage. Of utmost importance in the verification of the focal plane array reliability is the assurance that the test configuration reflects flight configuration in material, interfaces, and process procedures. Using flight-like hardware, process procedures were developed to optimize hybridization parameters (the means of bonding the indium bumped readout electronics to the detector array) with bonding strength and electrical resistance selected as the figures of merit. When the materials, processes and assembly procedures were developed, a final verification was conducted which consisted of rapidly thermal cycling two flight-like hybrids. The hybrids successfully withstood more than 800 cycles from 60 Kelvin to 10 Kelvin and over 20 cycles from 300 Kelvin to 60 Kelvin with no degradation in performance or mechanical integrity.

  15. Blue supergiant model for ultra-long gamma-ray burst with superluminous-supernova-like bump

    SciTech Connect

    Nakauchi, Daisuke; Nakamura, Takashi; Kashiyama, Kazumi; Suwa, Yudai

    2013-11-20

    Long gamma-ray bursts (LGRBs) have a typical duration of ∼30 s, and some of them are associated with hypernovae, such as Type Ic SN 1998bw. Wolf-Rayet stars are the most plausible LGRB progenitors, since the free fall time of the envelope is consistent with the duration, and the natural outcome of the progenitor is a Type Ic SN. While a new population of ultra-long GRBs (ULGRBs), GRB 111209A, GRB 101225A, and GRB 121027A, has a duration of ∼10{sup 4} s, two of them are accompanied by superluminous-supernova-like (SLSN-like) bumps, which are ≲ 10 times brighter than typical hypernovae. Wolf-Rayet progenitors cannot explain ULGRBs because of durations that are too long and SN-like bumps that are too bright. A blue supergiant (BSG) progenitor model, however, can explain the duration of ULGRBs. Moreover, SLSN-like bumps can be attributed to the so-called cocoon fireball photospheric emissions (CFPEs). Since a large cocoon is inevitably produced during the relativistic jet piercing though the BSG envelope, this component can be smoking gun evidence of the BSG model for ULGRBs. In this paper, we examine u-, g-, r-, i-, and J-band light curves of three ULGRBs and demonstrate that they can be fitted quite well by our BSG model with the appropriate choices of the jet opening angle and the number density of the ambient gas. In addition, we predict that for 121027A, SLSN-like bump could have been observed for ∼20-80 days after the burst. We also propose that some SLSNe might be CFPEs of off-axis ULGRBs without visible prompt emissions.

  16. A Tale of Two Mysteries in Interstellar Astrophysics: The 2175 Å Extinction Bump and Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Xiang, F. Y.; Li, Aigen; Zhong, J. X.

    2011-06-01

    The diffuse interstellar bands (DIBs) are ubiquitous absorption spectral features arising from the tenuous material in the space between stars—the interstellar medium (ISM). Since their first detection nearly nine decades ago, over 400 DIBs have been observed in the visible and near-infrared wavelength range in both the Milky Way and external galaxies, both nearby and distant. However, the identity of the species responsible for these bands remains as one of the most enigmatic mysteries in astrophysics. An equally mysterious interstellar spectral signature is the 2175 Å extinction bump, the strongest absorption feature observed in the ISM. Its carrier also remains unclear since its first detection 46 years ago. Polycyclic aromatic hydrocarbon (PAH) molecules have long been proposed as a candidate for DIBs as their electronic transitions occur in the wavelength range where DIBs are often found. In recent years, the 2175 Å extinction bump is also often attributed to the π-π* transition in PAHs. If PAHs are indeed responsible for both the 2175 Å extinction feature and DIBs, their strengths may correlate. We perform an extensive literature search for lines of sight for which both the 2175 Å extinction feature and DIBs have been measured. Unfortunately, we found no correlation between the strength of the 2175 Å feature and the equivalent widths of the strongest DIBs. A possible explanation might be that DIBs are produced by small free gas-phase PAH molecules and ions, while the 2175 Å bump is mainly from large PAHs or PAH clusters in condensed phase so that there is no tight correlation between DIBs and the 2175 Å bump.

  17. A TALE OF TWO MYSTERIES IN INTERSTELLAR ASTROPHYSICS: THE 2175 A EXTINCTION BUMP AND DIFFUSE INTERSTELLAR BANDS

    SciTech Connect

    Xiang, F. Y.; Zhong, J. X.; Li Aigen E-mail: lia@missouri.edu

    2011-06-01

    The diffuse interstellar bands (DIBs) are ubiquitous absorption spectral features arising from the tenuous material in the space between stars-the interstellar medium (ISM). Since their first detection nearly nine decades ago, over 400 DIBs have been observed in the visible and near-infrared wavelength range in both the Milky Way and external galaxies, both nearby and distant. However, the identity of the species responsible for these bands remains as one of the most enigmatic mysteries in astrophysics. An equally mysterious interstellar spectral signature is the 2175 A extinction bump, the strongest absorption feature observed in the ISM. Its carrier also remains unclear since its first detection 46 years ago. Polycyclic aromatic hydrocarbon (PAH) molecules have long been proposed as a candidate for DIBs as their electronic transitions occur in the wavelength range where DIBs are often found. In recent years, the 2175 A extinction bump is also often attributed to the {pi}-{pi}* transition in PAHs. If PAHs are indeed responsible for both the 2175 A extinction feature and DIBs, their strengths may correlate. We perform an extensive literature search for lines of sight for which both the 2175 A extinction feature and DIBs have been measured. Unfortunately, we found no correlation between the strength of the 2175 A feature and the equivalent widths of the strongest DIBs. A possible explanation might be that DIBs are produced by small free gas-phase PAH molecules and ions, while the 2175 A bump is mainly from large PAHs or PAH clusters in condensed phase so that there is no tight correlation between DIBs and the 2175 A bump.

  18. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    NASA Astrophysics Data System (ADS)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  19. Control of flow separation on a contour bump by jets in a Mach 1.9 free-stream: An experimental study

    NASA Astrophysics Data System (ADS)

    Lo, Kin Hing; Zare-Behtash, Hossein; Kontis, Konstantinos

    2016-09-01

    Flow separation control over a three-dimensional contour bump using jet in a Mach 1.9 supersonic free-stream has been experimentally investigated using a transonic/supersonic wind tunnel. Jet total pressure in the range of 0-4 bar was blowing at the valley of the contour bump. Schlieren photography, surface oil flow visualisation and particle image velocimetry measurements were employed for flow visualisation and diagnostics. Experimental results show that blowing jet at the valley of the contour bump can hinder the formation and distort the spanwise vortices. The blowing jet can also reduce the extent of flow separation appears downstream of the bump crest. It was observed that this approach of flow control is more effective when high jet total pressure is employed. It is believed that a pressure gradient is generated as a result of the interaction between the flow downstream of the bump crest and the jet induced shock leads to the downwards flow motion around the bump valley.

  20. Coal mine bumps as related to geologic features in the northern part of the Sunnyside District, Carbon County, Utah

    USGS Publications Warehouse

    Osterwald, Frank W.; Dunrud, C. Richard; Collins, Donley S.

    1993-01-01

    Coal mine bumps, which are violent, spontaneous, and often catastrophic disruptions of coal and rock, were common in the Sunnyside coal mining district, Utah, before the introduction of protective-engineering methods, modern room-and-pillar retreat mining with continuous mining machines, and particularly modern longwall mining. The coal at Sunnyside, when stressed during mining, fails continuously with many popping, snapping, and banging noises. Although most of the bumps are beneficial because they make mining easier, many of the large ones are dangerous and in the past caused injuries and fatalities, particularly with room- and-pillar mining methods used in the early mining operations. Geologic mapping of underground mine openings revealed many types of deformational features, some pre-mine and some post-mine in age. Stresses resulting from mining are concentrated near the mine openings; if openings are driven at large angles to small pre-mine deformational features, particularly shatter zones in coal, abnormal stress buildups may occur and violent bumps may result. Other geologic features, such as ripple marks, oriented sand grains, intertongued rock contacts, trace fossils, and load casts, also influence the occurrence of bumps by impeding slip of coal and rocks along bedding planes. The stress field in the coal also varies markedly because of the rough ridge and canyon topography. These features may allow excessively large stress components to accumulate. At many places, the stresses that contribute to deformation and failures of mine openings are oriented horizontally. The stratigraphy of the rocks immediately above and below the mined coal bed strongly influences the deformation of the mine openings in response to stress accumulations. Triaxial compressive testing of coal from the Sunnyside No.1 and No.3 Mines indicates that the strength of the coal increases several times as the confining (lateral) stress is increased. Strengths of cores cut from single

  1. Precise Countersinking Tool

    NASA Technical Reports Server (NTRS)

    Jenkins, Eric S.; Smith, William N.

    1992-01-01

    Tool countersinks holes precisely with only portable drill; does not require costly machine tool. Replaceable pilot stub aligns axis of tool with centerline of hole. Ensures precise cut even with imprecise drill. Designed for relatively low cutting speeds.

  2. Optimization of bump and blowing to control the flow through a transonic compressor blade cascade

    NASA Astrophysics Data System (ADS)

    Mazaheri, K.; Khatibirad, S.

    2017-06-01

    Shock control bump (SCB) and blowing are two flow control methods, used here to improve the aerodynamic performance of transonic compressors. Both methods are applied to a NASA rotor 67 blade section and are optimized to minimize the total pressure loss. A continuous adjoint algorithm is used for multi-point optimization of a SCB to improve the aerodynamic performance of the rotor blade section, for a range of operational conditions around its design point. A multi-point and two single-point optimizations are performed in the design and off-design conditions. It is shown that the single-point optimized shapes have the best performance for their respective operating conditions, but the multi-point one has an overall better performance over the whole operating range. An analysis is given regarding how similarly both single- and multi-point optimized SCBs change the wave structure between blade sections resulting in a more favorable flow pattern. Interactions of the SCB with the boundary layer and the wave structure, and its effects on the separation regions are also studied. We have also introduced the concept of blowing for control of shock wave and boundary-layer interaction. A geometrical model is introduced, and the geometrical and physical parameters of blowing are optimized at the design point. The performance improvements of blowing are compared with the SCB. The physical interactions of SCB with the boundary layer and the shock wave are analyzed. The effects of SCB on the wave structure in the flow domain outside the boundary-layer region are investigated. It is shown that the effects of the blowing mechanism are very similar to the SCB.

  3. The Bump Hunting by the Decision Tree with the Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Hirose, Hideo

    In difficult classification problems of the z-dimensional points into two groups giving 0-1 responses due to the messy data structure, it is more favorable to search for the denser regions for the response 1 points than to find the boundaries to separate the two groups. For such problems which can often be seen in customer databases, we have developed a bump hunting method using probabilistic and statistical methods as shown in the previous study. By specifying a pureness rate in advance, a maximum capture rate will be obtained. In finding the maximum capture rate, we have used the decision tree method combined with the genetic algorithm. Then, a trade-off curve between the pureness rate and the capture rate can be constructed. However, such a trade-off curve could be optimistic if the training data set alone is used. Therefore, we should be careful in assessing the accuracy of the tradeoff curve. Using the accuracy evaluation procedures such as the cross validation or the bootstrapped hold-out method combined with the training and test data sets, we have shown that the actually applicable trade-off curve can be obtained. We have also shown that an attainable upper bound trade-off curve can be estimated by using the extreme-value statistics because the genetic algorithm provides many local maxima of the capture rates with different initial values. We have constructed the three kinds of trade-off curves; the first is the curve obtained by using the training data; the second is the return capture rate curve obtained by using the extreme-value statistics; the last is the curve obtained by using the test data. These three are indispensable like the Trinity to comprehend the whole figure of the trade-off curve between the pureness rate and the capture rate. This paper deals with the behavior of the trade-off curve from a statistical viewpoint.

  4. Critical Steady Surface Waves of Idea Fluid over a Bump with Surface Tension

    NASA Astrophysics Data System (ADS)

    Choi, Jeongwhan; Lee, Sangwon; Kim, Joonkyoung; Whang, Sungim

    2016-11-01

    The paper deals with steady forced surface waves propagating on a two-dimensional incompressible and inviscid fluid with a small bump placed on a rigid flat bottom. If the surface tension coefficient T on the free surface is not zero and the wave is moving with a constant speed C, the wave motion is determined by two non-dimensional constants, F = √ gh and I = T / (ρgh 2) , where g is the gravity constant and h is the height of the fluid at infinity. It has been known that F = 1 and t = 1/3 are the critical values of F and t, respectively. In the critical case F = 1 + λ 1 ɛ 2 and t = 1/3 + t1 ɛ with ɛ > 0 a small parameter, a time-dependent forced Kawahara (F-Kawahara)equation is derived to model the wave propagation on the free surface and the steady F-Kawahara equation is studied both theoretically and merically. It is shown that the steady F-Kawahara equation has many different kinds of one and multi-hump solutions when t1 and λ 1 vary. In particular, for a fixed t 1, there is a λ 0 < 0 such that if λ 1 < λ 0 , two one-hump steady solutions can be obtained, one with small amplitude and the other with large amplitude. By using the unsteady F-Kawahara equation, it appears that the small one-hump solution is stable while the large one is nstable. In addition, two-hump solutions are unstable.

  5. Precision agricultural systems

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture is a new farming practice that has been developing since late 1980s. It has been variously referred to as precision farming, prescription farming, site-specific crop management, to name but a few. There are numerous definitions for precision agriculture, but the central concept...

  6. Extended precision software packages

    NASA Technical Reports Server (NTRS)

    Phillips, E. J.

    1972-01-01

    A description of three extended precision packages is presented along with three small conversion subroutines which can be used in conjunction with the extended precision packages. These extended packages represent software packages written in FORTRAN 4. They contain normalized or unnormalized floating point arithmetic with symmetric rounding and arbitrary mantissa lengths, and normalized floating point interval arithmetic with appropriate rounding. The purpose of an extended precision package is to enable the user to use and manipulate numbers with large decimal places as well as those with small decimal places where precision beyond double precision is required.

  7. Precision performance lamp technology

    NASA Astrophysics Data System (ADS)

    Bell, Dean A.; Kiesa, James E.; Dean, Raymond A.

    1997-09-01

    A principal function of a lamp is to produce light output with designated spectra, intensity, and/or geometric radiation patterns. The function of a precision performance lamp is to go beyond these parameters and into the precision repeatability of performance. All lamps are not equal. There are a variety of incandescent lamps, from the vacuum incandescent indictor lamp to the precision lamp of a blood analyzer. In the past the definition of a precision lamp was described in terms of wattage, light center length (LCL), filament position, and/or spot alignment. This paper presents a new view of precision lamps through the discussion of a new segment of lamp design, which we term precision performance lamps. The definition of precision performance lamps will include (must include) the factors of a precision lamp. But what makes a precision lamp a precision performance lamp is the manner in which the design factors of amperage, mscp (mean spherical candlepower), efficacy (lumens/watt), life, not considered individually but rather considered collectively. There is a statistical bias in a precision performance lamp for each of these factors; taken individually and as a whole. When properly considered the results can be dramatic to the system design engineer, system production manage and the system end-user. It can be shown that for the lamp user, the use of precision performance lamps can translate to: (1) ease of system design, (2) simplification of electronics, (3) superior signal to noise ratios, (4) higher manufacturing yields, (5) lower system costs, (6) better product performance. The factors mentioned above are described along with their interdependent relationships. It is statistically shown how the benefits listed above are achievable. Examples are provided to illustrate how proper attention to precision performance lamp characteristics actually aid in system product design and manufacturing to build and market more, market acceptable product products in the

  8. Bumps on the managed care road: the search for an alternative model to reduce collisions between HMOs, physicians, and patients.

    PubMed

    Reece, R L

    2000-01-01

    Managed care is experiencing political, litigious, and financial bumps on the road. There are various reasons for this bumpy ride: out-of-control costs, prescription drug expense, negative media reports, public revolt at denials of care or limited access to specialists, bad physician relations, patients' rights legislation, dropping health maintenance organization (HMO) stock prices, the ripple effect of the Harvard Pilgrim bankruptcy, and threat of massive litigation against HMOs. Two reasons not often mentioned, but explored in this article, are the orthodox managed care's flawed market model and lack of enough understanding of physician culture and emerging consumer trends to effectively address these two key constituencies.

  9. Thermal cycling reliability of Cu/SnAg double-bump flip chip assemblies for 100 μm pitch applications

    NASA Astrophysics Data System (ADS)

    Son, Ho-Young; Kim, Ilho; Lee, Soon-Bok; Jung, Gi-Jo; Park, Byung-Jin; Paik, Kyung-Wook

    2009-01-01

    A thick Cu column based double-bump flip chip structure is one of the promising alternatives for fine pitch flip chip applications. In this study, the thermal cycling (T/C) reliability of Cu/SnAg double-bump flip chip assemblies was investigated, and the failure mechanism was analyzed through the correlation of T/C test and the finite element analysis (FEA) results. After 1000 thermal cycles, T/C failures occurred at some Cu/SnAg bumps located at the edge and corner of chips. Scanning acoustic microscope analysis and scanning electron microscope observations indicated that the failure site was the Cu column/Si chip interface. It was identified by a FEA where the maximum stress concentration was located during T/C. During T/C, the Al pad between the Si chip and a Cu column bump was displaced due to thermomechanical stress. Based on the low cycle fatigue model, the accumulation of equivalent plastic strain resulted in thermal fatigue deformation of the Cu column bumps and ultimately reduced the thermal cycling lifetime. The maximum equivalent plastic strains of some bumps at the chip edge increased with an increased number of thermal cycles. However, equivalent plastic strains of the inner bumps did not increase regardless of the number of thermal cycles. In addition, the z-directional normal plastic strain ɛ22 was determined to be compressive and was a dominant component causing the plastic deformation of Cu/SnAg double bumps. As the number of thermal cycles increased, normal plastic strains in the perpendicular direction to the Si chip and shear strains were accumulated on the Cu column bumps at the chip edge at low temperature region. Thus it was found that the Al pad at the Si chip/Cu column interface underwent thermal fatigue deformation by compressive normal strain and the contact loss by displacement failure of the Al pad, the main T/C failure mode of the Cu/SnAg flip chip assembly, then occurred at the Si chip/Cu column interface shear strain deformation

  10. Advanced irrigation engineering: Precision and Precise

    USDA-ARS?s Scientific Manuscript database

    Irrigation advances in precision irrigation (PI) or site-specific irrigation (SSI) have been considerable in research; however commercialization lags. A primary necessity for it is variability in soil texture that affects soil water holding capacity and crop yield. Basically, SSI/PI uses variable ra...

  11. Comparison of thermomigration behaviors between Pb-free flip chip solder joints and microbumps in three dimensional integrated circuits: Bump height effect

    NASA Astrophysics Data System (ADS)

    Ouyang, Fan-Yi; Jhu, Wei-Cheng

    2013-01-01

    Packaging technology is currently transition from flip chip technology to three dimensional integrated circuits (3D ICs) to meet the requirements of consumer electronic products. Compared to flip chip technology, the dimension of microbumps in 3D ICs is shrunk by a factor of 10. In this study, the behaviors of thermomigration in Pb-free solders of flip chip and 3D ICs are presented. When the bump height is 100 μm in the flip chip samples, the Sn protrusion was observed at the hot end and voids formation at the cold end. However, when the bump height is reduced to 5.8 μm in the 3D IC samples, no significant microstructural evolution of Sn was found; instead, the dissolution of Ni under-bump metallization at hot end was observed. We propose that discrepancy between flip chip solder joints and 3D IC microbumps is mainly attributed to the effect of back stress and the presence of thicker Ni under-bump metallization in the 3D IC packaging. Moreover, the critical temperature gradient in terms of different bump heights is discussed, showing below which there will be no net effect of thermomigration of Sn.

  12. A new modal-based approach for modelling the bump foil structure in the simultaneous solution of foil-air bearing rotor dynamic problems

    NASA Astrophysics Data System (ADS)

    Bin Hassan, M. F.; Bonello, P.

    2017-05-01

    Recently-proposed techniques for the simultaneous solution of foil-air bearing (FAB) rotor dynamic problems have been limited to a simple bump foil model in which the individual bumps were modelled as independent spring-damper (ISD) subsystems. The present paper addresses this limitation by introducing a modal model of the bump foil structure into the simultaneous solution scheme. The dynamics of the corrugated bump foil structure are first studied using the finite element (FE) technique. This study is experimentally validated using a purpose-made corrugated foil structure. Based on the findings of this study, it is proposed that the dynamics of the full foil structure, including bump interaction and foil inertia, can be represented by a modal model comprising a limited number of modes. This full foil structure modal model (FFSMM) is then adapted into the rotordynamic FAB problem solution scheme, instead of the ISD model. Preliminary results using the FFSMM under static and unbalance excitation conditions are proven to be reliable by comparison against the corresponding ISD foil model results and by cross-correlating different methods for computing the deflection of the full foil structure. The rotor-bearing model is also validated against experimental and theoretical results in the literature.

  13. [Precision and personalized medicine].

    PubMed

    Sipka, Sándor

    2016-10-01

    The author describes the concept of "personalized medicine" and the newly introduced "precision medicine". "Precision medicine" applies the terms of "phenotype", "endotype" and "biomarker" in order to characterize more precisely the various diseases. Using "biomarkers" the homogeneous type of a disease (a "phenotype") can be divided into subgroups called "endotypes" requiring different forms of treatment and financing. The good results of "precision medicine" have become especially apparent in relation with allergic and autoimmune diseases. The application of this new way of thinking is going to be necessary in Hungary, too, in the near future for participants, controllers and financing boards of healthcare. Orv. Hetil., 2016, 157(44), 1739-1741.

  14. Precision positioning device

    SciTech Connect

    McInroy, John E.

    2005-01-18

    A precision positioning device is provided. The precision positioning device comprises a precision measuring/vibration isolation mechanism. A first plate is provided with the precision measuring mean secured to the first plate. A second plate is secured to the first plate. A third plate is secured to the second plate with the first plate being positioned between the second plate and the third plate. A fourth plate is secured to the third plate with the second plate being positioned between the third plate and the fourth plate. An adjusting mechanism for adjusting the position of the first plate, the second plate, the third plate, and the fourth plate relative to each other.

  15. Precision enhancement of pavement roughness localization with connected vehicles

    NASA Astrophysics Data System (ADS)

    Bridgelall, R.; Huang, Y.; Zhang, Z.; Deng, F.

    2016-02-01

    Transportation agencies rely on the accurate localization and reporting of roadway anomalies that could pose serious hazards to the traveling public. However, the cost and technical limitations of present methods prevent their scaling to all roadways. Connected vehicles with on-board accelerometers and conventional geospatial position receivers offer an attractive alternative because of their potential to monitor all roadways in real-time. The conventional global positioning system is ubiquitous and essentially free to use but it produces impractically large position errors. This study evaluated the improvement in precision achievable by augmenting the conventional geo-fence system with a standard speed bump or an existing anomaly at a pre-determined position to establish a reference inertial marker. The speed sensor subsequently generates position tags for the remaining inertial samples by computing their path distances relative to the reference position. The error model and a case study using smartphones to emulate connected vehicles revealed that the precision in localization improves from tens of metres to sub-centimetre levels, and the accuracy of measuring localized roughness more than doubles. The research results demonstrate that transportation agencies will benefit from using the connected vehicle method to achieve precision and accuracy levels that are comparable to existing laser-based inertial profilers.

  16. The reminiscence bump without memories: The distribution of imagined word-cued and important autobiographical memories in a hypothetical 70-year-old.

    PubMed

    Koppel, Jonathan; Berntsen, Dorthe

    2016-08-01

    The reminiscence bump is the disproportionate number of autobiographical memories dating from adolescence and early adulthood. It has often been ascribed to a consolidation of the mature self in the period covered by the bump. Here we stripped away factors relating to the characteristics of autobiographical memories per se, most notably factors that aid in their encoding or retention, by asking students to generate imagined word-cued and imagined 'most important' autobiographical memories of a hypothetical, prototypical 70-year-old of their own culture and gender. We compared the distribution of these fictional memories with the distributions of actual word-cued and most important autobiographical memories in a sample of 61-70-year-olds. We found a striking similarity between the temporal distributions of the imagined memories and the actual memories. These results suggest that the reminiscence bump is largely driven by constructive, schematic factors at retrieval, thereby challenging most existing theoretical accounts.

  17. The reminiscence bump in the temporal distribution of the best football players of all time: Pelé, Cruijff or Maradona?

    PubMed

    Janssen, Steve M J; Rubin, David C; Conway, Martin A

    2012-01-01

    The reminiscence bump is the tendency to recall more autobiographical memories from adolescence and early adulthood than from adjacent lifetime periods. In this online study, the robustness of the reminiscence bump was examined by looking at participants' judgements about the quality of football players. Dutch participants (N = 619) were asked who they thought the five best players of all time were. The participants could select the names from a list or enter the names when their favourite players were not on the list. Johan Cruijff, Pelé, and Diego Maradona were the three most often mentioned players. Participants frequently named football players who reached the midpoint of their career when the participants were adolescents (mode = 17). The results indicate that the reminiscence bump can also be identified outside the autobiographical memory domain.

  18. Dynamics and afterglow light curves of gamma-ray burst blast waves encountering a density bump or void

    SciTech Connect

    Uhm, Z. Lucas; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-07-01

    We investigate the dynamics and afterglow light curves of gamma-ray burst blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structure in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics for blast waves with either a long-lived or short-lived RS. We show that when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage) due to adiabatic cooling of blast waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that must be satisfied by correct modeling of blast waves. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that as a response to density structures in the ambient medium, the RS light curves produce more significant variations than the FS light curves. Some observed features (such as rebrightenings, dips, or slow wiggles) can be more easily explained within the RS model. We also discuss the origin of these different features imprinted on the FS and RS light curves.

  19. Precision antenna reflector structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    The assembly of the Large Precise Reflector Infrared Telescope is detailed. Also given are the specifications for the Aft Cargo Carrier and the Large Precision Reflector structure. Packaging concepts and options, stowage depth and support truss geometry are also considered. An example of a construction scenario is given.

  20. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  1. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  2. Void Evolution in Sub-100-Micron Sn-Ag Solder Bumps during Multi-reflow and Aging and its Effects on Bonding Reliability

    NASA Astrophysics Data System (ADS)

    Lin, Xiaoqin; Luo, Le

    2008-03-01

    The evolution of voids in the interfacial region of electroplated Sn-3.0Ag solder bumps on electroplated Cu and its effects on bonding reliability were studied. Results show that volume shrinkage resulted in void formation during multi-reflow, while the Kirkendall effect led to void formation during aging. A thick η-phase and voids at the boundaries among Cu6Sn5 grains promoted the void growth in the ɛ-phase. Though the formation of voids had a trivial weakening effect on the shear strength of the solder joints, the voids were a threat to the bonding reliability of solder bumps.

  3. Precision volume measurement system.

    SciTech Connect

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  4. Precision Measurement in Biology

    NASA Astrophysics Data System (ADS)

    Quake, Stephen

    Is biology a quantitative science like physics? I will discuss the role of precision measurement in both physics and biology, and argue that in fact both fields can be tied together by the use and consequences of precision measurement. The elementary quanta of biology are twofold: the macromolecule and the cell. Cells are the fundamental unit of life, and macromolecules are the fundamental elements of the cell. I will describe how precision measurements have been used to explore the basic properties of these quanta, and more generally how the quest for higher precision almost inevitably leads to the development of new technologies, which in turn catalyze further scientific discovery. In the 21st century, there are no remaining experimental barriers to biology becoming a truly quantitative and mathematical science.

  5. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  6. Optimetrics for Precise Navigation

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Heckler, Gregory; Gramling, Cheryl

    2017-01-01

    Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.

  7. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  8. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  9. Precision medicine in cardiology.

    PubMed

    Antman, Elliott M; Loscalzo, Joseph

    2016-10-01

    The cardiovascular research and clinical communities are ideally positioned to address the epidemic of noncommunicable causes of death, as well as advance our understanding of human health and disease, through the development and implementation of precision medicine. New tools will be needed for describing the cardiovascular health status of individuals and populations, including 'omic' data, exposome and social determinants of health, the microbiome, behaviours and motivations, patient-generated data, and the array of data in electronic medical records. Cardiovascular specialists can build on their experience and use precision medicine to facilitate discovery science and improve the efficiency of clinical research, with the goal of providing more precise information to improve the health of individuals and populations. Overcoming the barriers to implementing precision medicine will require addressing a range of technical and sociopolitical issues. Health care under precision medicine will become a more integrated, dynamic system, in which patients are no longer a passive entity on whom measurements are made, but instead are central stakeholders who contribute data and participate actively in shared decision-making. Many traditionally defined diseases have common mechanisms; therefore, elimination of a siloed approach to medicine will ultimately pave the path to the creation of a universal precision medicine environment.

  10. Feeling socially powerless makes you more prone to bumping into things on the right and induces leftward line bisection error.

    PubMed

    Wilkinson, David; Guinote, Ana; Weick, Mario; Molinari, Rosanna; Graham, Kylee

    2010-12-01

    Social power affects the manner in which people view themselves and act toward others, a finding that has attracted broad interest from the social and political sciences. However, there has been little interest from those within cognitive neuroscience. Here, we demonstrate that the effects of power extend beyond social interaction and invoke elementary spatial biases in behavior consistent with preferential hemispheric activation. In particular, participants who felt relatively powerless, compared with those who felt more powerful, were more likely to bisect horizontal lines to the left of center, and bump into the right-hand (as opposed to the left-hand) side when walking through a narrow passage. These results suggest that power induces hemispheric differences in visuomotor behavior, indicating that this ubiquitous phenomenon affects not only how we interact with one another, but also how we interact with the physical world.

  11. Recent versus remote: flashbulb memory for 9/11 and self-selected events from the reminiscence bump.

    PubMed

    Denver, Jenny Y; Lane, Sean M; Cherry, Katie E

    2010-01-01

    In two related studies, we examined flashbulb memories acquired from different points in the lifespan in younger and older adults. When asked to remember flashbulb memories from their lives, older adults were most likely to recall events from the reminiscence bump (Study 1A). In Study 1B, younger and older adults recalled 9/11 and a personal flashbulb event that occurred between ages 10 and 30. Older adults' memories of a recent event (9/11) were less likely than younger adults' to be classified as flashbulb memories; however, when memories were examined in their entirety, these age-related declines disappeared. Older adults' memories for a remote flashbulb event appeared to be quite similar, if not more detailed than their memories for the recent event, suggesting that remote flashbulb memories are relatively stable over time. Implications of these data for current views of flashbulb memory in late adulthood are discussed.

  12. Fundamental Study of the Intermixing of 95Pb-5Sn High-Lead Solder Bumps and 37Pb-63Sn Pre-Solder on Chip-Carrier Substrates

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Lin, Y. W.; Lai, Y. S.; Kao, C. R.

    2009-11-01

    This study investigated the intermixing of 95Pb-5Sn solder bumps and 37Pb-63Sn pre-solder in flip-chip solder joints. The reaction conditions included multiple reflows (up to ten) at 240°C, whereby previously solder-coated parts are joined by heating without using additional solder. We found that the molten pre-solder had an irregular shape similar to a calyx (i.e., a cup-like structure) wrapped around a high-lead solder bump. The height to which the molten pre-solder ascended along the solid high-lead solder bump increased with the number of reflows. The molten pre-solder was able to reach the under bump metallurgy (UBM)/95Pb-5Sn interface after three to five reflows. The molten pre-solder at the UBM/95Pb-5Sn interface generated two important phenomena: (1) the molten solder dewetted (i.e., flowed away from the soldered surface) along the UBM/95Pb-5Sn interface, particularly when the number of reflows was high, and (2) the molten pre-solder transported Cu␣atoms to the UBM/95Pb-5Sn interface, which in turn caused the Ni-Sn compounds at the chip-side interface to change into (Cu0.6Ni0.4)6Sn5.

  13. Effect of Joint Scale and Processing on the Fracture of Sn-3Ag-0.5Cu Solder Joints: Application to Micro-bumps in 3D Packages

    NASA Astrophysics Data System (ADS)

    Talebanpour, B.; Huang, Z.; Chen, Z.; Dutta, I.

    2016-01-01

    In 3-dimensional (3D) packages, a stack of dies is vertically connected to each other using through-silicon vias and very thin solder micro-bumps. The thinness of the micro-bumps results in joints with a very high volumetric proportion of intermetallic compounds (IMCs), rendering them much more brittle compared to conventional joints. Because of this, the reliability of micro-bumps, and the dependence thereof on the proportion of IMC in the joint, is of substantial concern. In this paper, the growth kinetics of IMCs in thin Sn-3Ag-0.5Cu joints attached to Cu substrates were analyzed, and empirical kinetic laws for the growth of Cu6Sn5 and Cu3Sn in thin joints were obtained. Modified compact mixed mode fracture mechanics samples, with adhesive solder joints between massive Cu substrates, having similar thickness and IMC content as actual micro-bumps, were produced. The effects of IMC proportion and strain rate on fracture toughness and mechanisms were investigated. It was found that the fracture toughness G C decreased with decreasing joint thickness ( h Joint). In addition, the fracture toughness decreased with increasing strain rate. Aging also promoted alternation of the crack path between the two joint-substrate interfaces, possibly proffering a mechanism to enhance fracture toughness.

  14. Investigation Of The Effects Of Reflow Profile Parameters On Lead-free Solder Bump Volumes And Joint Integrity

    NASA Astrophysics Data System (ADS)

    Amalu, E. H.; Lui, Y. T.; Ekere, N. N.; Bhatti, R. S.; Takyi, G.

    2011-01-01

    The electronics manufacturing industry was quick to adopt and use the Surface Mount Technology (SMT) assembly technique on realization of its huge potentials in achieving smaller, lighter and low cost product implementations. Increasing global customer demand for miniaturized electronic products is a key driver in the design, development and wide application of high-density area array package format. Electronic components and their associated solder joints have reduced in size as the miniaturization trend in packaging continues to be challenged by printing through very small stencil apertures required for fine pitch flip-chip applications. At very narrow aperture sizes, solder paste rheology becomes crucial for consistent paste withdrawal. The deposition of consistent volume of solder from pad-to-pad is fundamental to minimizing surface mount assembly defects. This study investigates the relationship between volume of solder paste deposit (VSPD) and the volume of solder bump formed (VSBF) after reflow, and the effect of reflow profile parameters on lead-free solder bump formation and the associated solder joint integrity. The study uses a fractional factorial design (FFD) of 24-1 Ramp-Soak-Spike reflow profile, with all main effects and two-way interactions estimable to determine the optimal factorial combination. The results from the study show that the percentage change in the VSPD depends on the combination of the process parameters and reliability issues could become critical as the size of solder joints soldered on the same board assembly vary greatly. Mathematical models describe the relationships among VSPD, VSBF and theoretical volume of solder paste. Some factors have main effects across the volumes and a number of interactions exist among them. These results would be useful for R&D personnel in designing and implementing newer applications with finer-pitch interconnect.

  15. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  16. Precision QCD measurements at HERA

    NASA Astrophysics Data System (ADS)

    Pirumov, Hayk

    2014-11-01

    A review of recent experimental results on perturbative QCD from the HERA experiments H1 and ZEUS is presented. All inclusive deep inelastic cross sections measured by the H1 and ZEUS collaborations in neutral and charged current unpolarised ep scattering are combined. They span six orders of magnitude in negative four-momentum-transfer squared, Q2, and in Bjorken x. This data set is used as the sole input to NLO and NNLO QCD analyses to determine new sets of parton distributions, HERAPDF2.0, with small experimental uncertainties and an estimate of model and parametrisation uncertainties. Also shown are new results on inclusive jet, dijet and trijet differential cross sections measured in neutral current deep inelastic scattering. The precision jet data is used to extract the strong coupling αs at NLO with small experimental errors.

  17. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  18. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  19. Developing Precision Stroke Imaging

    PubMed Central

    Feldmann, Edward; Liebeskind, David S.

    2014-01-01

    Stroke experts stand at the cusp of a unique opportunity to advance the care of patients with cerebrovascular disorders across the globe through improved imaging approaches. NIH initiatives including the Stroke Progress Review Group promotion of imaging in stroke research and the newly established NINDS Stroke Trials network converge with the rapidly evolving concept of precision medicine. Precision stroke imaging portends the coming shift to individualized approaches to cerebrovascular disorders where big data may be leveraged to identify and manage stroke risk with specific treatments utilizing an improved neuroimaging infrastructure, data collection, and analysis. We outline key aspects of the stroke imaging field where precision medicine may rapidly transform the care of stroke patients in the next few years. PMID:24715885

  20. How Physics Got Precise

    SciTech Connect

    Kleppner, Daniel

    2005-01-19

    Although the ancients knew the length of the year to about ten parts per million, it was not until the end of the 19th century that precision measurements came to play a defining role in physics. Eventually such measurements made it possible to replace human-made artifacts for the standards of length and time with natural standards. For a new generation of atomic clocks, time keeping could be so precise that the effects of the local gravitational potentials on the clock rates would be important. This would force us to re-introduce an artifact into the definition of the second - the location of the primary clock. I will describe some of the events in the history of precision measurements that have led us to this pleasing conundrum, and some of the unexpected uses of atomic clocks today.

  1. Precision manometer gauge

    DOEpatents

    McPherson, M.J.; Bellman, R.A.

    1982-09-27

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  2. Precision manometer gauge

    DOEpatents

    McPherson, Malcolm J.; Bellman, Robert A.

    1984-01-01

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  3. Precision electron polarimetry

    SciTech Connect

    Chudakov, Eugene A.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

  4. Precision electron polarimetry

    NASA Astrophysics Data System (ADS)

    Chudakov, E.

    2013-11-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  5. Precision electron polarimetry

    SciTech Connect

    Chudakov, E.

    2013-11-07

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

  6. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  7. High Precision GPS Measurements

    DTIC Science & Technology

    2010-02-28

    GNSS Service (IGS) database, and magnetic field vectors from the International Geomagnetic Reference Field (IGRF) model [9]. These combined...Additonal correlations between the higher order range error and geomagnetic activity and seasonal variations are also obtained. Fig. 4 shows...clear correlation between the geomagnetic activity and enhanced higher order error at both sites. High Precision GPS Final Report Page 5 Fig.3

  8. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  9. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  10. Teaching with Precision.

    ERIC Educational Resources Information Center

    Raybould, Ted; Solity, Jonathan

    1982-01-01

    Use of precision teaching principles with learning problem students involves five steps: specifying performance, recording daily behavior, charting daily behavior, recording the teaching approach, and analyzing data. The approach has been successfully implemented through consultation of school psychologists in Walsall, England. (CL)

  11. The Precision Medicine Nation.

    PubMed

    Sabatello, Maya; Appelbaum, Paul S

    2017-07-01

    The United States' ambitious Precision Medicine Initiative proposes to accelerate exponentially the adoption of precision medicine, an approach to health care that tailors disease diagnosis, treatment, and prevention to individual variability in genes, environment, and lifestyle. It aims to achieve this by creating a cohort of volunteers for precision medicine research, accelerating biomedical research innovation, and adopting policies geared toward patients' empowerment. As strategies to implement the PMI are formulated, critical consideration of the initiative's ethical and sociopolitical dimensions is needed. Drawing on scholarship of nationalism and democracy, we discuss the PMI's construction of what we term "genomic citizenship"; the possible normative obligations arising therefrom; and the ethical, legal, and social challenges that will ensue. Although the PMI is a work in progress, discussion of the existing and emerging issues can facilitate the development of policies, structures, and procedures that can maximize the initiative's ability to produce equitable and socially sensitive outcomes. Our analysis can also be applied to other population-based, precision medicine research programs. © 2017 The Hastings Center.

  12. Precision bolometer bridge

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1968-01-01

    Prototype precision bolometer calibration bridge is manually balanced device for indicating dc bias and balance with either dc or ac power. An external galvanometer is used with the bridge for null indication, and the circuitry monitors voltage and current simultaneously without adapters in testing 100 and 200 ohm thin film bolometers.

  13. Precision in Stereochemical Terminology

    ERIC Educational Resources Information Center

    Wade, Leroy G., Jr.

    2006-01-01

    An analysis of relatively new terminology that has given multiple definitions often resulting in students learning principles that are actually false is presented with an example of the new term stereogenic atom introduced by Mislow and Siegel. The Mislow terminology would be useful in some cases if it were used precisely and correctly, but it is…

  14. Precision Antenna Alignment Procedure.

    DTIC Science & Technology

    Precise azimuthal alignment of troposcatter system antennas is achieved by centering on the great circle, the combined pattern of intercepting beams...from two troposcatter antennas. The combined antenna pattern is determined to be centered on and symmetric about the great circle when the Doppler

  15. Targets for Precision Measurements

    NASA Astrophysics Data System (ADS)

    Loveland, W.; Yao, L.; Asner, D. M.; Baker, R. G.; Bundgaard, J.; Burgett, E.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Heffner, M.; Hill, T.; Isenhower, D.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Laptev, A. B.; Massey, T. N.; Meharchand, R.; Qu, H.; Ruz, J.; Sangiorgio, S.; Selhan, B.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.

    2014-05-01

    The general properties needed in targets (sources) for high precision, high accuracy measurements are reviewed. The application of these principles to the problem of developing targets for the Fission TPC is described. Longer term issues, such as the availability of actinide materials, improved knowledge of energy losses and straggling and the stability of targets during irradiation are also discussed.

  16. Possibility of high efficient beam extraction from the CERN SPS with a bent crystal. Simulation results

    NASA Astrophysics Data System (ADS)

    Scandale, W.; Kovalenko, A. D.; Taratin, A. M.

    2017-03-01

    The extraction of the SPS beam of 270 GeV/c protons assisted by a bent crystal was studied by simulation. Two methods for delivering the SPS beam onto a crystal were considered: transverse diffusion and orbit bump of the beam. It was shown that the main condition for high efficient beam extraction with a bent crystal, which is a small divergence of the incident beam, can be fulfilled. Extraction efficiency up to 99% can be reached for both methods of the beam delivering. The irradiation of the electrostatic septum wires during the beam extraction can be considerably reduced.

  17. A passion for precision

    ScienceCinema

    None

    2016-07-12

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  18. A passion for precision

    SciTech Connect

    2010-05-19

    For more than three decades, the quest for ever higher precision in laser spectroscopy of the simple hydrogen atom has inspired many advances in laser, optical, and spectroscopic techniques, culminating in femtosecond laser optical frequency combs  as perhaps the most precise measuring tools known to man. Applications range from optical atomic clocks and tests of QED and relativity to searches for time variations of fundamental constants. Recent experiments are extending frequency comb techniques into the extreme ultraviolet. Laser frequency combs can also control the electric field of ultrashort light pulses, creating powerful new tools for the emerging field of attosecond science.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  19. Precision laser aiming system

    DOEpatents

    Ahrens, Brandon R.; Todd, Steven N.

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  20. Ultra-Precision Optics

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Under a Joint Sponsored Research Agreement with Goddard Space Flight Center, SEMATECH, Inc., the Silicon Valley Group, Inc. and Tinsley Laboratories, known as SVG-Tinsley, developed an Ultra-Precision Optics Manufacturing System for space and microlithographic applications. Continuing improvements in optics manufacture will be able to meet unique NASA requirements and the production needs of the lithography industry for many years to come.

  1. FMS precision machining

    SciTech Connect

    Burnham, M.W.

    1980-01-01

    In evaluating the technical obstacles and accuracy limits to producing a Precision Flexible Manufacturing System, a current system is subjected to an error budget analysis. It is noted that to make complex part geometries with tolerances in the lower thousandths range, machining to tenths is required for process control. Actual parts made to tenths are illustrated, along with a discussion of the requirements for automation and for process control.

  2. Precision Engineering - SRO 154.

    DTIC Science & Technology

    1986-01-01

    supplied with initial parameter guesses and perturbation ranges. Also supplied to the optimization routine is a callable subroutine which uses the...the failure mechanism is a breaking of stable crystal bonds -- a high stress phenomenon. These high stresses result in a continual cycle of wheel...machine tools. Topics Discussed History of Metrology Design of precision machines Methods of magnification Error analysis Surface profilometry Standards of

  3. Precision disablement aiming system

    SciTech Connect

    Monda, Mark J.; Hobart, Clinton G.; Gladwell, Thomas Scott

    2016-02-16

    A disrupter to a target may be precisely aimed by positioning a radiation source to direct radiation towards the target, and a detector is positioned to detect radiation that passes through the target. An aiming device is positioned between the radiation source and the target, wherein a mechanical feature of the aiming device is superimposed on the target in a captured radiographic image. The location of the aiming device in the radiographic image is used to aim a disrupter towards the target.

  4. Precision surface measurement.

    PubMed

    Jiang, X

    2012-08-28

    Surface size, geometry and texture are some of the most influential subjects in the fields of precision and ultra-precision engineering, defining the functional interface through which emerging products operate. Next-generation products demand super-smooth surfaces, freeform geometries or even deterministically introduced microstructures to provide functional performance. Technological progress using these surfaces types is possible only if the associated manufacturing processes are rigorously controlled and the surfaces are measurable. Metrology for advanced surfaces is not established. The current state of the art is challenged in respect to (i) surface characteristics, extremity of size, ultra precision, quality, geometric complexity, or combinations of these aspects, and (ii) measurement technology for the manufacturing environment, in particular, online, non-contact, high speed, ease of use, small footprint and robustness. This study addresses the challenges in this subject area and discusses some fundaments and principles derived from interdisciplinary research. The combination of these aspects is enabling the creation of manufacturing-environment-based measurement technology. This is expected to facilitate advanced surface manufacture over a wide range of sectors, including large science programmes and high-technology engineering.

  5. Beam-Based Alignment of the NLC Main Linac, Part Two: Dispersion-Free Steering and Dispersion Bumps(LCC-0071)

    SciTech Connect

    Tenenbaum, P

    2003-11-06

    The standard prescription for NLC main linac steering assumes that the RMS offset between a quad's magnetic center and the corresponding BPM's electrical center can be determined at the level of a micron. This is a fearsome requirement, and will be particularly difficult to achieve if hybrid iron/permanent magnet quads are used in the main linac. As an alternative, the Dispersion Free Steering (DFS) [1] algorithm is adapted to the NLC main linac environment; the DFS algorithm does not require knowledge of the quad-BPM offsets. The results of simulation studies of this adaptation are presented. In addition, the use of closed orbit bumps to globally correct dispersive emittance growth is considered. The studies indicate that DFS can be used successfully in the NLC main linac environment, and that dispersion bumps are a useful addition to the linac steering ''toolbox,'' regardless of the main algorithm selected.

  6. Investigation of electroless Ni(P)/Pd/Au metallization for solder joining of optical assemblies using laser-based solderjet bumping

    NASA Astrophysics Data System (ADS)

    Burkhardt, Thomas; Mäusezahl, Max; Hornaff, Marcel; de Vries, Oliver; Kinast, Jan; Damm, Christoph; Beckert, Erik

    2017-02-01

    Solder joining is an all inorganic, adhesive free bonding technique for optical components and support structures of advanced optical systems. We established laser-based Solderjet Bumping for mounting and joining of elements with highest accuracies and stability. It has been proven for optical assemblies operating under harsh environmental conditions, high energetic or ionizing radiation, and for vacuum operation. Spaceborne instrumentation experiencing such conditions and can benefit from inorganic joining to avoid adhesives and optical cements. The metallization of components, necessary to provide solder wetting, mainly relies on well-adhering layer systems provided by physical vapor deposition (PVD). We present the investigation of electroless Ni(P)/Pd/Au plating as a cost-efficient alternative under bump metallization of complex or large components unsuitable for commercially available PVD. The electroless Ni(P)/Pd/Au plating is characterized with respect to layer adherence, solderability, and bond strength using SnAg3Cu0.5 lead-free solder alloy.

  7. X-ray bumps, iron K-alpha lines, and X-ray suppression by obscuring tori in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Madau, Piero; Zycki, Piotr T.

    1994-01-01

    We investigate the X-ray spectral properties of unobscured type 1 and obscured type 2 Seyferts as predicted by the unified Seyfert scheme. We consider the reprocessing of X-ray photons by photoelectric absorption, iron fluorescence, and Compton downscattering in the obscuring tori surrounding these active nuclei, and compute by Monte Carlo methods the reprocessed spectra as a function of the viewing angle. Depending on the optical depth and shape of the torus, and on the viewing angle, the X-ray flux can be suppressed by substantial factors when our line of sight is obscured. We show that an immediate consequence of the existence of an obscuring thick torus is the production in the spectra of type 1 Seyfert galaxies of a bump in the continuum above 10-20 keV and an Fe K-alpha line with significant equivalent width. In those type 2 Seyferts for which the hard X-ray spectrum has been substantially suppressed, the equivalent width of the Fe K-alpha line in the transmitted spectrum can be very large.

  8. The effect of Cepheids exhibitting blending, bumps, eclipses and period changes on the Period-Luminosity relation

    NASA Astrophysics Data System (ADS)

    Muñoz, J. R.; García-Varela, A.; Sabogal, B. E.; Vargas Domínguez, S.; Martínez, J.

    2017-07-01

    The study of structural breaks (non-linearity) on the Period-Luminosity relation began more than seven decades ago. Since then, some studies has found breaks in the Period-Luminosity relation. The objective in this work is to look for possible statistical causes of these breaks by means of robust techniques, instead of Ordinary Least Squares, to fit linear regression to OGLE-II and OGLE-IV data. These robust methods allow us to deal with influential points whose presence is a violation to the Ordinary Least Squares assumptions. In fact, fitting the models using M and MM-regressions, we do not find evidence to say that Period-Luminosity relation is non-linear in the LMC. Therefore, light curves of Cepheids suggesting blending, bumps, eclipses and period changes do not have an effect on the Period-Luminosity relation in this galaxy. On the contrary, for SMC, maybe, because of the geometry of the galaxy, there is a possible effect these stars and adequate models could not be found.

  9. Elliptically polarised soft x-rays produced using a local bump in MAX II - Characterisation of the degree of polarisation

    SciTech Connect

    Dunn, J. Hunter; LeBlanc, G.; Andersson, A.; Lindgren, L.-J.; Hahlin, A.; Karis, O.; Arvanitis, D.

    2004-05-12

    MAX-lab has introduced a local perturbation to the electron orbit of the MAX II storage ring, providing users at the SX700 monochromator beam line, D1011, with elliptically polarised soft x-rays. This is achieved by using corrector magnets to send the electron orbit on an ascending or descending trajectory through the dipole magnet source. This simple 'bump' approach has many advantages over and above insertion device based solutions. To illustrate the potential of the approach, the degree of circular polarisation, Pc, has both been calculated and measured. The calculation was made by applying the Stokes formalism to the intensities given by the standard dipole emission formula. Experimentally Pc was characterised using x-ray magnetic circular dichroism measurements. In such experiments magnetic contrast scales directly proportional to Pc. Using a 25 atomic layer bcc Fe film deposited on the Cu(100) surface as a calibration standard the spin moment, ms, was determined. By comparing the values of ms obtained here with those reported earlier, the degree of circular polarisation could be estimated. At {approx} 715 eV the calculated and measured values of Pc are 0.93 and 0.85, respectively.

  10. Precision Pointing System Development

    SciTech Connect

    BUGOS, ROBERT M.

    2003-03-01

    The development of precision pointing systems has been underway in Sandia's Electronic Systems Center for over thirty years. Important areas of emphasis are synthetic aperture radars and optical reconnaissance systems. Most applications are in the aerospace arena, with host vehicles including rockets, satellites, and manned and unmanned aircraft. Systems have been used on defense-related missions throughout the world. Presently in development are pointing systems with accuracy goals in the nanoradian regime. Future activity will include efforts to dramatically reduce system size and weight through measures such as the incorporation of advanced materials and MEMS inertial sensors.

  11. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2016-07-12

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  12. Precise Measurement for Manufacturing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A metrology instrument known as PhaseCam supports a wide range of applications, from testing large optics to controlling factory production processes. This dynamic interferometer system enables precise measurement of three-dimensional surfaces in the manufacturing industry, delivering speed and high-resolution accuracy in even the most challenging environments.Compact and reliable, PhaseCam enables users to make interferometric measurements right on the factory floor. The system can be configured for many different applications, including mirror phasing, vacuum/cryogenic testing, motion/modal analysis, and flow visualization.

  13. Precision Robotic Assembly Machine

    SciTech Connect

    2009-08-14

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  14. Precision electroweak measurements

    SciTech Connect

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro {ital e}{sup +}{ital e}{sup -} and {ital p{anti p}} colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct {ital m{sub t}} measurements. Using the world`s electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs` mass are discussed.

  15. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  16. Fast, High-Precision Readout Circuit for Detector Arrays

    NASA Technical Reports Server (NTRS)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  17. Liquid DEP actuation and precision dispensing of variable volume droplets.

    PubMed

    Prakash, Ravi; Paul, Reginald; Kaler, Karan V I S

    2010-11-21

    Droplet based microfluidic systems, in recent years, have demonstrated numerous advantages and exciting potential for Lab-On-a Chip applications. In order to fully realize the potential benefits of this technology, one requires precision dispensing and manipulation of droplets of known volume and sample concentration, in a rapid and controlled manner. In this article, we demonstrate the rapid and controlled microactuation of aqueous samples and subsequent dispensing of variable volume droplets in nanolitre to picolitre regime by using a coplanar tapered electrode structure that leverages the phenomena of liquid dielectrophoresis (L-DEP). The transient behavior of the tapered liquid jet departs significantly from that of a uniform liquid jet case and is not adequately explained in terms of a simplified lumped capacitance model as in the case of the uniform jet, during the L-DEP actuation. A more generalized numerical model is developed for the tapered actuation scheme to account for the experimental observations. We furthermore demonstrate that the density of the dispensed droplets can be proactively controlled by the judicious placement of electrode bumps and pinches in the electrode structure thus overcoming the limitations imposed by Rayleigh's instability criterion. The proposed droplet dispensing schemes are superior to existing L-DEP based dispensing schemes which are restricted in size and spacing of the dispensed droplets by Rayleigh's instability criteria and furthermore mostly restricted to equi-volume droplets.

  18. IS THE LATE NEAR-INFRARED BUMP IN SHORT-HARD GRB 130603B DUE TO THE LI-PACZYNSKI KILONOVA?

    SciTech Connect

    Jin, Zhi-Ping; Fan, Yi-Zhong; Wei, Da-Ming; Xu, Dong; Wu, Xue-Feng

    2013-09-20

    Short-hard gamma-ray bursts (GRBs) are widely believed to be produced by the merger of two binary compact objects, specifically by two neutron stars or by a neutron star orbiting a black hole. According to the Li-Paczynski kilonova model, the merger would launch sub-relativistic ejecta and a near-infrared/optical transient would then occur, lasting up to days, which is powered by the radioactive decay of heavy elements synthesized in the ejecta. The detection of a late bump using the Hubble Space Telescope (HST) in the near-infrared afterglow light curve of the short-hard GRB 130603B is indeed consistent with such a model. However, as shown in this Letter, the limited HST near-infrared light curve behavior can also be interpreted as the synchrotron radiation of the external shock driven by a wide mildly relativistic outflow. In such a scenario, the radio emission is expected to peak with a flux of ∼100 μJy, which is detectable for current radio arrays. Hence, the radio afterglow data can provide complementary evidence on the nature of the bump in GRB 130603B. It is worth noting that good spectroscopy during the bump phase in short-hard bursts can test the validity of either model above, analogous to spectroscopy of broad-lined Type Ic supernova in long-soft GRBs.

  19. USING THE 1.6 {mu}m BUMP TO STUDY REST-FRAME NEAR-INFRARED-SELECTED GALAXIES AT REDSHIFT 2

    SciTech Connect

    Sorba, Robert; Sawicki, Marcin

    2010-10-01

    We explore the feasibility and limitations of using the 1.6 {mu}m bump as a photometric redshift indicator and selection technique, and use it to study the rest-frame H-band galaxy luminosity and stellar mass functions (SMFs) at redshift z {approx} 2. We use publicly available Spitzer/IRAC images in the GOODS fields and find that color selection in the IRAC bandpasses alone is comparable in completeness and contamination to BzK selection. We find that the shape of the 1.6 {mu}m bump is robust, and photometric redshifts are not greatly affected by choice of model parameters. Comparison with spectroscopic redshifts shows photometric redshifts to be reliable. We create a rest-frame NIR-selected catalog of galaxies at z {approx} 2 and construct a galaxy SMF. Comparisons with other SMFs at approximately the same redshift but determined using shorter wavelengths show good agreement. This agreement suggests that selection at bluer wavelengths does not miss a significant amount of stellar mass in passive galaxies. Comparison with SMFs at other redshifts shows evidence for the downsizing scenario of galaxy evolution. We conclude by pointing out the potential for using the 1.6 {mu}m bump technique to select high-redshift galaxies with the JWST, whose {lambda}>0.6 {mu}m coverage will not be well suited to selecting galaxies using techniques that require imaging at shorter wavelengths.

  20. Laser generation of elliptical nanometre and sub-nanometre bump arrays on NiP/Al data storage disks and their effect on stiction performance.

    PubMed

    Pena, A A; Wang, Z B; Zhang, J; Wu, N E; Li, L

    2011-09-07

    Elliptical nano-bumps on nickel-phosphorus coated aluminium (NiP/Al) hard disks were fabricated by a laser texturing system (maximum power 8 W, maximum frequency 300 kHz). By carefully selecting the level of laser power attenuation and defocus offset distance, bump height can be controlled below 6 nm and down to the sub-nanometre scale. This type of laser-induced texture (elliptical shape) on a disk surface is expected to provide better control of the stiction force along with the smallest separation distance between the head slider and the disk. Quantitative modelling based on the classical Hertzian theory for elliptic contacts has been carried out with the purpose of predicting the stiction behaviour of the presented elliptical shaped sub-10 nm bumps. It has been found that an elliptical shape not only reduces the overall stiction performance of the laser texturing zone (LZT) compared to the conventional circular shape but also extends the occurrence of the 'stiction wall' towards the sub-10 nm regime for ultra-low-glide applications.

  1. Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization

    NASA Astrophysics Data System (ADS)

    Choi, W. J.; Yeh, E. C. C.; Tu, K. N.

    2003-11-01

    Electromigration of eutectic SnPb flip chip solder joints and their mean-time-to-failure (MTTF) have been studied in the temperature range of 100 to 140 °C with current densities of 1.9 to 2.75×104 A/cm2. In these joints, the under-bump-metallization (UBM) on the chip side is a multilayer thin film of Al/Ni(V)/Cu, and the metallic bond-pad on the substrate side is a very thick, electroless Ni layer covered with 30 nm of Au. When stressed at the higher current densities, the MTTF was found to decrease much faster than what is expected from the published Black's equation. The failure occurred by interfacial void propagation at the cathode side, and it is due to current crowding near the contact interface between the solder bump and the thin-film UBM. The current crowding is confirmed by a simulation of current distribution in the solder joint. Besides the interfacial void formation, the intermetallic compounds formed on the UBM as well as the Ni(V) film in the UBM have been found to dissolve completely into the solder bump during electromigration. Therefore, the electromigation failure is a combination of the interfacial void formation and the loss of UBM. Similar findings in eutectic SnAgCu flip chip solder joints have also been obtained and compared.

  2. The application of the gradient-based adjoint multi-point optimization of single and double shock control bumps for transonic airfoils

    NASA Astrophysics Data System (ADS)

    Mazaheri, K.; Nejati, A.; Chaharlang Kiani, K.; Taheri, R.

    2016-07-01

    A shock control bump (SCB) is a flow control method that uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB that are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and NACA-64-A010, over a wide range of off-design Mach numbers. All results are compared with the usual single-point optimization. We use numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm to find the optimum location and shape of the SCB. We show that the application of SCBs may increase the aerodynamic performance of an RAE-2822 airfoil by 21.9 and by 22.8 % for a NACA-64-A010 airfoil compared to the no-bump design in a particular flight condition. We have also investigated the simultaneous usage of two bumps for the upper and the lower surfaces of the airfoil. This has resulted in a 26.1 % improvement for the RAE-2822 compared to the clean airfoil in one flight condition.

  3. The BUMP model of response planning: variable horizon predictive control accounts for the speed-accuracy tradeoffs and velocity profiles of aimed movement.

    PubMed

    Bye, Robin T; Neilson, Peter D

    2008-10-01

    The BUMP model is a comprehensive discrete-time computational model of response planning. Developed within the Adaptive Model Theory framework, it is based on intermittent optimal control. The theory posits a basic unit of motor production (BUMP) that is determined by a planning system that operates intermittently at fixed intervals of time. Given sensory information about the position and velocity of the actual response as well as the predicted future state of the target, the response planning system generates an optimal response trajectory to reach the predicted future state of the target and to compensate for executional error. The ability to vary the duration, or prediction horizon, of the trajectory gives rise to the concept of variable horizon predictive control. We propose that the combination of signal-dependent noise in the nervous system and variable horizon predictive control accounts for the well-known speed-accuracy tradeoffs and velocity profiles in aimed movements. Conducting a simulation study, we found that on one extreme of variable horizon control, a receding horizon strategy reproduced Fitts' law and corresponding asymmetrical velocity profiles. On the other extreme, a fixed horizon strategy reproduced the linear tradeoff and corresponding symmetrical velocity profiles. We conclude that the BUMP model provides a unifying theoretical bridge between speed-accuracy tradeoffs and the accompanying velocity profiles of aimed movement.

  4. Precision flyer initiator

    DOEpatents

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  5. Precision flyer initiator

    DOEpatents

    Frank, Alan M.; Lee, Ronald S.

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  6. Precision animal breeding.

    PubMed

    Flint, A P F; Woolliams, J A

    2008-02-12

    We accept that we are responsible for the quality of life of animals in our care. We accept that the activities of man affect all the living things with which we share this planet. But we are slow to realize that as a result we have a duty of care for all living things. That duty extends to the breeding of animals for which we are responsible. When animals are bred by man for a purpose, the aim should be to meet certain goals: to improve the precision with which breeding outcomes can be predicted; to avoid the introduction and advance of characteristics deleterious to well-being; and to manage genetic resources and diversity between and within populations as set out in the Convention on Biological Diversity. These goals are summed up in the phrase precision animal breeding. They should apply whether animals are bred as sources of usable products or services for medical or scientific research, for aesthetic or cultural considerations, or as pets. Modern molecular and quantitative genetics and advances in reproductive physiology provide the tools with which these goals can be met.

  7. Ultra Precision Machining.

    DTIC Science & Technology

    1985-12-01

    literature review has turned up very little information . One citation (Nanometer Positioning Characteristics of Closed Looped Differential Hydro or Aerostatic... systems provide information that allows sources to be distinguished and noise extracted from signals. The latter has been done by Chaturvedi and Thomas...the accessability and the friendliness of information to the operator. These areas are summarized below in this order with sensing, actuation, and

  8. Probing active-edge silicon sensors using a high precision telescope

    NASA Astrophysics Data System (ADS)

    Akiba, K.; Artuso, M.; van Beveren, V.; van Beuzekom, M.; Boterenbrood, H.; Buytaert, J.; Collins, P.; Dumps, R.; van der Heijden, B.; Hombach, C.; Hynds, D.; Hsu, D.; John, M.; Koffeman, E.; Leflat, A.; Li, Y.; Longstaff, I.; Morton, A.; Pérez Trigo, E.; Plackett, R.; Reid, M. M.; Rodríguez Perez, P.; Schindler, H.; Tsopelas, P.; Vázquez Sierra, C.; Wysokiński, M.

    2015-03-01

    The performance of prototype active-edge VTT sensors bump-bonded to the Timepix ASIC is presented. Non-irradiated sensors of thicknesses 100-200 μm and pixel-to-edge distances of 50 μm and 100 μm were probed with a beam of charged hadrons with sub-pixel precision using the Timepix telescope assembled at the SPS at CERN. The sensors are shown to be highly efficient up to a few micrometers from the physical edge of the sensor. The distortion of the electric field lines at the edge of the sensors is studied by reconstructing the streamlines of the electric field using two-pixel clusters. These results are supported by TCAD simulations. The reconstructed streamlines are used to study the field distortion as a function of the bias voltage and to apply corrections to the cluster positions at the edge.

  9. Precision Joining Center

    NASA Technical Reports Server (NTRS)

    Powell, John W.

    1991-01-01

    The establishment of a Precision Joining Center (PJC) is proposed. The PJC will be a cooperatively operated center with participation from U.S. private industry, the Colorado School of Mines, and various government agencies, including the Department of Energy's Nuclear Weapons Complex (NWC). The PJC's primary mission will be as a training center for advanced joining technologies. This will accomplish the following objectives: (1) it will provide an effective mechanism to transfer joining technology from the NWC to private industry; (2) it will provide a center for testing new joining processes for the NWC and private industry; and (3) it will provide highly trained personnel to support advance joining processes for the NWC and private industry.

  10. Precision Spectroscopy of Tellurium

    NASA Astrophysics Data System (ADS)

    Coker, James; Furneaux, John; Dept. of Physics and Astronomy Team

    2013-05-01

    Tellurium (Te2) is widely used as a frequency reference, and although a standard atlas encompassing over 5200 cm-1 already exists, Doppler broadening present in that work buries a significant portion of the features. More recent but less complete studies of Te2 exist which do not exhibit Doppler broadening, and this work adds to that knowledge a few hundred transitions in the vicinity of 444 nm. Using a Fabry Perot cavity in a shock-absorbing, temperature and pressure regulated chamber, locked to a Zeeman stabilized HeNe laser, we measure changes in frequency of our diode laser to ~1 MHz precision. This diode laser is scanned over 1000 GHz for use in a saturated-absorption spectroscopy cell filled with Te2 vapor. This data allows for new studies of the excited states of Te2.

  11. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  12. Precision Medicine in Cancer Treatment

    Cancer.gov

    Precision medicine helps doctors select cancer treatments that are most likely to help patients based on a genetic understanding of their disease. Learn about the promise of precision medicine and the role it plays in cancer treatment.

  13. Precision Spectroscopy of Tellurium

    NASA Astrophysics Data System (ADS)

    Coker, J.; Furneaux, J. E.

    2013-06-01

    Tellurium (Te_2) is widely used as a frequency reference, largely due to the fact that it has an optical transition roughly every 2-3 GHz throughout a large portion of the visible spectrum. Although a standard atlas encompassing over 5200 cm^{-1} already exists [1], Doppler broadening present in that work buries a significant portion of the features [2]. More recent studies of Te_2 exist which do not exhibit Doppler broadening, such as Refs. [3-5], and each covers different parts of the spectrum. This work adds to that knowledge a few hundred transitions in the vicinity of 444 nm, measured with high precision in order to improve measurement of the spectroscopic constants of Te_2's excited states. Using a Fabry Perot cavity in a shock-absorbing, temperature and pressure regulated chamber, locked to a Zeeman stabilized HeNe laser, we measure changes in frequency of our diode laser to ˜1 MHz precision. This diode laser is scanned over 1000 GHz for use in a saturated-absorption spectroscopy cell filled with Te_2 vapor. Details of the cavity and its short and long-term stability are discussed, as well as spectroscopic properties of Te_2. References: J. Cariou, and P. Luc, Atlas du spectre d'absorption de la molecule de tellure, Laboratoire Aime-Cotton (1980). J. Coker et al., J. Opt. Soc. Am. B {28}, 2934 (2011). J. Verges et al., Physica Scripta {25}, 338 (1982). Ph. Courteille et al., Appl. Phys. B {59}, 187 (1994) T.J. Scholl et al., J. Opt. Soc. Am. B {22}, 1128 (2005).

  14. Mathematics for modern precision engineering.

    PubMed

    Scott, Paul J; Forbes, Alistair B

    2012-08-28

    The aim of precision engineering is the accurate control of geometry. For this reason, mathematics has a long association with precision engineering: from the calculation and correction of angular scales used in surveying and astronomical instrumentation to statistical averaging techniques used to increase precision. This study illustrates the enabling role the mathematical sciences are playing in precision engineering: modelling physical processes, instruments and complex geometries, statistical characterization of metrology systems and error compensation.

  15. Lithium abundance in the globular cluster M4: from the turn-off to the red giant branch bump

    NASA Astrophysics Data System (ADS)

    Mucciarelli, A.; Salaris, M.; Lovisi, L.; Ferraro, F. R.; Lanzoni, B.; Lucatello, S.; Gratton, R. G.

    2011-03-01

    We present Li and Fe abundances for 87 stars in the globular cluster M4, obtained by using high-resolution spectra collected with GIRAFFE at the Very Large Telescope. The targets range from the turn-off up to the red giant branch bump. The Li abundance in the turn-off stars is uniform, with an average value equal to A(Li)= 2.30 ± 0.02 dex (σ= 0.10 dex), consistent with the upper envelope of Li content measured in other globular clusters and in the halo field stars, confirming also for M4 the discrepancy with the primordial Li abundance predicted by Wilkinson Microwave Anisotropy Probe+ big bang nucleosynthesis (WMAP+BBNS). The global behaviour of A(Li) as a function of the effective temperature allows us to identify the two main drops in the Li evolution due to the first dredge-up and to the extra-mixing episode after the red giant branch bump. The measured iron content of M4 results to [Fe/H]=-1.10 ± 0.01 dex (σ= 0.07 dex), with no systematic offsets between dwarf and giant stars. The behaviour of the Li and Fe abundances along the entire evolutionary path is incompatible with theoretical models including pure atomic diffusion, pointing out that an additional turbulent mixing below the convective region needs to be taken into account, able to inhibit the atomic diffusion. The measured value of A(Li) and its homogeneity in the turn-off stars allow us to put strong constraints on the shape of the Li profile inside the M4 turn-off stars. The global behaviour of A(Li) with the effective temperature can be reproduced with different pristine Li abundances, depending on the kind of adopted turbulent mixing. One cannot reproduce the global trend that starts from the WMAP+BBNS A(Li) and adopts the turbulent mixing described by Richard, Michaud & Richer with the same efficiency as that used by Korn et al. to explain the Li content in NGC 6397. In fact, such a solution is not able to well reproduce simultaneously the Li abundance observed in turn-off and red giant branch

  16. An Extended Keyword Extraction Method

    NASA Astrophysics Data System (ADS)

    Hong, Bao; Zhen, Deng

    Among numerous Chinese keyword extraction methods, Chinese characteristics were shortly considered. This phenomenon going against the precision enhancement of the Chinese keyword extraction. An extended term frequency based method(Extended TF) is proposed in this paper which combined Chinese linguistic characteristics with basic TF method. Unary, binary and ternary grammars for the candidate keyword extraction as well as other linguistic features were all taken into account. The method establishes classification model using support vector machine. Tests show that the proposed extraction method improved key words precision and recall rate significantly. We applied the key words extracted by the extended TF method into the text file classification. Results show that the key words extracted by the proposed method contributed greatly to raising the precision of text file classification.

  17. Precision cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Fendt, William Ashton, Jr.

    2009-09-01

    Experimental efforts of the last few decades have brought. a golden age to mankind's endeavor to understand tine physical properties of the Universe throughout its history. Recent measurements of the cosmic microwave background (CMB) provide strong confirmation of the standard big bang paradigm, as well as introducing new mysteries, to unexplained by current physical models. In the following decades. even more ambitious scientific endeavours will begin to shed light on the new physics by looking at the detailed structure of the Universe both at very early and recent times. Modern data has allowed us to begins to test inflationary models of the early Universe, and the near future will bring higher precision data and much stronger tests. Cracking the codes hidden in these cosmological observables is a difficult and computationally intensive problem. The challenges will continue to increase as future experiments bring larger and more precise data sets. Because of the complexity of the problem, we are forced to use approximate techniques and make simplifying assumptions to ease the computational workload. While this has been reasonably sufficient until now, hints of the limitations of our techniques have begun to come to light. For example, the likelihood approximation used for analysis of CMB data from the Wilkinson Microwave Anistropy Probe (WMAP) satellite was shown to have short falls, leading to pre-emptive conclusions drawn about current cosmological theories. Also it can he shown that an approximate method used by all current analysis codes to describe the recombination history of the Universe will not be sufficiently accurate for future experiments. With a new CMB satellite scheduled for launch in the coming months, it is vital that we develop techniques to improve the analysis of cosmological data. This work develops a novel technique of both avoiding the use of approximate computational codes as well as allowing the application of new, more precise analysis

  18. Precise measurement of planeness.

    PubMed

    Schulz, G; Schwider, J

    1967-06-01

    Interference methods are reviewed-particularly those developed at the German Academy of Sciences in Berlin-with which the deviations of an optically flat surface from the ideal plane can be measured with a high degree of exactness. One aid to achieve this is the relative methods which measure the differences in planeness between two surfaces. These are then used in the absolute methods which determine the absolute planeness of a surface. This absolute determination can be effected in connection with a liquid surface, or (as done by the authors) only by suitable evaluation of relative measurements between unknown plates in various positional combinations. Experimentally, one uses two- or multiple-beam interference fringes of equal thickness(1) or of equal inclination. The fringes are observed visually, scanned, or photographed, and in part several wavelengths or curves of equal density (Aquidensiten) are employed. The survey also brings the following new methods: a relative method, where, with the aid of fringes of superposition, the fringe separation is subdivided equidistantly thus achieving an increase of measuring precision, and an absolute method which determines the deviations of a surface from ideal planeness along arbitrary central sections, without a liquid surface, from four relative interference photographs.

  19. Prompt and Precise Prototyping

    NASA Technical Reports Server (NTRS)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  20. Arrival Metering Precision Study

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  1. Precisely Tracking Childhood Death.

    PubMed

    Farag, Tamer H; Koplan, Jeffrey P; Breiman, Robert F; Madhi, Shabir A; Heaton, Penny M; Mundel, Trevor; Ordi, Jaume; Bassat, Quique; Menendez, Clara; Dowell, Scott F

    2017-07-01

    Little is known about the specific causes of neonatal and under-five childhood death in high-mortality geographic regions due to a lack of primary data and dependence on inaccurate tools, such as verbal autopsy. To meet the ambitious new Sustainable Development Goal 3.2 to eliminate preventable child mortality in every country, better approaches are needed to precisely determine specific causes of death so that prevention and treatment interventions can be strengthened and focused. Minimally invasive tissue sampling (MITS) is a technique that uses needle-based postmortem sampling, followed by advanced histopathology and microbiology to definitely determine cause of death. The Bill & Melinda Gates Foundation is supporting a new surveillance system called the Child Health and Mortality Prevention Surveillance network, which will determine cause of death using MITS in combination with other information, and yield cause-specific population-based mortality rates, eventually in up to 12-15 sites in sub-Saharan Africa and south Asia. However, the Gates Foundation funding alone is not enough. We call on governments, other funders, and international stakeholders to expand the use of pathology-based cause of death determination to provide the information needed to end preventable childhood mortality.

  2. Precisely Tracking Childhood Death

    PubMed Central

    Farag, Tamer H.; Koplan, Jeffrey P.; Breiman, Robert F.; Madhi, Shabir A.; Heaton, Penny M.; Mundel, Trevor; Ordi, Jaume; Bassat, Quique; Menendez, Clara; Dowell, Scott F.

    2017-01-01

    Abstract. Little is known about the specific causes of neonatal and under-five childhood death in high-mortality geographic regions due to a lack of primary data and dependence on inaccurate tools, such as verbal autopsy. To meet the ambitious new Sustainable Development Goal 3.2 to eliminate preventable child mortality in every country, better approaches are needed to precisely determine specific causes of death so that prevention and treatment interventions can be strengthened and focused. Minimally invasive tissue sampling (MITS) is a technique that uses needle-based postmortem sampling, followed by advanced histopathology and microbiology to definitely determine cause of death. The Bill & Melinda Gates Foundation is supporting a new surveillance system called the Child Health and Mortality Prevention Surveillance network, which will determine cause of death using MITS in combination with other information, and yield cause-specific population-based mortality rates, eventually in up to 12–15 sites in sub-Saharan Africa and south Asia. However, the Gates Foundation funding alone is not enough. We call on governments, other funders, and international stakeholders to expand the use of pathology-based cause of death determination to provide the information needed to end preventable childhood mortality. PMID:28719334

  3. [Precision nutrition in the era of precision medicine].

    PubMed

    Chen, P Z; Wang, H

    2016-12-06

    Precision medicine has been increasingly incorporated into clinical practice and is enabling a new era for disease prevention and treatment. As an important constituent of precision medicine, precision nutrition has also been drawing more attention during physical examinations. The main aim of precision nutrition is to provide safe and efficient intervention methods for disease treatment and management, through fully considering the genetics, lifestyle (dietary, exercise and lifestyle choices), metabolic status, gut microbiota and physiological status (nutrient level and disease status) of individuals. Three major components should be considered in precision nutrition, including individual criteria for sufficient nutritional status, biomarker monitoring or techniques for nutrient detection and the applicable therapeutic or intervention methods. It was suggested that, in clinical practice, many inherited and chronic metabolic diseases might be prevented or managed through precision nutritional intervention. For generally healthy populations, because lifestyles, dietary factors, genetic factors and environmental exposures vary among individuals, precision nutrition is warranted to improve their physical activity and reduce disease risks. In summary, research and practice is leading toward precision nutrition becoming an integral constituent of clinical nutrition and disease prevention in the era of precision medicine.

  4. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  5. Precise Truss Assembly using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2013-01-01

    We describe an Intelligent Precision Jigging Robot (IPJR), which allows high precision assembly of commodity parts with low-precision bonding. We present preliminary experiments in 2D that are motivated by the problem of assembling a space telescope optical bench on orbit using inexpensive, stock hardware and low-precision welding. An IPJR is a robot that acts as the precise "jigging", holding parts of a local assembly site in place while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (in this case, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. We report the challenges of designing the IPJR hardware and software, analyze the error in assembly, document the test results over several experiments including a large-scale ring structure, and describe future work to implement the IPJR in 3D and with micron precision.

  6. Precision medicine in myasthenia graves: begin from the data precision

    PubMed Central

    Hong, Yu; Xie, Yanchen; Hao, Hong-Jun; Sun, Ren-Cheng

    2016-01-01

    Myasthenia gravis (MG) is a prototypic autoimmune disease with overt clinical and immunological heterogeneity. The data of MG is far from individually precise now, partially due to the rarity and heterogeneity of this disease. In this review, we provide the basic insights of MG data precision, including onset age, presenting symptoms, generalization, thymus status, pathogenic autoantibodies, muscle involvement, severity and response to treatment based on references and our previous studies. Subgroups and quantitative traits of MG are discussed in the sense of data precision. The role of disease registries and scientific bases of precise analysis are also discussed to ensure better collection and analysis of MG data. PMID:27127759

  7. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  8. Cold gas and a Milky Way-type 2175-Å bump in a metal-rich and highly depleted absorption system

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Caucal, Paul; Noterdaeme, Pasquier; Ge, Jian; Prochaska, J. Xavier; Ji, Tuo; Zhang, Shaohua; Rahmani, Hadi; Jiang, Peng; Schneider, Donald P.; Lundgren, Britt; Pâris, Isabelle

    2015-12-01

    We report the detection of a strong Milky Way-type 2175-Å extinction bump at z = 2.1166 in the quasar spectrum towards SDSS J121143.42+083349.7 from the Sloan Digital Sky Survey Data Release 10. We conduct follow up observations with the Echelle Spectrograph and Imager on-board the Keck II telescope and the Ultraviolet and Visual Echelle Spectrograph on the Very Large Telescope. This 2175-Å absorber is remarkable in that we simultaneously detect neutral carbon (C I), neutral chlorine (Cl I), and carbon monoxide (CO). It also qualifies as a damped Lyman α system. The J1211+0833 absorber is found to be metal rich and has a dust depletion pattern resembling that of the Milky Way disc clouds. We use the column densities of the C I fine structure states and the C II/C I ratio (under the assumption of ionization equilibrium) to derive the temperature and volume density in the absorbing gas. A CLOUDY photoionization model is constructed, which utilizes additional atoms/ions to constrain the physical conditions. The inferred physical conditions are consistent with a canonical cold (T ˜ 100 K) neutral medium with a high density (n(H I) ˜ 100 cm-3) and a slightly higher pressure than the local interstellar medium. Given the simultaneous presence of C I, CO, and the 2175-Å bump, combined with the high metallicity, high dust depletion level, and overall low ionization state of the gas, the absorber towards J1211+0833 supports the scenario that the presence of the bump requires an evolved stellar population.

  9. Precision physics with QCD

    NASA Astrophysics Data System (ADS)

    Pich, Antonio

    2017-03-01

    The four-loop determination of the strong coupling from fully inclusive observables is reviewed. Special attention is given to the low-energy measurement extracted from the hadronic τ decay width. A recent exhaustive analysis of the ALEPH data, exploring several complementary methodologies with very different sensitivities to inverse power corrections and duality violations, confirms the strong suppression of non-perturbative contributions to Rτ. It gives the value αs(mτ2) = 0.328, which implies αs(MZ2) = 0.1197 ± 0.0015. The excellent agreement with the direct measurement at the Z peak, αs(MZ2) = 0.1196 ± 0.0030, provides a beautiful test of asymptotic freedom. Together with the most recent lattice average from FLAG and the NNLO determinations from e+e-, PDFs and collider data quoted by the PDG, these two inclusive determinations imply a world average value αs(MZ2) = 0.1180 ± 0.0010.

  10. Precision Cryogenic Dilatometer

    NASA Technical Reports Server (NTRS)

    Dudik, Matthew; Halverson, Peter; Levine-West, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart

    2005-01-01

    A dilatometer based on a laser interferometer is being developed to measure mechanical creep and coefficients of thermal expansion (CTEs) of materials at temperatures ranging from ambient down to 15 K. This cryogenic dilatometer has been designed to minimize systematic errors that limit the best previously available dilatometers. At its prototype stage of development, this cryogenic dilatometer yields a strain measurement error of 35 ppb or 1.7 ppb/K CTE measurement error for a 20-K thermal load, for low-expansion materials in the temperature range from 310 down to 30 K. Planned further design refinements that include a provision for stabilization of the laser and addition of a high-precision sample-holding jig are expected to reduce the measurement error to 5-ppb strain error or 0.3-ppb/K CTE error for a 20-K thermal load. The dilatometer (see figure) includes a common-path, differential, heterodyne interferometer; a dual-frequency, stabilized source bench that serves as the light source for the interferometer; a cryogenic chamber in which one places the material sample to be studied; a cryogenic system for cooling the interior of the chamber to the measurement temperature; an ultra-stable alignment stage for positioning the chamber so that the sample is properly positioned with respect to the interferometer; and a data-acquisition and control system. The cryogenic chamber and the interferometer portion of the dilatometer are housed in a vacuum chamber on top of a vibration isolating optical table in a cleanroom. The sample consists of two pieces a pillar on a base both made of the same material. Using reflections of the interferometer beams from the base and the top of the pillar, what is measured is the change in length of the pillar as the temperature in the chamber is changed. In their fundamental optical and electronic principles of operation, the laser light source and the interferometer are similar to those described in Common-Path Heterodyne

  11. Transient Superstrong Coronal Lines and Broad Bumps in the Galaxy SDSS J074820.67+471214.3

    NASA Astrophysics Data System (ADS)

    Wang, Ting-Gui; Zhou, Hong-Yan; Wang, Li-Fan; Lu, Hong-Lin; Xu, Dawei

    2011-10-01

    Variable superstrong coronal emission lines were observed in the spectrum of one galaxy, SDSS J095209.56+214313.3, and their enigmatic origin remains controversial. In this paper, we report the detection of variable broad emission bumps reminiscent of a supernova (SN) II-Plateau spectra taken a few days after the shock breakout in a second galaxy with variable superstrong coronal lines, SDSS J074820.67+471214.3. The coronal line spectrum shows unprecedentedly high ionization with superstrong [Fe X]λ6376, [Fe XI]λ7894, [Fe XIV]λ5304, [S XII]λ7612, and [Ar XIV]λ4414, but without detectable optical [Fe VII] line emission. The coronal line luminosities are similar to those observed in bright Seyfert galaxies and 20 times more luminous than those reported in the hottest Type IIn SN 2005ip inferred from its strong coronal lines. The coronal lines (σ ~ 120-240 km s-1) are much broader than the narrow emission lines (σ ~ 40 km s-1) from the star-forming regions in the galaxy, but are nearly at the same systematic redshift. We also detected a variable non-stellar continuum emission from its Sloan Digital Sky Survey spectroscopy and Galaxy Evolution Explorer photometry. In the follow-up spectra taken 4-5 years later, the coronal lines, SN-like feature, and non-stellar continuum disappeared, while the [O III]λ5007 intensity increased by a factor of about 10. Our analysis suggests that the coronal line region should be at least 10 light days in size and should be powered either by a steady ionizing source with a soft X-ray luminosity of at least a few 1042 erg s-1 or by a very luminous soft X-ray outburst. These findings can be more naturally explained by a star tidally disrupted by the central black hole than by an SN explosion. The similarity of the coronal line variability trend observed in the two galaxies suggests that the two transient events have the same origin, with SDSS J074820.67+471214.3 being caught at an earlier stage by the spectroscopic observation.

  12. DISCOVERY OF A RICH CLUSTER AT z = 1.63 USING THE REST-FRAME 1.6 {mu}m 'STELLAR BUMP SEQUENCE' METHOD

    SciTech Connect

    Muzzin, Adam; Hoekstra, Henk; Wilson, Gillian; Demarco, Ricardo; Nantais, Julie; Lidman, Chris; Yee, H. K. C.; Rettura, Alessandro

    2013-04-10

    We present a new two-color algorithm, the 'Stellar Bump Sequence' (SBS), that is optimized for robustly identifying candidate high-redshift galaxy clusters in combined wide-field optical and mid-infrared (MIR) data. The SBS algorithm is a fusion of the well-tested cluster red-sequence method of Gladders and Yee with the MIR 3.6 {mu}m-4.5 {mu}m cluster detection method developed by Papovich. As with the cluster red-sequence method, the SBS identifies candidate overdensities within 3.6 {mu}m-4.5 {mu}m color slices, which are the equivalent of a rest-frame 1.6 {mu}m stellar bump 'red-sequence'. In addition to employing the MIR colors of galaxies, the SBS algorithm incorporates an optical/MIR (z'-3.6 {mu}m) color cut. This cut effectively eliminates foreground 0.2 1.0 galaxies and add noise when searching for high-redshift galaxy overdensities. We demonstrate using the z {approx} 1 GCLASS cluster sample that similar to the red sequence, the stellar bump sequence appears to be a ubiquitous feature of high-redshift clusters, and that within that sample the color of the stellar bump sequence increases monotonically with redshift and provides photometric redshifts accurate to {Delta}z = 0.05. We apply the SBS method in the XMM-LSS SWIRE field and show that it robustly recovers the majority of confirmed optical, MIR, and X-ray-selected clusters at z > 1.0 in that field. Lastly, we present confirmation of SpARCS J022427-032354 at z = 1.63, a new cluster detected with the method and confirmed with 12 high-confidence spectroscopic redshifts obtained using FORS2 on the Very Large Telescope. We conclude with a discussion of future prospects for using the algorithm.

  13. Apparatus Makes Precisely Saturated Solutions

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1989-01-01

    Simple laboratory apparatus establishes equilibrium conditions of temperature and concentration in solutions for use in precise measurements of saturation conditions. With equipment typical measurement of saturation concentration of protein in solution established and measured within about 24 hours. Precisely saturated solution made by passing solvent or solution slowly along column packed with solute at precisely controlled temperature. If necessary, flow stopped for experimentally determined interval to allow equilibrium to be established in column.

  14. Precision Astronomy with Imperfect Deep Depletion CCDs

    NASA Astrophysics Data System (ADS)

    Stubbs, Christopher; LSST Sensor Team; PanSTARRS Team

    2014-01-01

    While thick CCDs do provide definite advantages in terms of increased quantum efficiency at wavelengths 700 nm<λ < 1.1 microns and reduced fringing from atmospheric emission lines, these devices also exhibit undesirable features that pose a challenge to precision determination of the positions, fluxes, and shapes of astronomical objects, and for the precision extraction of features in astronomical spectra. For example, the assumptions of a perfectly rectilinear pixel grid and of an intensity-independent point spread function become increasingly invalid as we push to higher precision measurements. Many of the effects seen in these devices arise from lateral electrical fields within the detector, that produce charge transport anomalies that have been previously misinterpreted as quantum efficiency variations. Performing simplistic flat-fielding therefore introduces systematic errors in the image processing pipeline. One measurement challenge we face is devising a combination of calibration methods and algorithms that can distinguish genuine quantum efficiency variations from charge transport effects. These device imperfections also confront spectroscopic applications, such as line centroid determination for precision radial velocity studies. Given the scientific benefits of improving both the precision and accuracy of astronomical measurements, we need to identify, characterize, and overcome these various detector artifacts. In retrospect, many of the detector features first identified in thick CCDs also afflict measurements made with more traditional CCD detectors, albeit often at a reduced level since the photocharge is subject to the perturbing influence of lateral electric fields for a shorter time interval. I provide a qualitative overview of the physical effects we think are responsible for the observed device properties, and provide some perspective for the work that lies ahead.

  15. Sfermion precision measurements at a linear collider

    SciTech Connect

    A. Freitas et al.

    2003-09-25

    At future e{sup +}e{sup -} linear colliders, the event rates and clean signals of scalar fermion production--in particular for the scalar leptons--allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected for the third generation sfermions opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan {beta} from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses.

  16. Precision measurements of linear scattering density using muon tomography

    NASA Astrophysics Data System (ADS)

    Åström, E.; Bonomi, G.; Calliari, I.; Calvini, P.; Checchia, P.; Donzella, A.; Faraci, E.; Forsberg, F.; Gonella, F.; Hu, X.; Klinger, J.; Sundqvist Ökvist, L.; Pagano, D.; Rigoni, A.; Ramous, E.; Urbani, M.; Vanini, S.; Zenoni, A.; Zumerle, G.

    2016-07-01

    We demonstrate that muon tomography can be used to precisely measure the properties of various materials. The materials which have been considered have been extracted from an experimental blast furnace, including carbon (coke) and iron oxides, for which measurements of the linear scattering density relative to the mass density have been performed with an absolute precision of 10%. We report the procedures that are used in order to obtain such precision, and a discussion is presented to address the expected performance of the technique when applied to heavier materials. The results we obtain do not depend on the specific type of material considered and therefore they can be extended to any application.

  17. Centroid precision and orientation precision of planar localization microscopy.

    PubMed

    McGray, C; Copeland, C R; Stavis, S M; Geist, J

    2016-09-01

    The concept of localization precision, which is essential to localization microscopy, is formally extended from optical point sources to microscopic rigid bodies. Measurement functions are presented to calculate the planar pose and motion of microscopic rigid bodies from localization microscopy data. Physical lower bounds on the associated uncertainties - termed centroid precision and orientation precision - are derived analytically in terms of the characteristics of the optical measurement system and validated numerically by Monte Carlo simulations. The practical utility of these expressions is demonstrated experimentally by an analysis of the motion of a microelectromechanical goniometer indicated by a sparse constellation of fluorescent nanoparticles. Centroid precision and orientation precision, as developed here, are useful concepts due to the generality of the expressions and the widespread interest in localization microscopy for super-resolution imaging and particle tracking.

  18. More Questions on Precision Teaching.

    ERIC Educational Resources Information Center

    Raybould, E. C.; Solity, J. E.

    1988-01-01

    Precision teaching can accelerate basic skills progress of special needs children. Issues discussed include using probes as performance tests, charting daily progress, using the charted data to modify teaching methods, determining appropriate age levels, assessing the number of students to be precision taught, and carefully allocating time. (JDD)

  19. Precision medicine for nurses: 101.

    PubMed

    Lemoine, Colleen

    2014-05-01

    To introduce the key concepts and terms associated with precision medicine and support understanding of future developments in the field by providing an overview and history of precision medicine, related ethical considerations, and nursing implications. Current nursing, medical and basic science literature. Rapid progress in understanding the oncogenic drivers associated with cancer is leading to a shift toward precision medicine, where treatment is based on targeting specific genetic and epigenetic alterations associated with a particular cancer. Nurses will need to embrace the paradigm shift to precision medicine, expend the effort necessary to learn the essential terminology, concepts and principles, and work collaboratively with physician colleagues to best position our patients to maximize the potential that precision medicine can offer. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Precision of the CAESAR Scan-Extracted Measurements

    DTIC Science & Technology

    2006-05-01

    left 283.0 26.9 1.8 280.4 57.1 2.7 Elbow height, sitting (comfortable), right 276.8 34.4 2.1 280.3 40.8 2.3 Femoral epicondyle , lateral, left to...height 7 2.4* 0.34 2.9* 0.32 Chest height 11 4.5* 0.49 4.7* 0,65 Elbow height, standing, left 5.2 0.99 6.8 0.69 Elbow height, standing, right 6.9 1.04 7.3...Acromial height, sitting (comfortable), right 9 5.4* 0.73 6.2* 1.24 Bi-lateral femoral epicondyle breadth, sitting 16.6 3.10 17.4 2.85 (comfortable) Bi

  1. Interfacial Reaction Between 95Pb-5Sn Solder Bump and 37Pb-63Sn Presolder in Flip-Chip Solder Joints

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Wang, Y. W.; Lai, Y. S.; Kao, C. R.

    2010-08-01

    Interdiffusion and interfacial reaction of 95Pb-5Sn solder bumps and 37Pb-63Sn presolder in flip-chip solder joints during high-temperature storage were studied. Reaction temperatures included 100°C, 130°C, 150°C, and 175°C. It was found that Cu6Sn5 and Cu3Sn formed on the board side and (Ni,Cu)3Sn4 formed on the chip side after 100 h of aging. After 2000 h of aging at 175°C, the Ni under-bump metallization (UBM) was exhausted. This caused the (Ni,Cu)3Sn4 layer at the chip-side interface to be gradually converted into (Cu0.6Ni0.4)6Sn5. It was also found that the consumption of the Ni UBM was faster than the case where eutectic Sn-Pb solder was used for the entire joint. Nevertheless, the consumption of the Cu on the substrate side was slower than the case where pure eutectic Sn-Pb solder was used for the entire joint.

  2. Precision optical navigation guidance system

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Nolan, P.; Johnson, D.; Dellosa, M.; Volfson, L.; Fallahpour, A.; Willner, A.

    2016-05-01

    We present the new precision optical navigation guidance system approach that provides continuous, high quality range and bearing data to fixed wing aircraft during landing approach to an aircraft carrier. The system uses infrared optical communications to measure range between ship and aircraft with accuracy and precision better than 1 meter at ranges more than 7.5 km. The innovative receiver design measures bearing from aircraft to ship with accuracy and precision better than 0.5 mRad. The system provides real-time range and bearing updates to multiple aircraft at rates up to several kHz, and duplex data transmission between ship and aircraft.

  3. Precision Measurements at the ILC

    SciTech Connect

    Nelson, T.K.; /SLAC

    2006-12-06

    With relatively low backgrounds and a well-determined initial state, the proposed International Linear Collider (ILC) would provide a precision complement to the LHC experiments at the energy frontier. Completely and precisely exploring the discoveries of the LHC with such a machine will be critical in understanding the nature of those discoveries and what, if any, new physics they represent. The unique ability to form a complete picture of the Higgs sector is a prime example of the probative power of the ILC and represents a new era in precision physics.

  4. Precision Instrument and Equipment Repairers.

    ERIC Educational Resources Information Center

    Wyatt, Ian

    2001-01-01

    Explains the job of precision instrument and equipment repairers, who work on cameras, medical equipment, musical instruments, watches and clocks, and industrial measuring devices. Discusses duties, working conditions, employment and earnings, job outlook, and skills and training. (JOW)

  5. Student-Friendly Precision Pendulum.

    ERIC Educational Resources Information Center

    Peters, Randall D.

    1999-01-01

    Provides information to help students easily measure gravitational field strength to a few parts in 10,000, a degree of precision 1-2 orders of magnitude better than can be achieved with the simple pendulum. (CCM)

  6. Watch the Children: Precision Referring

    ERIC Educational Resources Information Center

    Hiltbrunner, Curtis L.; Vasa, Stanley F.

    1974-01-01

    The Precision Referral Form (PRF) is described as a quick, accurate and easy instrument that enables teachers to communicate learning and behavior problems of students to resource or ancillary personnel and to pinpoint students' behaviors. (GW)

  7. Precision engineering: an evolutionary perspective.

    PubMed

    Evans, Chris J

    2012-08-28

    Precision engineering is a relatively new name for a technology with roots going back over a thousand years; those roots span astronomy, metrology, fundamental standards, manufacturing and money-making (literally). Throughout that history, precision engineers have created links across disparate disciplines to generate innovative responses to society's needs and wants. This review combines historical and technological perspectives to illuminate precision engineering's current character and directions. It first provides us a working definition of precision engineering and then reviews the subject's roots. Examples will be given showing the contributions of the technology to society, while simultaneously showing the creative tension between the technological convergence that spurs new directions and the vertical disintegration that optimizes manufacturing economics.

  8. Precision radiotherapy for brain tumors

    PubMed Central

    Yan, Ying; Guo, Zhanwen; Zhang, Haibo; Wang, Ning; Xu, Ying

    2012-01-01

    OBJECTIVE: Precision radiotherapy plays an important role in the management of brain tumors. This study aimed to identify global research trends in precision radiotherapy for brain tumors using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for precision radiotherapy for brain tumors containing the key words cerebral tumor, brain tumor, intensity-modulated radiotherapy, stereotactic body radiation therapy, stereotactic ablative radiotherapy, imaging-guided radiotherapy, dose-guided radiotherapy, stereotactic brachytherapy, and stereotactic radiotherapy using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on precision radiotherapy for brain tumors which were published and indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: 2002-2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) Corrected papers or book chapters. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to country; (3) distribution according to institution; (4) top cited publications; (5) distribution according to journals; and (6) comparison of study results on precision radiotherapy for brain tumors. RESULTS: The stereotactic radiotherapy, intensity-modulated radiotherapy, and imaging-guided radiotherapy are three major methods of precision radiotherapy for brain tumors. There were 260 research articles addressing precision radiotherapy for brain tumors found within the Web of Science. The USA published the most papers on precision radiotherapy for brain tumors, followed by Germany and France. European Synchrotron Radiation Facility, German Cancer Research Center and Heidelberg University were the most prolific research institutes for publications on precision radiotherapy for brain tumors. Among the top 13 research institutes publishing in this field, seven

  9. Precision Strike PEO Forum 2006

    DTIC Science & Technology

    2006-07-26

    Requirements, HQ Air Combat Command Predator Precision Weapons Integration and Testing, Mr. Chris Seat, Director, USAF Predator Programs Aircraft Systems Group...Presentation not available for distribution) Predator Precision Weapons Integration and Testing: Chris Seat—Director, USAF Predator Programs Aircraft Systems...2 3 5 6 6 4 5 20 Create the Thunder PLATFORM TARGET GT FLIGHT PATH MAXIMUM ALTITUDE OF AIRCRAFT Airspace Geometries THIS IS THE VOLUME OF AIRSPACE

  10. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Based on the research, the area of precise ephemerides for GPS satellites, the following observations can be made pertaining to the status and future work needed regarding orbit accuracy. There are several aspects which need to be addressed in discussing determination of precise orbits, such as force models, kinematic models, measurement models, data reduction/estimation methods, etc. Although each one of these aspects was studied at CSR in research efforts, only points pertaining to the force modeling aspect are addressed.

  11. Precision Timed Infrastructure: Design Challenges

    DTIC Science & Technology

    2013-09-19

    recognized the need to precisely model and control time. Mod- elica [30], Simulink [28], and Ptolemy II [12] can precisely model time in both physical and...languages have different ways of expressing computations and timing constraints [5]. For instance, Mod- elica [30], Simulink [28], Giotto [17], Ptolemy ...Languages Intermediate Languages Assembly Languages Modelica Ptolemy IIGiotto and E machine Modelyze PRET Compilation Hide machine dependent details

  12. Fundamental Physics and Precision Measurements

    NASA Astrophysics Data System (ADS)

    Hänsch, T. W.

    2006-11-01

    "Very high precision physics has always appealed to me. The steady improvement in technologies that afford higher and higher precision has been a regular source of excitement and challenge during my career. In science, as in most things, whenever one looks at something more closely, new aspects almost always come into play …" With these word from the book "How the Laser happened", Charles H. Townes expresses a passion for precision that is now shared by many scientists. Masers and lasers have become indispensible tools for precision measurements. During the past few years, the advent of femtosecond laser frequency comb synthesizers has revolutionized the art of directly comparing optical and microwave frequencies. Inspired by the needs of precision laser spectroscopy of the simple hydrogen atom, such frequency combs are now enabling ultra-precise spectroscopy over wide spectral ranges. Recent laboratory experiments are already setting stringent limits for possible slow variations of fundamental constants. Laser frequency combs also provide the long missing clockwork for optical atomic clocks that may ultimately reach a precision of parts in 1018 and beyond. Such tools will open intriguing new opportunities for fundamental experiments including new tests of special and general relativity. In the future, frequency comb techniques may be extended into the extreme ultraviolet and soft xray regime, opening a vast new spectral territory to precision measurements. Frequency combs have also become a key tool for the emerging new field of attosecond science, since they can control the electric field of ultrashort laser pulses on an unprecedented time scale. The biggest surprise in these endeavours would be if we found no surprise.

  13. High-precision opto-mechanical lens system for space applications assembled by innovative local soldering technique

    NASA Astrophysics Data System (ADS)

    Ribes, P.; Koechlin, C.; Burkhardt, T.; Hornaff, M.; Burkhardt, D.; Kamm, A.; Gramens, S.; Beckert, E.; Fiault, G.; Eberhardt, R.; Tünnermann, A.

    2016-02-01

    Solder joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals. This is due to a localized and minimized input of thermal energy. Solderjet bumping technology has been used to assemble a lens mount breadboard taking as input specifications the requirements found for the optical beam expander for the European Space Agency (ESA) EarthCare Mission. The silica lens and a titanium barrel have been designed and assembled with this technology in order to withstand the stringent mission demands; handling high mechanical and thermal loads without losing its optical performances. Finally a high-precision opto-mechanical lens mount has been assembled with a minimal localized stress (<1 MPa) showing outstanding performances in terms of wave-front error measurements and beam depolarization ratio before and after environmental tests.

  14. Origin and history of the Charleston Bump - Geological formations, currents, bottom conditions, and their relationship to wreckfish habitats on the Blake Plateau

    USGS Publications Warehouse

    Popenoe, P.; Manheim, F. T.

    2001-01-01

    The Charleston Bump is a structural and topographic high on the northern Blake Plateau that overlies a seaward offset of the edge of continental crust. The feature causes the bottom to shoal and deflects the Gulf Stream offshore, causing an intensification of bottom currents. The area has been swept by strong currents since late Cretaceous time, but the strongest currents have occurred in the Neogene (last ???25 million years). Nondepositional conditions prevail at present, but erosion of the bottom is checked where the bottom is armored by a hard surficial layer of phosphorite pavement. The phosphorite pavements were formed by re-cementation of eroded residues of phosphorite-rich sediments of early-Neogene age. In some places there are multiple pavements separated by poorly lithified sediments. Submersible observations indicate that the south, or current-facing flank of the Charleston Bump has several deep (>100 m) scour depressions, the southern flanks of which form cliffs characterized by ledges and overhangs. In other areas discrete layers of older Paleogene rocks have been partly eroded away, leaving cliff-like steps of 5 m or more relief. Conglomeratic phosphorite pavement layers up to 1 m thick armor most of the bottom. Where breached by scour, these pavements form both low-relief ledges and rock piles. These features form a reef-like environment of caves and overhangs utilized by wreckfish Polyprion americanus and barrelfish Hyperoglyphe perciformis as shelter from the current and as staging areas to prey on passing schools of squid. Wreckfish and other large fish were often localized in rugged bottom habitat, including caves and other shelter areas. We observed wreckfish darting from shelters to feed on passing schools of squid. Present and past observations, are consistent with the concept that impingement of the Gulf Stream at the Charleston Bump compresses midwater fauna from much thicker water layers, providing food for a flourishing big-fish fauna

  15. New Synthetic Routes to Triazolo-benzodiazepine Analogues: Expanding the Scope of the Bump-and-Hole Approach for Selective Bromo and Extra-Terminal (BET) Bromodomain Inhibition

    PubMed Central

    2015-01-01

    We describe new synthetic routes developed toward a range of substituted analogues of bromo and extra-terminal (BET) bromodomain inhibitors I-BET762/JQ1 based on the triazolo-benzodiazepine scaffold. These new routes allow for the derivatization of the methoxyphenyl and chlorophenyl rings, in addition to the diazepine ternary center and the side chain methylene moiety. Substitution at the level of the side chain methylene afforded compounds targeting specifically and potently engineered BET bromodomains designed as part of a bump and hole approach. We further demonstrate that marked selectivity for the second over the first bromodomain can be achieved with an indole derivative that exploits differential interaction with an aspartate/histidine conservative substitution on the BC loop of BET bromodomains. PMID:26367539

  16. Precision Medicine in Gastrointestinal Pathology.

    PubMed

    Wang, David H; Park, Jason Y

    2016-05-01

    -Precision medicine is the promise of individualized therapy and management of patients based on their personal biology. There are now multiple global initiatives to perform whole-genome sequencing on millions of individuals. In the United States, an early program was the Million Veteran Program, and a more recent proposal in 2015 by the president of the United States is the Precision Medicine Initiative. To implement precision medicine in routine oncology care, genetic variants present in tumors need to be matched with effective clinical therapeutics. When we focus on the current state of precision medicine for gastrointestinal malignancies, it becomes apparent that there is a mixed history of success and failure. -To present the current state of precision medicine using gastrointestinal oncology as a model. We will present currently available targeted therapeutics, promising new findings in clinical genomic oncology, remaining quality issues in genomic testing, and emerging oncology clinical trial designs. -Review of the literature including clinical genomic studies on gastrointestinal malignancies, clinical oncology trials on therapeutics targeted to molecular alterations, and emerging clinical oncology study designs. -Translating our ability to sequence thousands of genes into meaningful improvements in patient survival will be the challenge for the next decade.

  17. Late Time Multi-Wavelength Observations of Swift J1644+5734: A Luminous Optical/IR Bump and Quiescent X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Levan, A. J.; Tanvir, N. R.; Brown, G. C.; Metzger, B.D.; Page, K. L.; Cenko, S. B.; O'Brien, P. T.; Lyman, J. D.; Wiersema, K.; Stanway, E. R.; hide

    2016-01-01

    We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to greater than 4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t (sup -70). Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of L (sub X) approximately equal to 5 times 10 (sup 42) ergs per second and are marginally inconsistent with a continuing decay of t (sup minus 5 divided by 3), similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of M (mass) (sub BH (black hole) equal to 3 times 10 (sup 6) the mass of the sun, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30 to 50 days, with a peak magnitude (corrected for host galaxy extinction) of M (sub R) approximately equal to minus 22 to minus 23. The luminosity of the bump is significantly higher than seen in other, nonrelativisticTDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.

  18. Late Time Multi-wavelength Observations of Swift J1644+5734: A Luminous Optical/IR Bump and Quiescent X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Tanvir, N. R.; Brown, G. C.; Metzger, B. D.; Page, K. L.; Cenko, S. B.; O'Brien, P. T.; Lyman, J. D.; Wiersema, K.; Stanway, E. R.; Fruchter, A. S.; Perley, D. A.; Bloom, J. S.

    2016-03-01

    We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t-70. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of LX ˜ 5 × 1042 erg s-1 and are marginally inconsistent with a continuing decay of t-5/3, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of MBH = 3 × 106 M⊙, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30-50 days, with a peak magnitude (corrected for host galaxy extinction) of MR ˜ -22 to -23. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.

  19. Chip to Chip Bonding Using Cu Bumps Capped with Thin Sn Layers and the Effect of Microstructure on the Shear Strength of Joints

    NASA Astrophysics Data System (ADS)

    Kim, Yang Ho; Ma, Sung Woo; Kim, Young-Ho

    2014-09-01

    Chip to chip bonding techniques using Cu bumps capped with thin solder layers have been frequently applied to 3D chip stacking technology. We studied the effect of joint microstructure on shear strength. Joints were formed by joining Sn/Cu bumps on a Si die and Sn/Cu layers on another Si die at 245-330°C using a thermo-compression bonder. Three different types of microstructures were fabricated in the joints by controlling the bonding temperature and time, (1) a Sn-rich phase with a Cu6Sn5 phase at the Cu interfaces, (2) a Cu6Sn5 phase in the interior with a Cu3Sn phase at the Cu interfaces, and (3) one single Cu3Sn phase throughout the whole joint. The joint having a single Cu3Sn phase had the highest shear strength. Specimens were aged up to 2000 h at 150°C and 180°C. During aging, the microstructures of all joints were transformed in a single Cu3Sn phase. The shear strength of the joints was very sensitive to the formation of Cu3Sn and microvoids. Microvoids formed in the solder joints with a Cu6Sn5 phase with and without a Sn-rich phase during aging and decreased the shear strength of the joints. Conversely, aging did not induce the formation of microvoids in the joints which originally had only a Cu3Sn phase and the shear strength was not decreased.

  20. LATE TIME MULTI-WAVELENGTH OBSERVATIONS OF SWIFT J1644+5734: A LUMINOUS OPTICAL/IR BUMP AND QUIESCENT X-RAY EMISSION

    SciTech Connect

    Levan, A. J.; Brown, G. C.; Lyman, J. D.; Stanway, E. R.; Tanvir, N. R.; Page, K. L.; O’Brien, P. T.; Wiersema, K.; Metzger, B. D.; Cenko, S. B.; Fruchter, A. S.; Perley, D. A.; Bloom, J. S.

    2016-03-01

    We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t{sup −70}. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of L{sub X} ∼ 5 × 10{sup 42} erg s{sup −1} and are marginally inconsistent with a continuing decay of t{sup −5/3}, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of M{sub BH} = 3 × 10{sup 6} M{sub ⊙}, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30–50 days, with a peak magnitude (corrected for host galaxy extinction) of M{sub R} ∼ −22 to −23. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.

  1. Precise Near-Infrared Radial Velocities

    NASA Astrophysics Data System (ADS)

    Plavchan, Peter; Gao, P.; Bottom, M.; Davison, C.; Mills, S.; Ciardi, D. R.; Brinkworth, C.; Tanner, A. M.; Beichman, C. A.; Catanzarite, J.; Crawford, S.; Wallace, J.; Mennesson, B.; Johnson, J. A.; White, R. J.; Anglada-Escudé, G.; von Braun, K.; Walp, B.; Vasisht, G.; Kane, S. R.; Prato, L. A.; NIRRVs

    2014-01-01

    We present precise radial velocity time-series from a 2.3 micron pilot survey to detect exoplanets around red, low mass, and young stars. We use the CSHELL spectrograph with an isotopic methane absorption gas cell for common optical path relative wavelength calibration at the NASA InfraRed Telescope Facility. We present an overview of our Nelder-Mead simplex optimization pipeline for extracting radial velocities. We will also present first light data at 1.6 microns from a near-infrared fiber scrambler used in tandem with our gas cell and CSHELL at IRTF. The fiber scrambler makes use of non-circular core fibers to stabilize the illumination of the slit and echelle grating against changes in seeing, focus, guiding and other sources of systematic radial velocity noise, complementing the wavelength calibration of a gas cell.

  2. VAPHOT: Precision differential aperture photometry package

    NASA Astrophysics Data System (ADS)

    Deeg, Hans J.; Doyle, Laurance R.

    2013-09-01

    VAPHOT is an aperture photometry package for precise time-series photometry of uncrowded fields, geared towards the extraction of target lightcurves of eclipsing or transiting systems. Its photometric main routine works within the IRAF (ascl:9911.002) environment and is built upon the standard aperture photometry task 'phot' from IRAF, using optimized aperture sizes. The associated analysis program 'VANALIZ' works in the IDL environment. It performs differential photometry with graphical and numerical output. VANALIZ produces plots indicative of photometric stability and permits the interactive evaluation and weighting of comparison stars. Also possible is the automatic or manual suppression of data-points and the output of statistical analyses. Several methods for the calculation of the reference brightness are offered. Specific routines for the analysis of transit 'on'-'off' photometry, comparing the target brightness inside against outside a transit are also available.

  3. Precision atomic gravimeter based on Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Altin, P. A.; Johnsson, M. T.; Negnevitsky, V.; Dennis, G. R.; Anderson, R. P.; Debs, J. E.; Szigeti, S. S.; Hardman, K. S.; Bennetts, S.; McDonald, G. D.; Turner, L. D.; Close, J. D.; Robins, N. P.

    2013-02-01

    We present a precision gravimeter based on coherent Bragg diffraction of freely falling cold atoms. Traditionally, atomic gravimeters have used stimulated Raman transitions to separate clouds in momentum space by driving transitions between two internal atomic states. Bragg interferometers utilize only a single internal state, and can therefore be less susceptible to environmental perturbations. Here we show that atoms extracted from a magneto-optical trap using an accelerating optical lattice are a suitable source for a Bragg atom interferometer, allowing efficient beamsplitting and subsequent separation of momentum states for detection. Despite the inherently multi-state nature of atom diffraction, we are able to build a Mach-Zehnder interferometer using Bragg scattering which achieves a sensitivity to the gravitational acceleration of Δg/g = 2.7 × 10-9 with an integration time of 1000 s. The device can also be converted to a gravity gradiometer by a simple modification of the light pulse sequence.

  4. A precision mechanical nerve stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1988-01-01

    An electromechanical device, used to apply and monitor stimulating pulses to a mammalian motor nerve, has been successfully developed at NASA Langley Research Center. Two existing force transducers, a flight skin friction balance and a miniature skin friction balance which were designed for making aerodynamic drag measurements, were modified and incorporated to form this precision instrument. The nerve stimulator is a type one servomechanism capable of applying and monitoring stimulating pulses of 0 to 10 grams with a precision of better than +/- 0.05 grams. Additionally, the device can be independently used to apply stimulating pulses by displacing the nerve from 0 to 0.25 mm with a precision of better than +/- 0.001 mm while measuring the level of the load applied.

  5. Precision cleaning apparatus and method

    DOEpatents

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  6. Precision cleaning apparatus and method

    DOEpatents

    Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  7. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1983-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory. Previously announced in STAR as N82-32733

  8. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  9. Precision-guaranteed quantum metrology

    NASA Astrophysics Data System (ADS)

    Sugiyama, Takanori

    2015-04-01

    Quantum metrology is a general term for methods to precisely estimate the value of an unknown parameter by actively using quantum resources. In particular, some classes of entangled states can be used to significantly suppress the estimation error. Here we derive a formula for rigorously evaluating an upper bound for the estimation error in a general setting of quantum metrology with arbitrary finite data sets. Unlike in the standard approach, where lower bounds for the error are evaluated in an ideal setting with almost infinite data, our method rigorously guarantees the estimation precision in realistic settings with finite data. We also prove that our upper bound shows the Heisenberg limit scaling whenever the linearized uncertainty, which is a popular benchmark in the standard approach, shows it. As an example, we apply our result to a Ramsey interferometer, and numerically show that the upper bound can exhibit the quantum enhancement of precision for finite data.

  10. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1982-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory.

  11. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1983-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory. Previously announced in STAR as N82-32733

  12. Torque characteristics of solid lubricated precision bearings during oscillatory motion

    NASA Astrophysics Data System (ADS)

    Bauer, Reinhold; Fleischauer, Paul D.

    1994-01-01

    MoS2 sputter-coated as well as uncoated (bare) angular-contact ball bearings were tested with various cage materials in a low-speed regime. Various self-lubricating polymers either neat or with additives and metallic cages were tested. The emphasis of this paper is to report on significant torque increases torque bumps observed during non-ball overlap, oscillatory motion for some race/cage combinations. In some race/cage combinations torque bumps can be minimized by proper run-in. No attempt was made to run the bearings to failure, although certain race/cage combinations did in fact fail before the end of test.

  13. High Precision Photometry for the K2 Mission

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Soares-Furtado, Melinda; Penev, Kaloyan; Hartman, Joel; Bakos, Gaspar; Bhatti, Waqas; Domsa, Istvan; de Val-Borro, Miguel

    2015-12-01

    The two reaction wheel K2 mission brings new challenges for the data reduction processes. We developed a reduction pipeline for extracting high precision photometry from the K2 dataset and we use this pipeline to generate light curves for the K2 Campaign 0 super-stamps and K2 Campaign 1 target pixel dataset. Key to our reduction technique is the derivation of global astrometric solutions from the target stamps from which accurate centroids are passed on for high precision photometry extraction. We also implemented the image subtraction method to reduce the K2 Campaign 0 super-stamps containing open clusters M35 and NGC2158. We extract target light curvesfor sources from a combined UCAC4 and EPIC catalogue -- this includes not only primary targets of the K2 Mission, but also other stars that happen to fall on the pixel stamps. Our astrometric solutions achieve a median residual of ~0.127". For bright stars, our best 6.5 hour precision for raw light curves is ~20 parts per million (ppm). For our detrended light curves, the best 6.5 hour precision achieved is ~15 ppm. We show that our detrended light curves have fewer systematic effects (or trends, or red-noise) than light curves produced by other groups from the same observations. We highlight the measurements of rotation curves using the K2 light curves of stars within open cluster M35 and NGC2158.

  14. Microbiopsy/precision cutting devices

    DOEpatents

    Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Benett, W.J.

    1999-07-27

    Devices are disclosed for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways (1) intravascularly, (2) extravascularly, (3) by vessel puncture, and (4) externally. Additionally, the devices may be used in precision surgical cutting. 6 figs.

  15. Precision Manipulation with Cooperative Robots

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghzarian, Hrand

    2005-01-01

    This work addresses several challenges of cooperative transportThis work addresses several challenges of cooperative transport and precision manipulation. Precision manipulation requires a rigid grasp, which places a hard constraint on the relative rover formation that must be accommodated, even though the rovers cannot directly observe their relative poses. Additionally, rovers must jointly select appropriate actions based on all available sensor information. Lastly, rovers cannot act on independent sensor information, but must fuse information to move jointly; the methods for fusing information must be determined.

  16. Precision Manipulation with Cooperative Robots

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghzarian, Hrand

    2005-01-01

    This work addresses several challenges of cooperative transportThis work addresses several challenges of cooperative transport and precision manipulation. Precision manipulation requires a rigid grasp, which places a hard constraint on the relative rover formation that must be accommodated, even though the rovers cannot directly observe their relative poses. Additionally, rovers must jointly select appropriate actions based on all available sensor information. Lastly, rovers cannot act on independent sensor information, but must fuse information to move jointly; the methods for fusing information must be determined.

  17. PRECISION RADIAL VELOCITIES WITH CSHELL

    SciTech Connect

    Crockett, Christopher J.; Prato, L.; Mahmud, Naved I.; Johns-Krull, Christopher M.; Jaffe, Daniel T.; Beichman, Charles A. E-mail: lprato@lowell.edu E-mail: cmj@rice.edu

    2011-07-10

    Radial velocity (RV) identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near-infrared RV techniques. We present our methodology for achieving 58 m s{sup -1} precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3 m NASA Infrared Telescope Facility. We also demonstrate our ability to recover the known 4 M{sub JUP} exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars.

  18. Microbiopsy/precision cutting devices

    DOEpatents

    Krulevitch, Peter A.; Lee, Abraham P.; Northrup, M. Allen; Benett, William J.

    1999-01-01

    Devices for performing tissue biopsy on a small scale (microbiopsy). By reducing the size of the biopsy tool and removing only a small amount of tissue or other material in a minimally invasive manner, the risks, costs, injury and patient discomfort associated with traditional biopsy procedures can be reduced. By using micromachining and precision machining capabilities, it is possible to fabricate small biopsy/cutting devices from silicon. These devices can be used in one of four ways 1) intravascularly, 2) extravascularly, 3) by vessel puncture, and 4) externally. Additionally, the devices may be used in precision surgical cutting.

  19. Universal precision sine bar attachment

    NASA Technical Reports Server (NTRS)

    Mann, Franklin D. (Inventor)

    1989-01-01

    This invention relates to an attachment for a sine bar which can be used to perform measurements during lathe operations or other types of machining operations. The attachment can be used for setting precision angles on vises, dividing heads, rotary tables and angle plates. It can also be used in the inspection of machined parts, when close tolerances are required, and in the layout of precision hardware. The novelty of the invention is believed to reside in a specific versatile sine bar attachment for measuring a variety of angles on a number of different types of equipment.

  20. Precision protection through indirect correlations

    SciTech Connect

    Jin, Yao

    2016-04-15

    The dynamics of the quantum Fisher information of the parameters of the initial atomic state is studied, in the framework of open quantum systems, for a pair of static two-level atoms coupled to a bath of fluctuating vacuum scalar fields. Our results show that the correlations between the two atoms as well as the precision limit in quantum metrology are determined by the separation between the two atoms. Remarkably, when the separation between the two atoms approaches zero, the quantum Fisher information, thus the precision limit of the estimation of the parameters of the initial atomic state will be survived from the vacuum fluctuations after long time evolution.

  1. Precision agriculture and food security.

    PubMed

    Gebbers, Robin; Adamchuk, Viacheslav I

    2010-02-12

    Precision agriculture comprises a set of technologies that combines sensors, information systems, enhanced machinery, and informed management to optimize production by accounting for variability and uncertainties within agricultural systems. Adapting production inputs site-specifically within a field and individually for each animal allows better use of resources to maintain the quality of the environment while improving the sustainability of the food supply. Precision agriculture provides a means to monitor the food production chain and manage both the quantity and quality of agricultural produce.

  2. Precision Multiband Photometry with a DSLR Camera

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Bakos, G. Á.; Penev, K.; Csubry, Z.; Hartman, J. D.; Bhatti, W.; de Val-Borro, M.

    2016-03-01

    Ground-based exoplanet surveys such as SuperWASP, HAT Network of Telescopes (HATNet), and KELT have discovered close to two hundred transiting extrasolar planets in the past several years. The strategy of these surveys is to look at a large field of view and measure the brightnesses of its bright stars to around half a percent per point precision, which is adequate for detecting hot Jupiters. Typically, these surveys use CCD detectors to achieve high precision photometry. These CCDS, however, are expensive relative to other consumer-grade optical imaging devices, such as digital single-lens reflex cameras (DSLRs). We look at the possibility of using a DSLR camera for precision photometry. Specifically, we used a Canon EOS 60D camera that records light in three colors simultaneously. The DSLR was integrated into the HATNet survey and collected observations for a month, after which photometry was extracted for 6600 stars in a selected stellar field. We found that the DSLR achieves a best-case median absolute deviation of 4.6 mmag per 180 s exposure when the DSLR color channels are combined, and 1000 stars are measured to better than 10 mmag (1%). Also, we achieve 10 mmag or better photometry in the individual colors. This is good enough to detect transiting hot Jupiters. We performed a candidate search on all stars and found four candidates, one of which is KELT-3b, the only known transiting hot Jupiter in our selected field. We conclude that the Canon 60D is a cheap, lightweight device capable of useful photometry in multiple colors.

  3. Precision processing of earth image data

    NASA Technical Reports Server (NTRS)

    Bernstein, R.; Stierhoff, G. C.

    1976-01-01

    Precise corrections of Landsat data are useful for generating land-use maps, detecting various crops and determining their acreage, and detecting changes. The paper discusses computer processing and visualization techniques for Landsat data so that users can get more information from the imagery. The elementary unit of data in each band of each scene is the integrated value of intensity of reflected light detected in the field of view by each sensor. To develop the basic mathematical approach for precision correction of the data, differences between positions of ground control points on the reference map and the observed control points in the scene are used to evaluate the coefficients of cubic time functions of roll, pitch, and yaw, and a linear time function of altitude deviation from normal height above local earth's surface. The resultant equation, termed a mapping function, corrects the warped data image into one that approximates the reference map. Applications are discussed relative to shade prints, extraction of road features, and atlas of cities.

  4. Sensor fusion for precision agriculture

    USDA-ARS?s Scientific Manuscript database

    Information-based management of crop production systems known as precision agriculture relies on different sensor technologies aimed at characterization of spatial heterogeneity of a cropping environment. Remote and proximal sensing systems have been deployed to obtain high-resolution data pertainin...

  5. Precision Efficacy Analysis for Regression.

    ERIC Educational Resources Information Center

    Brooks, Gordon P.

    When multiple linear regression is used to develop a prediction model, sample size must be large enough to ensure stable coefficients. If the derivation sample size is inadequate, the model may not predict well for future subjects. The precision efficacy analysis for regression (PEAR) method uses a cross- validity approach to select sample sizes…

  6. Precision orbit computations for Starlette

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Williamson, R. G.

    1976-01-01

    The Starlette satellite, launched in February 1975 by the French Centre National d'Etudes Spatiales, was designed to minimize the effects of nongravitational forces and to obtain the highest possible accuracy for laser range measurements. Analyses of the first four months of global laser tracking data confirmed the stability of the orbit and the precision to which the satellite's position is established.

  7. Drilling Precise Orifices and Slots

    NASA Technical Reports Server (NTRS)

    Richards, C. W.; Seidler, J. E.

    1983-01-01

    Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.

  8. Precision Teaching ... and All That!

    ERIC Educational Resources Information Center

    Raybould, E. C.; Solity, J. E.

    1988-01-01

    Two proponents of the precision teaching approach to teaching the handicapped discuss such principles as: the problem of partial application of the method; relationship to behaviorism; relationship to experiential learning; and the importance of fluency in task performance, mastery learning, and recordkeeping. (DB)

  9. Spin and precision electroweak physics

    SciTech Connect

    Marciano, W.J.

    1994-12-01

    A perspective on fundamental parameters and precision tests of the Standard Model is given. Weak neutral current reactions are discussed with emphasis on those processes involving (polarized) electrons. The role of electroweak radiative corrections in determining the top quark mass and probing for {open_quotes}new physics{close_quotes} is described.

  10. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The emphasis of this grant was focused on precision ephemerides for the Global Positioning System (GPS) satellites for geodynamics applications. During the period of this grant, major activities were in the areas of thermal force modeling, numerical integration accuracy improvement for eclipsing satellites, analysis of GIG '91 campaign data, and the Southwest Pacific campaign data analysis.

  11. Spin and precision electroweak physics

    SciTech Connect

    Marciano, W.J.

    1993-12-31

    A perspective on fundamental parameters and precision tests of the Standard Model is given. Weak neutral current reactions are discussed with emphasis on those processes involving (polarized) electrons. The role of electroweak radiative corrections in determining the top quark mass and probing for ``new physics`` is described.

  12. Precision Cleaning - Path to Premier

    NASA Technical Reports Server (NTRS)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  13. Precision Machining Technology. Curriculum Guide.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This curriculum guide was developed from a Technical Committee Report prepared with the assistance of industry personnel and containing a Task List which is the basis of the guide. It presents competency-based program standards for courses in precision machining technology and is part of the Idaho Vocational Curriculum Guide Project, a cooperative…

  14. Beyond precision surgery: Molecularly motivated precision care for gastric cancer.

    PubMed

    Choi, Y Y; Cheong, J-H

    2017-03-01

    Gastric cancer is one of the leading causes of cancer-related deaths worldwide. Despite the high disease prevalence, gastric cancer research has not gained much attention. Recently, genome-scale technology has made it possible to explore the characteristics of gastric cancer at the molecular level. Accordingly, gastric cancer can be classified into molecular subtypes that convey more detailed information of tumor than histopathological characteristics, and these subtypes are associated with clinical outcomes. Furthermore, this molecular knowledge helps to identify new actionable targets and develop novel therapeutic strategies. To advance the concept of precision patient care in the clinic, patient-derived xenograft (PDX) models have recently been developed. PDX models not only represent histology and genomic features, but also predict responsiveness to investigational drugs in patient tumors. Molecularly curated PDX cohorts will be instrumental in hypothesis generation, biomarker discovery, and drug screening and testing in proof-of-concept preclinical trials for precision therapy. In the era of precision medicine, molecularly tailored therapeutic strategies should be individualized for cancer patients. To improve the overall clinical outcome, a multimodal approach is indispensable for advanced cancer patients. Careful, oncological principle-based surgery, combined with a molecularly guided multidisciplinary approach, will open new horizons in surgical oncology.

  15. Precision electroweak physics at LEP

    SciTech Connect

    Mannelli, M.

    1994-12-01

    Copious event statistics, a precise understanding of the LEP energy scale, and a favorable experimental situation at the Z{sup 0} resonance have allowed the LEP experiments to provide both dramatic confirmation of the Standard Model of strong and electroweak interactions and to place substantially improved constraints on the parameters of the model. The author concentrates on those measurements relevant to the electroweak sector. It will be seen that the precision of these measurements probes sensitively the structure of the Standard Model at the one-loop level, where the calculation of the observables measured at LEP is affected by the value chosen for the top quark mass. One finds that the LEP measurements are consistent with the Standard Model, but only if the mass of the top quark is measured to be within a restricted range of about 20 GeV.

  16. Touch Precision Modulates Visual Bias.

    PubMed

    Misceo, Giovanni F; Jones, Maurice D

    2017-08-29

    The sensory precision hypothesis holds that different seen and felt cues about the size of an object resolve themselves in favor of the more reliable modality. To examine this precision hypothesis, 60 college students were asked to look at one size while manually exploring another unseen size either with their bare fingers or, to lessen the reliability of touch, with their fingers sleeved in rigid tubes. Afterwards, the participants estimated either the seen size or the felt size by finding a match from a visual display of various sizes. Results showed that the seen size biased the estimates of the felt size when the reliability of touch decreased. This finding supports the interaction between touch reliability and visual bias predicted by statistically optimal models of sensory integration.

  17. Precision linear ramp function generator

    DOEpatents

    Jatko, W. Bruce; McNeilly, David R.; Thacker, Louis H.

    1986-01-01

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  18. Precision linear ramp function generator

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  19. High precision triangular waveform generator

    DOEpatents

    Mueller, Theodore R.

    1983-01-01

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  20. Green Solvents for Precision Cleaning

    NASA Technical Reports Server (NTRS)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul

    2013-01-01

    Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the

  1. Method for grinding precision components

    SciTech Connect

    Ramanath, S.; Kuo, S.Y.; Williston, W.H.; Buljan, S.T.

    2000-02-01

    A method for precision cylindrical grinding of hard brittle materials, such as ceramics or glass and composites comprising ceramics or glass, provides material removal rates as high as 19--380 cm{sup 3}/min/cm. The abrasive tools used in the method comprise a strong, light weight wheel core bonded to a continuous rim of abrasive segments containing superabrasive grain in a dense metal bond matrix.

  2. Precision Atomic Beam Laser Spectroscopy

    DTIC Science & Technology

    1999-02-20

    postdoctoral, and visiting faculty researchers. The organizing principles of our work are to enhance the coherence and general utility of laser sources by... utilizing some million atoms, namely -1000:1. The optimum servo control of the laser using this signal could evidently produce a laser linewidth in the...Lett. 22,184-186 (1997), P. Dube, M. D. Levenson, and J. L. Hall. 10. "Real-time precision refractometry : new approaches," Appl. Opt. 36,1223- 1234

  3. Precision Medicine Comes to Thyroidology.

    PubMed

    Ladenson, Paul W

    2016-03-01

    The broad spectrum of thyroid disease severity--from subclinical hypothyroidism to myxedema coma, subclinical thyrotoxicosis to thyroid storm, and microscopic papillary to anaplastic cancers--has always demanded that clinicians individualize their management of thyroid patients. Deepening knowledge of thyroid pathophysiology along with advances in diagnostic, prognostic, and therapeutic technologies applicable to thyroid diseases position this field to ride the wave of precision medicine in the decade ahead.

  4. Method for grinding precision components

    DOEpatents

    Ramanath, Srinivasan; Kuo, Shih Yee; Williston, William H.; Buljan, Sergej-Tomislav

    2000-01-01

    A method for precision cylindrical grinding of hard brittle materials, such as ceramics or glass and composites comprising ceramics or glass, provides material removal rates as high as 19-380 cm.sup.3 /min/cm. The abrasive tools used in the method comprise a strong, light weight wheel core bonded to a continuous rim of abrasive segments containing superabrasive grain in a dense metal bond matrix.

  5. Precision Rosenbluth measurement of the proton elastic form factors

    SciTech Connect

    I. A. Qattan; J. Arrington; R. E. Segel; X. Zheng; K. Aniol; O. K. Baker; R. Beams; E. J. Brash; J. Calarco; A. Camsonne; J.-P. Chen; M. E. Christy; D. Dutta; R. Ent; S. Frullani; D. Gaskell; O. Gayou; R. Gilman; C. Glashausser; K. Hafidi; J.-O. Hansen; D. W. Higinbotham; W. Hinton; R. J. Holt; G. M. Huber; H. Ibrahim; L. Jisonna; M. K. Jones; C. E. Keppel; E. Kinney; G. J. Kumbartzki; A. Lung; D. J. Margaziotis; K. McCormick; D. Meekins; R. Michaels; P. Monaghan; P. Moussiegt; L. Pentchev; C. Perdrisat; V. Punjabi; R. Ransome; J. Reinhold; B. Reitz; A. Saha; A. Sarty; E. C. Schulte; K. Slifer; P. Solvignon; V. Sulkosky; K. Wijesooriya; B. Zeidman

    2004-10-01

    We report the results of a new Rosenbluth measurement of the proton form factors at Q{sup 2} values of 2.64, 3.20 and 4.10 GeV{sup 2}. Cross sections were determined by detecting the recoiling proton in contrast to previous measurements in which the scattered electron was detected. At each Q{sup 2}, relative cross sections were determined to better than 1%. The measurement focused on the extraction of G{sub E}/G{sub M} which was determined to 4-8% and found to approximate form factor scaling, i.e. {mu}{sub p}G{sub E} {approx} G{sub M}. These results are consistent with and much more precise than previous Rosenbluth extractions. However, they are inconsistent with recent polarization transfer measurements of comparable precision, implying a systematic difference between the two techniques.

  6. Precision optical metrology without lasers

    NASA Astrophysics Data System (ADS)

    Bergmann, Ralf B.; Burke, Jan; Falldorf, Claas

    2015-07-01

    Optical metrology is a key technique when it comes to precise and fast measurement with a resolution down to the micrometer or even nanometer regime. The choice of a particular optical metrology technique and the quality of results depends on sample parameters such as size, geometry and surface roughness as well as user requirements such as resolution, measurement time and robustness. Interferometry-based techniques are well known for their low measurement uncertainty in the nm range, but usually require careful isolation against vibration and a laser source that often needs shielding for reasons of eye-safety. In this paper, we concentrate on high precision optical metrology without lasers by using the gradient based measurement technique of deflectometry and the finite difference based technique of shear interferometry. Careful calibration of deflectometry systems allows one to investigate virtually all kinds of reflecting surfaces including aspheres or free-form surfaces with measurement uncertainties below the μm level. Computational Shear Interferometry (CoSI) allows us to combine interferometric accuracy and the possibility to use cheap and eye-safe low-brilliance light sources such as e.g. fiber coupled LEDs or even liquid crystal displays. We use CoSI e.g. for quantitative phase contrast imaging in microscopy. We highlight the advantages of both methods, discuss their transfer functions and present results on the precision of both techniques.

  7. Do not let precision medicine be kidnapped.

    PubMed

    Yang, Zhiping

    2015-12-01

    Obama’s precision medicine initiative made the medical community boil over after the initiative’s release. Precision medicine has been advocated by the majority of scientists and doctors. However, some experts have questioned this concept. This article does not oppose precision medicine. However, the incentive of vigorously promoting precision medicine at present is a concern.

  8. Precision radiometric surface temperature (PRST) sensor

    NASA Astrophysics Data System (ADS)

    Daly, James T.; Roberts, Carson; Bodkin, Andrew; Sundberg, Robert; Beaven, Scott; Weinheimer, Jeffrey

    2013-05-01

    There is a need for a Precision Radiometric Surface Temperature (PRST) measurement capability that can achieve noncontact profiling of a sample's surface temperature when heated dynamically during laser processing, aerothermal heating or metal cutting/machining. Target surface temperature maps within and near the heated spot provide critical quantitative diagnostic data for laser-target coupling effectiveness and laser damage assessment. In the case of metal cutting, this type of measurement provides information on plastic deformation in the primary shear zone where the cutting tool is in contact with the workpiece. The challenge in these cases is to measure the temperature of a target while its surface's temperature and emissivity are changing rapidly and with incomplete knowledge of how the emissivity and surface texture (scattering) changes with temperature. Bodkin Design and Engineering, LLC (BDandE), with partners Spectral Sciences, Inc. (SSI) and Space Computer Corporation (SCC), has developed a PRST Sensor that is based on a hyperspectral MWIR imager spanning the wavelength range 2-5 μm and providing a hyperspectral datacube of 20-24 wavelengths at 60 Hz frame rate or faster. This imager is integrated with software and algorithms to extract surface temperature from radiometric measurements over the range from ambient to 2000K with a precision of 20K, even without a priori knowledge of the target's emissivity and even as the target emissivity may be changing with time and temperature. In this paper, we will present a description of the PRST system as well as laser heating test results which show the PRST system mapping target surface temperatures in the range 600-2600K on a variety of materials.

  9. Precision Measurement Of Corneal Topography

    NASA Astrophysics Data System (ADS)

    Yoder, Paul R.; Macri, Timothy F.; Telfair, William B.; Bennett, Peter S.; Martin, Clifford A.; Warner, John W.

    1989-05-01

    We describe a new electro-optical device being developed to provide precise measurements of the three-dimensional topography of the human cornea. This device, called a digital keratoscope, is intended primarily for use in preparing for and determining the effect of corneal surgery procedures such as laser refractive keratectomy, radial keratotomy or corneal transplant on the refractive power of the cornea. It also may serve as an aid in prescribing contact lenses. The basic design features of the hardware and of the associated computer software are discussed, the means for alignment and calibration are described and typical results are given.

  10. RNA Bioinformatics for Precision Medicine.

    PubMed

    Chen, Jiajia; Shen, Bairong

    2016-01-01

    The high-throughput transcriptomic data generated by deep sequencing technologies urgently require bioinformatics methods for proper data visualization, analysis, storage, and interpretation. The involvement of noncoding RNAs in human diseases highlights their potential as biomarkers and therapeutic targets to facilitate the precision medicine. In this chapter, we give a brief overview of the bioinformatics tools to analyze different aspects of RNAs, in particular ncRNAs. We first describe the emerging bioinformatics methods for RNA identification, structure modeling, functional annotation, and network inference. This is followed by an introduction of potential usefulness of ncRNAs as diagnostic, prognostic biomarkers and therapeutic strategies.

  11. Precision alignment and mounting apparatus

    NASA Technical Reports Server (NTRS)

    Preston, Dennis R. (Inventor)

    1993-01-01

    An alignment and mounting apparatus for mounting two modules (10,12) includes a first portion having a cylindrical alignment pin (16) projecting normal to a module surface, a second portion having a three-stage alignment guide (18) including a shoehorn flange (34), a Y-slot (42) and a V-block (22) which sequentially guide the alignment pin (16) with successively finer precision and a third portion in the form of a spring-loaded captive fastener (20) for connecting the two modules after alignment is achieved.

  12. Axion Bounds from Precision Cosmology

    SciTech Connect

    Raffelt, G. G.; Hamann, J.; Hannestad, S.; Mirizzi, A.; Wong, Y. Y. Y.

    2010-08-30

    Depending on their mass, axions produced in the early universe can leave different imprints in cosmic structures. If axions have masses in the eV-range, they contribute a hot dark matter fraction, allowing one to constrain m{sub a} in analogy to neutrinos. In the more favored scenario where axions play the role of cold dark matter and if reheating after inflation does not restore the Peccei-Quinn symmetry, the axion field provides isocurvature fluctuations that are severely constrained by precision cosmology. There remains a small sliver in parameter space where isocurvature fluctuations could still show up in future probes.

  13. Precision ozone vapor pressure measurements

    NASA Technical Reports Server (NTRS)

    Hanson, D.; Mauersberger, K.

    1985-01-01

    The vapor pressure above liquid ozone has been measured with a high accuracy over a temperature range of 85 to 95 K. At the boiling point of liquid argon (87.3 K) an ozone vapor pressure of 0.0403 Torr was obtained with an accuracy of + or - 0.7 percent. A least square fit of the data provided the Clausius-Clapeyron equation for liquid ozone; a latent heat of 82.7 cal/g was calculated. High-precision vapor pressure data are expected to aid research in atmospheric ozone measurements and in many laboratory ozone studies such as measurements of cross sections and reaction rates.

  14. An Arbitrary Precision Computation Package

    SciTech Connect

    2003-06-14

    This package permits a scientist to perform computations using an arbitrarily high level of numeric precision (the equivalent of hundreds or even thousands of digits), by making only minor changes to conventional C++ or Fortran-90 soruce code. This software takes advantage of certain properties of IEEE floating-point arithmetic, together with advanced numeric algorithms, custom data types and operator overloading. Also included in this package is the "Experimental Mathematician's Toolkit", which incorporates many of these facilities into an easy-to-use interactive program.

  15. Weak soft X-ray excesses need not result from the high-frequency tail of the optical/ultraviolet bump in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Czerny, Bozena; Zycki, Piotr T.

    1994-01-01

    The broad-band ROSAT/EXOSAT X-ray spectra of six Seyfert 1 galaxies are fitted by a model consisting of a direct power law and a component due to reflection/reprocessing from a partially ionized, optically thick medium. The reflected spectrum contains emission features from various elements in the soft X-ray range. In all objects but one (Mrk 335), the fit is satisfactory, and no additional soft X-ray excess is required by the data. This means that in most sources there is no need for the thermal 'big blue bumps' to extend into soft X-rays, and the soft X-ray excesses reported previously can be explained by reflection/reprocessing. Satisfactory fits are obtained for a medium ionized by a source radiating at less than or approximately 15% of the Eddington rate. The fits require that the reflection is enhanced relative to an isotropically emitting source above a flat disk. The necessary high effectiveness of reflection in the soft X-ray band requires strong soft thermal flux dominating over hard X-rays.

  16. In situ heating transmission electron microscopy observation of nanoeutectic lamellar structure in Sn-Ag-Cu alloy on Au under-bump metallization.

    PubMed

    Seo, Jong-Hyun; Yoon, Sang-Won; Kim, Kyou-Hyun; Chang, Hye-Jung; Lee, Kon-Bae; Seong, Tae-Yeon; Fleury, Eric; Ahn, Jae-Pyoung

    2013-08-01

    We investigated the microstructural evolution of Sn(96.4)Ag(2.8)Cu(0.8) solder through in situ heating transmission electron microscopy observations. As-soldered bump consisted of seven layers, containing the nanoeutectic lamella structure of AuSn and Au₅Sn phases, and the polygonal grains of AuSn₂ and AuSn₄, on Au-plated Cu bond pads. Here, we found that there are two nanoeutectic lamellar layers with lamella spacing of 40 and 250 nm. By in situ heating above 140°C, the nanoeutectic lamella of AuSn and Au₅Sn was decomposed with structural degradation by sphering and coarsening processes of the lamellar interface. At the third layer neighboring to the lamella layer, on the other hand, Au₅Sn particles with a zig-zag shape in AuSn matrix became spherical and were finally dissipated in order to minimize the interface energy between two phases. In the other layers except both lamella layers, polycrystal grains of AuSn₂ and AuSn₄ grew by normal grain growth during in situ heating. The high interface energy of nanoeutectic lamella and polygonal nanograins, which are formed by rapid solidification, acted as a principal driving force on the microstructural change during the in situ heating.

  17. High Dust Depletion in two Intervening Quasar Absorption Line Systems with the 2175 Å Extinction Bump at z ~ 1.4

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ge, Jian; Prochaska, J. Xavier; Wang, Junfeng; Zhou, Hongyan; Wang, Tinggui

    2010-12-01

    We present the column densities of heavy elements and dust depletion studies in two strong Mg II absorption systems at z ~ 1.4 displaying the 2175 Å dust extinction feature. Column densities are measured from low-ionization absorption lines using an Apparent Optical Depth Method on the Keck/ESI spectra. We find that the dust depletion patterns resemble that of cold diffuse clouds in the Milky Way (MW). The values, [Fe/Zn] ≈-1.5 and [Si/Zn]<-0.67, are among the highest dust depletion measured for quasar absorption line systems. In another 2175 Å absorber at z = 1.64 toward the quasar SDSS J160457.50+220300.5, Noterdaeme et al. reported a similar dust depletion measurement ([Fe/Zn] = -1.47 and [Si/Zn] = -1.07) and detected C I and CO absorption lines on its VLT/UVES spectrum. We conclude that heavy dust depletion (i.e., a characteristic of cold dense clouds in MW) is required to produce a pronounced 2175 Å extinction bump. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  18. Simultaneous detections of a Milky Way type 2175 Å bump and CI, CO in a metal-rich and highly dust depleted absorption system at z=2.12 towards QSO J1211+0833

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Caucal, Paul; Noterdaeme, Pasquier; Ge, Jian; Zhang, Shaohua; Ji, Tuo; Prochaska, J. Xavier

    2015-01-01

    We report the detection of a Milky Way-type strong 2175 Å extinction bump at z=2.12 in the quasar spectrum towards QSO J1211+0833 from the SDSS-III BOSS DR10. We conduct follow up observations with the Echelle Spectrograph and Imager (ESI) onboard the Keck-II telescope and the Ultraviolet and Visual Echelle Spectrograph (UVES) on the VLT. This 2175 Å absorber is remarkable in that it shows rich metal lines and we simultaneously detect neutral carbon (CI) and carbon monoxide (CO). The Lyman alpha absorption line enables the measurement of absolute metal abundances. It is also qualified as a damped Lyman alpha absorber (DLA) with a measured hydrogen column density of log N(HI) = 21.0 cm-2. J1211+0833 is found to be metal-rich and has a dust depletion pattern resembling that of the Milky Way disk clouds. The Voigt profile fitting on the UVES spectrum reveals a complicated velocity structure with nine velocity components. The physical conditions in the absorber can be derived from the CI fine structure lines. Given the simultaneous presence of CI, CO, and the 2175 Å bump combined with the high metallicty, high dust depletion level and overall low ionization state of the gas, J1211+0833 supports the scenario that the presence of the bump requires an evolved stellar population. The host of the J1211+0833 2175 Å bump is likely to be a massive and evolved galaxy, possibly a rotating disk galaxy.

  19. Precision Mass Measurements at CARIBU

    NASA Astrophysics Data System (ADS)

    Lascar, D.; van Schelt, J.; Savard, G.; Caldwell, S.; Chaudhuri, A.; Clark, J. A.; Levand, A. F.; Li, G.; Sternberg, M.; Sun, T.; Zabransky, B. J.; Segel, R.; Sharma, K.

    2010-02-01

    Neutron separation energies (Sn) are essential inputs to models of explosive r-process nucleosynthesis. However, for nuclei farther from stability, the precision of Sn decreases as production decreases and observation of those nuclei become more difficult. Many of the most critical inputs to the models are based on extrapolations from measurements of masses closer to stability than the predicted r-process path. Measuring masses that approach and lie on the predicted r-process path will further constrain the systematic uncertainties in these extrapolated values. The Canadian Penning Trap Mass Spectrometer (CPT) at Argonne National Laboratory (ANL) has measured the masses of more than 160 nuclei to high precision. A recent move to the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) at ANL has given the CPT unique access to weakly produced nuclei that cannot be easily reached via proton induced fission of ^238U. CARIBU will eventually use a 1 Ci source of ^252Cf to produce these nuclei. Installation of the CPT at CARIBU as well as the first CPT mass measurements of neutron rich nuclei at CARIBU will be discussed. )

  20. Automatic precision measurement of spectrograms.

    PubMed

    Palmer, B A; Sansonetti, C J; Andrew, K L

    1978-08-01

    A fully automatic comparator has been designed and implemented to determine precision wavelengths from high-resolution spectrograms. The accuracy attained is superior to that of an experienced operator using a semiautomatic comparator with a photoelectric setting device. The system consists of a comparator, slightly modified for simultaneous data acquisition from two parallel scans of the spectrogram, interfaced to a minicomputer. The software which controls the system embodies three innovations of special interest. (1) Data acquired from two parallel scans are compared and used to separate unknown from standard lines, to eliminate spurious lines, to identify blends of unknown with standard lines, to improve the accuracy of the measured positions, and to flag lines which require special examination. (2) Two classes of lines are automatically recognized and appropriate line finding methods are applied to each. This provides precision measurement for both simple and complex line profiles. (3) Wavelength determination using a least-squares fitted grating equation is supported in addition to polynomial interpolation. This is most useful in spectral regions with sparsely distributed standards. The principles and implementation of these techniques are fully described.

  1. Precision metrology using weak measurements.

    PubMed

    Zhang, Lijian; Datta, Animesh; Walmsley, Ian A

    2015-05-29

    Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.

  2. Precision Environmental Radiation Monitoring System

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2010-07-01

    A new precision low-level environmental radiation monitoring system has been developed and tested at Jefferson Lab. This system provides environmental radiation measurements with accuracy and stability of the order of 1 nGy/h in an hour, roughly corresponding to approximately 1% of the natural cosmic background at the sea level. Advanced electronic front-end has been designed and produced for use with the industry-standard High Pressure Ionization Chamber detector hardware. A new highly sensitive readout electronic circuit was designed to measure charge from the virtually suspended ionization chamber ion collecting electrode. New signal processing technique and dedicated data acquisition were tested together with the new readout. The designed system enabled data collection in a remote Linux-operated computer workstation, which was connected to the detectors using a standard telephone cable line. The data acquisition system algorithm is built around the continuously running 24-bit resolution 192 kHz data sampling analog to digital convertor. The major features of the design include: extremely low leakage current in the input circuit, true charge integrating mode operation, and relatively fast response to the intermediate radiation change. These features allow operating of the device as an environmental radiation monitor, at the perimeters of the radiation-generating installations in densely populated areas, like in other monitoring and security applications requiring high precision and long-term stability. Initial system evaluation results are presented.

  3. Helium 3 neutron precision polarimetry

    NASA Astrophysics Data System (ADS)

    Menard, Christopher

    2009-10-01

    Measuring neutron polarization to a high degree of precision is critical for the next generation of neutron decay correlation experiments. Polarized neutrons are also used in experiments to probe the hadronic weak interaction which contributes a small portion (˜10-7) of the force between nucleons. Using a beam of cold neutrons at Los Alamos Neutron Science Center (LANSCE), we polarized neutrons and measured their absolute polarization to ˜0.1%. Neutrons were polarized by passing them through a ^3He spin filter, relying on the maximally spin dependent 3He neutron absorption cross section. The neutron polarization can be determined by measuring the wavelength-dependent neutron transmission through the ^3He cell. An independent measurement of the neutron polarization was also obtained by passing the polarized beam through an RF spin flipper and a second polarized ^3He cell, used as an analyzer. To measure the efficiency of the spin flipper, the same measurements were made after reversing the ^3He polarization in the polarizer by using NMR techniques (adiabatic fast passage). We will show the consistency of these two measurements and the resulting precision of neutron polarimetry using these techniques.

  4. Precision Measurements in 37K

    NASA Astrophysics Data System (ADS)

    Anholm, Melissa; Ashery, Daniel; Behling, Spencer; Fenker, Benjamin; Melconian, Dan; Mehlman, Michael; Behr, John; Gorelov, Alexandre; Olchanski, Konstantin; Preston, Claire; Warner, Claire; Gwinner, Gerald

    2015-10-01

    We have performed precision measurements of the kinematics of the daughter particles in the decay of 37K. This isotope decays by β+ emission in a mixed Fermi/Gamow-Teller transition to its isobaric analog, 37Ar. Because the higher-order standard model corrections to this decay process are well understood, it is an ideal candidate for for improving constraints on interactions beyond the standard model. Our setup utilizes a magneto-optical trap to confine and cool samples of 37K, which are then spin-polarized by optical pumping. This allows us to perform measurements on both polarized and unpolarized nuclei, which is valuable for a complete understanding of systematic effects. Precision measurements of this decay are expected to be sensitive to the presence of right-handed vector currents, as well as a linear combination of scalar and tensor currents. Progress towards a final result is presented here. Support provided by: NSERC, NRC through TRIUMF, DOE ER40773, Early Career ER41747, Israel Science Foundation.

  5. Antihydrogen production and precision experiments

    SciTech Connect

    Nieto, M.M.; Goldman, T.; Holzscheiter, M.H.

    1996-12-31

    The study of CPT invariance with the highest achievable precision in all particle sectors is of fundamental importance for physics. Equally important is the question of the gravitational acceleration of antimatter. In recent years, impressive progress has been achieved in capturing antiprotons in specially designed Penning traps, in cooling them to energies of a few milli-electron volts, and in storing them for hours in a small volume of space. Positrons have been accumulated in large numbers in similar traps, and low energy positron or positronium beams have been generated. Finally, steady progress has been made in trapping and cooling neutral atoms. Thus the ingredients to form antihydrogen at rest are at hand. Once antihydrogen atoms have been captured at low energy, spectroscopic methods can be applied to interrogate their atomic structure with extremely high precision and compare it to its normal matter counterpart, the hydrogen atom. Especially the 1S-2S transition, with a lifetime of the excited state of 122 msec and thereby a natural linewidth of 5 parts in 10{sup 16}, offers in principle the possibility to directly compare matter and antimatter properties at a level of 1 part in 10{sup 16}.

  6. Precision experiments in electroweak interactions

    SciTech Connect

    Swartz, M.L.

    1990-03-01

    The electroweak theory of Glashow, Weinberg, and Salam (GWS) has become one of the twin pillars upon which our understanding of all particle physics phenomena rests. It is a brilliant achievement that qualitatively and quantitatively describes all of the vast quantity of experimental data that have been accumulated over some forty years. Note that the word quantitatively must be qualified. The low energy limiting cases of the GWS theory, Quantum Electrodynamics and the V-A Theory of Weak Interactions, have withstood rigorous testing. The high energy synthesis of these ideas, the GWS theory, has not yet been subjected to comparably precise scrutiny. The recent operation of a new generation of proton-antiproton (p{bar p}) and electron-positron (e{sup +}e{sup {minus}}) colliders has made it possible to produce and study large samples of the electroweak gauge bosons W{sup {plus minus}} and Z{sup 0}. We expect that these facilities will enable very precise tests of the GWS theory to be performed in the near future. In keeping with the theme of this Institute, Physics at the 100 GeV Mass Scale, these lectures will explore the current status and the near-future prospects of these experiments.

  7. Precision medicine in pediatric rheumatology.

    PubMed

    Yeo, Joo Guan; Ng, Chin Teck; Albani, Salvatore

    2017-09-01

    Precision medicine is the tailoring of medical care to subcategories of disease. In pediatric rheumatology, these subcategories must first be defined by their specific molecular immunological profiles, and then the effects of growth and puberty, developmental immunological changes, and differences in treatment options and adherence considered when designing therapeutic strategies. In the present review, we summarize the unmet needs in pediatric rheumatology before such precision medical care can be effectively delivered to affected patients. The current clinical classification of pediatric rheumatic diseases does not provide all the information necessary for prognostication and accurate therapeutic selection. Many studies have highlighted the molecular differences between disease subcategories and the dissimilarities in the molecular manifestations of the same disease between patients. Harnessing such discoveries by collaborating with various research networks and laboratories is required to interrogate the multifactorial nature of rheumatic diseases in a holistic manner. Integration of big data sets generated from well defined pediatric cohorts with rheumatic diseases using different high-dimensional technological platforms will help to elucidate the underlying disease mechanisms. Distilling these data will be necessary for accurate disease stratification and will have a positive impact on prognosis and treatment choice.

  8. High-precision photometry for K2 Campaign 1

    NASA Astrophysics Data System (ADS)

    Huang, C. X.; Penev, K.; Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Domsa, I.; de Val-Borro, M.

    2015-12-01

    The two reaction wheel K2 mission promises and has delivered new discoveries in the stellar and exoplanet fields. However, due to the loss of accurate pointing, it also brings new challenges for the data reduction processes. In this paper, we describe a new reduction pipeline for extracting high-precision photometry from the K2 data set, and present public light curves for the K2 Campaign 1 target pixel data set. Key to our reduction is the derivation of global astrometric solutions from the target stamps, from which accurate centroids are passed on for high-precision photometry extraction. We extract target light curves for sources from a combined UCAC4 and EPIC catalogue - this includes not only primary targets of the K2 campaign 1, but also any other stars that happen to fall on the pixel stamps. We provide the raw light curves, and the products of various detrending processes aimed at removing different types of systematics. Our astrometric solutions achieve a median residual of ˜0.127 arcsec. For bright stars, our best 6.5 h precision for raw light curves is ˜20 parts per million (ppm). For our detrended light curves, the best 6.5 h precision achieved is ˜15 ppm. We show that our detrended light curves have fewer systematic effects (or trends, or red-noise) than light curves produced by other groups from the same observations. Example light curves of transiting planets and a Cepheid variable candidate, are also presented. We make all light curves public, including the raw and detrended photometry, at http://k2.hatsurveys.org.

  9. Manufacturing Precise, Lightweight Paraboloidal Mirrors

    NASA Technical Reports Server (NTRS)

    Hermann, Frederick Thomas

    2006-01-01

    A process for fabricating a precise, diffraction- limited, ultra-lightweight, composite- material (matrix/fiber) paraboloidal telescope mirror has been devised. Unlike the traditional process of fabrication of heavier glass-based mirrors, this process involves a minimum of manual steps and subjective judgment. Instead, this process involves objectively controllable, repeatable steps; hence, this process is better suited for mass production. Other processes that have been investigated for fabrication of precise composite-material lightweight mirrors have resulted in print-through of fiber patterns onto reflecting surfaces, and have not provided adequate structural support for maintenance of stable, diffraction-limited surface figures. In contrast, this process does not result in print-through of the fiber pattern onto the reflecting surface and does provide a lightweight, rigid structure capable of maintaining a diffraction-limited surface figure in the face of changing temperature, humidity, and air pressure. The process consists mainly of the following steps: 1. A precise glass mandrel is fabricated by conventional optical grinding and polishing. 2. The mandrel is coated with a release agent and covered with layers of a carbon- fiber composite material. 3. The outer surface of the outer layer of the carbon-fiber composite material is coated with a surfactant chosen to provide for the proper flow of an epoxy resin to be applied subsequently. 4. The mandrel as thus covered is mounted on a temperature-controlled spin table. 5. The table is heated to a suitable temperature and spun at a suitable speed as the epoxy resin is poured onto the coated carbon-fiber composite material. 6. The surface figure of the optic is monitored and adjusted by use of traditional Ronchi, Focault, and interferometric optical measurement techniques while the speed of rotation and the temperature are adjusted to obtain the desired figure. The proper selection of surfactant, speed or rotation

  10. The Precision Field Lysimeter Concept

    NASA Astrophysics Data System (ADS)

    Fank, J.

    2009-04-01

    The understanding and interpretation of leaching processes have improved significantly during the past decades. Unlike laboratory experiments, which are mostly performed under very controlled conditions (e.g. homogeneous, uniform packing of pre-treated test material, saturated steady-state flow conditions, and controlled uniform hydraulic conditions), lysimeter experiments generally simulate actual field conditions. Lysimeters may be classified according to different criteria such as type of soil block used (monolithic or reconstructed), drainage (drainage by gravity or vacuum or a water table may be maintained), or weighing or non-weighing lysimeters. In 2004 experimental investigations have been set up to assess the impact of different farming systems on groundwater quality of the shallow floodplain aquifer of the river Mur in Wagna (Styria, Austria). The sediment is characterized by a thin layer (30 - 100 cm) of sandy Dystric Cambisol and underlying gravel and sand. Three precisely weighing equilibrium tension block lysimeters have been installed in agricultural test fields to compare water flow and solute transport under (i) organic farming, (ii) conventional low input farming and (iii) extensification by mulching grass. Specific monitoring equipment is used to reduce the well known shortcomings of lysimeter investigations: The lysimeter core is excavated as an undisturbed monolithic block (circular, 1 m2 surface area, 2 m depth) to prevent destruction of the natural soil structure, and pore system. Tracing experiments have been achieved to investigate the occurrence of artificial preferential flow and transport along the walls of the lysimeters. The results show that such effects can be neglected. Precisely weighing load cells are used to constantly determine the weight loss of the lysimeter due to evaporation and transpiration and to measure different forms of precipitation. The accuracy of the weighing apparatus is 0.05 kg, or 0.05 mm water equivalent

  11. Precision grip and Parkinson's disease.

    PubMed

    Fellows, S J; Noth, J; Schwarz, M

    1998-09-01

    In order to investigate sensorimotor processing and force development in Parkinson's disease, 16 patients, four patients with hemiparkinsonism and 12 age-matched normal subjects were assessed during lifting and holding of an object in a precision grip between thumb and forefinger, or holding the object in this grip at a fixed height above a table. In the former case, object loading could be changed between lifts without warning. In the latter case, unexpected step load changes to the object were applied to the object with a torque motor. All procedures could be applied with or without visual control of the hand and the object. Normal subjects lifted an unpredictable load employing the grip force parameters used in the preceding lift. If a load change was encountered, the parameters became adapted to the new conditions during the lift, modulating grip forces to match the loading. Parkinsonian patients retained this strategy and the ability to regulate grip forces according to load. Under all conditions, however, parkinsonian subjects developed abnormally high grip forces in both the lift and the hold phase, although the ratio of these forces remained normal. Lifting height was normal in parkinsonian subjects, but the duration of the lifting task was significantly prolonged, due to a marked slowing in the rate of grip force development in the lead-up to object lift-off and to prolongation of the movement phase. Forewarning of object loading, with or without visual control, did not reduce timing deficits or improve the rate of grip force development. However, it did allow parkinsonian subjects to reduce the safety margin significantly. Responses to step load changes imposed during holding without visual control showed minor abnormalities in the parkinsonian patients: onset latencies and EMG activity in the first dorsal interosseus and thenar muscles were normal up to 140 ms after displacement. Subsequent EMG activity in the first dorsal interosseus remained largely

  12. The Quantitative Imaging Network in Precision Medicine

    PubMed Central

    Nordstrom, Robert J.

    2017-01-01

    Precision medicine is a healthcare model that seeks to incorporate a wealth of patient information to identify and classify disease progression and to provide tailored therapeutic solutions for individual patients. Interventions are based on knowledge of molecular and mechanistic causes, pathogenesis and pathology of disease. Individual characteristics of the patients are then used to select appropriate healthcare options. Imaging is playing an increasingly important role in identifying relevant characteristics that help to stratify patients for different interventions. However, lack of standards, limitations in image-processing interoperability, and errors in data collection can limit the applicability of imaging in clinical decision support. Quantitative imaging is the attempt to extract reliable, numerical information from images to eliminate qualitative judgments and errors for providing accurate measures of tumor response to therapy or for predicting future response. This issue of Tomography reports quantitative imaging developments made by several members of the National Cancer Institute Quantitative Imaging Network, a program dedicated to the promotion of quantitative imaging methods for clinical decision support. PMID:28083563

  13. Precision cosmology and the landscape

    SciTech Connect

    Bousso, Raphael; Bousso, Raphael

    2006-10-01

    After reviewing the cosmological constant problem -- why is Lambda not huge? -- I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments.

  14. Precision moisture generation and measurement.

    SciTech Connect

    Thornberg, Steven Michael; White, Michael I.; Irwin, Adriane Nadine

    2010-03-01

    In many industrial processes, gaseous moisture is undesirable as it can lead to metal corrosion, polymer degradation, and other materials aging processes. However, generating and measuring precise moisture concentrations is challenging due to the need to cover a broad concentration range (parts-per-billion to percent) and the affinity of moisture to a wide range surfaces and materials. This document will discuss the techniques employed by the Mass Spectrometry Laboratory of the Materials Reliability Department at Sandia National Laboratories to generate and measure known gaseous moisture concentrations. This document highlights the use of a chilled mirror and primary standard humidity generator for the characterization of aluminum oxide moisture sensors. The data presented shows an excellent correlation in frost point measured between the two instruments, and thus provides an accurate and reliable platform for characterizing moisture sensors and performing other moisture related experiments.

  15. Mechanisms Governing Precise Protein Biotinylation.

    PubMed

    Sternicki, Louise M; Wegener, Kate L; Bruning, John B; Booker, Grant W; Polyak, Steven W

    2017-03-03

    Protein biotinylation is a key post-translational modification found throughout the living world. The covalent attachment of a biotin cofactor onto specific metabolic enzymes is essential for their activity. This modification is distinctive, in that it is carried out by a single enzyme: biotin protein ligase (BPL), an enzyme that is able to biotinylate multiple target substrates without aberrant-off target biotinylation. BPL achieves this target selectivity by recognizing a sequence motif in the context of a highly conserved tertiary structure. One structural class of BPLs has developed an additional 'substrate verification' mechanism to further enable appropriate protein selection. This is crucial for the precise and selective biotinylation required for efficient biotin management, especially in organisms that are auxotrophic for biotin.

  16. System for precise position registration

    DOEpatents

    Sundelin, Ronald M.; Wang, Tong

    2005-11-22

    An apparatus for enabling accurate retaining of a precise position, such as for reacquisition of a microscopic spot or feature having a size of 0.1 mm or less, on broad-area surfaces after non-in situ processing. The apparatus includes a sample and sample holder. The sample holder includes a base and three support posts. Two of the support posts interact with a cylindrical hole and a U-groove in the sample to establish location of one point on the sample and a line through the sample. Simultaneous contact of the third support post with the surface of the sample defines a plane through the sample. All points of the sample are therefore uniquely defined by the sample and sample holder. The position registration system of the current invention provides accuracy, as measured in x, y repeatability, of at least 140 .mu.m.

  17. Inflationary perturbations and precision cosmology

    SciTech Connect

    Habib, Salman; Heinen, Andreas; Heitmann, Katrin; Jungman, Gerard

    2005-02-15

    Inflationary cosmology provides a natural mechanism for the generation of primordial perturbations which seed the formation of observed cosmic structure and lead to specific signals of anisotropy in the cosmic microwave background radiation. In order to test the broad inflationary paradigm as well as particular models against precision observations, it is crucial to be able to make accurate predictions for the power spectrum of both scalar and tensor fluctuations. We present detailed calculations of these quantities utilizing direct numerical approaches as well as error-controlled uniform approximations, comparing with the (uncontrolled) traditional slow-roll approach. A simple extension of the leading-order uniform approximation yields results for the power spectra amplitudes, the spectral indices, and the running of spectral indices, with accuracy of the order of 0.1%--approximately the same level at which the transfer functions are known. Several representative examples are used to demonstrate these results.

  18. Navy precision optical interferometer database

    NASA Astrophysics Data System (ADS)

    Ryan, K. K.; Jorgensen, A. M.; Hall, T.; Armstrong, J. T.; Hutter, D.; Mozurkewich, D.

    2012-07-01

    The Navy Precision Optical Interferometer (NPOI) has now been recording astronomical observations for the better part of two decades. During that time period hundreds of thousands of observations have been obtained, with a total data volume of multiple terabytes. Additionally, in the next few years the data rate from the NPOI is expected to increase significantly. To make it easier for NPOI users to search the NPOI observations and to make it easier for them to obtain data, we have constructed a easily accessible and searchable database of observations. The database is based on a MySQL server and uses standard query language (SQL). In this paper we will describe the database table layout and show examples of possible database queries.

  19. Precise Nanoelectronics with Adatom Chains

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    1999-01-01

    Adatom chains on an atomically regulated substrate will be building components in future precise nanoelectronics. Adatoms need to be secured with chemical bonding, but then electronic isolation between the adatom and substrate systems is not guaranteed. A one-dimensional model shows that good isolation with existence of surface states is expected on an s-p crossing substrate such as Si, Ge, or GaAs, reflecting the bulk nature of the substrate. Isolation is better if adatoms are electronically similar to the substrate atoms, and can be manipulated by hydrogenation. Chain structures with group IV adatoms with two chemical bonds, or group III adatoms with one chemical bond, are semiconducting, reflecting the surface nature of the substrate. These structures are unintentionally doped due to the charge transfer across the chemical bonds. Physical properties of adatom chains have to be determined for the unified adatom-substrate system.

  20. RaDARSAT precision transponder

    NASA Astrophysics Data System (ADS)

    Hawkins, R. K.; Teany, L. D.; Srivastava, S.; Tam, S. Y. K.

    1997-05-01

    This paper describes the set of four RADARSAT Precision Transponders (RPTs) developed for the Canadian Space Agency for the calibration and qualification of the spaceborne Synthetic Aperture Radar (SAR) carried on the Canadian remote sensing satellite known as RADARSAT, launched in November, 1995. The transponder system block diagram, RF diagram, and specification development are described, as well as the overall program which gives the transponder function in the calibration program for RADARSAT. The transponders are deployed at four strategically situated sites across Canada: Fredericton, NB; Ottawa, Ont.; Prince Albert, Sask.; and Resolute, NWT. Some details of the sites and their sensor visitation characteristics are given. Also provided are some early results showing the use and performance of the transponders using ERS-1/2 and RADARSAT.

  1. Assuring Precise LFC-Suction-Strip Porosities

    NASA Technical Reports Server (NTRS)

    Gallimore, Frank H.

    1988-01-01

    Masking technique in bonding perforated titanium sheets to substructures. Technique to obtain precise control of widths of perforated titanium suction strips. Precision required for successful laminar-flow control, (LFC) in flight environments.

  2. System precisely controls oscillation of vibrating mass

    NASA Technical Reports Server (NTRS)

    Hancock, D. J.

    1967-01-01

    System precisely controls the sinusoidal amplitude of a vibrating mechanical mass. Using two sets of coils, the system regulates the drive signal amplitude at the precise level to maintain the mechanical mass when it reaches the desired vibration amplitude.

  3. Using hyperspectral data in precision farming applications

    USDA-ARS?s Scientific Manuscript database

    Precision farming practices such as variable rate applications of fertilizer and agricultural chemicals require accurate field variability mapping. This chapter investigated the value of hyperspectral remote sensing in providing useful information for five applications of precision farming: (a) Soil...

  4. Role of telecommunications in precision agriculture

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture has been made possible by the confluence of several technologies: geographic positioning systems, geographic information systems, image analysis software, low-cost microcomputer-based variable rate controller/recorders, and precision tractor guidance systems. While these techn...

  5. Ultrasonic precision optical grinding technology

    NASA Astrophysics Data System (ADS)

    Cahill, Michael J.; Bechtold, Michael J.; Fess, Edward; Wolfs, Frank L.; Bechtold, Rob

    2015-10-01

    As optical geometries become more precise and complex and a wider range of materials are used, the processes used for manufacturing become more critical. As the preparatory stage for polishing, this is especially true for grinding. Slow processing speeds, accelerated tool wear, and poor surface quality are often detriments in manufacturing glass and hard ceramics. The quality of the ground surface greatly influences the polishing process and the resulting finished product. Through extensive research and development, OptiPro Systems has introduced an ultrasonic assisted grinding technology, OptiSonic, which has numerous advantages over traditional grinding processes. OptiSonic utilizes a custom tool holder designed to produce oscillations in line with the rotating spindle. A newly developed software package called IntelliSonic is integral to this platform. IntelliSonic automatically characterizes the tool and continuously optimizes the output frequency for optimal cutting while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more accurate surface. Utilizing a wide variety of instruments, test have proven to show a reduction in tool wear and increase in surface quality while allowing processing speeds to be increased. OptiSonic has proven to be an enabling technology to overcome the difficulties seen in grinding of glass and hard optical ceramics. OptiSonic has demonstrated numerous advantages over the standard CNC grinding process. Advantages are evident in reduced tool wear, better surface quality, and reduced cycle times due to increased feed rates. These benefits can be seen over numerous applications within the precision optics industry.

  6. The AGS new fast extraction system for the g-2 experiment and RHIC injection

    SciTech Connect

    Tanaka, M.; Lee, Y.Y.

    1991-01-01

    The AGS requires a new fast extraction beam (NewFEB) system for the muon g-2 experiment and the Relativistic Heavy Ion Collider (RHIC). The proposed NewFEB system will consist of a new fast multi-pulsing kicker placed at straight section G10 and an ejector septum magnet at H10, together will local orbit bumps generated by powering backleg windings on the AGS main magnets. The new system is capable of performing single bunch multiple extraction as often as every 8 ms up to 12 times per AGS cycle, in addition to the standard single turn fast extraction. The conceptual design of the NewFEB system will be discussed. 3 refs., 3 figs., 1 tab.

  7. Study of Abnormal Vertical Emittance Growth in ATF Extraction Line

    SciTech Connect

    Alabau, M.; Faus-Golfe, A.; Alabau, M.; Bambade, P.; Brossard, J.; Le Meur, G.; Rimbault, C.; Touze, F.; Angal-Kalinin, D.; Jones, J.K.; Appleby, R.; Scarfe, A.; Kuroda, S.; White, G.R.; Woodley, M.; Zimmermann, F.; /CERN

    2011-11-04

    Since several years, the vertical beam emittance measured in the Extraction Line (EXT) of the Accelerator Test Facility (ATF) at KEK, that will transport the electron beam from the ATF Damping Ring (DR) to the future ATF2 Final Focus beam line, is significantly larger than the emittance measured in the DR itself, and there are indications that it grows rapidly with increasing beam intensity. This longstanding problem has motivated studies of possible sources of this anomalous emittance growth. One possible contribution is non-linear magnetic fields in the extraction region experimented by the beam while passing off-axis through magnets of the DR during the extraction process. In this paper, simulations of the emittance growth are presented and compared to observations. These simulations include the effects of predicted non-linear field errors in the shared DR magnets and orbit displacements from the reference orbit in the extraction region. Results of recent measurements using closed orbit bumps to probe the relation between the extraction trajectory and the anomalous emittance growth are also presented.

  8. 21 CFR 872.3165 - Precision attachment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Precision attachment. 872.3165 Section 872.3165...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3165 Precision attachment. (a) Identification. A precision attachment or preformed bar is a device made of austenitic alloys or alloys containing 75...

  9. Precision grinding process development for brittle materials

    SciTech Connect

    Blaedel, K L; Davis, P J; Piscotty, M A

    1999-04-01

    High performance, brittle materials are the materials of choice for many of today's engineering applications. This paper describes three separate precision grinding processes developed at Lawrence Liver-more National Laboratory to machine precision ceramic components. Included in the discussion of the precision processes is a variety of grinding wheel dressing, truing and profiling techniques.

  10. 21 CFR 872.3165 - Precision attachment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Precision attachment. 872.3165 Section 872.3165...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3165 Precision attachment. (a) Identification. A precision attachment or preformed bar is a device made of austenitic alloys or alloys containing 75...

  11. Precision Farming and Conservation Advances Agricultural Sustainability

    USDA-ARS?s Scientific Manuscript database

    To many, Precision Farming, more formally termed Precision Agriculture, seems like an oxymoron. Yet site-specific management makes sense to an exponentially growing number of farmers. So where is Precision Farming headed? The short answer is that it is being extended from a focus on crop productio...

  12. Precision of multi-frequency electronic apex locators.

    PubMed

    George, Roy

    2016-09-01

    Data sourcesCochrane Central Register of Controlled Trials, Medline, Embase and Scopus databases.Study selectionStudies that reported the precision of electronic apex locators (EALs) in locating the apical constriction (AC) in primary root canal treatment of human teeth compared with a histologic evaluation of the AC were considered.Data extraction and synthesisData were extracted and quality assessed independently by two reviewers.ResultsTen studies were included, reporting on 1105 EAL measurements. Seven studies were considered to be at high risk of bias and three at low risk. Four different EALs were evaluated; Root ZX (J Morita, Tokyo, Japan), Justy II (Hager & Werken GmbH & Co, Duisburg, Germany), Endy 5000 (Loser Co, Leverkusen, Germany) and Endox (Lysis Co, Milan, Italy). Three EALs, Root ZX, Justy II and Endy 5000 were more accurate than the Endox in determining the distance between the file tip and the apical constriction. Pulp status was only available for 194 (17.55%) of the measurements. The status of the pulp (vital or necrotic) had no significant effect on precision.ConclusionsThe precision of electronic working length measurement depends on the device used and the type of irrigation and is not influenced by the status of the pulp tissue.

  13. Precision Adjustable Liquid Regulator (ALR)

    NASA Astrophysics Data System (ADS)

    Meinhold, R.; Parker, M.

    2004-10-01

    A passive mechanical regulator has been developed for the control of fuel or oxidizer flow to a 450N class bipropellant engine for use on commercial and interplanetary spacecraft. There are several potential benefits to the propulsion system, depending on mission requirements and spacecraft design. This system design enables more precise control of main engine mixture ratio and inlet pressure, and simplifies the pressurization system by transferring the function of main engine flow rate control from the pressurization/propellant tank assemblies, to a single component, the ALR. This design can also reduce the thermal control requirements on the propellant tanks, avoid costly Qualification testing of biprop engines for missions with more stringent requirements, and reduce the overall propulsion system mass and power usage. In order to realize these benefits, the ALR must meet stringent design requirements. The main advantage of this regulator over other units available in the market is that it can regulate about its nominal set point to within +/-0.85%, and change its regulation set point in flight +/-4% about that nominal point. The set point change is handled actively via a stepper motor driven actuator, which converts rotary into linear motion to affect the spring preload acting on the regulator. Once adjusted to a particular set point, the actuator remains in its final position unpowered, and the regulator passively maintains outlet pressure. The very precise outlet regulation pressure is possible due to new technology developed by Moog, Inc. which reduces typical regulator mechanical hysteresis to near zero. The ALR requirements specified an outlet pressure set point range from 225 to 255 psi, and equivalent water flow rates required were in the 0.17 lb/sec range. The regulation output pressure is maintained at +/-2 psi about the set point from a P (delta or differential pressure) of 20 to over 100 psid. Maximum upstream system pressure was specified at 320 psi

  14. Precision measurements with atom interferometry

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Abend, Sven; Schlippert, Dennis; Ertmer, Wolfgang; Rasel, Ernst M.

    2017-04-01

    Interferometry with matter waves enables precise measurements of rotations, accelerations, and differential accelerations [1-5]. This is exploited for determining fundamental constants [2], in fundamental science as e.g. testing the universality of free fall [3], and is applied for gravimetry [4], and gravity gradiometry [2,5]. At the Institut für Quantenoptik in Hannover, different approaches are pursued. A large scale device is designed and currently being set up to investigate the gain in precision for gravimetry, gradiometry, and fundamental tests on large baselines [6]. For field applications, a compact and transportable device is being developed. Its key feature is an atom chip source providing a collimated high flux of atoms which is expected to mitigate systematic uncertainties [7,8]. The atom chip technology and miniaturization benefits from microgravity experiments in the drop tower in Bremen and sounding rocket experiments [8,9] which act as pathfinders for space borne operation [10]. This contribution will report about our recent results. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, and by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] P. Berg et al., Phys. Rev. Lett., 114, 063002, 2015; I. Dutta et al., Phys. Rev. Lett., 116, 183003, 2016. [2] J. B. Fixler et al., Science 315, 74 (2007); G. Rosi et al., Nature 510, 518, 2014. [3] D. Schlippert et al., Phys. Rev. Lett., 112, 203002, 2014. [4] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016. [5] J. M. McGuirk et al., Phys. Rev. A 65, 033608, 2002; P. Asenbaum et al., arXiv:1610.03832. [6] J. Hartwig et al., New J. Phys. 17, 035011, 2015. [7] H. Ahlers et al., Phys. Rev. Lett. 116, 173601

  15. Intermetallic compound formation and morphology evolution in the 95Pb5Sn flip-chip solder joint with Ti/Cu/Ni under bump metallization during reflow soldering

    NASA Astrophysics Data System (ADS)

    Wang, Kai-Zheng; Chen, Chih-Ming

    2005-12-01

    Intermetallic compound formation and morphology evolution in the 95Pb5Sn flip-chip solder joint with the Ti/Cu/Ni under bump metallization (UBM) during 350°C reflow for durations ranging from 50 sec to 1440 min were investigated. A thin intermetallic layer of only 0.4 µm thickness was formed at the 95Pb5Sn/UBM interface after reflow for 5 min. When the reflow was extended to 20 min, the intermetallic layer grew thicker and the phase identification revealed the intermetallic layer comprised two phases, (Ni,Cu)3Sn2 and (Ni,Cu)3Sn4. The detection of the Cu content in the intermetallic compounds indicated that the Cu atoms had diffused through the Ni layer and took part in the intermetallic compound formation. With increasing reflow time, the (Ni,Cu)3Sn4 phase grew at a faster rate than that of the (Ni,Cu)3Sn2 phase. Meanwhile, irregular growth of the (Ni,Cu)3Sn4 phase was observed and voids formed at the (Ni,Cu)3Sn2/Ni interface. After reflow for 60 min, the (Ni,Cu)3Sn2 phase disappeared and the (Ni,Cu)3Sn4 phase spalled off the NI layer in the form of a continuous layer. The gap between the (Ni,Cu)3Sn4 layer and the Ni layer was filled with lead. A possible mechanism for the growth, disappearance, and spalling of the intermetallic compounds at the 95Pb5Sn/UBM interface was proposed.

  16. Transonic Stability and Control Investigation of a 1/80-Scale Model of the Consolidated Vultee Skate 9 Seaplane, TED No. NACA DE 345: Transonic-Bump Method

    NASA Technical Reports Server (NTRS)

    Riebe, John M.; MacLeod, Richard G.

    1950-01-01

    An investigation of the longitudinal stability and of the all-movable horizontal tail and aileron control of a 1/80-scale reflection-plane model of the Consolidated Vultee Skate 9 seaplane has been made through a Mach number range of 0.6 to 1.16 on the transonic bump of the Langley high-speed 7- by 10-foot tunnel. At moderate lift coefficients (0.4 to 0.8) and below a Mach number of 1.0 the model was statically unstable longitudinally. The static longitudinal stability of the model at low lift coefficients increased with Mach number corresponding to a shift in aerodynamic center from 37 percent mean aerodynamic chord at a Mach number of 0.60 to 64 percent at a Mach number of 1.10. Estimates indicate that the tail deflection angle required for steady flight and for accelerated maneuvers of the Skate 9 airplane would probably not vary greatly with Mach number at sea level, but for accelerated maneuvers at altitude the tail deflection angle would probably vary erratically with Mach number. The variation of rolling-moment coefficient with aileron deflection angle was approximately linear, agreed well with theory, and held for the range of aileron deflections tested (-17.1 deg to 16.6 deg). At low lift coefficients the drag rise occurred at Mach numbers of 0.95 and 0.90 for the wing alone and the complete model, respectively. The effects of the canopy on the model were small. For the ranges investigated, angle-of-attack and Mach number changes caused no large pressure drops in the jet-engine duct.

  17. In Vitro and In Vivo Effects of the Bumped Kinase Inhibitor 1294 in the Related Cyst-Forming Apicomplexans Toxoplasma gondii and Neospora caninum

    PubMed Central

    Winzer, Pablo; Müller, Joachim; Aguado-Martínez, Adriana; Rahman, Mahbubur; Balmer, Vreni; Manser, Vera; Ortega-Mora, Luis Miguel; Ojo, Kayode K.; Fan, Erkang; Maly, Dustin J.; Van Voorhis, Wesley C.

    2015-01-01

    We report on the in vitro effects of the bumped kinase inhibitor 1294 (BKI-1294) in cultures of virulent Neospora caninum isolates Nc-Liverpool (Nc-Liv) and Nc-Spain7 and in two strains of Toxoplasma gondii (RH and ME49), all grown in human foreskin fibroblasts. In these parasites, BKI-1294 acted with 50% inhibitory concentrations (IC50s) ranging from 20 nM (T. gondii RH) to 360 nM (N. caninum Nc-Liv), and exposure of intracellular stages to 1294 led to the nondisjunction of newly formed tachyzoites, resulting in the formation of multinucleated complexes similar to complexes previously observed in BKI-1294-treated N. caninum beta-galactosidase-expressing parasites. However, such complexes were not seen in a transgenic T. gondii strain that expressed CDPK1 harboring a mutation (G to M) in the gatekeeper residue. In T. gondii ME49 and N. caninum Nc-Liv, exposure of cultures to BKI-1294 resulted in the elevated expression of mRNA coding for the bradyzoite marker BAG1. Unlike in bradyzoites, SAG1 expression was not repressed. Immunofluorescence also showed that these multinucleated complexes expressed SAG1 and BAG1 and the monoclonal antibody CC2, which binds to a yet unidentified bradyzoite antigen, also exhibited increased labeling. In a pregnant mouse model, BKI-1294 efficiently inhibited vertical transmission in BALB/c mice experimentally infected with one of the two virulent isolates Nc-Liv or Nc-Spain7, demonstrating proof of concept that this compound protected offspring from vertical transmission and disease. The observed deregulated antigen expression effect may enhance the immune response during BKI-1294 therapy and will be the subject of future studies. PMID:26248379

  18. Development of Large Current High Precision Pulse Power Supply

    NASA Astrophysics Data System (ADS)

    Takayanagi, Tomohiro; Koseki, Shoichiro; Kubo, Hiroshi; Katoh, Shuji; Ogawa, Shinichi

    JAEA and KEK are jointly constructing a high intensity proton accelerator project J-PARC. Its main accelerator is 3GeV synchrotron. Its injection bump magnets, especially horizontal paint bump magnets, are excited by large pulse currents. Their rated currents are over 10kA and pulse widths are about 1ms. Tracking errors are required to be less than 1%. Multiple connected two-quadrant IGBT choppers are adopted for their power supplies. Their output currents are controlled by feedback control with minor loop voltage control (m-AVR). When output current of a chopper intermits at small current, its output voltage rises up and current control becomes difficult. In this paper response of m-AVR and output voltage characteristics at current intermittent region are studied and an improved control scheme is proposed. The performance is confirmed by a test.

  19. Ultra-precision positioning assembly

    DOEpatents

    Montesanti, Richard C.; Locke, Stanley F.; Thompson, Samuel L.

    2002-01-01

    An apparatus and method is disclosed for ultra-precision positioning. A slide base provides a foundational support. A slide plate moves with respect to the slide base along a first geometric axis. Either a ball-screw or a piezoelectric actuator working separate or in conjunction displaces the slide plate with respect to the slide base along the first geometric axis. A linking device directs a primary force vector into a center-line of the ball-screw. The linking device consists of a first link which directs a first portion of the primary force vector to an apex point, located along the center-line of the ball-screw, and a second link for directing a second portion of the primary force vector to the apex point. A set of rails, oriented substantially parallel to the center-line of the ball-screw, direct movement of the slide plate with respect to the slide base along the first geometric axis and are positioned such that the apex point falls within a geometric plane formed by the rails. The slide base, the slide plate, the ball-screw, and the linking device together form a slide assembly. Multiple slide assemblies can be distributed about a platform. In such a configuration, the platform may be raised and lowered, or tipped and tilted by jointly or independently displacing the slide plates.

  20. PRECISION TIME-DELAY GENERATOR

    DOEpatents

    Carr, B.J.; Peckham, V.D.

    1959-06-16

    A precision time-delay generator circuit with low jitter is described. The first thyratron has a series resonant circuit and a diode which is connected to the second thyratron. The first thyratron is triggered at the begin-ning of a time delay and a capacitor is discharged through the first thyratron and the diode, thereby, triggering the second thyratron. (T.R.H.) l6l9O The instrument described can measure pressures between sea level and 300,000 ft. The pressure- sensing transducer of the instrument is a small cylindrical tube with a thin foil of titanium-tritium fastened around the inside of the tube. Output is a digital signal which can be used for storage or telemetering more conveniently than an analog signal. (W.D.M.) l6l9l An experimental study was made on rolling contacts in the temperature range of 550 to 1000 deg F. Variables such as material composition, hardness, and operating conditions were investigated in a rolling test stand. Ball bearing tests were run to determine the effect of design parameters, bearing materials, lubricants, and operating conditions. (auth)

  1. Control of precision pointing system

    NASA Astrophysics Data System (ADS)

    Gu, Zheng

    Distributed-parameter modeling of tube with moving mass using Magnetic Compressional Damping Treatment (MCDT) is developed. Hamilton's principle is utilized to develop the model and boundary condition of a tube with moving mass using MCDT. Based on the electromagnetic theory, the relation between the generated magnet force of the actuator (MCDT) and the control current is determined. A stable control strategy is developed to damp out the vibration of the tube with moving mass using MCDT system. The fundamental characteristics of an active and a passive version of the Magnetic Compressional Damping Treatment (MCDT) are investigated by the finite element method. The damping characteristics of tube/MCDT system are modeled by Golla-Hughes-McTavish (GHM) method in order to predict the tube response in the time domain. The numerical results are verified through experimentation using a cantilevered tube treated with MCDT at the free end. The tube vibration due to an internally moving load is controlled by the MCDT using a deflection feedback controller. Close agreement is obtained between theory and experiments. The effectiveness of the MCDT in attenuating structural vibration of the tube has also been clearly demonstrated in the time and frequency domains. The developed theoretical and experimental techniques present invaluable tools for designing and predicting the performance of precision pointing tubes different damping treatments when subjected to moving loads.

  2. High precision redundant robotic manipulator

    DOEpatents

    Young, Kar-Keung David

    1998-01-01

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.

  3. High precision redundant robotic manipulator

    DOEpatents

    Young, K.K.D.

    1998-09-22

    A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.

  4. Scoring of precision spur gears

    SciTech Connect

    Budinski, K.G. )

    1994-09-01

    A group of manufacturing machines employed precision spur gears as the timing mechanism for machine operations. These machines had worked successfully for about ten years with little or no problems with gear wear or deterioration. When new machines were brought on line with recently made gears there were immediate problems with gear tooth scoring. A laboratory study was conducted to determine if metallurgical conditions were related to the gear scoring. Recent gears were made from a modification of the alloy used in early gears. The new alloy has been modified to make it more resistant to softening in coating operations. Reciprocating wear tests and galling tests were conducted to compare the tribological characteristics of the old and new gear steels. It was determined that the threshold galling stress of the gear steels was strongly dependent on the hardness. The reciprocating wear tests indicated that the wear resistance was affected by the volume fraction of hard phases in the steels. The recommended short-term solution was to alter the tempering procedure for the steel to keep Rockwell C hardness above 60; the long-term solution was to change the gear material and lubrication.

  5. Precision of circular systematic sampling.

    PubMed

    Cruz-Orive, L M; Gual-Arnau, X

    2002-09-01

    In design stereology, many estimators require isotropic orientation of a test probe relative to the object in order to attain unbiasedness. In such cases, systematic sampling of orientations becomes imperative on grounds of efficiency and practical applicability. For instance, the planar nucleator and the vertical rotator imply systematic sampling on the circle, whereas the Buffon-Steinhaus method to estimate curve length in the plane, or the vertical designs to estimate surface area and curve length, imply systematic sampling on the semicircle. This leads to the need for predicting the precision of systematic sampling on the circle and the semicircle from a single sample. There are two main prediction approaches, namely the classical one of G. Matheron for non-necessarily periodic measurement functions, and a recent approach based on a global symmetric model of the covariogram, more specific for periodic measurement functions. The latter approach seems at least as satisfactory as the former for small sample sizes, and it is developed here incorporating local errors. Detailed examples illustrating common stereological tools are included.

  6. The Age of Precision Cosmology

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  7. Precise quantification of nanoparticle internalization.

    PubMed

    Gottstein, Claudia; Wu, Guohui; Wong, Benjamin J; Zasadzinski, Joseph Anthony

    2013-06-25

    Nanoparticles have opened new exciting avenues for both diagnostic and therapeutic applications in human disease, and targeted nanoparticles are increasingly used as specific drug delivery vehicles. The precise quantification of nanoparticle internalization is of importance to measure the impact of physical and chemical properties on the uptake of nanoparticles into target cells or into cells responsible for rapid clearance. Internalization of nanoparticles has been measured by various techniques, but comparability of data between different laboratories is impeded by lack of a generally accepted standardized assay. Furthermore, the distinction between associated and internalized particles has been a challenge for many years, although this distinction is critical for most research questions. Previously used methods to verify intracellular location are typically not quantitative and do not lend themselves to high-throughput analysis. Here, we developed a mathematical model which integrates the data from high-throughput flow cytometry measurements with data from quantitative confocal microscopy. The generic method described here will be a useful tool in biomedical nanotechnology studies. The method was then applied to measure the impact of surface coatings of vesosomes on their internalization by cells of the reticuloendothelial system (RES). RES cells are responsible for rapid clearance of nanoparticles, and the resulting fast blood clearance is one of the major challenges in biomedical applications of nanoparticles. Coating of vesosomes with long chain polyethylene glycol showed a trend for lower internalization by RES cells.

  8. EXPRES: the EXtreme PREcision Spectrograph at the Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Fischer, Debra; Jurgenson, Colby; McCracken, Tyler; Sawyer, David; Blackman, Ryan; Szymkowiak, Andrew E.

    2017-01-01

    In 2017, we will commission EXPRES at the DCT to carry out a high precision radial velocity planet search. The instrument has a resolution of R=150,000 and spans a wavelength range from 390 - 680 nm. There are several features designed to ensure high fidelity spectra: a well scrambled fiber coupling, vibration isolation, a vacuum enclosure to maintain temperature stability to better than 1 mK and pressure stability better than 1 mTorr. The spectrometer has a unique flat-fielding system and a wavelength-dependent exposure meter. The laser frequency comb provides wavelength precision better than 5 cm/s and the overall instrumental error budget is 17 cm/s for a single observation. The fully characterized CCD detector has 9-micron pixels and a 10K by 10K format. The instrument will be commissioned for facility use with a fully automated extraction and Doppler analysis pipeline.This instrument and our analytial techniques aim to push the experiemental frontier on extreme Doppler precision toward 10 cm/s. Progress on RV precision is critical for measuring masses of exoplanets so that we can derive densities for small transiting planets and interpret the spectra of exoplanet atmospheres. We will carry out a survey of 50 bright stars in the first year after commissioning EXPRES.

  9. Cleanliness of small precision swabs

    SciTech Connect

    Harding, W.B.

    1992-02-01

    Small swabs are often dampened with a solvent when used to clean surfaces. Cotton swabs of the type sold in drug stores contain stearic acid, probably used as a lubricant during manufacture of the swab. Such swabs, dampened with a solvent and used to clean a surface, will leave a film of stearic acid on the surface. Several kinds of swabs are sold for industrial use, and some are described as suitable for use in clean room manufacturing. Nine different swabs, some cotton and some urethane foam, were extracted with isopropyl alcohol, CFC 113 (Freon TF or Genesolv D), or mixture of CFC 113 and methyl alcohol. After evaporation of the solvent, from 0.5 to 3.8 mg of an oil or grease remained. For critical applications, swabs should be washed with solvent before use.

  10. Demonstration of a Fast, Precise Propane Measurement Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zahniser, M. S.; Roscioli, J. R.; Nelson, D. D.; Herndon, S. C.

    2016-12-01

    Propane is one of the primary components of emissions from natural gas extraction and processing activities. In addition to being an air pollutant, its ratio to other hydrocarbons such as methane and ethane can serve as a "fingerprint" of a particular facility or process, aiding in identifying emission sources. Quantifying propane has typically required laboratory analysis of flask samples, resulting in low temporal resolution and making plume-based measurements infeasible. Here we demonstrate fast (1-second), high precision (<300 ppt) measurements of propane using high resolution mid-infrared spectroscopy at 2967 wavenumbers. In addition, we explore the impact of nearby water and ethane absorption lines on the accuracy and precision of the propane measurement. Finally, we discuss development of a dual-laser instrument capable of simultaneous measurements of methane, ethane, and propane (the C1-C3 compounds), all within a small spatial package that can be easily deployed aboard a mobile platform.

  11. High Precision Measurement of the ^19Ne Lifetime

    NASA Astrophysics Data System (ADS)

    Broussard, Leah; Back, H. O.; Boswell, M. S.; Crowell, A. S.; Howell, C. R.; Kidd, M. F.; Pattie, R. W., Jr.; Young, A. R.; Dendooven, P. G.; Giri, G. S.; van der Hoek, D. J.; Jungmann, K.; Kruithof, W. L.; Onderwater, C. J. G.; Santra, B.; Shidling, P. D.; Sohani, M.; Versolota, O. O.; Willmann, L.; Wilschut, H. W.

    2009-10-01

    Recently, a rigorous review of the T=12 mirror transitions has identified several systems which can contribute to high precision tests exploring deviations from the Standard Model's description of the electroweak interaction. Arguably, one of the best candidates is the &+circ; decay of ^19Ne to ^19F. In this system, the main contribution to the uncertainty of extracted Standard Model parameters is due to the measured value of the lifetime of the decay. In March 2009, a high precision measurement of the lifetime of ^19Ne was made by a collaboration between the Triangle Universities Nuclear Laboratory (TUNL) and the Kernfysisch Versneller Instituut (KVI) at the Trapped Radioactive Isotopes: Microlaboratories for Fundamental Physics (Triμp) facility. An overview of the experiment and preliminary results will be presented.

  12. Report of the Working Group on precision measurements

    SciTech Connect

    Raymond L. Brock et al.

    2001-10-03

    Precision measurements of electroweak quantities are carried out to test the Standard Model (SM). In particular, measurements of the top quark mass, m{sub top}, when combined with precise measurements of the W mass, M{sub W}, and the weak mixing angle, sin{sup 2} {bar {theta}}{sub W}, make it possible to derive indirect constraints on the Higgs boson mass, M{sub H}, via top quark and Higgs boson electroweak radiative corrections to M{sub W}. Comparison of these constraints on M{sub H} with the mass obtained from direct observation of the Higgs boson in future collider experiments will be an important test of the SM. In this report, the prospects for measuring the W parameters (mass and width) and the weak mixing angle in Run II are discussed, and a program for extracting the probability distribution function of M{sub H} is described.

  13. Research on high-precision hole measurement based on robot vision method

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Da-peng; Qin, Ming-cui; Li, Zong-yan; Chang, Yu-lan; Xi, Jiang-tao

    2014-09-01

    A high-precision vision detection and measurement system using mobile robot is established for the industry field detection of motorcycle frame hole and its diameter measurement. The robot path planning method is researched, and the non-contact measurement method with high precision based on visual digital image edge extraction and hole spatial circle fitting is presented. The Canny operator is used to extract the edge of captured image, the Lagrange interpolation algorithm is utilized to determine the missing image edge points and calculate the centroid, and the least squares fitting method is adopted to fit the image edge points. Experimental results show that the system can be used for the high-precision real-time measurement of hole on motorcycle frame. The absolute standard deviation of the proposed method is 0.026 7 mm. The proposed method can not only improve the measurement speed and precision, but also reduce the measurement error.

  14. Precision probes of QCD at high energies

    NASA Astrophysics Data System (ADS)

    Alioli, Simone; Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.

    2017-07-01

    New physics, that is too heavy to be produced directly, can leave measurable imprints on the tails of kinematic distributions at the LHC. We use energetic QCD processes to perform novel measurements of the Standard Model (SM) Effective Field Theory. We show that the dijet invariant mass spectrum, and the inclusive jet transverse momentum spectrum, are sensitive to a dimension 6 operator that modifies the gluon propagator at high energies. The dominant effect is constructive or destructive interference with SM jet production. We compare differential next-to-leading order predictions from POWHEG to public 7 TeV jet data, including scale, PDF, and experimental uncertainties and their respective correlations. We constrain a New Physics (NP) scale of 3.5 TeV with current data. We project the reach of future 13 and 100 TeV measurements, which we estimate to be sensitive to NP scales of 8 and 60 TeV, respectively. As an application, we apply our bounds to constrain heavy vector octet colorons that couple to the QCD current. We project that effective operators will surpass bump hunts, in terms of coloron mass reach, even for sequential couplings.

  15. Precision probes of QCD at high energies

    DOE PAGES

    Alioli, Simone; Farina, Marco; Pappadopulo, Duccio; ...

    2017-07-20

    New physics, that is too heavy to be produced directly, can leave measurable imprints on the tails of kinematic distributions at the LHC.We use energetic QCD processes to perform novel measurements of the Standard Model (SM) Effective Field Theory. We show that the dijet invariant mass spectrum, and the inclusive jet transverse momentum spectrum, are sensitive to a dimension 6 operator that modifies the gluon propagator at high energies. The dominant effect is constructive or destructive interference with SM jet production. Here, we compare differential next-to-leading order predictions from POWHEG to public 7TeV jet data, including scale, PDF, and experimentalmore » uncertainties and their respective correlations. Furthermore, we constrain a New Physics (NP) scale of 3.5TeV with current data. We project the reach of future 13 and 100TeV measurements, which we estimate to be sensitive to NP scales of 8 and 60TeV, respectively. As an application, we apply our bounds to constrain heavy vector octet colorons that couple to the QCD current. We conclude that effective operators will surpass bump hunts, in terms of coloron mass reach, even for sequential couplings.« less

  16. High precision anatomy for MEG.

    PubMed

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bradbury, David; Bestmann, Sven; Barnes, Gareth

    2014-02-01

    Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1mm. Estimates of relative co-registration error were <1.5mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG. © 2013. Published by Elsevier Inc. All rights reserved.

  17. Higgs precision (Higgcision) era begins

    NASA Astrophysics Data System (ADS)

    Cheung, Kingman; Lee, Jae Sik; Tseng, Po-Yan

    2013-05-01

    After the discovery of the Higgs boson at the LHC, it is natural to start the research program on the precision study of the Higgs-boson couplings to various standard model (SM) particles. We provide a generic framework for the deviations of the couplings from their SM values by introducing a number of parameters. We show that a large number of models beyond the SM can be covered, including two-Higgs-doublet models, supersymmetric models, little-Higgs models, extended Higgs sectors with singlets, and fourth generation models. We perform global fits to the most updated data from CMS, ATLAS, and Tevatron under various initial conditions of the parameter set. In particular, we have made explicit comparisons between the fitting results before and after the Moriond 2013 meetings. Highlights of the results include: (i) the nonstandard decay branching ratio of the Higgs boson is less than 22%; (ii) the most efficient way to achieve the best fit for the data before the Moriond update is to introduce additional particle contributions to the triangular-loop functions of Hγγ and Hgg vertices; (iii) the 1σ allowed range of the relative coupling of HVV is 1.01_{-0.14}^{+0.13 } , which means that the electroweak-symmetry breaking contribution from the observed Higgs boson leaves only a small room for other Higgs bosons; (iv) the current data do not rule out pseudoscalar couplings nor pseudoscalar contributions to the Hγγ and Hgg vertices; and (v) the SM Higgs boson provides the best fit to all the current Higgs data.

  18. Future paradigms for precision oncology.

    PubMed

    Klement, Giannoula Lakka; Arkun, Knarik; Valik, Dalibor; Roffidal, Tina; Hashemi, Ali; Klement, Christos; Carmassi, Paolo; Rietman, Edward; Slaby, Ondrej; Mazanek, Pavel; Mudry, Peter; Kovacs, Gabor; Kiss, Csongor; Norga, Koen; Konstantinov, Dobrin; André, Nicolas; Slavc, Irene; van Den Berg, Henk; Kolenova, Alexandra; Kren, Leos; Tuma, Jiri; Skotakova, Jarmila; Sterba, Jaroslav

    2016-07-19

    Research has exposed cancer to be a heterogeneous disease with a high degree of inter-tumoral and intra-tumoral variability. Individual tumors have unique profiles, and these molecular signatures make the use of traditional histology-based treatments problematic. The conventional diagnostic categories, while necessary for care, thwart the use of molecular information for treatment as molecular characteristics cross tissue types.This is compounded by the struggle to keep abreast the scientific advances made in all fields of science, and by the enormous challenge to organize, cross-reference, and apply molecular data for patient benefit. In order to supplement the site-specific, histology-driven diagnosis with genomic, proteomic and metabolomics information, a paradigm shift in diagnosis and treatment of patients is required.While most physicians are open and keen to use the emerging data for therapy, even those versed in molecular therapeutics are overwhelmed with the amount of available data. It is not surprising that even though The Human Genome Project was completed thirteen years ago, our patients have not benefited from the information. Physicians cannot, and should not be asked to process the gigabytes of genomic and proteomic information on their own in order to provide patients with safe therapies. The following consensus summary identifies the needed for practice changes, proposes potential solutions to the present crisis of informational overload, suggests ways of providing physicians with the tools necessary for interpreting patient specific molecular profiles, and facilitates the implementation of quantitative precision medicine. It also provides two case studies where this approach has been used.

  19. Future paradigms for precision oncology

    PubMed Central

    Klement, Giannoula Lakka; Arkun, Knarik; Valik, Dalibor; Roffidal, Tina; Hashemi, Ali; Klement, Christos; Carmassi, Paolo; Rietman, Edward; Slaby, Ondrej; Mazanek, Pavel; Mudry, Peter; Kovacs, Gabor; Kiss, Csongor; Norga, Koen; Konstantinov, Dobrin; André, Nicolas; Slavc, Irene; van Den Berg, Henk; Kolenova, Alexandra; Kren, Leos; Tuma, Jiri; Skotakova, Jarmila; Sterba, Jaroslav

    2016-01-01

    Research has exposed cancer to be a heterogeneous disease with a high degree of inter-tumoral and intra-tumoral variability. Individual tumors have unique profiles, and these molecular signatures make the use of traditional histology-based treatments problematic. The conventional diagnostic categories, while necessary for care, thwart the use of molecular information for treatment as molecular characteristics cross tissue types. This is compounded by the struggle to keep abreast the scientific advances made in all fields of science, and by the enormous challenge to organize, cross-reference, and apply molecular data for patient benefit. In order to supplement the site-specific, histology-driven diagnosis with genomic, proteomic and metabolomics information, a paradigm shift in diagnosis and treatment of patients is required. While most physicians are open and keen to use the emerging data for therapy, even those versed in molecular therapeutics are overwhelmed with the amount of available data. It is not surprising that even though The Human Genome Project was completed thirteen years ago, our patients have not benefited from the information. Physicians cannot, and should not be asked to process the gigabytes of genomic and proteomic information on their own in order to provide patients with safe therapies. The following consensus summary identifies the needed for practice changes, proposes potential solutions to the present crisis of informational overload, suggests ways of providing physicians with the tools necessary for interpreting patient specific molecular profiles, and facilitates the implementation of quantitative precision medicine. It also provides two case studies where this approach has been used. PMID:27223079

  20. Precision laser automatic tracking system.

    PubMed

    Lucy, R F; Peters, C J; McGann, E J; Lang, K T

    1966-04-01

    A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.

  1. Precise digital demodulation for fiber optic interferometer sensors

    NASA Astrophysics Data System (ADS)

    Medvedev, Andrei; Berezhnoi, Andrei; Kudryashov, Aleksei; Liokumovich, Leonid

    2016-03-01

    Different methods are used in the interferometer sensors for target signal extraction. Digital technologies provide new opportunities for precise signal detection. We have developed the principle of signal demodulation using an additional harmonic phase modulation and digital signal processing. The principle allows implementation of processing algorithms using different ratios between modulation and discretization frequencies. The expressions allowing calculation of the phase difference using the inverse trigonometric functions were derived. The method was realized in LabVIEW programming environment and was demonstrated for various signal shapes.

  2. Precision Neutron Decay Studies with the Nab and UCNB Experiments

    NASA Astrophysics Data System (ADS)

    Sprow, Aaron; Nab Collaboration; UCNB Collaboration

    2016-03-01

    Precision neutron decay correlation experiments are a sensitive means to study the standard model and probe for beyond the standard model physics. Nab and UCNB are two such experiments that will measure the neutrino-electron correlation term, a, and the neutrino asymmetry, B, respectively. Thick, highly-segmented silicon detectors will be used to directly measure the proton and electron from each decay event in coincidence, leading to the extraction of these angular correlations. Preliminary work to understand the systematic uncertainties associated with these experiments, as well as the early analysis of data taken from the 2015-2016 beam time at Los Alamos National Laboratory will be presented.

  3. Shuttle orbit IMU alignment. Single-precision computation error

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.

    1980-01-01

    The source of computational error in the inertial measurement unit (IMU) onorbit alignment software was investigated. Simulation runs were made on the IBM 360/70 computer with the IMU orbit alignment software coded in hal/s. The results indicate that for small IMU misalignment angles (less than 600 arc seconds), single precision computations in combination with the arc cosine method of eigen rotation angle extraction introduces an additional misalignment error of up to 230 arc seconds per axis. Use of the arc sine method, however, produced negligible misalignment error. As a result of this study, the arc sine method was recommended for use in the IMU onorbit alignment software.

  4. [Progress in precision medicine: a scientific perspective].

    PubMed

    Wang, B; Li, L M

    2017-01-10

    Precision medicine is a new strategy for disease prevention and treatment by taking into account differences in genetics, environment and lifestyles among individuals and making precise diseases classification and diagnosis, which can provide patients with personalized, targeted prevention and treatment. Large-scale population cohort studies are fundamental for precision medicine research, and could produce best evidence for precision medicine practices. Current criticisms on precision medicine mainly focus on the very small proportion of benefited patients, the neglect of social determinants for health, and the possible waste of limited medical resources. In spite of this, precision medicine is still a most hopeful research area, and would become a health care practice model in the future.

  5. High precision modeling for fundamental physics experiments

    NASA Astrophysics Data System (ADS)

    Rievers, Benny; Nesemann, Leo; Costea, Adrian; Andres, Michael; Stephan, Ernst P.; Laemmerzahl, Claus

    With growing experimental accuracies and high precision requirements for fundamental physics space missions the needs for accurate numerical modeling techniques are increasing. Motivated by the challenge of length stability in cavities and optical resonators we propose the develop-ment of a high precision modeling tool for the simulation of thermomechanical effects up to a numerical precision of 10-20 . Exemplary calculations for simplified test cases demonstrate the general feasibility of high precision calculations and point out the high complexity of the task. A tool for high precision analysis of complex geometries will have to use new data types, advanced FE solver routines and implement new methods for the evaluation of numerical precision.

  6. Precision Medicine, Cardiovascular Disease and Hunting Elephants.

    PubMed

    Joyner, Michael J

    2016-01-01

    Precision medicine postulates improved prediction, prevention, diagnosis and treatment of disease based on patient specific factors especially DNA sequence (i.e., gene) variants. Ideas related to precision medicine stem from the much anticipated "genetic revolution in medicine" arising seamlessly from the human genome project (HGP). In this essay I deconstruct the concept of precision medicine and raise questions about the validity of the paradigm in general and its application to cardiovascular disease. Thus far precision medicine has underperformed based on the vision promulgated by enthusiasts. While niche successes for precision medicine are likely, the promises of broad based transformation should be viewed with skepticism. Open discussion and debate related to precision medicine are urgently needed to avoid misapplication of resources, hype, iatrogenic interventions, and distraction from established approaches with ongoing utility. Failure to engage in such debate will lead to negative unintended consequences from a revolution that might never come.

  7. High precision measurement of the proton charge radius: The PRad experiment

    SciTech Connect

    Meziane, Mehdi

    2013-11-01

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 {+-} 0.0007 fm was extracted which is 7{sigma} smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these "electronic" determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup -4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.

  8. High precision measurement of the proton charge radius: The PRad experiment

    SciTech Connect

    Meziane, Mehdi; Collaboration: PRad Collaboration

    2013-11-07

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 ± 0.0007 fm was extracted which is 7σ smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these 'electronic' determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup −4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.

  9. Limits of precision measurements based on interferometers

    NASA Astrophysics Data System (ADS)

    Jäger, G.

    2008-12-01

    Laser interferometric methods are employed in precision measurements and positioning tasks, since they provide the means for attaining high metric resolution and precision, even over large measurement ranges. The most important fundamental principles of heterodyne and homodyne interferometers are discussed. A metrological analysis makes it possible to describe the advantages and limits of laser interferometry. The design and functionality of fibre-coupled miniature interferometers are described. The broad applicability of interferometers to microtechnology, nanotechnology and precision mechatronics is explained.

  10. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  11. Toward precision medicine in neurological diseases.

    PubMed

    Tan, Lin; Jiang, Teng; Tan, Lan; Yu, Jin-Tai

    2016-03-01

    Technological development has paved the way for accelerated genomic discovery and is bringing precision medicine into view. The goal of precision medicine is to deliver optimally targeted and timed interventions tailored to an individual's molecular drivers of disease. Neurological diseases are promisingly suited models for precision medicine because of the rapidly expanding genetic knowledge base, phenotypic classification, the development of biomarkers and the potential modifying treatments. Moving forward, it is crucial that through these integrated research platforms to provide analysis both for accurate personal genome analysis and gene and drug discovery. Here we describe our vision of how precision medicine can bring greater clarity to the clinical and biological complexity of neurological diseases.

  12. MERLIN-2.1 double precision

    NASA Astrophysics Data System (ADS)

    Papageorgiou, D. G.; Lagaris, I. E.

    1990-02-01

    MERLIN-2.1 is an adaptation of the MERLIN-2.0 package, mainly designed to run on computers using 32-bit floating point arithmetic. The standard Merlin-2.0 on such machines, achieves a precision of 7 significant digits at most. This is insufficient since in many real problems a higher precision is required. MERLIN-2.1 treats this inadequacy using double precision operations, enhancing so the precision up to about 14 significant digits, in the standard user-friendly Merlin environment.

  13. Toward precise pulmonary nodule descriptors for nodule type classification.

    PubMed

    Farag, Amal; Elhabian, Shireen; Graham, James; Farag, Aly; Falk, Robert

    2010-01-01

    A framework for nodule feature-based extraction is presented to classify lung nodules in low-dose CT slices (LDCT) into four categories: juxta, well-circumscribed, vascularized and pleural-tail, based on the extracted information. The Scale Invariant Feature Transform (SIFT) and an adaptation to Daugman's Iris Recognition algorithm are used for analysis. The SIFT descriptor results are projected to lower-dimensional subspaces using PCA and LDA. Complex Gabor wavelet nodule response obtained from an adopted Daugman Iris Recognition algorithm revealed improvements from the original Daugman binary iris code. This showed that binarized nodule responses (codes) are inadequate for classification since nodules lack texture concentration as seen in the iris, while the SIFT algorithm projected using PCA showed robustness and precision in classification.

  14. Say No to Speed Bumps!

    ERIC Educational Resources Information Center

    Brannon, Sian

    2010-01-01

    No matter how cutting edge (and nicely funded) one's library is, there is always something cooler and more efficient on the horizon. Granted, not all new technology may be necessary in the library. But chances are one is going to want to get something--RFID (radio frequency identification), text reference, downloadable content, gaming,…

  15. Say No to Speed Bumps!

    ERIC Educational Resources Information Center

    Brannon, Sian

    2010-01-01

    No matter how cutting edge (and nicely funded) one's library is, there is always something cooler and more efficient on the horizon. Granted, not all new technology may be necessary in the library. But chances are one is going to want to get something--RFID (radio frequency identification), text reference, downloadable content, gaming,…

  16. MEMS Extraction

    DTIC Science & Technology

    1999-05-03

    5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Carnegie Mellon University,Department of Electrical and...aspects of the work . I would like to thank Mr. Sitaraman Iyer and Ms. Qi Jing who helped by providing necessary models for the lumped parameter simulator...extraction of functional elements such as springs, and electromechanical comb sensors and actuators. Comb drives are extracted using similarity in shape

  17. Fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  18. Ultra-precision processes for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, William R.

    1991-12-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  19. The new field of 'precision psychiatry'.

    PubMed

    Fernandes, Brisa S; Williams, Leanne M; Steiner, Johann; Leboyer, Marion; Carvalho, André F; Berk, Michael

    2017-04-13

    Precision medicine is a new and important topic in psychiatry. Psychiatry has not yet benefited from the advanced diagnostic and therapeutic technologies that form an integral part of other clinical specialties. Thus, the vision of precision medicine as applied to psychiatry - 'precision psychiatry' - promises to be even more transformative than in other fields of medicine, which have already lessened the translational gap. Herein, we describe 'precision psychiatry' and how its several implications promise to transform the psychiatric landscape. We pay particular attention to biomarkers and to how the development of new technologies now makes their discovery possible and timely. The adoption of the term 'precision psychiatry' will help propel the field, since the current term 'precision medicine', as applied to psychiatry, is impractical and does not appropriately distinguish the field. Naming the field 'precision psychiatry' will help establish a stronger, unique identity to what promises to be the most important area in psychiatry in years to come. In summary, we provide a wide-angle lens overview of what this new field is, suggest how to propel the field forward, and provide a vision of the near future, with 'precision psychiatry' representing a paradigm shift that promises to change the landscape of how psychiatry is currently conceived.

  20. Ultra-precision processes for optics manufacturing

    NASA Technical Reports Server (NTRS)

    Martin, William R.

    1991-01-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.