Beam tuning and bunch length measurement in the bunch compression operation at the cERL
NASA Astrophysics Data System (ADS)
Honda, Y.; Shimada, M.; Miyajima, T.; Hotei, T.; Nakamura, N.; Kato, R.; Obina, T.; Takai, R.; Harada, K.; Ueda, A.
2017-12-01
Realization of a short bunch beam by manipulating the longitudinal phase space distribution with a finite longitudinal dispersion following an off-crest acceleration is a widely used technique. The technique was applied in a compact test accelerator of an energy-recovery linac scheme for compressing the bunch length at the return loop. A diagnostic system utilizing coherent transition radiation was developed for the beam tuning and for estimating the bunch length. By scanning the beam parameters, we experimentally found the best condition for the bunch compression. The RMS bunch length of 250 ±50 fs was obtained at a bunch charge of 2 pC. This result confirmed the design and the tuning procedure of the bunch compression operation for the future energy-recovery linac (ERL).
Bunch length compression method for free electron lasers to avoid parasitic compressions
Douglas, David R.; Benson, Stephen; Nguyen, Dinh Cong; Tennant, Christopher; Wilson, Guy
2015-05-26
A method of bunch length compression method for a free electron laser (FEL) that avoids parasitic compressions by 1) applying acceleration on the falling portion of the RF waveform, 2) compressing using a positive momentum compaction (R.sub.56>0), and 3) compensating for aberration by using nonlinear magnets in the compressor beam line.
NASA Astrophysics Data System (ADS)
Shimada, M.; Yokoya, K.; Suwada, T.; Enomoto, A.
2007-06-01
The lattice and beam optics of the arc section of the KEK-ERL test facility, having an energy of 200 MeV, were optimized to efficiently suppress emittance growth based on a simulation using a particle-tracking method taking coherent synchrotron radiation effects into account. The lattice optimization in the arc section was performed under two conditions: a high-current mode with a bunch charge of 76.9 pC without bunch compression, and a short-bunch mode with bunch compression, producing a final bunch length of around 0.1 ps. The simulation results showed that, in the high-current mode, emittance growth was efficiently suppressed by keeping a root-mean-square (rms) bunch length of 1 ps at a bunch charge of 76.9 pC, and in the short-bunch mode, emittance growth was kept within permissible limits with a maximum allowable bunch charge of 23.1 pC at an rms bunch length of 0.1 ps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babzien, M.; Kusche, K.; Yakimenko, V.
2011-08-09
Two compressed electron beam bunches from a single 60-MeV bunch have been generated in a reproducible manner during compression in the magnetic chicane - 'dog leg' arrangement at ATF. Measurements indicate they have comparable bunch lengths ({approx}100-200 fs) and are separated in energy by {approx}1.8 MeV with the higher-energy bunch preceding the lower-energy bunch by 0.5-1 ps. Some simulation results for analyzing the double-bunch formation process are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosch, R.A.; Kleman, K.J.; /Wisconsin U., SRC
2011-09-08
In a two-stage compression and acceleration system, where each stage compresses a chirped bunch in a magnetic chicane, wakefields affect high-current bunches. The longitudinal wakes affect the macroscopic energy and current profiles of the compressed bunch and cause microbunching at short wavelengths. For macroscopic wavelengths, impedance formulas and tracking simulations show that the wakefields can be dominated by the resistive impedance of coherent edge radiation. For this case, we calculate the minimum initial bunch length that can be compressed without producing an upright tail in phase space and associated current spike. Formulas are also obtained for the jitter in themore » bunch arrival time downstream of the compressors that results from the bunch-to-bunch variation of current, energy, and chirp. Microbunching may occur at short wavelengths where the longitudinal space-charge wakes dominate or at longer wavelengths dominated by edge radiation. We model this range of wavelengths with frequency-dependent impedance before and after each stage of compression. The growth of current and energy modulations is described by analytic gain formulas that agree with simulations.« less
Initial Observations of Micropulse Elongation of Electron Beams in a SCRF Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A. H.; Thurman-Keup, R.; Edstrom Jr., D.
2016-10-09
Commissioning at the SCRF accelerator at the Fermilab Accelerator Science and Technology (FAST) Facility has included the implementation of a versatile bunch-length monitor located after the 4-dipole chicane bunch compressor for electron beam energies of 20-50 MeV and integrated charges in excess of 10 nC. The team has initially used a Hamamatsu C5680 synchroscan streak camera to assess the effects of space charge on the electron beam bunch lengths. An Al-coated Si screen was used to generate optical transition radiation (OTR) resulting from the beam’s interaction with the screen. The chicane bypass beamline allowed the measurements of the bunch lengthmore » without the compression stage at the downstream beamline location using OTR and the streak camera. We have observed electron beam bunch lengths from 5 to 16 ps (sigma) for micropulse charges of 60 pC to 800 pC, respectively. We also report a compressed sub-ps micropulse case.« less
Beam test of a superconducting cavity for the Fermilab high-brightness electron photo-injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Hartung, J.P. Carneiro, M. Champion, H. Edwards, J. Fuest, K. Koepke and M. Kuchnir
1999-05-04
An electron photo-injector facility has been constructed at Fermilab for the purpose of providing a 14�18 MeV elec-tron beam with high charge per bunch (8 nC), short bunch length (1 mm RMS), and small transverse emittance [1]. The facility was used to commission a second-generation photo-cathode RF gun for the TeSLA Test Facility (TTF) Linac at DESY [2, 3]; in the future, the Fermilab electron beam will be used for R & D in bunch length compres-sion, beam diagnostics, and new acceleration techniques. Acceleration beyond 4 MeV is provided by a 9-cell super-conducting cavity (see Figure 1). The cavity alsomore » provides a longitudinal position-momentum correlation for subse-quent bunch length compression. We report on the RF tests and a first beam test of this cavity.« less
Bunch length measurement at the Fermilab A0 photoinjector using a Martin-Puplett interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman-Keup, Randy; Fliller, Raymond Patrick; Kazakevich, Grigory
2008-05-01
We present preliminary measurements of the electron bunch lengths at the Fermilab A0 Photoinjector using a Martin-Puplett interferometer on loan from DESY. The photoinjector provides a relatively wide range of bunch lengths through laser pulse width adjustment and compression of the beam using a magnetic chicane. We present comparisons of data with simulations that account for diffraction distortions in the signal and discuss future plans for improving the measurement.
Study of the heavy ion bunch compression in CSRm
NASA Astrophysics Data System (ADS)
Yin, Da-Yu; Liu, Yong; Yuan, You-Jing; Yang, Jian-Cheng; Li, Peng; Li, Jie; Chai, Wei-Ping; Sha, Xiao-Ping
2013-05-01
The feasibility of attaining nanosecond pulse length heavy ion beam is studied in the main ring (CSRm) of the Heavy Ion Research Facility in Lanzhou. Such heavy ion beam can be produced by non-adiabatic compression, and it is implemented by a fast rotation in the longitudinal phase space. In this paper, the possible beam parameters during longitudinal bunch compression are studied with the envelope model and Particle in Cell simulation, and the results are compared. The result shows that the short bunch 238U28+ with the pulse duration of about 50 ns at the energy of 200 MeV/u can be obtained which can satisfy the research of high density plasma physics experiment.
Isolated few-cycle radiation from chirped-pulse compression of a superradiant free-electron laser
Huang, Yen -Chieh; Zhang, Zhen; Chen, Chia -Hsiang; ...
2015-08-31
When a short electron bunch traverses an undulator to radiate a wavelength longer than the bunch length, intense superradiance from the electron bunch can quickly deplete the electron’s kinetic energy and lead to generation of an isolated chirped radiation pulse. Here, we develop a theory to describe this novel chirped pulse radiation in a superradiant free-electron laser and show the opportunity to generate isolated few-cycle high-power radiation through chirped-pulse compression after the undulator. The theory is completely characterized by how fast the electron energy is depleted for a given length of an undulator. We further present two design examples atmore » the THz and extreme-ultraviolet wavelengths and numerically generate isolated three- and nine-cycle radiation pulses, respectively.« less
Douglas, David R [Newport News, VA; Tennant, Christopher D [Williamsburg, VA
2012-07-10
A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.
Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.
Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong
2015-10-01
Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.
Electron cooling of a bunched ion beam in a storage ring
NASA Astrophysics Data System (ADS)
Zhao, He; Mao, Lijun; Yang, Jiancheng; Xia, Jiawen; Yang, Xiaodong; Li, Jie; Tang, Meitang; Shen, Guodong; Ma, Xiaoming; Wu, Bo; Wang, Geng; Ruan, Shuang; Wang, Kedong; Dong, Ziqiang
2018-02-01
A combination of electron cooling and rf system is an effective method to compress the beam bunch length in storage rings. A simulation code based on multiparticle tracking was developed to calculate the bunched ion beam cooling process, in which the electron cooling, intrabeam scattering (IBS), ion beam space-charge field, transverse and synchrotron motion are considered. Meanwhile, bunched ion beam cooling experiments have been carried out in the main cooling storage ring (CSRm) of the Heavy Ion Research Facility in Lanzhou, to investigate the minimum bunch length obtained by the cooling method, and study the dependence of the minimum bunch length on beam and machine parameters. The experiments show comparable results to those from simulation. Based on these simulations and experiments, we established an analytical model to describe the limitation of the bunch length of the cooled ion beam. It is observed that the IBS effect is dominant for low intensity beams, and the space-charge effect is much more important for high intensity beams. Moreover, the particles will not be bunched for much higher intensity beam. The experimental results in CSRm show a good agreement with the analytical model in the IBS dominated regime. The simulation work offers us comparable results to those from the analytical model both in IBS dominated and space-charge dominated regimes.
THz based electron bunch length monitoring at the quasi-cw SRF accelerator ELBE
NASA Astrophysics Data System (ADS)
Green, Bertram; Kovalev, Sergey; Fisher, Alan; Bauer, Christian; Kuntzsch, Michael; Lehnert, Ulf; Schurig, Rico; Goltz, Torsten; Michel, Peter; Stojanovic, Nikola; Gensch, Michael
2014-03-01
In the past few years the quasi-cw SRF electron accelerator ELBE has been upgraded so that it now allows to compress electron bunches to the sub-picosecond regime. The actual optimization and control of the electron bunch form represents one of the largest challenges of the coming years. In particular with respect to the midterm goal to utilize the ultra-short electron bunches for Laser-Thomson scattering experiments or high field THz experiments. Current developments of THz based electron bunch diagnostic are discussed and an outlook into future developments is given.
A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, Stephen V.; Douglas, David R.; Tennant, Christopher D.
2015-09-01
Virtually all existing high energy (>few MeV) linac-driven FELs compress the electron bunch length though the use of off-crest acceleration on the rising side of the RF waveform followed by transport through a magnetic chicane. This approach has at least three flaws: 1) it is difficult to correct aberrations--particularly RF curvature, 2) rising side acceleration exacerbates space charge-induced distortion of the longitudinal phase space, and 3) all achromatic "negative compaction" compressors create parasitic compression during the final compression process, increasing the CSR-induced emittance growth. One can avoid these deficiencies by using acceleration on the falling side of the RF waveformmore » and a compressor with M 56>0. This approach offers multiple advantages: 1) It is readily achieved in beam lines supporting simple schemes for aberration compensation, 2) Longitudinal space charge (LSC)-induced phase space distortion tends, on the falling side of the RF waveform, to enhance the chirp, and 3) Compressors with M 56>0 can be configured to avoid spurious over-compression. We will discuss this bunch compression scheme in detail and give results of a successful beam test in April 2012 using the JLab UV Demo FEL« less
Daoud, Hazem; Floettmann, Klaus; Dwayne Miller, R. J.
2017-01-01
We present an RF gun design for single shot ultrafast electron diffraction experiments that can produce sub-100 fs high-charge electron bunches in the 130 keV energy range. Our simulations show that our proposed half-cell RF cavity is capable of producing 137 keV, 27 fs rms (60 fs FWHM), 106 electron bunches with an rms spot size of 276 μm and a transverse coherence length of 2.0 nm. The required operation power is 9.2 kW, significantly lower than conventional rf cavity designs and a key design feature. This electron source further relies on high electric field gradients at the cathode to simultaneously accelerate and compress the electron bunch to open up new space-time resolution domains for atomically resolved dynamics. PMID:28428973
Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhijun; Li, Wentao; Wang, Wentao
2016-05-15
We propose a scheme to minimize the energy spread of an electron beam (e-beam) in a cascaded laser wakefield accelerator to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. The trapped e-beam in the injection stage is transferred to the zero-phase region at the center of one wakefield period in the compression stage where the length of the e-beam can be greatly shortened owing to the velocity bunching. After being seeded into the third stage for acceleration, themore » e-beam can be accelerated to a much higher energy before its energy chirp is compensated owing to the shortened e-beam length. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e-beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge.« less
Using pipe with corrugated walls for a subterahertz free electron laser
Stupakov, Gennady
2015-03-18
A metallic pipe with corrugated walls supports propagation of a high-frequency mode that is in resonance with a relativistic beam propagating along the axis of the pipe. This mode can be excited by a beam whose length is a fraction of the wavelength. In this paper, we study another option of excitation of the resonant mode—via the mechanism of the free electron laser instability. This mechanism works if the bunch length is much longer than the wavelength of the radiation and, hence, does not require bunch compression. As a result, it provides an alternative to excitation by short bunches thatmore » can be realized with relatively low energy and low peak-current electron beams.« less
Using pipe with corrugated walls for a subterahertz free electron laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stupakov, Gennady
A metallic pipe with corrugated walls supports propagation of a high-frequency mode that is in resonance with a relativistic beam propagating along the axis of the pipe. This mode can be excited by a beam whose length is a fraction of the wavelength. In this paper, we study another option of excitation of the resonant mode—via the mechanism of the free electron laser instability. This mechanism works if the bunch length is much longer than the wavelength of the radiation and, hence, does not require bunch compression. As a result, it provides an alternative to excitation by short bunches thatmore » can be realized with relatively low energy and low peak-current electron beams.« less
NASA Astrophysics Data System (ADS)
Murokh, Alex
2002-01-01
In this work, the main results of the VISA experiment (Visible to Infrared SASE Amplifier) are presented and analyzed. The purpose of the experiment was to build a state-of-the-art single pass self-amplified spontaneous emission (SASE) free electron laser (FEL) based on a high brightness electron beam, and characterize its operation, including saturation, in the near infrared spectral region. This experiment was hosted by Accelerator Test Facility (ATF) at Brookhaven National Laboratory, which is a users facility that provides high brightness relativistic electron beams generated with the photoinjector. During the experiment, SASE FEL performance was studied in two regimes: a long bunch, lower gain operation; and a short bunch high gain regime. The transition between the two conditions was possible due to a novel bunch compression mechanism, which was discovered in the course of the experiment. This compression allowed the variation of peak current in the electron beam before it was launched into the 4-m VISA undulator. In the long bunch regime, a SASE FEL power gain length of 29 cm was obtained, and the generated radiation spectral and statistical properties were characterized. In the short bunch regime, a power gain length of under 18 cm was achieved at 842 nm, which is at least a factor of two shorter than ever previously achieved in this spectral range. Further, FEL saturation was obtained before the undulator exit. The FEL system's performance was measured along the length of the VISA undulator, and in the final state. Statistical, spectral and angular properties of the short bunch SASE radiation have been measured in the exponential gain regime, and at saturation. One of the most important aspects of the data analysis presented in this thesis was the development and use of start-to-end numerical simulations of the experiment. The dynamics of the ATF electron beam was modeled starting from the photocathode, through acceleration, transport, and inside the VISA undulator. The model allowed simulation of SASE process for different beam conditions, including the effects of the novel bunch compression mechanism on the electron beam 6-D phase space distribution. The numerical simulations displayed an excellent agreement with the experimental data, and became key to understanding complex dynamics of the SASE FEL process at VISA.
NASA Astrophysics Data System (ADS)
Di Mitri, S.; Cornacchia, M.
2015-03-01
Bunch length magnetic compression is used in high-brightness linacs driving free-electron lasers (FELs) and particle colliders to increase the peak current of the injected beam. To date, it is performed in dedicated insertions made of few degrees bending magnets and the compression factor is limited by the degradation of the beam transverse emittance owing to emission of coherent synchrotron radiation (CSR). We reformulate the known concept of CSR-driven optics balance for the general case of varying bunch length and demonstrate, through analytical and numerical results, that a 500 pC charge beam can be time-compressed in a periodic 180 deg arc at 2.4 GeV beam energy and lower, by a factor of up to 45, reaching peak currents of up to 2 kA and with a normalized emittance growth at the 0.1 μ \\text{m} rad level. The proposed solution offers new schemes of beam longitudinal gymnastics; an application to an energy recovery linac driving FEL is discussed.
Linearization of the longitudinal phase space without higher harmonic field
NASA Astrophysics Data System (ADS)
Zeitler, Benno; Floettmann, Klaus; Grüner, Florian
2015-12-01
Accelerator applications like free-electron lasers, time-resolved electron diffraction, and advanced accelerator concepts like plasma acceleration desire bunches of ever shorter longitudinal extent. However, apart from space charge repulsion, the internal bunch structure and its development along the beam line can limit the achievable compression due to nonlinear phase space correlations. In order to improve such a limited longitudinal focus, a correction by properly linearizing the phase space is required. At large scale facilities like Flash at Desy or the European Xfel, a higher harmonic cavity is installed for this purpose. In this paper, another method is described and evaluated: Expanding the beam after the electron source enables a higher order correction of the longitudinal focus by a subsequent accelerating cavity which is operated at the same frequency as the electron gun. The elaboration of this idea presented here is based on a ballistic bunching scheme, but can be extended to bunch compression based on magnetic chicanes. The core of this article is an analytic model describing this approach, which is verified by simulations, predicting possible bunch length below 1 fs at low bunch charge. Minimizing the energy spread down to σE/E <1 0-5 while keeping the bunch long is another interesting possibility, which finds applications, e.g., in time resolved transmission electron microscopy concepts.
Design of a 2 kA, 30 fs Rf-Photoinjector for Waterbag Compression
NASA Astrophysics Data System (ADS)
van der Geer, S. B.; Luiten, O. J.; de Loos, M. J.
Because uniformly filled ellipsoidal ‘waterbag’ bunches have linear self-fields in all dimensions, they do not suffer from space-charge induced brightness degradation. This in turn allows very efficient longitudinal compression of high-brightness bunches at sub or mildly relativistic energies, a parameter regime inaccessible up to now due to detrimental effects of non-linear space-charge forces. To demonstrate the feasibility of this approach, we investigate ballistic bunching of 1 MeV, 100 pC waterbag electron bunches, created in a half-cell rf-photogun, by means of a two-cell booster-compressor. Detailed GPT simulations of this table-top set-up are presented, including realistic fields, 3D space-charge effects, path-length differences and image charges at the cathode. It is shown that with a single 10MW S-band klystron and fields of 100 MV/m, 2kA peak current is attainable with a pulse duration of only 30 fs at a transverse normalized emittance of 1.5 μm.
X -band rf driven free electron laser driver with optics linearization
Sun, Yipeng; Emma, Paul; Raubenheimer, Tor; ...
2014-11-13
In this paper, a compact hard X-ray free electron lasers (FEL) design is proposed with all X-band rf acceleration and two stage bunch compression. It eliminates the need of a harmonic rf linearization section by employing optics linearization in its first stage bunch compression. Quadrupoles and sextupoles are employed in a bunch compressor one (BC1) design, in such a way that second order longitudinal dispersion of BC1 cancels the second order energy correlation in the electron beam. Start-to-end 6-D simulations are performed with all the collective effects included. Emittance growth in the horizontal plane due to coherent synchrotron radiation ismore » investigated and minimized, to be on a similar level with the successfully operating Linac coherent light source (LCLS). At a FEL radiation wavelength of 0.15 nm, a saturation length of 40 meters can be achieved by employing an undulator with a period of 1.5 cm. Without tapering, a FEL radiation power above 10 GW is achieved with a photon pulse length of 50 fs, which is LCLS-like performance. The overall length of the accelerator plus undulator is around 250 meters which is much shorter than the LCLS length of 1230 meters. That makes it possible to build hard X-ray FEL in a laboratory with limited size.« less
NASA Astrophysics Data System (ADS)
Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.
2017-08-01
High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.
NASA Astrophysics Data System (ADS)
Rajabi, A.; Jazini, J.; Fathi, M.; Sharifian, M.; Shokri, B.
2018-03-01
The beam produced by a thermionic RF gun has wide energy spread that makes it unsuitable for direct usage in photon sources. Here in the present work, we optimize the extracted beam from a thermionic RF gun by a compact economical bunch compressor. A compact magnetic bunch compressor (Alpha magnet) is designed and constructed. A comparison between simulation results and experimental measurements shows acceptable conformity. The beam dynamics simulation results show a reduction of the energy spread as well as a compression of length less than 1 ps with 2.3 mm-mrad emittance.
Beam dynamics performances and applications of a low-energy electron-beam magnetic bunch compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokop, C. R.; Piot, P.; Carlsten, B. E.
2013-08-01
Many front-end applications of electron linear accelerators rely on the production of temporally compressed bunches. The shortening of electron bunches is often realized with magnetic bunch compressors located in high-energy sections of accelerators. Magnetic compression is subject to collective effects including space charge and self interaction via coherent synchrotron radiation. In this paper we explore the application of magnetic compression to low-energy (~40MeV), high-charge (nC) electron bunches with low normalized transverse emittances (<5@mm).
Generation and measurement of velocity bunched ultrashort bunch of pC charge
NASA Astrophysics Data System (ADS)
Lu, X. H.; Tang, C. X.; Li, R. K.; To, H.; Andonian, G.; Musumeci, P.
2015-03-01
In this paper, we discuss the velocity compression in a short rf linac of an electron bunch from a rf photoinjector operated in the blowout regime. Particle tracking simulations shows that with a beam charge of 2 pC an ultrashort bunch duration of 16 fs can be obtained at a tight longitudinal focus downstream of the linac. A simplified coherent transition radiation (CTR) spectrum method is developed to enable the measurement of ultrashort (sub-50 fs) bunches at low bunch energy (5 MeV) and low bunch charges (<10 pC ). In this method, the ratio of the radiation energy selected by two narrow bandwidth filters is used to estimate the bunch length. The contribution to the coherent form factor of the large transverse size of the bunch suppresses the radiation signal significantly and is included in the analysis. The experiment was performed at the UCLA Pegasus photoinjector laboratory. The measurement results show bunches of sub-40 fs with 2 pC of charge well consistent with the simulation using actual experimental conditions. These results open the way to the generation of ultrashort bunches with time-duration below 10 fs once some of the limitations of the setup (rf phase jitter, amplitude instability and low field in the gun limited by breakdown) are corrected.
Bunch compression efficiency of the femtosecond electron source at Chiang Mai University
NASA Astrophysics Data System (ADS)
Thongbai, C.; Kusoljariyakul, K.; Saisut, J.
2011-07-01
A femtosecond electron source has been developed at the Plasma and Beam Physics Research Facility (PBP), Chiang Mai University (CMU), Thailand. Ultra-short electron bunches can be produced with a bunch compression system consisting of a thermionic cathode RF-gun, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. To obtain effective bunch compression, it is crucial to provide a proper longitudinal phase-space distribution at the gun exit matched to the subsequent beam transport system. Via beam dynamics calculations and experiments, we investigate the bunch compression efficiency for various RF-gun fields. The particle distribution at the RF-gun exit will be tracked numerically through the alpha-magnet and beam transport. Details of the study and results leading to an optimum condition for our system will be presented.
Generation and measurement of velocity bunched ultrashort bunch of pC charge
Lu, X. H.; Tang, C. X.; Li, R. K.; ...
2015-03-01
In this paper, we discuss the velocity compression in a short rf linac of an electron bunch from a rf photoinjector operated in the blowout regime. Particle tracking simulations shows that with a beam charge of 2 pC an ultrashort bunch duration of 16 fs can be obtained at a tight longitudinal focus downstream of the linac. A simplified coherent transition radiation (CTR) spectrum method is developed to enable the measurement of ultrashort (sub-50 fs) bunches at low bunch energy (5 MeV) and low bunch charges (<10 pC). In this method, the ratio of the radiation energy selected by twomore » narrow bandwidth filters is used to estimate the bunch length. The contribution to the coherent form factor of the large transverse size of the bunch suppresses the radiation signal significantly and is included in the analysis. The experiment was performed at the UCLA Pegasus photoinjector laboratory. The measurement results show bunches of sub-40 fs with 2 pC of charge well consistent with the simulation using actual experimental conditions. These results open the way to the generation of ultrashort bunches with time-duration below 10 fs once some of the limitations of the setup (rf phase jitter, amplitude instability and low field in the gun limited by breakdown) are corrected.« less
NASA Astrophysics Data System (ADS)
Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Gallo, A.; Gatti, G.; Giorgianni, F.; Giribono, A.; Li, W.; Lupi, S.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Di Pirro, G.; Romeo, S.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.
2016-08-01
The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.
Analysis of the LSC microbunching instability in MaRIE linac reference design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yampolsky, Nikolai
In this report we estimate the effect of the microbunching instability in the MaRIE XFEL linac. The reference design for the linac is described in a separate report. The parameters of the L1, L2, and L3 linacs as well as BC1 and BC2 bunch compressors were the same as in the referenced report. The beam dynamics was assumed to be linear along the accelerator (which is a reasonable assumption for estimating the effect of the microbunching instability). The parameters of the bunch also match the parameters described in the referenced report. Additionally, it was assumed that the beam radius ismore » equal to R = 100 m and does not change along linac. This assumption needs to be revisited at later studies. The beam dynamics during acceleration was accounted in the matrix formalism using a Matlab code. The input parameters for the linacs are: RF peak gradient, RF frequency, RF phase, linac length, and initial beam energy. The energy gain and the imposed chirp are calculated based on the RF parameters self-consistently. The bunch compressors are accounted in the matrix formalism as well. Each chicane is characterized by the beam energy and the R56 matrix element. It was confirmed that the linac and beam parameters described previously provide two-stage bunch compression with compression ratios of 10 and 20 resulting in the bunch of 3kA peak current.« less
van Oudheusden, T; Pasmans, P L E M; van der Geer, S B; de Loos, M J; van der Wiel, M J; Luiten, O J
2010-12-31
We demonstrate the compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching by inverting the positive space-charge-induced velocity chirp. This inversion is induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs.
NASA Astrophysics Data System (ADS)
Wang, Dan; Yan, Lixin; Du, YingChao; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang
2018-02-01
Premodulated comblike electron bunch trains are used in a wide range of research fields, such as for wakefield-based particle acceleration and tunable radiation sources. We propose an optimized compression scheme for bunch trains in which a traveling wave accelerator tube and a downstream drift segment are together used as a compressor. When the phase injected into the accelerator tube for the bunch train is set to ≪-10 0 ° , velocity bunching occurs in a deep overcompression mode, which reverses the phase space and maintains a velocity difference within the injected beam, thereby giving rise to a compressed comblike electron bunch train after a few-meter-long drift segment; we call this the deep overcompression scheme. The main benefits of this scheme are the relatively large phase acceptance and the uniformity of compression for the bunch train. The comblike bunch train generated via this scheme is widely tunable: For the two-bunch case, the energy and time spacings can be continuously adjusted from +1 to -1 MeV and from 13 to 3 ps, respectively, by varying the injected phase of the bunch train from -22 0 ° to -14 0 ° . Both theoretical analysis and beam dynamics simulations are presented to study the properties of the deep overcompression scheme.
Traverse Focusing of Intense Charged Particle Beams with Chromatic Effects for Heavy Ion Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
James M. Mitrani, Igor D. Kaganovich, Ronald C. Davidson
A fi nal focusing scheme designed to minimize chromatic effects is discussed. The Neutralized Drift Compression Experiment-II (NDCX-II) will apply a velocity tilt for longitudinal bunch compression, and a fi nal focusing solenoid (FFS) for transverse bunch compression. In the beam frame, neutralized drift compression causes a suffi ciently large spread in axial momentum, pz , resulting in chromatic effects to the fi nal focal spot during transverse bunch compression. Placing a weaker solenoid upstream of a stronger fi nal focusing solenoid (FFS) mitigates chromatic effects and improves transverse focusing by a factor of approximately 2-4 for appropriate NDCX-II parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Yichao; Fedurin, Mikhail; Stratakis, Diktys
2015-05-03
One of the operation modes for Accelerator Test Facility (ATF) upgrade is to provide high peak current, high quality electron beam for users. Such operation requires a bunch compressing system with a very large compression ratio. The CSR originating from the strong compressors generally could greatly degrade the quality of the electron beam. In this paper, we present our design for the entire bunch compressing system that will limit the effect of CSR on the e-beam’s quality. We discuss and detail the performance from the start to end simulation of such a compressor for ATF.
Measuring short electron bunch lengths using coherent smith-purcell radiation
Nguyen, Dinh C.
1999-01-01
A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches.
Measuring short electron bunch lengths using coherent Smith-Purcell radiation
Nguyen, D.C.
1999-03-30
A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches. 8 figs.
Regrouping of the beam in the IHEP PS for the UNK p-p programs
NASA Astrophysics Data System (ADS)
Myae, E. A.; Nelipovich, E. S.; Pashkov, P. T.; Smirnov, A. V.
Possibilities to form particle bunches in the IHEP machine whose longitudinal parameters would satisfy the requirements imposed by the UNK p-p programs are analyzed. In the case of the 3 x 3 TeV p-p program the accelerated proton beam in the IHEP PS after preliminary quasiadiabatic debunching process will be recaptured into a stable oscillating mode at 33.3 MHz. The peculiarities of the RF system designed for these purposes with an account of strong beam loading are discussed. For the 0.4 x 3 TeV UNK colliding beam regime, it is necessary to compress the accelerated proton bunches in the IHEP PS so that their length will be 4 times less. The main difficulties arising during 'RF gymnastics' which is used for beam compressing, are caused by nonlinearities of the external accelerating field and also the fields induced in the RF cavities by the beam. The compensation of such effects with the help of the special RF system is discussed.
Optimization for Single-Spike X-Ray FELs at LCLS with a Low Charge Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.; Ding, Y.; Huang, Z.
2011-12-14
The Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron radiation sources. At the low charge operation mode (20 pC), the x-ray pulse length can be <10 fs. In this paper we report our numerical optimization and simulations to produce even shorter x-ray pulses by optimizing the machine and undulator setup at 20 pC charge. In the soft x-ray regime, with combination of slotted-foil or undulator taper, a single spike x-ray pulse is achievablemore » with peak FEL power of a few 10s GW. Linac Coherent Light Source (LCLS), the world's first hard x-ray Free electron laser (FEL), has started operation since 2009. With nominal operation charge of 250 pC, the generated x-ray pulse length is from 70 fs to a few hundred fs. This marks the beginning of a new era of ultrashort x-ray sciences. In addition, a low charge (20pC) operation mode has also been established. Since the collective effects are reduced at the low charge mode, we can increase the compression factor and still achieve a few kA peak current. The expected electron beam and x-ray pulses are less than 10 fs. There are growing interests in even shorter x-ray pulses, such as fs to sub-fs regime. One of the simple solutions is going to even lower charge. As discussed, single-spike x-ray pulses can be generated using 1 pC charge. However, this charge level is out of the present LCLS diagnostic range. 20 pC is a reasonable operation charge at LCLS, based on the present diagnostic system. At 20 pC in the soft x-ray wavelength regime, we have experimentally demonstrated that FEL can work at undercompression or over-compression mode, such as 1 degree off the full-compression; at full-compression, however, there is almost no lasing. In hard x-ray wavelength regime, we observed that there are reasonable photons generated even at full-compression mode, although the photon number is less than that from under-compression or over-compression mode. Since we cannot measure the x-ray pulse length at this time scale, the machine is typically optimized for generating maximum photons, not minimum pulse length. In this paper, we study the methods of producing femtosecond (or single-spike) x-ray pulses at LCLS with 20 pC charge, based on start-to-end simulations. Figure 1 shows a layout of LCLS. The compression in the second bunch compressor (BC2) determines the final e-beam bunch length. However, the laser heater, dog-leg after the main linac (DL2) and collective effects also affect the final bunch length. To adjust BC2 compression, we can either change the L2 phase or BC2 R{sub 56}. In this paper we only tune L2 phase while keep BC2 R{sub 56} fixed. For the start-to-end simulations, we used IMPACT-T and ELEGANT tracking from the photocathode to the entrance of the undulator, after that the FEL radiation was simulated with GENESIS. IMPACT-T tracks about 10{sup 6} particles in the injector part until 135 MeV, including 3D space charge force. The output particles from IMPACT-T are smoothed and increased to 12 x 10{sup 6} to reduce high-frequency numerical noise for subsequent ELEGANT simulations, which include linear and nonlinear transport effects, a 1D transient model of CSR, and longitudinal space charge effects, as well as geometric and resistive wake fields in the accelerator. In GENESIS part, the longitudinal wake field from undulator chamber and longitudinal space field are also included.« less
Electron Beam Instrumentation Techniques Using Coherent Radiation
NASA Astrophysics Data System (ADS)
Wang, D. X.
1997-05-01
In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, advanced accelerators such as laser or plasma wakefield accelerators, and Compton backscattering X-ray sources. A short bunch length is needed to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, or accurate timing. Meanwhile, much progress has been made on photoinjectors and different magnetic and RF bunching schemes to produce very short bunches. Measurement of those short bunches becomes essential to develop, characterize, and operate such demanding machines. Conventionally, bunch duration of short electron bunches is measured by transverse RF deflecting cavities or streak camera. With such devices it becomes very challenging to measure bunch length down to a few hundred femtoseconds. Many frequency domain techniques have been recently developed, based on a relation between bunch profile and coherent radiation spectrum. These techniques provide excellent performance for short bunches. In this paper, coherent radiation and its applications to bunch length measurement will be discussed. A strategy for bunch length control at Jefferson Lab will be presented, which includes a noninvasive coherent synchrotron radiation (CSR) monitor, a zero-phasing technique used to calibrate the CSR detector, and phase transfer measurement used to correct RF phase drifts.
Thangaraj, J; Andonian, G; Thurman-Keup, R; Ruan, J; Johnson, A S; Lumpkin, A; Santucci, J; Maxwell, T; Murokh, A; Ruelas, M; Ovodenko, A
2012-04-01
A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (~0.24 mm) and 1.5 ps (~0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera. The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches. © 2012 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangaraj, J.; Thurman-Keup, R.; Ruan, J.
2012-04-15
A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps ({approx}0.24 mm) and 1.5 ps ({approx}0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera.more » The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.« less
Superconducting Cavity Development for Free Electron Lasers.
1986-06-30
effects have been modeled extensively using the code PARMELA, including finite space charge . The conflict is resolved through the use of harmonically...depends on the specifics of how the whole accelerator is run, i.e., bunch length, interpulse spacing , macrobunch length, charge per bunch, external...this indicates that the bunch length should be as long as possible. 2.4 OPTIMUM BUNCH LENGTH 20 Although wakefield, HOM excitation and space charge
Multi-color γ-rays from comb-like electron beams driven by incoherent stacks of laser pulses
NASA Astrophysics Data System (ADS)
Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.
2017-03-01
Trains of fs-length, GeV-scale electron bunches with controlled energy spacing and a 5-D brightness up to 1017 A/m2 may be produced in a mm-scale uniform plasma. The main element of the scheme is an incoherent stack of 10-TW-scale laser pulses of different colors, with mismatched focal spots, with the highest-frequency pulse advanced in time. While driving an electron density bubble, this stack remains almost proof against nonlinear red-shift and self-compression. As a consequence, the unwanted continuous injection of background electrons is minimized. Weak focusing of the trailing (lower-frequency) component of the stack enforces expansions and contractions of the bubble, inducing controlled periodic injection. The resulting train of electron bunches maintains exceptional quality while being accelerated beyond the energy limits predicted by accepted scalings. Inverse Thomson scattering from this comb-like beam generates a sequence of quasi-monochromatic, fs-length γ-ray beams, an asset for nuclear forensics and pump-probe experiments in dense plasmas.
Longitudinal dynamics of twin electron bunches in the Linac Coherent Light Source
Zhang, Zhen; Ding, Yuantao; Marinelli, Agostino; ...
2015-03-02
The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We find that the wakefields in the accelerator structures play an important role in the twin-bunchmore » compression, and through analysis show that they can be used to extend the available time delay range. As a result, based on the theoretical model and simulations we propose several methods to achieve larger time delay.« less
NASA Astrophysics Data System (ADS)
Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.
2018-05-01
When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangaraj, J.; Thurman-Keup, R.; Ruan, J.
2012-03-01
A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV. Bunch length variation (FWHM) between 0.8 ps (-0.24 mm) and 1.5 ps (-0.45 mm) has been measured and compared with a Martin-Puplett interferometer and a streak camera.more » The comparisons show that RTI is a viable, complementary bunch length diagnostic for sub-mm electron bunches.« less
Femtosecond electron bunches, source and characterization
NASA Astrophysics Data System (ADS)
Thongbai, C.; Kusoljariyakul, K.; Rimjaem, S.; Rhodes, M. W.; Saisut, J.; Thamboon, P.; Wichaisirimongkol, P.; Vilaithong, T.
2008-03-01
A femtosecond electron source has been developed at the Fast Neutron Research Facility (FNRF), Chiang Mai University, Thailand. So far, it has produced electron bunches as short as σ z˜180 fs with (1-6)×10 8 electrons per microbunch. The system consists of an RF-gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. Coherent transition radiation emitted at wavelengths equal to and longer than the bunch length is used in a Michelson interferometer to determine the bunch length by autocorrelation technique. The experimental setup and results of the bunch length measurement are described.
Multiobjective optimization design of an rf gun based electron diffraction beam line
NASA Astrophysics Data System (ADS)
Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan; Maxson, Jared
2017-03-01
Multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line comprised of a 100 MV /m 1.6-cell normal conducting rf (NCRF) gun, as well as a nine-cell 2 π /3 bunching cavity placed between two solenoids, have been performed. These include optimization of the normalized transverse emittance as a function of bunch charge, as well as optimization of the transverse coherence length as a function of the rms bunch length of the beam at the sample location for a fixed charge of 1 06 electrons. Analysis of the resulting solutions is discussed in terms of the relevant scaling laws, and a detailed description of one of the resulting solutions from the coherence length optimizations is given. For a charge of 1 06 electrons and final beam sizes of σx≥25 μ m and σt≈5 fs , we found a relative coherence length of Lc ,x/σx≈0.07 using direct optimization of the coherence length. Additionally, based on optimizations of the emittance as a function of final bunch length, we estimate the relative coherence length for bunch lengths of 30 and 100 fs to be roughly 0.1 and 0.2 nm /μ m , respectively. Finally, using the scaling of the optimal emittance with bunch charge, for a charge of 1 05 electrons, we estimate relative coherence lengths of 0.3, 0.5, and 0.92 nm /μ m for final bunch lengths of 5, 30 and 100 fs, respectively.
Compensating effect of the coherent synchrotron radiation in bunch compressors
NASA Astrophysics Data System (ADS)
Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.
2013-06-01
Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line’s end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL’s arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam’s quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.
Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavel Evtushenko; James Coleman; Kevin Jordan
2006-05-01
The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years [1]. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA. Hence it is very desirable to have the possibility of making bunch length measurements when running CW beammore » with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer [1]. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less
Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evtushenko, P.; Coleman, J.; Jordan, K.
2006-11-20
The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA, Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam withmore » any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less
Bunch Length Measurements at JLab FEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Evtushenko; J. L. Coleman; K. Jordan
2006-09-01
The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run FEL with CW beam and 74.85 MHz micropulse repetition rate. Hence it is very desirable to have the possibility of doing the bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared interferometer, which is essentially a Michelson interferometer, to measuremore » the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides the bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with the data obtained by the Martin-Puplett interferometer. Results of the two diagnostics are usually agree within 15%. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less
Douglas, David R; Tennant, Christopher
2015-11-10
A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.
NASA Astrophysics Data System (ADS)
Hall, C. C.; Biedron, S. G.; Edelen, A. L.; Milton, S. V.; Benson, S.; Douglas, D.; Li, R.; Tennant, C. D.; Carlsten, B. E.
2015-03-01
In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with the measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.
Hall, C C.; Biedron, S G.; Edelen, A L.; ...
2015-03-09
In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with themore » measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.« less
NASA Astrophysics Data System (ADS)
Charles, T. K.; Paganin, D. M.; Latina, A.; Boland, M. J.; Dowd, R. T.
2017-03-01
Control of coherent synchrotron radiation (CSR)-induced emittance growth is essential in linear accelerators designed to deliver very high brightness electron beams. Extreme current values at the head and tail of the electron bunch, resulting from strong bunch compression, are responsible for large CSR production leading to significant transverse projected emittance growth. The Linac Coherent Light Source (LCLS) truncates the head and tail current spikes which greatly improves free electron laser (FEL) performance. Here we consider the underlying dynamics that lead to formation of current spikes (also referred to as current horns), which has been identified as caustics forming in electron trajectories. We present a method to analytically determine conditions required to avoid the caustic formation and therefore prevent the current spikes from forming. These required conditions can be easily met, without increasing the transverse slice emittance, through inclusion of an octupole magnet in the middle of a bunch compressor.
Flexible pulse delay control up to picosecond for high-intensity twin electron bunches
Zhang, Zhen; Ding, Yuantao; Emma, Paul; ...
2015-09-10
Two closely spaced electron bunches have attracted strong interest due to their applications in two color X-ray free-electron lasers as well as witness bunch acceleration in plasmas and dielectric structures. In this paper, we propose a new scheme of delay system to vary the time delay up to several picoseconds while not affecting the bunch compression. Numerical simulations based on the Linac Coherent Light Source are performed to demonstrate the feasibility of this method.
Optical Diagnostics for Plasma-based Particle Accelerators
NASA Astrophysics Data System (ADS)
Muggli, Patric
2009-05-01
One of the challenges for plasma-based particle accelerators is to measure the spatio-temporal characteristics of the accelerated particle bunch. ``Optical'' diagnostics are particularly interesting and useful because of the large number of techniques that exits to determine the properties of photon pulses. The accelerated bunch can produce photons pulses that carry information about its characteristics for example through synchrotron radiation in a magnet, Cherenkov radiation in a gas, and transition radiation (TR) at the boundary between two media with different dielectric constants. Depending on the wavelength of the emission when compared to the particle bunch length, the radiation can be incoherent or coherent. Incoherent TR in the optical range (or OTR) is useful to measure the transverse spatial characteristics of the beam, such as charge distribution and size. Coherent TR (or CTR) carries information about the bunch length that can in principle be retrieved by standard auto-correlation or interferometric techniques, as well as by spectral measurements. A measurement of the total CTR energy emitted by bunches with constant charge can also be used as a shot-to-shot measurement for the relative bunch length as the CTR energy is proportional to the square of the bunch population and inversely proportional to its length (for a fixed distribution). Spectral interferometry can also yield the spacing between bunches in the case where multiple bunches are trapped in subsequent buckets of the plasma wave. Cherenkov radiation can be used as an energy threshold diagnostic for low energy particles. Cherenkov, synchrotron and transition radiation can be used in a dispersive section of the beam line to measure the bunch energy spectrum. The application of these diagnostics to plasma-based particle accelerators, with emphasis on the beam-driven, plasma wakefield accelerator (PWFA) at the SLAC National Accelerator Laboratory will be discussed.
Design of the ILC RTML Extraction Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Tenenbaum, P.; Walz, D.
2011-10-17
The ILC [1] Damping Ring to the Main Linac beamline (RTML) contains three extraction lines (EL). Each EL can be used both for an emergency abort dumping of the beam and tune-up continual train-by-train extraction. Two of the extraction lines are located downstream of the first and second stages of the RTML bunch compressor, and must accept both compressed and uncompressed beam with energy spreads of 2.5% and 0.15%, respectively. In this paper we report on an optics design that allowed minimizing the length of the extraction lines while offsetting the beam dumps from the main line by the distancemore » required for acceptable radiation levels in the service tunnel. The proposed extraction lines can accommodate beams with different energy spreads while at the same time providing the beam size acceptable for the aluminum dump window. The RTML incorporates three extraction lines, which can be used for either an emergency beam abort or for a train-by-train extraction. The first EL is located downstream of the Damping Ring extraction arc. The other two extraction lines are located downstream of each stage of the two-stage bunch compressor. The first extraction line (EL1) receives 5GeV beam with an 0.15% energy spread. The extraction line located downstream of the first stage of bunch compressor (ELBC1) receives both compressed and uncompressed beam, and therefore must accept beam with both 5 and 4.88GeV energy, and 0.15% and 2.5% energy spread, respectively. The extraction line located after the second stage of the bunch compressor (ELBC2) receives 15GeV beam with either 0.15 or 1.8% energy spread. Each of the three extraction lines is equipped with the 220kW aluminum ball dump, which corresponds to the power of the continuously dumped beam with 5GeV energy, i.e., the beam trains must be delivered to the ELBC2 dump at reduced repetition rate.« less
Double-pulse THz radiation bursts from laser-plasma acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosch, R. A.
2006-11-15
A model is presented for coherent THz radiation produced when an electron bunch undergoes laser-plasma acceleration and then exits axially from a plasma column. Radiation produced when the bunch is accelerated is superimposed with transition radiation from the bunch exiting the plasma. Computations give a double-pulse burst of radiation comparable to recent observations. The duration of each pulse very nearly equals the electron bunch length, while the time separation between pulses is proportional to the distance between the points where the bunch is accelerated and where it exits the plasma. The relative magnitude of the two pulses depends upon bymore » the radius of the plasma column. Thus, the radiation bursts may be useful in diagnosing the electron bunch length, the location of the bunch's acceleration, and the plasma radius.« less
Simulation of Mirror Distortion in Free-Electron LASER Oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. Freund; S. V. Benson; Michelle D. Shinn
2006-09-01
The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run FEL with CW beam and 74.85 MHz micropulse repetition rate. Hence it is very desirable to have the possibility of doing the bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared interferometer, which is essentially a Michelson interferometer, to measuremore » the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides the bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with the data obtained by the Martin-Puplett interferometer. Results of the two diagnostics are usually agree within 15%. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edstrom Jr., D.; et al.
The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (includingmore » a new Martin- Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evtushenko, Pavel E.; Klopf, John M.
Frequency domain measurements with Martin-Puplett interferometer is one of a few techniques capable of bunch length measurements at the level of ~ 100 fs. As the bunch length becomes shorter, it is important to know and be able to measure the limitations of the instrument in terms of shortest measurable bunch length. In this paper we describe an experiment using a blackbody source with the modified Martin-Puplett interferometer that is routine- ly used for bunch length measurements at the JLab FEL, as a way to estimate the shortest, measurable bunch length. The limitation comes from high frequency cut-off of themore » wire-grid polarizer currently used and is estimated to be 50 fs RMS. The measurements are made with the same Golay cell detector that is used for beam measure- ments. We demonstrate that, even though the blackbody source is many orders of magnitude less bright than the coherent transition or synchrotron radiation, it can be used for the measurements and gives a very good signal to noise ratio in combination with lock-in detection. We also compare the measurements made in air and in vacuum to characterize the very strong effect of the atmospheric absorption.« less
Development of intense terahertz coherent synchrotron radiation at KU-FEL
NASA Astrophysics Data System (ADS)
Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki
2016-10-01
We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR.
Ion response to relativistic electron bunches in the blowout regime of laser-plasma accelerators.
Popov, K I; Rozmus, W; Bychenkov, V Yu; Naseri, N; Capjack, C E; Brantov, A V
2010-11-05
The ion response to relativistic electron bunches in the so called bubble or blowout regime of a laser-plasma accelerator is discussed. In response to the strong fields of the accelerated electrons the ions form a central filament along the laser axis that can be compressed to densities 2 orders of magnitude higher than the initial particle density. A theory of the filament formation and a model of ion self-compression are proposed. It is also shown that in the case of a sharp rear plasma-vacuum interface the ions can be accelerated by a combination of three basic mechanisms. The long time ion evolution that results from the strong electrostatic fields of an electron bunch provides a unique diagnostic of laser-plasma accelerators.
Effects of energy chirp on bunch length measurement in linear accelerator beams
NASA Astrophysics Data System (ADS)
Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.
2017-08-01
The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.
Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation
Zhu, Xiaofang; Broemmelsiek, Daniel R.; Shin, Young -Min; ...
2015-10-28
Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R 56 ~ –0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacingmore » ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). As a result, the theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.« less
Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation
NASA Astrophysics Data System (ADS)
Zhu, X.; Broemmelsiek, D. R.; Shin, Y.-M.
2015-10-01
Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R56 ~ -0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacing ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). The theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.
Luminosity geometric reduction factor from colliding bunches with different lengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdu-Andres, S.
In the interaction point of the future electron-Ion collider eRHIC, the electron beam bunches are at least one order of magnitude shorter than the proton beam bunches. With the introduction of a crossing angle, the actual number of collisions resulting from the bunch collision gets reduced. Here we derive the expression for the luminosity geometric reduction factor when the bunches of the two incoming beams are not equal.
Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, Philippe; Bracke, Adam; Demir, Veysel
2010-12-01
We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC e⁻ injectors and e⁺ and e⁻ bunch compressors. Techniques to measure the first order moments and recover the first order longitudinal transfer map of the injector's intricate bunching scheme are presented. Coherent transition radiation diagnostics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model.
NASA Astrophysics Data System (ADS)
Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan
2016-09-01
We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200 μ m , for two final bunch charges: 1 05 electrons (16 fC) and 1 06 electrons (160 fC). Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of Lc ,x/σx=0.27 nm /μ m was obtained for a final bunch charge of 1 05 electrons and final bunch length of σt≈100 fs . For a final charge of 1 06 electrons the cryogun produces Lc ,x/σx≈0.1 nm /μ m for σt≈100 - 200 fs and σx≥50 μ m . These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.
Coulomb-Driven Relativistic Electron Beam Compression
NASA Astrophysics Data System (ADS)
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie
2018-01-01
Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
Coulomb-Driven Relativistic Electron Beam Compression.
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie
2018-01-26
Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
NASA Astrophysics Data System (ADS)
Saisut, J.; Kusoljariyakul, K.; Rimjaem, S.; Kangrang, N.; Wichaisirimongkol, P.; Thamboon, P.; Rhodes, M. W.; Thongbai, C.
2011-05-01
The Plasma and Beam Physics Research Facility at Chiang Mai University has established a THz facility to focus on the study of ultra-short electron pulses. Short electron bunches can be generated from a system that consists of a radio-frequency (RF) gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator as a post-acceleration section. The alpha magnet is a conventional and simple instrument for low-energy electron bunch compression. With the alpha magnet constructed in-house, several hundred femtosecond electron bunches for THz radiation production can be generated from the thermionic RF gun. The construction and performance of the alpha magnet, as well as some experimental results, are presented in this paper.
Bunch Length Measurements Using CTR at the AWA with Comparison to Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neveu, N.; Spentzouris, L.; Halavanau, A.
In this paper we present electron bunch length measurements at the Argonne Wakefield Accelerator (AWA) photoinjector facility. The AWA accelerator has a large dynamic charge density range, with electron beam charge varying between 0.1 nC - 100 nC, and laser spot size diameter at the cathode between 0.1 mm - 18 mm. The bunch length measurements were taken at different charge densities using a metallic screen and a Michelson interferometer to perform autocorrelation scans of the corresponding coherent transition radiation (CTR). A liquid helium-cooled 4K bolometer was used to register the interferometer signal. The experimental results are compared with OPAL-Tmore » numerical simulations.« less
Ultrashort electron bunch length measurement with diffraction radiation deflector
NASA Astrophysics Data System (ADS)
Xiang, Dao; Huang, Wen-Hui
2007-01-01
In this paper, we propose a novel method to measure electron bunch length with a diffraction radiation (DR) deflector which is composed of a DR radiator and three beam position monitors (BPMs). When an electron beam passes through a metallic aperture which is tilted by 45 degrees with respect to its trajectory, backward DR that propagates perpendicular to the beam’s trajectory is generated which adds a transverse deflection to the beam as a result of momentum conservation. The deflection is found to be largely dependent on the bunch length and could be easily observed with a downstream BPM. Detailed investigations show that this method has wide applicability, high temporal resolution, and great simplicity.
Pulse length of ultracold electron bunches extracted from a laser cooled gas
Franssen, J. G. H.; Frankort, T. L. I.; Vredenbregt, E. J. D.; Luiten, O. J.
2017-01-01
We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps) but hot (∼104 K) electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K) and ultrafast (∼25 ps) electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales. PMID:28396879
Emittance growth due to static and radiative space charge forces in an electron bunch compressor
NASA Astrophysics Data System (ADS)
Talman, Richard; Malitsky, Nikolay; Stulle, Frank
2009-01-01
Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004)PRABFM1098-440210.1103/PhysRevSTAB.7.100701; N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using TraFiC4* [A. Kabel , Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)NIMAER0168-900210.1016/S0168-9002(00)00729-4] and ELEGANT [M. Borland, Argonne National Laboratory Report No. LS-287, 2000]). All three simulations are in fair agreement with the data except that the UAL simulation predicts a substantial dependence of horizontal emittance γx on beam width (as controlled by the lattice βx function) at the compressor location. This is consistent with the experimental observations, but inconsistent with other simulations. Excellent agreement concerning dependence of bunch energy loss on bunch length and magnetic field strength [L. Groening , in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001), http://groening.home.cern/groening/csr_00.htm] confirms our understanding of the role played by coherent synchrotron radiation (CSR). (ii) A controlled comparison is made between the predictions of the UAL code and those of CSRTrack [M. Dohlus and T. Limberg, in Proceedings of the 2004 FEL Conference, pp. 18-21, MOCOS05, available at http://www.JACoW.org], a code with similar capabilities. For this comparison an appropriately new, 50 MeV, “standard chicane” is introduced. Unlike CSRTrack (which neglects vertical forces) the present simulation shows substantial growth of vertical emittance. But “turning off” vertical forces in the UAL code (to match the CSRTrack treatment) brings the two codes into excellent agreement. (iii) Results are also obtained for 5 GeV electrons passing through a previously introduced “standard chicane” [Coherent Synchrotron Radiation, CSR Workshop, Berlin 2002, http://www.desy.de/csr] [of the sort needed for linear colliders and free electron lasers (FEL’s) currently under design or construction]. Relatively little emittance growth is predicted for typical bunch parameters at such high electron energy. Results are obtained for both round beams and ribbon beams (like those actually needed in practice). Little or no excess emittance growth is found for ribbon bunches compared to round bunches of the same charge and bunch width. The UAL string space charge formulation (like TraFic4 and CSRTrack) avoids the regularization step (subtracting the free-space space charge force) which is required (to remove divergence) in some methods. Also, by avoiding the need to calculate a retarded-time, four-dimensional field history, the computation time needed for realistic bunch evolution calculations is modest. Some theories of bunch dilution, because they ascribe emittance growth entirely to CSR, break down at low energy. In the present treatment, as well as CSR, all free-space Coulomb and magnetic space charge forces (but not image forces), and also the centrifugal space charge force (CSCF) are included. Charge-dependent beam steering due to CSCF, as observed recently by Beutner et al. [B. Beutner , in Proceedings of FEL Conference, BESSY, Berlin, Germany, 2006, MOPPH009], is also investigated.
Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU
NASA Astrophysics Data System (ADS)
Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.
2018-01-01
There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.
Temporal profile monitor based on electro-optic spatial decoding for low-energy bunches
NASA Astrophysics Data System (ADS)
Wang, Wei; Du, Yingchao; Yan, Lixin; Chi, Zhijun; Zhang, Zhen; Hua, Jianfei; Huang, Wenhui; Tang, Chuanxiang; Li, Ming
2017-11-01
The measurement of electron bunch temporal profile is one of the key diagnostics in accelerators, especially for ultrashort bunches. The electro-optic (EO) technique enables the precise longitudinal characterization of bunch electric field in a single-shot and nondestructive way, which can simultaneously obtain and analyze the time jitter between the electron bunch and the synchronized laser. An EO monitor based on spatial decoding for temporal profile measurement and timing jitter recoding has recently been demonstrated and analyzed in depth for low-energy bunches at the Tsinghua Thomson scattering X-ray source. A detailed description of the experimental setup and measurement results are presented in this paper. An EO signal as short as 82 fs (rms) is observed with 100 μ m gallium phosphide for a 40 MeV electron bunch, and the corresponding length is 106 fs (rms) with 300 μ m zinc telluride. Owing to the field-opening angle, we propose a method to eliminate the influence of energy factor for bunches with low energy, resulting in a bunch length of ˜60 fs (rms). The monitor is also successfully applied to measure time jitter with approximately 10 fs accuracy. The experiment environment is proved to be the main source of the slow drift, which is removed using feedback control. Consequently, the rms time jitter decreases from 430 fs to 320 fs.
Use of a corrugated beam pipe as a passive deflector for bunch length measurements
NASA Astrophysics Data System (ADS)
Seok, Jimin; Chung, Moses; Kang, Heung-Sik; Min, Chang-Ki; Na, Donghyun
2018-02-01
We report the experimental demonstration of bunch length measurements using a corrugated metallic beam pipe as a passive deflector. The corrugated beam pipe has been adopted for reducing longitudinal chirping after the bunch compressors in several XFEL facilities worldwide. In the meantime, there have been attempts to measure the electron bunch's longitudinal current profile using the dipole wakefields generated in the corrugated pipe. Nevertheless, the bunch shape reconstructed from the nonlinearly deflected beam suffers from significant distortion, particularly near the head of the bunch. In this paper, we introduce an iterative process to improve the resolution of the bunch shape reconstruction. The astra and elegant simulations have been performed for pencil beam and cigar beam cases, in order to verify the effectiveness of the reconstruction process. To overcome the undesirable effects of transverse beam spreads, a measurement scheme involving both the corrugated beam pipe and the spectrometer magnet has been employed, both of which do not require a dedicated (and likely very expensive) rf system. A proof-of-principle experiment was carried out at Pohang Accelerator Laboratory (PAL) Injector Test Facility (ITF), and its results are discussed together with a comparison with the rf deflector measurement.
NASA Astrophysics Data System (ADS)
Zhao, Jifei; Lu, Xiangyang; Zhou, Kui; Yang, Ziqin; Yang, Deyu; Luo, Xing; Tan, Weiwei; Yang, Yujia
2016-06-01
As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.
Parasitic Cavities Losses in SPEAR-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sands, Matt
2016-12-19
In PEP the large number of particles in a bunch, together with the small bunch length, may cause grievous energy loss from the beam to parasitic modes in the accelerating cavities. I have recently tried to estimate the parasitic cavity in PEP, based on a paper of Keil and I have obtained the result that the loss to parasitic modes will be about 10 MeV per particle per revolution for a bunch length of about 10 cm. In this note, I bring together some of the considerations that might bear on an experimental investigation of the loss using SPEAR-2.
NASA Astrophysics Data System (ADS)
Tooley, M. P.; Ersfeld, B.; Yoffe, S. R.; Noble, A.; Brunetti, E.; Sheng, Z. M.; Islam, M. R.; Jaroszynski, D. A.
2017-07-01
Self-injection in a laser-plasma wakefield accelerator is usually achieved by increasing the laser intensity until the threshold for injection is exceeded. Alternatively, the velocity of the bubble accelerating structure can be controlled using plasma density ramps, reducing the electron velocity required for injection. We present a model describing self-injection in the short-bunch regime for arbitrary changes in the plasma density. We derive the threshold condition for injection due to a plasma density gradient, which is confirmed using particle-in-cell simulations that demonstrate injection of subfemtosecond bunches. It is shown that the bunch charge, bunch length, and separation of bunches in a bunch train can be controlled by tailoring the plasma density profile.
Millimeter wave coherent synchrotron radiation in a compact electron storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, J.B.; Blum, E.; Heese, R.
1998-01-01
Installation of a 2,856 MHz RF system into the XLS compact electron storage ring would allow the generation of millimeter wave coherent synchrotron radiation. Operating at 150 MeV, one could produce bunches containing on the order of 2 {times} 10{sup 7} electrons with a bunch length {sigma}{sub L0} = 0.3 mm, resulting in coherent emission at wavelengths above 0.8 mm. The characteristics of the source and the emitted radiation are discussed. In the case of 100 mrad horizontal collection angle, the average power radiated in the wavelength band 1 mm {le} {lambda} {le} 2 mm is 0.3 mW for singlemore » bunch operation and 24 mW for 80 bunch operation. The peak power in a single pulse of a few picosecond duration is on the order of one watt. By reducing the momentum compaction, the bunch length could be reduced to {sigma}{sub L0} = 0.15 mm, resulting in coherent synchrotron radiation down to 500 {micro}m.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jifei; Lu, Xiangyang, E-mail: xylu@pku.edu.cn; Yang, Ziqin
As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. Themore » self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.« less
NASA Astrophysics Data System (ADS)
Sabato, L.; Arpaia, P.; Cianchi, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Variola, A.
2018-02-01
In high-brightness LINear ACcelerators (LINACs), electron bunch length can be measured indirectly by a radio frequency deflector (RFD). In this paper, the accuracy loss arising from non-negligible correlations between particle longitudinal positions and the transverse plane (in particular the vertical one) at RFD entrance is analytically assessed. Theoretical predictions are compared with simulation results, obtained by means of ELEctron Generation ANd Tracking (ELEGANT) code, in the case study of the gamma beam system (GBS) at the extreme light infrastructure—nuclear physics (ELI-NP). In particular, the relative error affecting the bunch length measurement, for bunches characterized by both energy chirp and fixed correlation coefficients between longitudinal particle positions and the vertical plane, is reported. Moreover, the relative error versus the correlation coefficients is shown for fixed RFD phase 0 rad and π rad. The relationship between relative error and correlations factors can help the decision of using the bunch length measurement technique with one or two vertical spot size measurements in order to cancel the correlations contribution. In the case of the GBS electron LINAC, the misalignment of one of the quadrupoles before the RFD between -2 mm and 2 mm leads to a relative error less than 5%. The misalignment of the first C-band accelerating section between -2 mm and 2 mm could lead to a relative error up to 10%.
Beam dynamics issues in linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.
1989-06-01
The primary goal of present and future linear colliders is to maximize the integrated luminosity for the experimental program. Beam dynamics plays a central role in the maximization of integrated luminosity. It is the major issue in the production of small beam sizes and low experimental backgrounds and is also an important factor in the production of particle numbers, in the acceleration process, and in the number of bunches. The beam dynamics effects on bunches which are extracted from the damping rings, accelerated in the linac, collimated, momentum analyzed, and finally delivered to the final focus are reviewed. The effectsmore » of bunch compression, transverse and longitudinal wakefields, BNS damping, energy definition, dispersion, emittance, bunch aspect ratio, feedback, and stability are all important. 11 refs., 1 tab.« less
Wake loss and energy spread factor of the LEReC Booster cavity caused by short range wake field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Binping; Blaskiewicz, Michael; Fedotov, Alexei
LEReC project uses a DC photoemission gun with multi-alkali (CsK 2Sb or NaK 2Sb) cathode [1]. To get 24 mm “flat-top” distribution, 32 Gaussian laser bunches with 0.6 mm rms length are stacked together with 0.75 mm distance [2]. In this case one cannot simply use a 1 cm rms length Gaussian/step/delta bunch for short range wake field simulation since a 0.6 mm bunch contains frequency much higher than the 1 cm bunch. A short range wake field simulation was done using CST Particle Studio™ with 0.6 mm rms Gaussian bunch at the speed of light, and this result wasmore » compared with the result for 1 cm rms Gaussian bunch in Figure 1, from where one notice that the wake potential for the 0.6 mm bunch is ~10 times higher than that of the 1 cm bunch. The wake potential of the 0.6 mm bunch, as well as the charge distribution, was then “shift and stack” every 0.75 mm, the normalized results are shown in Figure 2. The wake loss factor (WLF) is the integration of the product of wake potential and normalized bunch charge, and the energy spread factor (ESF) is the rms deviation from the average energy loss. It is calculated by summing the weighted squares of the differences and taking the square root of the sum. These two factors were then divided by β 2 for 1.6 MV beam energy. The wake loss factor is at 0.86 V/pC and energy spread factor is at 0.54 V/pC rms. With 100 pC electron bunch, the energy spread inter-bunch is 54 V rms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniosek, F.M.; Anders, A.; Barnard, J.J.
This effort contains two main components: The new induction-bunching module is expected to deliver higher fluence in the bunched beam, and the new target positioner will enable a significantly enhanced target physics repetition rate. The velocity ramp that bunches the K{sup +} beam in the neutralized drift compression section is established with a bipolar voltage ramp applied to an acceleration gap. An induction acceleration module creates this voltage waveform. The new bunching module (IBM) specially built for NDCX has approximately twice the capability (volt-seconds) as our original IBM. We reported on the beam line design for the best use ofmore » the bunching module in our FY08 Q2 report. Based on simulations and theoretical work, we chose to extend the drift compression section and use the additional volt-seconds to extend the pulse duration and keep the peak voltage swing (and velocity excursions) similar to the present module. Simulations showed that this approach, which extends the drift section, to be advantageous because it limits the chromatic aberrations in the beam spot on target. To this end, colleagues at PPPL have fabricated the meter-long extension to the ferroelectric plasma source and it was installed on the beam line with the new IBM in January 2009. Simulation results suggest a factor of two increase in energy deposition from the bunched beam. In the first WDM target run (August-November 2008) the target handling setup required opening the vacuum system to manually replace the target after each shot (which destroys the target). Because of the requirement for careful alignment of each individual target, the target shot repetition rate was no greater than 1 shot per day. Initial results of this run are reported in our FY08 4th Quarter Milestone Report. Based on the valuable experience gained in the initial run, we have designed and installed an improved target alignment and positioning system with the capability to reposition targets remotely. This capability allows us to significantly increase our shot repetition rate, and to take greater advantage of the pinhole/cone arrangement we have developed to localize the beam at final focus. In addition we have improved the capability of the optical diagnostic systems, and we have installed a new beam current transformer downstream of the target to monitor beam current transmitted through the target during an experiment. These improvements will allow us to better exploit the inherent capability of the NDCX facility for high repetition rate and thus to provide more detailed experimental data to assess WDM physics models of target behavior. This milestone has been met by demonstrating highly compressed beams with the new bunching module, which are neutralized in the longer drift compression section by the new ferro-electric plasma sources. The peak uncompressed beam intensity ({approx}600 kW/cm{sup 2}) is higher than in previous measurements, and the bunched beam current profiles are {approx}2ns. We have also demonstrated a large increase in the experimental data acquisition rate for target heating experiments. In the first test of the new remote-controlled target positioning system, we completed three successful target physics shots in less than two hours. Further improvements are expected.« less
NASA Astrophysics Data System (ADS)
Zhu, J.; Assmann, R. W.; Dohlus, M.; Dorda, U.; Marchetti, B.
2016-05-01
The generation of ultrashort electron bunches with ultrasmall bunch arrival-time jitter is of vital importance for laser-plasma wakefield acceleration with external injection. We study the production of 100-MeV electron bunches with bunch durations of subfemtosecond (fs) and bunch arrival-time jitters of less than 10 fs, in an S-band photoinjector by using a weak magnetic chicane with a slit collimator. The beam dynamics inside the chicane is simulated by using two codes with different self-force models. The first code separates the self-force into a three-dimensional (3D) quasistatic space-charge model and a one-dimensional coherent synchrotron radiation (CSR) model, while the other one starts from the first principle with a so-called 3D sub-bunch method. The simulations indicate that the CSR effect dominates the horizontal emittance growth and the 1D CSR model underestimates the final bunch duration and emittance because of the very large transverse-to-longitudinal aspect ratio of the sub-fs bunch. Particularly, the CSR effect is also strongly affected by the vertical bunch size. Due to the coupling between the horizontal and longitudinal phase spaces, the bunch duration at the entrance of the last dipole magnet of the chicane is still significantly longer than that at the exit of the chicane, which considerably mitigates the impact of space charge and CSR effects on the beam quality. Exploiting this effect, a bunch charge of up to 4.8 pC in a sub-fs bunch could be simulated. In addition, we analytically and numerically investigate the impact of different jitter sources on the bunch arrival-time jitter downstream of the chicane, and define the tolerance budgets assuming realistic values of the stability of the linac for different bunch charges and compression schemes.
Electron Beam Diagnostics Of The JLAB UV FEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evtushenko, Pavel; Benson, Stephen; Biallas, George
2011-03-01
In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A systemmore » of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.« less
Novel schemes for the optimization of the SPARC narrow band THz source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, B., E-mail: barbara.marchetti@desy.de; Zagorodnov, I.; Bacci, A.
2015-07-15
A pulsed, tunable, narrow band radiation source with frequency in the THz region can be obtained collecting the coherent transition radiation produced by a train of ultra-short electron bunches having picosecond scale inter-distance. In this paper, we review the techniques feasible at the SPARC-LAB test facility to produce and manipulate the requested train of electron bunches and we examine the dynamics of their acceleration and compression. In addition, we show how the performances of the train compression and the radiation intensity and bandwidth can be significantly improved through the insertion of a fourth order harmonic cavity, working in the X-bandmore » and acting as a longitudinal phase space linearizer.« less
Longitudinal bunch dynamics study with coherent synchrotron radiation
NASA Astrophysics Data System (ADS)
Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.
2016-02-01
An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.
Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle
2017-09-25
One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.
NASA Astrophysics Data System (ADS)
Asfarizal; Kasim, Anwar; Gunawarman; Santosa
2017-12-01
Empty Palm bunches of fiber is local ingredient in Indonesia that easy to obtain. Empty Palm bunches of fiber can be obtained from the palm oil industry such as in West Pasaman. The character of the empty Palm bunches of fiber that is strong and pliable has high-potential for particle board. To transform the large quantities of fiber become particles in size 0-10 mm requires a specially designed cut machine. Therefore, the machine is designed in two-stage system that is mechanical system, structure and cutting knife. Components that have been made, assembled and then tested to reveal the ability of the machine to cut. The results showed that the straight back and forth motion cut machine is able to cut out the empty oil palm bunches of fiber with a length 0-1 cm, 2 cm, 8 cm and the surface of the cut is not stringy. The cutting capacity is at a length of 2 cm in the result 24.4 (kg/h) and 8 cm obtained results of up to 84 (kg/h)
End-to-end simulation of bunch merging for a muon collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Yu; Stratakis, Diktys; Hanson, Gail G.
2015-05-03
Muon accelerator beams are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. Efficient muon capture requires the muons to be first phase-rotated by rf cavities into a train of 21 bunches with much reduced energy spread. Since luminosity is proportional to the square of the number of muons per bunch, it is crucial for a Muon Collider to use relatively few bunches with many muons per bunch. In this paper we will describe a bunch merging scheme that should achieve this goal. We present for the first time a complete end-to-end simulationmore » of a 6D bunch merger for a Muon Collider. The 21 bunches arising from the phase-rotator, after some initial cooling, are merged in longitudinal phase space into seven bunches, which then go through seven paths with different lengths and reach the final collecting "funnel" at the same time. The final single bunch has a transverse and a longitudinal emittance that matches well with the subsequent 6D rectilinear cooling scheme.« less
BPM Breakdown Potential in the PEP-II B-factory Storage Ring Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weathersby, Stephen; Novokhatski, Alexander; /SLAC
2010-02-10
High current B-Factory BPM designs incorporate a button type electrode which introduces a small gap between the button and the beam chamber. For achievable currents and bunch lengths, simulations indicate that electric potentials can be induced in this gap which are comparable to the breakdown voltage. This study characterizes beam induced voltages in the existing PEP-II storage ring collider BPM as a function of bunch length and beam current.
A New Frequency-Domain Method for Bunch Length Measurement
NASA Astrophysics Data System (ADS)
Ferianis, M.; Pros, M.
1997-05-01
A new method for bunch length measurements has been developed at Elettra. It is based on a spectral observation of the synchrotron radiation light pulses. The single pulse spectrum is shaped by means of an optical process which gives the method an increased sensitivity compared to the usual spectral observations. Some simulations have been carried out to check the method in non-ideal conditions. The results of the first measurements are also presented.
Application accelerator system having bunch control
Wang, Dunxiong; Krafft, Geoffrey Arthur
1999-01-01
An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.
IBS and expected luminosity performance for RHIC beams at top energy with 56 MHz SRF cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov,A.
The purpose of RF system in RHIC is to capture injected bunches, accelerate them to the top energy, and store bunches at the top energy for many hours. The accelerating RF system operates at harmonic number h=360 of the particle revolution frequency f=78.196 kHz, which corresponds to 28.15MHz. The storage RF system accepts the shortened bunches at top energy and provides longitudinal focusing to keep these bunches short during the store time (collision mode). The storage system operates at harmonic number h=7x360=2520, which corresponds to an RF frequency of 197.05 MHz [1]. Recently, an upgrade of storage RF system withmore » a superconducting 56 MHz cavity was proposed [2]. This upgrade will provide significant increase in the acceptance of storage RF bucket. Presently, the short bunch length for collisions is obtained via RF gymnastics with bunch rotation (called re-bucketing), because the length of 197MHz bucket of 5 nsec is too short to accommodate long bunches otherwise. However, due to bucket non-linearity and hardware complications some increase in the longitudinal emittance occurs during re-bucketing. The 56MHz cavity will produce sufficiently short bunches which would allow one to operate without re-bucketing procedure. This Note summarizes simulation of beam evolution due to Intra-beam scattering (IBS) for beam parameters expected with the 56 MHz SRF cavity upgrade. Expected luminosity improvement is shown both for Au ions at 100 GeV/nucleon and for protons at 250 GeV.« less
Analytical model and error analysis of arbitrary phasing technique for bunch length measurement
NASA Astrophysics Data System (ADS)
Chen, Qushan; Qin, Bin; Chen, Wei; Fan, Kuanjun; Pei, Yuanji
2018-05-01
An analytical model of an RF phasing method using arbitrary phase scanning for bunch length measurement is reported. We set up a statistical model instead of a linear chirp approximation to analyze the energy modulation process. It is found that, assuming a short bunch (σφ / 2 π → 0) and small relative energy spread (σγ /γr → 0), the energy spread (Y =σγ 2) at the exit of the traveling wave linac has a parabolic relationship with the cosine value of the injection phase (X = cosφr|z=0), i.e., Y = AX2 + BX + C. Analogous to quadrupole strength scanning for emittance measurement, this phase scanning method can be used to obtain the bunch length by measuring the energy spread at different injection phases. The injection phases can be randomly chosen, which is significantly different from the commonly used zero-phasing method. Further, the systematic error of the reported method, such as the influence of the space charge effect, is analyzed. This technique will be especially useful at low energies when the beam quality is dramatically degraded and is hard to measure using the zero-phasing method.
Development for a supercompact X -band pulse compression system and its application at SLAC
Wang, Juwen W.; Tantawi, Sami G.; Xu, Chen; ...
2017-11-09
Here, we have successfully designed, fabricated, installed, and tested a super compact X -band SLAC Energy Doubler system at SLAC. It is composed of an elegant 3 dB coupler–mode converter–polarizer coupled to a single spherical energy storage cavity with high Q 0 of 94000 and a diameter less than 12 cm. The available rf peak power of 50 MW can be compressed to a peak average power of more than 200 MW in order to double the kick for the electron bunches in a rf transverse deflector system and greatly improve the measurement resolution of both the electron bunches andmore » the x-ray free-electron laser pulses. The design physics and fabrication as well as the measurement results will be presented in detail. High-power operation has demonstrated the excellent performance of this rf compression system without rf breakdown, sign of pulse heating, and rf radiation.« less
Development for a supercompact X -band pulse compression system and its application at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juwen W.; Tantawi, Sami G.; Xu, Chen
Here, we have successfully designed, fabricated, installed, and tested a super compact X -band SLAC Energy Doubler system at SLAC. It is composed of an elegant 3 dB coupler–mode converter–polarizer coupled to a single spherical energy storage cavity with high Q 0 of 94000 and a diameter less than 12 cm. The available rf peak power of 50 MW can be compressed to a peak average power of more than 200 MW in order to double the kick for the electron bunches in a rf transverse deflector system and greatly improve the measurement resolution of both the electron bunches andmore » the x-ray free-electron laser pulses. The design physics and fabrication as well as the measurement results will be presented in detail. High-power operation has demonstrated the excellent performance of this rf compression system without rf breakdown, sign of pulse heating, and rf radiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, Fernando; Zolotorev, Max S.; Filippetto, Daniele
2007-06-22
By analysing the pulse to pulse intensity fluctuations ofthe radiation emitted by a charge particle in the incoherent part of thespectrum, it is possible to extract information about the spatialdistribution of the beam. At the Advanced Light Source (ALS) of theLawrence Berkeley National Laboratory, we have developed and tested asimple scheme based on this principle that allows for the absolutemeasurement of the bunch length. A description of the method and theexperimental results are presented.
Terahertz and Optical Measurement Apparatus for the Fermilab ASTA Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman-Keup, R.; Lumpkin, A. H.; Thangaraj, J.
2014-01-01
ASTA is a facility at Fermilab that, once completed, will consist of a photoinjector with two superconducting capture cavities, at least one superconducting ILC-style cryomodule, and a small ring for studying non-linear, integrable beam optics. This paper discusses the layout for the optical transport system that will provide THz radiation to a Martin-Puplett interferometer for bunch length measurements as well as optical radiation to an externally located streak camera, also for bunch length measurements. It will be able to accept radiation from two synchrotron radiation ports in the bunch compressor, a diffraction/transition radiation screen downstream of the compressor, and amore » transition radiation screen after the spectrometer magnet for measurements of energy-time correlations.« less
Etude Experimentale du Photo-Injecteur de Fermilab (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carneiro, Jean-Paul
2001-01-01
TESLA (TeV Superconducting Linear Accelerator) is an international collaboration which is studying the feasibility of anmore » $e^+e^-$ collider of energy 0.8 TeV in the center of mass. One of the first goals of this collaboration was to construct a prototype linear accelerator at the DESY Laboratory in Hamburg, the TESLA Test Facility (TTF), in order to establish the technical basis for the collider. Two injectors were developed for TTF: a thermionic injector (developed by LAL-Orsay, IPN-Orsay, and CEA-Saclay) and a photo-injector (developed by Fermilab). The thermionic injector was used from February 1997 to October 1998, and then it was replaced by the photo-injector, which was first operated in December 1998. Another photo-injector, identical to the one delivered to TTF, was installed at Fermilab in the $$A{\\emptyset}$$ Building. The first beam from the latter was produced on 3 March 1999. The photo-injector consists of an RF gun, followed by a superconducting cavity. The RF gun is a 1.625-cell copper cavity with a resonant frequency of 1.3 GHz. The gun contains a cesium telluride ($$C_{s_2}$$Te) photo-cathode, which is illuminated by UV pulses from a Nd:YLF laser. The system can produce trains of 800 bunches of photo-electrons of charge 8 nC per bunch with spacing between bunches of 1$$\\mu$$s and 10 Hz repetition rate. Upon emerging from the RF gun, the beam energy is 4 to 5 MeV; the beam is then rapidly accelerated by the superconducting cavity to an energy of 17 to 20 MeV. Finally, a magnetic chicane, consisting of 4 dipoles, produces longitudinal compression of the electron bunches. This thesis describes the installation of the photo-injector at Fermilab and presents the experimentally-measured characteristics of the injector. The principal measurements were quantum eciency, dark current, transverse emittance, and bunch length. The conclusion from these studies is that the quality of the photo-injector beam fullls the design goals. The photo-injector at Fermilab is presently available for user experiments, including the production of at beams and plasma wake eld acceleration.« less
Application accelerator system having bunch control
Wang, D.; Krafft, G.A.
1999-06-22
An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.
NASA Astrophysics Data System (ADS)
Khachatryan, A. G.; van Goor, F. A.; Boller, K.-J.; Reitsma, A. J.; Jaroszynski, D. A.
2004-12-01
Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [
Resistive wall wakefields of short bunches at cryogenic temperatures
Stupakov, G.; Bane, K. L. F.; Emma, P.; ...
2015-03-19
In this study, we present calculations of the longitudinal wakefields at cryogenic temperatures for extremely short bunches, characteristic for modern x-ray free electron lasers. The calculations are based on the equations for the surface impedance in the regime of the anomalous skin effect in metals. This paper extends and complements an earlier analysis of B. Podobedov, Phys. Rev. ST Accel. Beams 12, 044401 (2009). into the region of very high frequencies associated with bunch lengths in the micron range. We study in detail the case of a rectangular bunch distribution for parameters of interest of LCLS-II with a superconducting undulator.
Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment
Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; ...
2016-05-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted onmore » the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.« less
LIGHT - from laser ion acceleration to future applications
NASA Astrophysics Data System (ADS)
Roth, Markus; Light Collaboration
2013-10-01
Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippetto, D.; /Frascati; Sannibale, F.
2008-01-24
By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and tested a simple scheme based on this principle that allows for the absolute measurement of the bunch length. A description of the method and the experimental results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman-Keup, R.; Lumpkin, A. H.; Thangaraj, J.
FAST is a facility at Fermilab that consists of a photoinjector, two superconducting capture cavities, one superconducting ILC-style cryomodule, and a small ring for studying non-linear, integrable beam optics called IOTA. This paper discusses the layout for the optical transport system that provides optical radiation to an externally located streak camera for bunch length measurements, and THz radiation to a Martin-Puplett interferometer, also for bunch length measurements. It accepts radiation from two synchrotron radiation ports in a chicane bunch compressor and a diffraction/transition radiation screen downstream of the compressor. It also has the potential to access signal from a transitionmore » radiation screen or YAG screen after the spectrometer magnet for measurements of energy-time correlations. Initial results from both the streak camera and Martin-Puplett will be presented.« less
FEL system with homogeneous average output
Douglas, David R.; Legg, Robert; Whitney, R. Roy; Neil, George; Powers, Thomas Joseph
2018-01-16
A method of varying the output of a free electron laser (FEL) on very short time scales to produce a slightly broader, but smooth, time-averaged wavelength spectrum. The method includes injecting into an accelerator a sequence of bunch trains at phase offsets from crest. Accelerating the particles to full energy to result in distinct and independently controlled, by the choice of phase offset, phase-energy correlations or chirps on each bunch train. The earlier trains will be more strongly chirped, the later trains less chirped. For an energy recovered linac (ERL), the beam may be recirculated using a transport system with linear and nonlinear momentum compactions M.sub.56, which are selected to compress all three bunch trains at the FEL with higher order terms managed.
What Drives Metal-Surface Step Bunching in Graphene Chemical Vapor Deposition?
NASA Astrophysics Data System (ADS)
Yi, Ding; Luo, Da; Wang, Zhu-Jun; Dong, Jichen; Zhang, Xu; Willinger, Marc-Georg; Ruoff, Rodney S.; Ding, Feng
2018-06-01
Compressive strain relaxation of a chemical vapor deposition (CVD) grown graphene overlayer has been considered to be the main driving force behind metal surface step bunching (SB) in CVD graphene growth. Here, by combining theoretical studies with experimental observations, we prove that the SB can occur even in the absence of a compressive strain, is enabled by the rapid diffusion of metal adatoms beneath the graphene and is driven by the release of the bending energy of the graphene overlayer in the vicinity of steps. Based on this new understanding, we explain a number of experimental observations such as the temperature dependence of SB, and how SB depends on the thickness of the graphene film. This study also shows that SB is a general phenomenon that can occur in all substrates covered by films of two-dimensional (2D) materials.
THz-driven zero-slippage IFEL scheme for phase space manipulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, E.; Fabbri, S.; Musumeci, P.
In this paper, we describe an inverse free electron laser (IFEL) interaction driven by a near single-cycle THz pulse that is group velocity-matched to an electron bunch inside a waveguide, allowing for a sustained interaction in a magnetic undulator. We discuss the application of this guided-THz IFEL technique for compression of a relativistic electron bunch and synchronization with the external laser pulse used to generate the THz pulse via optical rectification, as well as a laser-driven THz streaking diagnostic with the potential for femtosecond scale temporal resolution. Initial measurements of the THz waveform via an electro-optic sampling based technique confirm the predicted reduction of the group velocity, using a curved parallel plate waveguide, as a function of the varying aperture size of the guide. We also present the design of a proof-of-principle experiment based on the bunch parameters available at the UCLA PEGASUS laboratory. With amore » $$10\\,\\mathrm{MV}\\,{{\\rm{m}}}^{-1}$$ THz peak field, our simulation model predicts compression of a $$6\\,\\mathrm{MeV}$$ $$100\\,\\mathrm{fs}$$ electron beam by nearly an order of magnitude and a significant reduction of its initial timing jitter.« less
THz-driven zero-slippage IFEL scheme for phase space manipulation
Curry, E.; Fabbri, S.; Musumeci, P.; ...
2016-11-24
In this paper, we describe an inverse free electron laser (IFEL) interaction driven by a near single-cycle THz pulse that is group velocity-matched to an electron bunch inside a waveguide, allowing for a sustained interaction in a magnetic undulator. We discuss the application of this guided-THz IFEL technique for compression of a relativistic electron bunch and synchronization with the external laser pulse used to generate the THz pulse via optical rectification, as well as a laser-driven THz streaking diagnostic with the potential for femtosecond scale temporal resolution. Initial measurements of the THz waveform via an electro-optic sampling based technique confirm the predicted reduction of the group velocity, using a curved parallel plate waveguide, as a function of the varying aperture size of the guide. We also present the design of a proof-of-principle experiment based on the bunch parameters available at the UCLA PEGASUS laboratory. With amore » $$10\\,\\mathrm{MV}\\,{{\\rm{m}}}^{-1}$$ THz peak field, our simulation model predicts compression of a $$6\\,\\mathrm{MeV}$$ $$100\\,\\mathrm{fs}$$ electron beam by nearly an order of magnitude and a significant reduction of its initial timing jitter.« less
High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation.
Rist, Florian; Herzog, Katja; Mack, Jenny; Richter, Robert; Steinhage, Volker; Töpfer, Reinhard
2018-03-02
Wine growers prefer cultivars with looser bunch architecture because of the decreased risk for bunch rot. As a consequence, grapevine breeders have to select seedlings and new cultivars with regard to appropriate bunch traits. Bunch architecture is a mosaic of different single traits which makes phenotyping labor-intensive and time-consuming. In the present study, a fast and high-precision phenotyping pipeline was developed. The optical sensor Artec Spider 3D scanner (Artec 3D, L-1466, Luxembourg) was used to generate dense 3D point clouds of grapevine bunches under lab conditions and an automated analysis software called 3D-Bunch-Tool was developed to extract different single 3D bunch traits, i.e., the number of berries, berry diameter, single berry volume, total volume of berries, convex hull volume of grapes, bunch width and bunch length. The method was validated on whole bunches of different grapevine cultivars and phenotypic variable breeding material. Reliable phenotypic data were obtained which show high significant correlations (up to r² = 0.95 for berry number) compared to ground truth data. Moreover, it was shown that the Artec Spider can be used directly in the field where achieved data show comparable precision with regard to the lab application. This non-invasive and non-contact field application facilitates the first high-precision phenotyping pipeline based on 3D bunch traits in large plant sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, T. J.; Behrens, C.; Ding, Y.
2013-10-28
Modern, high-brightness electron beams such as those from plasma wakefield accelerators and free-electron laser linacs continue the drive to ever-shorter bunch durations. In low-charge operation ( ~ 20 pC ), bunches shorter than 10 fs are reported at the Linac Coherent Light Source (LCLS). Though suffering from a loss of phase information, spectral diagnostics remain appealing as compact, low-cost bunch duration monitors suitable for deployment in beam dynamics studies and operations instrumentation. Progress in middle-infrared (MIR) imaging has led to the development of a single-shot, MIR prism spectrometer to characterize the corresponding LCLS coherent beam radiation power spectrum for few-femtosecondmore » scale bunch length monitoring. In this Letter, we report on the spectrometer installation as well as the temporal reconstruction of 3 to 60 fs-long LCLS electron bunch profiles using single-shot coherent transition radiation spectra.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, P.; Maxwell, T. J.; Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510
2011-06-27
We experimentally demonstrate the production of narrow-band ({delta}f/f{approx_equal}20% at f{approx_equal}0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.
A THz Spectroscopy System Based on Coherent Radiation from Ultrashort Electron Bunches
NASA Astrophysics Data System (ADS)
Saisut, J.; Rimjaem, S.; Thongbai, C.
2018-05-01
A spectroscopy system will be discussed for coherent THz transition radiation emitted from short electron bunches, which are generated from a system consisting of an RF gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator for post-acceleration. The THz radiation is generated as backward transition radiation when electron bunches pass through an aluminum foil. The emitted THz transition radiation, which is coherent at wavelengths equal to and longer than the electron bunch length, is coupled to a Michelson interferometer. The performance of the spectroscopy system employing a Michelson interferometer is discussed. The radiation power spectra under different conditions are presented. As an example, the optical constant of a silicon wafer can be obtained using the dispersive Fourier transform spectroscopy (DFTS) technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, S. V., E-mail: svk-IVTAN@yandex.ru
The formation of short electron bunches during the passage of a laser pulse of relativistic intensity through a sharp boundary of semi-bounded plasma has been analytically studied. It is shown in one-dimensional geometry that one physical mechanism that is responsible for the generation of electron bunches is their self-injection into the wake field of a laser pulse, which occurs due to the mixing of electrons during the action of the laser pulse on plasma. Simple analytic relationships are obtained that can be used for estimating the length and charge of an electron bunch and the spread of electron energies inmore » the bunch. The results of the analytical investigation are confirmed by data from numerical simulations.« less
Focusing Intense Charged Particle Beams with Achromatic Effects for Heavy Ion Fusion
NASA Astrophysics Data System (ADS)
Mitrani, James; Kaganovich, Igor
2012-10-01
Final focusing systems designed to minimize the effects of chromatic aberrations in the Neutralized Drift Compression Experiment (NDCX-II) are described. NDCX-II is a linear induction accelerator, designed to accelerate short bunches at high current. Previous experiments showed that neutralized drift compression significantly compresses the beam longitudinally (˜60x) in the z-direction, resulting in a narrow distribution in z-space, but a wide distribution in pz-space. Using simple lenses (e.g., solenoids, quadrupoles) to focus beam bunches with wide distributions in pz-space results in chromatic aberrations, leading to lower beam intensities (J/cm^2). Therefore, the final focusing system must be designed to compensate for chromatic aberrations. The paraxial ray equations and beam envelope equations are numerically solved for parameters appropriate to NDCX-II. Based on these results, conceptual designs for final focusing systems using a combination of solenoids and/or quadrupoles are optimized to compensate for chromatic aberrations. Lens aberrations and emittance growth will be investigated, and analytical results will be compared with results from numerical particle-in-cell (PIC) simulation codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrd, J.M.; Hao, Z.; Martin, M.C.
2004-07-01
Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces large modulation of the electron energies within a short {approx}100 fs slice of the electron bunch. Propagating around the storage ring, this bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories. The length of the perturbation evolves with a distance from the wiggler but is much shorter than the electron bunch length. This perturbation causes the electron bunch to emit short pulses of temporally and spatially coherent infrared light which are automatically synchronized to the modulating laser. Themore » intensity and spectra of the infrared light were measured in two storage ring locations for a nominal ALS lattice and for an experimental lattice with the higher momentum compaction factor. The onset of instability stimulated by laser e-beam interaction had been discovered. The infrared signal is now routinely used as a sensitive monitor for a fine tuning of the laser beam alignment during data accumulation in the experiments with femtosecond x-ray pulses.« less
Bunch Length Measurements at the ATF Damping Ring in April 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, K.L.F.; /SLAC; Naito, T.
We want to accurately know the energy spread and bunch length dependence on current in the ATF damping ring. One reason is to know the strength of the impedance: From the energy spread measurements we know whether or not we are above the threshold to the microwave instability, and from the energy spread and bunch length measurements we find out the extent of potential-well bunch lengthening (PWBL). Another reason for these measurements is to help in our understanding of the intra-beam scattering (IBS) effect in the ATF. The ATF as it is now, running below design energy and with themore » wigglers turned off, is strongly affected by IBS. To check for consistency with IBS theory of, for example, the measured vertical beam size, we need to know all dimensions of the beam, including the longitudinal one. But beyond this practical reason for studying IBS, IBS is currently a hot research topic at many accelerators around the world (see e.g. Ref. [1]), and the effect in actual machines is not well understood. Typically, when comparing theory with measurements fudge factors are needed to get agreement (see e.g. Ref. [1]). With its strong IBS effect, the ATF is an ideal machine for studying IBS, and an indispensable ingredient for this study is a knowledge of the longitudinal phase space of the beam. The results of earlier bunch lengthening measurements in the ATF can be found in Refs. [2]-[4]. Measurements of current dependent effects, especially bunch length measurements using a streak camera, can be difficult to perform accurately. For example, space charge in the camera itself can lead to systematic errors in the measurement results. It is important the results be accurate and reproducible. In the measurements of both December 1998[3] and December 1999[4], by using light filters, the authors first checked that space charge in the streak camera was not significant. And then the Dec 99 authors show that their results agree with those Dec 98, i.e. on the dates of the two measurements the results were reproducible. Since IBS is so strong in the ATF, in the Dec 99 measurements an attempt was made to estimate the impedance effect using the following method: First, from the form of the energy spread vs. current measurements it was concluded that the threshold to the microwave instability was beyond 2 mA. Then, by dividing the bunch length vs. current curve by the energy spread vs. current curve the effect of IBS was divided out, and PWBL was approximated. The assumption is that PWBL can be treated as a perturbation on top of IBS. The result was that this component of bunch lengthening was found to grow by 7-15% (depending on the rf voltage) between the currents of .5 mA and 2 mA, about a factor of 3 less than the total bunch length growth. The conclusion was that the inductive component of the impedance was small, in fact much smaller than had been concluded earlier in Ref. [2]. Electron machines generally run in a parameter regime where IBS is an insignificant effect, and impedance measurements and calculations have also normally been performed for machines where IBS is unimportant. To simplify the interpretation of the impedance from bunch length measurements, in April 2000 the energy spread and bunch length measurements of Dec 99 were repeated, but now with the beam on a linear (difference) coupling resonance, where the horizontal and vertical emittances were approximately equal. For this case the effect of IBS was expected to be very small. An energy spread vs. current measurement under such conditions will also allow us to more clearly see whether we reach the threshold to the microwave instability. As part of the April data taking we, in addition, repeated the earlier off-coupling measurements, in order to check the reproducibility of the earlier results. In this report we present and analyze this recent set of data, and compare it with the results of the earlier measurements, particularly those of Dec 99. The measurements and analysis of data in this report follow essentially the same procedure as was used in Ref. [4]. In the present report we will try to be relatively brief. The comparison of our results with IBS theory will be given in a following report. For more details about the measurement and analysis techniques presented in this report, the reader should consult Ref. [4].« less
Double emittance exchanger as a bunch compressor for the MaRIE XFEL electron beam line at 1 GeV
NASA Astrophysics Data System (ADS)
Malyzhenkov, Alexander; Carlsten, Bruce E.; Yampolsky, Nikolai A.
2017-03-01
We demonstrate an alternative realization of a bunch compressor (specifically, the second bunch compressor for the MaRIE XFEL beamline, 1GeV electron energy) using a double emittance exchanger (EEX) and a telescope in the transverse phase space. We compare our results with a traditional bunch compressor realized via a chicane, taking into account the nonlinear dynamics, Coherent Synchrotron Radiation (CSR) and Space Charge (SC) effects. In particular, we use the Elegant code for tracking particles through the beamline, and analyze the evolution of the eigen-emittances to separate the influence of the CSR/SC effects from the nonlinear dynamics effects. We optimize the scheme parameters to reach a desirable compression factor and minimize the emittance growth. We observe dominant CSR effects in our scheme, resulting in critical emittance growth, and introduce an alternative version of an emittance exchanger with a reduced number of bending magnets to minimize the impact of CSR effects.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang
2016-05-01
High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μ J -level energies and tunable central frequency of the spectrum in the range of ˜0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhen; Yan, Lixin; Du, Yingchao
2016-05-05
High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radiofrequency gun or by tuning the compression of a downstreammore » magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μJ-level energies and tunable central frequency of the spectrum in the range of ~0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.« less
Double Emittance Exchanger as a Bunch Compressor for the MaRIE XFEL electron beam line at 1GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyzhenkov, Alexander; Yampolsky, Nikolai; Carlsten, Bruce Eric
We demonstrate an alternative realization of a bunch compressor (specifically the second bunch compressor for the MaRIE XFEL beamline, 1GeV electron energy) using a double emittance exchanger (EEX) and a telescope in the transverse phase space.We compare our results with a traditional bunch compressor realized via chicane, taking into account the nonlinear dynamics, Coherent Synchrotron Radiation (CSR) and Space Charge (SC) effects. In particular, we use the Elegant code for tracking particles through the beam line and analyze the eigen-emittances evolution to separate the influence of the CSR/SC effects from the nonlinear dynamics effects. We optimize the scheme parameters tomore » reach a desirable compression factor and minimize the emittance growth. We observe dominant CSR-effects in our scheme resulting in critical emittance growth and introduce alternative version of an emittance exchanger with a reduced number of bending magnets to minimize the impact of CSR effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, P.; Sun, Y. -E; Maxwell, T. J.
2011-06-27
We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.
Acceleration of electron bunches by intense laser pulse in vacuum
NASA Astrophysics Data System (ADS)
Hua, J. F.; Ho, Y. K.; Lin, Y. Z.; Cao, N.
2003-08-01
This paper addresses the output characteristics of real electron bunches accelerated with ultra-intense laser pulse in vacuum by the capture & acceleration scenario (CAS) scheme (see, e.g., Phys. Rev. E66 (2002) 066501). Normally, the size of an electron bunch is much larger than that of a tightly focused and compressed laser pulse. We examine in detail the features of the intersection region, the distribution of electrons which can experience an intense laser field and be accelerated to high energy. Furthermore, the output properties of the accelerated CAS electrons, such as the energy spectra, the angular distributions, the energy-angle correlations, the acceleration gradient, the energy which can be reached with this scheme, the emittances of the outgoing electron bunches, and the dependence of the output properties on the incident electron beam qualities such as the emittance, focusing status, etc. were studied and explained. We found that with intense laser systems and electron beam technology currently available nowadays, the number of CAS electrons can reach 10 4-10 5, when the total number of incident electrons in the practical bunch reaches ˜10 8. These results demonstrate that CAS is promising to become a novel mechanism of vacuum laser accelerators.
NASA Astrophysics Data System (ADS)
Shin, Young-Min; Figora, Michael
2017-10-01
A stable femtosecond electron beam system has been configured for time-resolved pump-probe experiments. The ultrafast electron diffraction (UED) system is designed with a sub-MeV photoelectron beam source pulsed by a femtosecond UV laser and nondispersive beamline components, including a bunch compressor—a pulsed S-band klystron is installed and fully commissioned with 5.5 MW peak power in a 2.5 μs pulse length. A single-cell RF photo-gun is designed to produce 1.6-16 pC electron bunches in a photoemission mode with 150 fs pulse duration at 0.5-1 MeV. The measured RF system jitters are within 1% in magnitude and 0.2° in phase, which would induce 3.4 keV and 0.25 keV of ΔE, corresponding to 80 fs and 5 fs of Δt, respectively. Our particle-in-cell simulations indicate that the designed bunch compressor reduces the time-of-arrival jitter by about an order of magnitude. The transport and focusing optics of the designed beamline with the bunch compressor enables an energy spread within 10-4 and a bunch length (electron probe) within <500 fs. In this paper, the design analysis and instrumental test results are presented along with the development of the quasi-relativistic UED system.
Shin, Young-Min; Figora, Michael
2017-10-01
A stable femtosecond electron beam system has been configured for time-resolved pump-probe experiments. The ultrafast electron diffraction (UED) system is designed with a sub-MeV photoelectron beam source pulsed by a femtosecond UV laser and nondispersive beamline components, including a bunch compressor-a pulsed S-band klystron is installed and fully commissioned with 5.5 MW peak power in a 2.5 μs pulse length. A single-cell RF photo-gun is designed to produce 1.6-16 pC electron bunches in a photoemission mode with 150 fs pulse duration at 0.5-1 MeV. The measured RF system jitters are within 1% in magnitude and 0.2° in phase, which would induce 3.4 keV and 0.25 keV of ΔE, corresponding to 80 fs and 5 fs of Δt, respectively. Our particle-in-cell simulations indicate that the designed bunch compressor reduces the time-of-arrival jitter by about an order of magnitude. The transport and focusing optics of the designed beamline with the bunch compressor enables an energy spread within 10 -4 and a bunch length (electron probe) within <500 fs. In this paper, the design analysis and instrumental test results are presented along with the development of the quasi-relativistic UED system.
Emittance preservation during bunch compression with a magnetized beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratakis, Diktys
2015-09-02
The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based on combining a finite solenoid field where the beam is generated together with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth can be notably suppressed tomore » less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tennant, Christopher D.; Douglas, David R.; Li, Rui
2014-12-01
The Jefferson Laboratory IR FEL Driver provides an ideal test bed for studying a variety of beam dynamical effects. Recent studies focused on characterizing the impact of coherent synchrotron radiation (CSR) with the goal of benchmarking measurements with simulation. Following measurements to characterize the beam, we quantitatively characterized energy extraction via CSR by measuring beam position at a dispersed location as a function of bunch compression. In addition to operating with the beam on the rising part of the linac RF waveform, measurements were also made while accelerating on the falling part. For each, the full compression point was movedmore » along the backleg of the machine and the response of the beam (distribution, extracted energy) measured. Initial results of start-to-end simulations using a 1D CSR algorithm show remarkably good agreement with measurements. A subsequent experiment established lasing with the beam accelerated on the falling side of the RF waveform in conjunction with positive momentum compaction (R56) to compress the bunch. The success of this experiment motivated the design of a modified CEBAF-style arc with control of CSR and microbunching effects.« less
Effects of correlation in transition radiation of super-short electron bunches
NASA Astrophysics Data System (ADS)
Danilova, D. K.; Tishchenko, A. A.; Strikhanov, M. N.
2017-07-01
The effect of correlations between electrons in transition radiation is investigated. The correlation function is obtained with help of the approach similar to the Debye-Hückel theory. The corrections due to correlations are estimated to be near 2-3% for the parameters of future projects SINBAD and FLUTE for bunches with extremely small lengths (∼1-10 fs). For the bunches with number of electrons about ∼ 2.5 ∗1010 and more, and short enough that the radiation would be coherent, the corrections due to correlations are predicted to reach 20%.
Transverse Mode Coupling Instability of the Bunch with Oscillating Wake Field and Space Charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balbekov, V.
Transverse mode coupling instability of a single bunch caused by oscillating wake field is considered in the paper. The instability threshold is found at different frequencies of the wake with space charge tune shift taken into account. The wake phase advance in the bunch length from 0 up tomore » $$4\\pi$$ is investigated. It is shown that the space charge can push the instability threshold up or down dependent on the phase advance. Transition region is investigated thoroughly, and simple asymptotic formulas for the threshold are represented.« less
On the physics of electron ejection from laser-irradiated overdense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thévenet, M.; Vincenti, H.; Faure, J.
2016-06-15
Using 1D and 2D PIC simulations, we describe and model the backward ejection of electron bunches when a laser pulse reflects off an overdense plasma with a short density gradient on its front side. The dependence on the laser intensity and gradient scale length is studied. It is found that during each laser period, the incident laser pulse generates a large charge-separation field, or plasma capacitor, which accelerates an attosecond bunch of electrons toward vacuum. This process is maximized for short gradient scale lengths and collapses when the gradient scale length is comparable to the laser wavelength. We develop amore » model that reproduces the electron dynamics and the dependence on laser intensity and gradient scale length. This process is shown to be strongly linked with high harmonic generation via the Relativistic Oscillating Mirror mechanism.« less
Time domain analysis of coherent terahertz synchrotron radiation
NASA Astrophysics Data System (ADS)
Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol'tsman, G.
2005-10-01
The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ˜1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (˜5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.
Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV
NASA Astrophysics Data System (ADS)
Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.
2014-03-01
We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.
Shielded transient self-interaction of a bunch entering a circle from a straight path
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, R.; Bohn, C.L.; Bisognano, J.J.
1997-08-01
Recent developments in electron-gun and injector technologies enable production of short (mm-length), high-charge (nC-regime) bunches. In this parameter regime, the curvature effect on the bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces as the beam traverses magnet bends, may cause serious emittance degradation. In this paper, the authors study an electron bunch orbiting between two infinite, parallel conducting plates. The bunch moves on a trajectory from a straight path to a circular orbit and begins radiating. Transient effects, arising from CSR and space-charge forces generated from source particles both on the bend and on the straightmore » path prior to the bend, are analyzed using Lienard-Wiechert fields, and their overall net effect is obtained. The influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. Results for emittance degradation induced by this self-interaction are also presented.« less
Simulations of S-band RF gun with RF beam control
NASA Astrophysics Data System (ADS)
Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.
2017-08-01
The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.
Non-linear effects in bunch compressor of TARLA
NASA Astrophysics Data System (ADS)
Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin
2016-03-01
Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.
Bunch Compression of Flat Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.; Edstrom Jr., D.
Flat beams can be produced via a linear manipulation of canonical-angular-momentum (CAM) dominated beams using a set of skew-quadrupole magnets. Recently, such beams were produced at Fermilab Accelerator Science and Technology (FAST) facility 1. In this paper we report the results of flat beam compression study in a magnetic chicane at an energy E ~ 32 MeV. Additionally, we investigate the effect of energy chirp in the round-to-flat beam transform. The experimental results are compared with numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaoheng; Guo, Jiquan; Wang, Haipeng
2016-05-01
The initial design of a low higher order modes (HOM) impedance superconducting RF (SRF) cavity is presented in this paper. The design of this SRF cavity is for the proposed Jefferson Lab Electron Ion Collider (JLEIC). The electron ring of JLEIC will operate with electrons of 3 to 10 GeV energy. The ion ring of JLEIC will operate with protons of up to 100 GeV energy. The bunch lengths in both rings are ~12 mm (RMS). In order to maintain the short bunch length in the ion ring, SRF cavities are adopted to provide large enough gradient. In the firstmore » phase of JLEIC, the PEP II RF cavities will be reused in the electron ring to lower the initial cost. The frequency of the SRF cavities is chosen to be the second harmonic of PEP II cavities, 952.6 MHz. In the second phase of JLEIC, the same frequency SRF cavities may replace the normal conducting PEP II cavities to achieve higher luminosity at high energy. At low energies, the synchro-tron radiation damping effect is quite weak, to avoid the coupled bunch instability caused by the intense closely-spaced electron bunches, low HOM impedance of the SRF cavities combined with longitudinal feedback sys-tem will be necessary.« less
Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch
Kuschel, S.; Hollatz, D.; Heinemann, T.; ...
2016-07-20
We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less
Steps in Solution Growth: Revised Gibbs-Thomson Law, Turbulence and Morphological Stability
NASA Technical Reports Server (NTRS)
Chernov, A. A.; Rashkovich, L. N.; Vekilov, P. G.
2004-01-01
Two groups of new phenomena revealed by AFM and high resolution optical interferometry on crystal faces growing from solutions will be discussed. 1. Spacing between strongly polygonized spiral steps with low less than 10(exp -2) kink density on lysozyme and K- biphtalate do not follow the Burton-cabrera-Frank theory. The critical length of the yet immobile first Short step segment adjacent to a pinning defect (dislocation, stacking fault) is many times longer than that following from the step free energy. The low-kink density steps are typical of many growth conditions and materials, including low temperature gas phase epitaxy and MBE. 2. The step bunching pattern on the approx. 1 cm long { 110) KDP face growing from the turbulent solution flow (Re (triple bonds) 10(exp 4), solution flow rate approx. 1 m/s) suggests that the step bunch height does not increase infinitely as the bunch path on the crystal face rises, as is usually observed on large KDP crystals. The mechanism controlling the maximal bunch width and height is based on the drag of the solution depleted by the step bunch down thc solution stream. It includes splitting, coagulation and interlacing of bunches
High Power Klystrons for Efficient Reliable High Power Amplifiers.
1980-11-01
techniques to obtain high overall efficiency. One is second harmonic space charge bunching. This is a process whereby the fundamental and second harmonic...components of the space charge waves in the electron beam of a microwave tube are combined to produce more highly concentrated electron bunches raising the...the drift lengths to enhance the 2nd harmonic component in the space charge waves. The latter method was utilized in the VKC-7790. Computer
Active control of bright electron beams with RF optics for femtosecond microscopy
Williams, J.; Zhou, F.; Sun, T.; ...
2017-08-01
A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. In this paper, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimalmore » compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ~100 fs and ~1 eV resolutions with 10 6 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches.« less
Active control of bright electron beams with RF optics for femtosecond microscopy
Williams, J.; Zhou, F.; Sun, T.; Tao, Z.; Chang, K.; Makino, K.; Berz, M.; Duxbury, P. M.; Ruan, C.-Y.
2017-01-01
A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. Here, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimal compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ∼100 fs and ∼1 eV resolutions with 106 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches. PMID:28868325
Non-linear effects in bunch compressor of TARLA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yildiz, Hüseyin, E-mail: huseyinyildiz006@gmail.com, E-mail: huseyinyildiz@gazi.edu.tr; Aksoy, Avni; Arikan, Pervin
2016-03-25
Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects onmore » bunch compressor of TARLA.« less
Zakaria, Mohd Rafein; Hirata, Satoshi; Fujimoto, Shinji; Hassan, Mohd Ali
2015-10-01
Combined pretreatment with hot compressed water and wet disk milling was performed with the aim to reduce the natural recalcitrance of oil palm biomass by opening its structure and provide maximal access to cellulase attack. Oil palm empty fruit bunch and oil palm frond fiber were first hydrothermally pretreated at 150-190° C and 10-240 min. Further treatment with wet disk milling resulted in nanofibrillation of fiber which caused the loosening of the tight biomass structure, thus increasing the subsequent enzymatic conversion of cellulose to glucose. The effectiveness of the combined pretreatments was evaluated by chemical composition changes, power consumption, morphological alterations by SEM and the enzymatic digestibility of treated samples. At optimal pretreatment process, approximately 88.5% and 100.0% of total sugar yields were obtained from oil palm empty fruit bunch and oil palm frond fiber samples, which only consumed about 15.1 and 23.5 MJ/kg of biomass, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Variability and performance evaluation of introgressed Nigerian dura x Deli dura oil palm progenies.
Noh, A; Rafii, M Y; Mohd Din, A; Kushairi, A; Norziha, A; Rajanaidu, N; Latif, M A; Malek, M A
2014-04-03
Twelve introgressed oil palm (Elaeis guineensis) progenies of Nigerian dura x Deli dura were evaluated for bunch yield, yield attributes, bunch quality components and vegetative characters at the Malaysian Palm Oil Board Research Station, in Keratong, Pahang, Malaysia. Analysis of variance revealed significant to highly significant genotypic differences, indicating sufficient genetic variability among the progenies for bunch yield and its attributes, vegetative characters and bunch quality components, except fruit to bunch ratio. Fresh fruit bunch yield ranged from 167 kg·palm(-1)·year(-1) in PK1330 to 212 kg·palm(-1)·year(-1) in PK1351, with a mean yield of 192 kg·palm(-1)·year(-1). Among the progeny, PK1313 had the highest oil to bunch ratio (19.36%), due to its high mesocarp to fruit ratio, fruit to bunch ratio and low shell to fruit ratio. Among the progenies, PK1313 produced the highest oil yield of 31.4 kg·palm(-1)·year(-1), due to a high mesocarp to fruit ratio (61.2%) and a low shell to fruit ratio (30.7%), coupled with high fruit to bunch ratio (65.6%). PK1330 was found promising for selection, as it had desirable vegetative characters, including smaller petiole cross section (27.15 cm2), short rachis length (4.83 m), short palm height (1.85 m), and the lowest leaf number (164.6), as these vegetative characters are prerequisites for selecting palms for high density planting and high yield per hectare. The genetic variability among the progenies was found to be high, indicating ample scope for further breeding, followed by selection.
NASA Astrophysics Data System (ADS)
Bryzgunov, M. I.; Kamerdzhiev, V.; Li, J.; Mao, L. J.; Parkhomchuk, V. V.; Reva, V. B.; Yang, X. D.; Zhao, H.
2017-07-01
Electron cooling is used for damping both transverse and longitudinal oscillations of heavy particle. The cooling of bunch ion beam (with RF voltage on) is important part of experiments with inner target, ion collision system, stacking and RF manipulation. The short length of an ion bunch increases the peak luminosity, gives a start-time point for using of the time-of-flight methods and obtains a short extraction beam pulse. This article describes the review of last experiments with electron cooling carried out on the CSRm, CSRe (China) and COSY (Germany) storage rings. The accumulated experience may be used for the project of electron cooler on 2.5 MeV (NICA) and 0.5 MeV HIAF for obtaining high luminosity, depressing beam-beam effects and RF manipulation.
Performance of a first generation X-band photoelectron rf gun
Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.; ...
2016-05-04
Building more compact accelerators to deliver high brightness electron beams for the generation of high flux, highly coherent radiation is a priority for the photon science community. A relatively straightforward reduction in footprint can be achieved by using high-gradient X-band (11.4 GHz) rf technology. To this end, an X-band injector consisting of a 5.5 cell rf gun and a 1-m long linac has been commissioned at SLAC. It delivers an 85 MeV electron beam with peak brightness somewhat better than that achieved in S-band photoinjectors, such as the one developed for the Linac Coherent Light Source (LCLS). The X-band rfmore » gun operates with up to a 200 MV/m peak field on the cathode, and has been used to produce bunches of a few pC to 1.2 nC in charge. Notably, bunch lengths as short as 120 fs rms have been measured for charges of 5 pC (~3×10 7 electrons), and normalized transverse emittances as small as 0.22 mm-mrad have been measured for this same charge level. Bunch lengths as short as 400 (250) fs rms have been achieved for electron bunches of 100 (20) pC with transverse normalized emittances of 0.7 (0.35) mm-mrad. As a result, we report on the performance and the lessons learned from the operation and optimization of this first generation X-band gun.« less
Performance of a first generation X-band photoelectron rf gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.
Building more compact accelerators to deliver high brightness electron beams for the generation of high flux, highly coherent radiation is a priority for the photon science community. A relatively straightforward reduction in footprint can be achieved by using high-gradient X-band (11.4 GHz) rf technology. To this end, an X-band injector consisting of a 5.5 cell rf gun and a 1-m long linac has been commissioned at SLAC. It delivers an 85 MeV electron beam with peak brightness somewhat better than that achieved in S-band photoinjectors, such as the one developed for the Linac Coherent Light Source (LCLS). The X-band rfmore » gun operates with up to a 200 MV/m peak field on the cathode, and has been used to produce bunches of a few pC to 1.2 nC in charge. Notably, bunch lengths as short as 120 fs rms have been measured for charges of 5 pC (~3×10 7 electrons), and normalized transverse emittances as small as 0.22 mm-mrad have been measured for this same charge level. Bunch lengths as short as 400 (250) fs rms have been achieved for electron bunches of 100 (20) pC with transverse normalized emittances of 0.7 (0.35) mm-mrad. As a result, we report on the performance and the lessons learned from the operation and optimization of this first generation X-band gun.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, C. F.; Zhao, T. Z.; Behm, K.
Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less
NASA Astrophysics Data System (ADS)
Dong, C. F.; Zhao, T. Z.; Behm, K.; Cummings, P. G.; Nees, J.; Maksimchuk, A.; Yanovsky, V.; Krushelnick, K.; Thomas, A. G. R.
2018-04-01
Bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail, which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.
Dong, C. F.; Zhao, T. Z.; Behm, K.; ...
2018-04-24
Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less
BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Weilun; Huang, S.; Liu, K.X.
2016-06-01
The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flatmore » energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.« less
Towards highest peak intensities for ultra-short MeV-range ion bunches
NASA Astrophysics Data System (ADS)
Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus
2015-07-01
A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.
Towards highest peak intensities for ultra-short MeV-range ion bunches
Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus
2015-01-01
A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024
High energy density physics issues related to Future Circular Collider
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.
2017-07-01
A design study for a post-Large Hadron Collider accelerator named, Future Circular Collider (FCC), is being carried out by the International Scientific Community. A complete design report is expected to be ready by spring 2018. The FCC will accelerate two counter rotating beams of 50 TeV protons in a tunnel having a length (circumference) of 100 km. Each beam will be comprised of 10 600 proton bunches, with each bunch having an intensity of 1011 protons. The bunch length is of 0.5 ns, and two neighboring bunches are separated by 25 ns. Although there is an option for 5 ns bunch separation as well, in the present studies, we consider the former case only. The total energy stored in each FCC beam is about 8.5 GJ, which is equivalent to the kinetic energy of Airbus 380 (560 t) flying at a speed of 850 km/h. Machine protection is a very important issue while operating with such powerful beams. It is important to have an estimate of the damage caused to the equipment and accelerator components due to the accidental release of a partial or total beam at a given point. For this purpose, we carried out numerical simulations of full impact of one FCC beam on an extended solid copper target. These simulations have been done employing an energy deposition code, FLUKA, and a two-dimensional hydrodynamic code, BIG2, iteratively. This study shows that although the static range of a single FCC proton and its shower is about 1.5 m in solid copper, the entire beam will penetrate around 350 m into the target. This substantial increase in the range is due to the hydrodynamic tunneling of the beam. Our calculations also show that a large part of the target will be converted into high energy density matter including warm dense matter and strongly coupled plasmas.
NASA Astrophysics Data System (ADS)
Mahadi
2018-02-01
Helmets are protective head gears wear by bicycle riders for protection against injury in case of the accident. Helmet standards require helmets to be tested with a simple drop test onto an anvil. The purpose of research is to know toughness of bicycle helmet made from polymeric foam composite strengthened by oil palm empty fruit bunch fiber. This research contains report result manufacture and impacts analysis of bicycle helmet made from polymeric foam composite materials strengthened by oil palm empty fruit bunch fiber (EFB). The geometric helmet structure consists of shell and liner; both layers have sandwich structure. The shell uses matrix unsaturated Polyester BQTN-157EX material, chopped strand mat 300 glass fiber reinforce and methyl ethyl ketone peroxide (MEKPO) catalyst with the weight composition of 100 gr, 15 gr, and 5 gr. The liner uses matrix unsaturated Polyester BQTN-157 EX material, EFB fiber reinforces, Polyurethane blowing agent, and MEKPO catalyst with the composition of 275 gr (50%), 27.5 gr (5%), 247 gr (45%), and 27.5 gr (5%). Layers of the helmet made by using hand lay-up method and gravity casting method. Mechanical properties of polymeric foam were the tensile strength (ơt) 1.17 Mpa, compressive strength (ơc) 0.51 MPa, bending strength (ơb) 3.94 MPa, elasticity modulus (E) 37.97 Mpa, density (ρ) 193 (kg/m3). M4A model helmet is the most ergonomic with the thickness 10 mm and the amount of air channel 11. Free fall impact test was done in 9 samples with the thickness of 10 mm with the height of 1.5 m. The result of the impact test was impacted force (Fi) 241.55 N, Impulse (I) 6.28 Ns, impact Strength (ơi) 2.02 Mpa and impact Energy (Ei) 283.77 Joule. The properties of bicycle helmet model BMX-M4A type was 264 mm length, 184 mm width, 154 mm height, 10 mm thick, 580 mm head circle, 331 g mass and 11 wind channels.
Low Emittance Guns for the ILC Polarized Electron Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.
Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressedmore » by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of {>=}200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while {>=}500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.« less
Low Emittance Guns for the ILC Polarized Electron Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.
Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressedmore » by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of {ge}200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while {ge}500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilson, Erik P.; Davidson, Ronald C.; Dorf, Mikhail
2010-05-15
The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame-of-reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by the same set of equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes in the laboratory frame are equivalent to the spatially periodic magnetic fields applied in the AG system. The transverse emittance of the charge bunch, which is a measure of the area in the transverse phase space that the beammore » distribution occupies, is an important metric of beam quality. Maintaining low emittance is an important goal when defining AG system tolerances and when designing AG systems to perform beam manipulations such as transverse beam compression. Results are reviewed from experiments in which white noise and colored noise of various amplitudes and durations have been applied to the PTSX electrodes. This noise is observed to drive continuous emittance growth and increase in root-mean-square beam radius over hundreds of lattice periods. Additional results are reviewed from experiments that determine the conditions necessary to adiabatically reduce the charge bunch's transverse size and simultaneously maintain high beam quality. During adiabatic transitions, there is no change in the transverse emittance. The transverse compression can be achieved either by a gradual change in the PTSX voltage waveform amplitude or frequency. Results are presented from experiments in which low emittance is achieved by using focusing-off-defocusing-off waveforms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Tongning, E-mail: TongningHu@hust.edu.cn, E-mail: yjpei@ustc.edu.cn; Qin, Bin; Tan, Ping
A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables themore » injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented.« less
Dump system concepts for the Future Circular Collider
NASA Astrophysics Data System (ADS)
Bartmann, W.; Atanasov, M.; Barnes, M. J.; Borburgh, J.; Burkart, F.; Goddard, B.; Kramer, T.; Lechner, A.; Ull, A. Sanz; Schmidt, R.; Stoel, L. S.; Ostojic, R.; Rodziewicz, J.; van Trappen, P.; Barna, D.
2017-03-01
The Future Circular Collider (FCC-hh) beam dump system must provide a safe and reliable extraction and dilution of the stored beam onto a dump absorber. Energy deposition studies show that damage limits of presently used absorber materials will already be reached for single bunches at 50 TeV. A fast field rise of the extraction kicker is required in order to sufficiently separate swept single bunches on the extraction protection absorbers in case of an asynchronous beam dump. In line with this demand is the proposal of a highly segmented extraction kicker system which allows for accepting a single kicker switch erratic and thus, significantly reduces the probability of an asynchronous beam dump. Superconducting septa are foreseen to limit the overall system length and power consumption. Two extraction system concepts are presented and evaluated regarding overall system length, energy deposition on absorbers, hardware requirements, radiation issues, and layout flexibility.
Spectrum of coherent transition radiation generated by a modulated electron beam
NASA Astrophysics Data System (ADS)
Naumenko, G. A.; Potylitsyn, A. P.; Karataev, P. V.; Shipulya, M. A.; Bleko, V. V.
2017-07-01
The spectrum of coherent transition radiation has been recorded with the use of a Martin-Puplett interferometer. It has been shown that the spectrum includes monochromatic lines that are caused by the modulation of an electron beam with the frequency of an accelerating radio-frequency field νRF and correspond to resonances at ν k = kνRF k ≤ 10. To determine the length of an electron bunch from the measurement of the spectrum from a single bunch, it is necessary to use a spectrometer with the resolution Δνsp > νRF.
NASA Astrophysics Data System (ADS)
Lieu, Richard
2018-01-01
A hierarchy of statistics of increasing sophistication and accuracy is proposed, to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level, with the help of high precision computers, to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this method of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the bolometric flux measurement of a radio source.
Switch over to the high frequency rf systems near transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, J.M.; Wei, J.
1988-01-01
The purpose of this note is to point out that since bunch narrowing naturally occurs in the acceleration process in the vicinity of transition, it should be possible to switch over to the high frequency system close to transition when the bunch has narrowed enough to fit directly into the high frequency bucket. The advantage of this approach is the simplicity, no extra components or gymnastics are required of the low frequency system. The disadvantage, of course, is for protons which do not go through transition. But on the other hand, there is no shortage of intensity for protons andmore » so it should be possible to keep the phase space area low for protons, and then matching to the high frequency bucket should be easily accomplished by adiabatic compression. 3 refs., 7 figs.« less
Beam manipulation with velocity bunching for PWFA applications
NASA Astrophysics Data System (ADS)
Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Galletti, M.; Gallo, A.; Giribono, A.; Li, W.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Petrillo, V.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zhu, J.
2016-09-01
The activity of the SPARC_LAB test-facility (LNF-INFN, Frascati) is currently focused on the development of new plasma-based accelerators. Particle accelerators are used in many fields of science, with applications ranging from particle physics research to advanced radiation sources (e.g. FEL). The demand to accelerate particles to higher and higher energies is currently limited by the effective efficiency in the acceleration process that requires the development of km-size facilities. By increasing the accelerating gradient, the compactness can be improved and costs reduced. Recently, the new technique which attracts main efforts relies on plasma acceleration. In the following, the current status of plasma-based activities at SPARC_LAB is presented. Both laser- and beam-driven schemes will be adopted with the aim to provide an adequate accelerating gradient (1-10 GV/m) while preserving the brightness of the accelerated beams to the level of conventional photo-injectors. This aspect, in particular, requires the use of ultra-short (< 100 fs) electron beams, consisting in one or more bunches. We show, with the support of simulations and experimental results, that such beams can be produced using RF compression by velocity-bunching.
Soderdahl, D W; Henderson, S R; Hansberry, K L
1997-05-01
Intermittent pneumatic compression of the calf and/or thigh effectively decreases the incidence of deep venous thrombosis and other thrombotic sequelae but clinical data comparing these modalities are currently lacking. A total of 90 patients undergoing major urological surgery was randomly assigned to receive calf length or thigh length pneumatic compression for antithrombotic prophylaxis. Duplex ultrasound of the lower extremities was performed preoperatively and twice postoperatively to evaluate for deep venous thrombosis. Health care providers in the operating room, recovery room and ward were asked to compare the compression systems, and a cost analysis was performed. A total of 47 patients wore the thigh length sequential pneumatic sleeves and 43 wore calf length uniform compression systems. A pulmonary embolus without evidence of deep venous thrombosis was detected in 1 patient (2%) using the thigh length system. A thrombus was detected in the common femoral vein by duplex ultrasonography in 1 patient (2%) with the calf length system. Nursing personnel found the calf length sleeves easier to apply and more comfortable by patient account but they were satisfied with both systems. There was a significant cost savings with the calf length pneumatic compression system. Calf and thigh length pneumatic compression systems similarly decrease the risk of deep venous thrombosis in patients undergoing urological surgery. The calf length system has the added advantage of being less expensive and easier to use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ANDONIAN,G.BABZIEN,MLBEN-ZVI,I.YAKIMENKO,Y.ET AL.
VISA II is the follow-up project to the successful Visible to Infrared SASE Amplifier (VISA) experiment at the Accelerator Test Facility (ATF) in Brookhaven National Lab (BNL). This paper will report the motivation for and status of the two main experiments associated with the VISA II program. One goal of VISA II is to perform an experimental study of the physics of a chirped beam SASE FEL at the upgraded facilities of the ATF. This requires a linearization of the transport line to preserve energy chirping of the electron beam at injection. The other planned project is a strong bunchmore » compression experiment, where the electron bunch is compressed in the chicane, and the dispersive beamline transport, allowing studies of deep saturation.« less
Irradiation of materials with short, intense ion pulses at NDCX-II
NASA Astrophysics Data System (ADS)
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; Friedman, A.; Gilson, E. P.; Grote, D. P.; Ji, Q.; Kaganovich, I. D.; Ludewigt, B.; Persaud, A.; Sierra, C.; Silverman, M.; Stepanov, A. D.; Sulyman, A.; Treffert, F.; Waldron, W. L.; Zimmer, M.; Schenkel, T.
2017-06-01
We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0.7 J/cm^2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance.
Classification Techniques for Digital Map Compression
1989-03-01
classification improved the performance of the K-means classification algorithm resulting in a compression of 8.06:1 with Lempel - Ziv coding. Run-length coding... compression performance are run-length coding [2], [8] and Lempel - Ziv coding 110], [11]. These techniques are chosen because they are most efficient when...investigated. After the classification, some standard file compression methods, such as Lempel - Ziv and run-length encoding were applied to the
Some Calculations for the RHIC Kicker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus, J.
1996-12-01
The bunches that arrive from the AGS are put on to RHIC's median plane by a string of four injection kickers in each ring. There are four short kickers rather than one long one in order to keep the kicker filling time acceptable, filling time being defined as the amount of time needed for increasing the deflecting field in the kicker from zero to its nominal value. During the filling time process the energy stored in the deflecting field is moved from outside the kicker to its aperture; since energy can only be displaced with finite velocity the filling timemore » is non-zero for kickers of non-zero length, and tends to increase with increasing length. It is one of the more important parameters of the kicker because it sets a lower limit to the time interval between the last of the already circulating bunches and the newly injected one, and thus an upper limit to the total number of bunches that can be injected. RF gymnastics can be used to pack the bunches tighter than is indicated by this limit, but such gymnastics required radial aperture beyond what would be required otherwise, as well as time, and probably special hardware. Minimization of the kicker's stored energy requires minimization of its aperture, it presents therefore a major aperture restriction. Unless it is placed at a point where the dispersion is negligible its aperture would have to be increased in order to provide the radial space needed for the gymnastics. Both the amount of extra space needed and the rate of longitudinal displacement increase with the maximum deviation in energy of the bunch to be displaced from the nominal value, thus taking more time for the exercise reduces the aperture requirements. This time is measured in terms of synchrotron periods and is not small. It adds directly to the filling time of each ring and decreases therefore the time-average luminosity. Evidently the maximation of the time-average luminosity is a complex issue in which the kicker filling time is a major parameter.« less
Performance of a cut-to-length harvester in a single-tree and group selection cut
Neil K. Huyler; Chris LeDoux
1999-01-01
Presents production and cost data for a mechanized and cut-to-length (CTL) harvester used in a single-tree and group-selection cut on the Groton State Forest in central Vermont. For trees whose average volume (size) was 7 to 18 ft3, production ranged from 464 to 734 ft3 per productive machine hour (PMH). The cycle time for processing trees into bunches to forward to a...
Compressive buckling of black phosphorene nanotubes: an atomistic study
NASA Astrophysics Data System (ADS)
Nguyen, Van-Trang; Le, Minh-Quy
2018-04-01
We investigate through molecular dynamics finite element method with Stillinger-Weber potential the uniaxial compression of armchair and zigzag black phosphorene nanotubes. We focus especially on the effects of the tube’s diameter with fixed length-diameter ratio, effects of the tube’s length for a pair of armchair and zigzag tubes of equal diameters, and effects of the tube’s diameter with fixed lengths. Their Young’s modulus, critical compressive stress and critical compressive strain are studied and discussed for these 3 case studies. Compressive buckling was clearly observed in the armchair nanotubes. Local bond breaking near the boundary occurred in the zigzag ones under compression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieu, Richard
A hierarchy of statistics of increasing sophistication and accuracy is proposed to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level with the help of high-precision computers to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this methodmore » of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the signal-limited bolometric flux measurement of a radio source.« less
Compact and tunable focusing device for plasma wakefield acceleration
NASA Astrophysics Data System (ADS)
Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.
2018-03-01
Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.
The Next Generation Photoinjector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Dennis Thomas; /Stanford U., Appl. Phys. Dept.
2005-09-12
This dissertation will elucidate the design, construction, theory, and operation of the Next Generation Photoinjector (NGP). This photoinjector is comprised of the BNL/SLAC/UCLA 1.6 cell symmetrized S-band photocathode radio frequency (rf) electron gun and a single emittance-compensation solenoidal magnet. This photoinjector is a prototype for the Linear Coherent Light Source X-ray Free Electron Laser operating in the 1.5 {angstrom} range. Simulations indicate that this photoinjector is capable of producing a 1nC electron bunch with transverse normalized emittance less than 1 {pi} mm mrad were the cathode is illuminated with a 10 psec longitudinal flat top pulse. Using a Gaussian longitudinalmore » laser profile with a full width half maximum (FWHM) of 10 psec, simulation indicates that the NGP is capable of producing a normalized rms emittance of 2.50 {pi} mm mrad at 1 nC. Using the removable cathode plate we have studied the quantum efficiency (QE) of both copper and magnesium photo-cathodes. The Cu QE was found to be 4.5 x 10{sup -5} with a 25% variation in the QE across the emitting surface of the cathode, while supporting a field gradient of 125 MV/m. At low charge, the transverse normalized rms emittance, {epsilon}{sub n,rms}, produced by the NGP is {epsilon}{sub n,rms} = 1.2 {pi} mm mrad for Q{sub T} = 0.3 nC. The 95% electron beam bunch length was measured to 10.9 psec. The emittance due to the finite magnetic field at the cathode has been studied. The scaling of this magnetic emittance term as a function of cathode magnetic field was found to be 0.01 {pi} mm mrad per Gauss. The 1.6 cell rf gun has been designed to reduce the dipole field asymmetry of the longitudinal accelerating field. Low level rf measurements show that this has in fact been accomplished, with an order of magnitude decrease in the dipole field. High power beam studies also show that the dipole field has been decreased. An upper limit of the intrinsic non-reducible thermal emittance of a photocathode under high field gradient was found to be {epsilon}{sub n,rms} = 0.8 {pi} mm mrad. Agreement is found between the theoretical calculation of the thermal emittance, {epsilon}{sub 0} = 0.62 {pi} mm mrad, and the experimental results, after taking into account all of the emittance contribution terms. The 1 nC emittance was found to be {epsilon}{sub n,rms} = 4.75 {pi} mm mrad with a 95% electron beam bunch length of 14.7 psec. Systematic bunch length measurements showed electron beam bunch lengthening due the electron beam charge. They will show that the discrepancy between measurement and simulation is due to three effects. The major effect is due to the variation of the QE in the photo-emitting area of the Cu cathode. Also, space charge emittance blowup in the transport line will be shown to be a significant effect because the electron beam is still in the space charge dominated regime. The last effect, which has been observed experimentally, is the electron bunch lengthening as a function of total electron bunch charge.« less
Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression
Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...
2014-12-15
In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC) electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less thanmore » 200 attoseconds can be obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolghadr, S. H.; Jafari, S., E-mail: sjafari@guilan.ac.ir; Raghavi, A.
2016-05-15
Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FELmore » has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.« less
RF synchronized short pulse laser ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu
A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at themore » exit of RF resonator by a probe.« less
Fast and accurate face recognition based on image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2017-05-01
Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.
Compressing a confined DNA: from nano-channel to nano-cavity
NASA Astrophysics Data System (ADS)
Sakaue, Takahiro
2018-06-01
We analyze the behavior of a semiflexible polymer confined in nanochannel under compression in axial direction. Key to our discussion is the identification of two length scales; the correlation length ξ of concentration fluctuation and what we call the segregation length . These length scales, while degenerate in uncompressed state in nanochannel, generally split as upon compression, and the way they compete with the system size during the compression determines the crossover from quasi-1D nanochannel to quasi-0D nanocavity behaviors. For a flexible polymer, the story becomes very simple, which corresponds to a special limit of our description, but a much richer behavior is expected for a semiflexible polymer relevant to DNA in confined spaces. We also briefly discuss the dynamical properties of the compressed polymer.
PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WANG,X.J.; MURPHY,J.B.; YU,L.H.
2002-12-13
The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherencemore » of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).« less
Irradiation of materials with short, intense ion pulses at NDCX-II
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...
2017-05-31
Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less
Irradiation of materials with short, intense ion pulses at NDCX-II
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...
2017-05-31
Here, we present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11 ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6 eV)] He + ion beam is neutralizedmore » in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. In conclusion, quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance« less
Irradiation of materials with short, intense ion pulses at NDCX-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidl, P. A.; Barnard, J. J.; Feinberg, E.
Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less
NASA Astrophysics Data System (ADS)
Burkart, F.; Schmidt, R.; Raginel, V.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.
2015-08-01
In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam-matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical simulations are presented in this paper.
Gap and stripline combined monitor
Yin, Y.
1984-02-16
A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.
Gap and stripline combined monitor
Yin, Y.
1986-08-19
A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.
Stent longitudinal integrity bench insights into a clinical problem.
Ormiston, John A; Webber, Bruce; Webster, Mark W I
2011-12-01
Standardized bench-top compression and elongation testing was undertaken to assess the longitudinal strength of contemporary stents. Insights gained may improve clinical stent choice and deployment techniques, and facilitate future stent design improvements. The hoops of coronary stents provide radial support, and connectors hold hoops together. Strut material, shape, and thickness, along with connector number and configuration, provide the balance between stent flexibility and longitudinal integrity. Longitudinal distortion manifests as length change, strut overlap, strut separation, malapposition, and luminal obstruction. These may predispose to restenosis and stent thrombosis, obstruct passage of devices, be misinterpreted as strut fracture, and require additional stenting. The force required to compress and to elongate 7 contemporary stents was measured with an Instron universal testing machine (Norwood, Massachusetts). Stents deployed in a silicone phantom damaged by a balloon or guide catheter were imaged by microcomputed tomography to understand better the appearances and effects of longitudinal distortion. Stents with 2 connectors (Boston Scientific [Natick, Massachusetts] Omega and Medtronic [Santa Rosa, California] Driver) required significantly less force to be compressed up to 5 mm and elongated by 1 mm than designs with more connectors. The 6-connector Cypher Select required significantly more force to be elongated 5 mm than other designs. Stents with 2 connectors between hoops have less longitudinal strength when exposed to compressing or elongating forces than those with more connectors. This independent, standardized study may assist stent selection in clinical situations where longitudinal integrity is important, and may aid future design improvements. Stent longitudinal strength, the resistance to shortening or elongation, appears related to the number of connectors between hoops. Using a standardized testing protocol, designs with 2 connectors were more likely to shorten or elongate than those with more connectors. Distortion may be recognized clinically as bunching or separation of struts, and may be confused with strut fracture. Without post-dilation or further stent deployment, the patient may be at increased risk for adverse clinical events. A stent design change ensuring 3 connectors, especially at the proximal end of a stent, should increase longitudinal integrity, but perhaps at the expense of stent flexibility. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Comparative Study of button BPM Trapped Mode Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron,P.; Singh, O.
2009-05-04
The combination of short bunches and high currents found in modern light sources and colliders can result in the deposition of tens of watts of power in BPM buttons. The resulting thermal distortion is potentially problematic for maintaining high precision beam position stability, and in the extreme case can result in mechanical damage. We present a simple algorithm that uses the input parameters of beam current, bunch length, button diameter, beampipe aperture, and fill pattern to calculate a relative figure-of-merit for button heating. Data for many of the world's light sources and colliders is compiled in a table. Using themore » algorithm, the table is sorted in order of the relative magnitude of button heating.« less
Lee, Patrick; Maynard, G.; Audet, T. L.; ...
2016-11-16
The dynamics of electron acceleration driven by laser wakefield is studied in detail using the particle-in-cell code WARP with the objective to generate high-quality electron bunches with narrow energy spread and small emittance, relevant for the electron injector of a multistage accelerator. Simulation results, using experimentally achievable parameters, show that electron bunches with an energy spread of ~11% can be obtained by using an ionization-induced injection mechanism in a mm-scale length plasma. By controlling the focusing of a moderate laser power and tailoring the longitudinal plasma density profile, the electron injection beginning and end positions can be adjusted, while themore » electron energy can be finely tuned in the last acceleration section.« less
Construction of the Helsinki University of Technology (HUT) pulsed positron beam
NASA Astrophysics Data System (ADS)
Fallström, K.; Laine, T.
1999-08-01
We are constructing a pulsed positron beam facility for lifetime measurements in thin surface layers. Our beam system comprises a 22Na positron source and a tungsten foil moderator followed by a prebuncher and a chopper. A double-drift buncher will compress the beam into 120-ps pulses at the target. The end energy of the positron beam can be adjusted between 3 keV and 30 keV by changing the potential of the source end of the beam. The bunching electronics and most of the beam guiding magnets are also floating at the high voltage. The sample is at ground potential to facilitate variable temperature measurements. With a test source of 6 mCi 22Na we get a prebunched beam intensity of 4×10 3 positrons per second in 1.5-ns wide pulses (the bunching frequency is 33.33 MHz). We are currently testing the chopper and the following buncher stages and building the final accelerator/decelerator system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Young Min; Green, A.; Lumpkin, A. H.
2016-09-16
A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients in principle since the density of charge carriers (conduction electrons) in solids n 0 = ~ 10 20 – 10 23 cm -3 is significantly higher than what can be obtained in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced andmore » the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a stable generation of single-cycle laser pulses with tens of Petawatt power based on thin film compression (TFC) technique has been investigated for target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). The experimental plan with a nanometer foil is discussed with an available test facility such as Extreme Light Infrastructure – Nuclear Physics (ELI-NP).« less
NASA Astrophysics Data System (ADS)
Shin, Y. M.; Green, A.; Lumpkin, A. H.; Thurman-Keup, R. M.; Shiltsev, V.; Zhang, X.; Farinella, D. M.-A.; Taborek, P.; Tajima, T.; Wheeler, J. A.; Mourou, G.
2017-03-01
A short bunch of relativistic particles, or a short-pulse laser, perturb the density state of conduction electrons in a solid crystal and excite wakefields along atomic lattices in a crystal. Under a coupling condition between a driver and plasma, the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1], in principle, since the density of charge carriers (conduction electrons) in solids n0 = 1020 - 1023 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The de-channeling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from the Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and Northern Illinois University (NIU). In the FAST facility, the electron beamline was successfully commissioned at 50 MeV, and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration proof-of-concept (POC). Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a stable generation of single-cycle laser pulses with tens of Petawatt power based on the thin film compression (TFC) technique has been investigated for target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). The experimental plan with a nanometer foil is discussed with an available test facility such as Extreme Light Infrastructure - Nuclear Physics (ELI-NP).
Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Z.; Ratner, D.; Stupakov, G.
2009-02-23
We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp.
Wakefield potentials of corrugated structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novokhatski, A.
A corrugated structure, which is used in “dechirper” devices, is usually a pipe or two plates with small corrugations (bumps) on the walls. There is a good single-mode description of the wake potentials excited by a relativistic bunch if the wave length of the mode is much longer than the distance between the bumps in the pipe. However, ultrashort bunches, which are now used in free electron lasers, excite much higher frequency fields and the corresponding wake potentials will be very different from the single-mode description. We have made analyses of these wake potentials based on a numerical solution ofmore » Maxwell’s equations. It was confirmed that the behavior of the wakefields of ultrashort bunches in corrugated structures is not much different from the fields excited usually in accelerating structures where the wake potentials are described by the exponential function. For a practical application we present results for the SLAC “dechirper.” We also carried out calculations for a similar device, that was installed and measured at the Pohang Accelerator Laboratory, Korea. As a result, we find very good agreement with the experimental results.« less
Status of the development of Delhi Light Source (DLS) at IUAC
NASA Astrophysics Data System (ADS)
Ghosh, S.; Joshi, V.; Urakawa, J.; Terunuma, N.; Aryshev, A.; Fukuda, S.; Fukuda, M.; Sahu, B. K.; Patra, P.; Abhilash, S. R.; Karmakar, J.; Karmakar, B.; Kabiraj, D.; Kumar, N.; Sharma, A.; Chaudhari, G. K.; Pandey, A.; Tripathi, S.; Deshpande, A.; Naik, V.; Roy, A.; Rao, T.; Bhandari, R. K.; Kanjilal, D.
2017-07-01
A project to construct a compact pre-bunched Free Electron Laser by using a normal conducting photocathode electron gun has been undertaken at Inter University Accelerator Centre (IUAC), New Delhi, India. In this facility, the short laser pulses from a high power laser system will be split into many pulses (2-16) commonly known as 'Comb beam' and will strike the photocathode material (metal and semiconductor) to produce electron beam bunches. The electrons will be accelerated up to an energy of ∼8 MeV by a copper cavity operated at a frequency of 2860 MHz and the beam will be injected into a compact, planar permanent undulator magnet to produce THz radiation. The radiation frequency designed to be tuned in the range of 0.15-3 THz by varying the magnetic field of the undulator and/or changing the energy of the electron. The separation of the laser micro-pulses will be varied by adjusting the path length difference to alter the separation of the electron micro-bunches and to maximise the radiation intensity.
Wakefield potentials of corrugated structures
Novokhatski, A.
2015-10-22
A corrugated structure, which is used in “dechirper” devices, is usually a pipe or two plates with small corrugations (bumps) on the walls. There is a good single-mode description of the wake potentials excited by a relativistic bunch if the wave length of the mode is much longer than the distance between the bumps in the pipe. However, ultrashort bunches, which are now used in free electron lasers, excite much higher frequency fields and the corresponding wake potentials will be very different from the single-mode description. We have made analyses of these wake potentials based on a numerical solution ofmore » Maxwell’s equations. It was confirmed that the behavior of the wakefields of ultrashort bunches in corrugated structures is not much different from the fields excited usually in accelerating structures where the wake potentials are described by the exponential function. For a practical application we present results for the SLAC “dechirper.” We also carried out calculations for a similar device, that was installed and measured at the Pohang Accelerator Laboratory, Korea. As a result, we find very good agreement with the experimental results.« less
Growth from Solutions: Kink dynamics, Stoichiometry, Face Kinetics and stability in turbulent flow
NASA Technical Reports Server (NTRS)
Chernov, A. A.; DeYoreo, J. J.; Rashkovich, L. N.; Vekilov, P. G.
2005-01-01
1. Kink dynamics. The first segment of a polygomized dislocation spiral step measured by AFM demonstrates up to 60% scattering in the critical length l*- the length when the segment starts to propagate. On orthorhombic lysozyme, this length is shorter than that the observed interkink distance. Step energy from the critical segment length based on the Gibbs-Thomson law (GTL), l* = 20(omega)alpha/(Delta)mu is several times larger than the energy from 2D nucleation rate. Here o is tine building block specific voiume, a is the step riser specific free energy, Delta(mu) is the crystallization driving force. These new data support our earlier assumption that the classical Frenkel, Burton -Cabrera-Frank concept of the abundant kink supply by fluctuations is not applicable for strongly polygonized steps. Step rate measurements on brushite confirms that statement. This is the1D nucleation of kinks that control step propagation. The GTL is valid only if l*
Gap and stripline combined monitor
Yin, Yan
1986-01-01
A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.
Modular approach to achieving the next-generation X-ray light source
NASA Astrophysics Data System (ADS)
Biedron, S. G.; Milton, S. V.; Freund, H. P.
2001-12-01
A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.
Lossless medical image compression with a hybrid coder
NASA Astrophysics Data System (ADS)
Way, Jing-Dar; Cheng, Po-Yuen
1998-10-01
The volume of medical image data is expected to increase dramatically in the next decade due to the large use of radiological image for medical diagnosis. The economics of distributing the medical image dictate that data compression is essential. While there is lossy image compression, the medical image must be recorded and transmitted lossless before it reaches the users to avoid wrong diagnosis due to the image data lost. Therefore, a low complexity, high performance lossless compression schematic that can approach the theoretic bound and operate in near real-time is needed. In this paper, we propose a hybrid image coder to compress the digitized medical image without any data loss. The hybrid coder is constituted of two key components: an embedded wavelet coder and a lossless run-length coder. In this system, the medical image is compressed with the lossy wavelet coder first, and the residual image between the original and the compressed ones is further compressed with the run-length coder. Several optimization schemes have been used in these coders to increase the coding performance. It is shown that the proposed algorithm is with higher compression ratio than run-length entropy coders such as arithmetic, Huffman and Lempel-Ziv coders.
Plasma Wakefield Acceleration of an Intense Positron Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blue, B
2004-04-21
The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wakemore » that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions made by the 3-D PIC code. The work presented in this dissertation will show that plasma wakefield accelerators are an attractive technology for future particle accelerators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkart, F.; Schmidt, R.; Wollmann, D.
2015-08-07
In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam–matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existencemore » of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical simulations are presented in this paper.« less
Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser
NASA Astrophysics Data System (ADS)
Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A.; won Jang, Si; Vinokurov, Nikolay A.; Jeong, Young UK; Hee Park, Seong; Jang, Kyu-Ha
2015-01-01
A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.
Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser.
Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A; Jang, Si won; Vinokurov, Nikolay A; Jeong, Young U K; Park, Seong Hee; Jang, Kyu-Ha
2015-01-01
A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.
Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Seon Yeong; Kim, Eun-San, E-mail: eskim1@knu.ac.kr; Hwang, Ji-Gwang
2015-01-15
A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using anmore » oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was −39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.« less
NASA Astrophysics Data System (ADS)
Willey, T. M.; Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Hansen, D.; May, C.; van Buuren, T.; Dattelbaum, D. M.; Gustavsen, R. L.; Watkins, E. B.; Firestone, M. A.; Jensen, B. J.; Graber, T.; Bastea, S.; Fried, L.
2017-01-01
The lack of experimental validation for processes occurring at sub-micron length scales on time scales ranging from nanoseconds to microseconds hinders detonation model development. Particularly, quantification of late-time energy release requires measurement of carbon condensation kinetics behind detonation fronts. A new small-angle x-ray scattering (SAXS) endstation has been developed for use at The Dynamic Compression Sector to observe carbon condensation during detonation. The endstation and beamline demonstrate unprecedented fidelity; SAXS profiles can be acquired from single x-ray pulses, which in 24-bunch mode are about 80 ps in duration and arrive every 153.4 ns. This paper presents both the current temporal capabilities of this beamline, and the ability to distinguish different carbon condensate morphologies as they form behind detonation fronts. To demonstrate temporal capabilities, three shots acquired during detonation of hexanitrostilbene (HNS) are interleaved to show the evolution of the SAXS in about 50 ns steps. To show fidelity of the SAXS, the scattering from carbon condensates at several hundred nanoseconds varies with explosive: scattering from HNS is consistent with a complex morphology that we assert is associated with sp2 carbon., while Comp B scattering is consistent with soots containing three-dimensional diamond nanoparticles.
Open Boundary Particle-in-Cell Simulation of Dipolarization Front Propagation
NASA Technical Reports Server (NTRS)
Klimas, Alex; Hwang, Kyoung-Joo; Vinas, Adolfo F.; Goldstein, Melvyn L.
2014-01-01
First results are presented from an ongoing open boundary 2-1/2D particle-in-cell simulation study of dipolarization front (DF) propagation in Earth's magnetotail. At this stage, this study is focused on the compression, or pileup, region preceding the DF current sheet. We find that the earthward acceleration of the plasma in this region is in general agreement with a recent DF force balance model. A gyrophase bunched reflected ion population at the leading edge of the pileup region is reflected by a normal electric field in the pileup region itself, rather than through an interaction with the current sheet. We discuss plasma wave activity at the leading edge of the pileup region that may be driven by gradients, or by reflected ions, or both; the mode has not been identified. The waves oscillate near but above the ion cyclotron frequency with wavelength several ion inertial lengths. We show that the waves oscillate primarily in the perpendicular magnetic field components, do not propagate along the background magnetic field, are right handed elliptically (close to circularly) polarized, exist in a region of high electron and ion beta, and are stationary in the plasma frame moving earthward. We discuss the possibility that the waves are present in plasma sheet data, but have not, thus far, been discovered.
Manipulation of a two-photon state in a χ(2)-modulated nonlinear waveguide array
NASA Astrophysics Data System (ADS)
Yang, Y.; Xu, P.; Lu, L. L.; Zhu, S. N.
2014-10-01
We propose to engineer the quantum state in a high-dimensional Hilbert space by taking advantage of a χ(2)-modulated nonlinear waveguide array. By varying the pump condition and the waveguide array length, the momentum correlation between the signal and idler photons can be manipulated, exhibiting bunching, antibunching, and the evolution between these two states, which are characterized by the Schmidt number. We find the Schmidt number is dependent on a structure parameter, namely the ratio of the array length and the number of channels pumped. By designing the linear profile waveguide array, the degree of spatial entanglement shows a periodic relationship with the slope of linear profile, during which a high degree of position-bunching state is suggested. The two-photon self-focusing effect is disclosed when the χ(2) modulation in the waveguide array contains a parabolic profile, which can be designed for efficient coupling between a waveguide array and fibers. These results shed light on a feasible way to achieve desirable quantum state on a single waveguide chip by a compact engineering of χ(2) and also suggest a degree of freedom for quantum walk and other related applications.
Andreassi, Maria Grazia; Borghini, Andrea; Pulignani, Silvia; Baffigi, Federica; Fulgentini, Lorenzo; Koester, Petra; Cresci, Monica; Vecoli, Cecilia; Lamia, Debora; Russo, Giorgio; Panetta, Daniele; Tripodi, Maria; Gizzi, Leonida A; Labate, Luca
2016-09-01
Laser-driven electron accelerators are capable of producing high-energy electron bunches in shorter distances than conventional radiofrequency accelerators. To date, our knowledge of the radiobiological effects in cells exposed to electrons using a laser-plasma accelerator is still very limited. In this study, we compared the dose-response curves for micronucleus (MN) frequency and telomere length in peripheral blood lymphocytes exposed to laser-driven electron pulse and X-ray radiations. Additionally, we evaluated the effects on cell survival of in vitro tumor cells after exposure to laser-driven electron pulse compared to electron beams produced by a conventional radiofrequency accelerator used for intraoperative radiation therapy. Blood samples from two different donors were exposed to six radiation doses ranging from 0 to 2 Gy. Relative biological effectiveness (RBE) for micronucleus induction was calculated from the alpha coefficients for electrons compared to X rays (RBE = alpha laser/alpha X rays). Cell viability was monitored in the OVCAR-3 ovarian cancer cell line using trypan blue exclusion assay at day 3, 5 and 7 postirradiation (2, 4, 6, 8 and 10 Gy). The RBE values obtained by comparing the alpha values were 1.3 and 1.2 for the two donors. Mean telomere length was also found to be reduced in a significant dose-dependent manner after irradiation with both electrons and X rays in both donors studied. Our findings showed a radiobiological response as mirrored by the induction of micronuclei and shortening of telomere as well as by the reduction of cell survival in blood samples and cancer cells exposed in vitro to laser-generated electron bunches. Additional studies are needed to improve preclinical validation of the radiobiological characteristics and efficacy of laser-driven electron accelerators in the future.
Method for compression of data using single pass LZSS and run-length encoding
Berlin, G.J.
1994-01-01
A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.
Method for compression of data using single pass LZSS and run-length encoding
Berlin, Gary J.
1997-01-01
A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.
Analytical formulas for short bunch wakes in a flat dechirper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, Karl; Stupakov, Gennady; Zagorodnov, Igor
2016-08-04
We develop analytical models of the longitudinal and transverse wakes, on and off axis for a flat, corrugated beam pipe with realistic parameters, and then compare them with numerical calculations, and generally find good agreement. These analytical “first order” formulas approximate the droop at the origin of the longitudinal wake and of the slope of the transverse wakes; they represent an improvement in accuracy over earlier, “zeroth order” formulas. In example calculations for the RadiaBeam/LCLS dechirper using typical parameters, we find a 16% droop in the energy chirp at the bunch tail compared to simpler calculations. As a result, withmore » the beam moved to 200 μm from one jaw in one dechirper section, one can achieve a 3 MV transverse kick differential over a 30 μm length.« less
Gridded thermionic gun and integral superconducting ballistic bunch compression cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultheiss, Thomas
Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systemsmore » at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this gun. The general design is a modified ballistic compression cavity pair with two independently powered cells [3]. The first is a cathode cell that includes the thermionic cathode and grid to provide for beam bunching. The second is a full cell with independent phasing and field levels designed to minimize energy spread. The primary goal for Phase II is to manufacture a superconducting gun with a thermionic cathode and imbedded coil. The system developed here is applicable to many high current electron accelerators. The analysis and design constraints imposed by the magnetized cathode make the cathode system developed here more complicated and limited than one without the magnetized beam constraints. High power ERLs would benefit by a gun with the capabilities shown here, 400 mA or more of current. ERLs hold great promise for electron cooling experiments, advanced light sources and Free Electron Lasers. This high current electron injector is a technological advance that will place the requirements for an ERL capable of providing quality bunches needed for cooling within the MEIC circulator ring within reach. This injector would have application to future ERLs around the world.« less
Impact of 7-TeV/c large hadron collider proton beam on a copper target
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Goddard, B.; Kain, V.; Schmidt, R.; Shutov, A.; Lomonosov, I. V.; Piriz, A. R.; Temporal, M.; Hoffmann, D. H. H.; Fortov, V. E.
2005-04-01
The large hadron collider (LHC) will allow for collision between two 7TeV/c proton beams, each comprising 2808 bunches with 1.1×1011 protons per bunch, traveling in opposite direction. The bunch length is 0.5ns and two neighboring bunches are separated by 25ns so that the duration of the entire beam is about 89μs. The beam power profile in the transverse direction is a Gaussian with a standard deviation of 0.2mm. The energy stored in each beam is about 350MJ that is sufficient to melt 500kg of copper. In case of a failure in the machine protection systems, the entire beam could impact directly onto an accelerator equipment. A first estimate of the scale of damage resulting from such a failure has been assessed for a solid copper target hit by the beam by carrying out three-dimensional energy deposition calculations and two-dimensional numerical simulations of the hydrodynamic and thermodynamic response of the target. This work has shown that the penetration depth of the LHC protons will be between 10 and 40m in solid copper. These calculations show that material conditions obtained in the target are similar to those planned for beam impact at dedicated accelerators designed to study the physics of high-energy-density states of matter, for example, the Facility for Antiprotons and Ion Research at the Gesellschaft für Schwerionenforschung, Darmstadt [W. F. Henning, Nucl. Instrum Methods Phys. Res. B 214, 211 (2004)].
Method for compression of data using single pass LZSS and run-length encoding
Berlin, G.J.
1997-12-23
A method used preferably with LZSS-based compression methods for compressing a stream of digital data is disclosed. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer. 3 figs.
Compression technique for large statistical data bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggers, S.J.; Olken, F.; Shoshani, A.
1981-03-01
The compression of large statistical databases is explored and are proposed for organizing the compressed data, such that the time required to access the data is logarithmic. The techniques exploit special characteristics of statistical databases, namely, variation in the space required for the natural encoding of integer attributes, a prevalence of a few repeating values or constants, and the clustering of both data of the same length and constants in long, separate series. The techniques are variations of run-length encoding, in which modified run-lengths for the series are extracted from the data stream and stored in a header, which ismore » used to form the base level of a B-tree index into the database. The run-lengths are cumulative, and therefore the access time of the data is logarithmic in the size of the header. The details of the compression scheme and its implementation are discussed, several special cases are presented, and an analysis is given of the relative performance of the various versions.« less
Lossless Compression of Data into Fixed-Length Packets
NASA Technical Reports Server (NTRS)
Kiely, Aaron B.; Klimesh, Matthew A.
2009-01-01
A computer program effects lossless compression of data samples from a one-dimensional source into fixed-length data packets. The software makes use of adaptive prediction: it exploits the data structure in such a way as to increase the efficiency of compression beyond that otherwise achievable. Adaptive linear filtering is used to predict each sample value based on past sample values. The difference between predicted and actual sample values is encoded using a Golomb code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gündoğan, M. Tural, E-mail: mugetural@yahoo.com; Yavaş, Ö., E-mail: yavas@ankara.edu.tr; Kaya, Ç., E-mail: c.kaya@ankara.edu.tr
Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC.more » The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.
2010-03-11
High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 {mu}m size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely gamma-Methacryloxypropyltrimethoxysilanemore » (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.« less
Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments
NASA Astrophysics Data System (ADS)
Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.
2016-09-01
Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.
A button - type beam position monitor design for TARLA facility
NASA Astrophysics Data System (ADS)
Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.
2016-03-01
Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.
NASA Astrophysics Data System (ADS)
Urriza, Isidro; Barragan, Luis A.; Artigas, Jose I.; Garcia, Jose I.; Navarro, Denis
1997-11-01
Image compression plays an important role in the archiving and transmission of medical images. Discrete cosine transform (DCT)-based compression methods are not suitable for medical images because of block-like image artifacts that could mask or be mistaken for pathology. Wavelet transforms (WTs) are used to overcome this problem. When implementing WTs in hardware, finite precision arithmetic introduces quantization errors. However, lossless compression is usually required in the medical image field. Thus, the hardware designer must look for the optimum register length that, while ensuring the lossless accuracy criteria, will also lead to a high-speed implementation with small chip area. In addition, wavelet choice is a critical issue that affects image quality as well as system design. We analyze the filters best suited to image compression that appear in the literature. For them, we obtain the maximum quantization errors produced in the calculation of the WT components. Thus, we deduce the minimum word length required for the reconstructed image to be numerically identical to the original image. The theoretical results are compared with experimental results obtained from algorithm simulations on random test images. These results enable us to compare the hardware implementation cost of the different filter banks. Moreover, to reduce the word length, we have analyzed the case of increasing the integer part of the numbers while maintaining constant the word length when the scale increases.
Irradiation of Materials using Short, Intense Ion Beams
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.
2016-10-01
We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).
Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Gwanghui; Cho, Moo -Hyun; Namkung, W.
2017-03-09
Here, we report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch’s horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shapemore » is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philipp, Hugh T., E-mail: htp2@cornell.edu; Tate, Mark W.; Purohit, Prafull
Modern storage rings are readily capable of providing intense x-ray pulses, tens of picoseconds in duration, millions of times per second. Exploiting the temporal structure of these x-ray sources opens avenues for studying rapid structural changes in materials. Many processes (e.g. crack propagation, deformation on impact, turbulence, etc.) differ in detail from one sample trial to the next and would benefit from the ability to record successive x-ray images with single x-ray sensitivity while framing at 5 to 10 MHz rates. To this end, we have pursued the development of fast x-ray imaging detectors capable of collecting bursts of imagesmore » that enable the isolation of single synchrotron bunches and/or bunch trains. The detector technology used is the hybrid pixel array detector (PAD) with a charge integrating front-end, and high-speed, in-pixel signal storage elements. A 384×256 pixel version, the Keck-PAD, with 150 µm × 150 µm pixels and 8 dedicated in-pixel storage elements is operational, has been tested at CHESS, and has collected data for compression wave studies. An updated version with 27 dedicated storage capacitors and identical pixel size has been fabricated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullinan, F. J.; Boogert, S. T.; Farabolini, W.
2015-11-19
The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the referencemore » cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Lastly, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.« less
NASA Astrophysics Data System (ADS)
Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.
2015-11-01
The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.
Phase modulation of the bucket stops bunch oscillations at the Fermilab Tevatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, C.Y.; Burov, A.; /Fermilab
2012-04-02
Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely. These oscillations are colloquially called 'dancing bunches.' Although the dancing proton bunches do not cause single bunch emittance growth or beam loss at injection, they lead to bunch lengthening at collisions. In Tevatron operations, a longitudinal damper has been built which stops this dance and damps out coupled bunch modes. Recent theoretical work predicts that the dance can also be stopped by an appropriate change in the bunch distribution. This paper describes the Tevatron experiments which support this theory.
Induced sensitivity of Bacillus subtilis colony morphology to mechanical media compression
Polka, Jessica K.
2014-01-01
Bacteria from several taxa, including Kurthia zopfii, Myxococcus xanthus, and Bacillus mycoides, have been reported to align growth of their colonies to small features on the surface of solid media, including anisotropies created by compression. While the function of this phenomenon is unclear, it may help organisms navigate on solid phases, such as soil. The origin of this behavior is also unknown: it may be biological (that is, dependent on components that sense the environment and regulate growth accordingly) or merely physical. Here we show that B. subtilis, an organism that typically does not respond to media compression, can be induced to do so with two simple and synergistic perturbations: a mutation that maintains cells in the swarming (chained) state, and the addition of EDTA to the growth media, which further increases chain length. EDTA apparently increases chain length by inducing defects in cell separation, as the treatment has only marginal effects on the length of individual cells. These results lead us to three conclusions. First, the wealth of genetic tools available to B. subtilis will provide a new, tractable chassis for engineering compression sensitive organisms. Second, the sensitivity of colony morphology to media compression in Bacillus can be modulated by altering a simple physical property of rod-shaped cells. And third, colony morphology under compression holds promise as a rapid, simple, and low-cost way to screen for changes in the length of rod-shaped cells or chains thereof. PMID:25289183
Acceleration of a trailing positron bunch in a plasma wakefield accelerator
Doche, A.; Beekman, C.; Corde, S.; ...
2017-10-27
High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less
Acceleration of a trailing positron bunch in a plasma wakefield accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doche, A.; Beekman, C.; Corde, S.
High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less
NASA Astrophysics Data System (ADS)
Geloni, G.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.
2004-08-01
An effective and practical technique based on the detection of the coherent synchrotron radiation (CSR) spectrum can be used to characterize the profile function of ultra-short bunches. The CSR spectrum measurement has an important limitation: no spectral phase information is available, and the complete profile function cannot be obtained in general. In this paper we propose to use constrained deconvolution method for bunch profile reconstruction based on a priori-known information about formation of the electron bunch. Application of the method is illustrated with practically important example of a bunch formed in a single bunch-compressor. Downstream of the bunch compressor the bunch charge distribution is strongly non-Gaussian with a narrow leading peak and a long tail. The longitudinal bunch distribution is derived by measuring the bunch tail constant with a streak camera and by using a priory available information about profile function.
Propagation of Plasma Bunches through a Transverse Magnetic Barrier
NASA Astrophysics Data System (ADS)
Bishaev, A. M.; Gavrikov, M. B.; Kozintseva, M. V.; Savel'ev, V. V.
2018-01-01
The injection of a plasma bunch into a multipolar trap can be applied to fill the trap with a plasma. The injection of the bunch into a tokamak-like trap can be considered an additional means for controlling the processes of plasma heating and fuel delivery to the central zone of a thermonuclear reactor. In both cases, the bunch is injected normally to the magnetic field of the trap. It has been shown theoretically, experimentally, and by numerical simulation that the depth of plasma bunch penetration into the magnetic field varies in direct proportion to the bunch energy and in inverse proportion to the magnetic pressure and the cross-sectional area of the plasma bunch. The data of this work allow researchers to estimate the values of plasma bunch parameters at which the bunch will be trapped. As a result, the process of plasma bunch trapping has been optimized.
NASA Astrophysics Data System (ADS)
Villa, F.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Bisesto, F. G.; Biagioni, A.; Carpanese, M.; Cardelli, F.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Croia, M.; Curcio, A.; Dattoli, G.; Gallo, A.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giannessi, L.; Giribono, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petralia, A.; Petrarca, M.; Petrillo, V.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.
2017-09-01
The technique for producing and measuring few tens of femtosecond electron beams, and the consequent generation of few tens femtoseconds single spike FEL radiation pulses at SPARC_LAB is presented. The undulator has been used in the double role of radiation source and diagnostic tool for the characterization of the electron beam. The connection between the electron bunch length and the radiation bandwidth is analyzed.
Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; ...
2016-04-11
Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnostics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud withmore » stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains, 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this study we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.« less
NASA Astrophysics Data System (ADS)
Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; Dugan, G. F.; Flanagan, J.; McArdle, K. E.; Miller, M. I.; Palmer, M. A.; Ramirez, G. A.; Sonnad, K. G.; Totten, M. M.; Tucker, S. L.; Williams, H. A.
2016-04-01
Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Mark
Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiationmore » techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W chicanes, and experimental area and infrastructure.« less
Loaded delay lines for future RF pulse compression systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.M.; Wilson, P.B.; Kroll, N.M.
1995-05-01
The peak power delivered by the klystrons in the NLCRA (Next Linear Collider Test Accelerator) now under construction at SLAC is enhanced by a factor of four in a SLED-II type of R.F. pulse compression system (pulse width compression ratio of six). To achieve the desired output pulse duration of 250 ns, a delay line constructed from a 36 m length of circular waveguide is used. Future colliders, however, will require even higher peak power and larger compression factors, which favors a more efficient binary pulse compression approach. Binary pulse compression, however, requires a line whose delay time is approximatelymore » proportional to the compression factor. To reduce the length of these lines to manageable proportions, periodically loaded delay lines are being analyzed using a generalized scattering matrix approach. One issue under study is the possibility of propagating two TE{sub o} modes, one with a high group velocity and one with a group velocity of the order 0.05c, for use in a single-line binary pulse compression system. Particular attention is paid to time domain pulse degradation and to Ohmic losses.« less
Efficient computation of coherent synchrotron radiation in a rectangular chamber
NASA Astrophysics Data System (ADS)
Warnock, Robert L.; Bizzozero, David A.
2016-09-01
We study coherent synchrotron radiation (CSR) in a perfectly conducting vacuum chamber of rectangular cross section, in a formalism allowing an arbitrary sequence of bends and straight sections. We apply the paraxial method in the frequency domain, with a Fourier development in the vertical coordinate but with no other mode expansions. A line charge source is handled numerically by a new method that rids the equations of singularities through a change of dependent variable. The resulting algorithm is fast compared to earlier methods, works for short bunches with complicated structure, and yields all six field components at any space-time point. As an example we compute the tangential magnetic field at the walls. From that one can make a perturbative treatment of the Poynting flux to estimate the energy deposited in resistive walls. The calculation was motivated by a design issue for LCLS-II, the question of how much wall heating from CSR occurs in the last bend of a bunch compressor and the following straight section. Working with a realistic longitudinal bunch form of r.m.s. length 10.4 μ m and a charge of 100 pC we conclude that the radiated power is quite small (28 W at a 1 MHz repetition rate), and all radiated energy is absorbed in the walls within 7 m along the straight section.
Adapting High Brightness Relativistic Electron Beams for Ultrafast Science
NASA Astrophysics Data System (ADS)
Scoby, Cheyne Matthew
This thesis explores the use of ultrashort bunches generated by a radiofrequency electron photoinjector driven by a femtosecond laser. Rf photoinjector technology has been developed to generate ultra high brightness beams for advanced accelerators and to drive advanced light source applications. The extremely good quality of the beams generated by this source has played a key role in the development of 4th generation light sources such as the Linac Coherent Light Source, thus opening the way to studies of materials science and biological systems with high temporal and spatial resolution. At the Pegasus Photoinjector Lab, we have developed the application of a BNL/SLAC/UCLA 1.6-cell rf photoinjector as a tool for ultrafast science in its own right. It is the aim of this work to explore the generation of ultrashort electron bunches, give descriptions of the novel ultrafast diagnostics developed to be able to characterize the electron bunch and synchronize it with a pump laser, and share some of the scientific results that were obtained with this technology at the UCLA Pegasus laboratory. This dissertation explains the requirements of the drive laser source and describes the principles of rf photoinjector design and operation necessary to produce electron bunches with an rms longitudinal length < 100 femtoseconds containing 107 - 108 electrons per bunch. In this condition, when the laser intensity is sufficiently high, multiphoton photoemission is demonstrated to be more efficient in terms of charge yield than single photon photoemission. When a short laser pulse hits the cathode the resulting beam dynamics are dominated by a strong space charge driven longitudinal expansion which leads to the creation of a nearly ideal uniformly filled ellipsoidal distribution. These beam distributions are characterized by linear space charge forces and hence by high peak brightness and small transverse emittances. This regime of operation of the RF photoinjector is also termed the “blow-out regime.” When the beam charge is maintained low, ultrashort electron bunches can be obtained enabling novel applications such as single shot Femtosecond Relativistic Electron Diffraction (FRED). High precision temporal diagnostic and synchronization techniques are integral to the use of femtosecond electron bunches for ultrafast science. An x-band rf streak camera provides measurements of the longitudinal profiles of sub-ps electron bunches. Spatial encoded electro-optic timestamping is developed to overcome the inherent rf-laser synchronization errors in rf photoinjectors. The ultrafast electron beams generated with the RF photoenjector are employed in pump-probe experiments wherein a target is illuminated with an intense pump laser to induce a transient behavior in the sample. FRED is used to study the melting of gold after heating with an intense femtosecond laser pulse. In a first experiment we study the process by taking different single-shot diffraction patterns at varying delays between the pump an probe beams. In a second experiment a variation of the technique is employed using the rf streak camera to time-stretch the beam after it has diffraction from the sample in order to capture the full melting dynamics in a single shot. Finally, relativistic ultrashort electron bunches are used as a probe of plasma dynamics in electron radiography/shadowgraphy experiments. This technique is used to study photoemission with intense laser pulses and the evolution of electromagnetic fields in a photoinduced dense plasma. This experiment is also performed in two different modes: one where different pictures are acquired at different time delays, and the other where a single streak image is used to obtain visualization of the propagation electromagnetic fields with an unprecedented 35 femtosecond resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamps, T; Barday, R; Jankowiak, A
In preparation for a high brightness, high average current electron source for the energy-recovery linac BERLinPro an all superconducting radio-frequency photoinjector is now in operation at Helmholtz-Zentrum Berlin. The aim of this experiment is beam demonstration with a high brightness electron source able to generate sub-ps pulse length electron bunches from a superconducting (SC) cathode film made of Pb coated on the backwall of a Nb SRF cavity. This paper describes the setup of the experiment and first results from beam measurements.
Frontiers of beam diagnostics in plasma accelerators: Measuring the ultra-fast and ultra-cold
NASA Astrophysics Data System (ADS)
Cianchi, A.; Anania, M. P.; Bisesto, F.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Giribono, A.; Marocchino, A.; Pompili, R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Mostacci, A.; Bacci, A.; Rossi, A. R.; Serafini, L.; Zigler, A.
2018-05-01
Advanced diagnostics are essential tools in the development of plasma-based accelerators. The accurate measurement of the quality of beams at the exit of the plasma channel is crucial to optimize the parameters of the plasma accelerator. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement, which is particularly complex due to large energy spread and divergence of the emerging beams, and on femtosecond bunch length measurements.
Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fubiani, Gwenael G.J.
2005-09-01
Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 10 18 - 10 19 cm -3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams wasmore » recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.« less
NASA Astrophysics Data System (ADS)
Neveu, N.; Larson, J.; Power, J. G.; Spentzouris, L.
2017-07-01
Model-based, derivative-free, trust-region algorithms are increasingly popular for optimizing computationally expensive numerical simulations. A strength of such methods is their efficient use of function evaluations. In this paper, we use one such algorithm to optimize the beam dynamics in two cases of interest at the Argonne Wakefield Accelerator (AWA) facility. First, we minimize the emittance of a 1 nC electron bunch produced by the AWA rf photocathode gun by adjusting three parameters: rf gun phase, solenoid strength, and laser radius. The algorithm converges to a set of parameters that yield an emittance of 1.08 μm. Second, we expand the number of optimization parameters to model the complete AWA rf photoinjector (the gun and six accelerating cavities) at 40 nC. The optimization algorithm is used in a Pareto study that compares the trade-off between emittance and bunch length for the AWA 70MeV photoinjector.
Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV
Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil; Li, Zhengyan; Yi, S. A.; Zhang, Xi; Henderson, Watson; Chang, Y.-Y.; Korzekwa, R.; Tsai, H.-E.; Pai, C.-H.; Quevedo, H.; Dyer, G.; Gaul, E.; Martinez, M.; Bernstein, A. C.; Borger, T.; Spinks, M.; Donovan, M.; Khudik, V.; Shvets, G.; Ditmire, T.; Downer, M. C.
2013-01-01
Laser-plasma accelerators of only a centimetre’s length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence. Petawatt pulses inject ambient plasma electrons into the laser-driven accelerator at much lower density than was previously possible, thereby overcoming the principal physical barriers to multi-gigaelectronvolt acceleration: dephasing between laser-driven wake and accelerating electrons and laser pulse erosion. Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy. PMID:23756359
Layout of bunch compressor for Beijing XFEL test facility
NASA Astrophysics Data System (ADS)
Zhu, Xiongwei; Du, Yingchao; He, Xiaozhong; Yang, Yufeng
2006-10-01
In this paper, we describe the layout of the bunch compressor for the Beijing XFEL test facility (BTF). Our bunch compressor setup is different from the usual one due to the space limit. The compensation X-BAND cavity and the first bunch compressor are separate in distance. The electron bunch is decelerated first and then accelerated to enter the first bunch compressor. The simulation result shows that our setup works well, and the nonlinear term is well compensated. Also, we present the result about the CSR emittance dilution study. Finally, we develop a program to study microbunch instability in the second BTF bunch compressor.
NASA Technical Reports Server (NTRS)
Dixon, G. V.; Barringer, S. R.; Gray, C. E.; Leatherman, A. D.
1975-01-01
Computer programs and resulting tabulations are presented of pipeline length-to-diameter ratios as a function of Mach number and pressure ratios for compressible flow. The tabulations are applicable to air, nitrogen, oxygen, and hydrogen for compressible isothermal flow with friction and compressible adiabatic flow with friction. Also included are equations for the determination of weight flow. The tabulations presented cover a wider range of Mach numbers for choked, adiabatic flow than available from commonly used engineering literature. Additional information presented, but which is not available from this literature, is unchoked, adiabatic flow over a wide range of Mach numbers, and choked and unchoked, isothermal flow for a wide range of Mach numbers.
Scan-Line Methods in Spatial Data Systems
1990-09-04
algorithms in detail to show some of the implementation issues. Data Compression Storage and transmission times can be reduced by using compression ...goes through the data . Luckily, there are good one-directional compression algorithms , such as run-length coding 13 in which each scan line can be...independently compressed . These are the algorithms to use in a parallel scan-line system. Data compression is usually only used for long-term storage of
NASA Technical Reports Server (NTRS)
Starnes, James H.; Rose, Cheryl A.
1998-01-01
The results of an analytical study of the nonlinear response of a thin unstiffened aluminum cylindrical shell with a longitudinal crack are presented. The shell is analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for internal pressure, axial compression, and combined internal pressure and axial compression loads. The effects of varying crack length on the nonlinear response of the shell subjected to internal pressure are described. The effects of varying crack length on the prebuckling, buckling and postbuckling responses of the shell subjected to axial compression, and subjected to combined internal pressure and axial compression are also described. The results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell. The results also indicate that crack growth instabilities and shell buckling instabilities can both affect the response of the shell as the crack length is increased.
Compressing DNA sequence databases with coil.
White, W Timothy J; Hendy, Michael D
2008-05-20
Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression - an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression - the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.
Compressing DNA sequence databases with coil
White, W Timothy J; Hendy, Michael D
2008-01-01
Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip) compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST) data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work. PMID:18489794
Toward a Better Compression for DNA Sequences Using Huffman Encoding
Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi
2017-01-01
Abstract Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016). PMID:27960065
Toward a Better Compression for DNA Sequences Using Huffman Encoding.
Al-Okaily, Anas; Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi
2017-04-01
Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016 ).
Andonian, G.; Barber, S.; O’Shea, F. H.; ...
2017-02-03
We show that temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefieldmore » diagnostics and pulse profile reconstruction techniques.« less
Note: A well-confined pulsed low-energy ion beam: Test experiments of Ar+
NASA Astrophysics Data System (ADS)
Hu, Jie; Wu, Chun-Xiao; Tian, Shan Xi
2018-06-01
Here we report a pulsed low-energy ion beam source for ion-molecule reaction study, in which the ions produced by the pulsed electron impact are confined well in the spatial size of each bunch. In contrast to the ion focusing method to reduce the transverse section of the beam, the longitudinal section in the translational direction is compressed by introducing a second pulse in the ion time-of-flight system. The test experiments for the low-energy argon ions are performed. The present beam source is ready for applications in the ion-molecule reaction dynamics experiments, in particular, in combination with the ion velocity map imaging technique.
NASA Astrophysics Data System (ADS)
Helwani, Z.; Fatra, W.; Arifin, L.; Othman, M. R.; Syapsan
2018-04-01
In this study, the manual hydraulic press was designed to prepare the briquettes from selected biomass waste. Each biomass was sun-dried and milled into small particle sizes before mixing with crude glycerol that used as a biomass binder. The effects of applied pressure levels of 100, 110, 120 bars, the particle size of 60, 80 and 100 mesh and the binder composition on the density, compressive strength and calorific heating value of the prepared briquettes were investigated using response surface methodology (RSM). Results showed that the briquettes have an average inside diameter, average outside diameter, and height of 12, 38, and 25-30 mm, respectively. The density of the briquettes increased with increasing the applied pressure, was in the range of 623-923 kg/m3. The densest briquettes were obtained at 80 mesh of particle size, 53:47 binder composition ratio and 110 bars of pressurizing. The heating value of the briquette reached up to 28.99 MJ/kg obtained on the particle size of 80 mesh, 53:47 binder composition, and 110 bars and the best compressive strength of 6.991 kg/cm2 obtained at a particle size of 100 mesh, 60:40 binder composition, and 120 bars. Process conditions influence the calorific value significantly.
Drosophila bunched integrates opposing DPP and EGF signals to set the operculum boundary.
Dobens, L L; Peterson, J S; Treisman, J; Raftery, L A
2000-02-01
The Drosophila BMP homolog DPP can function as a morphogen, inducing multiple cell fates across a developmental field. However, it is unknown how graded levels of extracellular DPP are interpreted to organize a sharp boundary between different fates. Here we show that opposing DPP and EGF signals set the boundary for an ovarian follicle cell fate. First, DPP regulates gene expression in the follicle cells that will create the operculum of the eggshell. DPP induces expression of the enhancer trap reporter A359 and represses expression of bunched, which encodes a protein similar to the mammalian transcription factor TSC-22. Second, DPP signaling indirectly regulates A359 expression in these cells by downregulating expression of bunched. Reduced bunched function restores A359 expression in cells that lack the Smad protein MAD; ectopic expression of BUNCHED suppresses A359 expression in this region. Importantly, reduction of bunched function leads to an expansion of the operculum and loss of the collar at its boundary. Third, EGF signaling upregulates expression of bunched. We previously demonstrated that the bunched expression pattern requires the EGF receptor ligand GURKEN. Here we show that activated EGF receptor is sufficient to induce ectopic bunched expression. Thus, the balance of DPP and EGF signals sets the boundary of bunched expression. We propose that the juxtaposition of cells with high and low BUNCHED activity organizes a sharp boundary for the operculum fate.
Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo
2018-01-01
Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45
RF kicker cavity to increase control in common transport lines
Douglas, David R.; Ament, Lucas J. P.
2017-04-18
A method of controlling e-beam transport where electron bunches with different characteristics travel through the same beam pipe. An RF kicker cavity is added at the beginning of the common transport pipe or at various locations along the common transport path to achieve independent control of different bunch types. RF energy is applied by the kicker cavity kicks some portion of the electron bunches, separating the bunches in phase space to allow independent control via optics, or separating bunches into different beam pipes. The RF kicker cavity is operated at a specific frequency to enable kicking of different types of bunches in different directions. The phase of the cavity is set such that the selected type of bunch passes through the cavity when the RF field is at a node, leaving that type of bunch unaffected. Beam optics may be added downstream of the kicker cavity to cause a further separation in phase space.
A novel source of MeV positron bunches driven by energetic protons for PAS application
NASA Astrophysics Data System (ADS)
Tan, Zongquan; Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei; Ye, Bangjiao
2014-11-01
This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e+ bunches are generated. Quasi-monochromatic positrons in the range of 1-10 MeV included in these bunches have a flux of >107/s, peak brightness of 1014/s. A magnetic-confinement beamline is utilized to transport the positrons and a "Fast Beam Chopper" is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1-10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.
Physical and mechanical properties by utilizing empty fruit bunch into fired clay brick
NASA Astrophysics Data System (ADS)
Kadir, Aeslina Abdul; Sarani, Noor Amira; Mokhtar, Siti Zulaikha; Abdullah, Mohd Mustafa Al Bakri
2017-04-01
Palm oil plantation has become one of the country's success stories in agricultural development which also generates the highest number of waste among the agricultural waste. In this study, the investigation on the possibility to utilize the empty fruit bunch (EFB) waste into the fired clay brick was carried out. The main purpose of this study is to determine the physical and mechanical properties of bricks incorporated with different percentages of EFB. In this study, bricks with four different percentages of EFB (0 %, 1 %, 5 % and 10 %) were manufactured. Manufactured bricks were fired at 1050 °C with heating rate of 1 °C/min. Physical and mechanical properties including shrinkage, density, Initial Rate of Suction (IRS) and compressive strength were reported and discussed. Since shrinkage for each mixing is below than 8 %, then a good brick was manufactured. Bricks become more porous due to the organic content of EFB are burnt away and voids are formed in the specimen, giving it a lighter appearance and were produced lightweight brick which is suitable for non-loading purposes. As a conclusion, the incorporation of EFB into fired clay brick gives some advantages to the brick properties and also provides an alternative solution to disposed EFB waste.
An efficient coding algorithm for the compression of ECG signals using the wavelet transform.
Rajoub, Bashar A
2002-04-01
A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.
NASA Astrophysics Data System (ADS)
Pamungkas, Agil Fitri; Ariawan, Dody; Surojo, Eko; Triyono, Joko
2018-02-01
The aim of the research is to investigate the effect of fiber length on the flexural and impact properties of the composite of Zalacca Midrib Fiber (ZMF)/HDPE. The process of making composite was using compression molding method. The variation of fiber length were 1 mm, 3 mm, 5 mm, 7 mm and 9 mm, at 30% fiber volume fraction. The flexural and impact test according to ASTM D790 and ASTM D5941, respectively. Observing fracture surface was examained by using Scanning Electron Microscopy (SEM). The results showed that the flexural and impact strengths would be increase with the increase of fiber length.
NASA Astrophysics Data System (ADS)
Vaia, Ruggero
2018-04-01
Almost-dispersionless pulse transfer between the extremal masses of a uniform harmonic spring-mass chain of arbitrary length can be induced by suitably modifying two masses and their spring's elastic constant at both extrema of the chain. It is shown that a deviation (or a pulse) imposed to the first mass gives rise to a wave packet that, after a time of the order of the chain length, almost perfectly reproduces the same deviation (pulse) at the opposite end, with an amplitude loss that is as small as 1.3% in the infinite-length limit; such a dynamics can continue back and forth again for several times before dispersion cleared the effect. The underlying coherence mechanism is that the initial condition excites a bunch of normal modes with almost equal frequency spacing. This constitutes a possible mechanism for efficient energy transfer, e.g., in nanofabricated structures.
Stability condition for the drive bunch in a collinear wakefield accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturin, S. S.; Zholents, A.
The beam breakup instability of the drive bunch in the structure-based collinear wakefield accelerator is considered and a stabilizing method is proposed. The method includes using the specially designed beam focusing channel, applying the energy chirp along the electron bunch, and keeping energy chirp constant during the drive bunch deceleration. A stability condition is derived that defines the limit on the accelerating field for the witness bunch.
Transformer ratio saturation in a beam-driven wakefield accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J. P.; Martorelli, R.; Pukhov, A.
We show that for beam-driven wakefield acceleration, the linearly ramped, equally spaced train of bunches typically considered to optimise the transformer ratio only works for flat-top bunches. Through theory and simulation, we explain that this behaviour is due to the unique properties of the plasma response to a flat-top density profile. Calculations of the optimal scaling for a train of Gaussian bunches show diminishing returns with increasing bunch number, tending towards saturation. For a periodic bunch train, a transformer ratio of 23 was achieved for 50 bunches, rising to 40 for a fully optimised beam.
Femto-second synchronisation with a waveguide interferometer
NASA Astrophysics Data System (ADS)
Dexter, A. C.; Smith, S. J.; Woolley, B. J.; Grudiev, A.
2018-03-01
CERN's compact linear collider CLIC requires crab cavities on opposing linacs to rotate bunches of particles into alignment at the interaction point (IP). These cavities are located approximately 25 metres either side of the IP. The luminosity target requires synchronisation of their RF phases to better than 5 fs r.m.s. This is to be achieved by powering both cavities from one high power RF source, splitting the power and delivering it along two waveguide paths that are controlled to be identical in length to within a micrometre. The waveguide will be operated as an interferometer. A high power phase shifter for adjusting path lengths has been successfully developed and operated in an interferometer. The synchronisation target has been achieved in a low power prototype system.
Biological sequence compression algorithms.
Matsumoto, T; Sadakane, K; Imai, H
2000-01-01
Today, more and more DNA sequences are becoming available. The information about DNA sequences are stored in molecular biology databases. The size and importance of these databases will be bigger and bigger in the future, therefore this information must be stored or communicated efficiently. Furthermore, sequence compression can be used to define similarities between biological sequences. The standard compression algorithms such as gzip or compress cannot compress DNA sequences, but only expand them in size. On the other hand, CTW (Context Tree Weighting Method) can compress DNA sequences less than two bits per symbol. These algorithms do not use special structures of biological sequences. Two characteristic structures of DNA sequences are known. One is called palindromes or reverse complements and the other structure is approximate repeats. Several specific algorithms for DNA sequences that use these structures can compress them less than two bits per symbol. In this paper, we improve the CTW so that characteristic structures of DNA sequences are available. Before encoding the next symbol, the algorithm searches an approximate repeat and palindrome using hash and dynamic programming. If there is a palindrome or an approximate repeat with enough length then our algorithm represents it with length and distance. By using this preprocessing, a new program achieves a little higher compression ratio than that of existing DNA-oriented compression algorithms. We also describe new compression algorithm for protein sequences.
GINGER simulations of short-pulse effects in the LEUTL FEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Z.; Fawley, W.M.
While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulsemore » regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup.« less
Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.
Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis
2008-04-01
Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.
Gourieroux, Aude M; Holzapfel, Bruno P; McCully, Margaret E; Scollary, Geoffrey R; Rogiers, Suzy Y
2017-09-01
The grapevine inflorescence is a determinate panicle and as buds emerge, shoot, flower and rachis development occur simultaneously. The growth and architecture of the rachis is determined by genetic and environmental factors but here we examined the role of flower and leaf number as well as hormones on its elongation and vascular development. The consequences of rachis morphology and vascular area on berry size and composition were also assessed. One week prior to anthesis, Merlot and Cabernet Sauvignon field vines were exposed to manual flower removal, exogenous plant growth regulators or pre-bloom leaf removal. Manual removal of half the flowers along the vertical axis of the inflorescence resulted in a shorter rachis in both cultivars. Conversely, inflorescences treated with gibberellic acid (GA 3 ) and the synthetic cytokinin, 6-benzylaminopurine (BAP) resulted in a longer rachis while pre-bloom removal of all leaves on the inflorescence-bearing shoot did not alter rachis length relative to untreated inflorescences. Across the treatments, the cross-sectional areas of the conducting xylem and phloem in the rachis were positively correlated to rachis girth, flower number at anthesis, bunch berry number, bunch berry fresh mass and bunch sugar content at harvest. Conversely, average berry size and sugar content were not linked to rachis vascular area. These data indicate that the morphological and vascular development of the rachis was more responsive to flower number and plant growth regulators than to leaf removal.
Compression failure of angle-ply laminates
NASA Technical Reports Server (NTRS)
Peel, Larry D.; Hyer, Michael W.; Shuart, Mark J.
1991-01-01
The present work deals with modes and mechanisms of failure in compression of angle-ply laminates. Experimental results were obtained from 42 angle-ply IM7/8551-7a specimens with a lay-up of ((plus or minus theta)/(plus or minus theta)) sub 6s where theta, the off-axis angle, ranged from 0 degrees to 90 degrees. The results showed four failure modes, these modes being a function of off-axis angle. Failure modes include fiber compression, inplane transverse tension, inplane shear, and inplane transverse compression. Excessive interlaminar shear strain was also considered as an important mode of failure. At low off-axis angles, experimentally observed values were considerably lower than published strengths. It was determined that laminate imperfections in the form of layer waviness could be a major factor in reducing compression strength. Previously developed linear buckling and geometrically nonlinear theories were used, with modifications and enhancements, to examine the influence of layer waviness on compression response. The wavy layer is described by a wave amplitude and a wave length. Linear elastic stress-strain response is assumed. The geometrically nonlinear theory, in conjunction with the maximum stress failure criterion, was used to predict compression failure and failure modes for the angle-ply laminates. A range of wave length and amplitudes were used. It was found that for 0 less than or equal to theta less than or equal to 15 degrees failure was most likely due to fiber compression. For 15 degrees less than theta less than or equal to 35 degrees, failure was most likely due to inplane transverse tension. For 35 degrees less than theta less than or equal to 70 degrees, failure was most likely due to inplane shear. For theta less than 70 degrees, failure was most likely due to inplane transverse compression. The fiber compression and transverse tension failure modes depended more heavily on wave length than on wave amplitude. Thus using a single parameter, such as a ratio of wave amplitude to wave length, to describe waviness in a laminate would be inaccurate. Throughout, results for AS4/3502, studied previously, are included for comparison. At low off-axis angles, the AS4/3502 material system was found to be less sensitive to layer waviness than IM7/8551-7a. Analytical predictions were also obtained for laminates with waviness in only some of the layers. For this type of waviness, laminate compression strength could also be considered a function of which layers in the laminate were wavy, and where those wavy layers were. Overall, the geometrically nonlinear model correlates well with experimental results.
A transverse bunch by bunch feedback system for Pohang Light Source upgrade
NASA Astrophysics Data System (ADS)
Lee, E.-H.; Kim, D.-T.; Huang, J.-Y.; Shin, S.; Nakamura, T.; Kobayashi, K.
2014-12-01
The Pohang Light Source upgrade (PLS-II) project has successfully upgraded the Pohang Light Source (PLS). The main goals of the PLS-II project are to increase the beam energy to 3 GeV, increase the number of insertion devices by a factor of two (20 IDs), increase the beam current to 400 mA, and at the same time reduce the beam emittance to below 10 nm by using the existing PLS tunnel and injection system. Among 20 insertion devices, 10 narrow gap in-vacuum undulators are in operation now and two more in-vacuum undulators are to be installed later. Since these narrow gap in-vacuum undulators are most likely to produce coupled bunch instability by the resistive wall impedance and limit the stored beam current, a bunch by bunch feedback system is implemented to suppress coupled bunch instability in the PLS-II. This paper describes the scheme and performance of the PLS-II bunch by bunch feedback system.
Sequential control of step-bunching during graphene growth on SiC (0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Jianfeng; Kusunoki, Michiko; Yasui, Osamu
2016-08-22
We have investigated the relation between the step-bunching and graphene growth phenomena on an SiC substrate. We found that only a minimum amount of step-bunching occurred during the graphene growth process with a high heating rate. On the other hand, a large amount of step-bunching occurred using a slow heating process. These results indicated that we can control the degree of step-bunching during graphene growth by controlling the heating rate. We also found that graphene coverage suppressed step bunching, which is an effective methodology not only in the graphene technology but also in the SiC-based power electronics.
The Potential-Well Distortion Effect and Coherent Instabilities of Electron Bunches in Storage Rings
NASA Astrophysics Data System (ADS)
Korchuganov, V. N.; Smygacheva, A. S.; Fomin, E. A.
2018-05-01
The effect of electromagnetic interaction between electron bunches and the vacuum chamber of a storage ring on the longitudinal motion of bunches is studied. Specifically, the potential-well distortion effect and the so-called coherent instabilities of coupled bunches are considered. An approximate analytical solution for the frequencies of incoherent oscillations of bunches distributed arbitrarily within the ring is obtained for a distorted potential well. A new approach to determining frequencies of coherent oscillations and an approximate analytical relation for estimating the stability of a system of bunches as a function of their distribution in the accelerator orbit are presented.
Matching into the Helical Bunch Coalescing Channel for a High Luminosity Muon Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sy, Amy; Ankenbrandt, Charles; Derbenev, Yaroslav
2015-09-01
For high luminosity in a muon collider, muon bunches that have been cooled in the six-dimensional helical cooling channel (HCC) must be merged into a single bunch and further cooled in preparation for acceleration and transport to the collider ring. The helical bunch coalescing channel has been previously simulated and provides the most natural match from helical upstream and downstream subsystems. This work focuses on the matching from the exit of the multiple bunch HCC into the start of the helical bunch coalescing channel. The simulated helical matching section simultaneously matches the helical spatial period lambda in addition to providingmore » the necessary acceleration for efficient bunch coalescing. Previous studies assumed that the acceleration of muon bunches from p=209.15 MeV/c to 286.816 MeV/c and matching of lambda from 0.5 m to 1.0 m could be accomplished with zero particle losses and zero emittance growth in the individual bunches. This study demonstrates nonzero values for both particle loss and emittance growth, and provides considerations for reducing these adverse effects to best preserve high luminosity.« less
New Algorithms and Lower Bounds for Sequential-Access Data Compression
NASA Astrophysics Data System (ADS)
Gagie, Travis
2009-02-01
This thesis concerns sequential-access data compression, i.e., by algorithms that read the input one or more times from beginning to end. In one chapter we consider adaptive prefix coding, for which we must read the input character by character, outputting each character's self-delimiting codeword before reading the next one. We show how to encode and decode each character in constant worst-case time while producing an encoding whose length is worst-case optimal. In another chapter we consider one-pass compression with memory bounded in terms of the alphabet size and context length, and prove a nearly tight tradeoff between the amount of memory we can use and the quality of the compression we can achieve. In a third chapter we consider compression in the read/write streams model, which allows us passes and memory both polylogarithmic in the size of the input. We first show how to achieve universal compression using only one pass over one stream. We then show that one stream is not sufficient for achieving good grammar-based compression. Finally, we show that two streams are necessary and sufficient for achieving entropy-only bounds.
Adaptive Encoding for Numerical Data Compression.
ERIC Educational Resources Information Center
Yokoo, Hidetoshi
1994-01-01
Discusses the adaptive compression of computer files of numerical data whose statistical properties are not given in advance. A new lossless coding method for this purpose, which utilizes Adelson-Velskii and Landis (AVL) trees, is proposed. The method is effective to any word length. Its application to the lossless compression of gray-scale images…
Code of Federal Regulations, 2010 CFR
2010-01-01
... institutional (A) For clusters/bunches failing to meet color requirements 10. (B) For clusters/bunches failing to meet requirements for minimum diameter of berries 10. (C) For offsize clusters/bunches 4. (D) For clusters/bunches and berries failing to meet the remaining requirements for the grade 8. Including in (D...
Simulation of 6 to 3 to 1 merge and squeeze of Au77+ bunches in AGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, C. J.
2016-05-09
In order to increase the intensity per Au77+ bunch at AGS extraction, a 6 to 3 to 1 merge scheme was developed and implemented by K. Zeno during the 2016 RHIC run. For this scheme, 12 Booster loads, each consisting of a single bunch, are delivered to AGS per AGS magnetic cycle. The bunch from Booster is itself the result of a 4 to 2 to 1 merge which is carried out on a flat porch during the Booster magnetic cycle. Each Booster bunch is injected into a harmonic 24 bucket on the AGS injection porch. In order to fitmore » into the buckets and allow for the AGS injection kicker rise time, the bunch width must be reduced by exciting quadrupole oscillations just before extraction from Booster. The bunches are injected into two groups of six adjacent harmonic 24 buckets. In each group the 6 bunches are merged into 3 by bringing on RF harmonic 12 while reducing harmonic 24. This is a straightforward 2 to 1 merge (in which two adjacent bunches are merged into one). One ends up with two groups of three adjacent bunches sitting in harmonic 12 buckets. These bunches are accelerated to an intermediate porch for further merging. Doing the merge on a porch that sits above injection energy helps reduce losses that are believed to be due to the space-charge force acting on the bunched particles. (The 6 to 3 merge is done on the injection porch because the harmonic 24 frequency on the intermediate porch would be too high for the AGS RF cavities.) On the intermediate porch each group of 3 bunches is merged into one by bringing on RF harmonics 8 and 4 and then reducing harmonics 12 and 8. One ends up with 2 bunches, each the result of a 6 to 3 to 1 merge and each sitting in a harmonic 4 bucket. This puts 6 Booster loads into each bunch. Each merged bunch needs to be squeezed into a harmonic 12 bucket for subsequent acceleration. This is done by again bringing on harmonic 8 and then harmonic 12. Results of simulations of the 6 to 3 to 1 merge and the subsequent squeeze into harmonic 12 buckets are presented in this note. In particular, they provide a benchmark for what can be achieved with the available RF voltages.« less
Zhao, Caiqi; Zheng, Weidong; Ma, Jun; Zhao, Yangjian
2016-01-01
To solve the problem of critical buckling in the structural analysis and design of the new long-span hollow core roof architecture proposed in this paper (referred to as a “honeycomb panel structural system” (HSSS)), lateral compression tests and finite element analyses were employed in this study to examine the lateral compressive buckling performance of this new type of honeycomb panel with different length-to-thickness ratios. The results led to two main conclusions: (1) Under the experimental conditions that were used, honeycomb panels with the same planar dimensions but different thicknesses had the same compressive stiffness immediately before buckling, while the lateral compressive buckling load-bearing capacity initially increased rapidly with an increasing honeycomb core thickness and then approached the same limiting value; (2) The compressive stiffnesses of test pieces with the same thickness but different lengths were different, while the maximum lateral compressive buckling loads were very similar. Overall instability failure is prone to occur in long and flexible honeycomb panels. In addition, the errors between the lateral compressive buckling loads from the experiment and the finite element simulations are within 6%, which demonstrates the effectiveness of the nonlinear finite element analysis and provides a theoretical basis for future analysis and design for this new type of spatial structure. PMID:28773567
Micro-Bunched Beam Production at FAST for Narrow Band THz Generation Using a Slit-Mask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyun, J.; Crawford, D.; Edstrom Jr, D.
We discuss simulations and experiments on creating micro-bunch beams for generating narrow band THz radiation at the Fermilab Accelerator Science and Technology (FAST) facility. The low-energy electron beamline at FAST consists of a photoinjector-based RF gun, two Lband superconducting accelerating cavities, a chicane, and a beam dump. The electron bunches are lengthened with cavity phases set off-crest for better longitudinal separation and then micro-bunched with a slit-mask installed in the chicane. We carried out the experiments with 30 MeV electron beams and detected signals of the micro-bunching using a skew quadrupole magnet in the chicane. In this paper, the detailsmore » of micro-bunch beam production, the detection of micro-bunching and comparison with simulations are described.« less
Multiple bunch HOM evaluation for ERL cavities
Xu, Chen; Ben-Zvi, I.; Blaskiewicz, Michael M.; ...
2017-06-15
In this paper we investigate the effect of the bunch pattern in a linac on the Higher Order Mode (HOM) power generation. The future ERL-based electron–ion collider eRHIC at BNL is used as an illustrative example. This ERL has multiple high current Superconducting Radiofrequency (SRF) 5-cell cavities. The HOM power generated when a single bunch traverses the cavity is estimated by the corresponding loss factor. Multiple re-circulations through the Energy Recovery Linac (ERL) create a specific bunch pattern. In this case the loss factor can be different than the single bunch loss factor. HOM power can vary dramatically when themore » ERL bunch pattern changes. The HOM power generation can be surveyed in the time and frequency domains. We estimate the average HOM power in a 5-cell cavity with different ERL bunch patterns.« less
Multiple bunch HOM evaluation for ERL cavities
NASA Astrophysics Data System (ADS)
Xu, Chen; Ben-Zvi, I.; Blaskiewicz, Michael M.; Hao, Yue; Ptitsyn, Vadim
2017-09-01
In this work we investigate the effect of the bunch pattern in a linac on the Higher Order Mode (HOM) power generation. The future ERL-based electron-ion collider eRHIC at BNL is used as an illustrative example. This ERL has multiple high current Superconducting Radiofrequency (SRF) 5-cell cavities. The HOM power generated when a single bunch traverses the cavity is estimated by the corresponding loss factor. Multiple re-circulations through the Energy Recovery Linac (ERL) create a specific bunch pattern. In this case the loss factor can be different than the single bunch loss factor. HOM power can vary dramatically when the ERL bunch pattern changes. The HOM power generation can be surveyed in the time and frequency domains. We estimate the average HOM power in a 5-cell cavity with different ERL bunch patterns.
Multiple bunch HOM evaluation for ERL cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chen; Ben-Zvi, I.; Blaskiewicz, Michael M.
In this paper we investigate the effect of the bunch pattern in a linac on the Higher Order Mode (HOM) power generation. The future ERL-based electron–ion collider eRHIC at BNL is used as an illustrative example. This ERL has multiple high current Superconducting Radiofrequency (SRF) 5-cell cavities. The HOM power generated when a single bunch traverses the cavity is estimated by the corresponding loss factor. Multiple re-circulations through the Energy Recovery Linac (ERL) create a specific bunch pattern. In this case the loss factor can be different than the single bunch loss factor. HOM power can vary dramatically when themore » ERL bunch pattern changes. The HOM power generation can be surveyed in the time and frequency domains. We estimate the average HOM power in a 5-cell cavity with different ERL bunch patterns.« less
NASA Astrophysics Data System (ADS)
Lumpkin, A. H.; Dejus, R. J.; Sereno, N. S.
2009-04-01
Observations of strongly enhanced optical transition radiation (OTR) following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source accelerator and recently at the Advanced Photon Source (APS) linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge microbunching instability which leads to coherent OTR emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE) free-electron laser (FEL) data at APS in the visible regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those “prebunched” structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.
Space-charge limitations in a collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, A.; Heimerle, M.
Design of several projects which envision hadron colliders operating at low energies such as NICA at JINR [1] and Electron-Nucleon Collider at FAIR [2] is under way. In Brookhaven National Laboratory (BNL), a new physics program requires operation of Relativistic Heavy Ion Collider (RHIC) with heavy ions at low energies at g=2.7-10 [3]. In a collider, maximum achievable luminosity is typically limited by beam-beam effects. For heavy ions significant luminosity degradation, driving bunch length and transverse emittance growth, comes from Intrabeam Scattering (IBS). At these low energies, IBS growth can be effectively counteracted, for example, with cooling techniques. If IBSmore » were the only limitation, one could achieve small hadron beam emittance and bunch length with the help of cooling, resulting in a dramatic luminosity increase. However, as a result of low energies, direct space-charge force from the beam itself is expected to become the dominant limitation. Also, the interplay of both beambeam and space-charge effects may impose an additional limitation on achievable maximum luminosity. Thus, understanding at what values of space-charge tune shift one can operate in the presence of beam-beam effects in a collider is of great interest for all of the above projects. Operation of RHIC for Low-Energy physics program started in 2010 which allowed us to have a look at combined impact of beam-beam and space-charge effects on beam lifetime experimentally. Here we briefly discuss expected limitation due to these effects with reference to recent RHIC experience.« less
Bunch Splitting Simulations for the JLEIC Ion Collider Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satogata, Todd J.; Gamage, Randika
2016-05-01
We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.
The effects of elastocapillary length on the surface creasing instability of hydrogels
NASA Astrophysics Data System (ADS)
Ouchi, Tetsu; Liu, Qihan; Suo, Zhigang; Hayward, Ryan
Creasing is a mode of surface instability induced by compressing elastomers or gels. Formation of creases is known to proceed by a nucleation and growth process, and the critical nucleus size is thought to be determined by the elastocapillary length (defined by the ratio of surface tension to elastic modulus). Here, we vary the elastocapillary length over the range of 0.008 to 0.4 mm by preparing a series of soft hydrogels with different compositions and contacting them with humidified air. By rapidly applying compression, we are able to achieve strains that exceed the Maxwell strain (where creases become favorable compared to a flat surface) by more than 0.10, and which approach Biot's prediction for linear instability of a compressed half-space. Regardless of the conditions, however, we observe formation of creases only by nucleation and growth, although the density of nucleation sites is found to be sensitive to elastocapillary length. Interestingly, fast propagation of creases (at velocities similar to the speed of sound in the material) are found at strains approaching Biot's point.
Wang, D.; Antipov, S.; Jing, C.; ...
2016-02-05
Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less
Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J
2013-12-13
We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100 μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5 μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.
R.F. Beam Recombination ("Funnelling") at the CERN PSB by Means of an 8 MHz Dipole Magnet
NASA Astrophysics Data System (ADS)
Nassibian, G.; Schindl, K.
1985-10-01
For filling the Antiproton Accumulator ring, the beam in the PS must be concentrated within one quarter of its circumference. A first step is to inject as much beam as possible into two groups of five PS buckets each occupying one quarter of its periphery. For this purpose, beams from the 4-ring injector synchrotron (PSB) are recombined in pairs by means of an RF dipole magnet which permits longitudinal interleaving of successive bunches. Each PSB bunch being slightly under 180° in length, two of them can fit into a (stationary) PS bucket. It is shown that the use of a sinusoidal deflecting field instead of the ideal square wave results in only a modest growth of the transverse emittance of the recombined beams. The increase of longitudinal emittance by a factor of 3, inherent to the scheme is also acceptable for the PS machine. We discuss the beam dynamics aspects, the construction of the 8 MHz, 250 gauss meter deflecting magnet and the experimental results.
GeV Electrons due to a Transition from Laser Wakefield Acceleration to Plasma Wakefield Acceleration
NASA Astrophysics Data System (ADS)
Mo, M. Z.; Masson-Laborde, P.-E.; Ali, A.; Fourmaux, S.; Lassonde, P.; Kieffer, J.-C.; Rozmus, W.; Teychenné, D.; Fedosejevs, R.
2014-10-01
The Laser Wakefield Acceleration (LWFA) experiments performed with the 200 TW laser system located at the Canadian Advanced Laser Light Source facility at INRS, Varennes (Québec) observed at relatively high plasma densities (1 × 1019cm-3) electron bunches of GeV energy gain, more than double of the predicted energy using Lu's scaling law. This energy boost phenomena can be attributed to a transition from LWFA regime to a plasma wakefield acceleration (PWFA) regime. In the first stage, the acceleration mechanism is dominated by the bubble created by the laser in the regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, where the laser pulse is depleted and it can no longer sustain the bubble anymore, the dense bunch of high energy electrons propagating inside the bubble will drive its own wakefield in the PWFA regime that can trap and accelerate a secondary population of electrons up to the GeV level. 3D particle-in-cell simulations support this analysis, and confirm the scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedurin, M.; Jing, Y.; Stratakis, D.
The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO 2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO 2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, willmore » be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.« less
Light Controlling at Subwavelength Scales in Nanophotonic Systems: Physics and Applications
NASA Astrophysics Data System (ADS)
Shen, Yuecheng
The capability of controlling light at scales that are much smaller than the operating wave-length enables new optical functionalities, and opens up a wide range of applications. Such a capability is out of the realm of conventional optical approaches. This dissertation aims to explore the light-matter interactions at nanometer scale, and to investigate the novel scien-tific and industrial applications. In particular, we will explain how to detect nanoparticles using an ultra-sensitive nano-sensor; we will also describe a photonic diode which gener-ates a unidirectional flow of single photons; Moreover, in an one-dimensional waveguide QED system where the fermionic degree of freedom is present, we will show that strong photon-photon interactions can be generated through scattering means, leading to photonic bunching and anti-bunching with various applications. Finally, we will introduce a mecha-nism to achieve super-resolution to discern fine features that are orders of magnitude smaller than the illuminating wavelength. These research projects incorporate recent advances in quantum nanophotonics, nanotechnologies, imaging reconstruction techniques, and rigorous numerical simulations.
Bit-Wise Arithmetic Coding For Compression Of Data
NASA Technical Reports Server (NTRS)
Kiely, Aaron
1996-01-01
Bit-wise arithmetic coding is data-compression scheme intended especially for use with uniformly quantized data from source with Gaussian, Laplacian, or similar probability distribution function. Code words of fixed length, and bits treated as being independent. Scheme serves as means of progressive transmission or of overcoming buffer-overflow or rate constraint limitations sometimes arising when data compression used.
Difference between BPM reading one bunch and the average of multi-bunch in Booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi Yang
2004-08-18
Differences caused by BPM reading one bunch and multi-bunch average need to be well understood before the beam parameters, such as the synchrotron tune, betatron tune, and chromaticity, are extracted from those BPM data. It is easy to perform such a study using numerical simulation other than modifying the BPM electronics.
Nonclassical Properties of Q-Deformed Superposition Light Field State
NASA Technical Reports Server (NTRS)
Ren, Min; Shenggui, Wang; Ma, Aiqun; Jiang, Zhuohong
1996-01-01
In this paper, the squeezing effect, the bunching effect and the anti-bunching effect of the superposition light field state which involving q-deformation vacuum state and q-Glauber coherent state are studied, the controllable q-parameter of the squeezing effect, the bunching effect and the anti-bunching effect of q-deformed superposition light field state are obtained.
The Case: Bunche-Da Vinci Learning Partnership Academy
ERIC Educational Resources Information Center
Eisenberg, Nicole; Winters, Lynn; Alkin, Marvin C.
2005-01-01
The Bunche-Da Vinci case described in this article presents a situation at Bunche Elementary School that four theorists were asked to address in their evaluation designs (see EJ791771, EJ719772, EJ791773, and EJ792694). The Bunche-Da Vinci Learning Partnership Academy, an elementary school located between an urban port city and a historically…
Density of bunches of native bluebunch wheatgrass and alien crested wheatgrass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rickard, W.H.
The density of bunches of bluebunch wheatgrass in a natural undisturbed stand averaged 3.28 per m/sup 2/ as compared to 2.96 per m/sup 2/ for a nearby stand of crested wheatgrass that was planted 30 years ago. Bunch density was similar in both stands indicating that spacing is a response to an environment deficient in soil water. Bunches of crested wheatgrass on the average weighed 3.5 times more than bunches of bluebunch wheatgrass and they also produced a greater weight of seedheads.
Collective Deceleration: Toward a Compact Beam Dump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, H.-C.; /Munich, Max Planck Inst. Quantenopt.; Tajima, T.
With the increasing development of laser accelerators, the electron energy is already beyond GeV and even higher in near future. Conventional beam dump based on ionization or radiation loss mechanism is cumbersome and costly, also has radiological hazards. We revisit the stopping power of high-energy charged particles in matter and discuss the associated problem of beam dump from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than the Bethe-Bloch and multiple electromagnetic cascades stopping length in solid. At the mean time, the tenuous density of themore » gas makes the radioactivation negligible. Such a compact and non-radioactivating beam dump works well for short and dense bunches, which is typically generated from laser wakefield accelerator.« less
Attosecond-resolution Hong-Ou-Mandel interferometry.
Lyons, Ashley; Knee, George C; Bolduc, Eliot; Roger, Thomas; Leach, Jonathan; Gauger, Erik M; Faccio, Daniele
2018-05-01
When two indistinguishable photons are each incident on separate input ports of a beamsplitter, they "bunch" deterministically, exiting via the same port as a direct consequence of their bosonic nature. This two-photon interference effect has long-held the potential for application in precision measurement of time delays, such as those induced by transparent specimens with unknown thickness profiles. However, the technique has never achieved resolutions significantly better than the few-femtosecond (micrometer) scale other than in a common-path geometry that severely limits applications. We develop the precision of Hong-Ou-Mandel interferometry toward the ultimate limits dictated by statistical estimation theory, achieving few-attosecond (or nanometer path length) scale resolutions in a dual-arm geometry, thus providing access to length scales pertinent to cell biology and monoatomic layer two-dimensional materials.
Design of two-dimensional channels with prescribed velocity distributions along the channel walls
NASA Technical Reports Server (NTRS)
Stanitz, John D
1953-01-01
A general method of design is developed for two-dimensional unbranched channels with prescribed velocities as a function of arc length along the channel walls. The method is developed for both compressible and incompressible, irrotational, nonviscous flow and applies to the design of elbows, diffusers, nozzles, and so forth. In part I solutions are obtained by relaxation methods; in part II solutions are obtained by a Green's function. Five numerical examples are given in part I including three elbow designs with the same prescribed velocity as a function of arc length along the channel walls but with incompressible, linearized compressible, and compressible flow. One numerical example is presented in part II for an accelerating elbow with linearized compressible flow, and the time required for the solution by a Green's function in part II was considerably less than the time required for the same solution by relaxation methods in part I.
1988-09-02
J.P. De Brion, J. Frehaut, G. Haouat, A. Herscovici, D. Iracane, S. Joly, J.G. Marmouget and Y. Pranal. 6.7 Proposal for a Race - Track Microtron with...measurement capability of the rf phase stability of the SCA has Improved the operating stability of the FEL, and has allowed the beam bunch length to be...tapered wiggler with online feedback control. The status cf these developments will be presented. 6 6 PROPOSAL FOR A RACE - TRACK HICROTRON WITH HIGH
Quasi-isochronous muon collection channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankenbrandt, Charles M.; Neuffer, David; Johnson, Rolland P.
2015-04-26
Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons intomore » RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for neutrino factories, and muon colliders as Higgs factories or energy-frontier discovery machines.« less
NASA Astrophysics Data System (ADS)
Tamura, Fumihiko; Hotchi, Hideaki; Schnase, Alexander; Yoshii, Masahito; Yamamoto, Masanobu; Ohmori, Chihiro; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo
2015-09-01
The rapid cycling synchrotron (RCS) in the Japan Proton Accelerator Research Complex (J-PARC) was originally designed to accelerate two high intensity bunches, while some of neutron experiments in the materials and life science experimental facility and a muon experiment using main ring beams require a single bunch operation mode, in which one of the two rf buckets is filled and the other is empty. The beam intensity in the single bunch operation has been limited by longitudinal beam losses due to the rf bucket distortions by the wake voltage of the odd harmonics (h =1 ,3 ,5 ) in the wide band magnetic alloy cavities. We installed an additional rf feedforward system to compensate the wake voltages of the odd harmonics (h =1 ,3 ,5 ). The additional system has a similar structure as the existing feedforward system for the even harmonics (h =2 ,4 ,6 ). We describe the function of the feedforward system for the odd harmonics, the commissioning methodology, and the commissioning results. The longitudinal beam losses during the single bunch acceleration disappeared with feedforward for the odd harmonics. We also confirmed that the beam quality in the single bunch acceleration are similar to that of the normal operation with two bunches. Thus, high intensity single bunch acceleration at the intensity of 2.3 ×1013 protons per bunch has been achieved in the J-PARC RCS. This article is a follow-up of our previous article, Phys. Rev. ST Accel. Beams 14, 051004 (2011). The feedforward system extension for single bunch operation was successful.
Determination of sugars composition in abscission zone of oil palm fruit
NASA Astrophysics Data System (ADS)
Thang, Y. M.; Ariffin, A. A.; Appleton, D. R.; Asis, A. J.; Mokhtar, M. N.; Yunus, R.
2017-06-01
Fresh oil palm fruit bunches (FFB) arriving at a palm oil mill are graded manually and randomly for ripeness classification by counting the number of empty fruit sockets (EFS) found in each bunch before processing. FFBs with at least ten EFS are classified as ripe bunch, FFBs with less than ten EFS are classified as under-ripe, while bunches without any EFS are classified as unripe. The aim of the present study is to determine the composition of sugars in the abscission of these three groups of FFBs by monitoring their sugars composition. The bunches were grouped according to the number of empty fruit sockets: (i) nil; (ii) 1-9; (iii) ≥10 as unripe, under-ripe and ripe bunches, respectively. Non-structural, structural and water-soluble sugars extracted from the abscission zone were analyzed. The principal component analysis (PCA) based on various sugars compositions revealed some natural clustering among the samples. Bunches with more than one empty fruit sockets were distinguished from the others using glucose, sucrose and oligomers. In conclusion, analysis of sugars composition of the abscission zone could potentially be used as a chemical marker to differentiate those bunches at different stages of ripeness.
NASA Astrophysics Data System (ADS)
Husin, H.; Asnawi, T. M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F.
2018-05-01
Solid nanocatalyst derived from oil-palm empty fruit bunches (OP-EFB) fiber was successfully synthesized and its application for biodiesel production was investigated. The OPEFB was treated by burning, milling and heating methods to generate ashes in a nanoparticle size. The nanoparticle palm-bunch ash was characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effects of the calcination temperature and catalyst amounts for transesterification reactions were investigated. XRD analysis of palm bunch ash exhibited that the highest composition of peaks characteristic were potassium oxide (K2O). SEM analysis showed that the nano palm bunch ash have a particle size ranging of 150-400 nm. The highest conversion of palm-oil to biodiesel reach to 97.90% was observed by using of palm bunch ash nanocatalyst which heated at 600°C, 3 h reaction time and 1% catalyst amount. Reusability of palm bunch ash catalysts was also examined. It was found that of its high active sites, reusable solid catalyst was obtained by just heating of palm bunch ash. It has a capability to reduce not only the amount of catalyst consumption but also reduce the reaction time of transesterification process.
Recent advances in coding theory for near error-free communications
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Deutsch, L. J.; Dolinar, S. J.; Mceliece, R. J.; Pollara, F.; Shahshahani, M.; Swanson, L.
1991-01-01
Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression.
New Transverse Bunch-by-Bunch Feedback System at TLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, K. H.; Kuo, C. H.; Hsu, S. Y.
2007-01-19
An FPGA based transverse bunch-by-bunch feedback system was implemented and commissioned to replace the existing analog transverse feedback system in order to suppress more effectively multi-bunch instabilities caused by the resistive wall of the vacuum chamber, cavity-like structures and ions related instability. This system replaces existing analog transverse feedback system to enlarge the tunability of the working point. Lower chromaticity is possible with feedback system that is very helpful for injection efficiency improvement. Top-up and high current operation is benefit for this upgrade. One feedback loop suppresses horizontal and vertical multi-bunch instabilities simultaneously. The clean and simple structure makes themore » system simple and reliable. This study also presents the preliminary result of commissioning the new transverse feedback system.« less
Bunch of restless vector solitons in a fiber laser with SESAM.
Zhao, L M; Tang, D Y; Zhang, H; Wu, X
2009-05-11
We report on the experimental observation of a novel form of vector soliton interaction in a fiber laser mode-locked with SESAM. Several vector solitons bunch in the cavity and move as a unit with the cavity repetition rate. However, inside the bunch the vector solitons make repeatedly contractive and repulsive motions, resembling the contraction and extension of a spring. The number of vector solitons in the bunch is controllable by changing the pump power. In addition, polarization rotation locking and period doubling bifurcation of the vector soliton bunch are also experimentally observed.
Temporal Electron-bunch Shaping from a Photoinjector for Advanced Accelerator Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemery, Francois; Piot, Philippe
2014-07-01
Advanced-accelerator applications often require the production of bunches with shaped temporal distributions. An example of sought-after shape is a linearly-ramped current profile that can be improve the transformer ratio in beam-driven acceleration, or produce energy-modulated pulse for, e.g., the subsequent generation of THz radiation. Typically, such a shaping is achieved by manipulating ultra-relativistic electron bunches. In this contribution we discuss the possibility of shaping the bunch via photoemission and demonstrate using particle-in-cell simulations the production of MeV electron bunches with quasi-ramped current profile.
Geometric invariance of compressible turbulent boundary layers
NASA Astrophysics Data System (ADS)
Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle
2015-11-01
A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.
Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering
NASA Astrophysics Data System (ADS)
Liu, Ti C.; Mitra, Sunanda
1996-06-01
Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.
Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.
1998-01-01
A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.
Direct longitudinal laser acceleration of electrons in free space
NASA Astrophysics Data System (ADS)
Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.
2016-02-01
Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)] avoiding the need of a medium or guiding structure entirely to achieve strong longitudinal energy transfer. Here we present the first observation of direct longitudinal laser acceleration of nonrelativistic electrons that undergo highly directional multi-GeV /m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle acceleration capable of creating well collimated and relativistic attosecond electron bunches [C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006)] and x-ray pulses [A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)].
Attosecond electron bunches from a nanofiber driven by Laguerre-Gaussian laser pulses.
Hu, Li-Xiang; Yu, Tong-Pu; Sheng, Zheng-Ming; Vieira, Jorge; Zou, De-Bin; Yin, Yan; McKenna, Paul; Shao, Fu-Qiu
2018-05-08
Generation of attosecond bunches of energetic electrons offers significant potential from ultrafast physics to novel radiation sources. However, it is still a great challenge to stably produce such electron beams with lasers, since the typical subfemtosecond electron bunches from laser-plasma interactions either carry low beam charge, or propagate for only several tens of femtoseconds. Here we propose an all-optical scheme for generating dense attosecond electron bunches via the interaction of an intense Laguerre-Gaussian (LG) laser pulse with a nanofiber. The dense bunch train results from the unique field structure of a circularly polarized LG laser pulse, enabling each bunch to be phase-locked and accelerated forward with low divergence, high beam charge and large beam-angular-momentum. This paves the way for wide applications in various fields, e.g., ultrabrilliant attosecond x/γ-ray emission.
Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.
1999-01-01
The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.
Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.
1998-01-01
The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, D. J.; Hart, T. L.; Acosta, J. G.
We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunchmore » with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 µs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift in the ring until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87 %.« less
Capture, acceleration and bunching rf systems for the MEIC booster and storage rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei
2015-09-01
The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energymore » ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.« less
Coherent Terahertz Smith Purcell radiation from beam bunching
NASA Astrophysics Data System (ADS)
Shi, Zongjun; Yang, Ziqiang; Liang, Zheng; Lan, Feng; Liu, Wenxin; Gao, Xi; Li, D.
2007-08-01
This paper presents a possible method to produce beam bunching and obtain coherent Terahertz (THz) Smith-Purcell (SP) radiation. A model of two-section rectangular grating is proposed. In the first section with a flat conducting roof, a continuous beam is bunched by using an 88.5 GHz input signal. In the second section without metal roof, the coherent THz SP radiation is stimulated by the bunched beam interacting with the grating. The particle-in-cell (PIC) simulations show that the beam is bunched at the downstream of the first section. The strongest radiation is observed at 120° with the frequency of 266.5 GHz in the second section.
Design and development of a chopping and deflecting system for the high current injector at IUAC
NASA Astrophysics Data System (ADS)
Kedia, Sanjay Kumar; Mehta, R.
2018-05-01
The Low Energy Beam Transport (LEBT) section of the High Current Injector (HCI) incorporates a Chopping cum Deflecting System (CDS). The CDS comprises of a deflecting system and a pair of slits that will remove dark current and produce time bunched beam of 60 ns at different repetition rates of 4, 2, 1, 0.5, 0.25 and 0.125 MHz. The distinguishing feature of the design is the use of a multi-plate deflecting structure with low capacitance to optimize the electric field, which in turn results in higher efficiency in terms of achievable ion current. To maximize the effective electric field and its uniformity, the gap between the deflecting plates has been varied and a semi-circular contour has been incorporated on the deflecting plates. Due to this the electric field variation is less than ±0.5% within the plate length. The length of deflecting plates was chosen to maximize the transmission efficiency. Since the velocity of the charged particles in the LEBT section is constant, therefore the separation between two successive sets of deflecting plates has been kept constant to match the ions transient time within the gap which is nearly 32 ns. A square pulse has been chosen, instead of a sinusoidal one, to increase the transmission efficiency and to decrease the tailing effect. The loaded capacitance of the structure was kept <10 pF to achieve fast rise/fall time of the applied voltage signal. A Python code has been developed to verify the various design parameters. The simulation also shows that one can get an efficient deflection of undesired particles resulting in >90% transmission efficiency with in the bunch length. Various simulation codes like Solid Works, TRACE 3D, CST MWS and homebrew Python codes were used to validate the design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, C. J.; Hua, J. F.; Wan, Y.
A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Sincemore » only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. Lastly, this method is demonstrated through particle-in-cell simulations and experiment.« less
Bassi, Gabriele; Blednykh, Alexei; Smalyuk, Victor
2016-02-24
A novel algorithm for self-consistent simulations of long-range wakefield effects has been developed and applied to the study of both longitudinal and transverse coupled-bunch instabilities at NSLS-II. The algorithm is implemented in the new parallel tracking code space (self-consistent parallel algorithm for collective effects) discussed in the paper. The code is applicable for accurate beam dynamics simulations in cases where both bunch-to-bunch and intrabunch motions need to be taken into account, such as chromatic head-tail effects on the coupled-bunch instability of a beam with a nonuniform filling pattern, or multibunch and single-bunch effects of a passive higher-harmonic cavity. The numericalmore » simulations have been compared with analytical studies. For a beam with an arbitrary filling pattern, intensity-dependent complex frequency shifts have been derived starting from a system of coupled Vlasov equations. The analytical formulas and numerical simulations confirm that the analysis is reduced to the formulation of an eigenvalue problem based on the known formulas of the complex frequency shifts for the uniform filling pattern case.« less
Bucket shaking stops bunch dancing in Tevatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burov, A.; Tan, C.Y.; /Fermilab
2011-03-01
Bunches in Tevatron are known to be longitudinally unstable: their collective oscillations, also called dancing bunches, persist without any signs of decay. Typically, a damper is used to stop these oscillations, but recently, it was theoretically predicted that the oscillations can be stabilized by means of small bucket shaking. Dedicated measurements in Tevatron have shown that this method does stop the dancing. According to predictions of Refs. [2,3], the flattening of the bunch distribution at low amplitudes should make the bunch more stable against LLD. An experiment has been devised to flatten the distribution by modulating the RF phase atmore » the low-amplitude synchrotron frequency for a few degrees of amplitude. These beam studies show that stabilisation really happens. After several consecutive shakings, the dancing disappears and the resulting bunch profile becomes smoother at the top. Although not shown in this report, sometimes a little divot forms at the centre of the distribution. These experiments confirm that resonant RF shaking flattens the bunch distribution at low amplitudes, and the dancing stops.« less
Method and means for measurement and control of pulsed charged beams
Lewis, R.N.
A beam of bunches of charged particles is controlled by generating a signal in response to the passage of a bunch and adding to that signal a phase-flipped reference signal. The sum is amplified, detected, and applied to a synchronous detector to obtain a comparison of the phase of the reference signal with the phase of the signal responsive to the bunch. The comparison provides an error signal to control bunching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, V. V.; Novitskii, A. A.; Umnov, A. M.
2016-06-15
The spatial configuration of a relativistic plasma bunch generated under the gyromagnetic autoresonance and confined in a magnetic mirror trap has been studied experimentally and numerically. The characteristics of bremsstrahlung generated by the plasma bunch from the gas and chamber walls were investigated using X-ray spectroscopy and radiometry, which made it possible to determine the localization of the bunch and analyze the dynamics of its confinement.
Enhanced dense attosecond electron bunch generation by irradiating an intense laser on a cone target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Li-Xiang; Yu, Tong-Pu, E-mail: tongpu@nudt.edu.cn; Shao, Fu-Qiu
By using two-dimensional particle-in-cell simulations, we demonstrate enhanced spatially periodic attosecond electron bunches generation with an average density of about 10n{sub c} and cut-off energy up to 380 MeV. These bunches are acquired from the interaction of an ultra-short ultra-intense laser pulse with a cone target. The laser oscillating field pulls out the cone surface electrons periodically and accelerates them forward via laser pondermotive force. The inner cone wall can effectively guide these bunches and lead to their stable propagation in the cone, resulting in overdense energetic attosecond electron generation. We also consider the influence of laser and cone target parametersmore » on the bunch properties. It indicates that the attosecond electron bunch acceleration and propagation could be significantly enhanced without evident divergency by attaching a plasma capillary to the original cone tip.« less
BEAM DYNAMICS ANALYSIS FOR THE ULTRA-FAST KICKER IN CIRCULAR COOLER RING OF JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.
An ultra-fast kicker system consisting of four quarter wavelength resonator based deflecting cavities was developed that simultaneously resonates at 10 subharmonic modes of the 476.3MHz bunch repetition frequency. Thus every 10th bunch in the bunch train will experience a transverse kick while all the other bunches are undisturbed. This fast kicker is being developed for the Energy Recovery Linac (ERL) based electron Circular Cooler Ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously MEIC). The electron bunches can be reused 10-30 turns thus the beam current in the ERL can be reduced to 1/10 - 1/30 (150mAmore » - 50mA) of the cooling bunch current (1.5A). In this paper, several methods to synthesize such a kicker waveform and the comparison made by the beam dynamics tracking in Elegant will be discussed.« less
Hannon, Fay
2016-08-02
A method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam. The method includes 1) determining the bunch charge and the initial kinetic energy of the highly space-charge dominated input beam; 2) applying the bunch charge and initial kinetic energy properties of the highly space-charge dominated input beam to determine the number of accelerator cavities required to accelerate the bunches to relativistic speed; 3) providing the required number of accelerator cavities; and 4) setting the gradient of the radio frequency (RF) cavities; and 5) operating the phase of the accelerator cavities between -90 and zero degrees of the sinusoid of phase to simultaneously accelerate and bunch the charged particles to maximize brightness, and until the beam is relativistic and emittance-dominated.
Coherent radiation characteristics of modulated electron bunch formed in stack of two plates
NASA Astrophysics Data System (ADS)
Gevorgyan, H. L.; Gevorgian, L. A.
2017-07-01
The present article is devoted to the radiation from the electron bunch with modulated density passes through the stack consisting of two plates with different thicknesses and electrodynamic properties. The new elegant expression for the frequency-angular distribution of transition radiation is obtained. Using the existence of resonant frequency at which the longitudinal form-factor of bunch not suppresses radiation coherence and choosing parameters for the stack of plates, one can also avoid suppression of the radiation coherence by transverse form-factor of bunch. The radiation from a bunch with modulated density in the process SASE (self-amplified spontaneous emission) FEL can be partially coherent at a resonant frequency. Then the intense sub monochromatic beam of X-ray photons is formed. On the other hand one can define an important parameter of the bunch density modulation depth which is unknown to this day.
Study on Handing Process and Quality Degradation of Oil Palm Fresh Fruit Bunches (FFB)
NASA Astrophysics Data System (ADS)
Mat Sharif, Zainon Binti; Taib, Norhasnina Binti Mohd; Yusof, Mohd Sallehuddin Bin; Rahim, Mohammad Zulafif Bin; Tobi, Abdul Latif Bin Mohd; Othman, Mohd Syafiq Bin
2017-05-01
The main objective of this study is to determine the relationship between quality of oil palm fresh fruit bunches (FFB) and handling processes. The study employs exploratory and descriptive design, with quantitative approach and purposive sampling using self-administrated questionnaires, were obtained from 30 smallholder respondents from the Southern Region, Peninsular Malaysia. The study reveals that there was a convincing relationship between quality of oil palm fresh fruit bunches (FFB) and handling processes. The main handling process factors influencing quality of oil palm fresh fruit bunches (FFB) were harvesting activity and handling at the plantation area. As a result, it can be deduced that the handling process factors variable explains 82.80% of the variance that reflects the quality of oil palm fresh fruit bunches (FFB). The overall findings reveal that the handling process factors do play a significant role in the quality of oil palm fresh fruit bunches (FFB).
High peak power THz source for ultrafast electron diffraction
NASA Astrophysics Data System (ADS)
Liu, Shengguang
2018-01-01
Terahertz (THz) science and technology have already become the research highlight at present. In this paper, we put forward a device setup to carry out ultrafast fundamental research. A photocathode RF gun generates electron bunches with ˜MeV energy, ˜ps bunch width and about 25pC charge. The electron bunches inject the designed wiggler, the coherent radiation at THz spectrum emits from these bunches and increases rapidly until the saturation at ˜MW within a short wiggler. THz pulses can be used as pump to stimulate an ultra-short excitation in some kind of sample. Those electron bunches out of wiggler can be handled into bunches with ˜1pC change, small beam spot and energy spread to be probe. Because the pump and probe comes from the same electron source, synchronization between pump and probe is inherent. The whole facility can be compacted on a tabletop.
Compressibility of the protein-water interface
NASA Astrophysics Data System (ADS)
Persson, Filip; Halle, Bertil
2018-06-01
The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (˜0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ˜45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than in bulk water, whereas its self part is 15%-20% lower. These large reductions are caused mainly by the proximity to the more rigid protein and are not a consequence of the perturbed water structure.
Compressibility of the protein-water interface.
Persson, Filip; Halle, Bertil
2018-06-07
The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (∼0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ∼45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than in bulk water, whereas its self part is 15%-20% lower. These large reductions are caused mainly by the proximity to the more rigid protein and are not a consequence of the perturbed water structure.
Generalized Stability Conditions for an Ultra-Low Energy Electrostatic Charged Particle Storage Ring
NASA Astrophysics Data System (ADS)
Sullivan, Michael
A low energy (~50 eV) electrostatic storage ring has been constructed that can store a recirculating bunch of either electrons or ions. The charged particle bunch 'orbits' within an apparatus consisting of four lenses and two hemispherical deflector analysers, arranged in a 'race-track' configuration of length 64.1 cm. A theoretical study, using transfer matrices from charged particle optics for a 'symmetric' configuration of lens potentials, has been previously completed by Hammond et al. [New J. Phys. 11 (2009) 043033]. That approach was capable of predicting modes of storage which appeared as a resonant-like pattern. An 'asymmetric' configuration, new in this work and extending the previous study to apply to a more general case, has been completed and will be presented alongside experimental results. The level of agreement between the theoretical and experimental results is found to be excellent, and the robustness of the matrix formalism has eliminated the need to rely on computer simulation to achieve storage. This asymmetric arrangement of the lenses allows for greater flexibility in the operation of the ring, creating the potential for a more diverse range of applications and potentially aid in the design of future rings. Several spectra for both electrons and positive ions are presented to provide an indication as to how the charged particle bunch evolves as more orbits are completed. The number of counts inevitably decreases as a function of orbit number due to loss mechanisms. Enhanced measurement techniques, as well as the matrix theory, have made storage of the bunch for over a hundred orbits routine, corresponding to over 65 m travelled, and this is observed directly from the spectra. The application of the storage ring as a multi-pass time-of-flight mass spectrometer has been studied. The isotopes of krypton and xenon have been made to completely separate from one another out of a single pulse of ions. This is observed to occur after ~15 orbits of the ring, roughly 10 m of distance. Initial results have indicated that the mass resolution is approximately 5000. Limitations and potential improvements to the mass resolution are presented.
Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source
NASA Astrophysics Data System (ADS)
Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.
2013-10-01
Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.
Efficient Sparse Signal Transmission over a Lossy Link Using Compressive Sensing
Wu, Liantao; Yu, Kai; Cao, Dongyu; Hu, Yuhen; Wang, Zhi
2015-01-01
Reliable data transmission over lossy communication link is expensive due to overheads for error protection. For signals that have inherent sparse structures, compressive sensing (CS) is applied to facilitate efficient sparse signal transmissions over lossy communication links without data compression or error protection. The natural packet loss in the lossy link is modeled as a random sampling process of the transmitted data, and the original signal will be reconstructed from the lossy transmission results using the CS-based reconstruction method at the receiving end. The impacts of packet lengths on transmission efficiency under different channel conditions have been discussed, and interleaving is incorporated to mitigate the impact of burst data loss. Extensive simulations and experiments have been conducted and compared to the traditional automatic repeat request (ARQ) interpolation technique, and very favorable results have been observed in terms of both accuracy of the reconstructed signals and the transmission energy consumption. Furthermore, the packet length effect provides useful insights for using compressed sensing for efficient sparse signal transmission via lossy links. PMID:26287195
Locating Encrypted Data Hidden Among Non-Encrypted Data Using Statistical Tools
2007-03-01
length of a compressed sequence). If a bit sequence can be significantly compressed , then it is not random. Lempel - Ziv Compression Test This test...communication, targeting, and a host other of tasks. This software will most assuredly contain classified data or algorithms requiring protection in...containing the classified data and algorithms . As the program is executed the solider would have access to the common unclassified tasks, however, to
NASA Astrophysics Data System (ADS)
Anuar, N. I. S.; Zakaria, S.; Harun, J.; Wang, C.
2017-07-01
Kenaf and empty fruit bunch (EFB) fibre which are the important natural fibres in Malaysia were studied as nonwoven polymer composites. The effect of fibre loading on kenaf polypropylene and EFB polypropylene nonwoven composite was studied at different mixture ratio. Kenaf polypropylene nonwoven composite (KPNC) and EFB polypropylene nonwoven composite (EPNC) were prepared by carding and needle-punching techniques, followed by a compression moulding at 6 mm thickness. This study was conducted to identify the optimum fibre loading of nonwoven polypropylene composite and their effect on the mechanical strength. The study was designed at 40%, 50%, 60% and 70% of fibre content in nonwoven mat and composite. The tensile strength, flexural strength and compression strength were tested to evaluate the composite mechanical properties. It was found that the mechanical properties for both kenaf and EFB nonwoven composites were influenced by the fibre content. KPNC showed higher mechanical strength than EPNC. The highest flexural strength was obtained at 60% KPNC and the lowest value was showed by 40% EPNC. The tensile and flexural strength for both KPNC and EPNC decreased after the fibre loading of 60%.
Bunch mode specific rate corrections for PILATUS3 detectors
Trueb, P.; Dejoie, C.; Kobas, M.; ...
2015-04-09
PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanismmore » has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.« less
Calvo-Garrido, Carlos; Usall, Josep; Viñas, Inmaculada; Elmer, Philip Ag; Cases, Elena; Teixidó, Neus
2014-06-01
Epidemiological studies have described the life cycle of B. cinerea in vineyards. However, there is a lack of information on the several infection pathways and the quantitative relationships between secondary inoculum and bunch rot at harvest. Over two seasons, different spray programmes were used to determine key phenological stages for bunch rot development. Secondary inoculum sources within the bunch were also studied. The relative importance of flowering was evidenced in the given conditions, as treatments that included two fungicide applications at flowering were the most effective. In 2010, under conducive meteorological conditions for B. cinerea development after veraison, an extra application provided significantly higher control. Infections of necrotic tissues inside the bunch and latent infections developed mainly during flowering, while very low quantities of B. cinerea conidia were recovered from the fruit surface at veraison. Regression analysis correlated the incidence of latent infections and B. cinerea incidence on calyptras and aborted fruits at veraison with incidence of Botrytis bunch rot at harvest, presenting R2 = 0.95 for the overall regression model. This work points out key phenological stages during the season for bunch rot and B. cinerea secondary inoculum development and relates quantitatively inoculum sources at veraison to bunch rot at harvest. Recommendations for field applications of antibotrytic products are also suggested. © 2013 Society of Chemical Industry.
Transverse compression of PPTA fibers
NASA Astrophysics Data System (ADS)
Singletary, James
2000-07-01
Results of single transverse compression testing of PPTA and PIPD fibers, using a novel test device, are presented and discussed. In the tests, short lengths of single fibers are compressed between two parallel, stiff platens. The fiber elastic deformation is analyzed as a Hertzian contact problem. The inelastic deformation is analyzed by elastic-plastic FE simulation and by laser-scanning confocal microscopy of the compressed fibers ex post facto. The results obtained are compared to those in the literature and to the theoretical predictions of PPTA fiber transverse elasticity based on PPTA crystal elasticity.
Proton spectra diagnostics for shock-compression studies
NASA Astrophysics Data System (ADS)
Welch, D. R.; Harris, D. B.; Bennish, A. H.; Miley, G. H.
1984-12-01
The energy spectra of fusion products escaping long-pulse-length laser-imploded deuterium-tritium filled glass microballoons have been measured with a time-of-flight spectrometer. The D(d,p)T reaction proton energy spectra showed two distinct peaks, indicating two burn phases in the target. The first burn phase is attributed to a spherically converging shock, while the second is attributed to subsequent compression heating. The analysis of these spectra provides the first conclusive proof of significant compression yields in these targets, where approximately half of the yield occurs during the compression burn phase.
Bit-wise arithmetic coding for data compression
NASA Technical Reports Server (NTRS)
Kiely, A. B.
1994-01-01
This article examines the problem of compressing a uniformly quantized independent and identically distributed (IID) source. We present a new compression technique, bit-wise arithmetic coding, that assigns fixed-length codewords to the quantizer output and uses arithmetic coding to compress the codewords, treating the codeword bits as independent. We examine the performance of this method and evaluate the overhead required when used block-adaptively. Simulation results are presented for Gaussian and Laplacian sources. This new technique could be used as the entropy coder in a transform or subband coding system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeffer, H.; Saewert, G.
This paper reports on a 6 kV modulator built and installed at Fermilab to drive the electron gun anode for the Tevatron Electron Lens (TEL). The TEL was built with the intention of shifting the individual (anti)proton bunch tunes to even out the tune spread among all 36 bunches with the desire of improving Tevatron integrated luminosity. This modulator is essentially a 6 kV arbitrary waveform generator that enables the TEL to define the electron beam intensity on a bunch-by-bunch basis. A voltage waveform is constructed having a 7 μs duration that corresponds to the tune shift requirements of amore » 12-bunch (anti)proton beam pulse train. This waveform is played out for any one or all three bunch trains in the Tevatron. The programmed waveform voltages transition to different levels at time intervals corresponding to the 395 ns bunch spacing. In addition, complex voltage waveforms can be played out at a sustained rate of 143 kHz over the full 6 kV output range. This paper describes the novel design of the inductive adder topology employing five transformers. It describes the design aspects that minimize switching losses for this multi-kilovolt, high repetition rate and high duty factor application.« less
Experimental studies on coherent synchrotron radiation at an emittance exchange beam line
NASA Astrophysics Data System (ADS)
Thangaraj, J. C. T.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A. H.; Santucci, J.
2012-11-01
One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.
Generation of double pulses at the Shanghai soft X-ray free electron laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhen; Feng, Chao; Gu, Qiang
2017-01-28
In this paper, we present the promise of a new method generating double electron pulses with the picosecond-scale pulse length and the tunable interpulse spacing at several picoseconds, which has been witnessed an impressive potential of application in pump-probe techniques, two-color X-ray free electron laser (FEL), high-gradient witness bunch acceleration in a plasma, etc. Three-dimensional simulations are carried out to analyze the dynamic of the electron beam in the linear accelerator. Some comparisons have been made between the new method and the existing ways as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemella, Johann; Bane, Karl; Fisher, Alan
The RadiaBeam/SLAC dechirper, a structure consisting of pairs of flat, metallic, corrugated plates, has been installed just upstream of the undulators in the Linac Coherent Light Source (LCLS). As a dechirper, with the beam passing between the plates on axis, longitudinal wakefields are induced that can remove unwanted energy chirp in the beam. However, with the beam passing off axis, strong transverse wakes are also induced. This mode of operation has already been used for the production of intense, multicolor photon beams using the fresh-slice technique, and is being used to develop a diagnostic for attosecond bunch length measurements. Heremore » we measure, as a function of offset, the strength of the transverse wakefields that are excited between the two plates, and also for the case of the beam passing near to a single plate. We compare with analytical formulas from the literature, and find good agreement. As a result, this report presents the first systematic measurements of the transverse wake strength in a dechirper, one that has been excited by a bunch with the short pulse duration and high energy found in an x-ray free electron laser.« less
NASA Astrophysics Data System (ADS)
Kolski, Jeffrey
The linear lattice properties of the Proton Storage Ring (PSR) at the Los Alamos Neutron Science Center (LANSCE) in Los Alamos, NM were measured and applied to determine a better linear accelerator model. We found that the initial model was deficient in predicting the vertical focusing strength. The additional vertical focusing was located through fundamental understanding of experiment and statistically rigorous analysis. An improved model was constructed and compared against the initial model and measurement at operation set points and set points far away from nominal and was shown to indeed be an enhanced model. Independent component analysis (ICA) is a tool for data mining in many fields of science. Traditionally, ICA is applied to turn-by-turn beam position data as a means to measure the lattice functions of the real machine. Due to the diagnostic setup for the PSR, this method is not applicable. A new application method for ICA is derived, ICA applied along the length of the bunch. The ICA modes represent motions within the beam pulse. Several of the dominate ICA modes are experimentally identified.
A phenomenological pulsar model
NASA Technical Reports Server (NTRS)
Michel, F. C.
1978-01-01
Particle injection energies and rates previously calculated for the stellar wind generation by rotating magnetized neutron stars are adopted. It is assumed that the ambient space-charge density being emitted to form this wind is bunched. These considerations immediately place the coherent radio frequency luminosity from such bunches near 10 to the 28th erg/s for typical pulsar parameters. A comparable amount of incoherent radiation is emitted for typical (1 second) pulsars. For very rapid pulsars, however, the latter component grows more rapidly than the available energy sources. The comparatively low radio luminosity of the Crab and Vela pulsars is attributed to both components being limited in the same ratio. The incoherent radiation essentially has a synchotron spectrum and extends to gamma-ray energies; consequently the small part of the total luminosity that is at optical wavelengths is unobservable. Assuming full coherence at all wavelengths short of a critical length gives a spectral index for the flux density of -8/3 at higher frequencies. The finite energy available from the injected particles would force the spectrum to roll over below about 100 MHz, although intrinsic morphological factors probably enter for any specific pulsar as well.
MITHRA 1.0: A full-wave simulation tool for free electron lasers
NASA Astrophysics Data System (ADS)
Fallahi, Arya; Yahaghi, Alireza; Kärtner, Franz X.
2018-07-01
Free Electron Lasers (FELs) are a solution for providing intense, coherent and bright radiation in the hard X-ray regime. Due to the low wall-plug efficiency of FEL facilities, it is crucial and additionally very useful to develop complete and accurate simulation tools for better optimizing a FEL interaction. The highly sophisticated dynamics involved in a FEL process was the main obstacle hindering the development of general simulation tools for this problem. We present a numerical algorithm based on finite difference time domain/Particle in cell (FDTD/PIC) in a Lorentz boosted coordinate system which is able to fulfill a full-wave simulation of a FEL process. The developed software offers a suitable tool for the analysis of FEL interactions without considering any of the usual approximations. A coordinate transformation to bunch rest frame makes the very different length scales of bunch size, optical wavelengths and the undulator period transform to values with the same order. Consequently, FDTD/PIC simulations in conjunction with efficient parallelization techniques make the full-wave simulation feasible using the available computational resources. Several examples of free electron lasers are analyzed using the developed software, the results are benchmarked based on standard FEL codes and discussed in detail.
Zemella, Johann; Bane, Karl; Fisher, Alan; ...
2017-10-19
The RadiaBeam/SLAC dechirper, a structure consisting of pairs of flat, metallic, corrugated plates, has been installed just upstream of the undulators in the Linac Coherent Light Source (LCLS). As a dechirper, with the beam passing between the plates on axis, longitudinal wakefields are induced that can remove unwanted energy chirp in the beam. However, with the beam passing off axis, strong transverse wakes are also induced. This mode of operation has already been used for the production of intense, multicolor photon beams using the fresh-slice technique, and is being used to develop a diagnostic for attosecond bunch length measurements. Heremore » we measure, as a function of offset, the strength of the transverse wakefields that are excited between the two plates, and also for the case of the beam passing near to a single plate. We compare with analytical formulas from the literature, and find good agreement. As a result, this report presents the first systematic measurements of the transverse wake strength in a dechirper, one that has been excited by a bunch with the short pulse duration and high energy found in an x-ray free electron laser.« less
[Efficacy of compression knee-high socks ULCER X in treatment of venous-genesis trophic ulcers].
Bogdanets, L I; Bogachev, V Iu; Lobanov, V N; Smirnova, E S
2013-01-01
The study was aimed at comparatively assessing the efficacy of treatment for venous trophic ulcers at stages II-III of the wound process using special compression knee-length socks of the ULCER X kit (Sigvaris AG, St. Gallen, Switzerland) and long-stretch bandages Lauma. Compression therapy was included into the programme of outpatient treatment of forty 31-to-74-year-old patients presenting with trophic ulcers (stage II-III of the wound process) with an average area of 5,36±1,1 cm2. The Study Group consisting of 20 patients used compression knitted fabrics in the form of knee-length socks ULCER X and the comparison group (n=20) used long-stretch bandages Lauma. The obtained findings (6 months) demonstrated that using compression therapy exerted a positive effect on the process of healing of venous trophic ulcers, also proving advantages of compression therapy with the knee-length socks ULCER X that create an adequate level of pressure on the crus and maintain it in long-term daily use, reliably accelerating the healing of venous trophic ulcers as compared with elastic long-stretch bandages. The use of long-stretch elastic bandages in treatment of venous trophic ulcers turned out to be not only ineffective but fraught with a possibility of the development of various complications. During 6 months of follow up the patients using the special knee-length socks ULCER X were found to have 80 % of ulcers healed (16 patients), mainly within the first 2 months, whereas using elastic bandages resulted in only 30 % of healing (6 patients) by the end of the study. Along with it, we documented a considerable decrease in the malleolar circumference in the study group patients (from 30,05±0,78 to 28,35±0,86 cm) and in the control group from 31,2±30,35 to 30,25±0,75 cm), accompanied and followed by more than a two-fold increase in quality of life of the patients along all the parameters in the study group and a 1.4-fold increase in the control group patients.
Bunch-Kaufman factorization for real symmetric indefinite banded matrices
NASA Technical Reports Server (NTRS)
Jones, Mark T.; Patrick, Merrell L.
1989-01-01
The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.
Plasma-driven ultrashort bunch diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dornmair, I.; Schroeder, C. B.; Floettmann, K.
2016-06-10
Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.
Tunable Soft X-Ray Oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtele, Jonathan; Gandhi, Punut; Gu, X-W
A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixedmore » frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.« less
NASA Technical Reports Server (NTRS)
Novik, Dmitry A.; Tilton, James C.
1993-01-01
The compression, or efficient coding, of single band or multispectral still images is becoming an increasingly important topic. While lossy compression approaches can produce reconstructions that are visually close to the original, many scientific and engineering applications require exact (lossless) reconstructions. However, the most popular and efficient lossless compression techniques do not fully exploit the two-dimensional structural links existing in the image data. We describe here a general approach to lossless data compression that effectively exploits two-dimensional structural links of any length. After describing in detail two main variants on this scheme, we discuss experimental results.
Rigid polyurethane/oil palm fibre biocomposite foam
NASA Astrophysics Data System (ADS)
Alis, Adilah; Majid, Rohah A.; Nasir, Izzah Athirah Ahmad; Mustaffa, Nor Syatika; Hassan, Wan Hasamuddin Wan
2017-07-01
Rigid polyurethane (PU) biocomposite foam had been successfully prepared by reacting palm oil-derived polyol (PO-p) with polymeric 4, 4-diphenylmethane diisocynate (p-MDI). Two types of alkali-treated oil palm fibres namely, empty fruit bunch (EFB) and palm pressed fibre (PPF) were used as fillers to be incorporated into PU foam at 2.5 wt%, 5 wt% and 7.5 wt% fibre loadings. The effects of these fibres on surface morphology, compressive strength and thermal transition behaviours of biocomposite foams were investigated. Fourier transform infra-red (FTIR) analysis confirmed the formation of urethane linkages (-NHCOO) in all samples at 1530-1540 cm-1. Differential scanning calorimetry (DSC) analysis showed the average melting peak temperature (Tm) of biocomposite foams (132°C) were lower Tm than that of pure PU foam (161.67°C) and the increase amount of fibres did not give significant effect on the Tm of both biocomposite systems. Meanwhile, the microscopic images of PU-PPF foams exhibited smaller and uniform cell size morphologies compared with the PU-EFB foams that had coarse and irregular cell sizes, especially at 7.5wt% EFB. These findings were manifested with the gradually increase of compressive strength of PU-PPF at all PPF ratios while for PU-EFB system, the compressive strength increased up to 5 wt% before reduced at 7.5 wt% loading. It was thought due to the residual oil in PPF fibre had plasticized the PU matrix to a little extent, thus helping the dispersion of PPF fibre across the matrix.
Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source
NASA Astrophysics Data System (ADS)
Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.
2016-09-01
High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.
Wake excited in plasma by an ultrarelativistic pointlike bunch
Stupakov, G.; Breizman, B.; Khudik, V.; ...
2016-10-05
We study propagation of a relativistic electron bunch through a cold plasma assuming that the transverse and longitudinal dimensions of the bunch are much smaller than the plasma collisionless skin depth. Treating the bunch as a point charge and assuming that its charge is small, we derive a simplified system of equations for the plasma electrons and show that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. The equations demonstrate an ion cavity formed behind the driver. They are solved numerically and the scaling of the cavity parameters with the driver charge ismore » obtained. As a result, a numerical solution for the case of a positively charged driver is also found.« less
Observation of High Transformer Ratio of Shaped Bunch Generated by an Emittance-Exchange Beam Line.
Gao, Q; Ha, G; Jing, C; Antipov, S P; Power, J G; Conde, M; Gai, W; Chen, H; Shi, J; Wisniewski, E E; Doran, D S; Liu, W; Whiteford, C E; Zholents, A; Piot, P; Baturin, S S
2018-03-16
Collinear wakefield acceleration has been long established as a method capable of generating ultrahigh acceleration gradients. Because of the success on this front, recently, more efforts have shifted towards developing methods to raise the transformer ratio (TR). This figure of merit is defined as the ratio of the peak acceleration field behind the drive bunch to the peak deceleration field inside the drive bunch. TR is always less than 2 for temporally symmetric drive bunch distributions and therefore recent efforts have focused on generating asymmetric distributions to overcome this limitation. In this Letter, we report on using the emittance-exchange method to generate a shaped drive bunch to experimentally demonstrate a TR≈5 in a dielectric wakefield accelerator.
Longitudinal emittance measurements in the Booster and AGS during the 2014 RHIC gold run
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeno, K.
2014-08-18
This note describes longitudinal emittance measurements that were made in the Booster and AGS during the 2014 RHIC Gold run. It also contains an overview of the longitudinal aspects of their setup during this run. Each bunch intended for RHIC is composed of beam from 4 Booster cycles, and there are two of them per AGS cycle. For each of the 8 Booster cycles required to produce the 2 bunches in the AGS, a beam pulse from EVIS is injected into the Booster and captured in four h=4 buckets. Then those bunches are accelerated to a porch where they aremore » merged into 2 bunches and then into 1 bunch.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balbekov, V.
Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from bunch to bunch along the batch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role ofmore » the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.« less
NASA Astrophysics Data System (ADS)
Liang, Yifan; Du, Yingchao; Su, Xiaolu; Wang, Dan; Yan, Lixin; Tian, Qili; Zhou, Zheng; Wang, Dong; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang; Konoplev, I. V.; Zhang, H.; Doucas, G.
2018-01-01
Generation of coherent Smith-Purcell (cSPr) and transition/diffraction radiation using a single bunch or a pre-modulated relativistic electron beam is one of the growing research areas aiming at the development of radiation sources and beam diagnostics for accelerators. We report the results of comparative experimental studies of terahertz radiation generation by an electron bunch and micro-bunched electron beams and the spectral properties of the coherent transition and SP radiation. The properties of cSPr spectra are investigated and discussed, and excitations of the fundamental and second harmonics of cSPr and their dependence on the beam-grating separation are shown. The experimental and theoretical results are compared, and good agreement is demonstrated.
Parallel design of JPEG-LS encoder on graphics processing units
NASA Astrophysics Data System (ADS)
Duan, Hao; Fang, Yong; Huang, Bormin
2012-01-01
With recent technical advances in graphic processing units (GPUs), GPUs have outperformed CPUs in terms of compute capability and memory bandwidth. Many successful GPU applications to high performance computing have been reported. JPEG-LS is an ISO/IEC standard for lossless image compression which utilizes adaptive context modeling and run-length coding to improve compression ratio. However, adaptive context modeling causes data dependency among adjacent pixels and the run-length coding has to be performed in a sequential way. Hence, using JPEG-LS to compress large-volume hyperspectral image data is quite time-consuming. We implement an efficient parallel JPEG-LS encoder for lossless hyperspectral compression on a NVIDIA GPU using the computer unified device architecture (CUDA) programming technology. We use the block parallel strategy, as well as such CUDA techniques as coalesced global memory access, parallel prefix sum, and asynchronous data transfer. We also show the relation between GPU speedup and AVIRIS block size, as well as the relation between compression ratio and AVIRIS block size. When AVIRIS images are divided into blocks, each with 64×64 pixels, we gain the best GPU performance with 26.3x speedup over its original CPU code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, G.; Valishev, A.; Semenov, A.
2010-05-01
A system was developed for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations based on the signal from a single beam-position monitor (BPM) located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, the beam is excited with band-limited noise for about one second, and this was shown not to significantly affect the circulating beams even at high luminosity. The system is used to measure betatron tunes of individual bunches and to study beam-beam effects. In particular,more » it is one of the main diagnostic tools in an ongoing study of nonlinear beam-beam compensation studies with Gaussian electron lenses. We present the design and operation of this tool, together with results obtained with proton and antiproton bunches.« less
Overtaking collision effects in a cw double-pass proton linac
Tao, Yue; Qiang, Ji; Hwang, Kilean
2017-12-22
The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less
Simple method for generating adjustable trains of picosecond electron bunches
NASA Astrophysics Data System (ADS)
Muggli, P.; Allen, B.; Yakimenko, V. E.; Park, J.; Babzien, M.; Kusche, K. P.; Kimura, W. D.
2010-05-01
A simple, passive method for producing an adjustable train of picosecond electron bunches is demonstrated. The key component of this method is an electron beam mask consisting of an array of parallel wires that selectively spoils the beam emittance. This mask is positioned in a high magnetic dispersion, low beta-function region of the beam line. The incoming electron beam striking the mask has a time/energy correlation that corresponds to a time/position correlation at the mask location. The mask pattern is transformed into a time pattern or train of bunches when the dispersion is brought back to zero downstream of the mask. Results are presented of a proof-of-principle experiment demonstrating this novel technique that was performed at the Brookhaven National Laboratory Accelerator Test Facility. This technique allows for easy tailoring of the bunch train for a particular application, including varying the bunch width and spacing, and enabling the generation of a trailing witness bunch.
Overtaking collision effects in a cw double-pass proton linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Yue; Qiang, Ji; Hwang, Kilean
The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, John
A 4.2 GS/sec. beam excitation system with accelerator synchronization and power stages is described. The system is capable of playing unique samples (32 samples/bunch) for 15,000 turns on selected bunch(es) in the SPS in syn- chronism with the injection and acceleration cycle. The purpose of the system is to excite internal modes of single-bunch vertical motion, and study the bunch dynamics in the presence of developing Electron cloud or TMCI effects. The system includes a synchronized master oscillator, SPS timing functions, an FPGA based arbitrary waveform generator, 4.2 GS/sec. D/A system and four 80W 20-1000 MHz amplifiers driving a taperedmore » stripline pickup/kicker. A software GUI allows specification of various modulation signals, selection of bunches and turns to excite, while a remote control interface allows simple control/monitoring of the RF power stages located in the tunnel. The successful use of this system for SPS MD measurements in 2011 is a vital proof-of-principle for wideband feedback using similar functions to correct the beam motion.« less
End-to-end communication test on variable length packet structures utilizing AOS testbed
NASA Technical Reports Server (NTRS)
Miller, Warner H.; Sank, V.; Fong, Wai; Miko, J.; Powers, M.; Folk, John; Conaway, B.; Michael, K.; Yeh, Pen-Shu
1994-01-01
This paper describes a communication test, which successfully demonstrated the transfer of losslessly compressed images in an end-to-end system. These compressed images were first formatted into variable length Consultative Committee for Space Data Systems (CCSDS) packets in the Advanced Orbiting System Testbed (AOST). The CCSDS data Structures were transferred from the AOST to the Radio Frequency Simulations Operations Center (RFSOC), via a fiber optic link, where data was then transmitted through the Tracking and Data Relay Satellite System (TDRSS). The received data acquired at the White Sands Complex (WSC) was transferred back to the AOST where the data was captured and decompressed back to the original images. This paper describes the compression algorithm, the AOST configuration, key flight components, data formats, and the communication link characteristics and test results.
Design of graphene nanoparticle undergoing axial compression: quantum study
NASA Astrophysics Data System (ADS)
Glukhova, O. E.; Kirillova, I. V.; Saliy, I. N.; Kolesnikova, A. S.; Slepchenkov, M. M.
2011-03-01
We report the results of quantum mechanical investigations of the atomic structure and deformations of graphene nanoparticle undergoing axial compression. We applied the tight-binding (TB) method. Our transferable tightbinding potential correctly reproduced tight-binding changes in the electronic configuration as a function of the local bonding geometry around each carbon atom. The tight-binding method applied provided the consideration and calculation of the rehybridization between σ- and π-orbitals. To research nanoribbons using tight-binding potential our own program was used. We adapted TB method to be able to run the algorithm on a parallel computing machine (computer cluster). To simulate axial compression of graphene nanoparticles the atoms on the ends were fixed on the plates. The plates were moved towards each other to decrease the length at some percent. Plane atomic network undergoing axial compression became wave-like. The amplitude of wave and its period were not constant and changed along axis. This is a phase transition. The strain energy collapse occurs at the value of axial compression 0.03-0.04. The strain energy increased up to the quantity compression 0.03, then collapsed sharply and decreased. So according to our theoretical investigation, the elasticity of graphene nanoparticles is more than the elasticity of nanotubes the same width and length. The curvature of the atomic network because of compression will decrease the reactivity of graphene nanoparticles. We have calculated the atomic structure and electronic structure of the compression graphene nanopaticle at each step of strain of axial compression. We have come to the conclusion that the wave-like graphenes adsorbing protein and nucleic acid are the effective nanosensors and bionanosensors.
Optically controlled laser-plasma electron accelerator for compact gamma-ray sources
NASA Astrophysics Data System (ADS)
Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.
2018-02-01
Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent-scale energy spread and five-dimensional brightness over 1016 A m-2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n 0 ˜ 1019 cm-3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average power. Blue-shifting one stack component by a considerable fraction of the carrier frequency makes the stack immune to self-compression. This, in turn, minimizes uncontrolled variation in the cavity shape, suppressing continuous injection of ambient plasma electrons, preserving a single, ultra-bright electron bunch. In addition, weak focusing of the trailing component of the stack induces periodic injection, generating, in a single shot, a train of bunches with controllable energy spacing and femtosecond synchronization. These designer e-beams, inaccessible to conventional acceleration methods, generate, via TS, gigawatt γ-ray pulses (or multi-color pulse trains) with the mean energy in the range of interest for nuclear photonics (4-16 MeV), containing over 106 photons within a microsteradian-scale observation cone.
NASA Astrophysics Data System (ADS)
Mostacci, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Cardelli, F.; Castellano, Michele; Chiadroni, Enrica; Cianchi, Alessandro; Croia, M.; Di Giovenale, Domenico; Di Pirro, Giampiero; Ferrario, Massimo; Filippi, Francesco; Gallo, Alessandro; Gatti, Giancarlo; Giribono, Anna; Innocenti, L.; Marocchino, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, Riccardo; Romeo, Stefano; Rossi, Andrea Renato; Shpakov, V.; Scifo, J.; Vaccarezza, Cristina; Villa, Fabio; Weiwei, L.
2015-05-01
Sub-picosecond, high-brightness electron bunch trains are routinely produced at SPARC-LAB via the velocity bunching technique. Such bunch trains can be used to drive multi-color Free Electron Lasers (FELs) and plasma wake field accelerators. In this paper we present recent results at SPARC-LAB on the generation of such beams, highlighting the key points of our scheme. We will discuss also the on-going machine upgrades to allow driving FELs with plasma accelerated beams or with short electron pulses at an increased energy.
Simulated Performance of the Wisconsin Superconducting Electron Gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.A. Bosch, K.J. Kleman, R.A. Legg
2012-07-01
The Wisconsin superconducting electron gun is modeled with multiparticle tracking simulations using the ASTRA and GPT codes. To specify the construction of the emittance-compensation solenoid, we studied the dependence of the output bunch's emittance upon the solenoid's strength and field errors. We also evaluated the dependence of the output bunch's emittance upon the bunch's initial emittance and the size of the laser spot on the photocathode. The results suggest that a 200-pC bunch with an emittance of about one mm-mrad can be produced for a free-electron laser.
NASA Technical Reports Server (NTRS)
Gurgiolo, C.; Parks, G. K.; Mauk, G. H.
1983-01-01
The conditions necessary for the production of gyrophase bunched ions at the bow shock are developed. The conditions are applied to the reflection mechanism presented by Paschmann et al. (1980), showing that when in their model a portion of the incident parallel velocity is converted into reflected perpendicular velocity, the reflected particles are gyrophase bunched. The growth of velocity space structure in the gyrophase bunched distribution through gyrophase mixing is also explored. The structure is found to be similar to that reported in diffuse and dispersed ion events. This together with the close correlation of the observation of gyrophase bunched ions with diffuse and dispersed ions has led us to speculate that these two populations may be closely related.
Zianor Azrina, Z A; Beg, M Dalour H; Rosli, M Y; Ramli, Ridzuan; Junadi, Norhafzan; Alam, A K M Moshiul
2017-04-15
Nanocrystalline cellulose (NCC) was isolated from oil palm empty fruit bunch pulp (EFBP) using ultrasound assisted acid hydrolysis. The obtained NCC was analysed using FESEM, XRD, FTIR, and TGA, and compared with raw empty fruit bunch fibre (REFB), empty fruit bunch pulp (EFBP), and treated empty fruit bunch pulp (TEFBP). Based on FESEM analysis, it was found that NCC has a spherical shaped after acid hydrolysis with the assistance of ultrasound. This situation was different compared to previous studies that obtained rod-like shaped of NCC. Furthermore, the crystallinity of NCC is higher compared to REFB and EFBP. According to thermal stability, the NCC obtained shows remarkable sign of high thermal stability compared to REFB and EFBP. Copyright © 2017 Elsevier Ltd. All rights reserved.
Growth habit and surface morphology of L-arginine phosphate monohydrate single crystals
NASA Astrophysics Data System (ADS)
Sangwal, K.; Veintemillas-Verdaguer, S.; Torrent-Burgués, J.
1995-10-01
The results of a study of the growth habit and the surface topography of L-arginine phosphate monohydrate (LAP) single crystals as a function of supersaturation are described and discussed. Apart from a change in the growth habit with supersaturation, it was observed that most of the as-grown faces of LAP exhibit isolated growth hillocks and macrohillocks and parallel bunched layers and that the formation of bunched layers is pronounced on faces showing macrohillocks. Observations of bunching of growth layers emitted by macrohillocks on the {100} faces revealed that, for the onset of bunching close to a macrospiral, there is a characteristic threshold distance whose value depends on the interstep distance and supersaturation, but is independent of step height. The theoretical habit of LAP deduced from PBC analysis showed that all faces exhibiting growth hillocks and macrohillocks are F faces. Analysis of the results on bunch formation revealed that growth of LAP takes place by the direct integration of growth entities at the growth steps, that the bunching is facilitated by an increasing value of the activation energy for their integration, and that the observed dependencies of threshold distance on interstep distance, supersaturation and step height are qualitatively in agreement with van der Eerden and Müller-Krumbhaar's theory of bunch formation.
NASA Astrophysics Data System (ADS)
Chubar, O.
2006-09-01
The paper describes methods of efficient calculation of spontaneous synchrotron radiation (SR) by relativistic electrons in storage rings, and propagation of this radiation through optical elements and drift spaces of beamlines, using the principles of wave optics. In addition to the SR from one electron, incoherent and coherent synchrotron radiation (CSR) emitted by electron bunches is treated. CPU-efficient CSR calculation method taking into account 6D phase space distribution of electrons in a bunch is proposed. The properties of CSR emitted by electron bunches with small longitudinal and large transverse size are studied numerically (such situation can be realized in storage rings e.g. by transverse deflection of the electron bunches in special RF cavities). It is shown that if the transverse size of a bunch is much larger than the diffraction limit for single-electron SR at a given wavelength - it affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and the longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR.
A 6 kV arbitrary waveform generator for the Tevatron Electron Lens
Pfeffer, H.; Saewert, G.
2011-11-09
This paper reports on a 6 kV modulator built and installed at Fermilab to drive the electron gun anode for the Tevatron Electron Lens (TEL). The TEL was built with the intention of shifting the individual (anti)proton bunch tunes to even out the tune spread among all 36 bunches with the desire of improving Tevatron integrated luminosity. This modulator is essentially a 6 kV arbitrary waveform generator that enables the TEL to define the electron beam intensity on a bunch-by-bunch basis. A voltage waveform is constructed having a 7 μs duration that corresponds to the tune shift requirements of amore » 12-bunch (anti)proton beam pulse train. This waveform is played out for any one or all three bunch trains in the Tevatron. The programmed waveform voltages transition to different levels at time intervals corresponding to the 395 ns bunch spacing. In addition, complex voltage waveforms can be played out at a sustained rate of 143 kHz over the full 6 kV output range. This paper describes the novel design of the inductive adder topology employing five transformers. It describes the design aspects that minimize switching losses for this multi-kilovolt, high repetition rate and high duty factor application.« less
Positron production by x rays emitted by betatron motion in a plasma wiggler.
Johnson, D K; Auerbach, D; Blumenfeld, I; Barnes, C D; Clayton, C E; Decker, F J; Deng, S; Emma, P; Hogan, M J; Huang, C; Ischebeck, R; Iverson, R; Joshi, C; Katsouleas, T C; Kirby, N; Krejcik, P; Lu, W; Marsh, K A; Mori, W B; Muggli, P; O'Connell, C L; Oz, E; Siemann, R H; Walz, D; Zhou, M
2006-10-27
Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra.
Advanced studies at the VISA FEL in the SASE and seeded modes
NASA Astrophysics Data System (ADS)
Andonian, G.; Dunning, M.; Hemsing, E.; Murokh, A.; Pellegrini, C.; Reiche, S.; Rosenzweig, J.; Babzien, M.; Yakimenko, V.
2008-08-01
The VISA (Visible to Infrared SASE Amplifier) program has been in operation at the BNL ATF since the year 2000. The program has produced numerous results including, demonstrated saturation at 840 nm with a gain length of 18 cm, chirped beam amplification with the observation of anomalously large bandwidth of the emitted radiation, and successful benchmarking of a start-to-end simulation suite to measured results. This paper will review the prior results of the VISA program and discuss planned novel measurements, including detuning studies of a 1 μm seeded amplifier, and measurements of the orbital angular momentum of the emitted radiation. The installation of a dedicated chicane bunch compressor followed by an x-band linac to mitigate energy spread will allow for high-current operations (reduced saturation length, and deep-saturation studies). Other measurements, such as coherent transition undulator radiation, are also proposed.
Design study of the storage ring EUTERPE
NASA Astrophysics Data System (ADS)
Xi, Boling; Botman, J. I. M.; Timmermans, C. J.; Hagedoorn, H. L.
1992-05-01
At present the 400 MeV electron storage ring EUTERPE is being constructed at the Eindhoven University of Technology. It is a university project set up for studies of charged particle beam dynamics and applications of synchroton radiation, and for the education of students in these fields. The design of the ring is described in this paper. Considering the requirements of users in different fields, a lattice based on a so-called triple bend achromat structure with a high flexibility has been chosen. With this lattice, different optical options, including the HBSB (high brightness, small beam), the SBL (short bunch length) and the HLF (high light flux) modes can be realized. A small emittance of 7 nm rad and a short bunch length of the order of several mm can be achieved. In the first phase the synchrotron radiation in the UV and XUV region (the critical wavelength is 8.3 nm) will be provided from the regular dipole magnets. Later on, a 10 T wiggler magnet and other special inserters will be added, and other applications and beam dynamics studies will be feasible. Bending magnets are of the parallel faced C configuration. The effective aperture of the vacuum chamber is 2.3 cm (vertical) in the bending magnets and 4.7 cm elsewhere with a working vacuum condition of 10-9 Torr. Collective effects have been studied initially. First calculations indicate that a lifetime of several hours, influenced by the Touschek effect and residual gas scattering will be achievable for a 200 mA beam in the HLF mode for the standard rf parameters. A 70 MeV racetrack microtron will serve as injector for the ring.
Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz
Graves, W. S.; Bessuille, J.; Brown, P.; ...
2014-12-01
A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standingwave linac and rf photoinjector powered by a single ultrastable rf transmitter at X-band rf frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. Themore » entire accelerator is approximately 1 meter long and produces hard x rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for many passes in a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5 × 10¹¹ photons/second in a 5% bandwidth and the brilliance is 2 × 10¹² photons/(sec mm² mrad² 0.1%) in pulses with rms pulse length of 490 fs. The nominal electron beam parameters are 18 MeV kinetic energy, 10 microamp average current, 0.5 microsecond macropulse length, resulting in average electron beam power of 180 W. Optimization of the x-ray output is presented along with design of the accelerator, laser, and x-ray optic components that are specific to the particular characteristics of the Compton scattered x-ray pulses.« less
Material Capability for Transport of Unsymmetrical Dimethylhydrazine
1990-07-13
is shown in Figure 1. The air supply was house compressed air conditioned by passing it through a series of demisters, a hot Hopcalite catalyst bed...required to reach that value was recorded. At the end of a test, the tubing was rinsed with methanol and dried with compressed breathing air or filtered... compressed house air . Solvents such as acetone were not used as they react with hydrazines (8]. Table 2 lists the combinations of tubing length, UDMH or
Preliminary Design on Screw Press Model of Palm Oil Extraction Machine
NASA Astrophysics Data System (ADS)
Firdaus, Muhammad; Salleh, S. M.; Nawi, I.; Ngali, Z.; Siswanto, W. A.; Yusup, E. M.
2017-01-01
The concept of the screw press is to compress the fruit bunch between the main screw and travelling cones to extract the palm oil. Visual inspection, model development and simulation of screw press by using Solidworks 2016 and calculation of design properties were performed to support the investigation. The project aims to analyse different design of screw press which improves in reducing maintenance cost and increasing lifespan. The currently existing of screw press can endure between 500 to 900 hours and requires frequent maintenance. Different configurations have been tried in determination of best design properties in screw press. The results specify that screw press with tapered inner shaft has more total lifespan (hours) compared existing screw press. The selection of the screw press with tapered inner shaft can reduce maintenance cost and increase lifespan of the screw press.
Drive Beam Shaping and Witness Bunch Generation for the Plasma Wakefield Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
England, R. J.; Frederico, J.; Hogan, M. J.
2010-11-04
High transformer ratio operation of the plasma wake field accelerator requires a tailored drive beam current profile followed by a short witness bunch. We discuss techniques for generating the requisite dual bunches and for obtaining the desired drive beam profile, with emphasis on the FACET experiment at SLAC National Accelerator Laboratory.
Single bunch transverse instability in a circular accelerator with chromaticity and space charge
Balbekov, V.
2015-10-21
The transverse instability of a bunch in a circular accelerator is elaborated in this paper. A new tree-modes model is proposed and developed to describe the most unstable modes of the bunch. This simple and flexible model includes chromaticity and space charge, and can be used with any bunch and wake forms. The dispersion equation for the bunch eigentunes is obtained in form of a third-order algebraic equation. The known head-tail and TMCI modes appear as the limiting cases which are distinctly bounded at zero chromaticity only. It is shown that the instability parameters depend only slightly on the bunchmore » model but they are rather sensitive to the wake shape. In particular, space charge effects are investigated in the paper and it is shown that their influence depends on sign of wake field enhancing the bunch stability if the wake is negative. In addition, the resistive wall wake is considered in detail including a comparison of single and collective effects. A comparison of the results with earlier publications is carried out.« less
Driver-witness electron beam acceleration in dielectric mm-scale capillaries
NASA Astrophysics Data System (ADS)
Lekomtsev, K.; Aryshev, A.; Tishchenko, A. A.; Shevelev, M.; Lyapin, A.; Boogert, S.; Karataev, P.; Terunuma, N.; Urakawa, J.
2018-05-01
We investigated a corrugated mm-scale capillary as a compact accelerating structure in the driver-witness acceleration scheme, and suggested a methodology to measure the acceleration of the witness bunch. The accelerating fields produced by the driver bunch and the energy spread of the witness bunch in a corrugated capillary and in a capillary with a constant inner radius were measured and simulated for both on-axis and off-axis beam propagation. Our simulations predicted a change in the accelerating field structure for the corrugated capillary. Also, an approximately twofold increase of the witness bunch energy gain on the first accelerating cycle was expected for both capillaries for the off-axis beam propagation. These results were confirmed in the experiment, and the maximum measured acceleration of 170 keV /m at 20 pC driver beam charge was achieved for off-axis beam propagation. The driver bunch showed an increase in energy spread of up to 11%, depending on the capillary geometry and beam propagation, with a suppression of the longitudinal energy spread in the witness bunch of up to 15%.
Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam
NASA Astrophysics Data System (ADS)
Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.
2018-04-01
We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.
Study of Uneven Fills to Cure the Coupled-Bunch Instability in SRRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Alex W.
2002-08-12
The performance of the 1.5-GeV storage ring light source TLS in SRRC has been limited by a longitudinal coupled-bunch beam instability. To improve the performance of the TLS, the beam instability has to be suppressed. One possible way considered for the TLS to suppress its coupled-bunch instability uses uneven filling patterns according to the theory of Prabhakar[1]. By knowing the harmful high-order-modes (HOMs), a special filling pattern can be designed to utilize either mode coupling or Landau damping to cure beam instability. In TLS the HOMs are contributed from the Doris RF cavity installed in the storage ring. The HOMsmore » of a 3-D Doris cavity was numerically analyzed. Filling patterns with equal bunch current according to theory had been calculated to cure the most harmful HOM. A longitudinal particle tracking program was used to simulate the coupled-bunch beam instability with both the uniform filling and the special designed filling. Filling pattern with unequal bunch current was also studied. The results of the simulation were discussed and compared to the theory.« less
Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring
NASA Astrophysics Data System (ADS)
Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying
2012-11-01
Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs) yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor) for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.
Graduated compression stockings to prevent deep vein thrombosis.
Walker, Linda; Lamont, Sue
This article describes the correct use and length of graduated elastic compression stockings to prevent deep vein thrombosis (DVT) in general surgical patients. The authors aim to establish whether above or below knee stockings are more effective in the prevention of DVTs, discuss anti-embolic prophylaxis and offer advice on the appropriate management of patients.
ERIC Educational Resources Information Center
Wisniewski, Janusz L.
1986-01-01
Discussion of a new method of index term dictionary compression in an inverted-file-oriented database highlights a technique of word coding, which generates short fixed-length codes obtained from the index terms themselves by analysis of monogram and bigram statistical distributions. Substantial savings in communication channel utilization are…
Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source
Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; ...
2016-09-01
High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. Lastly, the gun utilizes a quarter-wave resonator (QWR) geometrymore » for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.« less
Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY
NASA Astrophysics Data System (ADS)
Nie, Y. C.; Assmann, R.; Dorda, U.; Marchetti, B.; Weikum, M.; Zhu, J.; Hüning, M.
2016-09-01
Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.
Interaction of an ion bunch with a plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.
2016-11-15
Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.
Hierarchical Engineered Materials and Structures
2012-11-30
May 30th to June 1st, Chicago, IL, 2011. 5) D’Mello R. J. and Waas A. M., “Synergistic energy absorption in the axial static compressive response of...For the macroscopic strain (end crushing over initial length) of 0.25 onwards, prominent barreling was observed. The specimen was compressed up to 90...Presentations 1) L. Hansen, S. Guntupalli, R.J. D’Mello, A. Salvi and A. Waas, “The Effects of Defects and Loading Rate on the Compressive Crushing Response of
Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows
2015-06-01
sophisticated computational fluid dynamics ( CFD ) methods. Additionally, for 3D interactions, the length scales would require determination in spanwise as well...Manna, M. “Experimental, Analytical, and Computational Methods Applied to Hypersonic Compression Ramp Flows,” AIAA Journal, Vol. 32, No. 2, Feb. 1994
Performance data of the new free-piston shock tunnel T5 at GALCIT
NASA Technical Reports Server (NTRS)
Hornung, H.; Sturtevant, B.; Belanger, J.; Sanderson, S.; Brouillette, M.; Jenkins, M.
1992-01-01
A new free piston shock tunnel has been constructed at the Graduate Aeronautical Laboratories at Caltec. Compression tube length is 30 m and diameter 300 mm. Shock tube length is 12 m and diameter 90 mm. Piston mass is 150 kg and maximum diaphragm burst pressure is 130 MPa. Special features of this facility are that the pressure in the driver gas is monitored throughout the compression process until well after diaphragm rupture, and that the diaphragm burst pressure can be measured dynamically. An analysis of initial performance data including transient behavior of the flow over models is presented.
Simulations of radiation pressure ion acceleration with the VEGA Petawatt laser
NASA Astrophysics Data System (ADS)
Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique
2016-09-01
The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach Petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 :1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022 W cm-2 impinging normally on 20 - 60 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure-dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.
Simulations of ion acceleration from ultrathin targets with the VEGA petawatt laser
NASA Astrophysics Data System (ADS)
Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique
2015-05-01
The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 : 1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022Wcm-2 impinging normally on 5 - 40 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.
Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield.
Corde, S; Adli, E; Allen, J M; An, W; Clarke, C I; Clayton, C E; Delahaye, J P; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Lipkowitz, N; Litos, M; Lu, W; Marsh, K A; Mori, W B; Schmeltz, M; Vafaei-Najafabadi, N; Walz, D; Yakimenko, V; Yocky, G
2015-08-27
Electrical breakdown sets a limit on the kinetic energy that particles in a conventional radio-frequency accelerator can reach. New accelerator concepts must be developed to achieve higher energies and to make future particle colliders more compact and affordable. The plasma wakefield accelerator (PWFA) embodies one such concept, in which the electric field of a plasma wake excited by a bunch of charged particles (such as electrons) is used to accelerate a trailing bunch of particles. To apply plasma acceleration to electron-positron colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas. Although substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFAs where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered--'self-loaded'--so that about a billion positrons gain five gigaelectronvolts of energy with a narrow energy spread over a distance of just 1.3 metres. They extract about 30 per cent of the wake's energy and form a spectrally distinct bunch with a root-mean-square energy spread as low as 1.8 per cent. This ability to transfer energy efficiently from the front to the rear within a single positron bunch makes the PWFA scheme very attractive as an energy booster to an electron-positron collider.
Evolution of dense spatially modulated electron bunches
NASA Astrophysics Data System (ADS)
Balal, N.; Bratman, V. L.; Friedman, A.
2018-03-01
An analytical theory describing the dynamics of relativistic moving 1D electron pulses (layers) with the density modulation affected by a space charge has been revised and generalized for its application to the formation of dense picosecond bunches from linear accelerators with laser-driven photo injectors, and its good agreement with General Particle Tracer simulations has been demonstrated. Evolution of quasi-one-dimensional bunches (disks), for which the derived formulas predict longitudinal expansion, is compared with that for thin and long electron cylinders (threads), for which the excitation of non-linear waves with density spikes was found earlier by Musumeci et al. [Phys. Rev. Lett. 106(18), 184801 (2011)] and Musumeci et al. [Phys. Rev. Spec. Top. -Accel. Beams 16(10), 100701 (2013)]. Both types of bunches can be used for efficiency enhancement of THz sources based on the Doppler frequency up-shifted coherent spontaneous radiation of electrons. Despite the strong Coulomb repulsion, the periodicity of a preliminary modulation in dense 1D layers persists during their expansion in the most interesting case of a relatively small change in particle energy. However, the period of modulation increases and its amplitude decreases in time. In the case of a large change in electron energy, the uniformity of periodicity is broken due to different relativistic changes in longitudinal scales along the bunch: the "period" of modulation decreases and its amplitude increases from the rear to the front boundary. Nevertheless, the use of relatively long electron bunches with a proper preliminary spatial modulation of density can provide a significantly higher power and a narrower spectrum of coherent spontaneous radiation of dense bunches than in the case of initially short single bunches with the same charge.
NASA Astrophysics Data System (ADS)
Stupakov, Gennady; Zhou, Demin
2016-04-01
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.
Time-resolved coherent X-ray diffraction imaging of surface acoustic waves
Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim
2014-01-01
Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979
Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.
Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim
2014-10-01
Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stupakov, Gennady; Zhou, Demin
2016-04-21
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.
Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun
NASA Astrophysics Data System (ADS)
Saveliev, Y. M.; Jackson, F.; Jones, J. K.; McKenzie, J. W.
2016-09-01
The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments) energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.
Beam dynamics in THz dielectric-loaded waveguides for the AXSIS project
NASA Astrophysics Data System (ADS)
Vinatier, T.; Assmann, R. W.; Dorda, U.; Lemery, F.; Marchetti, B.
2017-07-01
In this paper, we investigate with ASTRA simulations the beam dynamics in dielectric-loaded waveguides driven by THz pulses, used as linac structure for the AXSIS project. We show that the bunch properties at the linac exit are very sensitive to the phase velocity of the THz pulse and are limited by the strong phase slippage of the bunch respective to it. We also show that the bunch properties are optimized when low frequencies (< 300 GHz) are used inside the linac, and that the longitudinal focal point can be put several tens of cm away from the linac exit thanks to ballistic bunching. However, a strong asymmetry in the bunch transverse sizes remains for which a solution is still to be found. Work supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 609920.
Collective electron driven linac for high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.
1983-08-01
A linac design is presented in which an intense ultrarelativistic electron bunch is used to excite fields in a series of cavities and accelerate charged particles. The intense electron bunch is generated in a simple storage ring to have the required transverse and longitudinal dimensions. The bunch is then transferred to the linac. The linac structure can be inexpensively constructed of spacers and washers. The fields in the cells resulting from the bunch passage are calculated using the program BCI. The results show that certain particles within the driving bunch and also trailing particles of any sign charge can bemore » accelerated. With existing electron storage rings, accelerating gradients greater than 16 MV/m are possible. Examples of two accelerators are given: a 30 GeV electron/positron accelerator useful as an injector for a high energy storage ring and 2) a 110 GeV per beam electron-positron collider.« less
Modeling Multi-Bunch X-band Photoinjector Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, R A; Anderson, S G; Gibson, D J
An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray technology at LLNL. The test station will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. Of critical import to the functioning of the LLNL X-band system with multiple electron bunches is the performance of the photoinjector. In depth modeling of the Mark 1 LLNL/SLAC X-band rf photoinjector performance will be presented addressing important challenges that must be addressed in order to fabricate a multi-bunch Mark 2 photoinjector. Emittance performance is evaluated under different nominal electronmore » bunch parameters using electrostatic codes such as PARMELA. Wake potential is analyzed using electromagnetic time domain simulations using the ACE3P code T3P. Plans for multi-bunch experiments and implementation of photoinjector advances for the Mark 2 design will also be discussed.« less
Following an electron bunch for free electron laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-01-01
A video artist's ultra-slow-motion impression of an APEX-style electron gun firing a continuous train of electron bunches into a superconducting linear accelerator (in reality this would happen a million times a second). As they approach the speed of light the bunches contract, maintaining beam quality. After acceleration, the electron bunches are diverted into one or more undulators, the key components of free electron lasers. Oscillating back and forth in the changing magnetic field, they create beams of structured x-ray pulses. Before entering the experimental areas the electron bunches are diverted to a beam dump. (Animation created by Illumina Visual, http://www.illuminavisual.com/,more » for Lawrence Berkeley National Laboratory. Music for this excerpt, "Feeling Dark (Behind The Mask)" is by 7OOP3D http://ccmixter.org/files/7OOP3D/29126 and is licensed under a Creative Commons license: http://creativecommons.org/licenses/by-nc/3.0/)« less
Development of bunch shape monitor for high-intensity beam on the China ADS proton LINAC Injector II
NASA Astrophysics Data System (ADS)
Zhu, Guangyu; Wu, Junxia; Du, Ze; Zhang, Yong; Xue, Zongheng; Xie, Hongming; Wei, Yuan; Jing, Long; Jia, Huan
2018-05-01
The development, performance, and testing of the longitudinal bunch shape monitor, namely, the Fast Faraday Cup (FFC), are presented in this paper. The FFC is an invasive instrument controlled by a stepper motor, and its principle of operation is based on a strip line structure. The longitudinal bunch shape was determined by sampling a small part of the beam hitting the strip line through a 1-mm hole. The rise time of the detector reached 24 ps. To accommodate experiments that utilize high-intensity beams, the materials of the bunch shape monitor were chosen to sustain high temperatures. Water cooling was also integrated in the detector system to enhance heat transfer and prevent thermal damage. We also present an analysis of the heating caused by the beam. The bunch shape monitor has been installed and commissioned at the China ADS proton LINAC Injector II.
Compact double-bunch x-ray free electron lasers for fresh bunch self-seeding and harmonic lasing
Emma, C.; Feng, Y.; Nguyen, D. C.; ...
2017-03-03
This study presents a novel method to improve the longitudinal coherence, efficiency and maximum photon energy of x-ray free electron lasers (XFELs). The method is equivalent to having two separate concatenated XFELs. The first uses one bunch of electrons to reach the saturation regime, generating a high power self-amplified spontaneous emission x-ray pulse at the fundamental and third harmonic. The x-ray pulse is filtered through an attenuator/monochromator and seeds a different electron bunch in the second FEL, using the fundamental and/or third harmonic as an input signal. In our method we combine the two XFELs operating with two bunches, separatedmore » by one or more rf cycles, in the same linear accelerator. We discuss the advantages and applications of the proposed system for present and future XFELs.« less
2012-03-15
compressing the field. Equation (5) uses a geocentric spherical coordinate system with units of length in Earth radii. It is clear that setting b1 = 0...in a complementary approach to the one used by McCollough et al. [2009]. 3. Anisotropy Arising From Magnetic Field Configuration [21] McCollough et al
Model for compressible turbulence in hypersonic wall boundary and high-speed mixing layers
NASA Astrophysics Data System (ADS)
Bowersox, Rodney D. W.; Schetz, Joseph A.
1994-07-01
The most common approach to Navier-Stokes predictions of turbulent flows is based on either the classical Reynolds-or Favre-averaged Navier-Stokes equations or some combination. The main goal of the current work was to numerically assess the effects of the compressible turbulence terms that were experimentaly found to be important. The compressible apparent mass mixing length extension (CAMMLE) model, which was based on measured experimental data, was found to produce accurate predictions of the measured compressible turbulence data for both the wall bounded and free mixing layer. Hence, that model was incorporated into a finite volume Navier-Stokes code.
Factoring symmetric indefinite matrices on high-performance architectures
NASA Technical Reports Server (NTRS)
Jones, Mark T.; Patrick, Merrell L.
1990-01-01
The Bunch-Kaufman algorithm is the method of choice for factoring symmetric indefinite matrices in many applications. However, the Bunch-Kaufman algorithm does not take advantage of high-performance architectures such as the Cray Y-MP. Three new algorithms, based on Bunch-Kaufman factorization, that take advantage of such architectures are described. Results from an implementation of the third algorithm are presented.
Efficiency of feedbacks for suppression of transverse instabilities of bunched beams
Burov, Alexey
2016-08-05
Which gain and phase have to be set for a bunch-by-bunch transverse damper, and at which chromaticity it is better to stay? Furthermore, these questions are considered for three models: the two-particle model with possible quadrupole wake, the author's Nested Head-Tail Vlasov solver with a broadband impedance, and the same with the LHC impedance model.
A Proposal to Build Evaluation Capacity at the Bunche-Da Vinci Learning Partnership Academy
ERIC Educational Resources Information Center
King, Jean A.
2005-01-01
The author describes potential evaluation capacity-building activities in contrast to the specifics of an evaluation design. Her response to the case of the Bunche-Da Vinci Learning Partnership Academy is developed in three parts: (1) an initial framing of the Bunche-Da Vinci situation; (2) what should be done before signing a contract; and (3)…
A Value-Engaged Approach for Evaluating the Bunche-Da Vinci Learning Academy
ERIC Educational Resources Information Center
Greene, Jennifer C.
2005-01-01
In 2001, the Bunche Academy was chosen by its district to join in partnership with the Da Vinci Learning Corporation to embark on an ambitious whole-school reform initiative, especially designed by the corporation for low-performing schools. In this chapter, the author describes how, as illustrated in the Bunche-Da Vinci Learning Academy context,…
7 CFR 51.884 - U.S. No. 1 Table.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Grades § 51.884 U.S. No. 1 Table. “U.S. No. 1 Table” consists of bunches of well developed grapes of one...) Mold; (2) Decay. (f) Berries not damaged by: (1) Any other cause. (g) Bunches not damaged by: (1) Shot...: Exclusive of shot berries and dried berries, 75 percent, by count, of the berries on each bunch shall have...
7 CFR 51.884 - U.S. No. 1 Table.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Grades § 51.884 U.S. No. 1 Table. “U.S. No. 1 Table” consists of bunches of well developed grapes of one...) Mold; (2) Decay. (f) Berries not damaged by: (1) Any other cause. (g) Bunches not damaged by: (1) Shot...: Exclusive of shot berries and dried berries, 75 percent, by count, of the berries on each bunch shall have...
A preliminary design of the collinear dielectric wakefield accelerator
NASA Astrophysics Data System (ADS)
Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J. G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I.; Jing, C.; Kanareykin, A.; Li, Y.; Gao, Q.; Shchegolkov, D. Y.; Simakov, E. I.
2016-09-01
A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from 0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.
Observation of superradiant synchrotron radiation in the terahertz region
NASA Astrophysics Data System (ADS)
Billinghurst, B. E.; Bergstrom, J. C.; Dallin, L.; de Jong, M.; May, T. E.; Vogt, J. M.; Wurtz, W. A.
2013-06-01
We report the first high-resolution measurement of superradiance, using coherent synchrotron radiation in the terahertz region from the Canadian Light Source synchrotron and a Michelson interferometer with a nominal frequency resolution of 0.00096cm-1. Superradiance arises when a high degree of phase coherence exists between the radiation fields of the individual electron bunches, and manifests itself as a series of narrow spectral peaks at harmonics of the bunch frequency. We observe an enhancement factor of 16 at the spectral peaks, limited by the interferometer resolution. The spectral distribution and relative amplitudes of the superradiant peaks are modified by altering the pattern of bunches along the bunch train.
NASA Astrophysics Data System (ADS)
Chubar, O.; Couprie, M.-E.
2007-01-01
CPU-efficient method for calculation of the frequency domain electric field of Coherent Synchrotron Radiation (CSR) taking into account 6D phase space distribution of electrons in a bunch is proposed. As an application example, calculation results of the CSR emitted by an electron bunch with small longitudinal and large transverse sizes are presented. Such situation can be realized in storage rings or ERLs by transverse deflection of the electron bunches in special crab-type RF cavities, i.e. using the technique proposed for the generation of femtosecond X-ray pulses (A. Zholents et. al., 1999). The computation, performed for the parameters of the SOLEIL storage ring, shows that if the transverse size of electron bunch is larger than the diffraction limit for single-electron SR at a given wavelength — this affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and a longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR, and therefore can be considered for practical use.
Step Bunching: Influence of Impurities and Solution Flow
NASA Technical Reports Server (NTRS)
Chernov, A. A.; Vekilov, P. G.; Coriell, S. R.; Murray, B. T.; McFadden, G. B.
1999-01-01
Step bunching results in striations even at relatively early stages of its development and in inclusions of mother liquor at the later stages. Therefore, eliminating step bunching is crucial for high crystal perfection. At least 5 major effects causing and influencing step bunching are known: (1) Basic morphological instability of stepped interfaces. It is caused by concentration gradient in the solution normal to the face and by the redistribution of solute tangentially to the interface which redistribution enhances occasional perturbations in step density due to various types of noise; (2) Aggravation of the above basic instability by solution flowing tangentially to the face in the same directions as the steps or stabilization of equidistant step train if these flows are antiparallel; (3) Enhanced bunching at supersaturation where step velocity v increases with relative supersaturation s much faster than linear. This v(s) dependence is believed to be associated with impurities. The impurities of which adsorption time is comparable with the time needed to deposit one lattice layer may also be responsible for bunching; (4) Very intensive solution flow stabilizes growing interface even at parallel solution and step flows; (5) Macrosteps were observed to nucleate at crystal corners and edges. Numerical simulation, assuming step-step interactions via surface diffusion also show that step bunching may be induced by random step nucleation at the facet edge and by discontinuity in the step density (a ridge) somewhere in the middle of a face. The corresponding bunching patterns produce the ones observed in experiment. The nature of step bunching generated at the corners and edges and by dislocation step sources, as well as the also relative importance and interrelations between mechanisms 1-5 is not clear, both from experimental and theoretical standpoints. Furthermore, several laws controlling the evolution of existing step bunches have been suggested, though unambiguous conclusions are still missing. Addressing these issues is the major goal of the present project. The theory addressing the above problem, experimental methods, several figures which include: (1) the spatial wave numbers at which the system is neutrally stable as a function of growth velocity for linear kinetics and supersaturation for nonlinear kinetics; (2) a schematic of the experiment of lysozyme crystal growing under conditions of natural convection; (3) fluctuations in time, t, of the normal growth rate, R(t), vicinal slope, p(t) and Fourier Spectra of R(t), discussions and conclusions are presented.
Tan, E S; Mat Jais, I S; Abdul Rahim, S; Tay, S C
2018-01-01
We investigated the effect of an interfragmentary gap on the final compression force using the Acutrak 2 Mini headless compression screw (length 26 mm) (Acumed, Hillsboro, OR, USA). Two blocks of solid rigid polyurethane foam in a custom jig were separated by spacers of varying thickness (1.0, 1.5, 2.0 and 2.5 mm) to simulate an interfragmentary gap. The spacers were removed before full insertion of the screw and the compression force was measured when the screw was buried 2 mm below the surface of the upper block. Gaps of 1.5 mm and 2.0 mm resulted in significantly decreased compression forces, whereas there was no significant decrease in compression force with a gap of 1 mm. An interfragmentary gap of 2.5 mm did not result in any contact between blocks. We conclude that an increased interfragmentary gap leads to decreased compression force with this screw, which may have implications on fracture healing.
Studies on the S-band bunching system with the Hybrid Bunching-accelerating Structure
NASA Astrophysics Data System (ADS)
Pei, Shi-Lun; Gao, Bin
2018-04-01
Generally, a standard bunching system is composed of a standing-wave (SW) pre-buncher (PB), a traveling-wave (TW) buncher (B) and a standard accelerating structure. In the industrial area, the bunching system is usually simplified by eliminating the PB and integrating the B and the standard accelerating structure together to form a β-varied accelerating structure. The beam capturing efficiency for this kind of simplified system is often worse than that for the standard one. The hybrid buncher (HB) has been proved to be a successful attempt to reduce the cost but preserve the beam quality as much as possible. Here we propose to exclusively simplify the standard bunching system by integrating the PB, the B and the standard accelerating structure together to form a Hybrid Bunching-accelerating Structure (HBaS). Compared to the standard bunching system, the one based on the HBaS is more compact, and the cost is lowered to the largest extent. With almost the same beam transportation efficiency (∼70%) from the electron gun to the linac exit, the peak-to-peak (p-to-p) beam energy spread and the 1 σ emittance of the linac with the HBaS are ∼20% and ∼60% bigger than those of the linac based on the split PB/B/standard accelerating structure system. Nonetheless, the proposed HBaS can be widely applied in the industrial linacs to greatly increase the beam capturing efficiency without fairly increasing the construction cost.
NASA Astrophysics Data System (ADS)
Wu, W. Z.; Kim, Y.; Li, J. Y.; Teytelman, D.; Busch, M.; Wang, P.; Swift, G.; Park, I. S.; Ko, I. S.; Wu, Y. K.
2011-03-01
Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530 Ω. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.
Predicting bunching costs for the Radio Horse 9 winch
Chris B. LeDoux; Bruce W. Kling; Patrice A. Harou; Patrice A. Harou
1987-01-01
Data from field studies and a prebunching cost simulator have been assembled and converted into a general equation that can be used to estimate the prebunching cost of the Radio Horse 9 winch. The methods can be used to estimate prebunching cost for bunching under the skyline corridor for swinging with cable systems, for bunching to skid trail edge to be picked up by a...
Bellomo, Guido; Bosyk, Gustavo M; Holik, Federico; Zozor, Steeve
2017-11-07
Based on the problem of quantum data compression in a lossless way, we present here an operational interpretation for the family of quantum Rényi entropies. In order to do this, we appeal to a very general quantum encoding scheme that satisfies a quantum version of the Kraft-McMillan inequality. Then, in the standard situation, where one is intended to minimize the usual average length of the quantum codewords, we recover the known results, namely that the von Neumann entropy of the source bounds the average length of the optimal codes. Otherwise, we show that by invoking an exponential average length, related to an exponential penalization over large codewords, the quantum Rényi entropies arise as the natural quantities relating the optimal encoding schemes with the source description, playing an analogous role to that of von Neumann entropy.
Laser effect on the 248 nm KrF transition using heavy ion beam pumping
NASA Astrophysics Data System (ADS)
Adonin, A.; Jacoby, J.; Turtikov, V.; Fertman, A.; Golubev, A.; Hoffmann, D. H. H.; Ulrich, A.; Varentsov, D.; Wieser, J.
2007-07-01
In December 2005 the first successful operation of a UV excimer laser pumped with a heavy ion beam was demonstrated at GSI. It was the first experiment in which the specific power deposition was sufficient to overcome laser threshold for a UV excimer scheme. The well known KrF* excimer laser line at λ=248 nm has been chosen for this experiment, because the wavelength is short, but still in the range of usual optical diagnostic tools and the emitted light can propagate in air without attenuation. A bunch compressed U+73238 beam with a particle energy of 250 MeV/u and about 110 ns pulse duration (FWHM) was used for this experiment. Single pulses of a beam intensity up to 2.5×109 particles per bunch were focused into the laser cell along the cavity axis. Compact spectrometers, high speed UV-photodiodes and gated CCD-cameras were used for diagnostics of the spontaneous and stimulated emission. As a main result of the experiment laser effect on the 248 nm KrF* excimer laser line has been obtained and verified by temporal and spectral narrowing of the laser line as well as the threshold behaviour and exponential growth of intensity with increasing pumping power. In summary it could be shown that the pumping power of the heavy ion beam at GSI is now sufficient to pump short wavelength lasers. It is planned to extend laser experiments in near future to the VUV range of the spectrum (λ<200 nm).
Pros and Cons of the Acceleration Scheme (NF-IDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, Alex; Bogacz, Slawomir
The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and beam shaping can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a nonâ scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. Pros and cons of various stages are discussed here in detail. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain acrossmore » the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. Close proximity of strong solenoids and superc« less
New insights into sub-ion scale turbulence in Earth's magnetosheath using MMS data
NASA Astrophysics Data System (ADS)
Breuillard, Hugo; Andriopoulou, Maria; Graham, Daniel; Le Contel, Olivier; Huang, Shiyong; Hadid, Lina; Sahraoui, Fouad; Alexandrova, Olga; Berthomier, Matthieu; Retino, Alessandro; Nakamura, Rumi; Baumjohann, Wolfgang
2017-04-01
On January 22nd 2016, MMS was located in Earth's magnetosheath and detected intense lion roars showing a secondary bandwidth. Detailed polarization analysis, using burst data from SCM and EDP instruments, and numerical simulation, using WHAMP, are performed in this study. They show that these mainly perpendicular fluctuations are highly nonlinear whistler wave packets, and that a high sampling rate is needed to pick up the peaks of the signal. As a result, their amplitude might have been underestimated in previous missions such as Cluster, which can have a significant impact on electron dynamics. Using FPI burst data, we show that electron velocity distribution functions exhibit a gyrophase-bunched signature in the presence of these lion roars. The analysis of magnetic and density fluctuations, inferred from spacecraft potential, also show the highly-compressible nature of turbulence up to electron scales.
Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Sheng; Cappello, Franck
Since today’s scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-tocompress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points canmore » be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49% for hard-tocompress data sets with similar compression/decompression time cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awida, Mohamed; Chen, Alex; Khabiboulline, Timergali
High intensity proton particle accelerators that supports several simultaneous physics experiments requires sharing the beam. A bunch by bunch beam chopper system located after the Radio Frequency Quadrupole (RFQ) is required in this case to structure the beam in the proper bunch format required by the several experiments. The unused beam will need to be kicked out of the beam path and is disposed in a beam dumb. In this paper, we report on the RF modeling results of a proposed helical kicker. Two beam kickers constitutes the proposed chopper. The beam sequence is formed by kicking in or outmore » the beam bunches from the streamline. The chopper was developed for Project X Injection Experiment (PXIE).« less
Bunch evolution study in optimization of MeV ultrafast electron diffraction
NASA Astrophysics Data System (ADS)
Lu, Xian-Hai; Du, Ying-Chao; Huang, Wen-Hui; Tang, Chuan-Xiang
2014-12-01
Megaelectronvolt ultrafast electron diffraction (UED) is a promising detection tool for ultrafast processes. The quality of diffraction image is determined by the transverse evolution of the probe bunch. In this paper, we study the contributing terms of the emittance and space charge effects to the bunch evolution in the MeV UED scheme, employing a mean-field model with an ellipsoidal distribution as well as particle tracking simulation. The small transverse dimension of the drive laser is found to be critical to improve the reciprocal resolution, exploiting both smaller emittance and larger transverse bunch size before the solenoid. The degradation of the reciprocal spatial resolution caused by the space charge effects should be carefully controlled.
NASA Astrophysics Data System (ADS)
He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.
2013-02-01
We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.
AWAKE readiness for the study of the seeded self-modulation of a 400 GeV proton bunch
NASA Astrophysics Data System (ADS)
Muggli, P.; Adli, E.; Apsimon, R.; Asmus, F.; Baartman, R.; Bachmann, A.-M.; Barros Marin, M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Biskup, B.; Blanco Vinuela, E.; Boccardi, A.; Bogey, T.; Bohl, T.; Bracco, C.; Braunmuller, F.; Burger, S.; Burt, G.; Bustamante, S.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Chung, M.; Damerau, H.; Deacon, L.; Dexter, A.; Dirksen, P.; Doebert, S.; Farmer, J.; Fedosseev, V.; Feniet, T.; Fior, G.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gander, P.; Gessner, S.; Gorgisyan, I.; Gorn, A. A.; Grulke, O.; Gschwendtner, E.; Guerrero, A.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Ibison, M.; Islam, M. R.; Jensen, L.; Jolly, S.; Kasim, M.; Keeble, F.; Kim, S.-Y.; Kraus, F.; Lasheen, A.; Lefevre, T.; LeGodec, G.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Martyanov, M.; Mazzoni, S.; Medina Godoy, D.; Mete, O.; Minakov, V. A.; Mompo, R.; Moody, J.; Moreira, M. T.; Mitchell, J.; Mutin, C.; Norreys, P.; Öz, E.; Ozturk, E.; Pauw, W.; Pardons, A.; Pasquino, C.; Pepitone, K.; Petrenko, A.; Pitmann, S.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Schmidt, J.; Shalimova, I. A.; Shaposhnikova, E.; Sherwood, P.; Silva, L.; Sosedkin, A. P.; Speroni, R.; Spitsyn, R. I.; Szczurek, K.; Thomas, J.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Welsch, C. P.; Williamson, B.; Wing, M.; Xia, G.; Zhang, H.; AWAKE Collaboration
2018-01-01
AWAKE is a proton-driven plasma wakefield acceleration experiment. We show that the experimental setup briefly described here is ready for systematic study of the seeded self-modulation of the 400 GeV proton bunch in the 10 m long rubidium plasma with density adjustable from 1 to 10× {10}14 cm-3. We show that the short laser pulse used for ionization of the rubidium vapor propagates all the way along the column, suggesting full ionization of the vapor. We show that ionization occurs along the proton bunch, at the laser time and that the plasma that follows affects the proton bunch.
Observation of the Self-Modulation Instability via Time-Resolved Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, M.; Engel, J.; Good, J.
Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximatelymore » $$200\\text{ }\\text{ }\\mathrm{keV}/c$$ amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.« less
Observation of the Self-Modulation Instability via Time-Resolved Measurements
Gross, M.; Engel, J.; Good, J.; ...
2018-04-06
Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximatelymore » $$200\\text{ }\\text{ }\\mathrm{keV}/c$$ amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.« less
NASA Astrophysics Data System (ADS)
Piot, P.; Sun, Y.-E.; Maxwell, T. J.; Ruan, J.; Secchi, E.; Thangaraj, J. C. T.
2013-01-01
We report the experimental generation, acceleration, and characterization of a uniformly filled electron bunch obtained via space-charge-driven expansion (often referred to as “blow-out regime”) in an L-band (1.3-GHz) radiofrequency photoinjector. The beam is photoemitted from a cesium-telluride semiconductor photocathode using a short (<200fs) ultraviolet laser pulse. The produced electron bunches are characterized with conventional diagnostics and the signatures of their ellipsoidal character are observed. We especially demonstrate the production of ellipsoidal bunches with charges up to ˜0.5nC corresponding to a ˜20-fold increase compared to previous experiments with metallic photocathodes.
NASA Astrophysics Data System (ADS)
Wang, Zhenhong; Wang, Zhi; Liu, Yan-ge; He, Ruijing; Wang, Guangdou; Yang, Guang; Han, Simeng
2018-05-01
We experimentally report the coexistence of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a microfiber-based graphene saturable absorber. The soliton bunches, like isolated spikes with extreme amplitude and ultrashort duration, randomly generate in the background of the Q-switched-like pulses. The soliton bunches have some pulse envelopes in which pulses operate at a fundamental repetition rate in the temporal domain. Further investigation shows that the composite pulses are highly correlated with the noise-like pulses. Our work can make a further contribution to enrich the understanding of the nonlinear dynamics in fiber lasers.
Compression of Semesters or Intensity of Study: What is it that Increases Student Success?
ERIC Educational Resources Information Center
Spurling, Steven
This study examined the relationship between intensity of study (defined as more hours per week of class within a subject matter area) and student success. The researcher identified two possible methods for increasing the intensity of study: (1) Compression Hypothesis--shortening the length of terms and increasing the amount of time per week spent…
Compression member response of double steel angles on truss structure with member length variation
NASA Astrophysics Data System (ADS)
Hasibuan, Purwandy; Panjaitan, Arief; Haiqal, Muhammad
2018-05-01
One type of structures that implements steel angles as its members is truss system of telecommunication tower. For this structure, reinforcements on tower legs are also needed when antennas and microwaves installation placed on the peak of tower increases in quantity. One type of reinforcement methods commonly used is by increasing areas section capacity, where tower leg consisted of single angle section will be reinforced to be double angle sections. Regarding this case, this research discussed behavior two types of double angle steel section 2L 30.30.3 that were designed identically in area section but vary in length: 103 cm and 83 cm. At the first step, compression member together with tension member was formed to be a truss system, where compression and tension member were met at the joint plate. Schematic loading was implemented by giving tension loading on the joint plate, and this loading was terminated when each specimen reached its failure. Research findings showed that implementing shorter double angle (83 cm) sections, increased compression strength of steel angle section up to 13 %. Significant deformation occurring only on the flange for both of specimens indicated that implementing double angle is effective to prevent lateral-torsional buckling.
FIBER OPTICS. ACOUSTOOPTICS: Compression of random pulses in fiber waveguides
NASA Astrophysics Data System (ADS)
Aleshkevich, Viktor A.; Kozhoridze, G. D.
1990-07-01
An investigation is made of the compression of randomly modulated signal + noise pulses during their propagation in a fiber waveguide. An allowance is made for a cubic nonlinearity and quadratic dispersion. The relationships governing the kinetics of transformation of the time envelope, and those which determine the duration and intensity of a random pulse are derived. The expressions for the optimal length of a fiber waveguide and for the maximum degree of compression are compared with the available data for regular pulses and the recommendations on selection of the optimal parameters are given.
High pressure phase transitions and compressibilities of Er2Zr2O7 and Ho2Zr2O7
NASA Astrophysics Data System (ADS)
Zhang, F. X.; Lang, M.; Becker, U.; Ewing, R. C.; Lian, J.
2008-01-01
Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of ˜22 and ˜30GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.
Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.
Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol
2015-03-27
In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.
NASA Astrophysics Data System (ADS)
Dahire, S. L.; Morey, Y. C.; Agrawal, P. S.
2015-12-01
Density (ρ), viscosity (η), and ultrasonic velocity ( U) of binary mixtures of aliphatic solvents like dimethylformamide (DMF) and dimethylsulfoxide (DMSO) with aromatic solvents viz. chlorobenzene (CB), bromobenzene (BB), and nitrobenzene (NB) have been determined at 313 K. These parameters were used to calculate the adiabatic compressibility (β), intermolecular free length ( L f), molar volume ( V m), and acoustic impedance ( Z). From the experimental data excess molar volume ( V m E ), excess intermolecular free length ( L f E )), excess adiabatic compressibility (βE), and excess acoustic impedance ( Z E) have been computed. The excess values were correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations (σ).
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
Characteristics of GeV Electron Bunches Accelerated by Intense Lasers in Vacuum
NASA Astrophysics Data System (ADS)
Wang, P. X.; Ho, Y. K.; Kong, Q.; Yuan, X. Q.; Cao, N.; Feng, L.
This paper studies the characteristics of GeV electron bunches driven by ultra-intense lasers in vacuum based on the mechanism of capture and violent acceleration scenario [CAS, see, e.g. J. X. Wang et al., Phys. Rev. E58, 6575 (1998)], which shows an interesting prospect of becoming a new principle of laser-driven accelerators. It has been found that the accelerated GeV electron bunch is a macro-pulse composed of a lot of micro-pulses, which is analogous to the structure of the bunches produced by conventional linacs. The macro-pulse corresponds to the duration of the laser pulse while the micro-pulse corresponds to the periodicity of the laser wave. Therefore, provided that the incoming electron bunch with comparable sizes as that of the laser pulse synchronously impinges on the laser pulse, the total fraction of electrons captured and accelerated to GeV energy can reach more than 20%. These results demonstrate that the mechanisms of CAS is a relatively effective accelerator mechanism.
Operational experience with nanocoulomb bunch charges in the Cornell photoinjector
Bartnik, Adam; Gulliford, Colwyn; Bazarov, Ivan; ...
2015-08-19
Characterization of 9–9.5 MeV electron beams produced in the dc-gun based Cornell photoinjector is given for bunch charges ranging from 20 pC to 2 nC. Comparison of the measured emittances and longitudinal current profiles to optimized 3D space charge simulations yields excellent agreement for bunch charges up to 1 nC when the measured laser distribution is used to generate initial particle distributions in simulation. Analysis of the scaling of the measured emittance with bunch charge shows that the emittance scales roughly as the square root of the bunch charge up to 300 pC, above which the trend becomes linear. Furthermore,more » these measurements demonstrate that the Cornell photoinjector can produce cathode emittance dominated beams meeting the emittance and peak current specifications for next generation free electron lasers operating at high repetition rate. In addition, the 1 and 2 nC results are relevant to the electron ion collider community.« less
Sudheer, Surya; Alzorqi, Ibrahim; Ali, Asgar; Cheng, Poh Guat; Siddiqui, Yasmeen; Manickam, Sivakumar
2018-01-01
This study investigates the cultivation of Ganoderma lucidum using different agricultural biomasses from Malaysia. Five different combinations of rubber wood sawdust, empty fruit bunch fiber, and mesocarp fiber from oil palm, alone and in combination, were used to cultivate G. lucidum. Although all the substrate combinations worked well to grow the mushroom, the highest biological efficiency was obtained from the combination of empty fruit bunch fiber with sawdust. A total yield of 27% was obtained from empty fruit bunch fiber with sawdust, followed by sawdust (26%), empty fruit bunch fiber (19%), mesocarp fiber with sawdust (19%), and mesocarp fiber (16%). The quality of mushrooms was proved by proximate analysis and detection of phenolic compounds and flavonoids. The antioxidant activity verified by DPPH, ferric-reducing ability of plasma, and ABTS analyses revealed that the empty fruit bunch fiber with sawdust had higher activity than the other substrates.
Scanning Synchronization of Colliding Bunches for MEIC Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derbenev, Yaroslav S.; Popov, V. P.; Chernousov, Yu D.
2015-09-01
Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP).more » A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.« less
Colossal photon bunching in quasiparticle-mediated nanodiamond cathodoluminescence
NASA Astrophysics Data System (ADS)
Feldman, Matthew A.; Dumitrescu, Eugene F.; Bridges, Denzel; Chisholm, Matthew F.; Davidson, Roderick B.; Evans, Philip G.; Hachtel, Jordan A.; Hu, Anming; Pooser, Raphael C.; Haglund, Richard F.; Lawrie, Benjamin J.
2018-02-01
Nanoscale control over the second-order photon correlation function g(2 )(τ ) is critical to emerging research in nonlinear nanophotonics and integrated quantum information science. Here we report on quasiparticle control of photon bunching with g(2 )(0 ) >45 in the cathodoluminescence of nanodiamond nitrogen vacancy (NV0) centers excited by a converged electron beam in an aberration-corrected scanning transmission electron microscope. Plasmon-mediated NV0 cathodoluminescence exhibits a 16-fold increase in luminescence intensity correlated with a threefold reduction in photon bunching compared with that of uncoupled NV0 centers. This effect is ascribed to the excitation of single temporally uncorrelated NV0 centers by single surface plasmon polaritons. Spectrally resolved Hanbury Brown-Twiss interferometry is employed to demonstrate that the bunching is mediated by the NV0 phonon sidebands, while no observable bunching is detected at the zero-phonon line. The data are consistent with fast phonon-mediated recombination dynamics, a conclusion substantiated by agreement between Bayesian regression and Monte Carlo models of superthermal NV0 luminescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassi, Gabriele; Blednykh, Alexei; Smalyuk, Victor
A novel algorithm for self-consistent simulations of long-range wakefield effects has been developed and applied to the study of both longitudinal and transverse coupled-bunch instabilities at NSLS-II. The algorithm is implemented in the new parallel tracking code space (self-consistent parallel algorithm for collective effects) discussed in the paper. The code is applicable for accurate beam dynamics simulations in cases where both bunch-to-bunch and intrabunch motions need to be taken into account, such as chromatic head-tail effects on the coupled-bunch instability of a beam with a nonuniform filling pattern, or multibunch and single-bunch effects of a passive higher-harmonic cavity. The numericalmore » simulations have been compared with analytical studies. For a beam with an arbitrary filling pattern, intensity-dependent complex frequency shifts have been derived starting from a system of coupled Vlasov equations. The analytical formulas and numerical simulations confirm that the analysis is reduced to the formulation of an eigenvalue problem based on the known formulas of the complex frequency shifts for the uniform filling pattern case.« less
Overview and analysis of the 2016 Gold Run in the Booster and AGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeno, K.
2016-09-16
Run 16 differed from preceding Au runs in that during most of it a 12:6:2 merge was employed in the AGS instead of an 8:4:2 merge. This was done to provide higher bunch intensities for RHIC. Since the approach to providing higher bunch intensities is, and has been, to merge more Booster bunches of the same intensity into one final bunch, detailing the longitudinal aspects of this setup seems quite relevant. So, aside from providing an overview of the Au portion of Run 16, this note also contains a series of emittance measurements in the Booster and AGS. Comparisons ofmore » these to similar measurements in previous runs are also made in hopes of gaining a better understanding of what factors contribute to the emittance of a bunch at AGS extraction. The note also tries to provide some context in which to understand the various merge schemes and describes a potential 8 to 1 type merge.« less
Trains of electron micro-bunches in plasma wake-field acceleration
NASA Astrophysics Data System (ADS)
Lécz, Zsolt; Andreev, Alexander; Konoplev, Ivan; Seryi, Andrei; Smith, Jonathan
2018-07-01
Plasma-based charged particle accelerators have been intensively investigated in the past three decades due to their capability to open up new horizons in accelerator science and particle physics yielding electric field accelerating gradient more than three orders of magnitudes higher than in conventional devices. At the current stage the most advanced and reliable mechanism for accelerating electrons is based on the propagation of an intense laser pulse or a relativistic electron beam in a low density gaseous target. In this paper we concentrate on the electron beam-driven plasma wake-field acceleration and demonstrate using 3D PiC simulations that a train of electron micro-bunches with ∼10 fs period can be generated behind the driving beam propagating in a density down-ramp. We will discuss the conditions and properties of the micro-bunches generated aiming at understanding and study of multi-bunch mechanism of injection. It is show that the periodicity and duration of micro-bunches can be controlled by adjusting the plasma density gradient and driving beam charge.
Protein and peptide cross sections and mass spectra in an electrostatic ion beam trap
NASA Astrophysics Data System (ADS)
Fradkin, Z.; Strasser, D.; Heber, O.; Rappaport, M. L.; Sharon, M.; Thomson, B. A.; Rahinov, I.; Toker, Y.; Zajfman, D.
2017-05-01
Among the advantages of an electrostatic ion beam trap (EIBT), which is based on purely electrostatic fields, are mass-unlimited trapping and ease of operation. We have developed a new system that couples an electrospray ion source to an EIBT. Between the source and EIBT there is a Paul trap in which the ions are accumulated before being extracted and accelerated. After the ion bunch has entered the EIBT, the ions are trapped by rapidly raising the voltages on the entrance mirror. The oscillations of the bunch are detected by amplifying the charge induced on a pickup ring in the center of the trap, the ion mass being directly proportional to the square of the oscillation period. The trapping of biomolecules in the RF-bunching mode of the EIBT is used for measurement of mass spectra and collision cross sections. Coalescence of bunches of ions of nearby mass in the self-bunching mode is also demonstrated.
Ion Emittance Growth Due to Focusing Modulation from Slipping Electron Bunch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G.
2015-02-17
Low energy RHIC operation has to be operated at an energy ranging from γ = 4.1 to γ = 10. The energy variation causes the change of revolution frequency. While the rf system for the circulating ion will operate at an exact harmonic of the revolution frequency (h=60 for 4.5 MHz rf and h=360 for 28 MHz rf.), the superconducting rf system for the cooling electron beam does not have a frequency tuning range that is wide enough to cover the required changes of revolution frequency. As a result, electron bunches will sit at different locations along the ion bunchmore » from turn to turn, i.e. the slipping of the electron bunch with respect to the circulating ion bunch. At cooling section, ions see a coherent focusing force due to the electrons’ space charge, which differs from turn to turn due to the slipping. We will try to estimate how this irregular focusing affects the transverse emittance of the ion bunch.« less
State orthogonality, boson bunching parameter and bosonic enhancement factor
NASA Astrophysics Data System (ADS)
Marchewka, Avi; Granot, Er'el
2016-04-01
It is emphasized that the bunching parameter β ≡ p B / p D , i.e. the ratio between the probability to measure two bosons and two distinguishable particles at the same state, is a constant of motion and depends only on the overlap between the initial wavefunctions. This ratio is equal to β = 2 / (1 + I 2), where I is the overlap integral between the initial wavefunctions. That is, only when the initial wavefunctions are orthogonal this ratio is equal to 2, however, this bunching ratio can be reduced to 1, when the two wavefunctions are identical. This simple equation explains the experimental evidences of a beam splitter. A straightforward conclusion is that by measuring the local bunching parameter β (at any point in space and time) it is possible to evaluate a global parameter I (the overlap between the initial wavefunctions). The bunching parameter is then generalized to arbitrary number of particles, and in an analogy to the two-particles scenario, the well-known bosonic enhancement appears only when all states are orthogonal.
Context dependent prediction and category encoding for DPCM image compression
NASA Technical Reports Server (NTRS)
Beaudet, Paul R.
1989-01-01
Efficient compression of image data requires the understanding of the noise characteristics of sensors as well as the redundancy expected in imagery. Herein, the techniques of Differential Pulse Code Modulation (DPCM) are reviewed and modified for information-preserving data compression. The modifications include: mapping from intensity to an equal variance space; context dependent one and two dimensional predictors; rationale for nonlinear DPCM encoding based upon an image quality model; context dependent variable length encoding of 2x2 data blocks; and feedback control for constant output rate systems. Examples are presented at compression rates between 1.3 and 2.8 bits per pixel. The need for larger block sizes, 2D context dependent predictors, and the hope for sub-bits-per-pixel compression which maintains spacial resolution (information preserving) are discussed.
Method for compression of binary data
Berlin, Gary J.
1996-01-01
The disclosed method for compression of a series of data bytes, based on LZSS-based compression methods, provides faster decompression of the stored data. The method involves the creation of a flag bit buffer in a random access memory device for temporary storage of flag bits generated during normal LZSS-based compression. The flag bit buffer stores the flag bits separately from their corresponding pointers and uncompressed data bytes until all input data has been read. Then, the flag bits are appended to the compressed output stream of data. Decompression can be performed much faster because bit manipulation is only required when reading the flag bits and not when reading uncompressed data bytes and pointers. Uncompressed data is read using byte length instructions and pointers are read using word instructions, thus reducing the time required for decompression.
Lin, S; Shi, S; LeGeros, R Z; LeGeros, J P
2000-01-01
The effects of implant shape and size on the stress distribution around high-strength silicon nitride implants under vertical and oblique forces were determined using a three-dimensional finite element analysis. Finite element models were designed using as a basis the serial sections of the mandible. Using Auto-CAD software, the model simulated the placement of implants in the molar region of the left mandible. Results of the analyses demonstrated that mainly the implant root shape and the directions of bite forces influence the stress distributions in the supporting bone around each implant. Implant size is a lesser factor. The serrated implants presented a larger surface area to the bone than either the cylindrical or tapered implants, which resulted in lower compressive stress around the serrated implants. With increasing implant diameter and length, compressive stress decreased. The mean compressive stress distribution on the serrated implants was more flat (platykurtic) than on either the cylindrical or tapered implants. Results of studies on two load directions (vertical and oblique) showed that, in either case, the compressive stress in the cortical bone around the neck of the implant was higher than in the cancellous bone along the length of the implant. The most extreme principal compressive stress was found with oblique force. This study provides the first information on the relationship between shape of the silicon nitride implant and stress on the supporting bone.
NASA Astrophysics Data System (ADS)
Basiricò, L.; Lanzara, G.
2012-08-01
In this paper it is shown that the electrochemical behaviour of vertically aligned multi-walled carbon nanotube (VANT) supercapacitors is influenced by the VANTs’ length (electrode thickness), by their axial compression and by their interface with the current collector. It is found that the VANTs, which can be interpreted as a dense array of nanochannels, have an active area available to ions that is strongly affected by the electrode’s thickness and compressional state. Consequently, the tested thinner electrodes, compressed electrodes or a combination of the two were found to be characterized by a significant improvement in terms of power density (up to 1246%), knee frequency (58 822% working up to 10 kHz), equivalent series resistance (ESR, up to 67%) and capacitance (up to 21%) when compared with thicker and/or uncompressed electrodes. These values are significantly higher than those reported in the literature where long VANTs with no control on compression are typically used. It is also shown that the ESR can be reduced not only by using shorter and compressed VANTs that have a higher conductance or by improving the electrode/collector electrical contact by changing the contact morphology at the nanoscale through compression, but also by depositing a thin platinum layer on the VANT tips in contact with the current collector (73% ESR decrease).
Basiricò, L; Lanzara, G
2012-08-03
In this paper it is shown that the electrochemical behaviour of vertically aligned multi-walled carbon nanotube (VANT) supercapacitors is influenced by the VANTs' length (electrode thickness), by their axial compression and by their interface with the current collector. It is found that the VANTs, which can be interpreted as a dense array of nanochannels, have an active area available to ions that is strongly affected by the electrode's thickness and compressional state. Consequently, the tested thinner electrodes, compressed electrodes or a combination of the two were found to be characterized by a significant improvement in terms of power density (up to 1246%), knee frequency (58,822% working up to 10 kHz), equivalent series resistance (ESR, up to 67%) and capacitance (up to 21%) when compared with thicker and/or uncompressed electrodes. These values are significantly higher than those reported in the literature where long VANTs with no control on compression are typically used. It is also shown that the ESR can be reduced not only by using shorter and compressed VANTs that have a higher conductance or by improving the electrode/collector electrical contact by changing the contact morphology at the nanoscale through compression, but also by depositing a thin platinum layer on the VANT tips in contact with the current collector (73% ESR decrease).
NASA Astrophysics Data System (ADS)
Gover, A.; Ianconescu, R.; Friedman, A.; Emma, C.; Musumeci, P.
2017-09-01
We outline fundamental coherent radiation processes from a charge particles beam: Spontaneous Superradiance (SR), Stimulated Superradiance (ST-SR), and in the context of undulator radiation: Tapering-Enhanced Superradiance (TES) and Tapering-Enhanced Stimulated Superradiance Amplification (TESSA). Both single bunch and periodic bunching (in phasor and spectral Fourier frequency formulations) are considered in a model of radiation mode expansion.
NASA Astrophysics Data System (ADS)
Sangwal, K.; Torrent-Burgues, J.; Sanz, F.; Gorostiza, P.
1997-02-01
The experimental results of the formation of step bunches and macrosteps on the {100} face of L-arginine phosphate monohydrate crystals grown from aqueous solutions at different supersaturations studied by using atomic force microscopy are described and discussed. It was observed that (1) the step height does not remain constant with increasing time but fluctuates within a particular range of heights, which depends on the region of step bunches, (2) the maximum height and the slope of bunched steps increases with growth time as well as supersaturation used for growth, and that (3) the slope of steps of relatively small heights is usually low with a value of about 8° and does not depend on the region of formation of step bunches, but the slope of steps of large heights is up to 21°. Analysis of the experimental results showed that (1) at a particular value of supersaturation the ratio of the average step height to the average step spacing is a constant, suggesting that growth of the {100} face of L-arginine phosphate monohydrate crystals occurs by direct integration of growth entities to growth steps, and that (2) the formation of step bunches and macrosteps follows the dynamic theory of faceting, advanced by Vlachos et al.
Superthermal photon bunching in terms of simple probability distributions
NASA Astrophysics Data System (ADS)
Lettau, T.; Leymann, H. A. M.; Melcher, B.; Wiersig, J.
2018-05-01
We analyze the second-order photon autocorrelation function g(2 ) with respect to the photon probability distribution and discuss the generic features of a distribution that results in superthermal photon bunching [g(2 )(0 ) >2 ]. Superthermal photon bunching has been reported for a number of optical microcavity systems that exhibit processes such as superradiance or mode competition. We show that a superthermal photon number distribution cannot be constructed from the principle of maximum entropy if only the intensity and the second-order autocorrelation are given. However, for bimodal systems, an unbiased superthermal distribution can be constructed from second-order correlations and the intensities alone. Our findings suggest modeling superthermal single-mode distributions by a mixture of a thermal and a lasinglike state and thus reveal a generic mechanism in the photon probability distribution responsible for creating superthermal photon bunching. We relate our general considerations to a physical system, i.e., a (single-emitter) bimodal laser, and show that its statistics can be approximated and understood within our proposed model. Furthermore, the excellent agreement of the statistics of the bimodal laser and our model reveals that the bimodal laser is an ideal source of bunched photons, in the sense that it can generate statistics that contain no other features but the superthermal bunching.
Digitally Controlled Four Harmonic Buncher for FSU LINAC
NASA Astrophysics Data System (ADS)
Moerland, Daniel S.; Wiedenhoever, Ingo; Baby, Lagy T.; Caussyn, David; Spingler, David
2012-03-01
Florida State University's John D. Fox Superconducting Accelerator Laboratory is operating a Tandem-Linac system for heavy ion beams at energies of 5-10 MeV/u. Recently, the accelerator has been used as the driver for the radioactive beam facility RESOLUT, which poses new demands on its high-intensity performance and time-resolution. These demands motivated us to optimize the RF bunching system and to switch the bunch frequency from 48.5 to 12.125 MHz. We installed a four-harmonic resonant transformer to create 3-4 kV potential oscillations across a pair of wire-mesh grids. This setup is modulating the energy of the beam injected into the tandem accelerator, with the aim to create short bunches of beam particles. Asawtooth-like wave-form is created using the Fourier series method, by combining the basis sinusoidal wave of 12.125MHz and its 3 higher order harmonics, in a manner similar to the systems used at ATLAS [1] and other RF-accelerators. A new aspect of our setup is the use of a digital 1GHz function generator, which allows us to optimize and stabilize the synthesized waveform. The control system was realized using labview and integrated into the recently updated controls of the accelerator. We characterize the bunching quality achievedand discuss the optimization of the bunching wave-form. The bunching system has been successfully used in a number of Linac-experiments performed during 2011.[4pt][1] S. Sharamentov, J. Bogaty, B.E. Clifft, R. Pardo, UPGRADE OF THE ATLAS POSITIVE ION INJECTOR BUNCHING SYSTEM, Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee
Detectors for low energy electron cooling in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlier, F. S.
Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions betweenmore » the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.« less
NASA Astrophysics Data System (ADS)
Mako, Frederick M.; Len, L. K.
1999-05-01
We report on three electron gun projects that are aimed at power tube and injector applications. The purpose of the work is to develop robust electron guns which produce self-bunched, high-current-density beams. We have demonstrated, in a microwave cavity, self-bunching, cold electron emission, long life, and tolerance to contamination. The cold process is based on secondary electron emission. FMT has studied using simulation codes the resonant bunching process which gives rise to high current densities (0.01-5 kA/cm2), high charge bunches (up to 500 nC/bunch), and short pulses (1-100 ps) for frequencies from 1 to 12 GHz. The beam pulse width is nominally ˜5% of the rf period. The first project is the L-Band Micro-Pulse Gun (MPG). Measurements show ˜40 ps long micro-bunches at ˜20 A/cm2 without contamination due to air exposure. Lifetime testing has been carried out for about 18 months operating at 1.25 GHz for almost 24 hours per day at a repetition rate of 300 Hz and 5 μs-long macro-pulses. Approximately 5.8×1013 micro-bunches or 62,000 coulombs have passed through this gun and it is still working fine. The second project, the S-Band MPG, is now operational. It is functioning at a frequency of 2.85 GHz, a repetition rate of 30 Hz, with a 2 μs-long macro-pulse. It produces about 45 A in the macro-pulse. The third project is a 34.2 GHz frequency-multiplied source driven by an X-Band MPG. A point design was performed at an rf output power of 150 MW at 34.2 GHz. The resulting system efficiency is 53% and the gain is 60 dB. The system efficiency includes the input cavity efficiency, input driver efficiency (a 50 MW klystron at 11.4 GHz), output cavity efficiency, and the post-acceleration efficiency.
Streamlined Genome Sequence Compression using Distributed Source Coding
Wang, Shuang; Jiang, Xiaoqian; Chen, Feng; Cui, Lijuan; Cheng, Samuel
2014-01-01
We aim at developing a streamlined genome sequence compression algorithm to support alternative miniaturized sequencing devices, which have limited communication, storage, and computation power. Existing techniques that require heavy client (encoder side) cannot be applied. To tackle this challenge, we carefully examined distributed source coding theory and developed a customized reference-based genome compression protocol to meet the low-complexity need at the client side. Based on the variation between source and reference, our protocol will pick adaptively either syndrome coding or hash coding to compress subsequences of changing code length. Our experimental results showed promising performance of the proposed method when compared with the state-of-the-art algorithm (GRS). PMID:25520552
NASA Astrophysics Data System (ADS)
Ramanaiah, S.; Rao, C. Narasimha; Nagaraja, P.; Venkateswarlu, P.
2015-11-01
Exces volumes, VE, and excess isentropic compressibilities, κSE, have been reported as a function of composition for binary liquid mixtures of trichloroethylene with ethyl acetate, n-propyl acetate, and n-butyl acetate at 303.15 K. Isentropic compressibilities are calculated using measured sound speeds and density data for pure components and for binary mixtures. Excess volumes and excess isentropic compressibilities are found to be negative for the three systems studied over the entire composition range at 303.15 K, whereas these values become more negative with an increase of carbon chain length. The results are discussed in terms of intermolecular interactions between unlike molecules.
Compressive response and helix formation of a semiflexible polymer confined in a nanochannel
NASA Astrophysics Data System (ADS)
Hayase, Yumino; Sakaue, Takahiro; Nakanishi, Hiizu
2017-05-01
Configurations of a single semiflexible polymer is studied when it is pushed into a nanochannel in the case where the polymer persistence length lp is much longer than the channel diameter D :lp/D ≫1 . Using numerical simulations, we show that the polymer undergoes a sequence of recurring structural transitions upon longitudinal compression: random deflection along the channel, a helix going around the channel wall, double-fold random deflection, double-fold helix, etc. We find that the helix transition can be understood as buckling of deflection segments, and the initial helix formation takes place at very small compression with no appreciable weak compression regime of the random deflection polymer.
NASA Astrophysics Data System (ADS)
Qin, Yi; Wang, Zhipeng; Wang, Hongjuan; Gong, Qiong
2018-07-01
We propose a binary image encryption method in joint transform correlator (JTC) by aid of the run-length encoding (RLE) and Quick Response (QR) code, which enables lossless retrieval of the primary image. The binary image is encoded with RLE to obtain the highly compressed data, and then the compressed binary image is further scrambled using a chaos-based method. The compressed and scrambled binary image is then transformed into one QR code that will be finally encrypted in JTC. The proposed method successfully, for the first time to our best knowledge, encodes a binary image into a QR code with the identical size of it, and therefore may probe a new way for extending the application of QR code in optical security. Moreover, the preprocessing operations, including RLE, chaos scrambling and the QR code translation, append an additional security level on JTC. We present digital results that confirm our approach.
Improvement of pump tubes for gas guns and shock tube drivers
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.
1990-01-01
In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.
Magnetic resonance image compression using scalar-vector quantization
NASA Astrophysics Data System (ADS)
Mohsenian, Nader; Shahri, Homayoun
1995-12-01
A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. SVQ is a fixed-rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity issues of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation which is typical of coding schemes which use variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit-rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original, when displayed on a monitor. This makes our SVQ based coder an attractive compression scheme for picture archiving and communication systems (PACS), currently under consideration for an all digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired.
Effective Cross Section of Cold Formed Steel Column Under Axial Compression
NASA Astrophysics Data System (ADS)
Manikandan, P.; Pradeep, T.
2018-06-01
The compressive resistance of cold-formed steel (CFS) section may be governed by local, distortional or overall buckling and any apparent interaction between these modes. A new inventive stiffened CFS section is elected in this study, selected cross sections geometries and lengths are chosen such that all the types of buckling modes are met with. Buckling plot is plotted using linear elastic buckling analysis software (CUFSM). Using the test results obtained in the literature, the developed finite element model is calibrated and furthers a total of 126 parametric study is conducted such as a consequence of dimensions and the length of the cross section, thickness and yield stress. The FEA included relevant material and geometric imperfections. All the columns are analyzed under pin end conditions with axial compression. The analysis results demonstrate that the DSM equations generally assess the strength of stiffened section conservatively. Modifications to the DSM equations are recommended to evaluate the strength of stiffened section more precisely.
An elastic dimpling instability with Kosterlitz-Thouless character and a precursor role in creasing
NASA Astrophysics Data System (ADS)
Engstrom, Tyler; Paulsen, Joseph; Schwarz, Jennifer
Creasing instability, also known as sulcification, occurs in a variety of quasi-2d elastic systems subject to compressive plane strain, and has been proposed as a mechanism of brain folding. While the dynamics of pre-existing creases can be understood in terms of crack propagation, a detailed critical phenomena picture of the instability is lacking. We show that surface dimpling is an equilibrium phase transition, and can be described in a language of quasi-particle excitations conceptualized as ``ghost fibers'' within the shear lag model. Tension-compression pairs (dipoles) of ghost fibers are energetically favorable at low strains, and the pairs unbind at a critical compressive plane strain, analogously to vortices in the Kosterlitz-Thouless transition. This dimpling transition bears strong resemblance to the creasing instability. We argue that zero-length creases are ghost fibers, which are a special case of ``ghost slabs''. Critical strain of a ghost slab increases linearly with its length, and is independent of both shear modulus and system thickness.
NASA Astrophysics Data System (ADS)
Nalle, Pallavi B.; Deshmukh, S. S.; Dorik, R. G.; Jadhav, K. M.
2016-12-01
The ultrasonic velocity (U), density (ρ), and viscosity (η) of an ethanolic extract of drug Piper nigrum with MgCl2 (metal ions) have been measured as a function of the number of moles n = (0.7009, 1.4018, 2.1027, 2.8036 and 3.5045) at 303.15, 308.15, 313.15 and 318.15 K temperature. Various thermoacoustic and their excess values such as adiabatic compressibilities (β), intermolecular free lengths (Lf), excess adiabatic compressibility (βE), excess intermolecular free length (?) have been computed using values of ultrasonic velocity (U), density (ρ), and viscosity (η). The excess values of ultrasonic velocity, specific acoustic impedance are positive, whereas isentropic compressibility and intermolecular free lengths are negative over the entire composition range of MgCl2 + P. nigrum which indicates the presence of specific interactions between unlike molecules. Molecular association is reflected by ultrasonic investigation. This may be interpreted due to the of complex formation. The chemical interaction may involve the association due to the solute-solvent and ion-solvent interaction and due to the formation of charge-transfer complexes, which is useful to understand the mechanism of their metabolism in living systems. The results obtained from these studies are helpful for pharmacological applications of drugs, transport of drugs across biological membranes.
Cho, Soojin; Yu, Jyaehyoung; Chun, Hyungi; Seo, Hyekyung; Han, Woojae
2014-04-01
Deficits of the aging auditory system negatively affect older listeners in terms of speech communication, resulting in limitations to their social lives. To improve their perceptual skills, the goal of this study was to investigate the effects of time alteration, selective word stress, and varying sentence lengths on the speech perception of older listeners. Seventeen older people with normal hearing were tested for seven conditions of different time-altered sentences (i.e., ±60%, ±40%, ±20%, 0%), two conditions of selective word stress (i.e., no-stress and stress), and three different lengths of sentences (i.e., short, medium, and long) at the most comfortable level for individuals in quiet circumstances. As time compression increased, sentence perception scores decreased statistically. Compared to a natural (or no stress) condition, the selectively stressed words significantly improved the perceptual scores of these older listeners. Long sentences yielded the worst scores under all time-altered conditions. Interestingly, there was a noticeable positive effect for the selective word stress at the 20% time compression. This pattern of results suggests that a combination of time compression and selective word stress is more effective for understanding speech in older listeners than using the time-expanded condition only.
Hössl, Bernhard; Böhm, Helmut J; Rammerstorfer, Franz G; Barth, Friedrich G
2007-04-01
Arachnid strain sensitive slit sensilla are elongated openings in the cuticle with aspect ratios (slit length l/slit width b) of up to 100. Planar Finite Element (FE) models are used to calculate the relative slit face displacements, Dc, at the centers of single slits and of arrangements of mechanically interacting slits under uni-axial compressive far-field loads. Our main objective is to quantitatively study the role of the following geometrical parameters in stimulus transformation: aspect ratio, slit shape, geometry of the slits' centerlines, load direction, lateral distance S, longitudinal shift lambda, and difference in slit length Deltal between neighboring slits. Slit face displacements are primarily sensitive to slit length and load direction but little affected by aspect ratios between 20 and 100. In stacks of five parallel slits at lateral distances typical of lyriform organs (S=0.03 l) the longitudinal shift lambda substantially influences slit compression. A change of lambda from 0 to 0.85 l causes changes of up to 420% in Dc. Even minor morphological variations in the arrangements can substantially influence the stimulus transformation. The site of transduction in real slit sensilla does not always coincide with the position of maximum slit compression predicted by simplified models.
Real-time transmission of digital video using variable-length coding
NASA Technical Reports Server (NTRS)
Bizon, Thomas P.; Shalkhauser, Mary JO; Whyte, Wayne A., Jr.
1993-01-01
Huffman coding is a variable-length lossless compression technique where data with a high probability of occurrence is represented with short codewords, while 'not-so-likely' data is assigned longer codewords. Compression is achieved when the high-probability levels occur so frequently that their benefit outweighs any penalty paid when a less likely input occurs. One instance where Huffman coding is extremely effective occurs when data is highly predictable and differential coding can be applied (as with a digital video signal). For that reason, it is desirable to apply this compression technique to digital video transmission; however, special care must be taken in order to implement a communication protocol utilizing Huffman coding. This paper addresses several of the issues relating to the real-time transmission of Huffman-coded digital video over a constant-rate serial channel. Topics discussed include data rate conversion (from variable to a fixed rate), efficient data buffering, channel coding, recovery from communication errors, decoder synchronization, and decoder architectures. A description of the hardware developed to execute Huffman coding and serial transmission is also included. Although this paper focuses on matters relating to Huffman-coded digital video, the techniques discussed can easily be generalized for a variety of applications which require transmission of variable-length data.
ERIC Educational Resources Information Center
Sheldon, Caroline Q.; Durdella, Nathan R.
2010-01-01
In recent years, developmental education in the community colleges has received much attention. However, there has been little research examining the relationship between course length and course success in developmental education. Using historical enrollment data from a large, suburban community college in southern California, this study examines…