Sample records for bure interferometer iram

  1. VizieR Online Data Catalog: The PAWS catalogs of GMCs and islands in M51 (Colombo+, 2014)

    NASA Astrophysics Data System (ADS)

    Colombo, D.; Hughes, A.; Schinnerer, E.; Meidt, S. E.; Leroy, A. K.; Pety, J.; Dobbs, C. L.; Garcia-Burillo, S.; Dumas, G.; Thompson, T. A.; Schuster, K. F.; Kramer, C.

    2016-08-01

    The Plateau de Bure Interferometer (PdBI) Arcsecond Whirlpool Survey (PAWS; Schinnerer et al., 2013ApJ...779...42S) is a large IRAM program involving 210hr of observations with the Plateau de Bure Interferometer (PdBI) and IRAM 30m telescope to conduct a sensitive, high angular resolution (1.16''*0.97''), 12CO(1-0) survey of the inner disk of M51a (field-of-view, FoV ~270''*170''). The spatial resolution at our assumed distance to M51 of 7.6Mpc (Ciardullo et al. 2002, cat. J/ApJ/577/31) is ~40pc. The inclusion of the 30m single dish data during joint deconvolution ensures that flux information on all spatial scales is conserved. The rms of the noise fluctuations in the cube is ~0.4K per 5km/s channel. This sensitivity is sufficient to detect an object with a gas mass of 1.2*105M{Sun} at the 5σrms level. The PAWS data cube covers the LSR velocity range between 173 and 769km/s. A detailed description of the observing strategy, calibration and data reduction is presented by Pety et al. (2013ApJ...779...43P). (2 data files).

  2. A gas-rich AGN near the centre of a galaxy cluster at z ~ 1.4

    NASA Astrophysics Data System (ADS)

    Casasola, V.; Magrini, L.; Combes, F.; Mignano, A.; Sani, E.; Paladino, R.; Fontani, F.

    2013-10-01

    Context. The formation of the first virialized structures in overdensities dates back to ~9 Gyr ago, i.e. in the redshift range z ~ 1.4-1.6. Some models of structure formation predict that the star formation activity in clusters was high at that epoch, implying large reservoirs of cold molecular gas. Aims: Aiming at finding a trace of this expected high molecular gas content in primeval clusters, we searched for the 12CO(2-1) line emission in the most luminous active galactic nucleus (AGN) of the cluster around the radio galaxy 7C 1756+6520 at z ~ 1.4, one of the farthest spectroscopic confirmed clusters. This AGN, called AGN.1317, is located in the neighbourhood of the central radio galaxy at a projected distance of ~780 kpc. Methods: The IRAM Plateau de Bure Interferometer was used to investigate the molecular gas quantity in AGN.1317, observing the 12CO(2-1) emission line. Results: We detect CO emission in an AGN belonging to a galaxy cluster at z ~ 1.4. We measured a molecular gas mass of 1.1 × 1010M⊙, comparable to that found in submillimeter galaxies. In optical images, AGN.1317 does not seem to be part of a galaxy interaction or merger. We also derived the nearly instantaneous star formation rate (SFR) from Hα flux obtaining a SFR ~ 65 M⊙ yr-1. This suggests that AGN.1317 is actively forming stars and will exhaust its reservoir of cold gas in ~0.2-1.0 Gyr. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Reduced IRAM data is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A60

  3. Detection of glycolaldehyde toward the solar-type protostar NGC 1333 IRAS2A

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Persson, M. V.; Jørgensen, J. K.; Wampfler, S. F.; Lykke, J. M.

    2015-04-01

    Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer toward the Class 0 young stellar object NGC 1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic molecule is detected. Local thermodynamic equilibrium analyses of glycolaldehyde, ethylene glycol (the reduced alcohol of glycolaldehyde), and methyl formate (the most abundant isomer of glycolaldehyde) were carried out. The relative abundance of ethylene glycol to glycolaldehyde is found to be ~5 - higher than in the Class 0 source IRAS 16293-2422 (~1), but similar to the lower limits derived in comets (≥3-6). The different ethylene glycol-to-glycolaldehyde ratios in the two protostars might be related to different CH3OH:CO compositions of the icy grain mantles. In particular, a more efficient hydrogenation on the grains in NGC 1333 IRAS2A would favor the formation of both methanol and ethylene glycol. In conclusion, it is possible that like NGC 1333 IRAS2A, other low-mass protostars show high ethylene glycol-to-glycolaldehyde abundance ratios. The cometary ratios might consequently be inherited from earlier stages of star formation if the young Sun experienced conditions similar to NGC 1333 IRAS2A. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Figures 3-4 and Table 1 are available in electronic form at http://www.aanda.org

  4. Phibss: Molecular Gas, Extinction, Star Formation, and Kinematics in the z = 1.5 Star-forming Galaxy EGS13011166

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Kurk, J.; Wuyts, S.; Combes, F.; Freundlich, J.; Bolatto, A.; Cooper, M. C.; Neri, R.; Nordon, R.; Bournaud, F.; Burkert, A.; Comerford, J.; Cox, P.; Davis, M.; Förster Schreiber, N. M.; García-Burillo, S.; Gracia-Carpio, J.; Lutz, D.; Naab, T.; Newman, S.; Saintonge, A.; Shapiro Griffin, K.; Shapley, A.; Sternberg, A.; Weiner, B.

    2013-08-01

    We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the Hα line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the "Plateau de Bure high-z, blue-sequence survey" (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similar and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a "mixed" extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlogΣstar form/dlogΣmol gas, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 ± 0.1. Based on observations with the Plateau de Bure millimetre interferometer, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany), and IGN (Spain). Based also on data acquired with the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in Germany, Italy, and the United States. LBT Corporation partners are LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; Istituto Nazionale di Astrofisica, Italy; The University of Arizona on behalf of the Arizona University system; The Ohio State University, and The Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

  5. Jet multiplicity in the proto-binary system NGC 1333-IRAS4A. The detailed CALYPSO IRAM-PdBI view

    NASA Astrophysics Data System (ADS)

    Santangelo, G.; Codella, C.; Cabrit, S.; Maury, A. J.; Gueth, F.; Maret, S.; Lefloch, B.; Belloche, A.; André, Ph.; Hennebelle, P.; Anderl, S.; Podio, L.; Testi, L.

    2015-12-01

    Context. Owing to the paucity of sub-arcsecond (sub)mm observations required to probe the innermost regions of newly forming protostars, several fundamental questions are still being debated, such as the existence and coevality of close multiple systems. Aims: We study the physical and chemical properties of the jets and protostellar sources in the NGC 1333-IRAS4A proto-binary system using continuum emission and molecular tracers of shocked gas. Methods: We observed NGC 1333-IRAS4A in the SiO(6-5), SO(65-54), and CO(2-1) lines and the continuum emission at 1.3, 1.4, and 3 mm using the IRAM Plateau de Bure Interferometer in the framework of the CALYPSO large program. Results: We clearly disentangle for the first time the outflow emission from the two sources A1 and A2. The two protostellar jets have very different properties: the A1 jet is faster, has a short dynamical timescale (≲103 yr), and is associated with H2 shocked emission, whereas the A2 jet, which dominates the large-scale emission, is associated with diffuse emission, bends, and emits at slower velocities. The observed bending of the A2 jet is consistent with the change of propagation direction observed at large scale and suggests jet precession on very short timescales (~200-600 yr). In addition, a chemically rich spectrum with emission from several complex organic molecules (e.g. HCOOH, CH3OCHO, CH3OCH3) is only detected towards A2. Finally, very high-velocity shocked emission (~50 km s-1) is observed along the A1 jet. An LTE analysis shows that SiO, SO, and H2CO abundances in the gas phase are enhanced up to (3-4)×10-7, (1.4-1.7)×10-6, and (3-7.9)×10-7, respectively. Conclusions: The intrinsic different properties of the jets and driving sources in NGC 1333-IRAS4A suggest different evolutionary stages for the two protostars, with A1 being younger than A2, in a very early stage of star formation previous to the hot-corino phase. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendices are available in electronic form at http://www.aanda.org

  6. Millimeter imaging of HD 163296: probing the disk structure and kinematics

    NASA Astrophysics Data System (ADS)

    Isella, A.; Testi, L.; Natta, A.; Neri, R.; Wilner, D.; Qi, C.

    2007-07-01

    We present new multi-wavelength millimeter interferometric observations of the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust properties have been obtained comparing the observations with self-consistent disk models for the dust and CO emission. The circumstellar disk is resolved both in the continuum and in CO. We find strong evidence that the circumstellar material is in Keplerian rotation around a central star of 2.6 M_⊙. The disk inclination with respect to the line of sight is 46° ± 4° with a position angle of 128° ± 4°. The slope of the dust opacity measured between 0.87 and 7 mm (β = 1) confirms the presence of mm/cm-size grains in the disk midplane. The dust continuum emission is asymmetric and confined inside a radius of 200 AU while the CO emission extends up to 540 AU. The comparison between dust and CO temperature indicates that CO is present only in the disk interior. Finally, we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O. We argue that these results support the idea that the disk of HD 163296 is strongly evolved. In particular, we suggest that there is a strong depletion of dust relative to gas outside 200 AU; this may be due to the inward migration of large bodies that form in the outer disk or to clearing of a large gap in the dust distribution by a low mass companion. Based on observations carried out with IRAM Plateau de Bure Interferometer, Submillimeter Array and NRAO Very Large Array. IRAM Plateau de Bure Interferometer is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Appendix A and Figs. [see full text]- [see full text] are only available in electronic form at http://www.aanda.org

  7. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-Type Protostars

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Taquet, V.; Ceccarelli, C.; Neri, R.; Kahane, C.; Charnley, S. B.

    2015-12-01

    We present arcsecond-resolution observations, obtained with the IRAM Plateau de Bure interferometer, of multiple complex organic molecules in two hot corino protostars: IRAS 2A and IRAS 4A, in the NGC 1333 star-forming region. The distribution of the line emission is very compact, indicating the presence of COMs is mostly concentrated in the inner hot corino regions. A comparison of the COMs abundances with astrochemical models favours a gas-phase formation route for CH3OCH3, and a grain formation of C2H5OH, C2H5CN, and HCOCH2OH. The high abundances of methyl formate (HCOOCH3) remain underpredicted by an order of magnitude.

  8. Glycolaldehyde in Perseus young solar analogs

    NASA Astrophysics Data System (ADS)

    De Simone, M.; Codella, C.; Testi, L.; Belloche, A.; Maury, A. J.; Anderl, S.; André, Ph.; Maret, S.; Podio, L.

    2017-03-01

    Context. The earliest evolutionary stages of low-mass protostars are characterised by the so-called hot-corino stage, when the newly born star heats the surrounding material and enrich the gas chemically. Studying this evolutionary phase of solar protostars may help understand the evolution of prebiotic complex molecules in the development of planetary systems. Aims: In this paper we focus on the occurrence of glycolaldehyde (HCOCH2OH) in young solar analogs by performing the first homogeneous and unbiased study of this molecule in the Class 0 protostars of the nearby Perseus star forming region. Methods: We obtained sub-arcsec angular resolution maps at 1.3 mm and 1.4 mm of glycolaldehyde emission lines using the IRAM Plateau de Bure (PdB) interferometer in the framework of the CALYPSO IRAM large program. Results: Glycolaldehyde has been detected towards 3 Class 0 and 1 Class I protostars out of the 13 continuum sources targeted in Perseus: NGC 1333-IRAS2A1, NGC 1333-IRAS4A2, NGC 1333-IRAS4B1, and SVS13-A. The NGC 1333 star forming region looks particularly glycolaldehyde rich, with a rate of occurrence up to 60%. The glycolaldehyde spatial distribution overlaps with the continuum one, tracing the inner 100 au around the protostar. A large number of lines (up to 18), with upper-level energies Eu from 37 K up to 375 K has been detected. We derived column densities ≥1015 cm-2 and rotational temperatures Trot between 115 K and 236 K, imaging for the first time hot-corinos around NGC 1333-IRAS4B1 and SVS13-A. Conclusions: In multiple systems glycolaldehyde emission is detected only in one component. The case of the SVS13-A+B and IRAS4-A1+A2 systems support that the detection of glycolaldehyde (at least in the present Perseus sample) indicates older protostars (I.e. SVS13-A and IRAS4-A2), evolved enough to develop the hot-corino region (I.e. 100 K in the inner 100 au). However, only two systems do not allow us to firmly conclude whether the primary factor leading to the detection of glycolaldehyde emission is the environments hosting the protostars, evolution (e.g. low value of Lsubmm/Lint), or accretion luminosity (high Lint). Based on observations carried out with the IRAM Plateau de Bure interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Reduced datacube (FITS file) is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A121

  9. Pure rotational spectra of TiO and TiO2 in VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Kamiński, T.; Gottlieb, C. A.; Menten, K. M.; Patel, N. A.; Young, K. H.; Brünken, S.; Müller, H. S. P.; McCarthy, M. C.; Winters, J. M.; Decin, L.

    2013-03-01

    We report the first detection of pure rotational transitions of TiO and TiO2 at (sub-)millimeter wavelengths towards the red supergiant VY CMa. A rotational temperature, Trot, of about 250 K was derived for TiO2. Although Trot was not well constrained for TiO, it is likely somewhat higher than that of TiO2. The detection of the Ti oxides confirms that they are formed in the circumstellar envelopes of cool oxygen-rich stars and may be the "seeds" of inorganic-dust formation, but alternative explanations for our observation of TiO and TiO2 in the cooler regions of the envelope cannot be ruled out at this time. The observations suggest that a significant fraction of the oxides is not converted to dust, but instead remains in the gas phase throughout the outflow. Based on observations carried out with the Submillimeter Array and IRAM Plateau de Bure Interferometer.Plateau de Bure data (FITS file) is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A113

  10. CH3OCH3 in Orion-KL: a striking similarity with HCOOCH3

    NASA Astrophysics Data System (ADS)

    Brouillet, N.; Despois, D.; Baudry, A.; Peng, T.-C.; Favre, C.; Wootten, A.; Remijan, A. J.; Wilson, T. L.; Combes, F.; Wlodarczak, G.

    2013-02-01

    Context. Orion-KL is a remarkable, nearby star-forming region where a recent explosive event has generated shocks that could have released complex molecules from the grain mantles. Aims: A comparison of the distribution of the different complex molecules will help in understanding their formation and constraining the chemical models. Methods: We used several data sets from the Plateau de Bure Interferometer to map the dimethyl ether emission with different arcsec spatial resolutions and different energy levels (from Eup = 18 to 330 K) to compare with our previous methyl formate maps. Results: Our data show remarkable similarity between the dimethyl ether (CH3OCH3) and the methyl formate (HCOOCH3) distributions even on a small scale (1.8″ × 0.8″ or ~500 AU). This long suspected similarity, seen from both observational and theoretical arguments, is demonstrated with unprecedented confidence, with a correlation coefficient of maps ~0.8. Conclusions: A common precursor is the simplest explanation of our correlation. Comparisons with previous laboratory work and chemical models suggest the major role of grain surface chemistry and a recent release, probably with little processing, of mantle molecules by shocks. In this case the CH3O radical produced from methanol ice would be the common precursor (whereas ethanol, C2H5OH, is produced from the radical CH2OH). The alternative gas phase scheme, where protonated methanol CH3OH+2 is the common precursor to produce methyl formate and dimethyl ether through reactions with HCOOH and CH3OH, is also compatible with our data. Our observations cannot yet definitely allow a choice between the different chemical processes, but the tight correlation between the distributions of HCOOCH3 and CH3OCH3 strongly contrasts with the different behavior we observe for the distributions of ethanol and formic acid. This provides a very significant constraint on models. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  11. Probing the CO and methanol snow lines in young protostars. Results from the CALYPSO IRAM-PdBI survey

    NASA Astrophysics Data System (ADS)

    Anderl, S.; Maret, S.; Cabrit, S.; Belloche, A.; Maury, A. J.; André, Ph.; Codella, C.; Bacmann, A.; Bontemps, S.; Podio, L.; Gueth, F.; Bergin, E.

    2016-06-01

    Context. So-called snow lines, indicating regions where abundant volatiles freeze out onto the surface of dust grains, play an important role for planet growth and bulk composition in protoplanetary disks. They can already be observed in the envelopes of the much younger, low-mass Class 0 protostars, which are still in their early phase of heavy accretion. Aims: We aim to use the information on the sublimation regions of different kinds of ices to understand the chemistry of the envelope, its temperature and density structure, and the history of the accretion process. This information is crucial to get the full picture of the early protostellar collapse and the subsequent evolution of young protostars. Methods: As part of the CALYPSO IRAM Large Program, we have obtained observations of C18O, N2H+, and CH3OH towards nearby Class 0 protostars with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. For four of these sources, we have modeled the emission using a chemical code coupled with a radiative transfer module. Results: We observe an anti-correlation of C18O and N2H+ in NGC 1333-IRAS4A, NGC 1333-IRAS4B, L1157, and L1448C, with N2H+ forming a ring (perturbed by the outflow) around the centrally peaked C18O emission. This emission morphology, which is due to N2H+ being chemically destroyed by CO, reveals the CO and N2 ice sublimation regions in these protostellar envelopes with unprecedented resolution. We also observe compact methanol emission towards three of the sources. Based on our chemical model and assuming temperature and density profiles from the literature, we find that for all four sources the CO snow line appears further inwards than expected from the binding energy of pure CO ices (~855 K). The emission regions of models and observations match for a higher value of the CO binding energy of 1200 K, corresponding to a dust temperature of ~24 K at the CO snow line. The binding energy for N2 ices is modeled at 1000 K, also higher than for pure N2 ices. Furthermore, we find very low CO abundances inside the snow lines in our sources, about an order of magnitude lower than the total CO abundance observed in the gas on large scales in molecular clouds before depletion sets in. Conclusions: The high CO binding energy may hint at CO being frozen out in a polar ice environment like amorphous water ice or in non-polar CO2-rich ice. The low CO abundances are comparable to values found in protoplanetary disks, which may indicate an evolutionary scenario where these low values are already established in the protostellar phase. Based on observations carried out under project number U052 with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  12. Nascent bipolar outflows associated with the first hydrostatic core candidates Barnard 1b-N and 1b-S

    NASA Astrophysics Data System (ADS)

    Gerin, M.; Pety, J.; Fuente, A.; Cernicharo, J.; Commerçon, B.; Marcelino, N.

    2015-05-01

    In the theory of star formation, the first hydrostatic core (FHSC) phase is a critical step in which a condensed object emerges from a prestellar core. This step lasts about one thousand years, a very short time compared with the lifetime of prestellar cores, and therefore is hard to detect unambiguously. We present IRAM Plateau de Bure observations of the Barnard 1b dense molecular core, combining detections of H2CO and CH3OH spectral lines and dust continuum at 2.3'' resolution (~500 AU). The two compact cores B1b-N and B1b-S are detected in the dust continuum at 2 mm, with fluxes that agree with their spectral energy distribution. Molecular outflows associated with both cores are detected. They are inclined relative to the direction of the magnetic field, in agreement with predictions of collapse in turbulent and magnetized gas with a ratio of mass to magnetic flux somewhat higher than the critical value, μ ~ 2-7. The outflow associated with B1b-S presents sharp spatial structures, with ejection velocities of up to ~7 km s-1 from the mean velocity. Its dynamical age is estimated to be ~2000 yr. The B1b-N outflow is smaller and slower, with a short dynamical age of ~1000 yr. The B1b-N outflow mass, mass-loss rate, and mechanical luminosity agree well with theoretical predictions of FHSC. These observations confirm the early evolutionary stage of B1b-N and the slightly more evolved stage of B1b-S. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Appendices are available in electronic form at http://www.aanda.orgFITS files for the H2CO and CH3OH mosaics are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/L2

  13. Coordinated Observations of Comet Hale-Bopp between 32 and 860 GHz

    NASA Astrophysics Data System (ADS)

    Bieging, J. H.; Mauersberger, R.; Altenhoff, W. J.; Haslam, C. G. T.; Kreysa, E.; Schmidt, J.; Schraml, J. B.; Stumpff, P.; von Kap-Herr, A.; Butler, B.; McMullin, J.; Butner, H. M.; Martin, R. N.; Muders, D.; Peters, W. L.; Sievers, A.; Thum, C.; Wink, J.; Zylka, R.

    1997-12-01

    The concept of simultaneous multifrequency continuum observations, successfully tested on Comet Hyakutake, was applied to Comet Hale-Bopp, using the Heinrich Hertz Submillimeter Telescope (HHT) with the four color bolometer between 250 and 870 GHz; the IRAM 30m telescope at 250 GHz; the IRAM Plateau de Bure Interferometer near 90 and 240 GHz; and the MPIfR 100m telescope at 32 GHz. Near-simultaneous measurements were done between 1997 February 15 and 1997 April 26, mainly concentrated in mid-March shortly before perigee of the comet. The measurements gave the following preliminary results: (a) interferometer detection of the nuclear continuum emission. The derived mean diameter is of the order of 50 km. (b) a radio halo with a gaussian HPW of ~ 11 arcsec , corresponding to a diameter of 11000 km at geocentric distance of 1.2 A.U. (c) a spectral index (SI) of ~ 3.0 of the total signal, indicating a particle size distribution in the radio halo between 0.1 and 3 mm. Assuming an average cometary density of 0.5 g cm(-3) , the mass contained in the nucleus is about 3x 10(19) g and 10(12) g in the particle halo, inferred from the SI. A more detailed analysis is under way, which includes corrections for the various calibration scales at the different telescopes and the possible contamination of the observed bolometer signal by molecular line emission. We will report on the results of this analysis and the implications for the mm -- submm wavelength radio spectrum of Comet Hale-Bopp.

  14. First results from the CALYPSO IRAM-PdBI survey. II. Resolving the hot corino in the Class 0 protostar NGC 1333-IRAS2A

    NASA Astrophysics Data System (ADS)

    Maury, A. J.; Belloche, A.; André, Ph.; Maret, S.; Gueth, F.; Codella, C.; Cabrit, S.; Testi, L.; Bontemps, S.

    2014-03-01

    Aims: We investigate the origin of complex organic molecules (COMs) in the gas phase around the low-mass Class 0 protostar NGC 1333-IRAS2A, to determine if the COM emission lines trace an embedded disk, shocks from the protostellar jet, or the warm inner parts of the protostellar envelope. Methods: In the framework of the CALYPSO IRAM Plateau de Bure survey, we obtained large bandwidth spectra at sub-arcsecond resolution towards NGC 1333-IRAS2A. We identify the emission lines towards the central protostar and perform Gaussian fits to constrain the size of the emitting region for each of these lines, tracing various physical conditions and scales. Results: The emission of numerous COMs such as methanol, ethylene glycol, and methyl formate is spatially resolved by our observations. This allows us to measure, for the first time, the size of the COM emission inside the protostellar envelope, finding that it originates from a region of radius 40-100 AU, centered on the NGC 1333-IRAS2A protostellar object. Our analysis shows no preferential elongation of the COM emission along the jet axis, and therefore does not support the hypothesis that COM emission arises from shocked envelope material at the base of the jet. Down to similar sizes, the dust continuum emission is well reproduced with a single power-law envelope model, and therefore does not favor the hypothesis that COM emission arises from the thermal sublimation of grains embedded in a circumstellar disk. Finally, the typical scale ~60 AU observed for COM emission is consistent with the size of the inner envelope where Tdust > 100 K is expected. Our data therefore strongly suggest that the COM emission traces the hot corino in IRAS2A, i.e., the warm inner envelope material where the icy mantles of dust grains evaporate because they are passively heated by the central protostellar object. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).CALYPSO stands for Continuum And Lines in Young ProtoStellar Objects.Appendix A, Tables 1, 2, and Figs. 3, 4 are available in electronic form at http://www.aanda.orgThe integrated emission maps shown in Fig. 3 are available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/L2

  15. Acetone in Orion BN/KL. High-resolution maps of a special oxygen-bearing molecule

    NASA Astrophysics Data System (ADS)

    Peng, T.-C.; Despois, D.; Brouillet, N.; Baudry, A.; Favre, C.; Remijan, A.; Wootten, A.; Wilson, T. L.; Combes, F.; Wlodarczak, G.

    2013-06-01

    Aims: As one of the prime targets of interstellar chemistry study, Orion BN/KL clearly shows different molecular distributions between large nitrogen- (e.g., C2H5CN) and oxygen-bearing (e.g., HCOOCH3) molecules. However, acetone (CH3)2CO, a special complex O-bearing molecule, has been shown to have a very different distribution from other typical O-bearing molecules in the BN/KL region. Therefore, it is worth investigating acetone in detail at high angular resolutions, which will help us understand the formation of this molecule and its chemical role in the complex BN/KL region. Methods: We searched for acetone within our IRAM Plateau de Bure Interferometer 3 mm and 1.3 mm data sets. Twenty-two acetone lines were searched within these data sets. The angular resolution ranged from 1farcs8×0farcs8 to 6farcs0×2farcs3, and the spectral resolution ranged from 0.4 to 1.9 km s-1. Results: Nine of the acetone lines appear free of contamination. Three main acetone peaks (Ace-1, 2, and 3) are identified in Orion BN/KL. The new acetone source Ace-3 and the extended emission in the north of the hot core region have been found for the first time. An excitation temperature of about 150 K is determined toward Ace-1 and Ace-2, and the acetone column density is estimated to be 2-4 × 1016 cm-2 with a relative abundance of 1-6 × 10-8 toward these two peaks. Acetone is a few times less abundant toward the hot core and Ace-3 compared with Ace-1 and Ace-2. Conclusions: We find that the overall distribution of acetone in BN/KL is similar to that of N-bearing molecules, e.g., NH3 and C2H5CN, and very different from those of large O-bearing molecules, e.g., HCOOCH3 and (CH3)2O. Our findings show the acetone distribution is more extended than in previous studies and does not originate only in those areas where both N-bearing and O-bearing species are present. Moreover, because the N-bearing molecules may be associated with shocked gas in Orion BN/KL, this suggests that the formation and/or destruction of acetone may involve ammonia or large N-bearing molecules in a shocked-gas environment. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendices and movie are available in electronic form at http://www.aanda.org

  16. H i and CO in the circumstellar environment of the S-type star RS Cancri

    NASA Astrophysics Data System (ADS)

    Libert, Y.; Winters, J. M.; Le Bertre, T.; Gérard, E.; Matthews, L. D.

    2010-06-01

    Context. The history of mass loss during the AGB phase is key to understanding the stellar evolution and the gas and dust replenishment of the interstellar medium. The mass-loss phenomenon presents fluctuations with a wide variety of timescales and spatial scales and requires combining data from multiple tracers. Aims: We study the respective contributions of the central source and of the external medium to the complex geometry of circumstellar ejecta. Methods: This paper presents Plateau de Bure Interferometer and IRAM 30-m telescope CO rotational line observations, along with H i data obtained with the Nançay Radio Telescope for the oxygen-rich semi-regular variable RS Cnc, in order to probe its circumstellar environment on different scales. Results: We detect both the CO(1-0) and the CO(2-1) rotational lines from RS Cnc. The line profiles are composite, comprising two components of half-width ~2 km s-1 and ~8 km s-1, respectively. Whereas the narrow velocity component seems to originate in an equatorial disk in the central part of the CO envelope, the broad component reveals a bipolar structure, with a north-south velocity gradient. In addition, we obtain new H i data on the source and around it in a field of almost 1 square degree. The H i line is centered on vLSR = 7 km s-1 in agreement with CO observations. A new reduction process reveals a complex extended structure in the northwest direction, of estimated size ~18', with a position angle (~310°) opposite the direction of the stellar proper motion (~140°). We derive an H i mass of ~3 × 10-2 M_⊙ for this structure. Based on a non spherical simulation, we find that this structure is consistent with arising from the interaction of the star undergoing mass loss at an average rate of ~10-7 M⊙ yr-1 over ~2-3 × 105 years with the interstellar medium. Conclusions: Using CO and H i lines, we show that the circumstellar environment around RS Cnc includes two related but well separated regions. With CO, we find a bipolar geometry that probably originates from the intrinsic behavior of recent mass-loss processes. With H i, we find a trail of gas, in a direction opposite to the proper motion of RS Cnc lending support to the hypothesis of an interaction with the interstellar medium. This work illustrates the powerful complementarity of CO and H i observations with regard to a more complete description of circumstellar environments around AGB stars. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  17. The hot core towards the intermediate-mass protostar NGC 7129 FIRS 2. Chemical similarities with Orion KL

    NASA Astrophysics Data System (ADS)

    Fuente, A.; Cernicharo, J.; Caselli, P.; McCoey, C.; Johnstone, D.; Fich, M.; van Kempen, T.; Palau, Aina; Yıldız, U. A.; Tercero, B.; López, A.

    2014-08-01

    Context. This paper is dedicated to the study of the chemistry of the intermediate-mass (IM) hot core NGC 7129 FIRS 2, probably the most compact warm core found in the 2-8 M⊙ stellar mass range. Aims: Our aim is to determine the chemical composition of the IM hot core NGC 7129 FIRS 2, and to provide new insights on the chemistry of hot cores in a more general context. Methods: NGC 7129 FIRS 2 (hereafter, FIRS 2) is located at a distance of 1250 pc and high spatial resolution observations are required to resolve the hot core at its center. We present a molecular survey from 218 200 MHz to 221 800 MHz carried out with the IRAM Plateau de Bure Interferometer (PdBI). These observations were complemented with a long integration single-dish spectrum taken with the IRAM 30 m telescope in Pico de Veleta (Spain). We used a local thermodynamic equilibrium (LTE) single temperature code to model the whole dataset. Results: The interferometric spectrum is crowded with a total of ≈300 lines from which a few dozen remain unidentified. The spectrum has been modeled with a total of 20 species and their isomers, isotopologues, and deuterated compounds. Complex molecules like methyl formate (CH3OCHO), ethanol (CH3CH2OH), glycolaldehyde (CH2OHCHO), acetone (CH3COCH3), dimethyl ether (CH3OCH3), ethyl cyanide (CH3CH2CN), and the aGg' conformer of ethylene glycol (aGg'-(CH2OH)2) are among the detected species. The detection of vibrationally excited lines of CH3CN, CH3OCHO, CH3OH, OCS, HC3N, and CH3CHO proves the existence of gas and dust at high temperatures. The gas kinetic temperature estimated from the vibrational lines of CH3CN, ~405-67+100 K, is similar to that measured in massive hot cores. Our data allow an extensive comparison of the chemistry in FIRS 2 and the Orion hot core. Conclusions: We find a quite similar chemistry in FIRS 2 and Orion. Most of the studied fractional molecular abundances agree within a factor of 5. Larger differences are only found for the deuterated compounds D2CO and CH2DOH and a few molecules (CH3CH2CN, SO2, HNCO and CH3CHO). Since the physical conditions are similar in both hot cores, only different initial conditions (warmer pre-collapse and collapse phase in the case of Orion) and/or different crossing times of the gas in the hot core can explain this behavior. We discuss these two scenarios. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendices are available in electronic form at http://www.aanda.orgThe interferometrid spectra of Fig. A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A65

  18. Chemical footprint of star formation feedback in M 82 on scales of ~100 pc

    NASA Astrophysics Data System (ADS)

    Ginard, D.; Fuente, A.; García-Burillo, S.; Alonso-Albi, T.; Krips, M.; Gerin, M.; Neri, R.; Pilleri, P.; Usero, A.; Treviño-Morales, S. P.

    2015-06-01

    Context. M 82 is one of the nearest and brightest starburst galaxies. It has been extensively studied in the past decade and by now is considered the prototypical extragalactic photon-dominated region (PDR) and a reference for studying star formation feedback. Aims: Our aim is to characterize the molecular chemistry in M 82 at spatial scales of giant molecular clouds (GMCs), ~100 pc, to investigate the feedback effects of the star formation activity. Methods: We present interferometric observations of the CN 1 → 0 (113.491 GHz), N2H+1 → 0 (93.173 GHz), H(41)α (92.034 GHz), CH3CN (91.987 GHz), CS 3 → 2 (146.969 GHz), c-C3H2 31,2 → 22,1 (145.089 GHz), H2CO 20,2 → 10,1 (145.603 GHz), and HC3N 16 → 15 (145.601 GHz) lines carried out with the IRAM Plateau de Bure Interferometer (PdBI). PDR chemical modeling was used to interpret these observations. Results: Our results show that the abundances of N2H+, CS and H13CO+ remain quite constant across the galaxy, confirming that these species are excellent tracers of the dense molecular gas. In contrast, the abundance of CN increases by a factor of ~3 in the inner x2 bar orbits. The [CN]/[N2H+] ratio is well correlated with the H(41)α emission at all spatial scales down to ~100 pc. Chemical modeling shows that the variations in the [CN]/[N2H+] ratio can be explained as the consequence of differences in the local intestellar UV field and in the average cloud sizes within the nucleus of the galaxy. Conclusions: Our high spatial resolution imaging of the starburst galaxy M 82 shows that the star formation activity has a strong impact on the chemistry of the molecular gas. In particular, the entire nucleus behaves as a giant PDR whose chemistry is determined by the local UV flux. The detection of N2H+ shows the existence of a population of clouds with Av> 20 mag all across the galaxy plane. These clouds constitute the molecular gas reservoir for the formation of new stars and, although it is distributed throughout the nucleus, the highest concentration occurs in the outer x1 bar orbits (R ~ 280 pc). Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.orgFITS files of the reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A49

  19. Detections of CO Molecular Gas in 24 μm Bright ULIRGs at z ~ 2 in the Spitzer First Look Survey

    NASA Astrophysics Data System (ADS)

    Yan, Lin; Tacconi, L. J.; Fiolet, N.; Sajina, A.; Omont, A.; Lutz, D.; Zamojski, M.; Neri, R.; Cox, P.; Dasyra, K. M.

    2010-05-01

    We present CO observations of nine ultra-luminous infrared galaxies (ULIRGs) at z ~ 2 with f ν(24 μm) gsim 1 mJy, previously confirmed with the mid-IR spectra in the Spitzer First Look Survey. All targets are required to have accurate redshifts from Keck/GEMINI near-IR spectra. Using the Plateau de Bure millimeter-wave Interferometer at the Institute for Radioastronomy at Millimeter Wavelengths, we detect CO J(3-2) (seven objects) or J(2-1) (one object) line emission from eight sources with integrated intensities Ic ~ 5σ-9σ. The CO-detected sources have a variety of mid-IR spectra, including strong polycyclic aromatic hydrocarbon, deep silicate absorption, and power-law continuum, implying that these molecular gas-rich objects at z ~ 2 could be either starbursts or dust-obscured active galactic nuclei (AGNs). The measured line luminosity L'CO is (1.28-3.77) × 1010 K km/s pc2. The averaged molecular gas mass M_H_2 is 1.7 × 1010 M sun, assuming CO-to-H2 conversion factor of 0.8 M sun (K km/s pc2)-1. Three sources (33%)—MIPS506, MIPS16144, and MIPS8342—have double peak velocity profiles. The CO double peaks in MIPS506 and MIPS16144 show spatial separations of 45 kpc and 10.9 kpc, allowing the estimates of the dynamical masses of 3.2 × 1011 sin-2(i) M sun and 5.4 × 1011 sin-2(i) M sun, respectively. The implied gas fraction, M gas/M dyn, is 3% and 4%, assuming an average inclination angle. Finally, the analysis of the Hubble Space Telescope/NIC2 images, mid-IR spectra, and IR spectral energy distribution revealed that most of our sources are mergers, containing dust-obscured AGNs dominating the luminosities at (3-6) μm. Together, these results provide some evidence suggesting submillimeter galaxies, bright 24 μm, z ~ 2 ULIRGs, and QSOs could represent three different stages of a single evolutionary sequence, however, a complete physical model would require much more data, especially high spatial resolution spectroscopy. Based on observations obtained at the Institute for Radioastronomy at Millimeter Wavelengths (IRAM) Plateau de Bure Interferometer (PdBI). IRAM is funded by the Centre National de la Recherche Scientifique (France), the Max-Planck Gesellschaft (Germany), and the Instituto Geografico Nacional (Spain).

  20. Rotationally-supported disks around Class I sources in Taurus: disk formation constraints

    NASA Astrophysics Data System (ADS)

    Harsono, D.; Jørgensen, J. K.; van Dishoeck, E. F.; Hogerheijde, M. R.; Bruderer, S.; Persson, M. V.; Mottram, J. C.

    2014-02-01

    Context. Disks are observed around pre-main sequence stars, but how and when they form is still heavily debated. While disks around young stellar objects have been identified through thermal dust emission, spatially and spectrally resolved molecular line observations are needed to determine their nature. Only a handful of embedded rotationally supported disks have been identified to date. Aims: We identify and characterize rotationally supported disks near the end of the main accretion phase of low-mass protostars by comparing their gas and dust structures. Methods: Subarcsecond observations of dust and gas toward four Class I low-mass young stellar objects in Taurus are presented at significantly higher sensitivity than previous studies. The 13CO and C18O J = 2-1 transitions at 220 GHz were observed with the Plateau de Bure Interferometer at a spatial resolution of ≤0.8″ (56 AU radius at 140 pc) and analyzed using uv-space position velocity diagrams to determine the nature of their observed velocity gradient. Results: Rotationally supported disks (RSDs) are detected around 3 of the 4 Class I sources studied. The derived masses identify them as Stage I objects; i.e., their stellar mass is higher than their envelope and disk masses. The outer radii of the Keplerian disks toward our sample of Class I sources are ≤100 AU. The lack of on-source C18O emission for TMR1 puts an upper limit of 50 AU on its size. Flattened structures at radii >100 AU around these sources are dominated by infalling motion (υ ∝ r-1). A large-scale envelope model is required to estimate the basic parameters of the flattened structure from spatially resolved continuum data. Similarities and differences between the gas and dust disk are discussed. Combined with literature data, the sizes of the RSDs around Class I objects are best described with evolutionary models with an initial rotation of Ω = 10-14 Hz and slow sound speeds. Based on the comparison of gas and dust disk masses, little CO is frozen out within 100 AU in these disks. Conclusions: Rotationally supported disks with radii up to 100 AU are present around Class I embedded objects. Larger surveys of both Class 0 and I objects are needed to determine whether most disks form late or early in the embedded phase. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNBRS (France), MPG (Germany) and IGN (Spain).Appendices are available in electronic form at http://www.aanda.org

  1. The radio spectral energy distribution of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α < -0.8; %), but we also find ultra-steep SEDs (α < -1.3; %). In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi-wavelength SED modelling of one IFRS shows that it is different from ordinary AGN, although it is consistent with a composite starburst-AGN model with a star formation rate of 170 M⊙ yr-1. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  2. PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE z = 1.5 STAR-FORMING GALAXY EGS13011166

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genzel, R.; Tacconi, L. J.; Kurk, J.

    We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the H{alpha} line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the ''Plateau de Bure high-z, blue-sequence survey'' (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similarmore » and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a ''mixed'' extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlog{Sigma}{sub starform}/dlog{Sigma}{sub molgas}, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 {+-} 0.1.« less

  3. Detection of amino acetonitrile in Sgr B2(N)

    NASA Astrophysics Data System (ADS)

    Belloche, A.; Menten, K. M.; Comito, C.; Müller, H. S. P.; Schilke, P.; Ott, J.; Thorwirth, S.; Hieret, C.

    2008-04-01

    Context: Amino acids are building blocks of proteins and therefore key ingredients for the origin of life. The simplest amino acid, glycine (NH2CH2COOH), has long been searched for in the interstellar medium but has not been unambiguously detected so far. At the same time, more and more complex molecules have been newly found toward the prolific Galactic center source Sagittarius B2. Aims: Since the search for glycine has turned out to be extremely difficult, we aimed at detecting a chemically related species (possibly a direct precursor), amino acetonitrile (NH2CH2CN). Methods: With the IRAM 30 m telescope we carried out a complete line survey of the hot core regions Sgr B2(N) and (M) in the 3 mm range, plus partial surveys at 2 and 1.3 mm. We analyzed our 30 m line survey in the LTE approximation and modeled the emission of all known molecules simultaneously. We identified spectral features at the frequencies predicted for amino acetonitrile lines having intensities compatible with a unique rotation temperature. We also used the Very Large Array to look for cold, extended emission from amino acetonitrile. Results: We detected amino acetonitrile in Sgr B2(N) in our 30 m telescope line survey and conducted confirmatory observations of selected lines with the IRAM Plateau de Bure and the Australia Telescope Compact Array interferometers. The emission arises from a known hot core, the Large Molecule Heimat, and is compact with a source diameter of 2 arcsec (0.08 pc). We derived a column density of 2.8 × 1016 cm-2, a temperature of 100 K, and a linewidth of 7 km s-1. Based on the simultaneously observed continuum emission, we calculated a density of 1.7 × 108 cm-3, a mass of 2340 M_⊙, and an amino acetonitrile fractional abundance of 2.2 × 10-9. The high abundance and temperature may indicate that amino acetonitrile is formed by grain surface chemistry. We did not detect any hot, compact amino acetonitrile emission toward Sgr B2(M) or any cold, extended emission toward Sgr B2, with column-density upper limits of 6 × 1015 and 3 × 1012-14 cm-2, respectively. Conclusions: Based on our amino acetonitrile detection toward Sgr B2(N) and a comparison to the pair methylcyanide/acetic acid both detected in this source, we suggest that the column density of both glycine conformers in Sgr B2(N) is well below the best upper limits published recently by other authors, and probably below the confusion limit in the 1-3 mm range. Based on observations carried out with the IRAM Plateau de Bure Interferometer, the IRAM 30 m telescope, the Australia Telescope Compact Array, and the NRAO Very Large Array. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The Australia Telescope Compact Array is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Table [see full textsee full text] and Fig. [see full textsee full text] are only available in electronic form at http://www.aanda.org The calibrated and deconvolved data cubes and images (line and continuum) obtained with the PdBI, the ATCA, and the VLA are available in FITS format at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/482/179

  4. Faint CO Line Wings in Four Star-forming (Ultra)luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Bolatto, Alberto; Zschaechner, Laura; Weiss, Axel

    2015-09-01

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s-1-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  5. Extragalactic chemistry of molecular gas: lessons from the local universe.

    PubMed

    García-Burillo, S; Fuente, A; Martín-Pintado, J; Usero, A; Graciá-Carpio, J; Planesas, P

    2006-01-01

    Observational constraints provided by high resolution and high sensitivity observations of external galaxies made in the millimetre and sub-millimetre range have started to put on a firm footing the study of the extragalactic chemistry of molecular gas. In particular, the availability of multi-species and multi-line surveys of nearby galaxies is central to the interpretation of existent and forthcoming millimetre observations of the high redshift universe. Probing the physical and chemical status of molecular gas in starbursts and active galaxies (AGN) requires the use of specific tracers of the relevant energetic phenomena that are known to be at play in these galaxies: large-scale shocks, strong UV fields, cosmic rays and X-rays. We present below the first results of an ongoing survey, allying the IRAM 30 m telescope with the Plateau de Bure interferometer (PdBI), devoted to the study of the chemistry of molecular gas in a sample of starbursts and AGN of the local universe. These observations highlight the existence of a strong chemical differentiation in the molecular disks of starbursts and AGN.

  6. Highlighting the History of French Radio Astronomy. 7: The Genesis of the Institute of Astronomy at Millimeter Wavelengths (IRAM)

    NASA Astrophysics Data System (ADS)

    Encrenaz, Pierre; Gómez González, Jesús; Lequeux, James; Orchiston, Wayne

    2011-07-01

    Radio astronomy in France and in Germany started around 1950. France was then building interferometers and Germany large single dishes, so it was not unexpected that their first projects involving millimetre radio astronomy were respectively with an interferometer and a single dish. In this paper, we explain in detail how these two projects finally merged in 1979 with the formation of the Institute of Radio Astronomy at Millimetre Wavelengths (IRAM), after a long process with many ups and downs. We also describe how Spain started radio astronomy by joining IRAM. Presently, IRAM is the most powerful facility worldwide for millimetre radio astronomy. We wish to dedicate our paper to the memory of Émile-Jacques Blum (1923-2009), who played a major role in the construction of IRAM but died before he could participate in the writing of this paper. An interview made one month before his death was very useful in the preparation of this paper.

  7. (Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies. I. Multiwavelength identifications and redshift distribution

    NASA Astrophysics Data System (ADS)

    Miettinen, O.; Smolčić, V.; Novak, M.; Aravena, M.; Karim, A.; Masters, D.; Riechers, D. A.; Bussmann, R. S.; McCracken, H. J.; Ilbert, O.; Bertoldi, F.; Capak, P.; Feruglio, C.; Halliday, C.; Kartaltepe, J. S.; Navarrete, F.; Salvato, M.; Sanders, D.; Schinnerer, E.; Sheth, K.

    2015-05-01

    We used the Plateau de Bure Interferometer (PdBI) to map a sample of 15 submillimetre galaxies (SMGs) in the COSMOS field at the wavelength of 1.3 mm. The target SMGs were originally discovered in the James Clerk Maxwell Telescope (JCMT)/AzTEC 1.1 mm continuum survey at S/N1.1 mm = 4-4.5. This paper presents, for the first time, interferometric millimetre-wavelength observations of these sources. The angular resolution of our observations, 1''&dotbelow;8, allowed us to accurately determine the positions of the target SMGs. Using a detection threshold of S/N1.3 mm> 4.5 regardless of multiwavelength counterpart association, and 4

  8. Highlights from the IRAM-30m Telescope

    NASA Astrophysics Data System (ADS)

    Mauersberger, R.

    The world's largest astronomical antenna for the entire mm-range, the IRAM 30m telescope, is operated in the Spanish Sierra Nevada by the Instituto de Radioastronomía Milimétrica (IRAM). IRAM is sponsored by the Spanish Instituto Geográfico Nacional, the German Max-Planck Gesellschaft and the French CNRS. The antenna is located at an altitude of almost 3000 m way above most of the atmospheric water vapor. Its high surface accuracy (˜ 50μ m) allows observations down to a wavelength of 1mm (corresponding to 280 Ghz). At this wavelength, the angular resolution of the IRAM 30m telescope is 10''. A technical summary can be found at http://www.iram.es/IRAMES/telescope/telescopeSummary/telescope_summary.html. The telescope is equipped with a 117 pixel bolometer camera for the 1.3 mm atmospheric window (MAMBO), which is mainly used to detect the thermal emission from interstellar dust, but also from solar system objects. There are several cooled heterodyne receiver systems which can be used for spectral line observations. First, there are eight single pixel heterodyne receivers for the principal spectral ranges used at the 30m telescope (3mm: 67-116 Ghz, 2mm: 130-183 Ghz, 1.3mm 194-266 Ghz and 1mm: 241-282 Ghz). These receivers can be combined flexibly in such a way that one can observe with 4 receiverrs simultaneously (either all four band in single polarization, or two bands respectively in dual polarization). A 2*9 pixel camera for the 1.3mm spectral range (210-276 Ghz) (HERA) can be used to map molecular line emission in the interstellar medium. The instantaneous bandwidth of each heterodyne receivers is up to 1 Ghz (500 Mhz in the 3mm range). Autocorrelation spectrometers and filterbanks with a large variety of spectral resolutions and bandwidths adopt to the needs for the investigation of different astronomical objects (in dark clouds the Doppler line width can be ll1 km/s, while in external galaxies typical linewidth are in the range of 200 km/s). The 30m telescope can be used to investigate a large range of objects (from planetary atmospheres and comets over stellar atmospheres, galactic and extragalactic star forming regions to molecular and thermal emission of high redshift galaxies) and of physical and astronomical processes. Molecular spectroscopy is a preferred research field of the IRAM 30m telescope, and it has detected many of the known inter- or circumstellar molecules for the first time, mainly because of its sensitive receivers and the angular resolution which is well adapted to the size of some interesting astronomical targets. The recent increase of available spectrometer channels makes it now possible to obtain full mm-spectral scans of evolved stars (e.g. IRC+10216), star forming regions (e.g. The Sagittarius B2 cloud near the center of the Milky Way, the dark cloud Barnard 1) or external galaxies (NGC253) in a reasonable amount of time. It turns out that these regions show a different chemical composition and complexity due to the dominant physical processes (ion molecule collisions, shocks, grain mantle evaporation ldots) and their evolutionary states. In some cases the information that can be obtained is not limited by the available integration time but by blending of many weak molecular lines. The IRAM 30m telescope (and the IRAM Plateau de Bure Interferometer: http://www.iram.fr) are open to the Spanish scientific community. However, the IRAM telescopes have a high oversubscription factor. Although observing is made easy, it is therefore recommended that first time users seek a collaboration with frequent users of these instruments. In order to attract new users to their instruments and to help to successfully compete for observing time, IRAM is organizing Observing Schools in Sierra Nevada and in Grenoble for non specialists in mm-astronomy (see e.g. http://www.iram.es/IRAMES).

  9. Imaging the disk around IRAS 20126+4104 at subarcsecond resolution

    NASA Astrophysics Data System (ADS)

    Cesaroni, R.; Galli, D.; Neri, R.; Walmsley, C. M.

    2014-06-01

    Context. The existence of disks around high-mass stars has yet to be established on a solid ground, as only few reliable candidates are known to date. The disk rotating about the ~104 L⊙ protostar IRAS 20126+4104 is probably the most convincing of these. Aims: We would like to resolve the disk structure in IRAS 20126+4104 and, if possible, investigate the relationship between the disk and the associated jet emitted along the rotation axis. Methods: We performed observations at 1.4 mm with the IRAM Plateau de Bure interferometer attaining an angular resolution of ~0.̋4 (~660 AU). We imaged the methyl cyanide J = 12 → 11 ground state and vibrationally excited transitions as well as the CH313CN isotopologue, which had proved to be disk tracers. Results: Our findings confirm the existence of a disk rotating about a ~7-10 M⊙ star in IRAS 20126+4104, with rotation velocity increasing at small radii. The dramatic improvement in sensitivity and spectral and angular resolution with respect to previous observations allows us to establish that higher excitation transitions are emitted closer to the protostar than the ground state lines, which demonstrates that the gas temperature is increasing towards the centre. We also find that the material is asymmetrically distributed in the disk and speculate on the possible origin of such a distribution. Finally, we demonstrate that the jet emitted along the disk axis is co-rotating with the disk. Conclusions: We present iron-clad evidence of the existence of a disk undergoing rotation around a B-type protostar, with rotation velocity increasing towards the centre. We also demonstrate that the disk is not axially symmetric. These results prove that B-type stars may form through disk-mediated accretion as their low-mass siblings do, but also show that the disk structure may be significantly perturbed by tidal interactions with (unseen) companions, even in a relatively poor cluster such as that associated with IRAS 20126+4104. Based on observations carried out with the Plateau de Bure interferometer.

  10. Radio Interferometric Detection of TiO and TiO_2 in VY Canis Majoris: "seeds" of Inorganic Dust Formation

    NASA Astrophysics Data System (ADS)

    Brunken, S.; Muller, H. S. P.; Kaminski, T.; Menten, K. M.; Gott-Lieb, C. A.; Patel, N. A.; Young, K. H.; McCarthy, M. C.; Winters, J. M.; Decin, L.

    2013-06-01

    Circumstellar envelopes around late-type stars harbour a rich variety of molecular gas and copious amounts of dust, originating from the mass-loss of the central star during the asymptotic giant branch (AGB) or the red supergiant phase. The formation of dust in these objects, in particular the first nucleation stages out of gas phase molecules, is still poorly understood. Here we report the first detection of pure rotational transitions of the two simplest titanium oxides, TiO and TiO_2, towards the oxygen-rich red supergiant VY Canis Majoris (VY CMa). This actually represents the first secure identification of TiO_2 in space. Observations of several rotational emission lines of both species with the Submillimeter Array (SMA) in the 345 GHz-band and with the IRAM Plateau de Bure Interferometer (PdBI) around 220 GHz confirm the presence of these refractory species in the cool (<1000 K) circumstellar envelope in a region several times the size of the dust formation zone. The role of Ti oxides as "seeds" of inorganic dust formation in oxygen-rich circumstellar envelopes will be discussed in view of the present observations.

  11. The nebula around the post-AGB star 89 Herculis

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; van Winckel, H.; Neri, R.; Alcolea, J.; Castro-Carrizo, A.; Deroo, P.

    2007-06-01

    Aims:We aim to study the structure of the nebula around the post-AGB, binary star 89 Her. The presence of a rotating disk around this star had been proposed but not been yet confirmed by observations. Methods: We present high-resolution PdBI maps of CO J=2-1 and 1-0. Properties of the nebula are directly derived from the data and model fitting. We also present N-band interferometric data on the extent of the hot dust emission, obtained with the VLTI. Results: Two nebular components are found: (a) an extended hour-glass-like structure, with expansion velocities of 7 km s-1 and a total mass 3× 10-3 M{⊙}, and (b) an unresolved very compact component, smaller than 0.4 arcsec and with a low total velocity dispersion of 5 km s-1. We cannot determine the velocity field in the compact component, but we argue that it can hardly be in expansion, since this would require too recent and too sudden an ejection of mass. On the other hand, assuming that this component is a Keplerian disk, we derive disk properties that are compatible with expectations for such a structure; in particular, the size of the rotating gas disk should be very similar to the extent of the hot dust component from our VLTI data. Assuming that the equator of the extended nebula coincides with the binary orbital plane, we provide new results on the companion star mass and orbit. Based on observations carried out with the IRAM Plateau de Bure Interferometer, as well as on observations of the Belgian Guaranteed time on VISA (ESO). IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  12. Third generation of correlators for six antennas

    NASA Astrophysics Data System (ADS)

    Torres, Marc

    2000-07-01

    The technical evolution of the correlators of the Plateau de Bure interferometer since the first fringes, 14 years ago, is shortly presented. The progressive addition of antennas over this period has allowed the Grenoble correlator group to undertake several 'start-from-scratch' designs, which have replaced on-site equipment as it came obsolete. The tradeoff between design cycle time and lifetime of such equipment is discussed. The latest design is described in detail. The new correlator can be set to analyze up to eight simultaneous windows, adjustable in size and center frequency, thanks to a 2 X 220 MHz image rejection mixer. Advantages of analog IF processing are presented. The frequency plan of the IF processor has been designed to be fully compatible with MarkIV VLBI recording. The correlator is then used to sum up the signals of the 6 antennas over 256 MHz. The digital section mainly uses an IRAM-designed low-power, low-cost ASIC. Delay lines use FPGA's and phase rotators use DDS's. Surface-mount technology is used everywhere. A commercial CPU module runs the real-time software under Linux. A 21-slot VME chassis hosts the hardware. Test results and measurements of performance on the full-size machine are presented. The difficulties encountered in achieving this kind of machine within schedule in today's industrial environment are retrospectively analyzed.

  13. A high-resolution study of complex organic molecules in hot cores

    NASA Astrophysics Data System (ADS)

    Calcutt, Hannah; Viti, Serena; Codella, Claudio; Beltrán, Maria T.; Fontani, Francesco; Woods, Paul M.

    2014-10-01

    We present the results of a line identification analysis using data from the IRAM Plateau de Bure Plateau de Bure Interferometer, focusing on six massive star-forming hot cores: G31.41+0.31, G29.96-0.02, G19.61-0.23, G10.62-0.38, G24.78+0.08A1 and G24.78+0.08A2. We identify several transitions of vibrationally excited methyl formate (HCOOCH3) for the first time in these objects as well as transitions of other complex molecules, including ethyl cyanide (C2H5CN), and isocyanic acid (HNCO). We also postulate a detection of one transition of glycolaldehyde (CH2(OH)CHO) in two new hot cores. We find G29.96-0.02, G19.61-0.23, G24.78+0.08A1 and G24.78+0.08A2 to be chemically very similar. G31.41+0.31, however, is chemically different: it manifests a larger chemical inventory and has significantly larger column densities. We suggest that it may represent a different evolutionary stage to the other hot cores in the sample, or it may surround a star with a higher mass. We derive column densities for methyl formate in G31.41+0.31, using the rotation diagram method, of 4 × 1017 cm-2 and a Trot of ˜170 K. For G29.96-0.02, G24.78+0.08A1 and G24.78+0.08A2, glycolaldehyde, methyl formate and methyl cyanide, all seem to trace the same material and peak at roughly the same position towards the dust emission peak. For G31.41+0.31, however, glycolaldehyde shows a different distribution to methyl formate and methyl cyanide and seems to trace the densest, most compact inner part of hot cores.

  14. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r< 17-70 pc) nuclei that have very high implied mid-infrared surface brightness > 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ.

  15. First detection of cyanamide (NH2CN) towards solar-type protostars

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Willis, E. R.; Garrod, R. T.; Müller, H. S. P.; Bourke, T. L.; Calcutt, H.; Drozdovskaya, M. N.; Jørgensen, J. K.; Ligterink, N. F. W.; Persson, M. V.; Stéphan, G.; van der Wiel, M. H. D.; van Dishoeck, E. F.; Wampfler, S. F.

    2018-05-01

    Searches for the prebiotically relevant cyanamide (NH2CN) towards solar-type protostars have not been reported in the literature. We present here the first detection of this species in the warm gas surrounding two solar-type protostars, using data from the Atacama Large Millimeter/Submillimeter Array Protostellar Interferometric Line Survey (PILS) of IRAS 16293-2422 B and observations from the IRAM Plateau de Bure Interferometer of NGC 1333 IRAS2A. We also detected the deuterated and 13C isotopologs of NH2CN towards IRAS 16293-2422 B. This is the first detection of NHDCN in the interstellar medium. Based on a local thermodynamic equilibrium analysis, we find that the deuteration of cyanamide ( 1.7%) is similar to that of formamide (NH2CHO), which may suggest that these two molecules share NH2 as a common precursor. The NH2CN/NH2CHO abundance ratio is about 0.2 for IRAS 16293-2422 B and 0.02 for IRAS2A, which is comparable to the range of values found for Sgr B2. We explored the possible formation of NH2CN on grains through the NH2 + CN reaction using the chemical model MAGICKAL. Grain-surface chemistry appears capable of reproducing the gas-phase abundance of NH2CN with the correct choice of physical parameters.

  16. VizieR Online Data Catalog: Spectrum of VY CMa in 220.65-224.25GHz range (Kaminski+, 2013)

    NASA Astrophysics Data System (ADS)

    Kaminski, T.; Gottlieb, C. A.; Menten, K. M.; Patel, N. A.; Young, K. H.; Brunken, S.; Muller, H. S. P.; McCarthy, M. C.; Winters, J. M.; Decin, L.

    2013-02-01

    A spectrum of VY Canis Majoris obtained with the Plateau de Bure Interferometer on 22 April and 13 October 2012 in the frequency range 220.65-224.25GHz. The interferometer was used in its D configuration with six antennas and the synthesized beam was 4.9x2.2-arcsec. The spectrum was extracted from the central pixel of the map obtained with the gridding of 0.65-arcsec. (2 data files).

  17. Interstellar medium conditions in z 0.2 Lyman-break analogs

    NASA Astrophysics Data System (ADS)

    Contursi, A.; Baker, A. J.; Berta, S.; Magnelli, B.; Lutz, D.; Fischer, J.; Verma, A.; Nielbock, M.; Grácia Carpio, J.; Veilleux, S.; Sturm, E.; Davies, R.; Genzel, R.; Hailey-Dunsheath, S.; Herrera-Camus, R.; Janssen, A.; Poglitsch, A.; Sternberg, A.; Tacconi, L. J.

    2017-10-01

    We present an analysis of far-infrared (FIR) [CII] and [OI] fine structure line and continuum observations obtained with Herschel/PACS, and 12CO(1-0) observations obtained with the IRAM Plateau de Bure Interferometer, of Lyman-break analogs (LBAs) at z 0.2. The principal aim of this work is to determine the typical interstellar medium (ISM) properties of z 1-2 main sequence (MS) galaxies, with stellar masses between 109.5 and 1011M⊙, which are currently not easily detectable in all these lines even with ALMA and NOEMA. We perform PDR modeling and apply different infared diagnostics to derive the main physical parameters of the far-infrared (FIR)-emitting gas and dust and we compare the derived ISM properties to those of galaxies on and above the MS at different redshifts. We find that the ISM properties of LBAs are quite extreme (low gas temperature and high density and thermal pressure) with respect to those found in local normal spirals and more active local galaxies. LBAs have no [CII] deficit despite having the high specific star formation rates (sSFRs) typical of starbursts. Although LBAs lie above the local MS, we show that their ISM properties are more similar to those of high-redshift MS galaxies than of local galaxies above the main sequence. This data set represents an important reference for planning future ALMA [CII] observations of relatively low-mass MS galaxies at the epoch of the peak of the cosmic star formation.

  18. HCOOCH3 as a probe of temperature and structure in Orion-KL

    NASA Astrophysics Data System (ADS)

    Favre, C.; Despois, D.; Brouillet, N.; Baudry, A.; Combes, F.; Guélin, M.; Wootten, A.; Wlodarczak, G.

    2011-08-01

    Context. The Orion Kleinmann-Low nebula (Orion-KL) is a complex region of star formation. Whereas its proximity allows studies on a scale of a few hundred AU, spectral confusion makes it difficult to identify molecules with low abundances. Aims: We studied an important oxygenated molecule, HCOOCH3, to characterize the physical conditions, temperature, and density of the different molecular source components. Methyl formate presents strong close rotational transitions covering a wide range of energy, and its emission in Orion-KL is not contaminated by the emission of N-bearing molecules. This study will help in the future 1) to constrain chemical models for the formation of methyl formate in gas phase or on grain mantles and 2) to search for more complex or prebiotic molecules. Methods: We used high-resolution observations from the IRAM Plateau de Bure Interferometer to reduce spectral confusion and to better isolate the molecular emission regions. We used twelve data sets with a spatial resolution down to 1.8″ × 0.8″. Continuum emission was subtracted by selecting apparently line-free channels. Results: We identify 28 methyl formate emission peaks throughout the 50″ field of observations. The two strongest peaks, named MF1 and MF2, are in the Compact Ridge and in the southwest of the Hot Core, respectively. From a comparison with single-dish observations, we estimate that we miss less than 15% of the flux and that spectral confusion is still prevailing as half of the expected transitions are blended over the region. Assuming that the transitions are thermalized, we derive the temperature at the five main emission peaks. At the MF1 position in the Compact Ridge we find a temperature of 80 K in a 1.8″ × 0.8″ beam size and 120 K on a larger scale (3.6″ × 2.2″), suggesting an external source of heating, whereas the temperature is about 130 K at the MF2 position on both scales. Transitions of methyl formate in its first torsionally excited state are detected as well, and the good agreement of the positions on the rotational diagrams between the ground state and the vt = 1 transitions suggests a similar temperature. The LSR velocity of the gas is between 7.5 and 8.0 km s-1 depending on the positions and column density peaks vary from 1.6 × 1016 to 1.6 × 1017 cm-2. A second velocity component is observed around 9-10 km s-1 in a north-south structure stretching from the Compact Ridge up to the BN object, and this component is warmer at the MF1 peak. The two other C2H4O2 isomers are not detected, and the derived upper limit for the column density is ≤3 × 1014 cm-2 for glycolaldehyde and ≤2 × 1015 cm-2 for acetic acid. From the 223 GHz continuum map, we identify several dust clumps with associated gas masses in the range 0.8 to 5.8 M⊙. Assuming that the methyl formate is spatially distributed as the dust is, we find relative abundances of methyl formate in the range ≤0.1 × 10-8 to 5.2 × 10-8. We suggest a relation between the methyl formate distribution and shocks as traced by 2.12 μm H2 emission. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).A fits image of the HCOOCH3 integrated intensity map (Fig. 4) is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/532/A32. All spectra can be obtained upon request to the authors.Table 10 and Appendix A are available in electronic form at http://www.aanda.org

  19. Energetics of the molecular gas in the H2 luminous radio galaxy 3C 326: Evidence for negative AGN feedback

    NASA Astrophysics Data System (ADS)

    Nesvadba, N. P. H.; Boulanger, F.; Salomé, P.; Guillard, P.; Lehnert, M. D.; Ogle, P.; Appleton, P.; Falgarone, E.; Pineau Des Forets, G.

    2010-10-01

    We present a detailed analysis of the gas conditions in the H2 luminous radio galaxy 3C 326 N at z ~ 0.1, which has a low star-formation rate (SFR ~ 0.07 M⊙ yr-1) in spite of a gas surface density similar to those in starburst galaxies. Its star-formation efficiency is likely a factor ~10-50 lower than those of ordinary star-forming galaxies. Combining new IRAM CO emission-line interferometry with existing Spitzer mid-infrared spectroscopy, we find that the luminosity ratio of CO and pure rotational H2 line emission is factors 10-100 lower than what is usually found. This suggests that most of the molecular gas is warm. The Na D absorption-line profile of 3C 326 N in the optical suggests an outflow with a terminal velocity of ~-1800 km s-1 and a mass outflow rate of 30-40 M⊙ yr-1, which cannot be explained by star formation. The mechanical power implied by the wind, of order 1043 erg s-1, is comparable to the bolometric luminosity of the emission lines of ionized and molecular gas. To explain these observations, we propose a scenario where a small fraction of the mechanical energy of the radio jet is deposited in the interstellar medium of 3C 326 N, which powers the outflow, and the line emission through a mass, momentum and energy exchange between the different gas phases of the ISM. Dissipation times are of order 107-8 yrs, similar or greater than the typical jet lifetime. Small ratios of CO and PAH surface brightnesses in another 7 H2 luminous radio galaxies suggest that a similar form of AGN feedback could be lowering star-formation efficiencies in these galaxies in a similar way. The local demographics of radio-loud AGN suggests that secular gas cooling in massive early-type galaxies of ≥1011 M⊙ could generally be regulated through a fundamentally similar form of “maintenance-phase” AGN feedback. Based on observations carried out with the IRAM Plateau de Bure Interferometer.

  20. First image of the L1157 molecular jet by the CALYPSO IRAM-PdBI survey

    NASA Astrophysics Data System (ADS)

    Podio, L.; Codella, C.; Gueth, F.; Cabrit, S.; Maury, A.; Tabone, B.; Lefèvre, C.; Anderl, S.; André, P.; Belloche, A.; Bontemps, S.; Hennebelle, P.; Lefloch, B.; Maret, S.; Testi, L.

    2016-09-01

    Context. Fast jets are thought to be a crucial ingredient of star formation because they might extract angular momentum from the disk and thus allow mass accretion onto the star. However, it is unclear whether jets are ubiquitous, and likewise, their contribution to mass and angular momentum extraction during protostar formation remains an open question. Aims: Our aim is to investigate the ejection process in the low-mass Class 0 protostar L1157. This source is associated with a spectacular bipolar outflow, and the recent detection of high-velocity SiO suggests the occurrence of a jet. Methods: Observations of CO 2 -1 and SiO 5 - 4 at ~0.8 arcsec resolution were obtained with the IRAM Plateau de Bure Interferometer (PdBI) as part of the CALYPSO large program. The jet and outflow structure were fit with a precession model. We derived the column density of CO and SiO, as well as the jet mass-loss rate and mechanical luminosity. Results: High-velocity CO and SiO emission resolve for the first time the first 200 au of the outflow-driving molecular jet. The jet is strongly asymmetric, with the blue lobe ~0.65 times slower than the red lobe. This suggests that the large-scale asymmetry of the outflow is directly linked to the jet velocity and that the asymmetry in the launching mechanism has been at work for the past 1800 yr. Velocity asymmetries are common in T Tauri stars, which suggests that the jet formation mechanism from Class 0 to Class II stages might be similar. Our model simultaneously fits the properties of the inner jet and of the clumpy 0.2 pc scale outflow by assuming that the jet precesses counter-clockwise on a cone inclined by 73° to the line of sight with an opening angle of 8° on a period of ~1640 yr. The estimated jet mass flux and mechanical luminosity are Ṁjet ~ 7.7 × 10-7M⊙ yr-1 and Ljet ~ 0.9L⊙, indicating that the jet could extract at least 25% of the gravitational energy released by the forming star.

  1. The dynamical properties of dense filaments in the infrared dark cloud G035.39-00.33

    NASA Astrophysics Data System (ADS)

    Henshaw, J. D.; Caselli, P.; Fontani, F.; Jiménez-Serra, I.; Tan, J. C.

    2014-05-01

    Infrared dark clouds (IRDCs) are unique laboratories to study the initial conditions of high-mass star and star cluster formation. We present high-sensitivity and high-angular-resolution Institut de Radioastronomie Millimétrique (IRAM) Plateau de Bure Interferometer observations of N2H+ (1-0) towards IRDC G035.39-00.33. It is found that G035.39-00.33 is a highly complex environment, consisting of several mildly supersonic filaments (σ _NT/cs ˜ 1.5), separated in velocity by <1 km s-1. Where multiple spectral components are evident, moment analysis overestimates the non-thermal contribution to the line-width by a factor of ˜2. Large-scale velocity gradients evident in previous single-dish maps may be explained by the presence of substructure now evident in the interferometric maps. Whilst global velocity gradients are small (<0.7 km s-1 pc-1), there is evidence for dynamic processes on local scales (˜1.5-2.5 km s-1 pc-1). Systematic trends in velocity gradient are observed towards several continuum peaks. This suggests that the kinematics are influenced by dense (and in some cases, starless) cores. These trends are interpreted as either infalling material, with accretion rates ˜(7 ± 4) × 10-5 M⊙ yr-1, or expanding shells with momentum ˜24 ± 12 M⊙ km s-1. These observations highlight the importance of high-sensitivity and high-spectral-resolution data in disentangling the complex kinematic and physical structure of massive star-forming regions.

  2. High-resolution dust emission and the resolved star formation law in the z~4 submillimeter galaxy GN20

    NASA Astrophysics Data System (ADS)

    Hodge, Jacqueline; Riechers, Dominik A.; Decarli, Roberto; Walter, Fabian; Carilli, Chris Luke; Daddi, Emanuele; Dannerbauer, Helmut

    2015-01-01

    We present high-resolution observations of the 880μm (rest-frame far-infrared) continuum emission in the z=4.05 submillimeter galaxy GN20. These data, taken with the IRAM Plateau de Bure Interferometer (PdBI), allow us to resolve the obscured star formation on scales of 0.3'×0.2' (~2.1×1.3 kpc). The observations reveal a bright (16±1 mJy) dusty starburst centered on the cold molecular gas reservoir as traced by previous high-fidelity CO(2-1) imaging and showing a bar-like extension along the galaxy's major axis. The striking anti-correlation with the HST/WFC3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical light in all but one small region several kpc from the nucleus. A comparison with 1.2 mm PdBI data reveals no evidence for variations in the dust continuum slope across the source. A detailed star formation rate surface density map reveals values that peak at 119±8 M⊙ yr-1 kpc-2 in the galaxy's center, showing that the star formation in GN20 remains sub-Eddington on scales down to 3 kpc2. Lastly, we examine the resolved star formation law on the same scales, deriving a power law slope of ΣSFR ~ ΣH_22.1±1.0 and a mean depletion time of 130 Myr. Despite its disk-like morphology and the use of custom-derived CO-to-H2 conversion factors, GN20 lies roughly in-line with the other existing resolved starbursts and above the sequence of star forming disks, implying that the offset is not due solely to choice of conversion factor.

  3. A Higher Efficiency of Converting Gas to Stars Pushes Galaxies at z ˜ 1.6 Well Above the Star-forming Main Sequence

    NASA Astrophysics Data System (ADS)

    Silverman, J. D.; Daddi, E.; Rodighiero, G.; Rujopakarn, W.; Sargent, M.; Renzini, A.; Liu, D.; Feruglio, C.; Kashino, D.; Sanders, D.; Kartaltepe, J.; Nagao, T.; Arimoto, N.; Berta, S.; Béthermin, M.; Koekemoer, A.; Lutz, D.; Magdis, G.; Mancini, C.; Onodera, M.; Zamorani, G.

    2015-10-01

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ˜ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (˜300-800 M⊙ yr-1) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ˜ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (˜30%-50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  4. Seeds Of Life In Space (SOLIS): The Organic Composition Diversity at 300-1000 au Scale in Solar-type Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Ceccarelli, C.; Caselli, P.; Fontani, F.; Neri, R.; López-Sepulcre, A.; Codella, C.; Feng, S.; Jiménez-Serra, I.; Lefloch, B.; Pineda, J. E.; Vastel, C.; Alves, F.; Bachiller, R.; Balucani, N.; Bianchi, E.; Bizzocchi, L.; Bottinelli, S.; Caux, E.; Chacón-Tanarro, A.; Choudhury, R.; Coutens, A.; Dulieu, F.; Favre, C.; Hily-Blant, P.; Holdship, J.; Kahane, C.; Jaber Al-Edhari, A.; Laas, J.; Ospina, J.; Oya, Y.; Podio, L.; Pon, A.; Punanova, A.; Quenard, D.; Rimola, A.; Sakai, N.; Sims, I. R.; Spezzano, S.; Taquet, V.; Testi, L.; Theulé, P.; Ugliengo, P.; Vasyunin, A. I.; Viti, S.; Wiesenfeld, L.; Yamamoto, S.

    2017-12-01

    Complex organic molecules have been observed for decades in the interstellar medium. Some of them might be considered as small bricks of the macromolecules at the base of terrestrial life. It is hence particularly important to understand organic chemistry in Solar-like star-forming regions. In this article, we present a new observational project: Seeds Of Life In Space (SOLIS). This is a Large Project using the IRAM-NOEMA interferometer, and its scope is to image the emission of several crucial organic molecules in a sample of Solar-like star-forming regions in different evolutionary stages and environments. Here we report the first SOLIS results, obtained from analyzing the spectra of different regions of the Class 0 source NGC 1333-IRAS4A, the protocluster OMC-2 FIR4, and the shock site L1157-B1. The different regions were identified based on the images of formamide (NH2CHO) and cyanodiacetylene (HC5N) lines. We discuss the observed large diversity in the molecular and organic content, both on large (3000-10,000 au) and relatively small (300-1000 au) scales. Finally, we derive upper limits to the methoxy fractional abundance in the three observed regions of the same order of magnitude of that measured in a few cold prestellar objects, namely ˜ {10}-12-10-11 with respect to H2 molecules. Based on observations carried out under project number L15AA with the IRAM-NOEMA interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  5. Molecular gas properties of a lensed star-forming galaxy at z 3.6: a case study

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, M.; Zamojski, M.; Rujopakarn, W.; Richard, J.; Sklias, P.; Schaerer, D.; Combes, F.; Ebeling, H.; Rawle, T. D.; Egami, E.; Boone, F.; Clément, B.; Kneib, J.-P.; Nyland, K.; Walth, G.

    2017-09-01

    We report on the galaxy MACSJ0032-arc at zCO = 3.6314 discovered during the Herschel Lensing snapshot Survey of massive galaxy clusters, and strongly lensed by the cluster MACS J0032.1+1808. The successful detections of its rest-frame ultraviolet (UV), optical, far-infrared (FIR), millimeter, and radio continua, and of its CO emission enable us to characterize, for the first time at such a high redshift, the stellar, dust, and molecular gas properties of a compact star-forming galaxy with a size smaller than 2.5 kpc, a fairly low stellar mass of 4.8+ 0.5-1.0 × 109M⊙, and a moderate IR luminosity of 4.8+ 1.2-0.6 × 1011L⊙. By combining the stretching effect of the lens with the high angular resolution imaging of the CO(1-0) line emission and the radio continuum at 5 GHz, we find that the bulk of the molecular gas mass and star formation seems to be spatially decoupled from the rest-frame UV emission. About 90% of the total star formation rate is undetected at rest-frame UV wavelengths because of severe obscuration by dust, but is seen through the thermal FIR dust emission and the radio synchrotron radiation. The observed CO(4-3) and CO(6-5) lines demonstrate that high-J transitions, at least up to J = 6, remain excited in this galaxy, whose CO spectral line energy distribution resembles that of high-redshift submm galaxies, even though the IR luminosity of MACSJ0032-arc is ten times lower. This high CO excitation is possibly due to the compactness of the galaxy. We find evidence that this high CO excitation has to be considered in the balance when estimating the CO-to-H2 conversion factor. Indeed, the respective CO-to-H2 conversion factors as derived from the correlation with metallicity and the FIR dust continuum can only be reconciled if excitation is accounted for. The inferred depletion time of the molecular gas in MACSJ0032-arc supports the decrease in the gas depletion timescale of galaxies with redshift, although to a lesser degree than predicted by galaxy evolution models. Instead, the measured molecular gas fraction as high as 60-79% in MACSJ0032-arc favors the continued increase in the gas fraction of galaxies with redshift as expected, despite the plateau observed between z 1.5 and z 2.5. Based on observations carried out with the IRAM Plateau de Bure Interferometer, the IRAM 30 m telescope, and the NRAO Karl G. Jansky Very Large Array. The Institut de Radioastronomie Millimétrique (IRAM) is supported by CNRS/INSU (France), the MPG (Germany), and the IGN (Spain). The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  6. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Fiore, F.; Carniani, S.; Piconcelli, E.; Zappacosta, L.; Bongiorno, A.; Cicone, C.; Maiolino, R.; Marconi, A.; Menci, N.; Puccetti, S.; Veilleux, S.

    2015-11-01

    Mrk 231 is a nearby ultra-luminous IR galaxy exhibiting a kpc-scale, multi-phase AGN-driven outflow. This galaxy represents the best target to investigate in detail the morphology and energetics of powerful outflows, as well as their still poorly-understood expansion mechanism and impact on the host galaxy. In this work, we present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk 231, as traced by CO(2-1) and (3-2) observations obtained with the IRAM/PdBI. In addition, we analyze archival deep Chandra and NuSTAR X-ray observations. We use this unprecedented combination of multi-wavelength data sets to constrain the physical properties of both the molecular disk and outflow, the presence of a highly-ionized ultra-fast nuclear wind, and their connection. The molecular CO(2-1) outflow has a size of 1 kpc, and extends in all directions around the nucleus, being more prominent along the south-west to north-east direction, suggesting a wide-angle biconical geometry. The maximum projected velocity of the outflow is nearly constant out to 1 kpc, thus implying that the density of the outflowing material must decrease from the nucleus outwards as r-2. This suggests that either a large part of the gas leaves the flow during its expansion or that the bulk of the outflow has not yet reached out to 1 kpc, thus implying a limit on its age of 1 Myr. Mapping the mass and energy rates of the molecular outflow yields dot {M} OF = [500-1000] M⊙ yr-1 and Ėkin,OF = [7-10] × 1043 erg s-1. The total kinetic energy of the outflow is Ekin,OF is of the same order of the total energy of the molecular disk, Edisk. Remarkably, our analysis of the X-ray data reveals a nuclear ultra-fast outflow (UFO) with velocity -20 000 km s-1, dot {M}UFO = [0.3-2.1] M⊙ yr-1, and momentum load dot {P}UFO/ dot {P}rad = [0.2-1.6]. We find Ėkin,UFO Ėkin,OF as predicted for outflows undergoing an energy conserving expansion. This suggests that most of the UFO kinetic energy is transferred to mechanical energy of the kpc-scale outflow, strongly supporting that the energy released during accretion of matter onto super-massive black holes is the ultimate driver of giant massive outflows. The momentum flux dot {P}OF derived for the large scale outflows in Mrk 231 enables us to estimate a momentum boost dot {P}OF/ dot {P} UFO ≈ [30-60]. The ratios Ėkin,UFO/Lbol,AGN = [1-5] % and Ėkin,OF/Lbol,AGN = [1-3] % agree with the requirements of the most popular models of AGN feedback. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain), and with Chandra and NuSTAR observatories.

  7. The COSAS survey I: First results from the IRAM mapping survey of 12CO J=1-0 & J=2-1 emission in AGB and early post-AGB circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Alcolea Jimanez, J.; Castr-Carrizo, A.; Quintana-Lacaci, G.; Neri, R.; Bujarrabal, V.; Schoeier, F. L.; Winters, J. M.; Olofsson, H.; Lindqvist, M.; Lucas, R.; Grewing, M.

    Here we present the first result from the COSAS (CO Survey of late AGB Stars) program (P.I. A. Castro-Carrizo), a J=1-0 and J=2-1 line emission mapping survey of a statistically representative sample of circumstellar envelopes around AGB and post-AGB stars. This mapping survey has been carried out to investigate the small and large scale morphological and kinematical properties of the molecular environment surrounding stars in the late AGB and early post-AGB phases. For this, COSAS ideally combines the high spatial resolution and sensitivity of the IRAM Plateau de Bure Interferometer, with the IRAM Pico de Veleta 30m-MRT capabilities to map more extended emission. The whole program includes of 45 stars, selected to sample a wide variety in mass loss rate, chemical type (M, S and C types), variability type (regular variables like Miras and OH/IRs, semiregulars, irregulars, and non varying post-AGBs), evolutionary state, and initial mass. By no means it is an unbiased sample, so results must be interpreted with care, and in terms of the different population of sources represented in the sample. COSAS products (at first. maps and velocity fields, and after modeling, excitation and density profiles across the envelopes) provides means to quantify variations in the mass-loss rate history, assess on the prevalence of different morphological and kinematical features, and investigate the appearance of fast aspherical winds in the late-AGB and early post-AGB phases. This paper, which is the first of a series of COSAS papers, presents the results from the final mapping of a sample of 16 selected sources (about 1/3 of the whole list), namely: WX Psc, IK Tau, TX Cam, RX Boo, X Her, CRL 2362, x Cyg, V Cyg, S Cep, OH 104.9+2.4, R Cas, IRAS 19475+3119, IRAS 20028+3910, IRAS 21282+5050, IRAS 23321+6545 and CRL 2477. The envelopes around late AGB stars are found to be mostly spherical, but often presenting features like concentric arcs (R Cas and TX Cam), spiral density patterns (TX Cam), molecular high density patches testifying to highly irregular mass-loss process (WX Psc, IK Tau, V Cyg, and S Cep), and yet well-defined axis-symmetric morphologies and kinematical patterns (X Her and RX Boo). The molecular envelopes span a large range of sizes, from the relatively compact cases of CRL 2362, OH 104.9+2.4 and CRL 2477, to very large ones, such as in x Cyg and TX Cam. Self- absorption features are observed in some cases, as in IK Tau and x Cyg, testifying to the emergence of (aspherical?) winds in the innermost circumstellar regions. Strong axial structures with more or less complex morphologies are detected in four, out of five, early post-AGB stars of this first sub-sample (IRAS 20028+3910, IRAS 23321+6545, IRAS 19475+3119, and IRAS 21282+5050).

  8. Coordinated Observations of Comet Hale-Bopp between 32 and 860 GHz

    NASA Astrophysics Data System (ADS)

    Wink, J. E.; Altenhoff, W. J.; Bieging, J.; Butler, B.; Butner, H.; Haslam, C. G. T.; Kreysa, E.; Martin, R.; Mauersberger, R.; McMullin, J.; Muders, D.; Peters, W.; Schmidt, J.; Schraml, J. B.; Sievers, A.; Stumpff, P.; von Kapp-Herr, A.; Thum, C.; Zylka, R.

    1997-05-01

    The concept of simultaneous multifrequency continuum observations, successfully tested on Comet Hyakutake, was applied to Comet Hale-Bopp, using the Heinrich Hertz Submillimeter Telescope (HHT) with the four color bolometer between 250 and 870 GHz, the IRAM 30m telescope at 240 Ghz, the MPIfR 100-m telescope at 32 GHz, and the IRAM interferometer near 90 and 240 GHz. Near-simultaneous measurements were done between February 15 and April 26, 1997, mainly concentrated in mid March shortly before perigee of the comet. The measurements gave the following preliminary results: Interferometer detection of the nuclear thermal emission. If the signal at the longest interferometer spacing of 170 m is due to thermal emission from the nucleus only, its equivalent diameter is ~49 km. If, however, this signal contains a contribution from a strongly centrally peaked halo distribution (e.g., r^-2 density variation) the diameter may be as low as 35 km. The emission found interferometrically was always 5arcsec north and 0.1 sec east from the position predicted by Yeoman's solution 55. The comparison of the interferometric continuum emission with the simultanously obtained molecular line observations (reported on this conference) shows the origin of the strongest line emission concentrated on the nucleus. The 30-m observations show a radio halo with a gaussian FWHP of ~11, corresponding to a diameter of 11000 km at geocentric distance of 1.2 a.u. A spectral index of ~3.0 for the total signal, which may indicate a smaller mean particle size than for Hyakutake. Assuming an average cometary density of 0.5 gcm^-3, the mass contained in the nucleus is ~1-3 10^19 g and 10^12 g in the particle halo.

  9. THE KILOPARSEC-SCALE STAR FORMATION LAW AT REDSHIFT 4: WIDESPREAD, HIGHLY EFFICIENT STAR FORMATION IN THE DUST-OBSCURED STARBURST GALAXY GN20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, J. A.; Riechers, D.; Decarli, R.

    2015-01-01

    We present high-resolution observations of the 880 μm (rest-frame FIR) continuum emission in the z = 4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation (SF) in this unlensed galaxy on scales of 0.''3 × 0.''2 (∼2.1 × 1.3 kpc). The observations reveal a bright (16 ± 1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the Hubble Space Telescope/Wide Field Camera 3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuummore » data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended SF, and the peak star formation rate surface density (119 ± 8 M {sub ☉} yr{sup –1} kpc{sup –2}) implies that the SF in GN20 remains sub-Eddington on scales down to 3 kpc{sup 2}. We find that the SF efficiency (SFE) is highest in the central regions of GN20, leading to a resolved SF law with a power-law slope of Σ{sub SFR} ∼ Σ{sub H{sub 2}{sup 2.1±1.0}}, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the SF law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed SFE per free-fall time to include the star-forming medium on ∼kiloparsec scales in a galaxy 12 Gyr ago.« less

  10. The Metallicity Dependence of the CO → H2 Conversion Factor in z >= 1 Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Combes, F.; Bolatto, A.; Neri, R.; Sternberg, A.; Cooper, M. C.; Bouché, N.; Bournaud, F.; Burkert, A.; Comerford, J.; Cox, P.; Davis, M.; Förster Schreiber, N. M.; Garcia-Burillo, S.; Gracia-Carpio, J.; Lutz, D.; Naab, T.; Newman, S.; Saintonge, A.; Shapiro, K.; Shapley, A.; Weiner, B.

    2012-02-01

    We use the first systematic samples of CO millimeter emission in z >= 1 ''main-sequence'' star-forming galaxies to study the metallicity dependence of the conversion factor αCO, from CO line luminosity to molecular gas mass. The molecular gas depletion rate inferred from the ratio of the star formation rate (SFR) to CO luminosity, is ~1 Gyr-1 for near-solar metallicity galaxies with stellar masses above M S ~ 1011 M ⊙. In this regime, the depletion rate does not vary more than a factor of two to three as a function of molecular gas surface density or redshift between z ~ 0 and 2. Below M S the depletion rate increases rapidly with decreasing metallicity. We argue that this trend is not caused by starburst events, by changes in the physical parameters of the molecular clouds, or by the impact of the fundamental-metallicity-SFR-stellar mass relation. A more probable explanation is that the conversion factor is metallicity dependent and that star formation can occur in ''CO-dark'' gas. The trend is also expected theoretically from the effect of enhanced photodissociation of CO by ultraviolet radiation at low metallicity. From the available z ~ 0 and z ~ 1-3 samples we constrain the slope of the log(αCO)-log (metallicity) relation to range between -1 and -2, fairly insensitive to the assumed slope of the gas-SFR relation. Because of the lower metallicities near the peak of the galaxy formation activity at z ~ 1-2 compared to z ~ 0, we suggest that molecular gas masses estimated from CO luminosities have to be substantially corrected upward for galaxies below M S. Based on observations with the Plateau de Bure millimetre interferometer, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  11. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, J. D.; Rujopakarn, W.; Daddi, E.

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxiesmore » having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.« less

  12. Antifreeze in the hot core of Orion. First detection of ethylene glycol in Orion-KL

    NASA Astrophysics Data System (ADS)

    Brouillet, N.; Despois, D.; Lu, X.-H.; Baudry, A.; Cernicharo, J.; Bockelée-Morvan, D.; Crovisier, J.; Biver, N.

    2015-04-01

    Context. Ices are present in comets and in the mantles of interstellar grains. Their chemical composition has been indirectly derived by observing molecules released in the gas phase, when comets approach the sun and when ice mantles are sublimated or destroyed, e.g. in the hot cores present in high-mass, star-forming regions. Comparison of these chemical compositions sheds light on the formation of comets and on the evolution of interstellar matter from the molecular cloud to a protoplanetary disk, and it shows, to first order, a good agreement between the cometary and interstellar abundances. However, a complex O-bearing organic molecule, ethylene glycol (CH2OH)2, seems to depart from this correlation because it was not easily detected in the interstellar medium (Sgr B2) although it proved to be rather abundant with respect to other O-bearing species in comet C/1995 O1 (Hale-Bopp). Ethylene glycol thus appears, together with the closely related molecules glycolaldehyde CH2OHCHO and ethanol CH3CH2OH, as a key species in the comparison of interstellar and cometary ices as well as in any discussion on the formation of cometary matter. Aims: It is important to measure the molecular abundances in various hot cores to see if the observed differences between the interstellar medium and the comets are general. We focus here on the analysis of ethylene glycol in the nearest and best studied hot core-like region, Orion-KL. Methods: We use ALMA interferometric data because high spatial resolution observations allow us to reduce the line confusion problem with respect to single-dish observations since different molecules are expected to exhibit different spatial distributions. Furthermore, a large spectral bandwidth is needed because many individual transitions are required to securely detect large organic molecules. Confusion and continuum subtraction are major issues and have been handled with care. Results: We have detected the aGg' conformer of ethylene glycol in Orion-KL. The emission is compact and peaks towards the hot core close to the main continuum peak, about 2″ to the south-west; this distribution is notably different from other O-bearing species. Assuming optically thin lines and local thermodynamic equilibrium, we derive a rotational temperature of 145 ± 30 K and a column density of 4.6 ± 0.8 × 1015 cm-2. The limit on the column density of the gGg' conformer is five times lower. Based on observations carried out with ALMA and the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org

  13. Rotating toroids in G10.62-0.38, G19.61-0.23, and G29.96-0.02

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; Cesaroni, R.; Neri, R.; Codella, C.

    2011-01-01

    Context. In recent years, we have detected clear evidence of rotation in more than 5 hot molecular cores (HMCs). Their identification is confirmed by the fact that the rotation axes are parallel to the axes of the associated bipolar outflows. We have now pursued our investigation by extending the sample to 3 known massive cores, G10.62-0.38, G19.61-0.23, and G29.96-0.02. Aims: We wish to make a thorough study of the structure and kinematics of HMCs and corresponding molecular outflows to reveal possible velocity gradients indicative of the rotation of the cores. Methods: We carried out PdBI observations at 2.7 and 1.4 mm of gas and dust with angular resolutions of ~2”-3” and ~1”-2”, respectively. To trace both rotation and expansion, we simultaneously observed CH3CN, a typical HMC tracer, and 13CO, a typical outflow tracer. Results: The CH3CN (12-11) observations reveal clear velocity gradients in the three HMCs oriented perpendicular to the direction of the bipolar outflows. For G19 and G29 the molecular outflows have been mapped in 13CO. The gradients are interpreted as rotating toroids. The rotation temperatures, used to derive the mass of the cores, have been obtained by means of the rotational diagram method, and lie in the range of 87-244 K. The diameters and masses of the toroids lie in the range of 4550-12600 AU and 28-415 M_⊙, respectively. Given that the dynamical masses are 2 to 30 times lower than those of the cores (if the inclination of the toroids with respect to the plane of the sky is not much below 45°), we suggest that the toroids could be accreting onto the embedded cluster. For G19 and G29, the collapse is also suggested by the redshifted absorption seen in the 13CO (2-1) line. We infer that infall onto the embedded (proto)stars must proceed with rates of ~10-2 M_⊙ yr-1 and on timescales of ~4 × 103-104 yr. The infall rates derived for G19 and G29 are two orders of magnitude greater than the accretion rates indirectly estimated from the mass loss rate of the corresponding outflows. This suggests that the material in the toroids is not infalling onto a single massive star, which is responsible for the corresponding molecular outflow, but onto a cluster of stars. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  14. Variable millimetre radiation from the colliding-wind binary Cygnus OB2 #8A

    NASA Astrophysics Data System (ADS)

    Blomme, R.; Fenech, D. M.; Prinja, R. K.; Pittard, J. M.; Morford, J. C.

    2017-12-01

    Context. Massive binaries have stellar winds that collide. In the colliding-wind region, various physically interesting processes occur, leading to enhanced X-ray emission, non-thermal radio emission, as well as non-thermal X-rays and gamma-rays. Non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and the colliding-wind region emit more thermal free-free radiation, and it is expected that any non-thermal contribution will be difficult or impossible to detect. Aims: We aim to determine if the material in the colliding-wind region contributes substantially to the observed millimetre fluxes of a colliding-wind binary. We also try to distinguish the synchrotron emission from the free-free emission. Methods: We monitored the massive binary Cyg OB2 #8A at 3 mm with the NOrthern Extended Millimeter Array (NOEMA) interferometer of the Institut de Radioastronomie Millimétrique (IRAM). The data were collected in 14 separate observing runs (in 2014 and 2016), and provide good coverage of the orbital period. Results: The observed millimetre fluxes range between 1.1 and 2.3 mJy, and show phase-locked variability, clearly indicating that a large part of the emission is due to the colliding-wind region. A simple synchrotron model gives fluxes with the correct order of magnitude, but with a maximum that is phase-shifted with respect to the observations. Qualitatively this phase shift can be explained by our neglect of orbital motion on the shape of the colliding-wind region. A model using only free-free emission results in only a slightly worse explanation of the observations. Additionally, on the map of our observations we also detect the O6.5 III star Cyg OB2 #8B, for which we determine a 3 mm flux of 0.21 ± 0.033 mJy. Conclusions: The question of whether synchrotron radiation or free-free emission dominates the millimetre fluxes of Cyg OB2 #8A remains open. More detailed modelling of this system, based on solving the hydrodynamical equations, is required to give a definite answer. This work is based on observations carried out under project numbers S14AW and S16AU with the IRAM NOEMA Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  15. SOLIS IV. Hydrocarbons in the OMC-2 FIR4 Region, a Probe of Energetic Particle Irradiation of the Region

    NASA Astrophysics Data System (ADS)

    Favre, C.; Ceccarelli, C.; López-Sepulcre, A.; Fontani, F.; Neri, R.; Manigand, S.; Kama, M.; Caselli, P.; Jaber Al-Edhari, A.; Kahane, C.; Alves, F.; Balucani, N.; Bianchi, E.; Caux, E.; Codella, C.; Dulieu, F.; Pineda, J. E.; Sims, I. R.; Theulé, P.

    2018-06-01

    We report new interferometric images of cyclopropenylidene, c-C3H2, toward the young protocluster OMC-2 FIR 4. The observations were performed at 82 and 85 GHz with the NOrthern Extended Millimeter Array (NOEMA) as part of the project Seeds Of Life In Space (SOLIS). In addition, IRAM-30 m data observations were used to investigate the physical structure of OMC-2 FIR 4. We find that the c-C3H2 gas emits from the same region where previous SOLIS observations showed bright HC5N emission. From a non-LTE analysis of the IRAM-30 m data, the c-C3H2 gas has an average temperature of ∼40 K, a H2 density of ∼3 × 105 cm‑3, and a c-C3H2 abundance relative to H2 of (7 ± 1) × 10‑12. In addition, the NOEMA observations provide no sign of significant c-C3H2 excitation temperature gradients across the region (about 3–4 beams), with T ex in the range 8 ± 3 up to 16 ± 7 K. We thus infer that our observations are inconsistent with a physical interaction of the OMC-2 FIR 4 envelope with the outflow arising from OMC-2 FIR 3, as claimed by previous studies. The comparison of the measured c-C3H2 abundance with the predictions from an astrochemical PDR model indicates that OMC-2 FIR 4 is irradiated by an FUV field ∼1000 times larger than the interstellar one, and by a flux of ionizing particles ∼4000 times larger than the canonical value of 1 × 10‑17 s‑1 from the Galaxy cosmic rays, which is consistent with our previous HC5N observations. This provides an important and independent confirmation of other studies that one, or more, source inside the OMC-2 FIR 4 region emits energetic (≥10 MeV) particles. Based on observations carried out under project number L15AA with the IRAM NOEMA Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  16. Constraining the physical structure of the inner few 100 AU scales of deeply embedded low-mass protostars

    NASA Astrophysics Data System (ADS)

    Persson, M. V.; Harsono, D.; Tobin, J. J.; van Dishoeck, E. F.; Jørgensen, J. K.; Murillo, N.; Lai, S.-P.

    2016-05-01

    Context. The physical structure of deeply embedded low-mass protostars (Class 0) on scales of less than 300 AU is still poorly constrained. While molecular line observations demonstrate the presence of disks with Keplerian rotation toward a handful of sources, others show no hint of rotation. Determining the structure on small scales (a few 100 AU) is crucial for understanding the physical and chemical evolution from cores to disks. Aims: We determine the presence and characteristics of compact, disk-like structures in deeply embedded low-mass protostars. A related goal is investigating how the derived structure affects the determination of gas-phase molecular abundances on hot-core scales. Methods: Two models of the emission, a Gaussian disk intensity distribution and a parametrized power-law disk model, are fitted to subarcsecond resolution interferometric continuum observations of five Class 0 sources, including one source with a confirmed Keplerian disk. Prior to fitting the models to the de-projected real visibilities, the estimated envelope from an independent model and any companion sources are subtracted. For reference, a spherically symmetric single power-law envelope is fitted to the larger scale emission (~1000 AU) and investigated further for one of the sources on smaller scales. Results: The radii of the fitted disk-like structures range from ~90-170 AU, and the derived masses depend on the method. Using the Gaussian disk model results in masses of 54-556 × 10-3 M⊙, and using the power-law disk model gives 9-140 × 10-3 M⊙. While the disk radii agree with previous estimates the masses are different for some of the sources studied. Assuming a typical temperature distribution (r-0.5), the fractional amount of mass in the disk above 100 K varies from 7% to 30%. Conclusions: A thin disk model can approximate the emission and physical structure in the inner few 100 AU scales of the studied deeply embedded low-mass protostars and paves the way for analysis of a larger sample with ALMA. Kinematic data are needed to determine the presence of any Keplerian disk. Using previous observations of p-H218O, we estimate the relative gas phase water abundances relative to total warm H2 to be 6.2 × 10-5 (IRAS 2A), 0.33 × 10-5 (IRAS 4A-NW), 1.8 × 10-7 (IRAS 4B), and < 2 × 10-7 (IRAS 4A-SE), roughly an order of magnitude higher than previously inferred when both warm and cold H2 were used as reference. A spherically symmetric single power-law envelope model fails to simultaneously reproduce both the small- and large-scale emission. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Continuum data for the sources are available through http://dx.doi.org/10.5281/zenodo.47642 and at CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A33

  17. Millimetron and Earth-Space VLBI

    NASA Astrophysics Data System (ADS)

    Likhachev, S.

    2014-01-01

    The main scientific goal of the Millimetron mission operating in Space VLBI (SVLBI) mode will be the exploration of compact radio sources with extremely high angular resolution (better than one microsecond of arc). The space-ground interferometer Millimetron has an orbit around L2 point of the Earth - Sun system and allows operating with baselines up to a hundred Earth diameters. SVLBI observations will be accomplished by space and ground-based radio telescopes simultaneously. At the space telescope the received baseband signal is digitized and then transferred to the onboard memory storage (up to 100TB). The scientific and service data transfer to the ground tracking station is performed by means of both synchronization and communication radio links (1 GBps). Then the array of the scientific data is processed at the correlation center. Due to the (u,v) - plane coverage requirements for SVLBI imaging, it is necessary to propose observations at two different frequencies and two circular polarizations simultaneously with frequency switching. The total recording bandwidth (2x2x4 GHz) defines of the on-board memory size. The ground based support of the Millimetron mission in the VLBI-mode could be Atacama Large Millimeter Array (ALMA), Pico Valletta (Spain), Plateau de Bure interferometer (France), SMT telescope in the US (Arizona), LMT antenna (Mexico), SMA array, (Mauna Kea, USA), as well as the Green Bank and Effelsberg 100 m telescopes (for 22 GHz observations). We will present simulation results for Millimetron-ALMA interferometer. The sensitivity estimate of the space-ground interferometer will be compared to the requirements of the scientific goals of the mission. The possibility of multi-frequency synthesis (MFS) to obtain high quality images will also be considered.

  18. Probing the water and CO snow lines in the young protostar NGC 1333-IRAS4B

    NASA Astrophysics Data System (ADS)

    Anderl, Sibylle; Maret, Sébastien; André, Philippe; Maury, Anaëlle; Belloche, Arnaud; Cabrit, Sylvie; Codella, Claudio; Lefloch, Bertrand

    2015-08-01

    Today, we believe that the onset of life requires free energy, water, and complex, probably carbon-based chemistry. In the interstellar medium, complex organic molecules seem to mostly form in reactions happening on the icy surface of dust grains, such that they are released into the gas phase when the dust is heated. The resulting “snow lines”, marking regions where ices start to sublimate, play an important role for planet growth and bulk composition in protoplanetary disks. However, they can already be observed in the envelopes of the much younger, low-mass Class 0 protostars that are still in their early phase of heavy accretion. The information on the sublimation regions of different kinds of ices can be used to understand the chemistry of the envelope, its temperature and density structure, and may even hint at the history of the accretion process. Accordingly, it is a crucial piece of information in order to get the full picture of how organic chemistry evolves already at the earliest stages of the formation of sun-like stars. As part of the CALYPSO Large Program (http://irfu.cea.fr/Projets/Calypso/), we have obtained observations of C18O, N2H+ and CH3OH towards the Class 0 protostar NGC 1333-IRAS4B with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. Of these we use the methanol observations as a proxy for the water snow line, assuming methanol is trapped in water ice. The observed anti-correlation of C18O and N2H+, with N2H+ forming a ring around the centrally peaked C18O emission, reveals for the first time the CO snow line in this protostellar envelope, with a radius of ~300 AU. The methanol emission is much more compact than that of C18O, and traces the water snow line with a radius of ~40 AU. We have modeled the emission using a chemical model coupled with a radiative transfer module. We find that the CO snow line appears further inwards than expected from the binding energy of pure CO ices. This may hint at CO being frozen out in H2O or CO2 dominated ices. Our observations can thereby yield clues on the widely unknown composition of interstellar ices, being the initial seeds of complex organic chemistry.

  19. CO J = 2-1 LINE EMISSION IN CLUSTER GALAXIES AT z {approx} 1: FUELING STAR FORMATION IN DENSE ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagg, Jeff; Pope, Alexandra; Alberts, Stacey

    We present observations of CO J = 2-1 line emission in infrared-luminous cluster galaxies at z {approx} 1 using the IRAM Plateau de Bure Interferometer. Our two primary targets are optically faint, dust-obscured galaxies (DOGs) found to lie within 2 Mpc of the centers of two massive (>10{sup 14} M{sub Sun }) galaxy clusters. CO line emission is not detected in either DOG. We calculate 3{sigma} upper limits to the CO J = 2-1 line luminosities, L'{sub CO} < 6.08 Multiplication-Sign 10{sup 9} and <6.63 Multiplication-Sign 10{sup 9} K km s{sup -1} pc{sup 2}. Assuming a CO-to-H{sub 2} conversion factormore » derived for ultraluminous infrared galaxies in the local universe, this translates to limits on the cold molecular gas mass of M{sub H{sub 2}}< 4.86 Multiplication-Sign 10{sup 9} M{sub Sun} and M{sub H{sub 2}}< 5.30 Multiplication-Sign 10{sup 9} M{sub Sun }. Both DOGs exhibit mid-infrared continuum emission that follows a power law, suggesting that an active galactic nucleus (AGN) contributes to the dust heating. As such, estimates of the star formation efficiencies in these DOGs are uncertain. A third cluster member with an infrared luminosity, L{sub IR} < 7.4 Multiplication-Sign 10{sup 11} L{sub Sun }, is serendipitously detected in CO J = 2-1 line emission in the field of one of the DOGs located roughly two virial radii away from the cluster center. The optical spectrum of this object suggests that it is likely an obscured AGN, and the measured CO line luminosity is L'{sub CO} = (1.94 {+-} 0.35) Multiplication-Sign 10{sup 10} K km s{sup -1} pc{sup 2}, which leads to an estimated cold molecular gas mass M{sub H{sub 2}}= (1.55{+-}0.28) Multiplication-Sign 10{sup 10} M{sub Sun }. A significant reservoir of molecular gas in a z {approx} 1 galaxy located away from the cluster center demonstrates that the fuel can exist to drive an increase in star formation and AGN activity at the outskirts of high-redshift clusters.« less

  20. Modelling and performance of Nb SIS mixers in the 1.3 mm and 0.8 mm bands

    NASA Technical Reports Server (NTRS)

    Karpov, A.; Carter, M.; Lazareff, B.; Billon-Pierron, D.; Gundlach, K. H.

    1992-01-01

    We describe the modeling and subsequent improvements of SIS waveguide mixers for the 200-270 and 330-370 GHz bands (Blundell, Carter, and Gundlach 1988, Carter et al 1991). These mixers are constructed for use in receivers on IRAM radiotelescopes on Pico Veleta (Spain, Sierra Nevada) and Plateau de Bure (French Alps), and must meet specific requirements. The standard reduced height waveguide structure with suspended stripline is first analyzed and a model is validated through comparison with scale model and working scale measurements. In the first step, the intrinsic limitations of the standard mixer structure are identified, and the parameters are optimized bearing in mind the radioastronomical applications. In the second step, inductive tuning of the junctions is introduced and optimized for minimum noise and maximum bandwidth. In the 1.3 mm band, a DSB receiver temperature of less than 110 K (minimum 80 K) is measured from 180 through 260 GHz. In the 0.8 mm band, a DSB receiver temperature of less than 250 K (minimum 175 K) is obtained between 325 and 355 GHz. All these results are obtained with room-temperature optics and a 4 GHz IF chain having a 500 MHz bandwidth and a noise temperature of 14 K.

  1. Water and complex organic molecules in the warm inner regions of solar-type protostars

    NASA Astrophysics Data System (ADS)

    Coutens, A.; Jørgensen, J. K.; Persson, M. V.; Lykke, J. M.; Taquet, V.; van Dishoeck, E. F.; Vastel, C.; Wampfler, S. F.

    2015-12-01

    Water and complex organic molecules play an important role in the emergence of Life. They have been detected in different types of astrophysical environments (protostars, prestellar cores, outflows, protoplanetary disks, comets, etc). In particular, they show high abundances towards the warm inner regions of protostars, where the icy grain mantles thermally desorb. Can a part of the molecular content observed in these regions be preserved during the star formation process and incorporated into asteroids and comets, that can deliver it to planetary embryos through impacts? By comparison with cometary studies, interferometric observations of solar-type protostars can help to address this important question. We present recent results obtained with the Plateau de Bure interferometer about water deuteration, glycolaldehyde and ethylene glycol towards the low-mass protostar NGC 1333 IRAS2A.

  2. Seeds of Life in Space (SOLIS). III. Zooming Into the Methanol Peak of the Prestellar Core L1544

    NASA Astrophysics Data System (ADS)

    Punanova, Anna; Caselli, Paola; Feng, Siyi; Chacón-Tanarro, Ana; Ceccarelli, Cecilia; Neri, Roberto; Fontani, Francesco; Jiménez-Serra, Izaskun; Vastel, Charlotte; Bizzocchi, Luca; Pon, Andy; Vasyunin, Anton I.; Spezzano, Silvia; Hily-Blant, Pierre; Testi, Leonardo; Viti, Serena; Yamamoto, Satoshi; Alves, Felipe; Bachiller, Rafael; Balucani, Nadia; Bianchi, Eleonora; Bottinelli, Sandrine; Caux, Emmanuel; Choudhury, Rumpa; Codella, Claudio; Dulieu, François; Favre, Cécile; Holdship, Jonathan; Jaber Al-Edhari, Ali; Kahane, Claudine; Laas, Jake; LeFloch, Bertrand; López-Sepulcre, Ana; Ospina-Zamudio, Juan; Oya, Yoko; Pineda, Jaime E.; Podio, Linda; Quenard, Davide; Rimola, Albert; Sakai, Nami; Sims, Ian R.; Taquet, Vianney; Theulé, Patrice; Ugliengo, Piero

    2018-03-01

    Toward the prestellar core L1544, the methanol (CH3OH) emission forms an asymmetric ring around the core center, where CH3OH is mostly in solid form, with a clear peak at 4000 au to the northeast of the dust continuum peak. As part of the NOEMA Large Project SOLIS (Seeds of Life in Space), the CH3OH peak has been spatially resolved to study its kinematics and physical structure and to investigate the cause behind the local enhancement. We find that methanol emission is distributed in a ridge parallel to the main axis of the dense core. The centroid velocity increases by about 0.2 km s‑1 and the velocity dispersion increases from subsonic to transonic toward the central zone of the core, where the velocity field also shows complex structure. This could be an indication of gentle accretion of material onto the core or the interaction of two filaments, producing a slow shock. We measure the rotational temperature and show that methanol is in local thermodynamic equilibrium (LTE) only close to the dust peak, where it is significantly depleted. The CH3OH column density, N tot(CH3OH), profile has been derived with non-LTE radiative transfer modeling and compared with chemical models of a static core. The measured N tot(CH3OH) profile is consistent with model predictions, but the total column densities are one order of magnitude lower than those predicted by models, suggesting that the efficiency of reactive desorption or atomic hydrogen tunneling adopted in the model may be overestimated; or that an evolutionary model is needed to better reproduce methanol abundance. This work is based on observations carried out under project number L15AA with the IRAM NOEMA Interferometer and on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  3. Electronically Tuned Local Oscillators for the NOEMA Interferometer

    NASA Astrophysics Data System (ADS)

    Mattiocco, Francois; Garnier, Olivier; Maier, Doris; Navarrini, Alessandro; Serres, Patrice

    2016-03-01

    We present an overview of the electronically tuned local oscillator (LO) system developed at the Institut de RadioAstronomie millimetrique (IRAM) for the superconductor-insulator-superconductor (SIS) receivers of the NOrthern Extended Millimeter Array interferometer (NOEMA). We modified the frequency bands and extended the bandwidths of the LO designs developed by the National Radio Astronomy Observatory (NRAO) for the Atacama Large Millimeter Array (ALMA) project to cover the four NOEMA LO frequency ranges 82-108.3 GHz (Band 1), 138.6-171.3 GHz (Band 2), 207.7-264.4 GHz (Band 3), and 283-365 GHz (Band 4). The NOEMA LO system employs commercially available MMICs and GaAs millimeter MMICs from NRAO which are micro-assembled into active multiplied chain (AMC) and power amplifier (PA) modules. We discuss the problem of the LO spurious harmonics and of the LO signal directly multiplied by the SIS mixers that add extra noise and lead to detections of unwanted spectral lines from higher order sidebands. A waveguide filter in the LO path is used to reduce the higher order harmonics level of the LO at the output of the final frequency multiplier, thus mitigating the undesired effects and improving the system noise temperature.

  4. Exhaustion of the gas next to the supermassive black hole of M31

    NASA Astrophysics Data System (ADS)

    Melchior, Anne-Laure; Combes, Françoise

    2017-11-01

    New observations performed at the IRAM Plateau de Bure reveal the absence of molecular gas next to the black hole of the Andromeda galaxy. We derived a 3σ upper limit on the molecular gas mass of 4300 M⊙ for a line width of 1000 km s-1. This is compatible with infra-red observations, which reveal a hole in the dust emission next to the black hole. Some gas from stellar feedback is expected from the old eccentric stellar disc population, but it is not accreted close to the black hole. This absence of gas explains the absence of stellar formation observed in this region, contrary to what is observed next to Sgr A* in the Milky Way. Either the gas has been swallowed by the black hole, or a feedback mechanism has pushed the gas outside the central 1 pc. Nevertheless, we detect a small clump of gas with a very low velocity dispersion at 2.4″ from the black hole. It is probable that this clumpy gas is seen in projection, as it does not follow the rotation of the disc surrounding the black hole, its velocity dispersion is ten times lower than the expected velocity gradient, and the tidal shear from the black hole requires a gas density for this clump that is not compatible with our observations.

  5. A CLEAN-based method for mosaic deconvolution

    NASA Astrophysics Data System (ADS)

    Gueth, F.; Guilloteau, S.; Viallefond, F.

    1995-03-01

    Mosaicing may be used in aperture synthesis to map large fields of view. So far, only MEM techniques have been used to deconvolve mosaic images (Cornwell (1988)). A CLEAN-based method has been developed, in which the components are located in a modified expression. This allows a better utilization of the information and consequent noise reduction in the overlapping regions. Simulations show that this method gives correct clean maps and recovers most of the flux of the sources. The introduction of the short-spacing visibilities in the data set is strongly required. Their absence actually introduces artificial lack of structures on the corresponding scale in the mosaic images. The formation of ``stripes'' in clean maps may also occur, but this phenomenon can be significantly reduced by using the Steer-Dewdney-Ito algorithm (Steer, Dewdney & Ito (1984)) to identify the CLEAN components. Typical IRAM interferometer pointing errors do not have a significant effect on the reconstructed images.

  6. Ionized and Molecular Gas Kinematics in a z = 1.4 Star-forming Galaxy

    NASA Astrophysics Data System (ADS)

    Übler, H.; Genzel, R.; Tacconi, L. J.; Förster Schreiber, N. M.; Neri, R.; Contursi, A.; Belli, S.; Nelson, E. J.; Lang, P.; Shimizu, T. T.; Davies, R.; Herrera-Camus, R.; Lutz, D.; Plewa, P. M.; Price, S. H.; Schuster, K.; Sternberg, A.; Tadaki, K.; Wisnioski, E.; Wuyts, S.

    2018-02-01

    We present deep observations of a z = 1.4 massive, star-forming galaxy (SFG) in molecular and ionized gas at comparable spatial resolution (CO 3–2, NOrthern Extended Millimeter Array (NOEMA); Hα, Large Binocular Telescope (LBT)). The kinematic tracers agree well, indicating that both gas phases are subject to the same gravitational potential and physical processes affecting the gas dynamics. We combine the one-dimensional velocity and velocity dispersion profiles in CO and Hα to forward-model the galaxy in a Bayesian framework, combining a thick exponential disk, a bulge, and a dark matter halo. We determine the dynamical support due to baryons and dark matter, and find a dark matter fraction within one effective radius of {f}DM}(≤slant {R}e)={0.18}-0.04+0.06. Our result strengthens the evidence for strong baryon-dominance on galactic scales of massive z ∼ 1–3 SFGs recently found based on ionized gas kinematics alone. Based on observations carried out with the IRAM Interferometer NOEMA. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). Based on observations carried out with the LBT. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, The Leibniz Institute for Astrophysics Potsdam, and Heidelberg University; The University of Arizona on behalf of the Arizona Board of Regents; Istituto Nazionale di Astrofisica, Italy; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia.

  7. The partition function of the Bures ensemble as the τ-function of BKP and DKP hierarchies: continuous and discrete

    NASA Astrophysics Data System (ADS)

    Hu, Xing-Biao; Li, Shi-Hao

    2017-07-01

    The relationship between matrix integrals and integrable systems was revealed more than 20 years ago. As is known, matrix integrals over a Gaussian ensemble used in random matrix theory could act as the τ-function of several hierarchies of integrable systems. In this article, we will show that the time-dependent partition function of the Bures ensemble, whose measure has many interesting geometric properties, could act as the τ-function of BKP and DKP hierarchies. In addition, if discrete time variables are introduced, then this partition function could act as the τ-function of discrete BKP and DKP hierarchies. In particular, there are some links between the partition function of the Bures ensemble and Toda-type equations.

  8. An Upper Limit on the Mass of the Circumplanetary Disk for DH Tau b

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler G.; Ménard, François; Caceres, Claudio; Lefèvre, Charlene; Bonnefoy, Mickael; Cánovas, Héctor; Maret, Sébastien; Pinte, Christophe; Schreiber, Matthias R.; van der Plas, Gerrit

    2017-07-01

    DH Tau is a young (˜1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious {{H}}α emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of 17.2+/- 1.7 {M}\\oplus , which gives a disk to star mass ratio of 0.014 (assuming the usual gas to dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42 M ⊕ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model, including heating of the circumplanetary disk by DH Tau b and DH Tau A, suggests that a mass-averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09 M ⊕ for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models. This work is based on observations carried out under project D15AC with the IRAM NOEMA Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  9. Quantum Jeffreys prior for displaced squeezed thermal states

    NASA Astrophysics Data System (ADS)

    Kwek, L. C.; Oh, C. H.; Wang, Xiang-Bin

    1999-09-01

    It is known that, by extending the equivalence of the Fisher information matrix to its quantum version, the Bures metric, the quantum Jeffreys prior can be determined from the volume element of the Bures metric. We compute the Bures metric for the displaced squeezed thermal state and analyse the quantum Jeffreys prior and its marginal probability distributions. To normalize the marginal probability density function, it is necessary to provide a range of values of the squeezing parameter or the inverse temperature. We find that if the range of the squeezing parameter is kept narrow, there are significant differences in the marginal probability density functions in terms of the squeezing parameters for the displaced and undisplaced situations. However, these differences disappear as the range increases. Furthermore, marginal probability density functions against temperature are very different in the two cases.

  10. VizieR Online Data Catalog: NGC1333-IRAS2A water snowline imaging (van 't Hoff+, 2018)

    NASA Astrophysics Data System (ADS)

    van't Hoff, M. L. R.; Persson, M. V.; Harsono, D.; Taquet, V.; Jorgensen, J. K.; Visser, R.; Bergin, E. A.; van Dishoeck, E. F.

    2018-02-01

    Datacubes in fits format of the H13CO+, H

  11. The NIKA2 Instrument at 30-m IRAM Telescope: Performance and Results

    NASA Astrophysics Data System (ADS)

    Catalano, A.; Adam, R.; Ade, P. A. R.; André, P.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Comis, B.; De Petris, M.; Désert, F.-X.; Doyle, S.; Driessen, E. F. C.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Lestrade, J.-F.; Macías-Pérez, J. F.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Romero, C.; Roussel, H.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.; Barria, E.; Bres, G.; Camus, P.; Chanthib, P.; Donnier-Valentin, G.; Exshaw, O.; Garde, G.; Gerardin, A.; Leggeri, J.-P.; Levy-Bertrand, F.; Guttin, C.; Hoarau, C.; Grollier, M.; Mocellin, J.-L.; Pont, G.; Rodenas, H.; Tissot, O.; Galvez, G.; John, D.; Ungerechts, H.; Sanchez, S.; Mellado, P.; Munoz, M.; Pierfederici, F.; Penalver, J.; Navarro, S.; Bosson, G.; Bouly, J.-L.; Bouvier, J.; Geraci, C.; Li, C.; Menu, J.; Ponchant, N.; Roni, S.; Roudier, S.; Scordillis, J. P.; Tourres, D.; Vescovi, C.; Barbier, A.; Billon-Pierron, D.; Adane, A.; Andrianasolo, A.; Bracco, A.; Coiffard, G.; Evans, R.; Maury, A.; Rigby, A.

    2018-03-01

    The New IRAM KID Arrays 2 (NIKA2) consortium has just finished installing and commissioning a millimetre camera on the IRAM 30-m telescope. It is a dual-band camera operating with three frequency-multiplexed kilo-pixels arrays of lumped element kinetic inductance detectors (LEKID) cooled at 150 mK, designed to observe the intensity and polarisation of the sky at 260 and 150 GHz (1.15 and 2 mm). NIKA2 is today an IRAM resident instrument for millimetre astronomy, such as intracluster medium from intermediate to distant clusters and so for the follow-up of Planck satellite detected clusters, high redshift sources and quasars, early stages of star formation and nearby galaxies emission. We present an overview of the instrument performance as it has been evaluated at the end of the commissioning phase.

  12. High-resolution Imaging of PHIBSS z ˜ 2 Main-sequence Galaxies in CO J = 1 → 0

    NASA Astrophysics Data System (ADS)

    Bolatto, A. D.; Warren, S. R.; Leroy, A. K.; Tacconi, L. J.; Bouché, N.; Förster Schreiber, N. M.; Genzel, R.; Cooper, M. C.; Fisher, D. B.; Combes, F.; García-Burillo, S.; Burkert, A.; Bournaud, F.; Weiss, A.; Saintonge, A.; Wuyts, S.; Sternberg, A.

    2015-08-01

    We present Karl Jansky Very Large Array observations of the CO J=1-0 transition in a sample of four z˜ 2 main-sequence galaxies. These galaxies are in the blue sequence of star-forming galaxies at their redshift, and are part of the IRAM Plateau de Bure HIgh-z Blue Sequence Survey which imaged them in CO J=3-2. Two galaxies are imaged here at high signal-to-noise, allowing determinations of their disk sizes, line profiles, molecular surface densities, and excitation. Using these and published measurements, we show that the CO and optical disks have similar sizes in main-sequence galaxies, and in the galaxy where we can compare CO J=1-0 and J=3-2 sizes we find these are also very similar. Assuming a Galactic CO-to-H2 conversion, we measure surface densities of {{{Σ }}}{mol}˜ 1200 {M}⊙ pc-2 in projection and estimate {{{Σ }}}{mol}˜ 500-900 {M}⊙ pc-2 deprojected. Finally, our data yields velocity-integrated Rayleigh-Jeans brightness temperature line ratios r31 that are approximately at unity. In addition to the similar disk sizes, the very similar line profiles in J=1-0 and J=3-2 indicate that both transitions sample the same kinematics, implying that their emission is coextensive. We conclude that in these two main-sequence galaxies there is no evidence for significant excitation gradients or a large molecular reservoir that is diffuse or cold and not involved in active star formation. We suggest that r31 in very actively star-forming galaxies is likely an indicator of how well-mixed the star formation activity and the molecular reservoir are.

  13. The NIKA2 large-field-of-view millimetre continuum camera for the 30 m IRAM telescope

    NASA Astrophysics Data System (ADS)

    Adam, R.; Adane, A.; Ade, P. A. R.; André, P.; Andrianasolo, A.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Bracco, A.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; De Petris, M.; Désert, F.-X.; Doyle, S.; Driessen, E. F. C.; Evans, R.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Leggeri, J.-P.; Lestrade, J.-F.; Macías-Pérez, J. F.; Mauskopf, P.; Mayet, F.; Maury, A.; Monfardini, A.; Navarro, S.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Rigby, A.; Ritacco, A.; Romero, C.; Roussel, H.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2018-01-01

    Context. Millimetre-wave continuum astronomy is today an indispensable tool for both general astrophysics studies (e.g. star formation, nearby galaxies) and cosmology (e.g. cosmic microwave background and high-redshift galaxies). General purpose, large-field-of-view instruments are needed to map the sky at intermediate angular scales not accessible by the high-resolution interferometers (e.g. ALMA in Chile, NOEMA in the French Alps) and by the coarse angular resolution space-borne or ground-based surveys (e.g. Planck, ACT, SPT). These instruments have to be installed at the focal plane of the largest single-dish telescopes, which are placed at high altitude on selected dry observing sites. In this context, we have constructed and deployed a three-thousand-pixel dual-band (150 GHz and 260 GHz, respectively 2 mm and 1.15 mm wavelengths) camera to image an instantaneous circular field-of-view of 6.5 arcmin in diameter, and configurable to map the linear polarisation at 260 GHz. Aims: First, we are providing a detailed description of this instrument, named NIKA2 (New IRAM KID Arrays 2), in particular focussing on the cryogenics, optics, focal plane arrays based on Kinetic Inductance Detectors, and the readout electronics. The focal planes and part of the optics are cooled down to the nominal 150 mK operating temperature by means of an adhoc dilution refrigerator. Secondly, we are presenting the performance measured on the sky during the commissioning runs that took place between October 2015 and April 2017 at the 30-m IRAM telescope at Pico Veleta, near Granada (Spain). Methods: We have targeted a number of astronomical sources. Starting from beam-maps on primary and secondary calibrators we have then gone to extended sources and faint objects. Both internal (electronic) and on-the-sky calibrations are applied. The general methods are described in the present paper. Results: NIKA2 has been successfully deployed and commissioned, performing in-line with expectations. In particular, NIKA2 exhibits full width at half maximum angular resolutions of around 11 and 17.5 arcsec at respectively 260 and 150 GHz. The noise equivalent flux densities are, at these two respective frequencies, 33±2 and 8±1 mJy s1/2. A first successful science verification run was achieved in April 2017. The instrument is currently offered to the astronomy community and will remain available for at least the following ten years.

  14. VizieR Online Data Catalog: 70um-1.2mm and N2H+ maps of IRDC18454 (W43) (Beuther+,

    NASA Astrophysics Data System (ADS)

    Beuther, H.; Tackenberg, J.; Linz, H.; Henning, T.; Krause, O.; Ragan, S.; Nielbock, M.; Launhardt, R.; Schmiedeke, A.; Schuller, F.; Carlhoff, P.; Nguyen-Luong, Q.; Sakai, T.

    2011-11-01

    The cloud complex with a size of ~6'x6' was observed with PACS on Herschel on 2010 March 9. Maps at 250, 350, and 500um were obtained with SPIRE 2010) on 2010 March 11. We observed IRDC18454-1 with the Plateau de Bure Interferometer during five nights in October and November 2009 at 93GHz in the C and D configurations. The N2H+ data has been observed using the BEARS receiver at the NRO 45m telescope in Nobeyama, Japan. The different velocity components have been observed one in April 2010 with an average system temperature of Tsys=206K, the second in June, at slightly lower Tsys. The MIPS 24um data (from MIPSGAL) as well as the IRAC 8um observations (from GLIMPSE) are taken from the Spitzer archive. The 1.2mm continuum data were first presented in Beuther et al. (2002, Cat. J/ApJ/566/945) and the APEX 870um data are part of the ATLASGAL survey of the Galactic plane (Schuller et al., 2009A&A...504..415S). (2 data files).

  15. The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic Epochs

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the component of the interstellar medium (ISM) that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We here present results that demonstrate the capability of the Atacama Large (sub-)Millimeter Array (ALMA) to detect the cold ISM and dust in ``normal'' galaxies at redshifts z=5-6. We also show detailed studies of the ISM in massive, dust-obscured starburst galaxies out to z>6 with ALMA, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Plateau de Bure Interferometer (PdBI), and the Karl G. Jansky Very Large Array (VLA). These observations place some of the most direct constraints on the dust-obscured fraction of the star formation history of the universe at z>5 to date, showing that ``typical'' galaxies at these epochs have low dust content, but also that highly-enriched, dusty starbursts already exist within the first billion years after the Big Bang.

  16. Chemical segregation in the young protostars Barnard 1b-N and S. Evidence of pseudo-disk rotation in Barnard 1b-S

    NASA Astrophysics Data System (ADS)

    Fuente, A.; Gerin, M.; Pety, J.; Commerçon, B.; Agúndez, M.; Cernicharo, J.; Marcelino, N.; Roueff, E.; Lis, D. C.; Wootten, H. A.

    2017-10-01

    The extremely young Class 0 object B1b-S and the first hydrostatic core (FSHC) candidate, B1b-N, provide a unique opportunity to study the chemical changes produced in the elusive transition from the prestellar core to the protostellar phase. We present 40″ × 70″ images of Barnard 1b in the 13CO 1 → 0, C18O 1 → 0, NH2D 11,1a→ 10,1s, and SO 32→ 21 lines obtained with the NOEMA interferometer. The observed chemical segregation allows us to unveil the physical structure of this young protostellar system down to scales of 500 au. The two protostellar objects are embedded in an elongated condensation, with a velocity gradient of 0.2-0.4 m s-1 au-1 in the east-west direction, reminiscent of an axial collapse. The NH2D data reveal cold and dense pseudo-disks (R 500 - 1000 au) around each protostar. Moreover, we observe evidence of pseudo-disk rotation around B1b-S. We do not see any signature of the bipolar outflows associated with B1b-N and B1b-S, which were previously detected in H2CO and CH3OH, in any of the imaged species. The non-detection of SO constrains the SO/CH3OH abundance ratio in the high-velocity gas. Based on observations carried out with the IRAM Northern Extended Millimeter Array (NOEMA). IRAM is supported by INSU/ CNRS (France), MPG (Germany), and IGN (Spain).The reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/L3

  17. Minimax estimation of qubit states with Bures risk

    NASA Astrophysics Data System (ADS)

    Acharya, Anirudh; Guţă, Mădălin

    2018-04-01

    The central problem of quantum statistics is to devise measurement schemes for the estimation of an unknown state, given an ensemble of n independent identically prepared systems. For locally quadratic loss functions, the risk of standard procedures has the usual scaling of 1/n. However, it has been noticed that for fidelity based metrics such as the Bures distance, the risk of conventional (non-adaptive) qubit tomography schemes scales as 1/\\sqrt{n} for states close to the boundary of the Bloch sphere. Several proposed estimators appear to improve this scaling, and our goal is to analyse the problem from the perspective of the maximum risk over all states. We propose qubit estimation strategies based on separate adaptive measurements, and collective measurements, that achieve 1/n scalings for the maximum Bures risk. The estimator involving local measurements uses a fixed fraction of the available resource n to estimate the Bloch vector direction; the length of the Bloch vector is then estimated from the remaining copies by measuring in the estimator eigenbasis. The estimator based on collective measurements uses local asymptotic normality techniques which allows us to derive upper and lower bounds to its maximum Bures risk. We also discuss how to construct a minimax optimal estimator in this setup. Finally, we consider quantum relative entropy and show that the risk of the estimator based on collective measurements achieves a rate O(n-1log n) under this loss function. Furthermore, we show that no estimator can achieve faster rates, in particular the ‘standard’ rate n ‑1.

  18. Magnetic field structure around cores with very low luminosity objects

    NASA Astrophysics Data System (ADS)

    Soam, A.; Maheswar, G.; Lee, Chang Won; Dib, Sami; Bhatt, H. C.; Tamura, Motohide; Kim, Gwanjeong

    2015-01-01

    Aims: We carried out optical polarimetry of five dense cores, (IRAM 04191, L1521F, L328, L673-7, and L1014) which are found to harbour very low luminosity objects (VeLLOs; Lint ≲ 0.1 L⊙). This study was conducted mainly to understand the role played by the magnetic field in the formation of very low and substellar mass range objects. Methods: Light from the stars, while passing through the dust grains that are aligned with their short axis parallel to an external magnetic field, becomes linearly polarised. The polarisation position angles measured for the stars can provide the plane-of-the sky magnetic field orientation. Because the light in the optical wavelength range is most efficiently polarised by the dust grains typically found at the outer layers of the molecular clouds, optical polarimetry mostly traces the magnetic field orientation of the core envelope. Results: The polarisation observations of stars projected on IRAM 04191, L328, L673-7, and L1014 were obtained in the R-band and those of L1521F were obtained in the V-band. The angular offsets between the envelope magnetic field direction (inferred from optical polarisation measurements) and the outflow position angles from the VeLLOs in IRAM 04191, L1521F, L328, L673-7, and L1014 are found to be 84°, 53°, 24°, 08°, and 15°, respectively. The mean value of the offsets for all the five clouds is ~ 37°. If we exclude IRAM 04191, the mean value reduces to become ~ 25°. In IRAM 04191, the offset between the projected envelope and the inner magnetic field (inferred from the submillimetre data obtained using SCUBA-POL) is found to be ~ 68°. The inner magnetic field, however, is found to be nearly aligned with the projected position angles of the minor axis, the rotation axis of the cloud, and the outflow from the IRAM 04191-IRS. We discuss a possible explanation for the nearly perpendicular orientation between the envelope and core scale magnetic fields in IRAM 04191. The angular offset between the envelope magnetic field direction and the minor axis of IRAM 04191, L1521F, L673-7, and L1014 are 82°, 60°, 47°, and 55°, respectively. The mean value of the offsets between the envelope magnetic field and the minor axis position angles for the four cores is found to be ~ 60°. Conclusions: The results obtained from our study on the limited sample of five cores with VeLLOs show that the outflows in three of them tend to nearly align with the envelope magnetic field. Table 4 is available in electronic form at http://www.aanda.org

  19. CTC Sentinel. Volume 6, Issue 8, August 2013

    DTIC Science & Technology

    2013-08-01

    Iran. Hizb Allah to Iran isn’t a card to play with. Hizb Allah today is the crown jewel of the resistance bloc; presidential moderation doesn’t mean...video recorded on a Hizb Allah fighter’s phone of the IRAM in action. 48 “ DIY Weapons in Syria – Hezbollah Deploys IRAMs in Qusayr,” Brown Moses

  20. VizieR Online Data Catalog: Molecular ions in protostellar shock L1157-B1 (Podio+, 2014)

    NASA Astrophysics Data System (ADS)

    Podio, L.; Lefloch, B.; Ceccarelli, C.; Codella, C.; Bachiller, R.

    2014-03-01

    The ascii files contain the line spectra shown in Figure 2 of the paper. The spectra are obtained with the IRAM-30m and Herschel/HIFI. The IRAM-30m data are part of the ASAI Large Programme. The Herschel/HIFI data are from the Guaranteed Time Key Project CHESS. (2 data files).

  1. A Bayesian blind survey for cold molecular gas in the Universe

    NASA Astrophysics Data System (ADS)

    Lentati, L.; Carilli, C.; Alexander, P.; Walter, F.; Decarli, R.

    2014-10-01

    A new Bayesian method for performing an image domain search for line-emitting galaxies is presented. The method uses both spatial and spectral information to robustly determine the source properties, employing either simple Gaussian, or other physically motivated models whilst using the evidence to determine the probability that the source is real. In this paper, we describe the method, and its application to both a simulated data set, and a blind survey for cold molecular gas using observations of the Hubble Deep Field-North taken with the Plateau de Bure Interferometer. We make a total of six robust detections in the survey, five of which have counterparts in other observing bands. We identify the most secure detections found in a previous investigation, while finding one new probable line source with an optical ID not seen in the previous analysis. This study acts as a pilot application of Bayesian statistics to future searches to be carried out both for low-J CO transitions of high-redshift galaxies using the Jansky Very Large Array (JVLA), and at millimetre wavelengths with Atacama Large Millimeter/submillimeter Array (ALMA), enabling the inference of robust scientific conclusions about the history of the molecular gas properties of star-forming galaxies in the Universe through cosmic time.

  2. NIKA2, a dual-band millimetre camera on the IRAM 30 m telescope to map the cold universe

    NASA Astrophysics Data System (ADS)

    Désert, F.-X.; Adam, R.; Ade, P.; André, P.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; Doyle, S.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Lestrade, J.-F.; Macías-Pérez, J. F.; Maury, A.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Romero, C.; Roussel, H.; Ruppin, F.; Soler, J.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2016-12-01

    A consortium led by Institut Néel (Grenoble) has just finished installing a new powerful millimetre camera NIKA2 on the IRAM 30 m telescope. It has an instantaneous field-of-view of 6.5 arcminutes at both 1.2 and 2.0 mm with polarimetric capabilities at 1.2 mm. NIKA2 provides a near diffraction-limited angular resolution (resp. 12 and 18 arcseconds). The 3 detector arrays are made of more than 1000 KIDs each. KIDs are new superconducting devices emerging as an alternative to bolometers. The commissionning is ongoing in 2016 with a likely opening to the IRAM community in early 2017. NIKA2 is a very promising multi-purpose instrument which will enable many scientific discoveries in the coming decade.

  3. The NIKA2 Large Field-of-View Millimeter Continuum Camera for the 30-M IRAM Telescope

    NASA Astrophysics Data System (ADS)

    Monfardini, Alessandro

    2018-01-01

    We have constructed and deployed a multi-thousands pixels dual-band (150 and 260 GHz, respectively 2mm and 1.15mm wavelengths) camera to image an instantaneous field-of-view of 6.5arc-min and configurable to map the linear polarization at 260GHz. We are providing a detailed description of this instrument, named NIKA2 (New IRAM KID Arrays 2), in particular focusing on the cryogenics, the optics, the focal plane arrays based on Kinetic Inductance Detectors (KID) and the readout electronics. We are presenting the performance measured on the sky during the commissioning runs that took place between October 2015 and April 2017 at the 30-meter IRAM (Institute of Millimetric Radio Astronomy) telescope at Pico Veleta, and preliminary science-grade results.

  4. Observations of cometary parent molecules with the IRAM radio telescope

    NASA Technical Reports Server (NTRS)

    Colom, P.; Despois, D.; Paubert, G.; Bockelee-Morvan, D.; Crovisier, Jacques

    1992-01-01

    Several rotational transitions of HCN, H2S, H2CO, and CH3OH were detected in comets P/Brorsen-Metcalf 1989 X, Austin (1989c1) and Levy (1990c) with the Institute for Millimeter Radioastronomy (IRAM) 30-m radio telescope. This allows us to determine the production rates of these molecules and to probe the physical conditions of the coma.

  5. TAPAS, a VO archive at the IRAM 30-m telescope

    NASA Astrophysics Data System (ADS)

    Leon, Stephane; Espigares, Victor; Ruíz, José Enrique; Verdes-Montenegro, Lourdes; Mauersberger, Rainer; Brunswig, Walter; Kramer, Carsten; Santander-Vela, Juan de Dios; Wiesemeyer, Helmut

    2012-07-01

    Astronomical observatories are today generating increasingly large volumes of data. For an efficient use of them, databases have been built following the standards proposed by the International Virtual Observatory Alliance (IVOA), providing a common protocol to query them and make them interoperable. The IRAM 30-m radio telescope, located in Sierra Nevada (Granada, Spain) is a millimeter wavelength telescope with a constantly renewed, extensive choice of instruments, and capable of covering the frequency range between 80 and 370 GHz. It is continuously producing a large amount of data thanks to the more than 200 scientific projects observed each year. The TAPAS archive at the IRAM 30-m telescope is aimed to provide public access to the headers describing the observations performed with the telescope, according to a defined data policy, making as well the technical data available to the IRAM staff members. A special emphasis has been made to make it Virtual Observatory (VO) compliant, and to offer a VO compliant web interface allowing to make the information available to the scientific community. TAPAS is built using the Django Python framework on top of a relational MySQL database, and is fully integrated with the telescope control system. The TAPAS data model (DM) is based on the Radio Astronomical DAta Model for Single dish radio telescopes (RADAMS), to allow for easy integration into the VO infrastructure. A metadata modeling layer is used by the data-filler to allow an implementation free from assumptions about the control system and the underlying database. TAPAS and its public web interface ( http://tapas.iram.es ) provides a scalable system that can evolve with new instruments and observing modes. A meta description of the DM has been introduced in TAPAS in order to both avoid undesired coupling between the code and the DM and to provide a better management of the archive. A subset of the header data stored in TAPAS will be made available at the CDS.

  6. Complex organics in IRAS 4A revisited with ALMA and PdBI: Striking contrast between two neighbouring protostellar cores

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Sakai, N.; Neri, R.; Imai, M.; Oya, Y.; Ceccarelli, C.; Higuchi, A. E.; Aikawa, Y.; Bottinelli, S.; Caux, E.; Hirota, T.; Kahane, C.; Lefloch, B.; Vastel, C.; Watanabe, Y.; Yamamoto, S.

    2017-10-01

    Context. Hot corinos are extremely rich in complex organic molecules (COMs). Accurate abundance measurements of COMs in such objects are crucial to constrain astrochemical models. In the particular case of close binary systems this can only be achieved through high angular resolution imaging. Aims: We aim to perform an interferometric study of multiple COMs in NGC 1333 IRAS 4A, which is a protostellar binary hosting hot corino activity, at an angular resolution that is sufficient to distinguish easily the emission from the two cores separated by 1.8''. Methods: We used the Atacama Large (sub-)Millimeter Array (ALMA) in its 1.2 mm band and the IRAM Plateau de Bure Interferometer (PdBI) at 2.7 mm to image, with an angular resolution of 0.5'' (120 au) and 1'' (235 au), respectively, the emission from 11 different organic molecules in IRAS 4A. This allowed us to clearly disentangle A1 and A2, the two protostellar cores. For the first time, we were able to derive the column densities and fractional abundances simultaneously for the two objects, allowing us to analyse the chemical differences between them. Results: Molecular emission from organic molecules is concentrated exclusively in A2, while A1 appears completely devoid of COMs or even simpler organic molecules, such as HNCO, even though A1 is the strongest continuum emitter. The protostellar core A2 displays typical hot corino abundances and its deconvolved size is 70 au. In contrast, the upper limits we placed on COM abundances for A1 are extremely low, lying about one order of magnitude below prestellar values. The difference in the amount of COMs present in A1 and A2 ranges between one and two orders of magnitude. Our results suggest that the optical depth of dust emission at these wavelengths is unlikely to be sufficiently high to completely hide a hot corino in A1 similar in size to that in A2. Thus, the significant contrast in molecular richness found between the two sources is most probably real. We estimate that the size of a hypothetical hot corino in A1 should be less than 12 au. Conclusions: Our results favour a scenario in which the protostar in A2 is either more massive and/or subject to a higher accretion rate than A1, as a result of inhomogeneous fragmentation of the parental molecular clump. This naturally explains the smaller current envelope mass in A2 with respect to A1 along with its molecular richness. The extremely low abundances of organic molecules in A1 with respect to those in A2 demonstrate that the dense inner regions of a young protostellar core lacking hot corino activity may be poorer in COMs than the outer protostellar envelope. The reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A121

  7. Complex organic molecules in comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy): detection of ethylene glycol and formamide

    NASA Astrophysics Data System (ADS)

    Biver, N.; Bockelée-Morvan, D.; Debout, V.; Crovisier, J.; Boissier, J.; Lis, D. C.; Dello Russo, N.; Moreno, R.; Colom, P.; Paubert, G.; Vervack, R.; Weaver, H. A.

    2014-06-01

    A spectral survey in the 1 mm wavelength range was undertaken in the long-period comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy) using the 30 m telescope of the Institut de radioastronomie millimétrique (IRAM) in April and November-December 2013. We report the detection of ethylene glycol (CH2OH)2 (aGg' conformer) and formamide (NH2CHO) in the two comets. The abundances relative to water of ethylene glycol and formamide are 0.2-0.3% and 0.02% in the two comets, similar to the values measured in comet C/1995 O1 (Hale-Bopp). We also report the detection of HCOOH and CH3CHO in comet C/2013 R1 (Lovejoy), and a search for other complex species (methyl formate, glycolaldehyde). Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Tables 4 and 5 are available in electronic form at http://www.aanda.orgThe IRAM dataset is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/L5

  8. VizieR Online Data Catalog: Orion Integral Filament ALMA+IRAM30m N2H+(1-0) data (Hacar+, 2018)

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Tafalla, M.; Forbrich, J.; Alves, J.; Meingast, S.; Grossschedl, J.; Teixeira, P. S.

    2018-01-01

    Combined ALMA+IRAM30m large-scale N2H+(1-0) emission in the Orion ISF. Two datasets are presented here in FITS format: 1.- Full data cube: spectral resolution = 0.1 kms-1 2.- Total integrated line intensity (moment 0) map Units are in Jy/beam See also: https://sites.google.com/site/orion4dproject/home (2 data files).

  9. Stray light suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Astrophysics Data System (ADS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-09-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8x16 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimétrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  10. Stray Light Suppression in the Goddard IRAM 2-Millimeter Observer (GISMO)

    NASA Technical Reports Server (NTRS)

    Sharp, E. H.; Benford, D. J.; Fixsen, D. J.; Moseley, S. H.; Staguhn, J. G.; Wollack, E. J.

    2012-01-01

    The Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) is an 8xl6 Transition Edge Sensor (TES) array of bolometers built as a pathfinder for TES detector development efforts at NASA Goddard Space Flight Center. GISMO has been used annually at the Institut de Radioastronomie Millimetrique (IRAM) 30 meter telescope since 2007 under engineering time and was opened in the spring of 2012 to the general astronomical community. The spring deployment provided an opportunity to modify elements of the room temperature optics before moving the instrument to its new permanent position in the telescope receiver cabin. This allowed for the possibility to extend the cryostat, introduce improved cold baffling and thus further optimize the stray light performance for final astronomical use of the instrument, which has been completed and validated. We will demonstrate and discuss several of the methods used to quantify and limit the influence of stray light in the GISMO camera.

  11. Giant Gas Cloud Made of Atoms Formed in First Stars Revealed in Universe's Most Distant Quasar

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Astronomers studying the most distant quasar yet found in the Universe have discovered a massive reservoir of gas containing atoms made in the cores of some of the first stars ever formed. The carbon-monoxide gas was revealed by the National Science Foundation's Very Large Array (VLA) and the Plateau de Bure radio interferometer in Europe. The gas, along with the young galaxy containing it, is seen as it was when the Universe was only one-sixteenth its current age, just emerging from the primeval "Dark Ages" before light could travel freely through the cosmos. VLA Image of Quasar VLA Image of J1148+5251 CREDIT: NRAO/AUI/NSF (Click on Image for Larger Version) "Our discovery of this much carbon monoxide gas in such an extremely distant and young galaxy is surprising. It means that, even at a very early time in the history of the Universe, galaxies already had huge amounts of molecular gas that would eventually form new generations of stars," said Chris Carilli, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The distant galaxy, dubbed J1148+5251, contains a bright quasar powered by a black hole at least a billion times more massive than the Sun. The galaxy is seen as it was only 870 million years after the Big Bang. The Universe now is 13.7 billion years old. J1148+5251 would have been among the first luminous objects in the Universe. The original atoms formed in the Universe within the first three minutes of the Big Bang were only hydrogen and helium. Carbon and oxygen -- the atoms making up carbon monoxide -- had to be made in the thermonuclear furnaces at the cores of the earliest stars. "The carbon and oxygen atoms in the gas we detected were made by some of the first stars ever formed, only about 650 million years after the Big Bang. In the next 200 million years or so, those stars -- probably very different stars from those we see today -- exploded as supernovae, spreading the carbon and oxygen out into space. Those atoms then cooled and combined into the carbon monoxide molecules we detected with our radio telescopes," said Fabian Walter, a Jansky Postdoctoral Fellow at the NRAO. Walter is lead author of a research paper in the July 24 issue of the scientific journal Nature, and, with Carilli and K.Y. Lo of NRAO, did the VLA observations. Frank Bertoldi of the Max-Planck Institute in Germany and Pierre Cox of the Institute of Space Astrophysics in Orsay, France, led the collaborators using the Plateau de Bure telescope. J1148+5251 Timeline Time Since Big Bang Event <300,000 years Universe Fully Ionized 300,000 years Hot charged particles cool and combine into neutral atoms; Universe becomes opaque; "Dark Ages" begin. ~200 million years First luminous objects form; Reionization begins. ~650 million years Stars forming in galaxy J1148+5251; Make carbon, oxygen atoms and begin to blast these atoms into interstellar space 870 million years J1148+5251 has accumulated massive reservoir of cool molecular gas containing Carbon Monoxide (CO) molecules; Radio waves from these molecules begin their journey to Earth. One billion years Reionization complete; Universe is transparent, ending "Dark Ages." 13.7 billion years Radio waves from J1148+5251's CO molecules arrive at radio telescopes on Earth. The discovery gives scientists a tantalizing direct view of one of the earliest galaxies in the young Universe, and raises questions about the nature of the first stars and how galaxies and quasars formed. "The Universe in which this galaxy existed is a very different Universe from the one we know today," Walter said. For about 300,000 years after the Big Bang, the Universe was filled with very hot gas which eventually became protons and electrons. Then, through expansion, the Universe cooled and the protons and electrons combined into neutral atoms that absorbed light and other forms of electromagnetic radiation. This period, from 300,000 years after the Big Bang, until a few hundred million years later when the first stars and galaxies began forming, is known as the cosmic Dark Ages. As the first stars and galaxies formed, intense radiation from the stars began to break apart -- or ionize -- the neutral atoms, allowing light once again to pass. As each new star's radiation ionized interstellar atoms, it formed a transparent "bubble" in the opaque Universe. The Universe began to resemble a cosmic Swiss cheese, with the holes growing larger until, about a billion years after the Big Bang, the holes all met each other and the Universe became fully transparent once again. This period is known as the Reionization Era of the Universe. In fact, combining the radio observations with data from optical telescopes shows that the transparent "bubble" around J1148+5251 is about 30 million light-years in diameter. "This is direct evidence that we are seeing this object helping reionize the Universe," Walter said. The amount of molecular gas in the galaxy -- a mass more than 10 billion times that of the Sun -- tells the scientists that things were happening quickly in the early Universe. "This is as much mass as we see in big galaxies today, and it had little time, astronomically speaking, to accumulate," said Carilli. Also, the most popular theory for how big galaxies formed is that they were built up over long spans of time by multiple mergers of smaller galaxies. "That's why it's so surprising to see such a massive galaxy so early in the Universe," said Walter. Studies of J1148+5251 and other distant objects yet to be discovered will help scientists find the answers to their questions about the Universe's early stars and galaxies. The radio observations of J1148+5251 gave astronomers a look at the galaxy itself, Walter emphasized, while optical telescopes showed only light coming from the bright quasar "engine" at the galaxy's core. Walter added that more VLA observations now being planned are aimed at producing an image of the young galaxy. Discovery Image of J1148+5251 SDSS Discovery Image of J1148+5251: Quasar is Red Dot Pointed Out by Arrow CREDIT: Sloan Digital Sky Survey At Apache Point Observatory (Click on Image for Larger Version) In addition, Walter also looks forward to studying other objects deeper into the era of reionization, both with the expanded VLA (EVLA) and with the Atacama Large Millimeter Array (ALMA), a joint North America-Europe project to be built in Chile. "With the EVLA and ALMA, we will be able to study the structures and dynamics of similar systems in great detail," Walter said. J1148+5251 was discovered by the Sloan Digital Sky Survey, using a 2.5-meter optical telescope at Apache Point, NM, earlier this year. At a distance of more than 12.8 billion light-years, it is the most distant quasar yet found in the Universe. Followup observations at the W.M. Keck Observatory in Hawaii showed a clear signature of light absorption indicating that the object is seen at the end of the reionization era. This signature, found using a spectroscope to analyze light from the object, is known as the Gunn-Peterson Effect, after James Gunn and Bruce Peterson, who predicted it in 1965. The carbon monoxide gas was found using radio telescopes that detected radio waves emitted by the gas molecules. The wavelength of this radio emission was greatly increased by the Doppler Effect produced by the expansion of the Universe. For example, at the great distance of J1148+5251, waves that left the galaxy with a length of less than one millimeter were received by the VLA at a wavelength of more than six millimeters. In addition to Walter, Carilli and Lo, who used the VLA to observe J1148+5251, other team members led by Bertoldi and Cox used the Institute of Millimeter Radio Astronomy's (IRAM) Plateau de Bure radio interferometer in France. These included Roberto Neri of IRAM; Alain Omont of the Paris Institute of Astrophysics; and Karl Menten of Germany's Max Planck Instutute for Radioastronomy. Xiaohui Fan of the University of Arizona's Steward Observatory and Michael Strauss of Princeton University were the Sloan Digital Sky Survey collaborators on the Nature paper. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  12. Comparison of the bulk geochemical features and thermal reactivity of kerogens from Mol (Boom Clay), Bure (Callovo-Oxfordian argillite) and Tournemire (Toarcian shales) underground research laboratories.

    PubMed

    Deniau, I; Devol-Brown, I; Derenne, S; Behar, F; Largeau, C

    2008-01-25

    Deep argillaceous formations are potential repositories for the long-term disposal of nuclear waste because of their low permeability and high sorption capacity with respect to radioelements and heavy metals. Such sedimentary rocks contain organic matter, mostly macromolecular and insoluble (kerogen). Upon temperature elevation related to high-level long-lived radioactive waste disposal, the kerogen may release significant quantities of gaseous and liquid effluents, especially oxygen-containing ones, which may influence the ability of the clay to retain radionuclides. The aim of the present study is to assess the global geochemical features and the thermal reactivity of the kerogens isolated from samples collected in the Bure and Tournemire sites, France (Callovo-Oxfordian Clay and Toarcian Shales, respectively) and to draw comparisons with data previously obtained for the Mol site, Belgium (Boom Clay). The study is based on a combination of elemental, spectroscopic (FTIR, solid state (13)C NMR) and pyrolytic (Rock-Eval pyrolysis, Curie point pyrolysis-gas chromatography/mass spectrometry) analyses. Different levels of maturity and resulting differences in the relative abundance of oxygen-containing groups were thus observed for the three kerogens. This is linked with differences in their ability to generate CO(2) and various oxygen-containing, low molecular weight, water-soluble compounds under thermal stress, decreasing from Mol to Bure and to Tournemire.

  13. The Infrared Automatic Mass Screening (IRAMS) System For Printed Circuit Board Fault Detection

    NASA Astrophysics Data System (ADS)

    Hugo, Perry W.

    1987-05-01

    Office of the Program Manager for TMDE (OPM TMDE) has initiated a program to develop techniques for evaluating the performance of printed circuit boards (PCB's) using infrared thermal imaging. It is OPM TMDE's expectation that the standard thermal profile (STP) will become the basis for the future rapid automatic detection and isolation of gross failure mechanisms on units under test (UUT's). To accomplish this OPM TMDE has purchased two Infrared Automatic Mass Screening ( I RAMS) systems which are scheduled for delivery in 1987. The IRAMS system combines a high resolution infrared thermal imager with a test bench and diagnostic computer hardware and software. Its purpose is to rapidly and automatically compare the thermal profiles of a UUT with the STP of that unit, recalled from memory, in order to detect thermally responsive failure mechanisms in PCB's. This paper will review the IRAMS performance requirements, outline the plan for implementing the two systems and report on progress to date.

  14. VizieR Online Data Catalog: HCOO13CH3 rotational spectrum

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Carvajal, M.; Tercero, B.; Kleiner, I.; Lopez, A.; Cernicharo, J.; Motiyenko, R. A.; Huet, T. R.; Guillemin, J. C.; Margules, L.

    2014-08-01

    The details about synthesis and identification by NMR spectroscopy were described in Carvajal et al. (2009, Cat. J/A+A/500/1109). The millimeter- and submillimeter-wave spectra were recorded using the Lille spectrometer that is based on solid-state sources. The sample pressure was in the range 20-30x10-6 bars. Spectra were recorded at room temperature (T=294K) in the 150-210, 225-315, 400-500, 500-630, and 780-940GHz regions with frequency steps of 30, 36, 48, 54, and 76kHz and an acquisition time of 35ms per point. The absolute accuracy of the line-centre frequency is estimated to be better than 30kHz (50kHz above 700GHz) for isolated lines and can be as low as 100kHz (150kHz above 700GHz) for blended or very weak lines. See section 2.2. The IRAM spectra will be published on the IRAM website: http://www.iram-institute.org/ (1 data file).

  15. Revealing the origin of the cold ISM in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Davis, T. A.; Alatalo, K.; Bureau, M.; Young, L.; Blitz, L.; Crocker, A.; Bayet, E.; Bois, M.; Bournaud, F.; Cappellari, M.; Davies, R. L.; Duc, P.-A.; de Zeeuw, P. T.; Emsellem, E.; Falcon-Barroso, J.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Morganti, R.; Naab, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.

    2013-07-01

    Recently, massive early-type galaxies have shed their red-and-dead moniker, thanks to the discovery that many host residual star formation. As part of the ATLAS-3D project, we have conducted a complete, volume-limited survey of the molecular gas in 260 local early-type galaxies with the IRAM-30m telescope and the CARMA interferometer, in an attempt to understand the fuel powering this star formation. We find that around 22% of early-type galaxies in the local volume host molecular gas reservoirs. This detection rate is independent of galaxy luminosity and environment. Here we focus on how kinematic misalignment measurements and gas-to-dust ratios can be used to put constraints on the origin of the cold ISM in these systems. The origin of the cold ISM seems to depend strongly on environment, with misaligned, dust poor gas (indicative of externally acquired material) being common in the field but completely absent in rich groups and in the Virgo cluster. Very massive galaxies also appear to be devoid of accreted gas. This suggests that in the field mergers and/or cold gas accretion dominate the gas supply, while in clusters internal secular processes become more important. This implies that environment has a strong impact on the cold gas properties of ETGs.

  16. The Far-Infrared Emission of Radio Loud and Radio Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Polletta, M.; Courvoisier, T. J.-L.; Wilkes, B. J.; Hooper, E. J.

    2000-01-01

    Continuum observations at radio, millimeter, infrared and soft X-ray energies are presented for a sample of 22 quasars, consisting of flat and steep spectrum radio loud, radio intermediate and radio quiet objects. The primary observational distinctions, among the different kinds of quasars in the radio and IR energy domains are studied using large observational datasets provided by ISOPHOT on board the Infrared Space Observatory, by the IRAM interferometer, by the sub-millimetre array SCUBA on JCMT, and by the European Southern Observatory (ESO) facilities IRAC1 on the 2.2 m telescope and SEST. The spectral energy distributions of all quasars from radio to IR energies are analyzed and modeled with non-thermal and thermal spectral components. The dominant mechanism emitting in the far/mid-IR is thermal dust emission in all quasars, with the exception of flat spectrum radio loud quasars for which the presence of thermal IR emission remains rather uncertain, since it is difficult to separate it from the bright non-thermal component. The dust is predominantly heated by the optical/ultraviolet radiation emitted from the external components of the AGN. A starburst contributes to the IR emission at different levels, but always less than the AGN (<= 27%). The distribution of temperatures, sizes, masses, and luminosities of the emitting dust are independent of the quasar type.

  17. Detection of SO towards the transitional disk AB Auriga: the sulfur chemistry in a proto-solar nebula

    NASA Astrophysics Data System (ADS)

    Fuente, A.; Agúndez, M.; Cernicharo, J.; Goicoechea, J. R.; Bachiller, R.

    2017-03-01

    The transitional disk around the Herbig Ae star, AB Auriga, has been imaged in the dust continuum emission at 1mm and in the line using the NOEMA interferometer (IRAM) (beam 1.5”). This is the first image of SO ever in a protoplanetary disk (PPD). Simultaneously, we obtained images of the ^{13}CO 2→1, C^{18}O 2→1 and H_{2}CO 3_{0,3} → 2_{0,2} lines. The dust continuum and C^{18}O emissions present the horseshoe morphology that is characteristic of the existence of a dust trap, proving that this disk is at the stage of forming planets. In contrast, SO presents uniform emission all over the disk. We interpret that the uniform SO emission is the consequence of the SO molecules being rapidly converted to SO_{2} and frozen onto the grain mantles at the high densities close to the disk midplane (> 10^{7} cm^{-3}). SO is the second S-bearing molecule detected in a PPD (the first was CS) and opens the possibility to study the sulphur chemistry in a proto-solar nebula analog. Sulfur is widespread in the Solar System and the comprehension of the sulfur chemistry is of paramount importance to understand the formation of our planetary system.

  18. MOLECULAR GAS VELOCITY DISPERSIONS IN THE ANDROMEDA GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldú-Primo, Anahi; Schruba, Andreas, E-mail: caldu@mpia.de, E-mail: schruba@mpe.mpg.de

    In order to characterize the distribution of molecular gas in spiral galaxies, we study the line profiles of CO (1 – 0) emission in Andromeda, our nearest massive spiral galaxy. We compare observations performed with the IRAM 30 m single-dish telescope and with the CARMA interferometer at a common resolution of 23 arcsec ≈ 85 pc × 350 pc and 2.5 km s{sup −1}. When fitting a single Gaussian component to individual spectra, the line profile of the single dish data is a factor of 1.5 ± 0.4 larger than the interferometric data one. This ratio in line widths ismore » surprisingly similar to the ratios previously observed in two other nearby spirals, NGC 4736 and NGC 5055, but measured at ∼0.5–1 kpc spatial scale. In order to study the origin of the different line widths, we stack the individual spectra in five bins of increasing peak intensity and fit two Gaussian components to the stacked spectra. We find a unique narrow component of FWHM = 7.5 ± 0.4 km s{sup −1} visible in both the single dish and the interferometric data. In addition, a broad component with FWHM = 14.4 ± 1.5 km s{sup −1} is present in the single-dish data, but cannot be identified in the interferometric data. We interpret this additional broad line width component detected by the single dish as a low brightness molecular gas component that is extended on spatial scales >0.5 kpc, and thus filtered out by the interferometer. We search for evidence of line broadening by stellar feedback across a range of star formation rates but find no such evidence on ∼100 pc spatial scale when characterizing the line profile by a single Gaussian component.« less

  19. The structure of the Cepheus E protostellar outflow: The jet, the bowshock, and the cavity

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Gusdorf, A.; Codella, C.; Eislöffel, J.; Neri, R.; Gómez-Ruiz, A. I.; Güsten, R.; Leurini, S.; Risacher, C.; Benedettini, M.

    2015-09-01

    Context. Protostellar outflows are a crucial ingredient of the star-formation process. However, the physical conditions in the warm outflowing gas are still poorly known. Aims: We present a multi-transition, high spectral resolution CO study of the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow and to constrain the physical conditions of the various components in order to understand the origin of the mass-loss phenomenon. Methods: We have observed the J = 12-11, J = 13-12, and J = 16-15 CO lines at high spectral resolution with SOFIA/GREAT and the J = 5-4, J = 9-8, and J = 14-13 CO lines with HIFI/Herschel towards the position of the terminal bowshock HH377 in the southern outflow lobe. These observations were complemented with maps of CO transitions obtained with the IRAM 30 m telescope (J = 1-0, 2-1), the Plateau de Bure interferometer (J = 2-1), and the James Clerk Maxwell Telescope (J = 3-2, 4-3). Results: We identify three main components in the protostellar outflow: the jet, the cavity, and the bowshock, with a typical size of 1.7″ × 21″, 4.5″, and 22″ × 10″, respectively. In the jet, the emission from the low-J CO lines is dominated by a gas layer at Tkin = 80-100 K, column density N(CO) = 9 × 1016 cm-2, and density n(H2) = (0.5-1) × 105 cm-3; the emission of the high-J CO lines arises from a warmer (Tkin = 400-750 K), denser (n(H2) = (0.5-1) × 106 cm-3), lower column density (N(CO) = 1.5 × 1016 cm-2) gas component. Similarly, in the outflow cavity, two components are detected: the emission of the low-J lines is dominated by a gas layer of column density N(CO) = 7 × 1017 cm-2 at Tkin = 55-85 K and density in the range (1-8) × 105 cm-3; the emission of the high-J lines is dominated by a hot, denser gas layer with Tkin = 500-1500K, n(H2) = (1-5) × 106 cm-3, and N(CO) = 6 × 1016 cm-2. A temperature gradient as a function of the velocity is found in the high-excitation gas component. In the terminal bowshock HH377, we detect gas of moderate excitation, with a temperature in the range Tkin ≈ 400-500 K, density n(H2) ≃ (1 -2) × 106 cm-3 and column density N(CO) = 1017 cm-2. The amounts of momentum carried away in the jet and in the entrained ambient medium are similar. Comparison with time-dependent shock models shows that the hot gas emission in the jet is well accounted for by a magnetized shock with an age of 220-740 yr propagating at 20-30 km s-1 in a medium of density n(H2) = (0.5-1) × 105 cm-3, consistent with that of the bulk material. Conclusions: The Cep E protostellar outflow appears to be a convincing case of jet bowshock driven outflow. Our observations trace the recent impact of the protostellar jet into the ambient cloud, produing a non-stationary magnetized shock, which drives the formation of an outflow cavity. Appendices are available in electronic form at http://www.aanda.org

  20. ALMA Examines a Distant Quasar Host

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    The dust continuum (top) and the [CII] emission (bottom) maps for the region around J1120+0641. [Adapted from Venemans et al. 2017]A team of scientists has used the Atacama Large Millimeter/submillimeter Array (ALMA) to explore the host galaxy of the most distant quasar known. Their observations may help us to build a picture of how the first supermassive black holes in the universe formed and evolved.Faraway Monsters and Their GalaxiesWe know that quasars the incredibly luminous and active centers of some distant galaxies are powered by accreting, supermassive black holes. These monstrous powerhouses have been detected out to redshifts of z 7, when the universe was younger than a billion years old.Though weve observed over a hundred quasars at high redshift, we still dont understand how these early supermassive black holes formed, or whether the black holes and the galaxies that host them co-evolved. In order to answer questions like these, however, we first need to gather information about the properties and behavior of various supermassive black holes and their host galaxies.A team of scientists led by Bram Venemans (Max-Planck Institute for Astronomy, Germany) recently used the unprecedented sensitivity and angular resolution of ALMA as well as the Very Large Array and the IRAM Plateau de Bure Interferometer to examine the most distant quasar currently known, J1120+0641, located at a redshift of z = 7.1.A High-Resolution LookThe teams observations of the dust and gas emission from the quasars host galaxy revealed a number of intriguing things:The red and blue sides of the [CII] emission line are shown here as contours, demonstrating that theres no ordered rotational motion of the gas on kpc scales. [Adapted from Venemans et al. 2017]The majority of the galaxys emission is very compact. Around 80% of the observed flux came from a region of only 11.5 kpc in diameter.Despite the fact that the 2.4-billion-solar-mass black hole at the galaxys center is accreting at a high rate, the heating in the galaxy is dominated not by the black holes accretion, but by star formation.Theres no sign of the expected structure of a rotating disk on kpc scales.The authors estimate a dynamical mass of the host galaxy of 43 billion solar masses and the black hole at the galaxys center makes up 6% of that. This ratio is roughly 10x higher than the black-hole-to-bulge mass ratio in local early-type galaxies.In the very central region, the black hole accounts for around 20% of the galaxys dynamical mass, and gas and dust likely accounts for most of the remainder. This doesnt leave much room for massive stars in the center of the galaxy.ALMAs capabilities have enabled these first efforts to spatially resolve the host galaxy of the most distant quasar known, resulting new and unexpected information. The authors now look hopefully to the future, when even longer baselines of ALMA may allow us a still-higher-resolution look at this distant quasar, possibly providing answers to some of the questions it has raised.CitationBram P. Venemans et al 2017 ApJ 837 146. doi:10.3847/1538-4357/aa62ac

  1. On the discovery of fast molecular gas in the UFO/BAL quasar APM 08279+5255 at z = 3.912

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Ferrara, A.; Bischetti, M.; Downes, D.; Neri, R.; Ceccarelli, C.; Cicone, C.; Fiore, F.; Gallerani, S.; Maiolino, R.; Menci, N.; Piconcelli, E.; Vietri, G.; Vignali, C.; Zappacosta, L.

    2017-12-01

    We have performed a high sensitivity observation of the UFO/BAL quasar APM 08279+5255 at z = 3.912 with NOEMA at 3.2 mm, aimed at detecting fast moving molecular gas. We report the detection of blueshifted CO(4-3) with maximum velocity (v95%) of -1340 km s-1, with respect to the systemic peak emission, and a luminosity of L' = 9.9 × 109μ-1 K km s-1 pc-2, where μ is the lensing magnification factor. We discuss various scenarios for the nature of this emission and conclude that this is the first detection of fast molecular gas at redshift > 3. We derived a mass flow rate of molecular gas in the range Ṁ = 3-7.4 × 103M⊙/yr and momentum boost ṖOF/ṖAGN 2-6, which is therefore consistent with a momentum conserving flow. For the largest ṖOF the scaling is also consistent with an energy conserving flow with an efficiency of 10-20%. The present data can hardly discriminate between the two expansion modes. The mass loading factor of the molecular outflow η = ṀOF/SFR is ≫ 1. We also detected a molecular emission line at a frequency of 94.83 GHz corresponding to a rest-frame frequency of 465.8 GHz; we tentatively identified this frequency with the cation molecule N2H+(5-4), which would be the first detection of this species at high redshift. We discuss the alternative possibility that this emission is due to a CO emission line from the, so far undetected, lens galaxy. Further observations of additional transitions of the same species with NOEMA can discriminate between the two scenarios. This work is based on observations carried out under project numbers S15CW and E15AF with the IRAM NOEMA Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). The reduced spectrum (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A30

  2. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-type Protostars

    NASA Astrophysics Data System (ADS)

    Taquet, Vianney; López-Sepulcre, Ana; Ceccarelli, Cecilia; Neri, Roberto; Kahane, Claudine; Charnley, Steven B.

    2015-05-01

    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected toward low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs toward the two low-mass protostars NGC 1333-IRAS 2A and -IRAS 4A with the Plateau de Bure interferometer at an angular resolution of 2″, resulting in the first multi-line detection of the O-bearing species glycolaldehyde and ethanol and of the N-bearing species ethyl cyanide toward low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COM column densities. The COM abundances with respect to methanol derived toward IRAS 2A and IRAS 4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COM abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.

  3. The Spatial-Kinematic Structure of the Region of Massive Star Formation S255N on Various Scales

    NASA Astrophysics Data System (ADS)

    Zemlyanukha, P. M.; Zinchenko, I. I.; Salii, S. V.; Ryabukhina, O. L.; Liu, S.-Y.

    2018-05-01

    The results of a detailed analysis of SMA, VLA, and IRAM observations of the region of massive star formation S255N in CO(2-1), N2H+(3-2), NH3(1, 1), C18O(2-1) and some other lines is presented. Combining interferometer and single-dish data has enabled a more detailed investigation of the gas kinematics in the moleclar core on various spatial scales. There are no signs of rotation or isotropic compression on the scale of the region as whole. The largest fragments of gas (≈0.3 pc) are located near the boundary of the regions of ionized hydrogen S255 and S257. Some smaller-scale fragments are associated with protostellar clumps. The kinetic temperatures of these fragments lie in the range 10-80 K. A circumstellar torus with inner radius R in ≈ 8000 AU and outer radius R out ≈ 12 000 AU has been detected around the clump SMA1. The rotation profile indicates the existence of a central object with mass ≈8.5/ sin2( i) M ⊙. SMA1 is resolved into two clumps, SMA1-NE and SMA1-SE, whose temperatures are≈150Kand≈25 K, respectively. To all appearances, the torus is involved in the accretion of surrounding gas onto the two protostellar clumps.

  4. Discovery of methyl silane and confirmation of silyl cyanide in IRC +10216

    NASA Astrophysics Data System (ADS)

    Cernicharo, J.; Agúndez, M.; Velilla Prieto, L.; Guélin, M.; Pardo, J. R.; Kahane, C.; Marka, C.; Kramer, C.; Navarro, S.; Quintana-Lacaci, G.; Fonfría, J. P.; Marcelino, N.; Tercero, B.; Moreno, E.; Massalkhi, S.; Santander-García, M.; McCarthy, M. C.; Gottlieb, C. A.; Alonso, J. L.

    2017-10-01

    We report the discovery in space of methyl silane, CH3SiH3, from observations of ten rotational transitions between 80 and 350 GHz (Ju from 4 to 16) with the IRAM 30 m radio telescope. The molecule was observed in the envelope of the C-star IRC +10216. The observed profiles and our models for the expected emission of methyl silane suggest that the it is formed in the inner zones of the circumstellar envelope, 1-40 R∗, with an abundance of (0.5-1) × 10-8 relative to H2. We also observed several rotational transitions of silyl cyanide (SiH3CN), confirming its presence in IRC +10216 in particular, and in space in general. Our models indicate that silyl cyanide is also formed in the inner regions of the envelope, around 20 R∗, with an abundance relative to H2 of 6 × 10-10. The possible formation mechanisms of both species are discussed. We also searched for related chemical species but only upper limits could be obtained. This work was based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  5. The Best of Two Worlds: ALMA + IRAM30M Observations of the Orion Integral Shape Filament

    NASA Astrophysics Data System (ADS)

    Hacar Gonzalez, Alvaro

    2018-01-01

    We have investigated the internal gas structure of the Orion Integral Shape filament using two large-scale, 150-pointing ALMA-12m mosaics and previous IRAM30m single-dish (SD) observations. From the combination of both single-dish and interferometric data we have produced a high-dynamic range and high-sensitivity map describing the internal gas structure of this filament at scales between 2 pc and 2000 AU (Hacar et al, submitted to A&A). In a series of individual CASA reductions (w/o SD data + w/o feathering), we have investigated the impact of the different uv-coverages on both the total flux and line velocity structure of our ALMA maps. Our analysis highlights the critical role played by the zero-spacing data at the different stages of the cleaning process. The results of these ALMA+IRAM30m experiments emphasize the need of high-sensitivity SD observations for the analysis of large-scale interferometric maps. During my talk, I will discuss the implications of these experiments on the dawn of the ALMA era and in the context of the new AtLAST telescope.

  6. Emission factors for PCDD/PCDF and dl-PCB from open buring of biomass

    EPA Science Inventory

    The Stockholm Convention on Persistent Organic Pollutants includes in its aims the minimisation of unintentional releases of polychlorinated dibenzo-dioxins and dibenzofurans (PCDD/PCDF) and dioxin like PCB (dl-PCB) to the environment. Development and implementation of policies ...

  7. VizieR Online Data Catalog: L1544 1.2 and 2mm emission maps (Chacon-Tanarro+, 2017)

    NASA Astrophysics Data System (ADS)

    Chacon-Tanarro, A.; Caselli, P.; Bizzocchi, L.; Pineda, J. E.; Harju, J.; Spaans, M.; Desert, F.-X.

    2017-07-01

    Millimeter observations of the pre-stellar core L1544 are presented. These observations were carried out at the IRAM 30m telescope, located at Pico Veleta (Spain) using the New IRAM KID Array (NIKA). The project number is 151-13. A region of 3°x3° was mapped using the Lissajous pattern at 1.2 and 2mm. The main beam widths are 12.5-arcsec at 1.2mm and 18.5 arcsec at 2mm. The KID array has a field-of-view is 1.8' at 1.2mm and 2.0' at 2mm. (2 data files).

  8. CONSTRAINING THE ABUNDANCES OF COMPLEX ORGANICS IN THE INNER REGIONS OF SOLAR-TYPE PROTOSTARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taquet, Vianney; Charnley, Steven B.; López-Sepulcre, Ana

    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected toward low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs toward the two low-mass protostars NGC 1333-IRAS 2A and -IRAS 4A with the Plateau de Bure interferometer at an angular resolution of 2″, resulting in the first multi-line detection of the O-bearing species glycolaldehydemore » and ethanol and of the N-bearing species ethyl cyanide toward low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COM column densities. The COM abundances with respect to methanol derived toward IRAS 2A and IRAS 4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COM abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.« less

  9. The Dual Role of Starbursts and Active Galactic Nuclei in Driving Extreme Molecular Outflows

    NASA Astrophysics Data System (ADS)

    Gowardhan, Avani; Spoon, Henrik; Riechers, Dominik A.; González-Alfonso, Eduardo; Farrah, Duncan; Fischer, Jacqueline; Darling, Jeremy; Fergulio, Chiara; Afonso, Jose; Bizzocchi, Luca

    2018-05-01

    We report molecular gas observations of IRAS 20100‑4156 and IRAS 03158+4227, two local ultraluminous infrared galaxies (ULIRGs) hosting some of the fastest and most massive molecular outflows known. Using Atacama Large Millimeter Array and Plateau de Bure Interferometer observations, we spatially resolve the CO (1‑0) emission from the outflowing molecular gas in both and find maximum outflow velocities of v max ∼ 1600 and ∼1700 km s‑1 for IRAS 20100‑4156 and IRAS 03158+4227, respectively. We find total gas mass outflow rates of {\\dot{M}}OF}∼ 670 and ∼350 M ⊙ yr‑1, respectively, corresponding to molecular gas depletion timescales {τ }OF}dep}∼ 11 and ∼16 Myr. This is nearly 3 times shorter than the depletion timescales implied by star formation, {τ }SFR}dep}∼ 33 and ∼46 Myr, respectively. To determine the outflow driving mechanism, we compare the starburst luminosity (L *) and active galactic nucleus (AGN) luminosity (L AGN) to the outflowing energy and momentum fluxes, using mid-infrared spectral decomposition to discern L AGN. Comparison to other molecular outflows in ULIRGs reveals that outflow properties correlate similarly with L * and L IR as with L AGN, indicating that AGN luminosity alone may not be a good tracer of feedback strength and that a combination of AGN and starburst activity may be driving the most powerful molecular outflows. We also detect the OH 1.667 GHz maser line from both sources and demonstrate its utility in detecting molecular outflows.

  10. A jet-dominated model for a broad-band spectral energy distribution of the nearby low-luminosity active galactic nucleus in M94

    NASA Astrophysics Data System (ADS)

    van Oers, Pieter; Markoff, Sera; Uttley, Phil; McHardy, Ian; van der Laan, Tessel; Donovan Meyer, Jennifer; Connors, Riley

    2017-06-01

    We have compiled a new multiwavelength spectral energy distribution (SED) for the closest obscured low-ionization emission-line region active galactic nucleus (AGN), NGC 4736, also known as M94. The SED comprises mainly high-resolution (mostly sub-arcsecond, or, at the distance to M94, ≲23 pc from the nucleus) observations from the literature, archival data, as well as previously unpublished sub-millimetre data from the Plateau de Bure Interferometer (PdBI) and the Combined Array for Research in Millimeter-wave Astronomy, in conjunction with new electronic MultiElement Radio Interferometric Network (e-MERLIN) L-band (1.5 GHz) observations. Thanks to the e-MERLIN resolution and sensitivity, we resolve for the first time a double structure composed of two radio sources separated by ˜1 arcsec, previously observed only at higher frequency. We explore this data set, which further includes non-simultaneous data from the Very Large Array, the Gemini telescope, the Hubble Space Telescope and the Chandra X-ray observatory, in terms of an outflow-dominated model. We compare our results with previous trends found for other AGN using the same model (NGC 4051, M81*, M87 and Sgr A*), as well as hard- and quiescent-state X-ray binaries. We find that the nuclear broad-band spectrum of M94 is consistent with a relativistic outflow of low inclination. The findings in this work add to the growing body of evidence that the physics of weakly accreting black holes scales with mass in a rather straightforward fashion.

  11. xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies

    NASA Astrophysics Data System (ADS)

    Saintonge, Amélie; Catinella, Barbara; Tacconi, Linda J.; Kauffmann, Guinevere; Genzel, Reinhard; Cortese, Luca; Davé, Romeel; Fletcher, Thomas J.; Graciá-Carpio, Javier; Kramer, Carsten; Heckman, Timothy M.; Janowiecki, Steven; Lutz, Katharina; Rosario, David; Schiminovich, David; Schuster, Karl; Wang, Jing; Wuyts, Stijn; Borthakur, Sanchayeeta; Lamperti, Isabella; Roberts-Borsani, Guido W.

    2017-12-01

    We introduce xCOLD GASS, a legacy survey providing a census of molecular gas in the local universe. Building on the original COLD GASS survey, we present here the full sample of 532 galaxies with CO (1–0) measurements from the IRAM 30 m telescope. The sample is mass-selected in the redshift interval 0.01< z< 0.05 from the Sloan Digital Sky Survey (SDSS) and therefore representative of the local galaxy population with {M}* > {10}9 {M}ȯ . The CO (1–0) flux measurements are complemented by observations of the CO (2–1) line with both the IRAM 30 m and APEX telescopes, H I observations from Arecibo, and photometry from SDSS, WISE, and GALEX. Combining the IRAM and APEX data, we find that the ratio of CO (2–1) to CO (1–0) luminosity for integrated measurements is {r}21=0.79+/- 0.03, with no systematic variations across the sample. The CO (1–0) luminosity function is constructed and best fit with a Schechter function with parameters {L}{CO}* =(7.77+/- 2.11)× {10}9 {{K}} {km} {{{s}}}-1 {{pc}}2, {φ }* =(9.84+/- 5.41)× {10}-4 {{Mpc}}-3, and α =-1.19+/- 0.05. With the sample now complete down to stellar masses of 109 {M}ȯ , we are able to extend our study of gas scaling relations and confirm that both molecular gas fractions ({f}{{{H}}2}) and depletion timescale ({t}{dep}({{{H}}}2)) vary with specific star formation rate (or offset from the star formation main sequence) much more strongly than they depend on stellar mass. Comparing the xCOLD GASS results with outputs from hydrodynamic and semianalytic models, we highlight the constraining power of cold gas scaling relations on models of galaxy formation.

  12. XAS AND XPS CHARACTERIZATION OF MERCURY BINDING ON BROMINATED ACTIVATED CARBON

    EPA Science Inventory

    Brominated powdered activated carbon sorbents have been shown to e quite effective for mercury capture when injected into the flue gas duct at coal-fired power plants and are especially useful when buring Western low-chlorine subbituminous coals. X-ray absorption spectroscopy (X...

  13. Development of freight policy analysis tool for northeastern Illinois and the United States.

    DOT National Transportation Integrated Search

    2010-10-01

    Freight transportation is a vital element in the economic prosperity of any country. According to the : nationwide commodity flow survey, over 12 billion tons of goods, valued at more than $11.6 trillion, were moved in : America in the year 2007(Bure...

  14. The GISMO-2 Bolometer Camera

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; hide

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  15. Reflections on the Use of Tablet Technology

    ERIC Educational Resources Information Center

    Wise, Nicki; McGregor, Deb; Bird, James

    2015-01-01

    This article describes a recent Oxfordshire Big Science Event (BSE), which was combined with Science Week in Bure Park Primary School and involved a competition in which primary school children throughout Oxfordshire devised, carried out, and recorded data from science investigations to answer questions that interested them. Teams of children…

  16. 16 CFR 1305.5 - Findings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Findings. 1305.5 Section 1305.5 Commercial... in certain gas-buring fireplace systems, which glow to give the appearance of real burning embers. The material is sprinkled on or glued to gas logs, or sprinkled on fireplace floors. (c) Need of the...

  17. Kinetic inductance detectors for millimeter and submillimeter astronomy

    NASA Astrophysics Data System (ADS)

    Boudou, Nicolas; Benoit, Alain; Bourrion, Olivier; Calvo, Martino; Désert, François-Xavier; Macias-Perez, Juan; Monfardini, Alessandro; Roesch, Markus

    2012-01-01

    We present recent developments in Kinetic Inductance Detectors (KID) for large arrays of detectors. The main application is ground-based millimeter wave astronomy. We focus in particular, as a case study, on our own experiment: NIKA (Néel IRAM KID Arrays). NIKA is today the best in-the-field experiment using KID-based instruments, and consists of a dual-band imaging system designed for the IRAM 30 meter telescope at Pico Veleta. We describe in this article, after a general context introduction, the KID working principle and the readout electronics, crucial to take advantage of the intrinsic KID multiplexability. We conclude with a small subset of the astronomical sources observed simultaneously at 2 mm and 1.4 mm by NIKA during the last run, held in October 2010.

  18. Kudzu eradication and management

    Treesearch

    James H. Miller

    1996-01-01

    Kudzu patches can be eradicated with persistent treatments or they can be contained and managed with other treatment options. Herbicides, grazing, prescribed buring, and disk harrowing can be used as eradication or containment treatments. For eradication, every kudzu plant in and around a patch must be killed or the spread from any surviving plants can make all prior...

  19. Angular Momentum in Disk Wind Revealed in the Young Star MWC 349A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qizhou; Claus, Brian; Watson, Linda

    Disk winds are thought to play a critical role in star birth. As winds extract excess angular momentum from accretion disks, matter in the disk can be transported inward to the star to fuel mass growth. However, observational evidence of wind carrying angular momentum has been very limited. We present Submillimeter Array (SMA) observations of the young star MWC 349A in the H26 α and H30 α recombination lines. The high signal-to-noise ratios made possible by the maser emission process allow us to constrain the relative astrometry of the maser spots to milli-arcsecond precision. Previous observations of the H30 αmore » line with the SMA and the Plateau de Bure interferometer (PdBI) showed that masers are distributed in the disk and wind. Our new high-resolution observations of the H26 α line reveal differences in spatial distribution from that of the H30 α line. H26 α line masers in the disk are excited in a thin annulus with a radius of about 25 au, while the H30 α line masers are formed in a slightly larger annulus with a radius of 30 au. This is consistent with expectations for maser excitation in the presence of an electron density variation of approximately R {sup −4}. In addition, the H30 α and H26 α line masers arise from different parts in the wind. This difference is also expected from maser theory. The wind component of both masers exhibits line-of-sight velocities that closely follow a Keplerian law. This result provides strong evidence that the disk wind extracts significant angular momentum, thereby facilitating mass accretion in the young star.« less

  20. A millimetre-wave redshift search for the unlensed HyLIRG, HS1700.850.1

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Bertoldi, F.; Smail, Ian; Steidel, C. C.; Blain, A. W.; Geach, J. E.; Gurwell, M.; Ivison, R. J.; Petitpas, G. R.; Reddy, N.

    2015-10-01

    We report the redshift of an unlensed, highly obscured submillimetre galaxy (SMG), HS1700.850.1, the brightest SMG (S850 μm = 19.1 mJy) detected in the James Clerk Maxwell Telescope/Submillimetre Common-user Bolometer Array-2 (JCMT/SCUBA-2) Baryonic Structure Survey, based on the detection of its 12CO line emission. Using the Institute Radio Astronomie Millimetrique Plateau de Bure Interferometer with 3.6 GHz band width, we serendipitously detect an emission line at 150.6 GHz. From a search over 14.5 GHz in the 3- and 2-mm atmospheric windows, we confirm the identification of this line as 12CO(5-4) at z = 2.816, meaning that it does not reside in the z ˜ 2.30 proto-cluster in this field. Measurement of the 870 μm source size (<0.85 arcsec) from the Sub-Millimetre Array (SMA) confirms a compact emission in a S870 μm = 14.5 mJy, LIR ˜ 1013 L⊙ component, suggesting an Eddington-limited starburst. We use the double-peaked 12CO line profile measurements along with the SMA size constraints to study the gas dynamics of a HyLIRG, estimating the gas and dynamical masses of HS1700.850.1. While HS1700.850.1 is one of the most extreme galaxies known in the Universe, we find that it occupies a relative void in the Lyman-Break Galaxy distribution in this field. Comparison with other extreme objects at similar epochs (HyLIRG Quasars), and cosmological simulations, suggests such an anti-bias of bright SMGs could be relatively common, with the brightest SMGs rarely occupying the most overdense regions at z = 2-4.

  1. PdBI cold dust imaging of two extremely red H – [4.5] > 4 galaxies discovered with SEDS and CANDELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caputi, K. I.; Popping, G.; Spaans, M.

    2014-06-20

    We report Plateau de Bure Interferometer (PdBI) 1.1 mm continuum imaging toward two extremely red H – [4.5] > 4 (AB) galaxies at z > 3, which we have previously discovered making use of Spitzer SEDS and Hubble Space Telescope CANDELS ultra-deep images of the Ultra Deep Survey field. One of our objects is detected on the PdBI map with a 4.3σ significance, corresponding to S{sub ν}(1.1 mm)=0.78±0.18 mJy. By combining this detection with the Spitzer 8 and 24 μm photometry for this source, and SCUBA2 flux density upper limits, we infer that this galaxy is a composite active galacticmore » nucleus/star-forming system. The infrared (IR)-derived star formation rate is SFR ≈ 200 ± 100 M {sub ☉} yr{sup –1}, which implies that this galaxy is a higher-redshift analogue of the ordinary ultra-luminous infrared galaxies more commonly found at z ∼ 2-3. In the field of the other target, we find a tentative 3.1σ detection on the PdBI 1.1 mm map, but 3.7 arcsec away of our target position, so it likely corresponds to a different object. In spite of the lower significance, the PdBI detection is supported by a close SCUBA2 3.3σ detection. No counterpart is found on either the deep SEDS or CANDELS maps, so, if real, the PdBI source could be similar in nature to the submillimeter source GN10. We conclude that the analysis of ultra-deep near- and mid-IR images offers an efficient, alternative route to discover new sites of powerful star formation activity at high redshifts.« less

  2. Molecular jet of IRAS 04166+2706

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang-Yao; Shang, Hsien; Su, Yu-Nung

    2014-01-01

    The molecular outflow from IRAS 04166+2706 was mapped with the Submillimeter Array at a 350 GHz continuum and CO J = 3-2 at an angular resolution of ∼1''. The field of view covers the central arcminute, which contains the inner four pairs of knots of the molecular jet. On the channel map, conical structures are clearly present in the low-velocity range (|V – V {sub 0}| < 10 km s{sup –1}), and the highly collimated knots appear in the extremely high velocity range (50 >|V – V {sub 0}| > 30 km s{sup –1}). The higher angular resolution of ∼1''more » reveals the first blue-shifted knot (B1) that was missing in previous Plateau de Bure Interferometer observation of Santiago-García et al. at an offset of ∼6'' to the northeast of the central source. This identification completes the symmetric sequence of knots in both the blue- and red-shifted lobes of the outflow. The innermost knots R1 and B1 have the highest velocities within the sequence. Although the general features appear to be similar to previous CO J = 2-1 images in Santiago-García et al., the emission in CO J = 3-2 almost always peaks further away from the central source than that of CO J = 2-1 in the red-shifted lobe of the channel maps. This gives rise to a gradient in the line-ratio map of CO J = 3-2/J = 2-1 from head to tail within a knot. A large velocity gradient analysis suggests that the differences may reflect a higher gas kinetic temperature at the head. We also explore possible constraints imposed by the nondetection of SiO J = 8-7.« less

  3. Complex Organic Molecules tracing shocks along the outflow cavity in the high-mass protostar IRAS 20126+4104.

    PubMed

    Palau, Aina; Walsh, Catherine; Sánchez-Monge, Álvaro; Girart, Josep M; Cesaroni, Riccardo; Jiménez-Serra, Izaskun; Fuente, Asunción; Zapata, Luis A; Neri, Roberto

    2017-06-01

    We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS 20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H 2 13 CO, we detect emission from CH 3 CN, CH 3 OH, HCOOH, HCOOCH 3 , CH 3 OCH 3 , CH 3 CH 2 CN, CH 3 COCH 3 , NH 2 CN, and (CH 2 OH) 2 . SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Most of the COMs have their peak emission at the putative position of the protostar, but also show an extension towards the south(east), coinciding with an H 2 knot from the jet at about 800-1000 au from the protostar. This is especially clear in the case of H 2 13 CO and CH 3 OCH 3 . We fitted the spectra at representative positions for the disc and the outflow, and found that the abundances of most COMs are comparable at both positions, suggesting that COMs are enhanced in shocks as a result of the passage of the outflow. By coupling a parametric shock model to a large gas-grain chemical network including COMs, we find that the observed COMs should survive in the gas phase for ∼ 2000 yr, comparable to the shock lifetime estimated from the water masers at the outflow position. Overall, our data indicate that COMs in IRAS 20126+4104 may arise not only from the disc, but also from dense and hot regions associated with the outflow.

  4. Complex Organic Molecules tracing shocks along the outflow cavity in the high-mass protostar IRAS 20126+4104

    PubMed Central

    Palau, Aina; Walsh, Catherine; Sánchez-Monge, Álvaro; Girart, Josep M.; Cesaroni, Riccardo; Jiménez-Serra, Izaskun; Fuente, Asunción; Zapata, Luis A.; Neri, Roberto

    2017-01-01

    We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS 20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H213CO, we detect emission from CH3CN, CH3OH, HCOOH, HCOOCH3, CH3OCH3, CH3CH2CN, CH3COCH3, NH2CN, and (CH2OH)2. SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Most of the COMs have their peak emission at the putative position of the protostar, but also show an extension towards the south(east), coinciding with an H2 knot from the jet at about 800–1000 au from the protostar. This is especially clear in the case of H213CO and CH3OCH3. We fitted the spectra at representative positions for the disc and the outflow, and found that the abundances of most COMs are comparable at both positions, suggesting that COMs are enhanced in shocks as a result of the passage of the outflow. By coupling a parametric shock model to a large gas-grain chemical network including COMs, we find that the observed COMs should survive in the gas phase for ∼ 2000 yr, comparable to the shock lifetime estimated from the water masers at the outflow position. Overall, our data indicate that COMs in IRAS 20126+4104 may arise not only from the disc, but also from dense and hot regions associated with the outflow. PMID:28579644

  5. VizieR Online Data Catalog: Formamide detection with ASAI-IRAM (Lopez-Sepulcre+, 2015)

    NASA Astrophysics Data System (ADS)

    Lopez-Sepulcre, A.; Jaber, A. A.; Mendoza, E.; Lefloch, B.; Ceccarelli, C.; Vastel, C.; Bachiller, R.; Cernicharo, J.; Codella, C.; Kahane, C.; Kama, M.; Tafalla, M.

    2017-11-01

    Our source sample consists of 10 well-known pre-stellar and protostellar objects representing different masses and evolutionary states, thus providing a complete view of the various types of objects encountered along the first phases of star formation. The data presented in this work were acquired with the IRAM 30-m telescope near Pico Veleta (Spain) and consist of unbiased spectral surveys at millimetre wavelengths. These are part of the Large Programme ASAI, whose observations and data reduction procedures will be presented in detail in an article by Lefloch & Bachiller (in preparation). Briefly, we gathered the spectral data in several observing runs between 2011 and 2014 using the EMIR receivers at 3 mm (80-116 GHz), 2 mm (129-173 GHz), and 1.3 mm (200-276 GHz). (13 data files).

  6. Design and Expected Performance of GISMO-2, a Two Color Millimeter Camera for the IRAM 30 m Telescope

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes G.; Benford, Dominic J.; Dwek, Eli; Hilton, Gene; Fixsen, Dale J.; Irwin, Kent; Jhabvala, Christine; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; hide

    2014-01-01

    We present the main design features for the GISMO-2 bolometer camera, which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISMO-2 will operate simultaneously in the 1 and 2 mm atmospherical windows. The 1 mm channel uses a 32 × 40 TES-based backshort under grid (BUG) bolometer array, the 2 mm channel operates with a 16 × 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISMO-2 was strongly influenced by our experience with the GISMO 2mm bolometer camera, which is successfully operating at the 30 m telescope. GISMO is accessible to the astronomical community through the regularIRAMcall for proposals.

  7. Black Holes Lead Galaxy Growth, New Research Shows

    NASA Astrophysics Data System (ADS)

    2009-01-01

    Astronomers may have solved a cosmic chicken-and-egg problem -- the question of which formed first in the early Universe -- galaxies or the supermassive black holes seen at their cores. "It looks like the black holes came first. The evidence is piling up," said Chris Carilli, of the National Radio Astronomy Observatory (NRAO). Carilli outlined the conclusions from recent research done by an international team studying conditions in the first billion years of the Universe's history in a lecture presented to the American Astronomical Society's meeting in Long Beach, California. Gas in Distant Galaxy VLA image (right) of gas in young galaxy seen as it was when the Universe was only 870 million years old. CREDIT: NRAO/AUI/NSF, SDSS Full-size JPEG, 323 KB PDF file, 180 KB Galaxy image, no annotation, JPEG 21 KB Earlier studies of galaxies and their central black holes in the nearby Universe revealed an intriguing linkage between the masses of the black holes and of the central "bulges" of stars and gas in the galaxies. The ratio of the black hole and the bulge mass is nearly the same for a wide range of galactic sizes and ages. For central black holes from a few million to many billions of times the mass of our Sun, the black hole's mass is about one one-thousandth of the mass of the surrounding galactic bulge. "This constant ratio indicates that the black hole and the bulge affect each others' growth in some sort of interactive relationship," said Dominik Riechers, of Caltech. "The big question has been whether one grows before the other or if they grow together, maintaining their mass ratio throughout the entire process." In the past few years, scientists have used the National Science Foundation's Very Large Array radio telescope and the Plateau de Bure Interferometer in France to peer far back in the 13.7 billion-year history of the Universe, to the dawn of the first galaxies. "We finally have been able to measure black-hole and bulge masses in several galaxies seen as they were in the first billion years after the Big Bang, and the evidence suggests that the constant ratio seen nearby may not hold in the early Universe. The black holes in these young galaxies are much more massive compared to the bulges than those seen in the nearby Universe," said Fabian Walter of the Max-Planck Institute for Astronomy (MPIfA) in Germany. "The implication is that the black holes started growing first." The next challenge is to figure out how the black hole and the bulge affect each others' growth. "We don't know what mechanism is at work here, and why, at some point in the process, the 'standard' ratio between the masses is established," Riechers said. New telescopes now under construction will be key tools for unraveling this mystery, Carilli explained. "The Expanded Very Large Array (EVLA) and the Atacama Large Millimeter/submillimeter Array (ALMA) will give us dramatic improvements in sensitivity and the resolving power to image the gas in these galaxies on the small scales required to make detailed studies of their dynamics," he said. "To understand how the Universe got to be the way it is today, we must understand how the first stars and galaxies were formed when the Universe was young. With the new observatories we'll have in the next few years, we'll have the opportunity to learn important details from the era when the Universe was only a toddler compared to today's adult," Carilli said. Carilli, Riechers and Walter worked with Frank Bertoldi of Bonn University; Karl Menten of MPIfR; and Pierre Cox and Roberto Neri of the Insitute for Millimeter Radio Astronomy (IRAM) in France.

  8. Interactivity in the Online Learning Environment: A Study of Users of the North Carolina Virtual Public School

    ERIC Educational Resources Information Center

    Ingerham, Laura

    2012-01-01

    Recent studies of online learning environments reveal the importance of interaction within the virtual environment. Abrami, Bernard, Bures, Borokhovski, and Tamim (2011) identify and study 3 types of student interactions: student-content, student-teacher, and student-student. This article builds on this classification of interactions as it…

  9. Regeneration alternatives for upland white spruce after buring and logging in interior Alaska

    Treesearch

    R. V. Densmore; G. P. Juday; John C. Zasada

    1999-01-01

    Site-preparation and regeneration methods for white spruce (Picea glaucu (Meench) Voss) were tested near Fairbanks Alaska, on two upland sites which had been burned in a wildfire and salvage logged. After 5 and 10 years, white spruce regeneration did not differ among the four scarification methods but tended to be lower without scarification....

  10. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  11. Instrument Performance of GISMO, a 2 Millimeter TES Bolometer Camera used at the IRAM 30 m Telescope

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes

    2008-01-01

    In November of 2007 we demonstrated a monolithic Backshort-Under-Grid (BUG) 8x16 array in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda/D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here1 will we present early results from our observing run with the first fielded BUG bolometer array. We have developed key technologies to enable highly versatile, kilopixel, infrared through millimeter wavelength bolometer arrays. The Backshort-Under-Grid (BUG) array consists of three components: 1) a transition-edge-sensor (TES) based bolometer array with background-limited sensitivity and high filling factor, 2) a quarter-wave reflective backshort grid providing high optical efficiency, and 3) a superconducting bump-bonded large format Superconducting Quantum Interference Device (SQUID) multiplexer readout. The array is described in more detail elsewhere (Allen et al., this conference). In November of 2007 we demonstrated a monolithic 8x 16 array with 2 mm-pitch detectors in the field using our 2 mm wavelength imager GISMO (Goddard IRAM Superconducting 2 Millimeter Observer) at the IRAM 30 m telescope in Spain for astronomical observations. The 2 mm spectral range provides a unique terrestrial window enabling ground-based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. The optical design incorporates a 100 mm diameter silicon lens cooled to 4 K, which provides the required fast beam yielding 0.9 lambda1D pixels. With this spatial sampling, GISMO will be very efficient at detecting sources serendipitously in large sky surveys, while the capability for diffraction limited imaging is preserved. The camera provides significantly greater detection sensitivity and mapping speed at this wavelength than has previously been possible. The instrument will fill in the spectral energy distribution of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Here I will we present early results from our observing run with the first fielded BUG bolometer array.

  12. Imaging the water snowline in a protostellar envelope with H13CO+

    NASA Astrophysics Data System (ADS)

    van 't Hoff, Merel L. R.; Persson, Magnus V.; Harsono, Daniel; Taquet, Vianney; Jørgensen, Jes K.; Visser, Ruud; Bergin, Edwin A.; van Dishoeck, Ewine F.

    2018-05-01

    Context. Snowlines are key ingredients for planet formation. Providing observational constraints on the locations of the major snowlines is therefore crucial for fully connecting planet compositions to their formation mechanism. Unfortunately, the most important snowline, that of water, is very difficult to observe directly in protoplanetary disks because of the close proximity of this snowline to the central star. Aims: Based on chemical considerations, HCO+ is predicted to be a good chemical tracer of the water snowline because it is particularly abundant in dense clouds when water is frozen out. This work aims to map the optically thin isotopolog H13CO+ toward the envelope of the low-mass protostar NGC 1333-IRAS2A, where the snowline is at a greater distance from the star than in disks. Comparison with previous observations of H218O show whether H13CO+ is indeed a good tracer of the water snowline. Methods: NGC 1333-IRAS2A was observed using the NOrthern Extended Millimeter Array (NOEMA) at 0.''9 resolution, targeting the H13CO+ J = 3 - 2 transition at 260.255 GHz. The integrated emission profile was analyzed using 1D radiative transfer modeling of a spherical envelope with a parametrized abundance profile for H13CO+. This profile was validated with a full chemical model. Results: The H13CO+ emission peaks 2'' northeast of the continuum peak, whereas H218O shows compact emission on source. Quantitative modeling shows that a decrease in H13CO+ abundance by at least a factor of six is needed in the inner 360 AU to reproduce the observed emission profile. Chemical modeling indeed predicts a steep increase in HCO+ just outside the water snowline; the 50% decrease in gaseous H2O at the snowline is not enough to allow HCO+ to be abundant. This places the water snowline at 225 AU, further away from the star than expected based on the 1D envelope temperature structure for NGC 1333-IRAS2A. In contrast, DCO+ observations show that the CO snowline is at the expected location, making an outburst scenario unlikely. Conclusions: The spatial anticorrelation of H13CO+ and H218O emission provide proof of concept that H13CO+ can be used as a tracer of the water snowline. The NOEMA data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A29Based on observations carried out with the IRAM NOEMA interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  13. Herschel and IRAM-30m Observations of Comet C/2012 S1 (ISON) at 4.5 AU from the Sun

    NASA Astrophysics Data System (ADS)

    O'Rourke, Laurence; Bockelée-Morvan, Dominique; Biver, Nicolas; Altieri, Bruno; Teyssier, David; Jorda, Laurent; Debout, Vincent; Snodgrass, Colin; Küppers, Michael; A'Hearn, Michael; Müller, Thomas; Farnham, Anthony

    2015-04-01

    The sungrazer comet C/2012 S1 (ISON) (perihelion at rh = 0.0125 AU from the Sun) was bright and active when discovered in September 2012 at 6.3 AU from the Sun. Our goal was to characterize the distant gaseous and dust activity of this comet, inbound, from observations of H2O, CO and the dust coma in the far-infrared and submillimeter domains. We report observations undertaken with the Herschel Space Observatory (Pilbratt et al, 2010) on 8 & 13 March 2013 (rh = 4.54--4.47AU) and with the 30m telescope of Institut de Radioastronomie Millimétrique (IRAM) in March and April 2013 (rh = 4.45--4.18 AU). The HIFI instrument aboard Herschel was used to observe the H2O 110-101 line at 557 GHz, whereas images of the dust coma at 70~μm and 160~μm were acquired with the PACS instrument. Spectra acquired at the IRAM 30m telescope cover the CO J(2--1) line at 230.5 GHz. The spectral observations were analysed with excitation and radiative transfer models (Biver et al., 2007). A model of dust thermal emission taking into account a range of dust sizes is used to analyse the PACS maps, equivalent to that used in Bockelée-Morvan et al., 2010. While H2O was not detected in our 8 March 2013 observation, we derive a sensitive 3σ upper limit of Q_H_2O

  14. GISMO, a 2 mm Bolometer Camera Optimized for the Study of High Redshift Galaxies

    NASA Technical Reports Server (NTRS)

    Staguhn, J.

    2007-01-01

    The 2mm spectral range provides a unique terrestrial window enabling ground based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. We present a progress report for our bolometer camera GISMO (the Goddard-IRAM Superconducting 2-Millimeter Observer), which will obtain large and sensitive sky maps at this wavelength. The instrument will be used at the IRAM 30 m telescope and we expect to install it at the telescope in 2007. The camera uses an 8 x 16 planar array of multiplexed TES bolometers, which incorporates our recently designed Backshort Under Grid (BUG) architecture. GISMO will be very efficient at detecting sources serendipitously in large sky surveys. With the background limited performance of the detectors, the camera provides significantly greater imaging sensitivity and mapping speed at this wavelength than has previously been possible. The major scientific driver for the instrument is to provide the IRAM 30 m telescope with the capability to rapidly observe galactic and extragalactic dust emission, in particular from high-zeta ULI RGs and quasar s, even in the summer season. The instrument will fill in the SEDs of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Our source count models predict that GISMO will serendipitously detect one galaxy every four hours on the blank sky, and that one quarter of these galaxies will be at a redshift of zeta 6.5.

  15. IRC +10 216 in 3D: morphology of a TP-AGB star envelope

    NASA Astrophysics Data System (ADS)

    Guélin, M.; Patel, N. A.; Bremer, M.; Cernicharo, J.; Castro-Carrizo, A.; Pety, J.; Fonfría, J. P.; Agúndez, M.; Santander-García, M.; Quintana-Lacaci, G.; Velilla Prieto, L.; Blundell, R.; Thaddeus, P.

    2018-02-01

    During their late pulsating phase, AGB stars expel most of their mass in the form of massive dusty envelopes, an event that largely controls the composition of interstellar matter. The envelopes, however, are distant and opaque to visible and NIR radiation: their structure remains poorly known and the mass-loss process poorly understood. Millimeter-wave interferometry, which combines the advantages of longer wavelength, high angular resolution and very high spectral resolution is the optimal investigative tool for this purpose. Mm waves pass through dust with almost no attenuation. Their spectrum is rich in molecular lines and hosts the fundamental lines of the ubiquitous CO molecule, allowing a tomographic reconstruction of the envelope structure. The circumstellar envelope IRC +10 216 and its central star, the C-rich TP-AGB star closest to the Sun, are the best objects for such an investigation. Two years ago, we reported the first detailed study of the CO(2-1) line emission in that envelope, made with the IRAM 30-m telescope. It revealed a series of dense gas shells, expanding at a uniform radial velocity. The limited resolution of the telescope (HPBW 11″) did not allow us to resolve the shell structure. We now report much higher angular resolution observations of CO(2-1), CO(1-0), CN(2-1) and C4H(24-23) made with the SMA, PdB and ALMA interferometers (with synthesized half-power beamwidths of 3″, 1″ and 0.3″, respectively). Although the envelope appears much more intricate at high resolution than with an 11″ beam, its prevailing structure remains a pattern of thin, nearly concentric shells. The average separation between the brightest CO shells is 16″ in the outer envelope, where it appears remarkably constant. Closer to the star (<40″), the shell pattern is denser and less regular, showing intermediary arcs. Outside the small (r< 0.3'') dust formation zone, the gas appears to expand radially at a constant velocity, 14.5 km s-1, with small turbulent motions. Based on that property, we have reconstructed the 3D structure of the outer envelope and have derived the gas temperature and density radial profiles in the inner (r< 25'') envelope. The shell-intershell density contrast is found to be typically 3. The over-dense shells have spherical or slightly oblate shapes and typically extend over a few steradians, implying isotropic mass loss. The regular spacing of shells in the outer envelope supports the model of a binary star system with a period of 700 yr and a near face-on elliptical orbit. The companion fly-by triggers enhanced episodes of mass loss near periastron. The densification of the shell pattern observed in the central part of the envelope suggests a more complex scenario for the last few thousand years. This work was based on observations carried out with the IRAM, SMA and ALMA telescopes. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory (USA) and the Academia Sinica Institute of Astronomy and Astrophysics (Taiwan) and is funded by the Smithsonian Institution and the Academia Sinica. This paper makes use of the ALMA data: ADS/JAO.ALMA#2013.1.01215.S & ADS/JAO.ALMA#2013.1.00432.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

  16. Millimeter and submillimeter spectra of hot cores and diffuse clouds: comparing IRAM and Herschel spectra with CASSIS simulations.

    NASA Astrophysics Data System (ADS)

    de Luca, Massimo

    The primary goal of the PRISMAS Herschel key program is the spectroscopic study of key molecular lines towards bright Galactic star-forming regions and the diffuse interstellar clouds distributed along the lines of sight. Models of the source emission and absorption spectra have been constructed with CASSIS, based on 1) observational evidence in comparable environments, 2) warm-up chemical models with gas-grain networks, and 3) ground-based spectra of various molecules in the target sources obtained at the IRAM 30m telescope. These models include contributions from the hot core, its parental molecular cloud and the foreground diffuse inter-stellar matter. The considerable complexity of the hot core chemistry, together with the huge amount of information buried in the spectra, often prevents a straightforward interpretation of the data without the help simulations. This is particularly true for the largely unexplored wavelength range of HIFI. In this contribution, we compare HIFI and IRAM observations to our models, in order to either consolidate present day assumptions and knowledge of these environments, or to highlight the model limitations, poorly understood physical and chemical conditions or unexpected abundances. We pay particular attention to the ground state tran-sitions of the most important hydrides, which the PRISMAS program has been designed for, though the HIFI spectra are expected to be rich in other molecules as well. List of Authors De Luca, M., Observatoire de Paris, Ecole Normale Supérieure and CNRS, FRANCE; Bell, T., CalTech, UNITED STATES; Coutens, A., CESR, FRANCE; Godard, B., IAS, FRANCE; Gupta, H., JPL, UNITED STATES; Mook-erjea, B., Tata Institute for Fundamental Research, INDIA; and the PRISMAS consortium, PRISMAS, FRANCE

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spagnolo, Nicolo; Consorzio Interuniversitario per le Scienze Fisiche della Materia, piazzale Aldo Moro 5, I-00185 Roma; Sciarrino, Fabio

    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.

  18. Momentum-space cigar geometry in topological phases

    NASA Astrophysics Data System (ADS)

    Palumbo, Giandomenico

    2018-01-01

    In this paper, we stress the importance of momentum-space geometry in the understanding of two-dimensional topological phases of matter. We focus, for simplicity, on the gapped boundary of three-dimensional topological insulators in class AII, which are described by a massive Dirac Hamiltonian and characterized by an half-integer Chern number. The gap is induced by introducing a magnetic perturbation, such as an external Zeeman field or a ferromagnet on the surface. The quantum Bures metric acquires a central role in our discussion and identifies a cigar geometry. We first derive the Chern number from the cigar geometry and we then show that the quantum metric can be seen as a solution of two-dimensional non-Abelian BF theory in momentum space. The gauge connection for this model is associated to the Maxwell algebra, which takes into account the Lorentz symmetries related to the Dirac theory and the momentum-space magnetic translations connected to the magnetic perturbation. The Witten black-hole metric is a solution of this gauge theory and coincides with the Bures metric. This allows us to calculate the corresponding momentum-space entanglement entropy that surprisingly carries information about the real-space conformal field theory describing the defect lines that can be created on the gapped boundary.

  19. High angular resolution mm- and submm-observations of dense molecular gas in M82

    NASA Technical Reports Server (NTRS)

    Wild, W.; Eckart, Andreas; Genzel, Reinhard; Harris, Andrew I.; Jackson, James M.; Jaffe, D. T.; Lugten, J. B.; Stutzki, J.

    1990-01-01

    Researchers observed CO(7-6), CO(3-2), HCN(3-2) and HCO+(3-2) line emission toward the starburst nucleus of M82 and have obtained an upper limit to H13CN(3-2). These are the first observations of the CO(7-6), HCN(3-2) and HCO+(3-2) lines in any extragalactic source. Researchers took the CO(7-6) spectrum in January 1988 at the Infrared Telescope Facility (IRTF) with the Max Planck Institute for Extraterrestrial Physics/Univ. of California, Berkeley 800 GHz Heterodyne Receiver. In March 1989 researchers used the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope to observe the CO(3-2) line with the new MPE 350 GHz Superconductor Insulator Superconductor (SIS) receiver and the HCN(3-2) and HCO+(3-2) lines with the (IRAM) 230 GHz SIS receiver (beam 12" FWHM, Blundell et al. 1988). The observational parameters are summarized.

  20. Trans-cis molecular photoswitching in interstellar space

    NASA Astrophysics Data System (ADS)

    Cuadrado, S.; Goicoechea, J. R.; Roncero, O.; Aguado, A.; Tercero, B.; Cernicharo, J.

    2016-11-01

    As many organic molecules, formic acid (HCOOH) has two conformers (trans and cis). The energy barrier to internal conversion from trans to cis is much higher than the thermal energy available in molecular clouds. Thus, only the most stable conformer (trans) is expected to exist in detectable amounts. We report the first interstellar detection of cis-HCOOH. Its presence in ultraviolet (UV) irradiated gas exclusively (the Orion Bar photodissociation region), with a low trans-to-cis abundance ratio of 2.8 ± 1.0, supports a photoswitching mechanism: a given conformer absorbs a stellar photon that radiatively excites the molecule to electronic states above the interconversion barrier. Subsequent fluorescent decay leaves the molecule in a different conformer form. This mechanism, which we specifically study with ab initio quantum calculations, was not considered in Space before but likely induces structural changes of a variety of interstellar molecules submitted to UV radiation. This paper makes use of observations obtained with the IRAM-30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  1. Superconducting millimetre-wave cameras

    NASA Astrophysics Data System (ADS)

    Monfardini, Alessandro

    2017-05-01

    I present a review of the developments in kinetic inductance detectors (KID) for mm-wave and THz imaging-polarimetry in the framework of the Grenoble collaboration. The main application that we have targeted so far is large field-of-view astronomy. I focus in particular on our own experiment: NIKA2 (Néel IRAM KID Arrays). NIKA2 is today the largest millimetre camera available to the astronomical community for general purpose observations. It consists of a dual-band, dual-polarisation, multi-thousands pixels system installed at the IRAM 30-m telescope at Pico Veleta (Spain). I start with a general introduction covering the underlying physics and the KID working principle. Then I describe briefly the instrument and the detectors, to conclude with examples of pictures taken on the Sky by NIKA2 and its predecessor, NIKA. Thanks to these results, together with the relative simplicity and low cost of the KID fabrication, industrial applications requiring passive millimetre-THz imaging have now become possible.

  2. A study of the gas-star formation relation over cosmic time

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Gracia-Carpio, J.; Sternberg, A.; Cooper, M. C.; Shapiro, K.; Bolatto, A.; Bouché, N.; Bournaud, F.; Burkert, A.; Combes, F.; Comerford, J.; Cox, P.; Davis, M.; Schreiber, N. M. Förster; Garcia-Burillo, S.; Lutz, D.; Naab, T.; Neri, R.; Omont, A.; Shapley, A.; Weiner, B.

    2010-10-01

    We use the first systematic data sets of CO molecular line emission in z ~ 1-3 normal star-forming galaxies (SFGs) for a comparison of the dependence of galaxy-averaged star formation rates on molecular gas masses at low and high redshifts, and in different galactic environments. Although the current high-z samples are still small and biased towards the luminous and massive tail of the actively star-forming `main-sequence', a fairly clear picture is emerging. Independent of whether galaxy-integrated quantities or surface densities are considered, low- and high-z SFG populations appear to follow similar molecular gas-star formation relations with slopes 1.1 to 1.2, over three orders of magnitude in gas mass or surface density. The gas-depletion time-scale in these SFGs grows from 0.5 Gyr at z ~ 2 to 1.5 Gyr at z ~ 0. The average corresponds to a fairly low star formation efficiency of 2 per cent per dynamical time. Because star formation depletion times are significantly smaller than the Hubble time at all redshifts sampled, star formation rates and gas fractions are set by the balance between gas accretion from the halo and stellar feedback. In contrast, very luminous and ultraluminous, gas-rich major mergers at both low and high z produce on average four to 10 times more far-infrared luminosity per unit gas mass. We show that only some fraction of this difference can be explained by uncertainties in gas mass or luminosity estimators; much of it must be intrinsic. A possible explanation is a top-heavy stellar mass function in the merging systems but the most likely interpretation is that the star formation relation is driven by global dynamical effects. For a given mass, the more compact merger systems produce stars more rapidly because their gas clouds are more compressed with shorter dynamical times, so that they churn more quickly through the available gas reservoir than the typical normal disc galaxies. When the dependence on galactic dynamical time-scale is explicitly included, disc galaxies and mergers appear to follow similar gas-to-star formation relations. The mergers may be forming stars at slightly higher efficiencies than the discs. Based on observations with the Plateau de Bure millimetre interferometre, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany) and IGN (Spain). E-mail: genzel@mpe.mpg.de; linda@mpe.mpg.de ‡ Spitzer Fellow. § MPG-Fellow at MPE.

  3. Toward a new < 250 °C pyrrhotite-magnetite geothermometer for claystones

    NASA Astrophysics Data System (ADS)

    Aubourg, Charles; Pozzi, Jean-Pierre

    2010-05-01

    We investigate the effects of burial and moderate experimental heating on claystones from three regions with different degrees of maturation: immature (burial temperature ˜ 40 °C) of Bure Callovo-Oxfordian claystones in the Basin of Paris (France); early mature (burial temperature ˜ 85 °C) of Opalinus Lower Dogger claystones from the Mont Terri anticline in front of the Jura fold belt (Switzerland); and mature to overmature (burial temperature < 170 °C) of Chartreuse Callovian-Oxfordian claystones from Chartreuse Sub-Alpine chains. To have information about the nature of the magnetic assemblage, we perform low-temperature (10 K-300 K) investigation of an isothermal remanent magnetization. In a first set of laboratory heating experiments, we aim to impart a chemical remanent magnetization (CRM) at 95 °C for several weeks in Bure and Opalinus claystones. Thermal demagnetization of the CRM reveals that magnetite is formed by heating the Opalinus claystones while an assemblage of magnetite and iron sulphide is formed in Bure claystones. Further, we document the appearance of a magnetic transition at ˜ 35 K in Bure claystones after heating. We name this transition the P-transition and we propose that it is related to the formation of fine-grained pyrrhotite (Fe 7S 8). The P-transition is also detected in early mature to mature Opalinus and Chartreuse claystones. We conduct additional experimental heating of natural Opalinus claystones. One set of experiments is referred to as short-term heating (1 h) from 100 °C to 200 °C. It is dedicated to an investigation of the effect of short-lived heating processes in geology. A second set of heating experiments is designed to approach burial conditions using a gold capsule. In burial-like experiments, we heated Opalinus claystones from 150 °C to 250 °C for several weeks under a pressure of 100 MPa. In both experiments, we observe a correlative diminution of the pyrrhotite signature at 35 K with increasing temperature. We interpret this trend as the appearance of magnetite. We derive a parameter PM from the warming curve of a saturated isothermal remanent magnetization acquired at 10 K (ZFC). We report on a consistent evolution of PM with temperature in the range of 40 °C to 250 °C, including natural samples, heated samples at 95 °C, and burial-like heated samples. PM first increases between ˜ 40 °C up to ˜ 85 °C, implying that pyrrhotite gradually dominates the magnetic assemblage at low temperature. For temperatures above 85 °C, PM decreases up to 250 °C, implying that the formation of magnetite gradually overshadows the magnetic input of pyrrhotite. PM values obtained from mature to overmature claystones from the Chartreuse are lower than the PM values obtained from the burial-like heated Opalinus claystones, suggesting that the formation of magnetite is driven by kinetics. The continuous trend of the PM parameter suggests that the magnetic properties of pyrrhotite-magnetite claystones can be used to infer paleo-temperatures and we propose to name this geothermometer MagEval.

  4. Education of Minorities and Peace Education in Pluralistic Societies.

    ERIC Educational Resources Information Center

    Iram, Yaacov, Ed.; Wahrman, Hillel, Ed.

    This collection of papers provides an international perspective on minorities and peace and on the relationship between these two issues in education. The 14 papers are: (1) "Education of Minorities: Problems, Promises, and Prospects--An International Perspective" (Yaacov Iram); (2) "Cultural Recognition or Social Redistribution:…

  5. First detection of rotational CO line emission in a red giant branch star

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.

    2014-01-01

    Context. For stars with initial masses below ~1 M⊙, the mass loss during the first red giant branch (RGB) phase dominates mass loss in the later asymptotic giant branch (AGB) phase. Nevertheless, mass loss on the RGB is still often parameterised by a simple Reimers law in stellar evolution models. Aims: To try to detect CO thermal emission in a small sample of nearby RGB stars with reliable Hipparcos parallaxes that were shown to have infrared excess in an earlier paper. Methods: A sample of five stars was observed in the CO J = 2-1 and J = 3-2 lines with the IRAM and APEX telescopes. Results: One star, the one with the largest mass-loss rate based on the previous analysis of the spectral energy distribution, was detected. The expansion velocity is unexpectedly large at 12 km s-1. The line profile and intensity are compared to the predictions from a molecular line emission code. The standard model predicts a double-peaked profile, while the observations indicate a flatter profile. A model that does fit the data has a much smaller CO envelope (by a factor of 3), and a CO abundance that is two times larger and/or a larger mass-loss rate than the standard model. This could indicate that the phase of large mass loss has only recently started. Conclusions: The detection of CO in an RGB star with a luminosity of only ~1300 L⊙ and a mass-loss rate as low as a few 10-9M⊙ yr-1 is important and the results also raise new questions. However, ALMA observations are required in order to study the mass-loss process of RGB stars in more detail, both for reasons of sensitivity (6 h of integration in superior weather at IRAM were needed to get a 4σ detection in the object with the largest detection probability), and spatial resolution (to determine the size of the CO envelope). Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme ID 091.D-0073 (ESO time) and 091.F-9322 (Swedish time). Based on observations with the Atacama Pathfinder EXperiment (APEX) telescope. APEX is a collaboration between the Max Planck Institute for Radio Astronomy, the European Southern Observatory, and the Onsala Space Observatory. Based on observations carried out with the IRAM 30 m Telescope under programme 183-11. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  6. Average fidelity between random quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zyczkowski, Karol; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Aleja Lotnikow 32/44, 02-668 Warsaw; Perimeter Institute, Waterloo, Ontario, N2L 2Y5

    2005-03-01

    We analyze mean fidelity between random density matrices of size N, generated with respect to various probability measures in the space of mixed quantum states: the Hilbert-Schmidt measure, the Bures (statistical) measure, the measure induced by the partial trace, and the natural measure on the space of pure states. In certain cases explicit probability distributions for the fidelity are derived. The results obtained may be used to gauge the quality of quantum-information-processing schemes.

  7. A MASSIVE MOLECULAR GAS RESERVOIR IN THE z = 5.3 SUBMILLIMETER GALAXY AzTEC-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riechers, Dominik A.; Scoville, Nicholas Z.; Capak, Peter L.

    2010-09-10

    We report the detection of CO J = 2{yields}1, 5{yields}4, and 6{yields}5 emission in the highest-redshift submillimeter galaxy (SMG) AzTEC-3 at z = 5.298, using the Expanded Very Large Array and the Plateau de Bure Interferometer. These observations ultimately confirm the redshift, making AzTEC-3 the most submillimeter-luminous galaxy in a massive z {approx_equal} 5.3 protocluster structure in the COSMOS field. The strength of the CO line emission reveals a large molecular gas reservoir with a mass of 5.3 x 10{sup 10}({alpha}{sub CO}/0.8) M {sub sun}, which can maintain the intense 1800 M {sub sun} yr{sup -1} starburst in this systemmore » for at least 30 Myr, increasing the stellar mass by up to a factor of six in the process. This gas mass is comparable to 'typical' z {approx} 2 SMGs and constitutes {approx_gt}80% of the baryonic mass (gas+stars) and 30%-80% of the total (dynamical) mass in this galaxy. The molecular gas reservoir has a radius of <4 kpc and likely consists of a 'diffuse', low-excitation component, containing (at least) 1/3 of the gas mass (depending on the relative conversion factor {alpha}{sub CO}), and a 'dense', high-excitation component, containing {approx}2/3 of the mass. The likely presence of a substantial diffuse component besides highly excited gas suggests different properties between the star-forming environments in z > 4 SMGs and z > 4 quasar host galaxies, which perhaps trace different evolutionary stages. The discovery of a massive, metal-enriched gas reservoir in an SMG at the heart of a large z = 5.3 protocluster considerably enhances our understanding of early massive galaxy formation, pushing back to a cosmic epoch where the universe was less than 1/12 of its present age.« less

  8. Investigating the structure and fragmentation of a highly filamentary IRDC

    NASA Astrophysics Data System (ADS)

    Henshaw, J. D.; Caselli, P.; Fontani, F.; Jiménez-Serra, I.; Tan, J. C.; Longmore, S. N.; Pineda, J. E.; Parker, R. J.; Barnes, A. T.

    2016-11-01

    We present 3.7 arcsec (˜0.05 pc) resolution 3.2 mm dust continuum observations from the Institut de Radioastronomie Millimétrique Plateau de Bure Interferometer, with the aim of studying the structure and fragmentation of the filamentary infrared dark cloud (IRDC) G035.39-00.33. The continuum emission is segmented into a series of 13 quasi-regularly spaced (λobs ˜ 0.18 pc) cores, following the major axis of the IRDC. We compare the spatial distribution of the cores with that predicted by theoretical work describing the fragmentation of hydrodynamic fluid cylinders, finding a significant (a factor of ≳ 8) discrepancy between the two. Our observations are consistent with the picture emerging from kinematic studies of molecular clouds suggesting that the cores are harboured within a complex network of independent sub-filaments. This result emphasizes the importance of considering the underlying physical structure, and potentially, dynamically important magnetic fields, in any fragmentation analysis. The identified cores exhibit a range in (peak) beam-averaged column density (3.6 × 1023 cm-2 < NH, c < 8.0 × 1023 cm-2), mass (8.1 M⊙ < Mc < 26.1 M⊙), and number density (6.1 × 105 cm-3 < nH, c, eq < 14.7 × 105 cm-3). Two of these cores, dark in the mid-infrared, centrally concentrated, monolithic (with no traceable substructure at our PdBI resolution), and with estimated masses of the order ˜20-25 M⊙, are good candidates for the progenitors of intermediate-to-high-mass stars. Virial parameters span a range 0.2 < αvir < 1.3. Without additional support, possibly from dynamically important magnetic fields with strengths of the order of 230 μG < B < 670 μG, the cores are susceptible to gravitational collapse. These results may imply a multilayered fragmentation process, which incorporates the formation of sub-filaments, embedded cores, and the possibility of further fragmentation.

  9. A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monfardini, A.; Benoit, A.; Bideaud, A.

    The Neel IRAM KIDs Array (NIKA) is a fully integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. The instrument includes dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz. The imaging sensors consist of two spatially separated arrays of KIDs. The first array, mounted on the 150 GHz branch, is composed of 144 lumped-element KIDs. The second array (220 GHz) consists of 256 antenna-coupled KIDs. Each of the arrays is sensitive to a single polarization; the band splitting is achieved by using a grid polarizer. The optics and sensors aremore » mounted in a custom dilution cryostat, with an operating temperature of {approx}70 mK. Electronic readout is realized using frequency multiplexing and a transmission line geometry consisting of a coaxial cable connected in series with the sensor array and a low-noise 4 K amplifier. The dual-band NIKA was successfully tested in 2010 October at the Institute for Millimetric Radio Astronomy (IRAM) 30 m telescope at Pico Veleta, Spain, performing in-line with laboratory predictions. An optical NEP was then calculated to be around 2 x 10{sup -16} W Hz{sup -1/2} (at 1 Hz) while under a background loading of approximately 4 pW pixel{sup -1}. This improvement in comparison with a preliminary run (2009) verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically relevant faint and extended objects were then imaged including the Galactic Center SgrB2 (FIR1), the radio galaxy Cygnus A, and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.« less

  10. Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical

    NASA Astrophysics Data System (ADS)

    Agúndez, Marcelino; Cernicharo, José; Guélin, Michel

    2015-05-01

    We conducted radioastronomical observations of 9 dark clouds with the IRAM 30 m telescope. We present the first identification in space of the ketenyl radical (HCCO) toward the starless core Lupus-1A and the molecular cloud L483 and the detection of the related molecules ketene (H2CCO) and acetaldehyde (CH3CHO) in these two sources and 3 additional dark clouds. We also report the detection of the formyl radical (HCO) in the 9 targeted sources and of propylene (CH2CHCH3) in 4 of the observed sources, which significantly extends the number of dark clouds where these molecules are known to be present. We have derived a beam-averaged column density of HCCO of ~5 × 1011 cm-2 in both Lupus-1A and L483, which means that the ketenyl radical is just ~10 times less abundant than ketene in these sources. The non-negligible abundance of HCCO found implies that there must be a powerful formation mechanism able to counterbalance the efficient destruction of this radical through reactions with neutral atoms. The column densities derived for HCO, (0.5-2.7) ×1012 cm-2, and CH2CHCH3, (1.9-4-2) ×1013 cm-2, are remarkably uniform across the sources where these species are detected, confirming their ubiquity in dark clouds. Gas phase chemical models of cold dark clouds can reproduce the observed abundances of HCO, but cannot explain the presence of HCCO in Lupus-1A and L483 and the high abundances derived for propylene. The chemistry of cold dark clouds needs to be revised in light of these new observational results. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Tables 3-6 are available in electronic form at http://www.aanda.org

  11. Sensitive survey for 13CO, CN, H2CO, and SO in the disks of T Tauri and Herbig Ae stars. II. Stars in ρ Ophiuchi and upper Scorpius

    NASA Astrophysics Data System (ADS)

    Reboussin, L.; Guilloteau, S.; Simon, M.; Grosso, N.; Wakelam, V.; Di Folco, E.; Dutrey, A.; Piétu, V.

    2015-06-01

    Aims: We attempt to determine the molecular composition of disks around young low-mass stars in the ρ Oph region and to compare our results with a similar study performed in the Taurus-Auriga region. Methods: We used the IRAM 30 m telescope to perform a sensitive search for CN N = 2-1 in 29 T Tauri stars located in the ρ Oph and upper Scorpius regions. 13CO J = 2-1 is observed simultaneously to provide an indication of the level of confusion with the surrounding molecular cloud. The bandpass also contains two transitions of ortho-H2CO, one of SO, and the C17O J = 2-1 line, which provides complementary information on the nature of the emission. Results: Contamination by molecular cloud in 13CO and even C17O is ubiquitous. The CN detection rate appears to be lower than for the Taurus region, with only four sources being detected (three are attributable to disks). H2CO emission is found more frequently, but appears in general to be due to the surrounding cloud. The weaker emission than in Taurus may suggest that the average disk size in the ρ Oph region is smaller than in the Taurus cloud. Chemical modeling shows that the somewhat higher expected disk temperatures in ρ Oph play a direct role in decreasing the CN abundance. Warmer dust temperatures contribute to convert CN into less volatile forms. Conclusions: In such a young region, CN is no longer a simple, sensitive tracer of disks, and observations with other tracers and at high enough resolution with ALMA are required to probe the gas disk population. Based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org

  12. Organic Species in Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Vasyunina, T.; Vasyunin, A. I.; Herbst, Eric; Linz, Hendrik; Voronkov, Maxim; Britton, Tui; Zinchenko, Igor; Schuller, Frederic

    2014-01-01

    It is currently assumed that infrared dark clouds (IRDCs) represent the earliest evolutionary stages of high-mass stars (>8 M ⊙). Submillimeter and millimeter-wave studies performed over the past 15 yr show that IRDCs possess a broad variety of properties, and hence a wide range of problems and questions that can be tackled. In this paper, we report an investigation of the molecular composition and chemical processes in two groups of IRDCs. Using the Mopra, APEX, and IRAM radio telescopes over the last four years, we have collected molecular line data for CO, H2CO, HNCO, CH3CCH, CH3OH, CH3CHO, CH3OCHO, and CH3OCH3. For all of these species we estimated molecular abundances. We then undertook chemical modeling studies, concentrating on the source IRDC028.34+0.06, and compared observed and modeled abundances. This comparison showed that to reproduce observed abundances of complex organic molecules, a zero-dimensional gas-grain model with constant physical conditions is not sufficient. We achieved greater success with the use of a warm-up model, in which warm-up from 10 K to 30 K occurs following a cold phase. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. The 22 m Mopra antenna is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operations as a National Facility managed by CSIRO. The University of New South Wales Digital Filter Bank used for the observations with the Mopra Telescope was provided with support from the Australian Research Council.

  13. The Post-9/11 European Union Counterterrorism Response: Legal-Institutional Framework

    DTIC Science & Technology

    2012-12-01

    www.diw.de/documents/publikationen/73/diw_01.c.386651. de /diw_econsec0055.pdf. 23 EUROPOL, TE-SAT 2012 EU Terrorism Situation and Trend Report (The...europoltsat.pdf. 11 should be taken with a certain caution because some of positive outcomes are not known in public. De Goede concludes “due...www.diw.de/documents/publikationen/73/diw_01.c.94888. de /diw_econsec0002.pdf; Bures, EU Counterterrorism Policy, 31-58. 12 Eurobarometer28 as the

  14. MINOS 5.0 User’s Guide.

    DTIC Science & Technology

    1983-12-01

    1111 1 MICROCOPY RESOLUTION TEST CHARTjNA IONAL BURE U OF STANDARDS 193-A LK7> systems 1-,i11 Optimization 2 tLaboratory MINOS 5.0 USER’S GUIDE by...encouragement from George Dantzig and the benefit of his modeling activity within SOL, notably on the energy-economic model PILOT . We thank him warmly for...provided by running various versions of MINOS during their work on PILOT . (We note that PILOT has grown to 1500 constraints and 4000 variables, and now has

  15. Physical and Chemical Properties of Protocluster Clumps and Massive Young Stellar Objects Associated to Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Gomez Gonzalez, Laura

    2012-01-01

    The study of high-mass stars is important not only because of the effects they produce in their environment through outflows, expanding HII regions, stellar winds, and eventually supernova shock waves, but also because they play a crucial role in estimating star formation rates in other galaxies. Although we have an accepted evolutionary scenario that explains (isolated) low-mass star formation, the processes that produce massive stars (M_star > 8 M_sol) and star clusters, especially their earliest stages, are not well understood. The newly discovered class of interstellar clouds now termed infrared dark clouds (IRDCs) represent excellent laboratories to study the earliest stages of high-mass star formation given that some of the clumps within them are known to have high masses (~100's M_sol), high densities (n > 10^5 cm^-3), and low temperatures (10-20K) as expected for the birthplaces of high-mass stars. Some questions remain unanswered: Do IRDCs harbor the very early stages of high-mass star formation, i.e., the pre-protocluster phase? If so, how do they compare with low-mass star formation sites? Is there chemical differentiation in IRDC clumps? What is the mass distribution of IRDCs? In this dissertation and for the first time, a catalog of 12529 IRDC candidates at 24 um has been created using archival data from the MIPSGAL/Spitzer survey, as a first step in searching for the massive pre-protocluster clumps. From this catalog, a sample of ~60 clumps has been selected in order to perform single-pointing observations with the IRAM 30m, Effelsberg 100m, and APEX 12m telescopes. One IRDC clump seems to be a promising candidate for being in the pre-protocluster phase. In addition, molecular line mapping observations have been performed on three clumps within IRDCs and a detailed chemical study of 10 molecular lines has been carried out. A larger difference in column densities and abundances has been found between these clumps and high-m! ass protostellar objects than between these clumps and low-mass pre-stellar cores and protostellar objects. A non-LTE Monte Carlo code was used to model the N_2H^+ (1-0) and (3-2) lines in order to constrain the physical properties of two clumps. Six IRDC complexes have been mapped in the 870 um dust continuum emission with the LABOCA instrument on the APEX 12m telescope. Line observations have been carried out in order to obtain temperature and kinematic distances of selected clumps. Physical properties such as masses, effective radii, and column densities have been obtained. The mass spectrum of these clumps has been fitted with a power-law whose best-fitting index is alpha =-1.60. This value is consistent with the CO clump mass function reported in the literature. A relation between the dust emission at 870 um and the degree of extinction (contrast) at 24 um has been obtained by combining dust emission observations and extinction studies. A study with the Plateau de Bure Interferometer of a core in an archetypal filamentary IRDC at few arcsecond resolution has been carried out to determine its physical and chemical structure. Extended 4.5 um emission, "wings" in the CH_3OH 2_k -> 1_k spectra, and a CH_3OH abundance enhancement provide evidence of an outflow in the East-West direction. In addition, a gradient of ~4 km/s in the same direction has been found, which is interpreted as being produced by an outflow(s)-cloud interaction. Finally, Very Large Array interferometric observations of the 7_0-6_1 A^+ (class I) methanol maser transition at 44 GHz toward three high-mass star-forming regions have been carried out in order to provide accurate maser positions and parameters. For all three sources, the masers were well-separated from the HII region, with projected distances ranging from 0.1 to 0.3 pc.

  16. VizieR Online Data Catalog: L1157-B1 DCN (2-1) and H13CN (2-1) datacubes (Busquet+,

    NASA Astrophysics Data System (ADS)

    Busquet, G.; Fontani, F.; Viti, S.; Codella, C.; Lefloch, B.; Benedettini, M.; Ceccarellli, C.

    2017-06-01

    IRAM NOEMA observations of DCN(2-1) and H13CN(2-1) towa brightest bow-shock B1 of the L1157 molecular outflow. All data cubes are provided in fits format smoothed to a velocity resolution of 0.5km/s. (2 data files).

  17. Improvement of reliability in multi-interferometer-based counterfactual deterministic communication with dissipation compensation.

    PubMed

    Liu, Chao; Liu, Jinhong; Zhang, Junxiang; Zhu, Shiyao

    2018-02-05

    The direct counterfactual quantum communication (DCQC) is a surprising phenomenon that quantum information can be transmitted without using any carriers of physical particles. The nested interferometers are promising devices for realizing DCQC as long as the number of interferometers goes to be infinity. Considering the inevitable loss or dissipation in practical experimental interferometers, we analyze the dependence of reliability on the number of interferometers, and show that the reliability of direct communication is being rapidly degraded with the large number of interferometers. Furthermore, we simulate and test this counterfactual deterministic communication protocol with a finite number of interferometers, and demonstrate the improvement of the reliability using dissipation compensation in interferometers.

  18. Information geometry of Gaussian channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monras, Alex; CNR-INFM Coherentia, Napoli; CNISM Unita di Salerno

    2010-06-15

    We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirablemore » properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).« less

  19. Statistics, gymnastics and the origins of sport science in Belgium (and Europe).

    PubMed

    Delheye, Pascal

    2014-01-01

    This paper analyses the introduction of statistics in the field of gymnastics and its effect on the institutionalisation of physical education as a fully fledged academic discipline. Soon after Belgian independence, Adolphe Quetelet's research already resulted in large-scale anthropometric statistics - indeed, he developed an index that is still being used and is better known under the name of the body mass index. His insights were applied by promoters of gymnastics who wanted to make physical education more scientific. Thus, Clément Lefébure, director of the Ecole Normale de Gymnastique et d'Escrime in Brussels, set up a comparative experiment (with pre- and post-test measurements) by which he intended to show that the 'rational' method of Swedish gymnastics produced much better results than the 'empirical' method of Belgian/German Turnen. Lefébure's experiment, which was cited internationally but which was also strongly contested by opponents, was one of the factors that led to Swedish gymnastics being officially institutionalised in 1908 at the newly founded Higher Institute of Physical Education of the State University of Ghent, the first institute in the world where students could obtain a doctoral degree in physical education. Although it rested actually on very weak scientific foundations, the bastion of Swedish gymnastics built in Belgium in that pre-war period collapsed only in the 1960s. From then on, sport science could develop fully within the institutes for physical education.

  20. Quantum Interferometry

    NASA Technical Reports Server (NTRS)

    Dowling, Jonathan P.

    2000-01-01

    Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.

  1. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    PubMed Central

    Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608

  2. Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes

    PubMed Central

    Smith, Zachary J.; Wang, Jyh-Chiang E.; Quataert, Sally A.; Berger, Andrew J.

    2010-01-01

    Integrated Raman and angular-scattering microscopy (IRAM) is a multimodal platform capable of noninvasively probing both the chemistry and morphology of a single cell without prior labeling. Using this system, we are able to detect activation-dependent changes in the Raman and elastic-scattering signals from CD8+ T cells stimulated with either Staphylococcal enterotoxin B (SEB) or phorbol myristate acetate (PMA). In both cases, results obtained from the IRAM instrument correlate well with results obtained from traditional fluorescence-based flow cytometry for paired samples. SEB-mediated activation was distinguished from resting state in CD8+ T cells by an increase in the number and mean size of small (∼500-nm) elastic scatterers as well as a decrease in Raman bands, indicating changes in nuclear content. PMA-mediated activation induced a different profile in CD8+ T cells from SEB, showing a similar increase in small elastic scatterers but a different Raman change, with elevation of cellular protein and lipid bands. These results suggest the potential of this multimodal, label-free optical technique for studying processes in single cells. PMID:20615023

  3. New methods of multimode fiber interferometer signal processing

    NASA Astrophysics Data System (ADS)

    Vitrik, Oleg B.; Kulchin, Yuri N.; Maxaev, Oleg G.; Kirichenko, Oleg V.; Kamenev, Oleg T.; Petrov, Yuri S.

    1995-06-01

    New methods of multimode fiber interferometers signal processing are suggested. For scheme of single fiber multimode interferometers with two excited modes, the method based on using of special fiber unit is developed. This unit provides the modes interaction and further sum optical field filtering. As a result the amplitude of output signal is modulated by external influence on interferometer. The stabilization of interferometer sensitivity is achieved by using additional special modulation of output signal. For scheme of single fiber multimode interferometers with excitation of wide mode spectrum, the signal of intermode interference is registered by photodiode matrix and then special electronic unit performs correlation processing. For elimination of temperature destabilization, the registered signal is adopted to multimode interferometers optical signal temperature changes. The achieved parameters for double mode scheme: temporary stability--0.6% per hour, sensitivity to interferometer length deviations--3,2 nm; for multimode scheme: temperature stability--(0.5%)/(K), temporary nonstability--0.2% per hour, sensitivity to interferometer length deviations--20 nm, dynamic range--35 dB.

  4. Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse A.; Cheng, Victor H. L.

    2003-01-01

    Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.

  5. Nonlocal polarization interferometer for entanglement detection

    DOE PAGES

    Williams, Brian P.; Humble, Travis S.; Grice, Warren P.

    2014-10-30

    We report a nonlocal interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer's unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The interferometer consists of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that share a polarization-entangled source. Correlations between these interferometers exhibit nonlocal interference, while single-photon interference is suppressed. This interferometer also allows for a unique version of the Clauser-Horne-Shimony-Holt Bell test where the local reality is the photon polarization. In conclusion, wemore » present the relevant theory and experimental results.« less

  6. A Comparison of Structurally Connected and Multiple Spacecraft Interferometers

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Crawley, Edward F.

    1996-01-01

    Structurally connected and multiple spacecraft interferometers are compared in an attempt to establish the maximum baseline (referred to as the "cross-over baseline") for which it is preferable to operate a single-structure interferometer in space rather than an interferometer composed of numerous, smaller spacecraft. This comparison is made using the total launched mass of each configuration as the comparison metric. A framework of study within which structurally connected and multiple spacecraft interferometers can be compared is presented in block diagram form. This methodology is then applied to twenty-two different combinations of trade space parameters to investigate the effects of different orbits, orientations, truss materials, propellants, attitude control actuators, onboard disturbance sources, and performance requirements on the cross-over baseline. Rotating interferometers and the potential advantages of adding active structural control to the connected truss of the structurally connected interferometer are also examined. The minimum mass design of the structurally connected interferometer that meets all performance-requirements and satisfies all imposed constraints is determined as a function of baseline. This minimum mass design is then compared to the design of the multiple spacecraft interferometer. It is discovered that the design of the minimum mass structurally connected interferometer that meets all performance requirements and constraints in solar orbit is limited by the minimum allowable aspect ratio, areal density, and gage of the struts. In the formulation of the problem used in this study, there is no advantage to adding active structural control to the truss for interferometers in solar orbit. The cross-over baseline for missions of practical duration (ranging from one week to thirty years) in solar orbit is approximately 400 m for non-rotating interferometers and 650 m for rotating interferometers.

  7. Comparative Sensitivities of Gravitational Wave Detectors Based on Atom Interferometers and Light Interferometers

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Thorpe, J. I.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.

  8. A compact semiconductor digital interferometer and its applications

    NASA Astrophysics Data System (ADS)

    Britsky, Oleksander I.; Gorbov, Ivan V.; Petrov, Viacheslav V.; Balagura, Iryna V.

    2015-05-01

    The possibility of using semiconductor laser interferometers to measure displacements at the nanometer scale was demonstrated. The creation principles of miniature digital Michelson interferometers based on semiconductor lasers were proposed. The advanced processing algorithm for the interferometer quadrature signals was designed. It enabled to reduce restrictions on speed of measured movements. A miniature semiconductor digital Michelson interferometer was developed. Designing of the precision temperature stability system for miniature low-cost semiconductor laser with 0.01ºС accuracy enabled to use it for creation of compact interferometer rather than a helium-neon one. Proper firmware and software was designed for the interferometer signals real-time processing and conversion in to respective shifts. In the result the relative displacement between 0-500 mm was measured with a resolution of better than 1 nm. Advantages and disadvantages of practical use of the compact semiconductor digital interferometer in seismometers for the measurement of shifts were shown.

  9. A Martin-Puplett cartridge FIR interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Roger J.; Penniman, Edwin E.; Jarboe, Thomas R.

    2004-10-01

    A compact prealigned Martin-Puplett interferometer (MPI) cartridge for plasma interferometry is described. The MPI cartridge groups all components of a MP interferometer, with the exception of the end mirror for the scene beam, on a stand-alone rigid platform. The interferometer system is completed by positioning a cartridge anywhere along and coaxial with the scene beam, considerably reducing the amount of effort in alignment over a discrete component layout. This allows the interferometer to be expanded to any number of interferometry chords consistent with optical access, limited only by the laser power. The cartridge interferometer has been successfully incorporated as amore » second chord on the Helicity Injected Torus II (HIT-II) far infrared interferometer system and a comparison with the discrete component system is presented. Given the utility and compactness of the cartridge, a possible design for a five-chord interferometer arrangement on the HIT-II device is described.« less

  10. Cigeo, the French Geological Repository Project - 13022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labalette, Thibaud; Harman, Alain; Dupuis, Marie-Claude

    The Cigeo industrial-scale geological disposal centre is designed for the disposal of the most highly-radioactive French waste. It will be built in an argillite formation of the Callovo-Oxfordian dating back 160 million years. The Cigeo project is located near the Bure village in the Paris Basin. The argillite formation was studied since 1974, and from the Meuse/Haute-Marne underground research laboratory since end of 1999. Most of the waste to be disposed of in the Cigeo repository comes from nuclear power plants and from reprocessing of their spent fuel. (authors)

  11. Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries

    DTIC Science & Technology

    2015-09-01

    Eyedrops in the Treatment of Dry Eye in Sjögren Syndrome . Eur. J. Ophthalmol. 2013, 23, 368–376. 23. Acharya, G.; Shin, C. S.; McDermott, M.; Mishra, H...J.E. Buring, M.R. Dana, Prevalence of dry eye syndrome among US women, Am J. Ophthalmol. 136 (2003) 318–326. [7] M.A. Lemp, Advances in...surface of patients with dry eye syndrome , Invest. Ophthalmol. Vis. Sci. 51 (2010) 643–650. [43] D.T. Jones, D. Monroy, Z. Ji, S.S. Atherton, S.C

  12. Sudden death of distillability in qutrit-qutrit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song Wei; Zhu Shiliang; Chen Lin

    2009-07-15

    We introduce the concept of distillability sudden death, i.e., free entangled states can evolve into nondistillable (bound entangled or separable) states in finite time under local noise. We describe the phenomenon through a specific model of local dephasing noise and compare the behavior of states in terms of the Bures fidelity. Then we propose a few methods to avoid distillability sudden death of states under (general) local dephasing noise so that free entangled states can be robust against decoherence. Moreover, we find that bound entangled states are unstable in the limit of infinite time.

  13. Recent observations with phase-contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-09-01

    Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.

  14. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm

    NASA Astrophysics Data System (ADS)

    Weichert, C.; Köchert, P.; Köning, R.; Flügge, J.; Andreas, B.; Kuetgens, U.; Yacoot, A.

    2012-09-01

    The PTB developed a new optical heterodyne interferometer in the context of the European joint research project ‘Nanotrace’. A new optical concept using plane-parallel plates and spatially separated input beams to minimize the periodic nonlinearities was realized. Furthermore, the interferometer has the resolution of a double-path interferometer, compensates for possible angle variations between the mirrors and the interferometer optics and offers a minimal path difference between the reference and the measurement arm. Additionally, a new heterodyne phase evaluation based on an analogue to digital converter board with embedded field programmable gate arrays was developed, providing a high-resolving capability in the single-digit picometre range. The nonlinearities were characterized by a comparison with an x-ray interferometer, over a measurement range of 2.2 periods of the optical interferometer. Assuming an error-free x-ray interferometer, the nonlinearities are considered to be the deviation of the measured displacement from a best-fit line. For the proposed interferometer, nonlinearities smaller than ±10 pm were observed without any quadrature fringe correction.

  15. The use of x-ray interferometry to investigate the linearity of the NPL Differential Plane Mirror Optical Interferometer

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Downs, Michael J.

    2000-08-01

    The x-ray interferometer from the combined optical and x-ray interferometer (COXI) facility at NPL has been used to investigate the performance of the NPL Jamin Differential Plane Mirror Interferometer when it is fitted with stabilized and unstabilized lasers. This Jamin interferometer employs a common path design using a double pass configuration and one fringe is realized by a displacement of 158 nm between its two plane mirror retroreflectors. Displacements over ranges of several optical fringes were measured simultaneously using the COXI x-ray interferometer and the Jamin interferometer and the results were compared. In order to realize the highest measurement accuracy from the Jamin interferometer, the air paths were shielded to prevent effects from air turbulence and electrical signals generated by the photodetectors were analysed and corrected using an optimizing routine in order to subdivide the optical fringes accurately. When an unstabilized laser was used the maximum peak-to-peak difference between the two interferometers was 80 pm, compared with 20 pm when the stabilized laser was used.

  16. Quasar feedback revealed by giant molecular outflows

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Maiolino, R.; Piconcelli, E.; Menci, N.; Aussel, H.; Lamastra, A.; Fiore, F.

    2010-07-01

    In the standard scenario for galaxy evolution young star-forming galaxies transform into red bulge-dominated spheroids, where star formation has been quenched. To explain this transformation, a strong negative feedback generated by accretion onto a central super-massive black hole is often invoked. The depletion of gas resulting from quasar-driven outflows should eventually stop star-formation across the host galaxy and lead the black hole to “suicide” by starvation. Direct observational evidence for a major quasar feedback onto the host galaxy is still missing, because outflows previously observed in quasars are generally associated with the ionized component of the gas, which only accounts for a minor fraction of the total gas content, and typically occurrs in the central regions. We used the IRAM PdB Interferometer to observe the CO(1-0) transition in Mrk 231, the closest quasar known. Thanks to the wide band we detected broad wings of the CO line, with velocities of up to 750 km s-1 and spatially resolved on the kpc scale. These broad CO wings trace a giant molecular outflow of about 700 M_⊙/year, far larger than the ongoing star-formation rate (~200 M_⊙/year) observed in the host galaxy. This wind will totally expel the cold gas reservoir in Mrk 231 in about 107 yrs, therefore halting the star-formation activity on the same timescale. The inferred kinetic energy in the molecular outflow is ~1.2 × 1044 erg/s, corresponding to a few percent of the AGN bolometric luminosity, which is very close to the fraction expected by models ascribing quasar feedback to highly supersonic shocks generated by radiatively accelerated nuclear winds. Instead, the contribution by the SNe associated with the starburst fall short by several orders of magnitude to account for the kinetic energy observed in the outflow. The direct observational evidence for quasar feedback reported here provides solid support to the scenarios ascribing the observed properties of local massive galaxies to quasar-induced large-scale winds.

  17. Special relativity and interferometers

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.

    1988-01-01

    A new generation of gravitational wave detectors is expected to be based on interferometers. Yurke et al. (1986) introduced a class of interferometers characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the interferometer. It is shown here that the SU(1,1) interferometer can serve as an analog computer for Wigner's little group of the Poincare\\'| group.

  18. Optically guided atom interferometer tuned to magic wavelength

    NASA Astrophysics Data System (ADS)

    Akatsuka, Tomoya; Takahashi, Tadahiro; Katori, Hidetoshi

    2017-11-01

    We demonstrate an atom interferometer operating on the 1S0-3P0 clock transition of 87Sr atoms in a “magic” optical guide, where the light shift perturbations of the guiding potential are canceled. As a proof-of-principle demonstration, a Mach-Zehnder interferometer is set horizontally to map the acceleration introduced by the focused optical guide. This magic guide interferometer on the clock transition is applicable to atomic elements where magic wavelengths can be found. Possible applications of the magic guide interferometer, including a hollow-core fiber interferometer and gradiometer, are discussed.

  19. Spatially resolved images of reactive ions in the Orion Bar

    NASA Astrophysics Data System (ADS)

    Goicoechea, Javier R.; Cuadrado, Sara; Pety, Jérôme; Bron, Emeric; Black, John H.; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne

    2017-05-01

    We report high angular resolution (4.9'' × 3.0'') images of reactive ions SH+, HOC+, and SO+ toward the Orion Bar photodissociation region (PDR). We used ALMA-ACA to map several rotational lines at 0.8 mm, complemented with multi-line observations obtained with the IRAM 30 m telescope. The SH+ and HOC+ emission is restricted to a narrow layer of 2''- to 10''-width (≈800 to 4000 AU depending on the assumed PDR geometry) that follows the vibrationally excited H emission. Both ions efficiently form very close to the H/H2 transition zone, at a depth of AV ≲ 1 mag into the neutral cloud, where abundant C+, S2* coexist. SO+ peaks slightly deeper into the cloud. The observed ions have low rotational temperatures (Trot ≈ 10-30 K ≪ Tk) and narrow line-widths ( 2-3 km s-1), a factor of ≃2 narrower that those of the lighter reactive ion CH+. This is consistent with the higher reactivity and faster radiative pumping rates of CH+ compared to the heavier ions, which are driven relatively more quickly toward smaller velocity dispersion by elastic collisions and toward lower Trot by inelastic collisions. We estimate column densities and average physical conditions from an excitation model (n(H2) ≈ 105-106 cm-3, n(e-) ≈ 10 cm-3, and Tk ≈ 200 K). Regardless of the excitation details, SH+ and HOC+ clearly trace the most exposed layers of the UV-irradiated molecular cloud surface, whereas SO+ arises from slightly more shielded layers. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2012.1.00352.S. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ.Includes IRAM 30 m telescope observations. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  20. Searching for trans ethyl methyl ether in Orion KL⋆

    NASA Astrophysics Data System (ADS)

    Tercero, B.; Cernicharo, J.; López, A.; Brouillet, N.; Kolesniková, L.; Motiyenko, R. A.; Margulès, L.; Alonso, J. L.; Guillemin, J.-C.

    2015-10-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm-2 and ≤(1.0 ± 0.2) × 1015 cm-2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work was also based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org

  1. Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  2. Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors.

    PubMed

    Baker, John G; Thorpe, J I

    2012-05-25

    We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  3. The Mask Designs for Space Interferometer Mission (SIM)

    NASA Technical Reports Server (NTRS)

    Wang, Xu

    2008-01-01

    The Space Interferometer Mission (SIM) consists of three interferometers (science, guide1, and guide2) and two optical paths (metrology and starlight). The system requirements for each interferometer/optical path combination are different and sometimes work against each other. A diffraction model is developed to design and optimize various masks to simultaneously meet the system requirements of three interferometers. In this paper, the details of this diffraction model will be described first. Later, the mask design for each interferometer will be presented to demonstrate the system performance compliance. In the end, a tolerance sensitivity study on the geometrical dimension, shape, and the alignment of these masks will be discussed.

  4. Modulated Source Interferometry with Combined Amplitude and Frequency Modulation

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    1998-01-01

    An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.

  5. Comparison of the performance of the next generation of optical interferometers

    NASA Astrophysics Data System (ADS)

    Pisani, Marco; Yacoot, Andrew; Balling, Petr; Bancone, Nicola; Birlikseven, Cengiz; Çelik, Mehmet; Flügge, Jens; Hamid, Ramiz; Köchert, Paul; Kren, Petr; Kuetgens, Ulrich; Lassila, Antti; Bartolo Picotto, Gian; Şahin, Ersoy; Seppä, Jeremias; Tedaldi, Matthew; Weichert, Christoph

    2012-08-01

    Six European National Measurement Institutes (NMIs) have joined forces within the European Metrology Research Programme funded project NANOTRACE to develop the next generation of optical interferometers having a target uncertainty of 10 pm. These are needed for NMIs to provide improved traceable dimensional metrology that can be disseminated to the wider nanotechnology community, thereby supporting the growth in nanotechnology. Several approaches were followed in order to develop the interferometers. This paper briefly describes the different interferometers developed by the various partners and presents the results of a comparison of performance of the optical interferometers using an x-ray interferometer to generate traceable reference displacements.

  6. A novel plane mirror interferometer without using corner cube reflectors

    NASA Astrophysics Data System (ADS)

    Büchner, H.-J.; Jäger, G.

    2006-04-01

    The conception and properties will be introduced of an interferometer that exclusively uses plane mirrors as reflectors; thus, these interferometers correspond well to the original Michelson interferometer. First, the relationship between the interference conditions and the detection with photodiodes will be discussed using the example of known interferometers as well as reasons given for primarily using corner cube reflectors in these devices. Next, the conceptual design of the plane mirror interferometer will be presented. This type of interferometer possesses new properties which are significant for metrological and technical applications. Only one measuring beam exists between the polarizing beam splitter and the measuring mirror and this beam alone represents the Abbe axis. This property allows the significant reduction of the Abbe error. The interferometer is able to tolerate tilting on the order of about 1'. This ensures the orthogonality between the measuring beam and the measuring mirror during the measurement. This property can be used in three-dimensional measurements to erect the three measuring beams as a x-y-z Cartesian coordinate system on the basis of three orthogonal mirrors. The plane-mirror interferometer also allows non-contact measurements of planar and curved surfaces, e.g. silicon wafers.

  7. Microwave interferometer controls cutting depth of plastics

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.

    1969-01-01

    Microwave interferometer system controls the cutting of plastic materials to a prescribed depth. The interferometer is mounted on a carriage with a spindle and cutting tool. A cross slide, mounted on the carriage, allows the interferometer and cutter to move toward or away from the plastic workpiece.

  8. Absolute metrology for space interferometers

    NASA Astrophysics Data System (ADS)

    Salvadé, Yves; Courteville, Alain; Dändliker, René

    2017-11-01

    The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    The optical configuration of a Fabry-Perot interferometer is uncomplicated. This has already been applied in different measurement systems. For the displacement measurement with the Fabry-Perot interferometer, the result is significantly influenced by the tilt angles of the measurement mirror in the interferometer. Hence, only for the rather small measuring range, the Fabry-Perot interferometer is available. The goal of this investigation is to enhance the measuring range of Fabry-Perot interferometer by compensating the tilt angles. To verify the measuring characteristic of the self-developed Fabry-Perot interferometer, some comparison measurements with a reference standard have been performed. The maximum deviation of comparison experimentsmore » is less than 0.3 {mu}m in the traveling range of 30 mm. The experimental results show that the Fabry-Perot interferometer is highly stable, insensitive to environment effects, and can meet the measuring requirement of the submicrometer order.« less

  10. Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.

    2007-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.

  11. The Compact, ˜1 kpc Host Galaxy of a Quasar at a Redshift of 7.1

    NASA Astrophysics Data System (ADS)

    Venemans, Bram P.; Walter, Fabian; Decarli, Roberto; Bañados, Eduardo; Hodge, Jacqueline; Hewett, Paul; McMahon, Richard G.; Mortlock, Daniel J.; Simpson, Chris

    2017-03-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C II] fine-structure line and the underlying far-infrared (FIR) dust continuum emission in J1120+0641, the most distant quasar currently known (z=7.1). We also present observations targeting the CO(2-1), CO(7-6), and [C I] 369 μm lines in the same source obtained at the Very Large Array and Plateau de Bure Interferometer. We find a [C II] line flux of {F}[{{C}{{II}}]}=1.11+/- 0.10 Jy {km} {{{s}}}-1 and a continuum flux density of {S}227{GHz}=0.53+/- 0.04 mJy beam-1, consistent with previous unresolved measurements. No other source is detected in continuum or [C II] emission in the field covered by ALMA (˜ 25″). At the resolution of our ALMA observations (0.″23, or 1.2 kpc, a factor of ˜70 smaller beam area compared to previous measurements), we find that the majority of the emission is very compact: a high fraction (˜80%) of the total line and continuum flux is associated with a region 1-1.5 kpc in diameter. The remaining ˜20% of the emission is distributed over a larger area with radius ≲4 kpc. The [C II] emission does not exhibit ordered motion on kiloparsec scales: applying the virial theorem yields an upper limit on the dynamical mass of the host galaxy of (4.3+/- 0.9)× {10}10 {M}⊙ , only ˜20 × higher than the central black hole (BH). The other targeted lines (CO(2-1), CO(7-6), and [C I]) are not detected, but the limits of the line ratios with respect to the [C II] emission imply that the heating in the quasar host is dominated by star formation, and not by the accreting BH. The star formation rate (SFR) implied by the FIR continuum is 105-340 {M}⊙ {{yr}}-1, with a resulting SFR surface density of ˜100-350 {M}⊙ {{yr}}-1 kpc-2, well below the value for Eddington-accretion-limited star formation.

  12. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  13. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyu, Lih-Horng; Chang, Chung-Ping; Wang, Yung-Cheng

    Fabry-Perot interferometer is often used for the micro-displacement, because of its common optical path structure being insensitive to the environmental disturbances. Recently, the folded Fabry-Perot interferometer has been investigated for displacement measurements in large ranges. The advantages of a folded Fabry-Perot interferometer are insensitive to the tilt angle and higher optical resolution. But the design of the optical cavity has become more and more complicated. For this reason, the intensity loss in the cavity will be an important parameter for the distribution of the interferometric intensity. To obtain a more accurate result of such interferometer utilized for displacement measurements, themore » intensity loss of the cavity in the fabricated folded Fabry-Perot interferometer and the modified equation of the folded Fabry-Perot interferometer will be described. According to the theoretical and experimental results, the presented model is available for the analysis of displacement measurements by a folded Fabry-Perot interferometer.« less

  15. Sensitivity of a fibre scattered-light interferometer to external phase perturbations in an optical fibre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    2015-10-31

    Sensitivity of a fibre scattered-light interferometer to external phase perturbations is studied for the first time. An expression is derived for an average power of a useful signal at the interferometer output under external harmonic perturbations in a signal fibre of the interferometer. It is shown that the maximum sensitivity of the scattered-light interferometer depends on the dispersion of the interferogram intensity. An average signal-to-noise ratio is determined theoretically and experimentally at the output of the interferometer at different amplitudes of external perturbations. Using the measured dependences of the signal-to-noise ratio, the threshold sensitivity of the fibre scattered-light interferometer tomore » external phase perturbations is found. The results obtained can be used to optimise characteristics of optical time-domain reflectometers and to design individual phase-sensitive fibre-optic sensors. (laser applications and other topics in quantum electronics)« less

  16. A Michelson-type radio interferometer for university education

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Barrett, James; Shafto, Gene; Slechta, Jeff; Hasegawa, Tetsuo; Hayashi, Masahiko; Metchev, Stanimir

    2016-04-01

    We report development of a simple and affordable radio interferometer suitable as an educational laboratory experiment. The design of this interferometer is based on the Michelson and Pease stellar optical interferometer, but instead operates at the radio wavelength of ˜11 GHz (˜2.7 cm), requiring much less stringent optical accuracy in its design and use. We utilize a commercial broadcast satellite dish and feedhorn with two flat side mirrors that slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, even on a day with marginal weather. Commercial broadcast satellites provide convenient point sources for comparison to the Sun's extended disk. The mathematical background of an adding interferometer is presented, as is its design and development, including the receiver system, and sample measurements of the Sun. Results from a student laboratory report are shown. With the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the future generation of astronomers. This interferometer provides the hands-on experience needed to fully understand the basic concepts of interferometry.

  17. Michelson-type Radio Interferometer for University Education

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.

    2013-01-01

    Despite the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional interferometers are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio interferometer for education and used it for an undergraduate and graduate laboratory project. This interferometer's design is based on the Michelson & Peace's stellar optical interferometer, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an interferometer works and resolves structures in the sky.

  18. Fizeau simultaneous phase-shifting interferometry based on extended source

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng

    2016-09-01

    Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.

  19. Broad source fringe formation with a Fresnel biprism and a Mach-Zehnder interferometer.

    PubMed

    Leon, S C

    1987-12-15

    A biprism is used to combine identical spatially incoherent wavefronts that have been split by an amplitude splitting interferometer such as the Mach-Zehnder. The performance of this composite interferometer is evaluated by tracing the chief ray through parallel optical systems using Snell's law and trigonometry. Fringes formed in spatially incoherent light with this optical system are compared with those formed using the Mach-Zehnder and grating interferometers. It is shown that the combination can exhibit extended source fringe formation capability greatly exceeding that of the Mach-Zehnder interferometer.

  20. Chemical micro-sensor

    DOEpatents

    Ruggiero, Anthony J.

    2005-05-03

    An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.

  1. The Conceptual Design of the Magdalena Ridge Observatory Interferometer

    NASA Astrophysics Data System (ADS)

    Buscher, D. F.; Creech-Eakman, M.; Farris, A.; Haniff, C. A.; Young, J. S.

    We describe the scientific motivation for and conceptual design of the Magdalena Ridge Observatory Interferometer, an imaging interferometer designed to operate at visible and near-infrared wavelengths. The rationale for the major technical decisions in the interferometer design is discussed, the success of the concept is appraised, and the implications of this analysis for the design of future arrays are drawn out.

  2. Interferometer for the measurement of plasma density

    DOEpatents

    Jacobson, Abram R.

    1980-01-01

    An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.

  3. The Mount Wilson optical interferometer: The first automated instrument and the prospects for lunar interferometry

    NASA Technical Reports Server (NTRS)

    Johnston, Ken J.; Mozurkewich, D.; Simon, R. S.; Shao, Michael; Colavita, M.

    1992-01-01

    Before contemplating an optical interferometer on the Moon one must first review the accomplishments achieved by this technology in scientific applications for astronomy. This will be done by presenting the technical status of optical interferometry as achieved by the Mount Wilson Optical Interferometer. The further developments needed for a future lunar-based interferometer are discussed.

  4. Analysis for signal-to-noise ratio of hyper-spectral imaging FTIR interferometer

    NASA Astrophysics Data System (ADS)

    Li, Xun-niu; Zheng, Wei-jian; Lei, Zheng-gang; Wang, Hai-yang; Fu, Yan-peng

    2013-08-01

    Signal-to-noise Ratio of hyper-spectral imaging FTIR interferometer system plays a decisive role on the performance of the instrument. It is necessary to analyze them in the development process. Based on the simplified target/background model, the energy transfer model of the LWIR hyper-spectral imaging interferometer has been discussed. The noise equivalent spectral radiance (NESR) and its influencing factors of the interferometer system was analyzed, and the signal-to-noise(SNR) was calculated by using the properties of NESR and incident radiance. In a typical application environment, using standard atmospheric model of USA(1976 COESA) as a background, and set a reasonable target/background temperature difference, and take Michelson spatial modulation Fourier Transform interferometer as an example, the paper had calculated the NESR and the SNR of the interferometer system which using the commercially LWIR cooled FPA and UFPA detector. The system noise sources of the instrument were also analyzed in the paper. The results of those analyses can be used to optimize and pre-estimate the performance of the interferometer system, and analysis the applicable conditions of use different detectors. It has important guiding significance for the LWIR interferometer spectrometer design.

  5. Phase conjugate Twyman-Green interferometer for testing spherical surfaces and lenses and for measuring refractive indices of liquids or solid transparent materials

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Dokhanian, Mostafa; Venkateswarlu, Putcha; George, M. C.

    1990-01-01

    The present paper describes an application of a phase conjugate Twyman-Green interferometer using barium titanate as a self-pumping mirror for testing optical components like concave and convex spherical mirrors and lenses. The aberrations introduced by the beam splitter while testing concave or convex spherical mirrors of large aperture are automatically eliminated due to self-focussing property of the phase conjugate mirror. There is no necessity for a good spherical surface as a reference surface unlike in classical Twyman-Green interferometer or Williams interferometer. The phase conjugate Twyman Green interferometer with a divergent illumination can be used as a test plate for checking spherical surfaces. A nondestructive technique for measuring the refractive indices of a Fabry Perot etalon by using a phase conjugate interferometer is also suggested. The interferometer is found to be useful for measuring the refractive indices of liquids and solid transparent materials with an accuracy of the order of + or - 0.0004.

  6. Optical fiber voltage sensor based on Michelsion interferometer using Fabry-Perot demodulation interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Xinwei; He, Shengnan; Li, Dandan; Wang, Kai; Fan, Yan'en; Wu, Shuai

    2014-11-01

    We present an optical fiber voltage sensor by Michelsion interferometer (MI) employing a Fabry-Perot (F-P) interferometer and the DC phase tracking (DCPT) signal processing method. By mounting a MI fabricated by an optical fiber coupler on a piezoelectric (PZT) transducer bar, a dynamic strain would be generated to change the optical path difference (OPD) of the interferometer when the measured voltage was applied on the PZT. Applying an F-P interferometer to demodulate the optical intensity variation output of the MI, the voltage can be obtained. The experiment results show that the relationship between the optical intensity variation and the voltage applied on the PZT is approximately linear. Furthermore, the phase generate carrier (PGC) algorithm was applied to demodulate the output of the sensor also.

  7. Two-path plasmonic interferometer with integrated detector

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory

    2016-03-29

    An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.

  8. Interferometer for measuring dynamic corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason Daniel

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an ongoing research project that has spanned multiple dissertations. For this research, the instrument was tested on human subjects and resulted in refinements to the interferometer design. The final configuration of the tear film interferometer and results from human subjects testing are presented. Feedback from this instrument was used to support the development and construction of the interferometric corneal topographer system. A calibration is performed on the instrument, and then verified against simulated eye surfaces. Finally, the instrument is validated by testing on human subjects. The result is an interferometer system that can non-invasively measure the dynamic corneal topography with greater accuracy and resolution than existing technologies.

  9. Contribution of p75NTR to Schwannoma Growth and Therapeutic Responses

    DTIC Science & Technology

    2016-05-01

    AWARD NUMBER: W81XWH-14-1-0096 TITLE: Contribution of p75NTR to schwannoma growth and therapeutic responses PRINCIPAL INVESTIGATOR: Marlan R...schwannoma growth and therapeutic responses Marlan R. Hansen Iram Ahmad J. Jason Clark Jed Rasmussen Charles Yates University of Iowa Iowa City, IA 52242...and schwannoma cells and to determine the efficacy of therapies that target these differences in reducing schwannoma cell growth in culture and in

  10. The WIND-HAARP-HIPAS Interferometer Experiment

    DTIC Science & Technology

    1999-04-22

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6750--99-8349 The WIND- HAARP -HIPAS Interferometer Experiment P. RODRIGUEZ AND M. J...1999 3. REPORT TYPE AND DATES COVERED Interim Report 4. TITLE AND SUBTITLE The WIND- HAARP -HIPAS Interferometer Experiment 5. FUNDING NUMBERS JO...frequency transmitting facilities in a bistatic, interferometer mode. The HAARP and HIPAS facilities in Alaska radiated at 4525 kHz with total combined

  11. Polarisation Measurement with a Dual Beam Interferometer (CATSI). Exploratory Results and Preliminary Phenomenological Analysis

    DTIC Science & Technology

    2006-06-01

    Polarisation measurement with a dual beam interferometer (CATSI) Exploratory results and preliminary phenomenological analysis H. Lavoie J.-M... Polarisation measurement with a dual beam interferometer (CATSI) Exploratory results and preliminary phenomenological analysis H. Lavoie J.-M. Thériault... Polarisation measurement with a dual beam interferometer (CATSI) - Exploratory results and preliminary phenomenological analysis. ECR 2004-372. DRDC Valcartier

  12. SU(1,1)-type light-atom-correlated interferometer

    NASA Astrophysics Data System (ADS)

    Ma, Hongmei; Li, Dong; Yuan, Chun-Hua; Chen, L. Q.; Ou, Z. Y.; Zhang, Weiping

    2015-08-01

    The quantum correlation of light and atomic collective excitation can be used to compose an SU(1,1)-type hybrid light-atom interferometer, where one arm in the optical SU(1,1) interferometer is replaced by the atomic collective excitation. The phase-sensing probes include not only the photon field but also the atomic collective excitation inside the interferometer. For a coherent squeezed state as the phase-sensing field, the phase sensitivity can approach the Heisenberg limit under the optimal conditions. We also study the effects of the loss of light field and the dephasing of atomic excitation on the phase sensitivity. This kind of active SU(1,1) interferometer can also be realized in other systems, such as circuit quantum electrodynamics in microwave systems, which provides a different method for basic measurement using the hybrid interferometers.

  13. Control of Formation-Flying Multi-Element Space Interferometers with Direct Interferometer-Output Feedback

    NASA Technical Reports Server (NTRS)

    Lu, Hui-Ling; Cheng, H. L.; Lyon, Richard G.; Carpenter, Kenneth G.

    2007-01-01

    The long-baseline space interferometer concept involving formation flying of multiple spacecraft holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the interferometer elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images.

  14. Control of Formation-Flying Multi-Element Space Interferometers with Direct Interferometer-Output Feedback

    NASA Technical Reports Server (NTRS)

    Lu, Hui-Ling; Cheng, Victor H. L.; Lyon, Richard G.; Carpenter, Kenneth G.

    2007-01-01

    The long-baseline space interferometer concept involving formation flying of multiple spacecrafts holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the interferometer elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images.

  15. Experimental generalized quantum suppression law in Sylvester interferometers

    NASA Astrophysics Data System (ADS)

    Viggianiello, Niko; Flamini, Fulvio; Innocenti, Luca; Cozzolino, Daniele; Bentivegna, Marco; Spagnolo, Nicolò; Crespi, Andrea; Brod, Daniel J.; Galvão, Ernesto F.; Osellame, Roberto; Sciarrino, Fabio

    2018-03-01

    Photonic interference is a key quantum resource for optical quantum computation, and in particular for so-called boson sampling devices. In interferometers with certain symmetries, genuine multiphoton quantum interference effectively suppresses certain sets of events, as in the original Hong–Ou–Mandel effect. Recently, it was shown that some classical and semi-classical models could be ruled out by identifying such suppressions in Fourier interferometers. Here we propose a suppression law suitable for random-input experiments in multimode Sylvester interferometers, and verify it experimentally using 4- and 8-mode integrated interferometers. The observed suppression occurs for a much larger fraction of input–output combinations than what is observed in Fourier interferometers of the same size, and could be relevant to certification of boson sampling machines and other experiments relying on bosonic interference, such as quantum simulation and quantum metrology.

  16. Detection, Evaluation, and Optimization of Optical Signals Generated by Fiber Optic Bragg Gratings Under Dynamic Excitations

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Lekki, John; Lock, James A.

    2002-01-01

    The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.

  17. Numerical simulation and experimental verification of extended source interferometer

    NASA Astrophysics Data System (ADS)

    Hou, Yinlong; Li, Lin; Wang, Shanshan; Wang, Xiao; Zang, Haijun; Zhu, Qiudong

    2013-12-01

    Extended source interferometer, compared with the classical point source interferometer, can suppress coherent noise of environment and system, decrease dust scattering effects and reduce high-frequency error of reference surface. Numerical simulation and experimental verification of extended source interferometer are discussed in this paper. In order to provide guidance for the experiment, the modeling of the extended source interferometer is realized by using optical design software Zemax. Matlab codes are programmed to rectify the field parameters of the optical system automatically and get a series of interferometric data conveniently. The communication technique of DDE (Dynamic Data Exchange) was used to connect Zemax and Matlab. Then the visibility of interference fringes can be calculated through adding the collected interferometric data. Combined with the simulation, the experimental platform of the extended source interferometer was established, which consists of an extended source, interference cavity and image collection system. The decrease of high-frequency error of reference surface and coherent noise of the environment is verified. The relation between the spatial coherence and the size, shape, intensity distribution of the extended source is also verified through the analysis of the visibility of interference fringes. The simulation result is in line with the result given by real extended source interferometer. Simulation result shows that the model can simulate the actual optical interference of the extended source interferometer quite well. Therefore, the simulation platform can be used to guide the experiment of interferometer which is based on various extended sources.

  18. Static and (quasi)dynamic calibration of stroboscopic scanning white light interferometer

    NASA Astrophysics Data System (ADS)

    Seppä, Jeremias; Kassamakov, Ivan; Nolvi, Anton; Heikkinen, Ville; Paulin, Tor; Lassila, Antti; Hao, Ling; Hæggsröm, Edward

    2013-04-01

    A scanning white light interferometer can characterize out of plane features and motion in M(N)EMS devices. Like any other form and displacement measuring instrument, the scanning interferometer results should be linked to the metre definition to be comparable and unambiguous. Traceability is built up by careful error characterization and calibration of the interferometer. The main challenge in this calibration is to have a reference device producing accurate and reproducible dynamic out-of-plane displacement when submitted to standard loads. We use a flat mirror attached to a piezoelectric transducer for static and (quasi)dynamic calibration of a stroboscopic scanning light interferometer. First we calibrated the piezo-scanned flexure guided transducer stage using a symmetric differential heterodyne laser interferometer developed at the Centre for Metrology and Accreditation (MIKES). The standard uncertainty of the piezo stage motion calibration was 3.0 nm. Then we used the piezo-stage as a transfer standard to calibrate our stroboscopic interferometer whose light source was pulsed at 200 Hz and 400 Hz with 0.5% duty cycle. We measured the static position and (quasi)dynamic motion of the attached mirror relative to a reference surface. This methodology permits calibrating the vertical scale of the stroboscopic scanning white light interferometer.

  19. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  20. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  1. Experimental study of the mutual influence of fibre Faraday elements in a spun-fibre interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubin, V P; Morshnev, S K; Przhiyalkovsky, Ya V

    2015-08-31

    An all-spun-fibre linear reflective interferometer with two linked Faraday fibre coils is studied. It is found experimentally that there is mutual influence of Faraday fibre coils in this interferometer. It manifests itself as an additional phase shift of the interferometer response, which depends on the circular birefringence induced by the Faraday effect in both coils. In addition, the interferometer contrast and magneto-optical sensitivity of one of the coils change. A probable physical mechanism of the discovered effect is the distributed coupling of orthogonal polarised waves in the fibre medium, which is caused by fibre bend in the coil. (interferometry)

  2. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.

    2013-09-15

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

  3. Picometre displacement measurements using a differential Fabry-Perot optical interferometer and an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew

    2012-08-01

    X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry-Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed.

  4. Dual surface interferometer

    DOEpatents

    Pardue, R.M.; Williams, R.R.

    1980-09-12

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  5. Dual surface interferometer

    DOEpatents

    Pardue, Robert M.; Williams, Richard R.

    1982-01-01

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  6. Amplitude and intensity spatial interferometry; Proceedings of the Meeting, Tucson, AZ, Feb. 14-16, 1990

    NASA Technical Reports Server (NTRS)

    Breckinridge, Jim B. (Editor)

    1990-01-01

    Attention is given to such topics as ground interferometers, space interferometers, speckle-based and interferometry-based astronomical observations, adaptive and atmospheric optics, speckle techniques, and instrumentation. Particular papers are presented concerning recent progress on the IR Michelson array; the IOTA interferometer project; a space interferometer concept for the detection of extrasolar earth-like planets; IR speckle imaging at Palomar; optical diameters of stars measured with the Mt. Wilson Mark III interferometer; the IR array camera for interferometry with the cophased Multiple Mirror Telescope; optimization techniques appliesd to the bispectrum of one-dimensional IR astronomical speckle data; and adaptive optical iamging for extended objects.

  7. Experimental implementation of phase locking in a nonlinear interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn; Marino, A. M.

    2015-09-21

    Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in suchmore » a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.« less

  8. The CO-H2 van der Waals complex and complex organic molecules in cold molecular clouds: A TMC-1C survey

    NASA Astrophysics Data System (ADS)

    Potapov, A.; Sánchez-Monge, Á.; Schilke, P.; Graf, U. U.; Möller, Th.; Schlemmer, S.

    2016-10-01

    Context. Almost 200 different species have been detected in the interstellar medium (ISM) during the last decades, revealing not only simple species but complex molecules with more than six atoms. Other exotic compounds, like the weakly-bound dimer (H2)2, have also been detected in astronomical sources like Jupiter. Aims: We aim to detect, for the first time, the CO-H2 van der Waals complex in the ISM, which could be a sensitive indicator for low temperatures if detected. Methods: We used the IRAM 30 m telescope, located in Pico Veleta (Spain), to search for the CO-H2 complex in a cold, dense core in TMC-1C (with a temperature of ~10 K). All the brightest CO-H2 transitions in the 3 mm (80-110 GHz) band were observed with a spectral resolution of 0.5-0.7 km s-1, reaching a rms noise level of ~2 mK. The simultaneous observation of a broad frequency band, 16 GHz, allowed us to conduct a serendipitous spectral line survey. Results: We did not detected any lines belonging to the CO-H2 complex. We set up a new, more stringent upper limit for its abundance to be [CO-H2]/[CO] ~ 5 × 10-6, while we expect the abundance of the complex to be in the range ~10-8-10-3. The spectral line survey has allowed us to detect 75 lines associated with 41 different species (including isotopologues). We detect a number of complex organic species, for example methyl cyanide (CH3CN), methanol (CH3OH), propyne (CH3CCH), and ketene (CH2CO), associated with cold gas (excitation temperatures ~7 K), confirming the presence of these complex species not only in warm objects but also in cold regimes. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A117

  9. New observations and models of circumstellar CO line emission of AGB stars in the Herschel SUCCESS programme

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; Teyssier, D.; Justtanont, K.; Olofsson, H.; Cerrigone, L.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Castro-Carrizo, A.; García-Lario, P.; Marston, A.

    2015-09-01

    Context. Asymptotic giant branch (AGB) stars are in one of the latest evolutionary stages of low to intermediate-mass stars. Their vigorous mass loss has a significant effect on the stellar evolution, and is a significant source of heavy elements and dust grains for the interstellar medium. The mass-loss rate can be well traced by carbon monoxide (CO) line emission. Aims: We present new Herschel/HIFI and IRAM 30 m telescope CO line data for a sample of 53 galactic AGB stars. The lines cover a fairly large range of excitation energy from the J = 1 → 0 line to the J = 9 → 8 line, and even the J = 14 → 13 line in a few cases. We perform radiative transfer modelling for 38 of these sources to estimate their mass-loss rates. Methods: We used a radiative transfer code based on the Monte Carlo method to model the CO line emission. We assume spherically symmetric circumstellar envelopes that are formed by a constant mass-loss rate through a smoothly accelerating wind. Results: We find models that are consistent across a broad range of CO lines for most of the stars in our sample, i.e., a large number of the circumstellar envelopes can be described with a constant mass-loss rate. We also find that an accelerating wind is required to fit, in particular, the higher-J lines and that a velocity law will have a significant effect on the model line intensities. The results cover a wide range of mass-loss rates (~10-8 to 2 × 10-5 M⊙ yr-1) and gas expansion velocities (2 to 21.5 km s-1) , and include M-, S-, and C-type AGB stars. Our results generally agree with those of earlier studies, although we tend to find slightly lower mass-loss rates by about 40%, on average. We also present "bonus" lines detected during our CO observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Appendices are available in electronic form at http://www.aanda.org

  10. Benefits of Model Updating: A Case Study Using the Micro-Precision Interferometer Testbed

    NASA Technical Reports Server (NTRS)

    Neat, Gregory W.; Kissil, Andrew; Joshi, Sanjay S.

    1997-01-01

    This paper presents a case study on the benefits of model updating using the Micro-Precision Interferometer (MPI) testbed, a full-scale model of a future spaceborne optical interferometer located at JPL.

  11. Terrestrial Planet Finder Interferometer: 2007-2008 Progress and Plans

    NASA Technical Reports Server (NTRS)

    Lawson, P. R.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Gappinger, R. O.; Ksendzov, A.; Scharf, D. P.; Booth, A. J.; Beichman, C. A.; Serabyn, E.; hide

    2008-01-01

    This paper provides an overview of technology development for the Terrestrial Planet Finder Interferometer (TPF-I). TPF-I is a mid-infrared space interferometer being designed with the capability of detecting Earth-like planets in the habitable zones around nearby stars. The overall technology roadmap is presented and progress with each of the testbeds is summarized. The current interferometer architecture, design trades, and the viability of possible reduced-scope mission concepts are also presented.

  12. Construction of a Fiber Optic Gradient Hydrophone Using a Michelson Configuration.

    DTIC Science & Technology

    1986-03-27

    Michelson interferometers; * Fabry - Perot interferometers; • Intermode interferometers; • Sagnac interferometers. Of these, the first two categories show the...most promise for hydrophone applications. The Fabry - Perot design is an excellent tool for precision length measurements but is extremely sensitive to...Pa was measured. Using the demodulation technique in Mills, [Ref. 13: pp. 94-95], one can make a comparison to the USRD type G63 stan- dard pressure

  13. Collisional Decoherence in Trapped-Atom Interferometers that use Nondegenerate Sources

    DTIC Science & Technology

    2009-01-22

    a magneto - optical trap . The trap is switched off and the atomic cloud begins to fall due to gravity. At the time t=0, the cloud is illuminated with...model is used to find the optimal operating conditions of the interferometer and direct Monte-Carlo simulation of the interferometer is used to...A major difficulty with all trapped -atom interferometers that use optical pulses is that the residual potential along the guide causes

  14. Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines, Terence C.

    2006-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. Methods: We have constructed and tested two confocal interferometers. Conclusions: In this paper we compare the confocal interferometer with other spectral imaging filters, provide initial design parameters, show construction details for two designs, and report on the laboratory test results for these interferometers, and propose a multiple etalon system for future testing of these units and to obtain sub-picometer spectral resolution information on the photosphere in both the visible and near-infrared.

  15. ON THE DETECTION OF GLOBAL 21-cm SIGNAL FROM REIONIZATION USING INTERFEROMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Saurabh; Subrahmanyan, Ravi; Shankar, N. Udaya

    2015-12-20

    Detection of the global redshifted 21-cm signal is an excellent means of deciphering the physical processes during the Dark Ages and subsequent Epoch of Reionization (EoR). However, detection of this faint monopole is challenging due to the high precision required in instrumental calibration and modeling of substantially brighter foregrounds and instrumental systematics. In particular, modeling of receiver noise with mK accuracy and its separation remains a formidable task in experiments aiming to detect the global signal using single-element spectral radiometers. Interferometers do not respond to receiver noise; therefore, here we explore the theory of the response of interferometers to globalmore » signals. In other words, we discuss the spatial coherence in the electric field arising from the monopole component of the 21-cm signal and methods for its detection using sensor arrays. We proceed by first deriving the response to uniform sky of two-element interferometers made of unit dipole and resonant loop antennas, then extend the analysis to interferometers made of one-dimensional arrays and also consider two-dimensional aperture antennas. Finally, we describe methods by which the coherence might be enhanced so that the interferometer measurements yield improved sensitivity to the monopole component. We conclude (a) that it is indeed possible to measure the global 21-cm from EoR using interferometers, (b) that a practically useful configuration is with omnidirectional antennas as interferometer elements, and (c) that the spatial coherence may be enhanced using, for example, a space beam splitter between the interferometer elements.« less

  16. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.

    PubMed

    Chen, Benyong; Cheng, Liang; Yan, Liping; Zhang, Enzheng; Lou, Yingtian

    2017-03-01

    The laser beam drift seriously influences the accuracy of straightness or displacement measurement in laser interferometers, especially for the long travel measurement. To solve this problem, a heterodyne straightness and displacement measuring interferometer with laser beam drift compensation is proposed. In this interferometer, the simultaneous measurement of straightness error and displacement is realized by using heterodyne interferometry, and the laser beam drift is determined to compensate the measurement results of straightness error and displacement in real time. The optical configuration of the interferometer is designed. The principle of the simultaneous measurement of straightness, displacement, and laser beam drift is depicted and analyzed in detail. And the compensation of the laser beam drift for the straightness error and displacement is presented. Several experiments were performed to verify the feasibility of the interferometer and the effectiveness of the laser beam drift compensation. The experiments of laser beam stability show that the position stability of the laser beam spot can be improved by more than 50% after compensation. The measurement and compensation experiments of straightness error and displacement by testing a linear stage at different distances show that the straightness and displacement obtained from the interferometer are in agreement with those obtained from a compared interferometer and the measured stage. These demonstrate that the merits of this interferometer are not only eliminating the influence of laser beam drift on the measurement accuracy but also having the abilities of simultaneous measurement of straightness error and displacement as well as being suitable for long-travel linear stage metrology.

  17. Revised spectroscopic parameters of SH+ from ALMA★ and IRAM 30m★★ observations★★★

    PubMed Central

    Müller, Holger S. P.; Goicoechea, Javier R.; Cernicharo, José; Agúndez, Marcelino; Pety, Jérôme; Cuadrado, Sara; Gerin, Maryvonne; Dumas, Gaëlle; Chapillon, Edwige

    2015-01-01

    Hydrides represent the first steps of interstellar chemistry. Sulfanylium (SH+), in particular, is a key tracer of energetic processes. We used ALMA and the IRAM 30 m telescope to search for the lowest frequency rotational lines of SH+ toward the Orion Bar, the prototypical photo-dissociation region illuminated by a strong UV radiation field. On the basis of previous Herschel/HIFI observations of SH+, we expected to detect emission of the two SH+ hyperfine structure (HFS) components of the NJ = 10–01 fine structure (FS) component near 346 GHz. While we did not observe any lines at the frequencies predicted from laboratory data, we detected two emission lines, each ~15 MHz above the SH+ predictions and with relative intensities and HFS splitting expected for SH+. The rest frequencies of the two newly detected lines are more compatible with the remainder of the SH+ laboratory data than the single line measured in the laboratory near 346 GHz and previously attributed to SH+. Therefore, we assign these new features to the two SH+ HFS components of the NJ = 10–01 FS component and re-determine its spectroscopic parameters, which will be useful for future observations of SH+, in particular if its lowest frequency FS components are studied. Our observations demonstrate the suitability of these lines for SH+ searches at frequencies easily accessible from the ground. PMID:26525172

  18. Submillimeter wave spectroscopy of ethyl isocyanide and its searches in Orion

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Tercero, B.; Guillemin, J. C.; Motiyenko, R. A.; Cernicharo, J.

    2018-02-01

    Context. About 40 cyanide compounds have been detected in the interstellar medium, but only 3 examples of organic isocyanide compounds were observed in this medium. Ethyl isocyanide is one of the best candidates for possible detection. Aim. To date, measurements of rotational spectra are limited to 40 GHz. The extrapolation of the prediction in the millimeter wave domain is inaccurate and does not permit an unambiguous detection. Methods: The rotational spectra were reinvestigated from 0.15 to 1 THz. Using the new prediction, we searched for the compound ethyl isocyanide in Orion KL and Sgr B2. Results: We newly assigned 2906 transitions and fitted these new data with those from previous studies, reaching quantum numbers up to J = 103 and Ka = 30. The asymmetric top Hamiltonian proposed by Watson in the Ir representation was used for the analysis, and both reductions A and S were tested. The search for CH3CH2NC in Sgr B2 (IRAM 30m) and Orion KL (IRAM 30m, ALMA Science Verification) result in a non-detection; upper limits to the column density were derived. Tables S1-S4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A44

  19. IRAM 30 m large scale survey of {sup 12}CO(2-1) and {sup 13}CO(2-1) emission in the Orion molecular cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berné, O.; Cernicharo, J.; Marcelino, N., E-mail: olivier.berne@irap.omp.eu

    2014-11-01

    Using the IRAM 30 m telescope, we have surveyed a 1 × 0.°8 part of the Orion molecular cloud in the {sup 12}CO and {sup 13}CO (2-1) lines with a maximal spatial resolution of ∼11'' and spectral resolution of ∼0.4 km s{sup –1}. The cloud appears filamentary, clumpy, and with a complex kinematical structure. We derive an estimated mass of the cloud of 7700 M {sub ☉} (half of which is found in regions with visual extinctions A{sub V} below ∼10) and a dynamical age for the nebula of the order of 0.2 Myr. The energy balance suggests that magneticmore » fields play an important role in supporting the cloud, at large and small scales. According to our analysis, the turbulent kinetic energy in the molecular gas due to outflows is comparable to turbulent kinetic energy resulting from the interaction of the cloud with the H II region. This latter feedback appears negative, i.e., the triggering of star formation by the H II region is inefficient in Orion. The reduced data as well as additional products such as the column density map are made available online (http://userpages.irap.omp.eu/∼oberne/Olivier{sub B}erne/Data).« less

  20. High spectral resolution observations of HNC3 and HCCNC in the L1544 pre-stellar core

    NASA Astrophysics Data System (ADS)

    Vastel, C.; Kawaguchi, K.; Quénard, D.; Ohishi, M.; Lefloch, B.; Bachiller, R.; Müller, H. S. P.

    2018-02-01

    HCCNC and HNC3 are less commonly found isomers of cyanoacetylene, HC3N, a molecule that is widely found in diverse astronomical sources. We want to know if HNC3 is present in sources other than the dark cloud TMC-1 and how its abundance is relative to that of related molecules. We used the Astrochemical Studies At IRAM unbiased spectral survey at IRAM 30 m towards the prototypical pre-stellar core L1544 to search for HNC3 and HCCNC which are by-product of the HC3NH+ recombination, previously detected in this source. We performed a combined analysis of published HNC3 microwave rest frequencies with thus far unpublished millimetre data because of issues with available rest frequency predictions. We determined new spectroscopic parameters for HNC3, produced new predictions and detected it towards L1544. We used a gas-grain chemical modelling to predict the abundances of N-species and compare with the observations. The modelled abundances are consistent with the observations, considering a late stage of the evolution of the pre-stellar core. However, the calculated abundance of HNC3 was found 5-10 times higher than the observed one. The HC3N, HNC3, and HCCNC versus HC3NH+ ratios are compared in the TMC-1 dark cloud and the L1544 pre-stellar core.

  1. High angular resolution and position determinations by infrared interferometry

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Interferometer systems are described in the form of publications and reports. 'Distance Meter Helps Track the Stars', 'Berkeley Heterodyne Interferometer', 'Infrared Heterodyne Spectroscopy of CO2 on Mars', and 'A 10 micron Heterodyne Stellar Interferometer' are papers reported.

  2. Naturally stable Sagnac–Michelson nonlinear interferometer

    DOE PAGES

    Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.

    2016-11-16

    Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. As a result, our configuration utilizes fewer components than previous demonstrations and requires nomore » active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.« less

  3. FIBER AND INTEGRATED OPTICS. OTHER TOPICS IN QUANTUM ELECTRONICS: Fiber-optic interferometers: control of spectral composition of the radiation and formation of high-intensity optical pulses

    NASA Astrophysics Data System (ADS)

    Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.

    1990-05-01

    A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.

  4. Ring-Interferometric Sol-Gel Bio-Sensor

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory (Inventor); Cohen, David (Inventor)

    2006-01-01

    A biosensor embodying the invention includes a sensing volume having an array of pores sized for immobilizing a first biological entity tending to bind to a second biological entity in such a manner as to change an index of refraction of the sensing volume. The biosensor further includes a ring interferometer, one volumetric section of the ring interferometer being the sensing volume, a laser for supplying light to the ring interferometer, and a photodetector for receiving light from the interferometer.

  5. Terrestrial Planet Finder Interferometer: Architecture, Mission Design, and Technology Development

    NASA Technical Reports Server (NTRS)

    Henry, Curt

    2004-01-01

    This slide presentation represents an overview progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003

  6. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  7. Interferometer for Measuring Displacement to Within 20 pm

    NASA Technical Reports Server (NTRS)

    Zhao, Feng

    2003-01-01

    An optical heterodyne interferometer that can be used to measure linear displacements with an error <=20 pm has been developed. The remarkable accuracy of this interferometer is achieved through a design that includes (1) a wavefront split that reduces (relative to amplitude splits used in other interferometers) self interference and (2) a common-optical-path configuration that affords common-mode cancellation of the interference effects of thermal-expansion changes in optical-path lengths. The most popular method of displacement- measuring interferometry involves two beams, the polarizations of which are meant to be kept orthogonal upstream of the final interference location, where the difference between the phases of the two beams is measured. Polarization leakages (deviations from the desired perfect orthogonality) contaminate the phase measurement with periodic nonlinear errors. In commercial interferometers, these phase-measurement errors result in displacement errors in the approximate range of 1 to 10 nm. Moreover, because prior interferometers lack compensation for thermal-expansion changes in optical-path lengths, they are subject to additional displacement errors characterized by a temperature sensitivity of about 100 nm/K. Because the present interferometer does not utilize polarization in the separation and combination of the two interfering beams and because of the common-mode cancellation of thermal-expansion effects, the periodic nonlinear errors and the sensitivity to temperature changes are much smaller than in other interferometers

  8. VizieR Online Data Catalog: GMVA 86GHz images of OJ 287 (Hodgson+, 2017)

    NASA Astrophysics Data System (ADS)

    Hodgson, J. A.; Krichbaum, T. P.; Marscher, A. P.; Jorstad, S. G.; Rani, B.; Marti-Vidal, I.; Sanchez, S.; Bremer, M.; Lindqvist, M.; Uunila, M.; Kallunki, J.; Vicente, P.; Angelakis, E.; Karamanavis, V.; Myserlis, I.; Nestoras, I.; Sievers, A.; Gurwell, M.; Zensus, J. A.

    2017-01-01

    The GMVA combines the eight 3mm receiver equipped stations of the VLBA and up to six European observatories, including Elsberg, Onsala, Metsahovi, Pico Veleta, Plateau de Bure, and since 2012, Yebes. Data were recorded at 512 Mbit/s, with eight 8MHz channels, in dual polarisation. Onsala and Yebes observed in left circular polarisation (LCP) only. For these stations, LCP was assumed to be equal to RCP and hence Stokes I. Scans of approximately 7 minutes every 15 minutes were recorded with pointing and calibration performed on European stations in the gaps between scans. (2 data files).

  9. SOFIA Science Imagery

    NASA Image and Video Library

    2017-09-14

    SCI2016_0006: Map of Cepheus E emphasizing the jets of material flowing to the upper left and lower right from the protostar. The protostar itself is the central yellow-red 'blob" in the colored background map of hydrogen emission made at a wavelength of 4.5 microns by the Spitzer infrared space telescope. The contour curves show the strength of emission from cool carbon monoxide gas measured by the Plateau de Bure radio telescope located in the French Alps. Lefloch et al. used GREAT on SOFIA to measure the amount and velocity of hot carbon monoxide gas at multiple positions along both "wings" of the outflow jet. Credit: Lefloch et al. 2015 Figure 1

  10. Atom Interferometry: A Matter Wave Clock and a Measurement of α

    NASA Astrophysics Data System (ADS)

    Estey, Brian; Lan, Shau-Yu; Kuan, Pei-Chen; Hohensee, Michael; Haslinger, Philipp; Kehayias, Pauli; English, Damon; Müller, Holger

    2012-06-01

    Developments in large-momentum transfer beamsplitters (eg. Bragg diffraction) and conjugate Ramsey-Bord'e interferometers have enabled atom interferometers with unparalleled size and sensitivity. The atomic wave packet separation is large enough that the Coriolis force due to the earth's rotation reduces interferometer contrast. We compensate for this effect using a tip-tilt mirror, improving our contrast by up to a factor of 3.5, allowing pulse separations of up to 250 ms with 10k beamsplitters. This interferometer can be used to make a precise measurement of the recoil frequency (h/m) and thus the fine structure constant. The interferometer also gives us indirect access to the Compton frequency (νC≡mc^2/h) oscillations of the matter wave, since h/m is simply c^2/νC. Using an optical frequency comb we reference the interferometer's laser frequency to a multiple of a cesium atom's recoil frequency. This self-referenced interferometer thus locks a local oscillator to a specified fraction of the cesium Compton frequency, with a fractional stability of 2 pbb over several hours. This has potential application in redefining the kilogram in terms of the second. We also present a preliminary measurement of the fine structure constant.

  11. Candidates for a possible third-generation gravitational wave detector: comparison of ring-Sagnac and sloshing-Sagnac speedmeter interferometers

    NASA Astrophysics Data System (ADS)

    Huttner, S. H.; Danilishin, S. L.; Barr, B. W.; Bell, A. S.; Gräf, C.; Hennig, J. S.; Hild, S.; Houston, E. A.; Leavey, S. S.; Pascucci, D.; Sorazu, B.; Spencer, A. P.; Steinlechner, S.; Wright, J. L.; Zhang, T.; Strain, K. A.

    2017-01-01

    Speedmeters are known to be quantum non-demolition devices and, by potentially providing sensitivity beyond the standard quantum limit, become interesting for third generation gravitational wave detectors. Here we introduce a new configuration, the sloshing-Sagnac interferometer, and compare it to the more established ring-Sagnac interferometer. The sloshing-Sagnac interferometer is designed to provide improved quantum noise limited sensitivity and lower coating thermal noise than standard position meter interferometers employed in current gravitational wave detectors. We compare the quantum noise limited sensitivity of the ring-Sagnac and the sloshing-Sagnac interferometers, in the frequency range, from 5 Hz to 100 Hz, where they provide the greatest potential benefit. We evaluate the improvement in terms of the unweighted noise reduction below the standard quantum limit, and by finding the range up to which binary black hole inspirals may be observed. The sloshing-Sagnac was found to give approximately similar or better sensitivity than the ring-Sagnac in all cases. We also show that by eliminating the requirement for maximally-reflecting cavity end mirrors with correspondingly-thick multi-layer coatings, coating noise can be reduced by a factor of approximately 2.2 compared to conventional interferometers.

  12. Gravitational Wave Detection with Single-Laser Atom Interferometers

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  13. Special topics in infrared interferometry. [Michelson interferometer development

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.

    1985-01-01

    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  14. High sensitivity boundary layer transition detector

    NASA Technical Reports Server (NTRS)

    Azzazy, M.; Modarress, D.; Hoeft, T.

    1985-01-01

    A high sensitivity differential interferometer has been developed to locate the region where the boundary layer flow changes from laminar to turbulent. Two experimental configurations have been used to evaluate the performance of the interferometer, open shear layer configuration and wind tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations in the order of .001 the laser wavelength.

  15. Results from a Grazing Incidence X-Ray Interferometer

    NASA Technical Reports Server (NTRS)

    Joy, Marshall K.; Shipley, Ann; Cash, Webster; Carter, James

    2000-01-01

    A prototype grazing incidence interferometer has been built and tested at EUV and X-ray wavelengths using a 120 meter long vacuum test facility at Marshall Space Flight Center. We describe the design and construction of the interferometer, the EUV and x-ray sources, the detector systems, and compare the interferometric fringe measurements with theoretical predictions. We also describe the next-generation grazing incidence system which is designed to provide laboratory demonstration of key technologies that will be needed for a space-based x-ray interferometer.

  16. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  17. The millimeter IRAM-30 m line survey toward IK Tauri

    NASA Astrophysics Data System (ADS)

    Velilla Prieto, L.; Sánchez Contreras, C.; Cernicharo, J.; Agúndez, M.; Quintana-Lacaci, G.; Bujarrabal, V.; Alcolea, J.; Balança, C.; Herpin, F.; Menten, K. M.; Wyrowski, F.

    2017-01-01

    Aims: We aim to investigate the physical and chemical properties of the molecular envelope of the oxygen-rich AGB star IK Tau. Methods: We carried out a millimeter wavelength line survey between 79 and 356 GHz with the IRAM-30 m telescope. We analysed the molecular lines detected in IK Tau using the population diagram technique to derive rotational temperatures and column densities. We conducted a radiative transfer analysis of the SO2 lines, which also helped us to verify the validity of the approximated method of the population diagram for the rest of the molecules. Results: For the first time in this source we detected rotational lines in the ground vibrational state of HCO+, NS, NO, and H2CO, as well as several isotopologues of molecules previously identified, namely, C18O, Si17O, Si18O, 29SiS, 30SiS, Si34S, H13CN, 13CS, C34S, H234S, 34SO, and 34SO2. We also detected several rotational lines in vibrationally excited states of SiS and SiO isotopologues, as well as rotational lines of H2O in the vibrationally excited state ν2 = 2. We have also increased the number of rotational lines detected of molecules that were previously identified toward IK Tau, including vibrationally excited states, enabling a detailed study of the molecular abundances and excitation temperatures. In particular, we highlight the detection of NS and H2CO with fractional abundances of f(NS) 10-8 and f(H2CO) [10-7-10-8]. Most of the molecules display rotational temperatures between 15 and 40 K. NaCl and SiS isotopologues display rotational temperatures higher than the average ( 65 K). In the case of SO2 a warm component with Trot 290 K is also detected. Conclusions: With a total of 350 lines detected of 34 different molecular species (including different isotopologues), IK Tau displays a rich chemistry for an oxygen-rich circumstellar envelope. The detection of carbon bearing molecules like H2CO, as well as the discrepancies found between our derived abundances and the predictions from chemical models for some molecules, highlight the need for a revision of standard chemical models. We were able to identify at least two different emission components in terms of rotational temperatures. The warm component, which is mainly traced out by SO2, is probably arising from the inner regions of the envelope (at ≲8 R∗) where SO2 has a fractional abundance of f(SO2) 10-6. This result should be considered for future investigation of the main formation channels of this, and other, parent species in the inner winds of O-rich AGB stars, which at present are not well reproduced by current chemistry models. Based on observations carried out with the IRAM-30 m Telescope. The Institut de Radioastronomie Millimétrique (IRAM) is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Full Tables E.1 and E.2 and the reduced spectrum (FITS file) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A25

  18. Balloon Exoplanet Nulling Interferometer (BENI)

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  19. Analysis of the localization of Michelson interferometer fringes using Fourier optics and temporal coherence

    NASA Astrophysics Data System (ADS)

    Narayanamurthy, C. S.

    2009-01-01

    Fringes formed in a Michelson interferometer never localize in any plane, in the detector plane and in the localization plane. Instead, the fringes are assumed to localize at infinity. Except for some explanation in Principles of Optics by Born and Wolf (1964 (New York: Macmillan)), the fringe localization phenomena of Michelson's interferometer have never been analysed seriously in any book. Because Michelson's interferometer is one of the important and fundamental optical experiments taught at both undergraduate and graduate levels, it would be appropriate to explain the localization of these fringes. In this paper, we analyse the localization of Michelson interferometer fringes using Fourier optics and temporal coherence, and show that they never localize at any plane even at infinity.

  20. A chevron beam-splitter interferometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.

    1979-01-01

    Fully tilt compensated double-pass chevron beam splitter, that removes channelling effects and permits optical phase tuning, is wavelength independent and allows small errors in alignment that are not tolerated in Michelson, Machzender, or Sagnac interferometers. Device is very useful in experiments where background vibration affects conventional interferometers.

  1. High resolution Fourier interferometer-spectrophotopolarimeter

    NASA Technical Reports Server (NTRS)

    Fymat, A. L. (Inventor)

    1976-01-01

    A high-resolution Fourier interferometer-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an interferometer to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the interferometer. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the interferometer; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the interferometer.

  2. Study of the second-order relativistic light deflection of the Sun using long-baseline fibre-linked interferometers: Laser-Interferometric Solar Relativity (LISOR) test

    NASA Technical Reports Server (NTRS)

    Ni, Wei-Tou; Shy, Jow-Tsong; Tseng, Shiao-Min; Shao, Michael

    1992-01-01

    A propasal to study the second order light deflection in the solar gravitational field is presented. It is proposed to use 1 to 2 W frequency stabilized lasers on two microspacecraft about 0.25 degree apart in the sky with apparent positions near the Sun, and observe the relative angle of two spacecraft using ground based fiber linked interferometers with 10 km baseline to determine the second order relativistic light deflection effects. The first two years of work would emphasize the establishment of a prototype stabilized laser system and fiber linked interferometer. The first year, a prototype fiber linked interferometer would be set up to study the phase noise produced by external perturbations to fiber links. The second year, a second interferometer would be set up. The cancellation of phase drift due to fiber links of both interferometers in the same environment would be investigated.

  3. Europe Agrees on Common Strategy to Initiate Study of LSA/MMA

    NASA Astrophysics Data System (ADS)

    1998-09-01

    Council Specifies ESO's Role in Planning In an extraordinary meeting at the ESO Headquarters, the ESO Council today endorsed ESO's involvement in the planning of a major new astronomical facility in the southern hemisphere. Some years from now, the Large Southern Array/Millimetre Array (LSA/MMA) may become the world's prime sub-mm/mm radio observatory [1] at a pristine site at 5000 m altitude in the Chilean Andes, not very far from the VLT Paranal Observatory. Background One of the highest-priority items in astronomy today is a large millimetre-wavelength array. This would be a millimetre counterpart to the ESO VLT and the NASA/ESA Hubble Space Telescope (HST), with similar scientific objectives and comparable high angular resolution and sensitivity. An antenna array with about 10,000 m 2 area would provide very high sensitivity and angular resolution, compatible with that of the VLT and HST. Such a large collecting area implies an array with many antennas and baselines, which give the added advantage of fast, high-quality images. The site must be high, dry, large, and flat - a high plateau in the Atacama desert is ideal, and has the great advantage of being in the southern hemisphere, important for compatibility with the VLT. Thus, discussions in Europe have focussed on a "Large Southern Array" (LSA) . The scientific case for such a telescope is overwhelming. It would be able to study the origins of galaxies and stars: the epoch of first galaxy formation and the evolution of galaxies at later stages, including the dust-obscured star-forming galaxies that the HST and VLT cannot see, and all phases of star formation hidden away in dusty molecular clouds. But the LSA will go far beyond these main science drivers - it will have a major impact on virtually all areas of astronomy, and make millimetre astronomy accessible to all astronomers. It may well have as big a user community as the VLT itself. European involvement in millimetre astronomy Europe already has a strong involvement in millimetre astronomy: the 5 x 15-m IRAM array on Plateau de Bure (France), the 30-m IRAM antenna (Spain), the 20-m at Onsala (Sweden), the 15-m Swedish-ESO Submillimetre Telescope (SEST, La Silla), the 15-m JCMT (Mauna Kea, Hawaii), the 10-m HHT (Arizona), and others. Over 60 research institutes around Europe use these facilities. Many of them have developed technical expertise and leadership in this area together with European industry, so it is natural that a European collaboration should be looking to the future. The idea of a large European southern millimetre array has been discussed since 1991. In 1995, an LSA Project collaboration was established between ESO, the Institut de Radio Astronomie Millimetrique (IRAM), the Onsala Space Observatory, and the Netherlands Foundation for Research in Astronomy (NFRA). This consortium of observatories agreed to pool resources to study critical technical areas and conduct site surveys in Chile. Details are available in a Messenger article (March 98). Possibilities of intercontinental collaboration An important step was taken in June 1997. A similar project is under study in the United States of America (the "Millimeter Array", MMA ). An agreement was entered into between ESO and the U.S. National Radio Astronomy Observatory (NRAO) to explore the possibility of merging the two projects into one. Until then the emphasis in Europe had been on the large collecting area provided by 16-m antennas operating at purely millimetre wavelengths, while in the U.S. the concept was a smaller array of 8-m antennas with good submillimetre performance. However, as there is also considerable interest in Europe in submillimetre observations, and in the U.S. in a larger collecting area, a compromise seemed feasible. Several joint working groups formed under the ESO-NRAO agreement were set up to explore the possibility of a collaborative project. It was concluded that a homogeneous array of 64 x 12-m antennas, providing submillimetre performance with a total collecting area of 7,000 m 2 , could be built at the high (5000 m) Chajnantor site , an hour from the array control center at the town of San Pedro de Atacama. It is this collaborative facility that is presently referred to as the Large Southern Array/Millimetre Array (LSA/MMA) . The decision by the ESO Council The ESO Council today passed a resolution that emphasizes the great potential of this proposed astronomical facility for scientific discoveries. It will operate in a relatively unexplored waveband region and with imaging and spectral resolution vastly better than anything now available. The ESO Council requests the ESO Executive to develop a proposal for ESO's role in the design and development phase of the new facility to be submitted to Council in its December 1998 meeting. This phase (Phase I) will cover the technical, financial, human resources, scheduling and organizational aspects for the development, construction, commissioning and operation of the LSA/MMA. The ESO Council supports the intention to create a European Coordinating Committee with participation of ESO that will discuss related policy and technical matters. A European Negotiating Team will then be established that will discuss with the U.S. and other interested nations the conditions of the union of the LSA and MMA as a single common enterprise. Note: [1] The corresponding wavelength interval is about 0.3 to 10 mm. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  4. Cost-Effective Magnetoencephalography Based on Time Encoded Optical Fiber Interferometry for Epilepsy and Tinnitus

    DTIC Science & Technology

    2016-09-01

    Thanks to the elegant reciprocal geometry of the Sagnac interferometer, many sources of drift that would present in other polarimetry techniques were...interferometers. And is 2 orders of magnitude better than competing polarimetry -based Faraday techniques. Couple a Rb Vapor cell to the Sagnac interferometer

  5. Imaging interferometer using dual broadband quantum well infrared photodetectors

    NASA Technical Reports Server (NTRS)

    Reininger, F.; Gunapala, S.; Bandara, S.; Grimm, M.; Johnson, D.; Peters, D.; Leland, S.; Liu, J.; Mumolo, J.; Rafol, D.; hide

    2002-01-01

    The Jet Propulsion Laboratory is developing a new imaging interferometer that has double the efficiency of conventional interferometers and only a fraction of the mass and volume. The project is being funded as part of the Defense Advanced Research Projects Agency (DARPA) Photonic Wavelength And Spatial Signal Processing program (PWASSSP).

  6. Two-Particle Four-Mode Interferometer for Atoms

    NASA Astrophysics Data System (ADS)

    Dussarrat, Pierre; Perrier, Maxime; Imanaliev, Almazbek; Lopes, Raphael; Aspect, Alain; Cheneau, Marc; Boiron, Denis; Westbrook, Christoph I.

    2017-10-01

    We present a free-space interferometer to observe two-particle interference of a pair of atoms with entangled momenta. The source of atom pairs is a Bose-Einstein condensate subject to a dynamical instability, and the interferometer is realized using Bragg diffraction on optical lattices, in the spirit of our recent Hong-Ou-Mandel experiment. We report on an observation ruling out the possibility of a purely mixed state at the input of the interferometer. We explain how our current setup can be extended to enable a test of a Bell inequality on momentum observables.

  7. Fourier-transform and global contrast interferometer alignment methods

    DOEpatents

    Goldberg, Kenneth A.

    2001-01-01

    Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.

  8. SUNLITE program. Sub-Hertz relative frequency stabilization of two diode laser pumped Nd:YAG lasers locked to a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1990-01-01

    Two laser pumped Nd:YAG lasers were frequency stabilized to a commercial 6.327 GHz free spectral range Fabry-Perot interferometer yielding a best case beatnote linewidth of 330 MHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 was built, and when it was substituted in place of the commercial interferometer, it produced a robust and easily repeatable beatnote linewidth of 700 MHz.

  9. A combined scanning tunnelling microscope and x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Kuetgens, Ulrich; Koenders, Ludger; Weimann, Thomas

    2001-10-01

    A monolithic x-ray interferometer made from silicon and a scanning tunnelling microscope have been combined and used to calibrate grating structures with periodicities of 100 nm or less. The x-ray interferometer is used as a translation stage which moves in discrete steps of 0.192 nm, the lattice spacing of the silicon (220) planes. Hence, movements are traceable to the definition of the metre and the nonlinearity associated with the optical interferometers used to measure displacement in more conventional metrological scanning probe microscopes (MSPMs) removed.

  10. Polarizing Gires-Tournois interferometer as intra-cavity frequency-selective element in high-power lasers

    NASA Astrophysics Data System (ADS)

    Schuhmann, Karsten; Kirch, Klaus; Marszałek, Mirosław; Pototschnig, Martin; Sinkunaite, Laura; Wichmann, Gunther; Zeyen, Manuel; Antognini, Aldo

    2018-02-01

    We present a frequency selective optical setup based on a Gires-Tournois interferometer suitable to enforce single-frequency operation of high power lasers. It is based on a birefringent Gires-Tournois interferometer combined with a λ/4 plate and a polarizer. The high-reflective part of the Gires-Tournois interferometer can be contacted to a heat sink to obtain efficient cooling (similar cooling principle as for the active medium in thin-disk lasers) enabling power scaling up to output powers in the kW range.

  11. Improving the phase response of an atom interferometer by means of temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Fang, Bess; Mielec, Nicolas; Savoie, Denis; Altorio, Matteo; Landragin, Arnaud; Geiger, Remi

    2018-02-01

    We study theoretically and experimentally the influence of temporally shaping the light pulses in an atom interferometer, with a focus on the phase response of the interferometer. We show that smooth light pulse shapes allow rejecting high frequency phase fluctuations (above the Rabi frequency) and thus relax the requirements on the phase noise or frequency noise of the interrogation lasers driving the interferometer. The light pulse shape is also shown to modify the scale factor of the interferometer, which has to be taken into account in the evaluation of its accuracy budget. We discuss the trade-offs to operate when choosing a particular pulse shape, by taking into account phase noise rejection, velocity selectivity, and applicability to large momentum transfer atom interferometry.

  12. Measuring polarization dependent dispersion of non-polarizing beam splitter cubes with spectrally resolved white light interferometry

    NASA Astrophysics Data System (ADS)

    Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.

    2017-06-01

    In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.

  13. The Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. M.; Wallace, J. K.; Hines, B. E.; Gursel, Y.; Malbet, F.; Palmer, D. L.; Pan, X. P.; Shao, M.; Yu, J. W.; Boden, A. F.

    1999-01-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined pairwise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 microns and active delay lines with a range of +/-38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.

  14. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  15. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Choi, Hae Young; Kim, Myoung Jin; Lee, Byeong Ha

    2007-04-01

    We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from to . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.

  16. Triggered star-formation in the bright rimmed globule IC1396A

    NASA Astrophysics Data System (ADS)

    Patel, Nimesh A.; Sicilia-Aguilar, Aurora; Goldsmith, Paul

    2015-01-01

    IC1396 is a well known HII region and molecular cloud complex surrounding the Trumpler 37 cluster of OB stars in the Cepheus OB2 association. The dense, elephant trunk shaped globules in this region typically show bright rims facing the central exciting O6 star HD~206267. This region, at a distance of 870 pc, is an excellent astrophysical laboratory for studying the feedback effects of massive stars on neighboring molecular clouds. Triggered star formation occurs when dense cores (which would otherwise remain stable) are compressed and made unstable by the sustained energy input from the OB association. Observationally it remains challenging to prove whether the onset of star-formation in such globules is triggered or spontaneous.Using the Submillimeter Array (SMA), we observed IC1396 globule A (Pottasch 1958 nomenclature), targeting four newly discovered protostars from recent Herschel PACS observations. Here we present 230 GHz molecular line (CO, 13CO, C18O, N2D+ and H2CO) and continuum results for the source IC1396A-PACS-1 (Sicilia-Aguilar et al. 2014). This is a Class 0 source very close to the edge of the ionization front and Herschel observations show this to be a most promisingcase of triggered star-formation. The SMA 230 GHz continuum source has a flux density of 280 mJy. We estimate a dust mass of about 0.1 Msun in this source which appears very compact in our 5" beam. CO, 13CO and C18O emission is largely resolved out by the interferometer and will require combined imaging with single-dish observations. (We have a parallel ongoing study being carried out with the IRAM 30m telescope). SMA N2D+ emission peaks on the continuum sourceand is partially resolved. H2CO emission appears to avoid the peak of continuum and N2D+, suggesting depletion. Both the morphology and kinematics in H2CO emission are indicative of internal disturbance, away from the PDR region into the globule.

  17. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator.

    PubMed

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel S; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  18. Response of a PCF-based modal interferometer to lateral stress: Resonant behavior and performance as sensor

    NASA Astrophysics Data System (ADS)

    Sanz-Felipe, Á.; Martín, J. C.

    2017-11-01

    The performance of a fiber-based modal interferometer as lateral stress sensor has been analyzed, both for static and periodic forces applied on it. The central fiber of the interferometer is a photonic crystal fiber. Forces are applied on it perpendicular to its axis, so that they squeeze it. In static situations, changes in the transmission spectrum of the interferometer are studied as a function of the charges applied. Measurements with several interferometers have been carried out in order to analyze the influence of its length and of its splices' transmission on the device operation, looking for optimization of its linearity and sensibility. The effect of periodic charges, as an emulation of vibrations, has also been studied. The analysis is centered on the frequency dependence of the response. In linear regime (small enough periodic charges), the results obtained are satisfactorily explained by treating the central fiber of the interferometer as a mechanical resonator whose vibration modes coincide with the ones of a cylinder with clamped ends. In nonlinear regime, period doubling and other anharmonic behaviors have been observed.

  19. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator

    NASA Astrophysics Data System (ADS)

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  20. Investigation of Grating-Assisted Trimodal Interferometer Biosensors Based on a Polymer Platform.

    PubMed

    Liang, Yuxin; Zhao, Mingshan; Wu, Zhenlin; Morthier, Geert

    2018-05-10

    A grating-assisted trimodal interferometer biosensor is proposed and numerically analyzed. A long period grating coupler, for adjusting the power between the fundamental mode and the second higher order mode, is investigated, and is shown to act as a conventional directional coupler for adjusting the power between the two arms. The trimodal interferometer can achieve maximal fringe visibility when the powers of the two modes are adjusted to the same value by the grating coupler, which means that a better limit of detection can be expected. In addition, the second higher order mode typically has a larger evanescent tail than the first higher order mode in bimodal interferometers, resulting in a higher sensitivity of the trimodal interferometer. The influence of fabrication tolerances on the performance of the designed interferometer is also investigated. The power difference between the two modes shows inertia to the fill factor of the grating, but high sensitivity to the modulation depth. Finally, a 2050 2π/RIU (refractive index unit) sensitivity and 43 dB extinction ratio of the output power are achieved.

  1. Design of a nonlinear, thin-film Mach-Zehnder interferometer

    NASA Technical Reports Server (NTRS)

    Pearson, Earl F.

    1996-01-01

    A Mach-Zehnder interferometer consists of a 3 db splitter to create the two separate beams, an optical path difference to control the interference between the two beams and another 3 db coupler to reconstruct the output signal. The performance of each of its components has been investigated. Since an optical path difference is required for its function, the performance of a Mach-Zehnder interferometer is not very sensitive to construction parameters. In designing an interferometer for this work, the following considerations must be observed: the interferometer is to be made of phthalocyanine or polydiacetylene thin films; in order to avoid thermal effects which are slower, the wavelength chosen must not be absorbed in either one or two photon processes; the wavelength chosen must be easily generated (laser line); the spacing between the interferometer arms must be large enough to allow attachment of external electrodes; the vapor deposition apparatus can accept disks no larger than 0.9 inches; and the design must allow multiple layer coating in order to determine the optimum film thickness or to change to another substance.

  2. Detecting coupling of Majorana bound states with an Aharonov-Bohm interferometer

    NASA Astrophysics Data System (ADS)

    Ramos-Andrade, J. P.; Orellana, P. A.; Ulloa, S. E.

    2018-01-01

    We study the transport properties of an interferometer composed by a quantum dot (QD) coupled with two normal leads and two one-dimensional topological superconductor nanowires (TNWs) hosting Majorana bound states (MBS) at their ends. The geometry considered is such that one TNW has both ends connected with the QD, forming an Aharonov-Bohm (AB) interferometer threaded by an external magnetic flux, while the other TNW is placed near the interferometer TNW. This geometry can alternatively be seen as a long wire contacted across a local defect, with possible coupling between independent-MBS. We use the Green’s function formalism to calculate the conductance across normal current leads on the QD. We find that the conductance exhibits a half-quantum value regardless of the AB phase and location of the dot energy level, whenever the interferometer configuration interacts with the neighboring TNW. These findings suggest that such a geometry could be used for a sensitive detection of MBS interactions across TNWs, exploiting the high sensitivity of conductance to the AB phase in the interferometer.

  3. Transport properties of a quantum dot and a quantum ring in series

    NASA Astrophysics Data System (ADS)

    Seo, Minky; Chung, Yunchul

    2018-01-01

    The decoherence mechanism of an electron interferometer is studied by using a serial quantum dot and ring device. By coupling a quantum dot to a quantum ring (closed-loop electron interferometer), we were able to observe both Coulomb oscillations and Aharonov-Bohm interference simultaneously. The coupled device behaves like an ordinary double quantum dot at zero magnetic field while the conductance of the Coulomb blockade peak is modulated by the electron interference at finite magnetic fields. By injecting one electron at a time (by exploiting the sequential tunneling of a quantum dot) into the interferometer, we were able to study the visibility of the electron interference at non-zero bias voltage. The visibility was found to decay rapidly as the electron energy was increased, which was consistent with the recently reported result for an electron interferometer. However, the lobe pattern and the sudden phase jump became less prominent. These results imply that the lobe pattern and the phase jump in an electron interferometer may be due to electron interactions inside the interferometer, as is predicted by the theory.

  4. Confocal Fabry-Perot interferometer for frequency stabilization of laser

    NASA Astrophysics Data System (ADS)

    Pan, H.-J.; Ruan, P.; Wang, H.-W.; Li, F.

    2011-02-01

    The frequency shift of laser source of Doppler lidar is required in the range of a few megahertzs. To satisfy this demand, a confocal Fabry-Perot (F-P) interferometer was manufactured as the frequency standard for frequency stabilization. After analyzing and contrasting the center frequency shift of confocal Fabry-Perot interferometers that are made of three different types of material with the change of temperature, the zerodur material was selected to fabricate the interferometer, and the cavity mirrors were optically contacted onto the end of spacer. The confocal Fabry-Perot interferometer was situated within a double-walled chamber, and the change of temperature in the chamber was less than 0.01 K. The experimental results indicate that the free spectral range is 500 MHz, the full-width at half maximum is 3.33 MHz, and the finesse is 150.

  5. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements.

    PubMed

    Hsieh, Hung-Lin; Pan, Ssu-Wen

    2015-02-09

    A grating-based interferometer for 6-DOF displacement and angle measurement is proposed in this study. The proposed interferometer is composed of three identical detection parts sharing the same light source. Each detection part utilizes three techniques: heterodyne, grating shearing, and Michelson interferometries. Displacement information in the three perpendicular directions (X, Y, Z) can be sensed simultaneously by each detection part. Furthermore, angle information (θX, θY, θZ) can be obtained by comparing the displacement measurement results between two corresponding detection parts. The feasibility and performance of the proposed grating-based interferometer are evaluated in displacement and angle measurement experiments. In comparison with the internal capacitance sensor built into the commercial piezo-stage, the measurement resolutions of the displacement and angle of our proposed interferometer are about 2 nm and 0.05 μrad.

  6. High-Resolution Broadband Spectral Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot sizemore » or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).« less

  7. Design of compact dispersion interferometer with a high efficiency nonlinear crystal and a low power CO2 laser

    NASA Astrophysics Data System (ADS)

    Akiyama, T.; Yoshimura, S.; Tomita, K.; Shirai, N.; Murakami, T.; Urabe, K.

    2017-12-01

    When the electron density of a plasma generated in high pressure environment is measured by a conventional interferometer, the phase shifts due to changes of the neutral gas density cause significant measurement errors. A dispersion interferometer, which measures the phase shift that arises from dispersion of medium between the fundamental and the second harmonic wavelengths of laser light, can suppress the measured phase shift due to the variations of neutral gas density. In recent years, the CO2 laser dispersion interferometer has been applied to the atmospheric pressure plasmas and its feasibility has been demonstrated. By combining a low power laser and a high efficiency nonlinear crystal for the second harmonic component generation, a compact dispersion interferometer can be designed. The optical design and preliminary experiments are conducted.

  8. High-sensitivity rotation sensing with atom interferometers using Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Özcan, Meriac

    2006-02-01

    In recent years there has been significant activity in research and development of high sensitivity accelerometers and gyroscopes using atom interferometers. In these devices, a fringe shift in the interference of atom de Broglie waves indicates the rotation rate of the interferometer relative to an inertial frame of reference. In both optical and atomic conventional Sagnac interferometers, the resultant phase difference due to rotation is independent of the wave velocity. However, we show that if an atom interforemeter is enclosed in a Faraday cage which is at some potential, the phase difference of the counter-propagating waves is proportional to the inverse square of the particle velocity and it is proportional to the applied potential. This is due to Aharonov-Bohm effect and it can be used to increase the rotation sensitivity of atom interferometers.

  9. The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Jun; Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn

    Quantum-noise cancellation (QNC) is an effective method to control the noise of the quantum system, which reduces or even eliminates the noise of the quantum systems by utilizing destructive interference in the quantum system. However, QNC can be extremely dependent on the losses inside the system. In this letter, we experimentally and theoretically study how the losses can affect the QNC in the SU(1,1) interferometer. We find that losses in the different arms inside the SU(1,1) interferometer can have different effects on the QNC in the output fields from the SU(1,1) interferometer. And the QNC in the SU(1,1) interferometer canmore » almost be insensitive to the losses in some cases. Our findings may find its potential applications in the quantum noise control.« less

  10. Results from a multi aperture Fizeau interferometer ground testbed: demonstrator for a future space-based interferometer

    NASA Astrophysics Data System (ADS)

    Baccichet, Nicola; Caillat, Amandine; Rakotonimbahy, Eddy; Dohlen, Kjetil; Savini, Giorgio; Marcos, Michel

    2016-08-01

    In the framework of the European FP7-FISICA (Far Infrared Space Interferometer Critical Assessment) program, we developed a miniaturized version of the hyper-telescope to demonstrate multi-aperture interferometry on ground. This setup would be ultimately integrated into a CubeSat platform, therefore providing the first real demonstrator of a multi aperture Fizeau interferometer in space. In this paper, we describe the optical design of the ground testbed and the data processing pipeline implemented to reconstruct the object image from interferometric data. As a scientific application, we measured the Sun diameter by fitting a limb-darkening model to our data. Finally, we present the design of a CubeSat platform carrying this miniature Fizeau interferometer, which could be used to monitor the Sun diameter over a long in-orbit period.

  11. Modeling and Experimental Study of Fracture-Based Wellbore Strengthening

    NASA Astrophysics Data System (ADS)

    Zhong, Ruizhi

    Measuring physical dimensions has always been one of the challenges for optical metrology. Specifically, the thickness is often a prerequisite piece of information for other optical properties when characterizing components and materials. For example, when measuring the index of refraction of materials using interferometric methods, the direct measurement is optical path length difference. To acquire index of refraction with high accuracy, the thickness must be predetermined with correspondingly high accuracy as well. In this dissertation, a prototype low-coherence interferometer system is developed through several design iterations to measure the absolute thickness map of a plane-parallel samples in a nondestructive manner. The prototype system is built with all off-the-shelf components in a configuration that combines a Twyman-Green interferometer and a Sagnac interferometer. The repeatability and accuracy of the measured thickness are characterized to be less than one micrometer. Based on the information acquired from the development of the prototype system, a permanent low-coherence interferometer system is designed and built to achieve a higher accuracy in thickness measurements, on the level of a hundred nanometers. A comprehensive uncertainty model is established for the thickness measurement using the low-coherence interferometer system. Additionally, this system is also capable of measuring the topography of both surfaces of the sample, as well as the wedge of the sample. This low-coherence dimensional metrology uses only the reflection signals from the sample surfaces. Thus, the measured physical dimensions are independent of the index of refraction, transparency, transmission, or homogeneity of the sample. In addition, a laser Sagnac interferometer is designed and built by repurposing the test arm of the low-coherence interferometer. The laser Sagnac interferometer provides a non-contact bulk index of refraction metrology for solid materials. The uncertainty model for the index of refraction measurement is detailed with analytical solutions. The laser Sagnac interferometer requires relatively simple sample preparation and fast turn-around time, which is suitable for applications in optical material research.

  12. Liquid-Crystal Point-Diffraction Interferometer for Wave-Front Measurements

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Creath, Katherine

    1996-01-01

    A new instrument, the liquid-crystal point-diffraction interferometer (LCPDI), is developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point-diffraction interferometer and adds to it a phase-stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wave fronts with very high data density and with automated data reduction. We describe the theory and design of the LCPDI. A focus shift was measured with the LCPDI, and the results are compared with theoretical results,

  13. Large-aperture interferometer using local reference beam

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1982-01-01

    A large-aperture interferometer was devised by adding a local-reference-beam-generating optical system to a schlieren system. Two versions of the interferometer are demonstrated, one employing 12.7 cm (5 in.) diameter schlieren optics, the other employing 30.48 cm (12 in.) diameter parabolic mirrors in an off-axis system. In the latter configuration a cylindrical lens is introduced near the light source to correct for astigmatism. A zone plate is a satisfactory decollimating element in the reference-beam arm of the interferometer. Attempts to increase the flux and uniformity of irradiance in the reference beam by using a diffuser are discussed.

  14. Parallel demodulation system and signal-processing method for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors.

    PubMed

    Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin

    2005-03-15

    A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented that is based on a Michelson interferometer and combines the methods of low-coherence interference and Fourier transform spectrum. Signals from EFPI and FBG sensors are obtained simultaneously by scanning one arm of a Michelson interferometer, and an algorithm model is established to process the signals and retrieve both the wavelength of the FBG and the cavity length of the EFPI at the same time, which are then used to determine the strain and temperature.

  15. High-sensitivity density fluctuation detector

    NASA Technical Reports Server (NTRS)

    Azzazy, M.; Modarress, D.; Hoeft, T.

    1987-01-01

    A high-sensitivity differential interferometer has been developed to detect small density fluctuations over an optical path length of the order of the boundary layer thickness near transition. Two experimental configurations have been used to evaluate the performance of the interferometer: an open shear-layer configuration and a wind-tunnel turbulent spot configuration. In each experiment small temperature fluctuations were introduced as the signal source. Simultaneous cold-wire measurements have been compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations of the order of 0.001 of the laser wavelength.

  16. Method of calibrating an interferometer and reducing its systematic noise

    NASA Technical Reports Server (NTRS)

    Hammer, Philip D. (Inventor)

    1997-01-01

    Methods of operation and data analysis for an interferometer so as to eliminate the errors contributed by non-responsive or unstable pixels, interpixel gain variations that drift over time, and spurious noise that would otherwise degrade the operation of the interferometer are disclosed. The methods provide for either online or post-processing calibration. The methods apply prescribed reversible transformations that exploit the physical properties of interferograms obtained from said interferometer to derive a calibration reference signal for subsequent treatment of said interferograms for interpixel gain variations. A self-consistent approach for treating bad pixels is incorporated into the methods.

  17. Development of CO2 laser dispersion interferometer with photoelastic modulator

    NASA Astrophysics Data System (ADS)

    Akiyama, T.; Kawahata, K.; Okajima, S.; Nakayama, K.

    2010-10-01

    A dispersion interferometer is one of the promising methods of the electron density measurement on large and high density fusion devices. This paper describes development of a CO2 laser dispersion interferometer with a photoelastic modulator for phase modulation. In order to make the dispersion interferometer free from variations of the detected intensity, a new phase extraction method is introduced: The phase shift is evaluated from a ratio of amplitudes of the fundamental and the second harmonics of the phase modulation frequency in the detected interference signal. The proof-of-principle experiments demonstrate the feasibility of this method.

  18. Development of CO2 laser dispersion interferometer with photoelastic modulator.

    PubMed

    Akiyama, T; Kawahata, K; Okajima, S; Nakayama, K

    2010-10-01

    A dispersion interferometer is one of the promising methods of the electron density measurement on large and high density fusion devices. This paper describes development of a CO(2) laser dispersion interferometer with a photoelastic modulator for phase modulation. In order to make the dispersion interferometer free from variations of the detected intensity, a new phase extraction method is introduced: The phase shift is evaluated from a ratio of amplitudes of the fundamental and the second harmonics of the phase modulation frequency in the detected interference signal. The proof-of-principle experiments demonstrate the feasibility of this method.

  19. Terrestrial Planet Finder Interferometer: Architecture, Mission Design and Technology Development

    NASA Technical Reports Server (NTRS)

    Henry, Curt; Lay, Oliver; Aung, MiMi; Gunter, Steven M.; Dubovitsky, Serge; Blackwood, Gary

    2004-01-01

    This overview paper is a progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003 and serves as an update to a paper presented at that month's SPIE conference, 'Techniques and Instrumentation for Detection of Exoplanets.

  20. Millimetre observations of comets P/Brorsen-Metcalf (1989o) and Austin (1989c1) with the IRAM 30-m radio telescope

    NASA Technical Reports Server (NTRS)

    Colom, P.; Despois, D.; Bockelee-Morvan, D.; Crovisier, J.; Paubert, G.

    1990-01-01

    Millimeter observations with the IRAM 30 m telescope were conducted in comet P/Brorsen-Metcalf (1989o) on September 1989 and Austin (1989c1) on April and May 1990. The HCN J(1-0) and J(3-2) lines were detected in both comets. The HCN production rate relative to water in P/Brorsen-Metcalf is comparable to that previously measured in comet P/Halley, while that inferred in comet Austin might be smaller by a factor of two. The H2CO(3 sub 12 - 2 sub 11) transition, marginally observed in comet P/Brorsen-Metcalf, was firmly detected in May 1990 in comet Austin. Observations performed at offset positions suggest that the source of H2CO might be distributed. The H2CO abundance is on the order of 0.5 percent that of water for both comets, assuming a scalelength of 10(exp 4) km at 1 AU from the Sun for the distributed source. During the May observing period of comet Austin, two new species were detected for the first time in a comet: hydrogen sulfide (H2S) through its 1(sub 10) - 1(sub 01) ortho line at 169 GHz, and methanol (CH3OH) through J(3-2) delta K = 0 transitions at 145 GHz. Preliminary estimates of their abundances are 1.5 x 10(exp -3) for H2S and 8 x 10(exp -3) for CH3OH.

  1. Spatial variation of the physical conditions of molecular gas in galaxies

    NASA Technical Reports Server (NTRS)

    Jackson, James M.; Eckart, Andreas; Wild, Wolfgang; Genzel, Reinhard; Harris, Andrew I.; Downes, Dennis; Jaffe, D. T.; Ho, Paul T. P.

    1990-01-01

    Multi-line studies of CO-12, CO-13, C-18O, HCN, and HCO(+) at 3 mm, 1.3 mm, and 0.8 mm using the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope, with the IRAM superconductor insulator superconductor (SIS) receivers and the Max Planck Institute for External Physics (MPE) 350 GHz SIS receiver, show that the densities and temperatures of molecular gas in external galaxies change significantly with position. CO-12 measures the densities and temperature of diffuse interclump molecular gas, but not the bulk of the molecular gas. Simple one-component models, with or without external heating, cannot account for the weakness of the CO-12 J = 3 to 2 line relative to J = 2 to 1 and J = 1 to 0. CO-12 does not trace the bulk of the molecular gas, and optical depth effects obviate a straightforward interpretation of CO-12 data. Instead, researchers turned to the optically thin CO isotopes and other molecular species. Isotopic CO lines measure the bulk of the molecular gas, and HCN and HCO(+) pick out denser regions. Researchers find a warm ridge of gas in IC 342 (Eckart et al. 1989), denser gas in the starburst nucleus of IC 342, and a possible hot-spot in NGC 2903. In IC 342, NGC 2146, and NGC 6764, the CO-13 J = 2 to 1 line is subthermally populated, implying gas densities less than or equal to 10(exp 4) cm(-3).

  2. Large-scale Map of Millimeter-wavelength Hydrogen Radio Recombination Lines around a Young Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Nguyen-Luong, Q.; Anderson, L. D.; Motte, F.; Kim, Kee-Tae; Schilke, P.; Carlhoff, P.; Beuther, H.; Schneider, N.; Didelon, P.; Kramer, C.; Louvet, F.; Nony, T.; Bihr, S.; Rugel, M.; Soler, J.; Wang, Y.; Bronfman, L.; Simon, R.; Menten, K. M.; Wyrowski, F.; Walmsley, C. M.

    2017-08-01

    We report the first map of large-scale (10 pc in length) emission of millimeter-wavelength hydrogen recombination lines (mm-RRLs) toward the giant H II region around the W43-Main young massive star cluster (YMC). Our mm-RRL data come from the IRAM 30 m telescope and are analyzed together with radio continuum and cm-RRL data from the Karl G. Jansky Very Large Array and HCO+ 1-0 line emission data from the IRAM 30 m. The mm-RRLs reveal an expanding wind-blown ionized gas shell with an electron density ˜70-1500 cm-3 driven by the WR/OB cluster, which produces a total Lyα photon flux of 1.5× {10}50 s-1. This shell is interacting with the dense neutral molecular gas in the W43-Main dense cloud. Combining the high spectral and angular resolution mm-RRL and cm-RRL cubes, we derive the two-dimensional relative distributions of dynamical and pressure broadening of the ionized gas emission and find that the RRL line shapes are dominated by pressure broadening (4-55 {km} {{{s}}}-1) near the YMC and by dynamical broadening (8-36 {km} {{{s}}}-1) near the shell’s edge. Ionized gas clumps hosting ultra-compact H II regions found at the edge of the shell suggest that large-scale ionized gas motion triggers the formation of new star generation near the periphery of the shell.

  3. Astrochemical evolution along star formation: Overview of the IRAM Large Program ASAI

    NASA Astrophysics Data System (ADS)

    Lefloch, Bertrand; Bachiller, R.; Ceccarelli, C.; Cernicharo, J.; Codella, C.; Fuente, A.; Kahane, C.; López-Sepulcre, A.; Tafalla, M.; Vastel, C.; Caux, E.; González-García, M.; Bianchi, E.; Gómez-Ruiz, A.; Holdship, J.; Mendoza, E.; Ospina-Zamudio, J.; Podio, L.; Quénard, D.; Roueff, E.; Sakai, N.; Viti, S.; Yamamoto, S.; Yoshida, K.; Favre, C.; Monfredini, T.; Quitián-Lara, H. M.; Marcelino, N.; Roberty, H. Boechat; Cabrit, S.

    2018-04-01

    Evidence is mounting that the small bodies of our Solar System, such as comets and asteroids, have at least partially inherited their chemical composition from the first phases of the Solar System formation. It then appears that the molecular complexity of these small bodies is most likely related to the earliest stages of star formation. It is therefore important to characterize and to understand how the chemical evolution changes with solar-type protostellar evolution. We present here the Large Program "Astrochemical Surveys At IRAM" (ASAI). Its goal is to carry out unbiased millimeter line surveys between 80 and 272 GHz of a sample of ten template sources, which fully cover the first stages of the formation process of solar-type stars, from prestellar cores to the late protostellar phase. In this article, we present an overview of the surveys and results obtained from the analysis of the 3 mm band observations. The number of detected main isotopic species barely varies with the evolutionary stage and is found to be very similar to that of massive star-forming regions. The molecular content in O- and C- bearing species allows us to define two chemical classes of envelopes, whose composition is dominated by either a) a rich content in O-rich complex organic molecules, associated with hot corino sources, or b) a rich content in hydrocarbons, typical of Warm Carbon Chain Chemistry sources. Overall, a high chemical richness is found to be present already in the initial phases of solar-type star formation.

  4. Pulsed Power Bibliography. Volume 2. Annotated Bibliography.

    DTIC Science & Technology

    1983-08-01

    grounded wires and lower t a-so;Roou.- Loop, Currt Transcur ~r Pull "Iv~rs oo d buring nvrro in orc ned fbec ar Sttfeto ey dl Prb evv-.on d - the .opera...ineno01 -,.oocmv,,p. areto has bees develope Thrt toa p.a Ic--el "’c IIT rea:idAl n us o Onviii:1 wIt p0 toO men-nun1-- Fr’-or--V nan High Pulled owr Cih...PERMISSilUic-o.orr tlvi0 tent icg .e Neo "nePrforme on 10 b., vulro-nit L1C ci.iit usini- a VAS Singla1 pull . tens t T t put nf ’~n cavuan copy srcacsal

  5. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  6. Millimetre spectral indices of transition disks and their relation to the cavity radius

    NASA Astrophysics Data System (ADS)

    Pinilla, P.; Benisty, M.; Birnstiel, T.; Ricci, L.; Isella, A.; Natta, A.; Dullemond, C. P.; Quiroga-Nuñez, L. H.; Henning, T.; Testi, L.

    2014-04-01

    Context. Transition disks are protoplanetary disks with inner depleted dust cavities that are excellent candidates for investigating the dust evolution when there is a pressure bump. A pressure bump at the outer edge of the cavity allows dust grains from the outer regions to stop their rapid inward migration towards the star and to efficiently grow to millimetre sizes. Dynamical interactions with planet(s) have been one of the most exciting theories to explain the clearing of the inner disk. Aims: We look for evidence of millimetre dust particles in transition disks by measuring their spectral index αmm with new and available photometric data. We investigate the influence of the size of the dust depleted cavity on the disk integrated millimetre spectral index. Methods: We present the 3-mm (100 GHz) photometric observations carried out with the Plateau de Bure Interferometer of four transition disks: LkHα 330, UX Tau A, LRLL 31, and LRLL 67. We used the available values of their fluxes at 345 GHz to calculate their spectral index, as well as the spectral index for a sample of twenty transition disks. We compared the observations with two kinds of models. In the first set of models, we considered coagulation and fragmentation of dust in a disk in which a cavity is formed by a massive planet located at different positions. The second set of models assumes disks with truncated inner parts at different radii and with power-law dust-size distributions, where the maximum size of grains is calculated considering turbulence as the source of destructive collisions. Results: We show that the integrated spectral index is higher for transition disks (TD) than for regular protoplanetary disks (PD) with mean values of bar{αmmTD} = 2.70 ± 0.13 and bar{αmmPD} = 2.20 ± 0.07 respectively. For transition disks, the probability that the measured spectral index is positively correlated with the cavity radius is 95%. High angular resolution imaging of transition disks is needed to distinguish between the dust trapping scenario and the truncated disk case. The final PdBI data used in the paper are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A51

  7. Bandwidth in bolometric interferometry

    NASA Astrophysics Data System (ADS)

    Charlassier, R.; Bunn, E. F.; Hamilton, J.-Ch.; Kaplan, J.; Malu, S.

    2010-05-01

    Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing. Aims: We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra. Methods: We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical results. Results: We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).

  8. Abundance of SiC2 in carbon star envelopes

    NASA Astrophysics Data System (ADS)

    Massalkhi, S.; Agúndez, M.; Cernicharo, J.; Velilla Prieto, L.; Goicoechea, J. R.; Quintana-Lacaci, G.; Fonfría, J. P.; Alcolea, J.; Bujarrabal, V.

    2018-03-01

    Context. Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich asymptotic giant branch (AGB) stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. The most obvious candidates among the molecules containing an Si-C bond detected in C-rich AGB stars are SiC2, SiC, and Si2C. To date, the ring molecule SiC2 has been observed in a handful of evolved stars, while SiC and Si2C have only been detected in the C-star envelope IRC +10216. Aim. We aim to study how widespread and abundant SiC2, SiC, and Si2C are in envelopes around C-rich AGB stars, and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars. Methods: We carried out sensitive observations with the IRAM 30 m telescope of a sample of 25 C-rich AGB stars to search for emission lines of SiC2, SiC, and Si2C in the λ 2 mm band. We performed non-LTE excitation and radiative transfer calculations based on the LVG method to model the observed lines of SiC2 and to derive SiC2 fractional abundances in the observed envelopes. Results: We detect SiC2 in most of the sources, SiC in about half of them, and do not detect Si2C in any source except IRC +10216. Most of these detections are reported for the first time in this work. We find a positive correlation between the SiC and SiC2 line emission, which suggests that both species are chemically linked; the SiC radical is probably the photodissociation product of SiC2 in the external layer of the envelope. We find a clear trend where the denser the envelope, the less abundant SiC2 is. The observed trend is interpreted as evidence of efficient incorporation of SiC2 onto dust grains, a process that is favored at high densities owing to the higher rate at which collisions between particles take place. Conclusions: The observed behavior of a decline in the SiC2 abundance with increasing density strongly suggests that SiC2 is an important gas-phase precursor of SiC dust in envelopes around carbon stars. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  9. On the chemical ladder of esters. Detection and formation of ethyl formate in the W51 e2 hot molecular core

    NASA Astrophysics Data System (ADS)

    Rivilla, V. M.; Beltrán, M. T.; Martín-Pintado, J.; Fontani, F.; Caselli, P.; Cesaroni, R.

    2017-03-01

    Context. In recent years, the detection of organic molecules with increasing complexity and potential biological relevance is opening the possibility to understand the formation of the building blocks of life in the interstellar medium. One of the families of molecules of substantial astrobiological interest are the esters. The simplest ester, methyl formate (CH3OCHO), is rather abundant in star-forming regions. The next step in the chemical complexity of esters is ethyl formate, C2H5OCHO. Despite the increase in sensitivity of current telescopes, the detection of complex molecules with more than ten atoms such as C2H5OCHO is still a challenge. Only two detections of this species have been reported so far, which strongly limits our understanding of how complex molecules are formed in the interstellar medium. New detections towards additional sources with a wide range of physical conditions are crucial to differentiate between competing chemical models based on dust grain surface and gas-phase chemistry. Aims: We have searched for ethyl formate towards the W51 e2 hot molecular core, one of the most chemically rich sources in the Galaxy and one of the most promising regions to study prebiotic chemistry, especially after the recent discovery of the P-O bond, key in the formation of DNA. Methods: We have analyzed a spectral line survey towards the W51 e2 hot molecular core, which covers 44 GHz in the 1, 2 and 3 mm bands, carried out with the IRAM 30 m telescope. Results: We report the detection of the trans and gauche conformers of ethyl formate. A local thermodynamic equilibrium analysis indicates that the excitation temperature is 78 ± 10 K and that the two conformers have similar source-averaged column densities of (2.0 ± 0.3) × 10-16 cm-2 and an abundance of 10-8. We compare for the first time the observed molecular abundances of ethyl formate with different competing chemical models based on grain surface and gas-phase chemistry. Conclusions: We propose that grain-surface chemistry may have a dominant role in the formation of ethyl formate (and other complex organic molecules) in hot molecular cores, rather than reactions in the gas phase. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  10. Interferometric thickness calibration of 300 mm silicon wafers

    NASA Astrophysics Data System (ADS)

    Wang, Quandou; Griesmann, Ulf; Polvani, Robert

    2005-12-01

    The "Improved Infrared Interferometer" (IR 3) at the National Institute of Standards and Technology (NIST) is a phase-measuring interferometer, operating at a wavelength of 1550 nm, which is being developed for measuring the thickness and thickness variation of low-doped silicon wafers with diameters up to 300 mm. The purpose of the interferometer is to produce calibrated silicon wafers, with a certified measurement uncertainty, which can be used as reference wafers by wafer manufacturers and metrology tool manufacturers. We give an overview of the design of the interferometer and discuss its application to wafer thickness measurements. The conversion of optical thickness, as measured by the interferometer, to the wafer thickness requires knowledge of the refractive index of the material of the wafer. We describe a method for measuring the refractive index which is then used to establish absolute thickness and thickness variation maps for the wafer.

  11. Novel birefringence interrogation for Sagnac loop interferometer sensor with unlimited linear measurement range.

    PubMed

    He, Haijun; Shao, Liyang; Qian, Heng; Zhang, Xinpu; Liang, Jiawei; Luo, Bin; Pan, Wei; Yan, Lianshan

    2017-03-20

    A novel demodulation method for Sagnac loop interferometer based sensor has been proposed and demonstrated, by unwrapping the phase changes with birefringence interrogation. A temperature sensor based on Sagnac loop interferometer has been used to verify the feasibility of the proposed method. Several tests with 40 °C temperature range have been accomplished with a great linearity of 0.9996 in full range. The proposed scheme is universal for all Sagnac loop interferometer based sensors and it has unlimited linear measurable range which overwhelming the conventional demodulation method with peak/dip tracing. Furthermore, the influence of the wavelength sampling interval and wavelength span on the demodulation error has been discussed in this work. The proposed interrogation method has a great significance for Sagnac loop interferometer sensor and it might greatly enhance the availability of this type of sensors in practical application.

  12. Characterization of the JWST Pathfinder mirror dynamics using the center of curvature optical assembly (CoCOA)

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, 18 segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  13. Two-photon interference of temporally separated photons.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-06

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  14. Highly sensitive force sensor based on balloon-like interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Xiao, Shiying; Xu, Yao; Shen, Ya; Jiang, Youchao; Jin, Wenxing; Yang, Yuguang; Jian, Shuisheng

    2018-07-01

    An all-fiber highly sensitive force sensor based on modal interferometer has been presented and demonstrated. The single-mode fiber (SMF) with coating stripped is designed into a balloon-like shape to form a modal interferometer. Due to the bent SMF, the interference occurs between the core mode and cladding modes. With variation of the force applied to the balloon-like interferometer, the bending diameter changes, which caused the wavelength shift of the modal interference. Thus the measurement of the force variation can be achieved by monitoring the wavelength shift. The performances of the interferometer with different bending diameter are experimentally investigated, and the maximum force sensitivity of 24.9 pm/ μ N can be achieved with the bending diameter 14 mm ranging from 0 μ N to 1464.12 μ N. Furthermore, the proposed fiber sensor exhibits the advantages of easy fabrication and low cost, making it a suitable candidate in the optical fiber sensing field.

  15. Combining shearography and interferometric fringe projection in a single device for complete control of industrial applications

    NASA Astrophysics Data System (ADS)

    Blain, Pascal; Michel, Fabrice; Piron, Pierre; Renotte, Yvon; Habraken, Serge

    2013-08-01

    Noncontact optical measurement methods are essential tools in many industrial and research domains. A family of new noncontact optical measurement methods based on the polarization states splitting technique and monochromatic light projection as a way to overcome ambient lighting for in-situ measurement has been developed. Recent works on a birefringent element, a Savart plate, allow one to build a more flexible and robust interferometer. This interferometer is a multipurpose metrological device. On one hand the interferometer can be set in front of a charge-coupled device (CCD) camera. This optical measurement system is called a shearography interferometer and allows one to measure microdisplacements between two states of the studied object under coherent lighting. On the other hand, by producing and shifting multiple sinusoidal Young's interference patterns with this interferometer, and using a CCD camera, it is possible to build a three-dimensional structured light profilometer.

  16. Laser interferometer for space-based mapping of Earth's gravity field

    NASA Astrophysics Data System (ADS)

    Dehne, Marina; Sheard, Benjamin; Gerberding, Oliver; Mahrdt, Christoph; Heinzel, Gerhard; Danzmann, Karsten

    2010-05-01

    Laser interferometry will play a key role in the next generation of GRACE-type satellite gravity missions. The measurement concepts for future missions include a heterodyne laser interferometer. Furthermore, it is favourable to use polarising components in the laser interferometer for beam splitting. In the first step the influence of these components on the interferometer sensitivity has been investigated. Additionally, a length stability on a nm-scale has been validated. The next step will include a performance test of an interferometric SST system in an active symmetric transponder setup including two lasers and two optical benches. The design and construction of a quasi-monolithic interferometer for comparing the interferometric performance of non-polarising and polarising optics will be discussed. The results of the interferometric readout of a heterodyne configuration together with polarising optics will be presented to fulfil the phase sensitivity requirement of 1nm/√Hz-- for a typical SSI scenario.

  17. Characterization of the JWST Pathfinder Mirror Dynamics Using the Center of Curvature Optical Assembly (CoCOA)

    NASA Technical Reports Server (NTRS)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-01-01

    The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  18. An extrinsic fiber Fabry-Perot interferometer for dynamic displacement measurement

    NASA Astrophysics Data System (ADS)

    Pullteap, S.; Seat, H. C.

    2015-03-01

    A versatile fiber interferometer was proposed for high precision measurement. The sensor exploited a double-cavity within the unique sensing arm of an extrinsic-type fiber Fabry-Perot interferometer to produce the quadrature phase-shifted interference fringes. Interference signal processing was carried out using a modified zero-crossing (fringe) counting technique to demodulate two sets of fringes. The fiber interferometer has been successfully employed for dynamic displacement measurement under different displacement profiles over a range of 0.7 μm to 140 μm. A dedicated computer incorporating the demodulation algorithm was next used to interpret these detected data as well as plot the displacement information with a resolution of λ/64. A commercial displacement sensor was employed for comparison purposes with the experimental data obtained from the fiber interferometer as well as to gauge its performance, resulting in the maximum error of 2.8% over the entire displacement range studied.

  19. Reducing tilt-to-length coupling for the LISA test mass interferometer

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; Schuster, S.; Lieser, M.; Zwetz, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Schwarze, T. S.; Wanner, G.; Ward, H.

    2018-05-01

    Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement—tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of  ±25 μm rad‑1 for interfering beams with relative angles of up to  ±300 μrad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally.

  20. Blind operation of optical astronomical interferometers options and predicted performance

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques M.

    1991-01-01

    Maximum sensitivity for optical interferometers is achieved only when the optical path lengths between the different arms can be equalized without using interference fringes on the research object itself. This is called 'blind operation' of the interferometer. This paper examines different options to achieve this, focusing on the application to the Very Large Telescope Interferometer (VLTI). It is proposed that blind operation should be done using a so-called coherence autoguider, working on an unresolved star of magnitude V = 11-13 within the isoplanatic patch for coherencing, which has a diameter of about 1 deg. Estimates of limiting magnitudes for the VLTI are also derived.

  1. Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.

    2012-08-01

    A Talbot-Lau interferometer is demonstrated using micro-periodic gratings inclined at a glancing angle along the light propagation direction. Due to the increase in the effective thickness of the absorption gratings, the device enables differential phase contrast imaging at high x-ray energy, with improved fringe visibility (contrast). For instance, at 28° glancing angle, we obtain up to ˜35% overall interferometer contrast with a spectrum having ˜43 keV mean energy, suitable for medical applications. In addition, glancing angle interferometers could provide high contrast at energies above 100 keV, enabling industrial and security applications of phase contrast imaging.

  2. The Design and Operation of Ultra-Sensitive and Tunable Radio-Frequency Interferometers.

    PubMed

    Cui, Yan; Wang, Pingshan

    2014-12-01

    Dielectric spectroscopy (DS) is an important technique for scientific and technological investigations in various areas. DS sensitivity and operating frequency ranges are critical for many applications, including lab-on-chip development where sample volumes are small with a wide range of dynamic processes to probe. In this work, we present the design and operation considerations of radio-frequency (RF) interferometers that are based on power-dividers (PDs) and quadrature-hybrids (QHs). Such interferometers are proposed to address the sensitivity and frequency tuning challenges of current DS techniques. Verified algorithms together with mathematical models are presented to quantify material properties from scattering parameters for three common transmission line sensing structures, i.e., coplanar waveguides (CPWs), conductor-backed CPWs, and microstrip lines. A high-sensitivity and stable QH-based interferometer is demonstrated by measuring glucose-water solution at a concentration level that is ten times lower than some recent RF sensors while our sample volume is ~1 nL. Composition analysis of ternary mixture solutions are also demonstrated with a PD-based interferometer. Further work is needed to address issues like system automation, model improvement at high frequencies, and interferometer scaling.

  3. A fiber-coupled displacement measuring interferometer for determination of the posture of a reflective surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Shuai; Hu, Peng-Cheng, E-mail: hupc@hit.edu.cn; Ding, Xue-Mei, E-mail: X.M.Ding@outlook.com

    A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibrationmore » show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.« less

  4. AGILIS: Agile Guided Interferometer for Longbaseline Imaging Synthesis. Demonstration and concepts of reconfigurable optical imaging interferometers

    NASA Astrophysics Data System (ADS)

    Woillez, Julien; Lai, Olivier; Perrin, Guy; Reynaud, François; Baril, Marc; Dong, Yue; Fédou, Pierre

    2017-06-01

    Context. In comparison to the radio and sub-millimetric domains, imaging with optical interferometry is still in its infancy. Due to the limited number of telescopes in existing arrays, image generation is a demanding process that relies on time-consuming reconfiguration of the interferometer array and super-synthesis. Aims: Using single mode optical fibres for the coherent transport of light from the collecting telescopes to the focal plane, a new generation of interferometers optimized for imaging can be designed. Methods: To support this claim, we report on the successful completion of the `OHANA Iki project: an end-to-end, on-sky demonstration of a two-telescope interferometer, built around near-infrared single mode fibres, carried out as part of the `OHANA project. Results: Having demonstrated that coherent transport by single-mode fibres is feasible, we explore the concepts, performances, and limitations of a new imaging facility with single mode fibres at its heart: Agile Guided Interferometer for Longbaseline Imaging Synthesis (AGILIS). Conclusions: AGILIS has the potential of becoming a next generation facility or a precursor to a much larger project like the Planet Formation Imager (PFI).

  5. Software system design for the non-null digital Moiré interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Hao, Qun; Hu, Yao; Wang, Shaopu; Li, Tengfei; Li, Lin

    2016-11-01

    Aspheric optical components are an indispensable part of modern optics systems. With the development of aspheric optical elements fabrication technique, high-precision figure error test method of aspheric surfaces is a quite urgent issue now. We proposed a digital Moiré interferometer technique (DMIT) based on partial compensation principle for aspheric and freeform surface measurement. Different from traditional interferometer, DMIT consists of a real and a virtual interferometer. The virtual interferometer is simulated with Zemax software to perform phase-shifting and alignment. We can get the results by a series of calculation with the real interferogram and virtual interferograms generated by computer. DMIT requires a specific, reliable software system to ensure its normal work. Image acquisition and data processing are two important parts in this system. And it is also a challenge to realize the connection between the real and virtual interferometer. In this paper, we present a software system design for DMIT with friendly user interface and robust data processing features, enabling us to acquire the figure error of the measured asphere. We choose Visual C++ as the software development platform and control the ideal interferometer by using hybrid programming with Zemax. After image acquisition and data transmission, the system calls image processing algorithms written with Matlab to calculate the figure error of the measured asphere. We test the software system experimentally. In the experiment, we realize the measurement of an aspheric surface and prove the feasibility of the software system.

  6. VizieR Online Data Catalog: C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy) spectra (Biver+, 2014)

    NASA Astrophysics Data System (ADS)

    Biver, N.; Bockelee-Morvan, D.; Debout, V.; Crovisier, J.; Boissier, J.; Lis, D. C.; Dello Russo, N.; Moreno, R.; Colom, P.; Paubert, G.; Vervack, R.; Weaver, H. A.

    2014-06-01

    Sum spectra of the lines of formamide and ethylene-glycol which intensities are listed in Tables 4 and 5. One fits file per spectrum, fits output from class (http://www.iram.fr/IRAMFR/GILDAS/). object.dat : -------------------------------------------------------------------------------- Code Name Elem q e i H1 d AU deg mag -------------------------------------------------------------------------------- C/2012 F6 Lemmon 2456375.5 0.7312461 0.9985125 82.607966 7.96 C/2013 R1 Lovejoy 2456651.5 0.8118182 0.9983297 64.040457 11.66 (2 data files).

  7. Demonstration of a Corner-cube-interferometer LWIR Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Renhorn, Ingmar G. E.; Svensson, Thomas; Cronström, Staffan; Hallberg, Tomas; Persson, Rolf; Lindell, Roland; Boreman, Glenn D.

    2010-01-01

    An interferometric long-wavelength infrared (LWIR) hyperspectral imager is demonstrated, based on a Michelson corner-cube interferometer. This class of system is inherently mechanically robust, and should have advantages over Sagnac-interferometer systems in terms of relaxed beamsplitter-coating specifications, and wider unvignetted field of view. Preliminary performance data from the laboratory prototype system are provided regarding imaging, spectral resolution, and fidelity of acquired spectra.

  8. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  9. The Design and Implementation of the Wide-Angle Michelson Interferometer to Observe Thermospheric Winds.

    NASA Astrophysics Data System (ADS)

    Ward, William Edmund

    The design and implementation of a Wide-Angle Michelson interferometer (WAMI) as a high spectral resolution device for measuring Doppler shifts and temperatures in the thermosphere is discussed in detail. A general theoretical framework is developed to describe the behavior of interferometers and is applied to the WAMI. Notions concerning the optical coupling of various surfaces within an interferometer are developed and used to investigate the effects of misalignments in the WAMI optics. In addition, these notions in combination with ideas on the polarization behavior of interferometers are used to suggest how complex multisurfaced interferometers might be developed, what features affect their behavior most strongly, and how this behavior might be controlled. Those aspects of the Michelson interferometer important to its use as a high resolution spectral device are outlined and expressions relating the physical features of the interferometer and the spectral features of the radiation passing through the instrument, to the form of the observed interference pattern are derived. The sensitivity of the WAMI to misalignments in its optical components is explored, and quantitative estimations of the effects of these misalignments made. A working WAMI with cube corners instead of plane mirrors was constructed and is described. The theoretical notions outlined above are applied to this instrument and found to account for most of its features. A general digital procedure is developed for the analysis of the observed interference fringes which permits an estimation of the amplitude, visibility and phase of the fringes. This instrument was taken to Bird, northern Manitoba as part of the ground based support for the Auroral Rocket and Image Excitation Study (ARIES) rocket campaign. Doppler shifts and linewidth variations in O(^1 D) and O(^1S) emissions in the aurora were observed during several nights and constitute the first synoptic wind measurements taken with a WAMI. The results from an eight hour period of O(^1 D) observations are analysed and found to be similar to those obtained with Fabry-Perot interferometers. Higher temporal resolution data than any previously published were obtained, and suggest the presence of previously undetected small scale structures in the wind and temperature data. (Abstract shortened with permission of author.).

  10. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    NASA Astrophysics Data System (ADS)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been successfully applied to the detection of cracks emanating from rivet holes in aircraft fuselage panel samples. A compact fiber-optic dual-probe interferometer has also been developed and applied to the above mentioned problem of crack detection. Results agree well with those obtained with a bulk LBU system.

  11. Direct Measurement of Large, Diffuse, Optical Structures

    NASA Technical Reports Server (NTRS)

    Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.

    2004-01-01

    Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.

  12. Development of a Priest interferometer for measurement of the thermal expansion of a graphite epoxy in the temperature range 116-366 K

    NASA Technical Reports Server (NTRS)

    Short, J. S.; Hyer, M. W.; Bowles, D. E.; Tompkins, S. S.

    1982-01-01

    The thermal expansion behavior of graphite epoxy laminates between 116 and 366 degrees Kelvin was investigated using as implementation of the Priest interferometer concept. The design, construction and use of the interferometer along with the experimental results it was used to generate are described. The experimental program consisted of 25 tests on 25.4 mm and 6.35 mm wide, 8 ply pi/4 quasi-isotropic T300-5208 graphite/epoxy specimens and 3 tests on a 25.4 mm wide unidirectional specimen. Experimental results are presented for all tests along with a discussion of the interferometer's limitations and some possible improvements in its design.

  13. Two-photon interference of polarization-entangled photons in a Franson interferometer.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb

    2017-07-18

    We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.

  14. Phase shift in atom interferometry due to spacetime curvature

    NASA Astrophysics Data System (ADS)

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Brown, Daniel; Hogan, Jason; Kasevich, Mark

    2017-04-01

    In previous matter wave interferometers, the interferometer arm separation was small enough that gravitational tidal forces across the arms can be neglected. Gravitationally-induced phase shifts in such experiments arise from the acceleration of the interfering particles with respect to the interferometer beam splitters and mirrors. By increasing the interferometer arm separation, we enter a new regime in which the arms experience resolvably different gravitational forces. Using a single-source gravity gradiometer, we measure a phase shift associated with the tidal forces induced by a nearby test mass. This is the first observation of spacetime curvature across the spatial extent of a single quantum system. CO acknowledges funding from the Stanford Graduate Fellowship.

  15. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer.

    PubMed

    Zhou, Ai; Zhang, Yanhui; Li, Guangping; Yang, Jun; Wang, Yuzhuo; Tian, Fengjun; Yuan, Libo

    2011-08-15

    We report and demonstrate an optical refractometer based on a compact fiber Michelson interferometer. The Michelson interferometer is composed of an asymmetrical twin-core fiber containing a central core and a side core. By chemically etching a segment of the twin-core fiber until the side core is exposed, the effective index of the side core in the etched region is sensitive to the environmental refractive index, which leads to a shift of the transmission spectrum of the Michelson interferometer. The experimental results show that such a device has a refractive index resolution of more than 800 nm/refractive index unit in the range of 1.34-1.37. © 2011 Optical Society of America

  16. System identification of the JPL micro-precision interferometer truss - Test-analysis reconciliation

    NASA Technical Reports Server (NTRS)

    Red-Horse, J. R.; Marek, E. L.; Levine-West, M.

    1993-01-01

    The JPL Micro-Precision Interferometer (MPI) is a testbed for studying the use of control-structure interaction technology in the design of space-based interferometers. A layered control architecture will be employed to regulate the interferometer optical system to tolerances in the nanometer range. An important aspect of designing and implementing the control schemes for such a system is the need for high fidelity, test-verified analytical structural models. This paper focuses on one aspect of the effort to produce such a model for the MPI structure, test-analysis model reconciliation. Pretest analysis, modal testing, and model refinement results are summarized for a series of tests at both the component and full system levels.

  17. Heterodyne interferometer with subatomic periodic nonlinearity.

    PubMed

    Wu, C M; Lawall, J; Deslattes, R D

    1999-07-01

    A new, to our knowledge, heterodyne interferometer for differential displacement measurements is presented. It is, in principle, free of periodic nonlinearity. A pair of spatially separated light beams with different frequencies is produced by two acousto-optic modulators, avoiding the main source of periodic nonlinearity in traditional heterodyne interferometers that are based on a Zeeman split laser. In addition, laser beams of the same frequency are used in the measurement and the reference arms, giving the interferometer theoretically perfect immunity from common-mode displacement. We experimentally demonstrated a residual level of periodic nonlinearity of less than 20 pm in amplitude. The remaining periodic error is attributed to unbalanced ghost reflections that drift slowly with time.

  18. Far-infrared laser diagnostics on the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Gao, X.; Lu, H. J.; Guo, Q. L.; Wan, Y. X.; Tong, X. D.

    1995-01-01

    A multichannel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-6M tokamak. The structure of the seven-channel FIR laser interferometer is described. The laser source used in the interferometer was a continuous-wave glow discharge HCN laser with a cavity length of 3.4 m and power output of about 100 mW at 337 μm. The detection sensitivity was 1/15 fringe with a temporal resolution of 0.1 ms. Experimental results were measured by the seven-channel FIR HCN laser interferometer with edge Ohmic heating, a pumping limiter, and ion cyclotron resonant heating on the HT-6M tokamak are reported.

  19. Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers

    NASA Astrophysics Data System (ADS)

    Anderson, Brian E.; Schmittberger, Bonnie L.; Gupta, Prasoon; Jones, Kevin M.; Lett, Paul D.

    2017-06-01

    The SU(1,1) interferometer can be thought of as a Mach-Zehnder interferometer with its linear beam splitters replaced with parametric nonlinear optical processes. We consider the cases of bright- and vacuum-seeded SU(1,1) interferometers using intensity or homodyne detectors. A simplified truncated scheme with only one nonlinear interaction is introduced, which not only beats conventional intensity detection with a bright seed, but can saturate the phase-sensitivity bound set by the quantum Fisher information. We also show that the truncated scheme achieves a sub-shot-noise phase sensitivity in the vacuum-seeded case, despite the phase-sensing optical beams having no well-defined phase.

  20. Practical aspects of modern interferometry for optical manufacturing quality control: Part 2

    NASA Astrophysics Data System (ADS)

    Smythe, Robert

    2012-07-01

    Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space based satellite imaging and DVD and Blu-Ray disks are all enabled by phase shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful towards the practical use of interferometers. An understanding of the parameters that drive system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.

  1. Practical aspects of modern interferometry for optical manufacturing quality control, Part 3

    NASA Astrophysics Data System (ADS)

    Smythe, Robert A.

    2012-09-01

    Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space-based satellite imaging, and DVD and Blu-Ray disks are all enabled by phase-shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful toward the practical use of interferometers. An understanding of the parameters that drive the system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.

  2. The Next Century Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Swanson, Paul N.

    1991-01-01

    The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.

  3. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal tends to become more transparent, thus introducing a rather large amount of error into the phase-shifting measurement. While that error can be greatly reduced by normalization, we prefer eliminating the source of the error. To that end, we have pursued development of a 'blend' of custom dyes that will not exhibit these properties. That goal has not yet been fully achieved. Guardalben, et al, presented a similar set of interferograms in a paper partially funded by this grant. Shearing interferometers are a second class of common path interferometers. Typically they consist of a thick glass plate optimized for equal reflection from the front and back surface. While not part of the original thrust of the project, through the course of laboratory work, we demonstrated a prototype of a shearing interferometer capable of phase shifting using a commercial liquid crystal retardation plate. A schematic of this liquid crystal shearing interferometer (LCSI) and a sample set of interferograms are in the reference. This work was also supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. Additional information is included in the original extended abstract.

  4. HARDI: A high angular resolution deployable interferometer for space

    NASA Technical Reports Server (NTRS)

    Bely, Pierre Y.; Burrows, Christopher; Roddier, Francois; Weigelt, Gerd

    1992-01-01

    We describe here a proposed orbiting interferometer covering the UV, visible, and near-IR spectral ranges. With a 6-m baseline and a collecting area equivalent to about a 1.4 m diameter full aperture, this instrument will offer significant improvements in resolution over the Hubble Space Telescope, and complement the new generation of ground-based interferometers with much better limiting magnitude and spectral coverage. On the other hand, it has been designed as a considerably less ambitious project (one launch) than other current proposals. We believe that this concept is feasible given current technological capabilities, yet would serve to prove the concepts necessary for the much larger systems that must eventually be flown. The interferometer is of the Fizeau type. It therefore has a much larger field (for guiding) better UV throughout (only 4 surfaces) than phased arrays. Optimize aperture configurations and ideas for the cophasing and coalignment system are presented. The interferometer would be placed in a geosynchronous or sunsynchronous orbit to minimize thermal and mechanical disturbances and to maximize observing efficiency.

  5. Enhancement of fiber-optic low-coherence Fabry-Pérot interferometer with ZnO ALD films

    NASA Astrophysics Data System (ADS)

    Hirsch, Marzena; Listewnik, Paulina; Jedrzejewska-Szczerska, Małgorzata

    2018-04-01

    In this paper investigation of the enhanced fiber-optic low coherence Fabry-Pérot interferometer with zinc oxide (ZnO) film deposited by atomic layer deposition (ALD) was presented. Model of the interferometer, which was constructed of single-mode optical fiber with applied ZnO ALD films, was built. The interferometer was also examined by means of experiment. Measurements were performed for both reflective and transmission modes, using wavelengths of 1300 nm and 1500 nm. The measurements with the air cavity showed the best performance in terms of a visibility of the interference signal can be achieved for small cavity lengths ( 50μm) in both configurations. Combined with the enhancement of reflectance of the interferometer mirrors due to the ALD film, proposed construction could be successfully applied in refractive index (RI) sensor that can operate with improved visibility of the signal even in 1.3-1.5 RI range as well as with small volume samples, as shown by the modeling.

  6. A combined phase contrast imaging-interferometer system for the detection of multiscale density fluctuations on DIII-D

    NASA Astrophysics Data System (ADS)

    Davis, E. M.; Rost, J. C.; Porkolab, M.; Marinoni, A.; van Zeeland, M. A.

    2016-10-01

    A heterodyne interferometer channel has been added to the DIII-D phase contrast imaging (PCI) system. Both measurements share a single 10.6 μm probe beam. Whereas the PCI excels at detecting medium- to high- k fluctuations (1.5 cm-1 <= k <= 20 cm-1), the interferometer extends the system sensitivity to low- k fluctuations (k <= 5 cm-1), allowing simultaneous measurement of electron- and ion-scale instabilities with sub-microsecond resolution. Further, correlating measurements from the interferometer channel with those from DIII-D's pre-existing, toroidally separated interferometer (Δ∅ = 45°) allows identification of low- n modes. This new capability has been corroborated against magnetic measurements and may allow novel investigations of core - localized MHD that is otherwise inaccessible via external magnetic measurements, with potential applications to fast particle transport and disruptions. Work supported by USDOE under DE-FG02-94ER54235, DE-FC02-04ER54698, and DE-FC02-99ER54512.

  7. Tilt sensor based on intermodal photonic crystal fiber interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Ni, Kai; Zhao, Chunliu; Ye, Manping; Jin, Yongxing

    2014-09-01

    A tilt sensor based on an intermodal photonic crystal fiber (PCF) interferometer is demonstrated. The sensor consists of a tubular filled with NaCl aqueous solutions and an intermodal PCF interferometer, which is formed by using a short PCF with two single-mode fibers (SMFs) spliced at both ends, and the air-holes in the splice regions are fully collapsed. The intermodal PCF interferometer is fixed in a rigid glass tubular with a slant orientation, and a half of the PCF is immersed in the NaCl aqueous solutions, while the other half is exposed in air. When tilting the tubular, the length of the PCF immersed changes so that the transmission spectrum moves. Therefore, by monitoring the wavelength shift, the tilt angle can be achieved. In the experiment, a 0.8-cm-length intermodal PCF interferometer was adopted. The sensitivity of the proposed sensor was obtained from -1.5461 nm/° to -30.1244 nm/° when measuring from -35.1° to 37.05°.

  8. Apparatus and method for performing two-frequency interferometry

    DOEpatents

    Johnston, Roger G.

    1990-01-01

    The present apparatus includes a two-frequency, Zeeman-effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained.

  9. Spatially scanned two-color mid-infrared interferometer for FTU

    NASA Astrophysics Data System (ADS)

    Canton, A.; Innocente, P.; Martini, S.; Tasinato, L.; Tudisco, O.

    2001-01-01

    The design of a scanning beam two-color mid-infrared (MIR) interferometer is presented. The diagnostic is being developed for the Frascati Tokamak Upgrade (FTU) which calls for a new interferometer to perform detailed study of advanced confinement regimes in D-shaped plasmas. After performing a feasibility study and a prototype test, we designed a scanning interferometer based on a resonant tilting mirror providing 40 chords of ≈1 cm diameter and a full profile every 62 μs. Such a high number of chords is obtained with a very simple optical scheme, resulting in a system which is compact, low cost, and easy to align. An important feature of the interferometer is its higher immunity to fringe jumps compared to conventional far infrared (FIR) systems. Three main factors contribute to that: the high critical density associated to MIR beams, the large bandwidth provided by 40 MHz heterodyne detection, and the fact that each scan provides a "self-consistent" profile.

  10. Apparatus and method for performing two-frequency interferometry

    DOEpatents

    Johnston, R.G.

    1988-01-25

    The present apparatus includes a two-frequency, Zeeman Effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained. 6 figs.

  11. Two-photon interference of temporally separated photons

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-01-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380

  12. Improving interferometers by quantum light: toward testing quantum gravity on an optical bench

    NASA Astrophysics Data System (ADS)

    Ruo-Berchera, Ivano; Degiovanni, Ivo P.; Olivares, Stefano; Traina, Paolo; Samantaray, Nigam; Genovese, M.

    2016-09-01

    We analyze in detail a system of two interferometers aimed at the detection of extremely faint phase fluctuations. The idea behind is that a correlated phase-signal like the one predicted by some phenomenological theory of Quantum Gravity (QG) could emerge by correlating the output ports of the interferometers, even when in the single interferometer it confounds with the background. We demonstrated that injecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot-noise, enhancing the resolution in the phase-correlation estimation. Our results confirm the benefit of using squeezed beams together with strong coherent beams in interferometry, even in this correlated case. On the other hand, our results concerning the possible use of photon number entanglement in twin beam state pave the way to interesting and probably unexplored areas of application of bipartite entanglement and, in particular, the possibility of reaching surprising uncertainty reduction exploiting new interferometric configurations, as in the case of the system described here.

  13. Determination of refractive index of a simple negative, positive, or zero power lens using wedged plated interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.

    1990-01-01

    A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.

  14. Experimental demonstration of reduced tilt-to-length coupling by using imaging systems in precision interferometers

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Lieser, M.; Perreur-Lloyd, M.; Robertson, D. I.; Schuster, S.; Schwarze, T. S.; Ward, H.; Zwetz, M.

    2017-09-01

    Angular misalignment of one of the interfering beams in laser interferometers can couple into the interferometric length measurement and is called tilt-to-length (TTL) coupling in the following. In the noise budget of the planned space-based gravitational-wave detector evolved Laser Interferometer Space Antenna (eLISA) [1, 2] TTL coupling is the second largest noise source after shot noise [3].

  15. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  16. Development of a Grazing Incidence X-Ray Interferometer

    NASA Technical Reports Server (NTRS)

    Shipley, Ann; Cash, Webster; Osterman, Steve; Joy, Marshall; Carter, James

    1999-01-01

    A grazing incidence x-ray interferometer design capable of micro-arcsecond level resolution is discussed. This practical design employs a Michelson Stellar interferometer approach to create x-ray interference fringes without the use of Wolter style optics or diffraction crystals. Design solutions accommodating alignment, vibration, and thermal constraints are reviewed. We present the development and demonstration of a working experiment along with tolerance studies, data analysis, and results.

  17. Interferometer for measuring the dynamic surface topography of a human tear film

    NASA Astrophysics Data System (ADS)

    Primeau, Brian C.; Greivenkamp, John E.

    2012-03-01

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.

  18. A High Resolution Phase Shifting Interferometer.

    NASA Astrophysics Data System (ADS)

    Bayda, Michael; Bartscher, Christoph; Wilkinson, Allen

    1997-03-01

    Configuration, operation, and performance details of a high resolution phase shifting Twyman-Green interferometer are presented. The instrument was used for density relaxation experiments of very compressible liquid-vapor critical fluids.(A companion talk in the Nonequilibrium Phenomena session under Complex Fluids presents density equilibration work.) A sample assembly contained the cell, beam splitter, phase shifter, and mirrors inside a 6 cm diameter by 6 cm long aluminum cylinder. This sample assembly was contained inside a thermostat stable to 50 μK RMS deviation. A thin phase retarding Liquid Crystal Cell (LCC) was placed in the reference arm of the interferometer. The LCC provided four cumulative 90 degree phase shifts to produce four images used in computing each phase map. The Carré technique was used to calculate a phase value for each pixel from the four intensities of each pixel. Four images for one phase map could be acquired in less than two seconds. The spatial resolution was 25 μm. The phase resolution of the interferometer in a six second period was better than λ/400. The phase stability of the interferometer during 25 hours was better than λ/70. Factors affecting timing, resolution, and other phase shifting devices will be discussed. WWW Presentation

  19. Furnace control apparatus using polarizing interferometer

    DOEpatents

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1995-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  20. Polarizing optical interferometer having a dual use optical element

    DOEpatents

    Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-04-04

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  1. Process control system using polarizing interferometer

    DOEpatents

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1994-02-15

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  2. Polarizing optical interferometer having a dual use optical element

    DOEpatents

    Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1995-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  3. Process control system using polarizing interferometer

    DOEpatents

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1994-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  4. Furnace control apparatus using polarizing interferometer

    DOEpatents

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-03-28

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  5. Method and apparatus for measuring surface movement of an object using a polarizing interferometer

    DOEpatents

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-05-09

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.

  6. Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment

    NASA Astrophysics Data System (ADS)

    Coe, P. A.; Howell, D. F.; Nickerson, R. B.

    2004-11-01

    ATLAS is the largest particle detector under construction at CERN Geneva. Frequency scanning interferometry (FSI), also known as absolute distance interferometry, will be used to monitor shape changes of the SCT (semiconductor tracker), a particle tracker in the inaccessible, high radiation environment at the centre of ATLAS. Geodetic grids with several hundred fibre-coupled interferometers (30 mm to 1.5 m long) will be measured simultaneously. These lengths will be measured by tuning two lasers and comparing the resulting phase shifts in grid line interferometers (GLIs) with phase shifts in a reference interferometer. The novel inexpensive GLI design uses diverging beams to reduce sensitivity to misalignment, albeit with weaker signals. One micrometre precision length measurements of grid lines will allow 10 µm precision tracker shape corrections to be fed into ATLAS particle tracking analysis. The technique was demonstrated by measuring a 400 mm interferometer to better than 400 nm and a 1195 mm interferometer to better than 250 nm. Precise measurements were possible, even with poor quality signals, using numerical analysis of thousands of intensity samples. Errors due to drifts in interferometer length were substantially reduced using two lasers tuned in opposite directions and the precision was further improved by linking measurements made at widely separated laser frequencies.

  7. Parallel Wavefront Analysis for a 4D Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  8. The effect of delay line on the performance of a fiber optic interferometric sensor

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Li; Lin, Ken-Huang; Lin, Wuu-Wen; Chen, Mao-Hsiung

    2007-09-01

    The optical fiber has the features of low loss and wide bandwidth; it has replaced the coaxial cable as the mainstream of the communication system in recent years. Because of its high sensitivity characteristic, the interferometer is usually applied to long distance, weak signal detection. In general, if the area to be monitored is located far away, the weak signal will make it uneasy to detect. An interferometer is used for phase detection. Thus, the hydrophone which is based on interferometric fiber optic sensor has extremely high sensitivity. Sagnac interferometric hydrophone has low noise of marine environment, which is more suitably used to detect underwater acoustic signal than that of a Mach-Zehnder interferometer. In this paper, we propose the configuration of dual Sagnac interferometer, and use the mathematical methods to drive and design optimal two delay fiber lengths, which can enlarge the dynamic range of underwater acoustic detection. In addition, we also use software simulation to design optimal two delay fiber lengths. The experimental configuration of dual Sagnac interferometer with two optical delay line is shown as Fig. 1. The maximum and minimum measurable phase signal value of dual Sagnac interferometer (L II=2 km, L 4=222.2 m), shown in Fig. 3. The fiber optic sensor head is of mandrel type. The acoustic window is made of silicon rubbers. It was shown that we can increase their sensitivities by increasing number of wrapping fiber coils. In our experiment, the result shows that among all the mandrel sensor heads, the highest dynamic range is up to 37.6 +/- 1.4 dB, and its sensitivity is -223.3 +/-1.7 dB re V / 1μ Pa. As for the configuration of the optical interferometers, the intensity of the dual Sagnac interferometer is 20 dB larger than its Sagnac counterpart. Its dynamic range is above 66 dB where the frequency ranges is between 50 ~ 400 Hz, which is 24 dB larger than that of the Sagnac interferometer with the sensitivity of -192.0 dB re V / l μPa. In addition, by using software simulation to design optimal lengths of delay fibers, we can increase the dynamic range of interferometer on underwater acoustic detection. This paper verifies that, by means of adjusting the length of these two delay fibers, we can actually increase the dynamic range of acoustic signal detection.

  9. Astrochemical evolution along star formation: overview of the IRAM Large Program ASAI

    NASA Astrophysics Data System (ADS)

    Lefloch, Bertrand; Bachiller, R.; Ceccarelli, C.; Cernicharo, J.; Codella, C.; Fuente, A.; Kahane, C.; López-Sepulcre, A.; Tafalla, M.; Vastel, C.; Caux, E.; González-García, M.; Bianchi, E.; Gómez-Ruiz, A.; Holdship, J.; Mendoza, E.; Ospina-Zamudio, J.; Podio, L.; Quénard, D.; Roueff, E.; Sakai, N.; Viti, S.; Yamamoto, S.; Yoshida, K.; Favre, C.; Monfredini, T.; Quitián-Lara, H. M.; Marcelino, N.; Boechat-Roberty, H. M.; Cabrit, S.

    2018-07-01

    Evidence is mounting that the small bodies of our Solar system, such as comets and asteroids, have at least partially inherited their chemical composition from the first phases of the Solar system formation. It then appears that the molecular complexity of these small bodies is most likely related to the earliest stages of star formation. It is therefore important to characterize and to understand how the chemical evolution changes with solar-type protostellar evolution. We present here the Large Program `Astrochemical Surveys At IRAM' (ASAI). Its goal is to carry out unbiased millimetre line surveys between 80 and 272 GHz of a sample of 10 template sources, which fully cover the first stages of the formation process of solar-type stars, from pre-stellar cores to the late protostellar phase. In this paper, we present an overview of the surveys and results obtained from the analysis of the 3 mm band observations. The number of detected main isotopic species barely varies with the evolutionary stage and is found to be very similar to that of massive star-forming regions. The molecular content in O- and C-bearing species allows us to define two chemical classes of envelopes, whose composition is dominated by either (a) a rich content in O-rich complex organic molecules, associated with hot corino sources, or (b) a rich content in hydrocarbons, typical of warm carbon-chain chemistry sources. Overall, a high chemical richness is found to be present already in the initial phases of solar-type star formation.

  10. VizieR Online Data Catalog: AMIGA sample: CO properties (Lisenfeld+, 2017)

    NASA Astrophysics Data System (ADS)

    Lisenfeld, U.; Alatalo, K.; Zucker, C.; Appleton, P. N.; Gallagher, S.; Guillard, P.; Johnson, K.

    2017-09-01

    Our sample is based on the catalog of Zucker et al. (2016, Cat. J/ApJ/821/113), which presents WISE data for 652 galaxies in 163 compact groups, of which 428 galaxies have reliable photometry (S/N> 2 in all bands). We searched the literature for all existing CO data for this Zucker et al. (2016, Cat. J/ApJ/821/113) subsample (294 galaxies) and obtained CO measurements for 102 HCG galaxies (Verdes-Montenegro et al., 1998ApJ...497...89V; Leon et al., 1998A&A...330...37L; Martinez-Badenes et al., 2012, Cat. J/A+A/540/A96; Lisenfeld et al., 2014, Cat. J/A+A/570/A24) and for two RSCG galaxies (Mirabel et al., 1990A&A...236..327M; Wiklind et al., 1995A&A...297..643W, NGC 232 and NGC 2831). The observations were carried out with the Institut de Radioastronomie Millimetrique (IRAM) 30m telescope, Five College Radio Telescope, Swedish-ESO Submillimetre Telescope (SEST), and Kitt Peak Radio Telescope with single pointings at the central position for most cases. To supplement the CO data for these 104 galaxies from the literature, as part of this study we observed the redshifted CO(1-0) line for an additional 27 galaxies. We observed an additional 27 galaxies in CGs between January and April 2017 with the IRAM 30m telescope on Pico Veleta. We selected the sources, based on their WISE colors, as preferentially canyon or IRTZ objects. (1 data file).

  11. A Sensitive VLA Search for Small-Scale Glycine Emission Toward OMC-1

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Pedelty, J. A.; Snyder, L. E.; Jewell, P. R.; Lovas, F. J.; Palmer, Patrick; Liu, S.-Y.

    2002-01-01

    We have conducted a deep Q-band (lambda-7 mm) search with the Very Large Array (VLA) toward OMC-1 for the lowest energy conformation (conformer I) of glycine (NH2CH2COOH) in four rotational transitions: the 6(sub 15)- 5(sub 14), 6(sub 24)-5(sub 23), 7(sub 17- 6(sub 16), and 7(sub 07)-6(sub 06). Our VLA observations sample the smallest-scale structures to date in the search for glycine toward OMC-1. No glycine emission features were detected. Thus if glycine exists in OMC-1, either it is below our detection limit, or it is more spatially extended than other large molecules in this source, or it is primarily in its high energy form (conformer II). Our VLA glycine fractional abundance limits in OMC-1 are comparable to those determined from previous IRAM 30m measurements -- somewhat better or worse depending on the specific source model -- and the entire approximately 1 foot primary beam of the VLA was searched while sensitive to an areal spatial scale approximately 150 times smaller than the 24 inch beam of the IRAM single-element telescope. In the course of this work, we detected and imaged the 4(sub 14)-3(sub 13) A and E transitions of methyl formate (HCOOCH3) and also the 2(sub 02) - 1(sub 01) transition of formic acid (HCOOH). Since formic acid is a possible precursor to glycine, our glycine limits and formic acid results provide a constraint on this potential formation chemistry route for glycine in OMC-1.

  12. Radio line observations of comet 109P/Swift-Tuttle at IRAM

    NASA Astrophysics Data System (ADS)

    Despois, D.; Biver, N.; Bockelée-Morvan, D.; Colom, P.; Crovisier, J.; Paubert, G.

    1996-06-01

    Observations are presented of comet 109P/Swift-Tuttle (1992t and 1992 XXVIII in the old style designations) obtained at the IRAM 30 m millimetre radio telescope both before (Nov. 1992) and after perihelion (Jan. 1993), when rh was ˜ 1 AU and Δ between 1 and 2 AU. The molecules HCN, H 2S, H 2CO and CH 2OH were detected, with good signal-to-noise ratios (up to 30). The line profiles are strongly asymmetric with a cusp at negative velocities; this leads to an important shift (-0.45 km s -1) of the mean gas velocity with respect to the nucleus. This profile is most probably linked to the jets seen at visual wavelengths. From methanol rotation diagrams, average rotational temperatures of 70 K for November 21 and 45 K for January are estimated. An isotropic distribution of the molecules is assumed, and Q(H 2O) ˜ 4.0 and 3.5 × 10 29 molec. s -1 for November 21 and January, respectively. Relative production rates Q/Q (H 2O) of 0.1, 0.4, 0.5 and 4-7% on November 21, 1992 for HCN, H 2S, H 2CO and CH 3OH, respectively, and 0.05, 0.2 and 2% on January 6-7, 1993, for HCN, H 2CO and CH 3OH, respectively, are derived. The effect of coma anisotropy on the derivation of these rates is briefly discussed. The decrease of non-water parent molecules from November to January, to be confirmed, raises questions about the nucleus homogeneity or sublimation process.

  13. The Cauchy Two-Matrix Model, C-Toda Lattice and CKP Hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Chunxia; Li, Shi-Hao

    2018-06-01

    This paper mainly talks about the Cauchy two-matrix model and its corresponding integrable hierarchy with the help of orthogonal polynomial theory and Toda-type equations. Starting from the symmetric reduction in Cauchy biorthogonal polynomials, we derive the Toda equation of CKP type (or the C-Toda lattice) as well as its Lax pair by introducing time flows. Then, matrix integral solutions to the C-Toda lattice are extended to give solutions to the CKP hierarchy which reveals the time-dependent partition function of the Cauchy two-matrix model is nothing but the τ -function of the CKP hierarchy. At last, the connection between the Cauchy two-matrix model and Bures ensemble is established from the point of view of integrable systems.

  14. The observation of the Aharonov-Bohm effect in suspended semiconductor ring interferometers

    NASA Astrophysics Data System (ADS)

    Pokhabov, D. A.; Pogosov, A. G.; Shevyrin, A. A.; Zhdanov, E. Yu; Bakarov, A. K.; Shklyaev, A. A.; Ishutkin, S. V.; Stepanenko, M. V.; Shesterikov, E. V.

    2018-02-01

    A suspended semiconductor quantum ring interferometer based on a GaAs/AlGaAs heterostructure with a two-dimensional electron gas (2DEG) is created and experimentally studied. The electron interference in suspended 2DEG is observed. The interference manifests itself as the Aharonov-Bohm oscillations of the interferometer magnetoresistance, clearly observed before as well as after suspension. The amplitude of the oscillations remains almost unchanged after suspension.

  15. Comparative analysis of methods and optical-electronic equipment to control the form parameters of spherical mirrors

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexander N.; Baryshnikov, Nikolay; Denisov, Dmitrii; Karasik, Valerii; Sakharov, Alexey; Romanov, Pavel; Sheldakova, Julia; Kudryashov, Alexis

    2018-02-01

    In this paper we consider two approaches widely used in testing of spherical optical surfaces: Fizeau interferometer and Shack-Hartmann wavefront sensor. Fizeau interferometer that is widely used in optical testing can be transformed to a device using Shack-Hartmann wavefront sensor, the alternative technique to check spherical optical components. We call this device Hartmannometer, and compare its features to those of Fizeau interferometer.

  16. Optical system and method for gas detection and monitoring

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Sinko, John Elihu (Inventor); Korman, Valentin (Inventor); Witherow, William K. (Inventor); Hendrickson, Adam Gail (Inventor)

    2011-01-01

    A free-space optical path of an optical interferometer is disposed in an environment of interest. A light beam is guided to the optical interferometer using a single-mode optical fiber. The light beam traverses the interferometer's optical path. The light beam guided to the optical path is combined with the light beam at the end of the optical path to define an output light. A temporal history of the output light is recorded.

  17. FIBER OPTICS: Polarization phase nonreciprocity in all-fiber ring interferometers

    NASA Astrophysics Data System (ADS)

    Andreev, A. Ts; Vasilev, V. D.; Kozlov, V. A.; Kuznetsov, A. V.; Senatorov, A. A.; Shubochkin, R. L.

    1993-08-01

    The polarization phase nonreciprocity in all-fiber ring interferometers based on single-mode optical fibers was studied experimentally. The results confirm existing theoretical models. Experimentally, it was possible to use fiber ring interferometers to measure the extinction coefficients of optical fiber polarizers. The largest extinction coefficients found for optical-fiber polarizers were 84 dB (for the wavelength 0.82 μm) and 86 dB (1.3 μm).

  18. Software design for a compact interferometer

    NASA Astrophysics Data System (ADS)

    Vogel, Andreas

    1993-01-01

    Experience shows that very often a lot of similar elements have to be tested by the optician. Only a small number of input parameters are changed in a well defined manner. So it is useful to develop simplified software for special applications. The software is used in a compact phase shifting interferometer. Up to five interferometers can be controlled by a single PC-AT computer. Modular programming simplifies the software modification for new applications.

  19. A new method for determining the plasma electron density using three-color interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakawa, Hiroyuki; Kawano, Yasunori; Itami, Kiyoshi

    2012-06-15

    A new method for determining the plasma electron density using the fractional fringes on three-color interferometer is proposed. Integrated phase shift on each interferometer is derived without using the temporal history of the fractional fringes. The dependence on the fringe resolution and the electrical noise are simulated on the wavelengths of CO{sub 2} laser. Short-time integrations of the fractional fringes enhance the reliability of this method.

  20. Jones's matrix representation of optical instruments. II - Fourier interferometers /spectrometers and spectropolarimeters/.

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1971-01-01

    Our method of matrix synthesis of optical components and instruments is applied to the derivation of Jones's matrices appropriate for Fourier interferometers (spectrometers and spectropolarimeters). These matrices are obtained for both the source beam and the detector beam. In the course of synthesis, Jones's matrices of the various reflectors (plane mirrors; retroreflectors: roofed mirror, trihedral and prism cube corner, cat's eye) used by these interferometers are also obtained.

  1. Performance Assessment of the Digital Array Scanned Interferometer (DASI) Concept

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Statham, Richard B.

    1996-01-01

    Interferometers are known to have higher throughput than grating spectrometers for the same resolvance. The digital array scanned interferometer (DASI) has been proposed as an instrument that can capitalize on the superior throughput of the interferometer and, simultaneously, be adapted to imaging. The DASI is not the first implementation of the dual purpose concept, but it is one that has made several claims of major performance superiority, and it has been developed into a complete instrument. This paper reviews the DASI concept, summarizes its claims, and gives an assessment of how well the claims are justified. It is shown that the claims of signal-to-noise ratio superiority and operational simplicity are realized only modestly, if at all.

  2. 30-lens interferometer for high energy x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyubomirskiy, M., E-mail: lyubomir@esrf.fr; Snigireva, I., E-mail: irina@esrf.fr; Vaughan, G.

    2016-07-27

    We report a hard X-ray multilens interferometer consisting of 30 parallel compound refractive lenses. Under coherent illumination each CRL creates a diffraction limited focal spot - secondary source. An overlapping of coherent beams from these sources resulting in the interference pattern which has a rich longitudinal structure in accordance with the Talbot imaging formalism. The proposed interferometer was experimentally tested at ID11 ESRF beamline for the photon energies 32 keV and 65 keV. The fundamental and fractional Talbot images were recorded with the high resolution CCD camera. An effective source size in the order of 15 µm was determined frommore » the first Talbot image proving that the multilens interferometer can be used as a high resolution beam diagnostic tool.« less

  3. NONLINEAR AND FIBER OPTICS: Transverse traveling pulses in bistable interferometers with competing nonlinearities

    NASA Astrophysics Data System (ADS)

    Rzhanov, Yu A.; Grigor'yants, A. V.; Balkareĭ, Yu I.; Elinson, M. I.

    1990-04-01

    A detailed qualitative description is given of the formation and propagation of leading edges of transverse traveling pulses in a bistable semiconductor interferometer with competing concentration and thermal mechanisms of nonlinear refraction. It is shown that, depending on the laser pumping rate and the heat transfer conditions, two types of traveling pulses may exist with elevated and reduced transmission. Each of these may be initiated by a local change in the input intensity of any sign. When the interferometer is pumped by a spatially inhomogeneous, (for example, Gaussian) beam, periodic spontaneous initiation of both types of traveling pulses may take place at the periphery or in the center of a beam. Traveling pulses are modeled numerically under various interferometer pumping conditions.

  4. Simultaneous measurement of temperature and pressure with cascaded extrinsic Fabry-Perot interferometer and intrinsic Fabry-Perot interferometer sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Huang, Jie; Lan, Xinwei; Yuan, Lei; Xiao, Hai

    2014-06-01

    This paper presents an approach for simultaneous measurement of temperature and pressure using miniaturized fiber inline sensors. The approach utilizes the cascaded optical fiber inline intrinsic Fabry-Perot interferometer and extrinsic Fabry-Perot interferometer as temperature and pressure sensing elements, respectively. A CO2 laser was used to create a loss between them to balance their reflection power levels. The multiplexed signals were demodulated using a Fast Fourier transform-based wavelength tracking method. Experimental results showed that the sensing system could measure temperature and pressure unambiguously in a pressure range of 0 to 6.895×105 Pa and a temperature range from 20°C to 700°C.

  5. Integrated optics interferometer for high precision displacement measurement

    NASA Astrophysics Data System (ADS)

    Persegol, Dominique; Collomb, Virginie; Minier, Vincent

    2017-11-01

    We present the design and fabrication aspects of an integrated optics interferometer used in the optical head of a compact and lightweight displacement sensor developed for spatial applications. The process for fabricating the waveguides of the optical chip is a double thermal ion exchange of silver and sodium in a silicate glass. This two step process is adapted for the fabrication of high numerical aperture buried waveguides having negligible losses for bending radius as low as 10 mm. The optical head of the sensor is composed of a reference arm, a sensing arm and an interferometer which generates a one dimensional fringe pattern allowing a multiphase detection. Four waveguides placed at the output of the interferometer deliver four ideally 90° phase shifted signals.

  6. A lunar gravitational wave antenna using a laser interferometer

    NASA Astrophysics Data System (ADS)

    Stebbins, R. T.; Bender, P. L.

    1990-03-01

    A moon-based laser interferometer for detecting gravitational radiation could detect signals in the band 0.1 - 10,000 Hz. A preliminary evaluation of the noise budget for an optimistic antenna design is reported here and compared to that for other planned gravitational wave interferometers. Over most of the frequency range, the sensitivity is controlled by the thermal noise in the test mass suspensions. From roughly 3 to a few hundred Hertz, it is about the same as the sensitivity expected in terrestrial antennas of the same construction, which will have been operating for at least a decade. Below 0.3 Hz, a proposed space-based interferometer, designed for operation down to 10 exp -5 Hz, would have better sensitivity.

  7. Thermal effects in the Input Optics of the Enhanced Laser Interferometer Gravitational-Wave Observatory interferometers.

    PubMed

    Dooley, Katherine L; Arain, Muzammil A; Feldbaum, David; Frolov, Valery V; Heintze, Matthew; Hoak, Daniel; Khazanov, Efim A; Lucianetti, Antonio; Martin, Rodica M; Mueller, Guido; Palashov, Oleg; Quetschke, Volker; Reitze, David H; Savage, R L; Tanner, D B; Williams, Luke F; Wu, Wan

    2012-03-01

    We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing, and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO.

  8. Laser-ranging long-baseline differential atom interferometers for space

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-wey; Williams, Jason; Yu, Nan

    2015-12-01

    High-sensitivity differential atom interferometers (AIs) are promising for precision measurements in science frontiers in space, including gravity-field mapping for Earth science studies and gravitational wave detection. Difficulties associated with implementing long-baseline differential AIs have previously included the need for a high optical power, large differential Doppler shifts, and narrow dynamic range. We propose a configuration of twin AIs connected by a laser-ranging interferometer (LRI-AI) to provide precise information of the displacements between the two AI reference mirrors and also to phase-lock the two independent interferometer lasers over long distances, thereby drastically improving the practical feasibility of long-baseline differential AI measurements. We show that a properly implemented LRI-AI can achieve equivalent functionality to the conventional differential AI measurement configuration.

  9. Complex organic molecules in the interstellar medium: IRAM 30 m line survey of Sagittarius B2(N) and (M)

    NASA Astrophysics Data System (ADS)

    Belloche, A.; Müller, H. S. P.; Menten, K. M.; Schilke, P.; Comito, C.

    2013-11-01

    Context. The discovery of amino acids in meteorites fallen to Earth and the detection of glycine, the simplest of them, in samples returned from a comet to Earth strongly suggest that the chemistry of the interstellar medium is capable of producing such complex organic molecules and that they may be widespread in our Galaxy. Aims: Our goal is to investigate the degree of chemical complexity that can be reached in the interstellar medium, in particular in dense star-forming regions. Methods: We performed an unbiased, spectral line survey toward Sgr B2(N) and (M), two regions where high-mass stars are formed, with the IRAM 30 m telescope in the 3 mm atmospheric transmission window. Partial surveys at 2 and 1.3 mm were performed in parallel. The spectra were analyzed with a simple radiative transfer model that assumes local thermodynamic equilibrium but takes optical depth effects into account. Results: About 3675 and 945 spectral lines with a peak signal-to-noise ratio higher than 4 are detected at 3 mm toward Sgr B2(N) and (M), i.e. about 102 and 26 lines per GHz, respectively. This represents an increase by about a factor of two over previous surveys of Sgr B2. About 70% and 47% of the lines detected toward Sgr B2(N) and (M) are identified and assigned to 56 and 46 distinct molecules as well as to 66 and 54 less abundant isotopologues of these molecules, respectively. In addition, we report the detection of transitions from 59 and 24 catalog entries corresponding to vibrationally or torsionally excited states of some of these molecules, respectively, up to a vibration energy of 1400 cm-1 (2000 K). Excitation temperatures and column densities were derived for each species but should be used with caution. The rotation temperatures of the detected complex molecules typically range from ~50 to 200 K. Among the detected molecules, aminoacetonitrile, n-propyl cyanide, and ethyl formate were reported for the first time in space based on this survey, as were five rare isotopologues of vinyl cyanide, cyanoacetylene, and hydrogen cyanide. We also report the detection of transitions from within twelve new vibrationally or torsionally excited states of known molecules. Absorption features produced by diffuse clouds along the line of sight are detected in transitions with low rotation quantum numbers of many simple molecules and are modeled with ~30-40 velocity components with typical linewidths of ~3-5 km s-1. Conclusions: Although the large number of unidentified lines may still allow future identification of new molecules, we expect most of these lines to belong to vibrationally or torsionally excited states or to rare isotopologues of known molecules for which spectroscopic predictions are currently missing. Significant progress in extending the inventory of complex organic molecules in Sgr B2(N) and deriving tighter constraints on their location, origin, and abundance is expected in the near future thanks to an ongoing spectral line survey at 3 mm with ALMA in its cycles 0 and 1. The present single-dish survey will serve as a solid basis for the line identification and analysis of such an interferometric survey. Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Figures 2-7 and Tables 6-107 are available in electronic form at http://www.aanda.orgThe observed and synthetic 3 mm spectra of Sgr B2(N) and (M), as well as the lists of line identifications corresponding to the blue lab- els in Figs. 2-7, are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A47

  10. Interferometer-Controlled Optical Tweezers Constructed for Nanotechnology and Biotechnology

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2002-01-01

    A new method to control microparticles was developed in-house at the NASA Glenn Research Center in support of the nanotechnology project under NASA's Aerospace Propulsion and Power Base Research Program. A prototype interferometer-controlled optical tweezers was constructed to manipulate scanning probe microscope (SPM) tips. A laser beam passed through a Mach-Zehnder interferometer, and a microscope objective then produced an optical trap from the coaxial beams. The trap levitated and generated the coarse motion of a 10-mm polystyrene sphere used to simulate a SPM tip. The interference between the beams provided fine control of the forces and moments on the sphere. The interferometer included a piezoelectric-scanned mirror to modulate the interference pattern. The 10-mm sphere was observed to oscillate about 1 mm as the mirror and fringe pattern oscillated. The prototype tweezers proved the feasibility of constructing a more sophisticated interferometer tweezers to hold and manipulate SPM tips. The SPM tips are intended to interrogate and manipulate nanostructures. A more powerful laser will be used to generate multiple traps to hold nanostructures and SPM tips. The vibrating mirror in the interferometer will be replaced with a spatial light modulator. The modulator will allow the optical phase distribution in one leg of the interferometer to be programmed independently at 640 by 480 points for detailed control of the forces and moments. The interference patterns will be monitored to measure the motion of the SPM tips. Neuralnetwork technology will provide fast analysis of the interference patterns for diagnostic purposes and for local or remote feedback control of the tips. This effort also requires theoretical and modeling support in the form of scattering calculations for twin coherent beams from nonspherical particles.

  11. Polydyne displacement interferometer using frequency-modulated light

    NASA Astrophysics Data System (ADS)

    Arablu, Masoud; Smith, Stuart T.

    2018-05-01

    A radio-frequency Frequency-Modulated (FM) signal is used to diffract a He-Ne laser beam through an Acousto-Optic Modulator (AOM). Due to the modulation of the FM signal, the measured spectra of the diffracted beams comprise a series of phase-synchronized harmonics that have exact integer frequency separation. The first diffraction side-beam emerging from the AOM is selected by a slit to be used in a polydyne displacement interferometer in a Michelson interferometer topology. The displacement measurement is derived from the phase measurement of selected modulation harmonic pairs. Individual harmonic frequency amplitudes are measured using discrete Fourier transform applied to the signal from a single photodetector. Phase signals are derived from the changes in the amplitudes of different harmonic pairs (typically odd-even pairs) with the phase being extracted using a standard quadrature method. In this study, two different modulation frequencies of 5 and 10 kHz are used at different modulation depths. The measured displacements by different harmonic pairs are compared with a commercial heterodyne interferometer being used as a reference for these studies. Measurements obtained from five different harmonic pairs when the moving mirror of the interferometer is scanned over ranges up to 10 μm all show differences of less than 50 nm from the reference interferometer measurements. A drift test was also used to evaluate the differences between the polydyne interferometer and reference measurements that had different optical path lengths of approximately 25 mm and 50 mm, respectively. The drift test results indicate that about half of the differences can be attributed to temperature, pressure, and humidity variations. Other influences include Abbe and thermal expansion effects. Rough magnitude estimates using simple models for these two effects can account for remaining observed deviations.

  12. Local readout enhancement for detuned signal-recycling interferometers

    NASA Astrophysics Data System (ADS)

    Rehbein, Henning; Müller-Ebhardt, Helge; Somiya, Kentaro; Li, Chao; Schnabel, Roman; Danzmann, Karsten; Chen, Yanbei

    2007-09-01

    High power detuned signal-recycling interferometers currently planned for second-generation interferometric gravitational-wave detectors (for example Advanced LIGO) are characterized by two resonances in the detection band, an optical resonance and an optomechanical resonance which is upshifted from the suspension pendulum frequency due to the so-called optical-spring effect. The detector’s sensitivity is enhanced around these two resonances. However, at frequencies below the optomechanical resonance frequency, the sensitivity of such interferometers is significantly lower than non-optical-spring configurations with comparable circulating power; such a drawback can also compromise high-frequency sensitivity, when an optimization is performed on the overall sensitivity of the interferometer to a class of sources. In this paper, we clarify the reason for such a low sensitivity, and propose a way to fix this problem. Motivated by the optical-bar scheme of Braginsky, Gorodetsky, and Khalili, we propose to add a local readout scheme which measures the motion of the arm-cavity front mirror, which at low frequencies moves together with the arm-cavity end mirror, under the influence of gravitational waves. This scheme improves the low-frequency quantum-noise-limited sensitivity of optical-spring interferometers significantly and can be considered as an incorporation of the optical-bar scheme into currently planned second-generation interferometers. On the other hand it can be regarded as an extension of the optical-bar scheme. Taking compact binary inspiral signals as an example, we illustrate how this scheme can be used to improve the sensitivity of the planned Advanced LIGO interferometer, in various scenarios, using a realistic classical-noise budget. We also discuss how this scheme can be implemented in Advanced LIGO with relative ease.

  13. Vertical integration of array-type miniature interferometers at wafer level by using multistack anodic bonding

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Shan; Wiemer, Maik; Froemel, Joerg; Enderlein, Tom; Gessner, Thomas; Lullin, Justine; Bargiel, Sylwester; Passilly, Nicolas; Albero, Jorge; Gorecki, Christophe

    2016-04-01

    In this work, vertical integration of miniaturized array-type Mirau interferometers at wafer level by using multi-stack anodic bonding is presented. Mirau interferometer is suitable for MEMS metrology and for medical imaging according to its vertical-, lateral- resolutions and working distances. Miniaturized Mirau interferometer can be a promising candidate as a key component of an optical coherence tomography (OCT) system. The miniaturized array-type interferometer consists of a microlens doublet, a Si-based MEMS Z scanner, a spacer for focus-adjustment and a beam splitter. Therefore, bonding technologies which are suitable for heterogeneous substrates are of high interest and necessary for the integration of MEMS/MOEMS devices. Multi-stack anodic bonding, which meets the optical and mechanical requirements of the MOEMS device, is adopted to integrate the array-type interferometers. First, the spacer and the beam splitter are bonded, followed by bonding of the MEMS Z scanner. In the meanwhile, two microlenses, which are composed of Si and glass wafers, are anodically bonded to form a microlens doublet. Then, the microlens doublet is aligned and bonded with the scanner/spacer/beam splitter stack. The bonded array-type interferometer is a 7- wafer stack and the thickness is approximately 5mm. To separate such a thick wafer stack with various substrates, 2-step laser cutting is used to dice the bonded stack into Mirau chips. To simplify fabrication process of each component, electrical connections are created at the last step by mounting a Mirau chip onto a flip chip PCB instead of through wafer vias. Stability of Au/Ti films on the MEMS Z scanner after anodic bonding, laser cutting and flip chip bonding are discussed as well.

  14. Electrical Double Layer-Induced Ion Surface Accumulation for Ultrasensitive Refractive Index Sensing with Nanostructured Porous Silicon Interferometers.

    PubMed

    Mariani, Stefano; Strambini, Lucanos Marsilio; Barillaro, Giuseppe

    2018-03-23

    Herein, we provide the first experimental evidence on the use of electrical double layer (EDL)-induced accumulation of charged ions (using both Na + and K + ions in water as the model) onto a negatively charged nanostructured surface (e.g., thermally growth SiO 2 )-Ion Surface Accumulation, ISA-as a means of improving performance of nanostructured porous silicon (PSi) interferometers for optical refractometric applications. Nanostructured PSi interferometers are very promising optical platforms for refractive index sensing due to PSi huge specific surface (hundreds of m 2 per gram) and low preparation cost (less than $0.01 per 8 in. silicon wafer), though they have shown poor resolution ( R) and detection limit (DL) (on the order of 10 -4 -10 -5 RIU) compared to other plasmonic and photonic platforms ( R and DL on the order of 10 -7 -10 -8 RIU). This can be ascribed to both low sensitivity and high noise floor of PSi interferometers when bulk refractive index variation of the solution infiltrating the nanopores either approaches or is below 10 -4 RIU. Electrical double layer-induced ion surface accumulation (EDL-ISA) on oxidized PSi interferometers allows the interferometer output signal (spectral interferogram) to be impressively amplified at bulk refractive index variation below 10 -4 RIU, increasing, in turn, sensitivity up to 2 orders of magnitude and allowing reliable measurement of refractive index variations to be carried out with both DL and R of 10 -7 RIU. This represents a 250-fold-improvement (at least) with respect to the state-of-the-art literature on PSi refractometers and pushes PSi interferometer performance to that of state-of-the-art ultrasensitive photonics/plasmonics refractive index platforms.

  15. The Era After the ELT: Optical Interferometry With Kilometer Baselines

    NASA Astrophysics Data System (ADS)

    Bakker, Eric J.

    2007-12-01

    The 8-meter class telescopes seen first light in 1993-1998 (Keck, 1993, VLT 1998). The ELT will see first light in the 2013-2018 time frame. The follow-up of the ELT will see first light around 2023. That is 15 years from today. The sequence from 8-meter to 30 meter telescopes (started as a goal of 100m), will suggest a follow-up telescope with an aperture of 300 meter as initial goal. Cleary a 300 meter or more ambitiously a 1000-meter telescope can no longer be structural one piece that has to point to any point on the sky and track the objects. The more likely scenario is to follow the process applied in radio astronomy and move from single telescopes to interferometers. Optical interferometry is maturing very quickly with the de-commissioning of experimental instruments (COAST, GT2I, IOTA, and probably PTI and ISI in the near future) and the use of precision mechanics and automation. The remaining interferometers are grouped in three categories: large telescopes (VLTI and KECK-I), mid-size interferometers (MROI) and small interferometers (CHARA and NPOI). The Magdalena Ridge Observatory Interferometer (MROI) is scheduled for first light/fringe in 2009 and will provide unique observing capabilities to astronomers with limiting magnitudes in the same range as those currently achieved by Keck-I and VLTI. The Magdalena Ridge Observatory Interferometer (near Socorro, NM) invites interested engineers, scientists, and astronomers to participate in the construction and science program of MRO at all levels. Ranging from visitors instruments, support of large procurements in return for access, to individual contributions related to the science program, shared risk observations, etc. For more information, contact the Project Manager at the Magdalena Ridge Observatory Interferometer.

  16. Non-contact measurements of ultrasonic waves on paper webs using a photorefractive interferometer

    DOEpatents

    Brodeur, Pierre H.; Lafond, Emmanuel F.

    2000-01-01

    An apparatus and method for non-contact measurement of ultrasonic waves on moving paper webs employs a photorefractive interferometer. The photorefractive interferometer employs an optical head in which the incident beam and reflected beam are coaxial, thus enabling detection of both in-plane and out-of-plane waves with a single apparatus. The incident beam and reference beams are focused into a line enabling greater power to be used without damaging the paper.

  17. Dual-beam skin friction interferometer

    NASA Technical Reports Server (NTRS)

    Monson, D. J. (Inventor)

    1981-01-01

    A portable dual-laser beam interferometer is described that nonintrusively measures skin friction by monitoring the thickness change of an oil film at two locations while said oil film is subjected to shear stress. An interferometer flat is utilized to develop the two beams. Light detectors sense the beam reflections from the oil film and the surface thereunder. The signals from the detectors are recorded so that the number of interference fringes produced over a given time span may be counted.

  18. Single and double superimposing interferometer systems

    DOEpatents

    Erskine, David J.

    2000-01-01

    Interferometers which can imprint a coherent delay on a broadband uncollimated beam are described. The delay value can be independent of incident ray angle, allowing interferometry using uncollimated beams from common extended sources such as lamps and fiber bundles, and facilitating Fourier Transform spectroscopy of wide angle sources. Pairs of such interferometers matched in delay and dispersion can measure velocity and communicate using ordinary lamps, wide diameter optical fibers and arbitrary non-imaging paths, and not requiring a laser.

  19. Optical interferometer testbed

    NASA Technical Reports Server (NTRS)

    Blackwood, Gary H.

    1991-01-01

    Viewgraphs on optical interferometer testbed presented at the MIT Space Research Engineering Center 3rd Annual Symposium are included. Topics covered include: space-based optical interferometer; optical metrology; sensors and actuators; real time control hardware; controlled structures technology (CST) design methodology; identification for MIMO control; FEM/ID correlation for the naked truss; disturbance modeling; disturbance source implementation; structure design: passive damping; low authority control; active isolation of lightweight mirrors on flexible structures; open loop transfer function of mirror; and global/high authority control.

  20. Measurement-Based Linear Optics

    NASA Astrophysics Data System (ADS)

    Alexander, Rafael N.; Gabay, Natasha C.; Rohde, Peter P.; Menicucci, Nicolas C.

    2017-03-01

    A major challenge in optical quantum processing is implementing large, stable interferometers. We offer a novel approach: virtual, measurement-based interferometers that are programed on the fly solely by the choice of homodyne measurement angles. The effects of finite squeezing are captured as uniform amplitude damping. We compare our proposal to existing (physical) interferometers and consider its performance for BosonSampling, which could demonstrate postclassical computational power in the near future. We prove its efficiency in time and squeezing (energy) in this setting.

  1. Effect of telescope antenna diagram on the data acquisition in a stellar interferometer

    NASA Astrophysics Data System (ADS)

    Longueteau, Emmanuel; Delage, Laurent; Reynaud, François

    2017-11-01

    This paper deals with the effect of the telescope size on accuracy of the data acquisition in a optical fibre linked stellar interferometer. In this context we introduce the concept of antenna diagram commonly used for microwaves antennae. This concept is essential to explain the contrasts and the phaseclosure acquisitions corruption in a stellar interferometer. The telescope pointing errors induces additional effects that are superimposed with the field limitation and could become critical.

  2. Planned improvements to the Owens Valley frequency-agile interferometer

    NASA Technical Reports Server (NTRS)

    Hurford, Gordon J.; Gary, D. E.

    1988-01-01

    Three small antennas will be added to the OVRO interferometer to form a five-element solar-dedicated array. This would provide up to 7 or 10 baselines (compared to the present 1 or 3). This would be sufficient to apply microwave diagnostics to most active region and burst sources. By using frequency-synthesis it would also provide an imaging capability comparable to that of an approximately 100 baseline interferometer. Expansion of the array is discussed.

  3. Spherical grating monochromator with interferometer control and in-vacuum reference

    NASA Astrophysics Data System (ADS)

    Holly, D. J.; Mason, W. P.; Sailor, T.; Smith, R. E.; Wahl, D.

    2002-03-01

    Physical Science Laboratory's new generation of spherical grating monochromators incorporates a laser interferometer to control scan angle and an in-vacuum absolute angle reference, as well as other improvements. The design accommodates up to six gratings which can be moved axially (under motor control, with encoder position readback) at any scan angle. The gratings are cooled by means of spring-loaded clamps which conduct heat to a water-cooled plate. The instruments feature hollow roller bearings on the scan axis to minimize bearing runout, and a pseudosine-bar drive for precise control of grating angle. The interferometer angle-measuring optics are mounted inside the vacuum chamber and measure the angle between the grating scan axis and the instrument's granite base. The laser interferometer measures the grating angle with a resolution of approximately 0.02 arcsec over the entire scan range of 40°. To provide a reference for the interferometer angle measurement, we have built an in-vacuum optical reference which uses custom chrome-on-glass reticles mounted inside the vacuum chamber. Collimated light from a source outside the vacuum passes through the reticles to yield quadrature signals which precisely define an absolute reference angle for the interferometer. Repeatability of the grating angle is within a range of ±0.05 arcsec. Two of these instruments are in operation at SRRC (Taiwan) and a third instrument has been delivered to NSLS (Brookhaven).

  4. Precision improving of double beam shadow moiré interferometer by phase shifting interferometry for the stress of flexible substrate

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ting; Chen, Hsi-Chao; Lin, Ssu-Fan; Lin, Ke-Ming; Syue, Hong-Ye

    2012-09-01

    While tin-doped indium oxide (ITO) has been extensively applied in flexible electronics, the problem of the residual stress has many obstacles to overcome. This study investigated the residual stress of flexible electronics by the double beam shadow moiré interferometer, and focused on the precision improvement with phase shifting interferometry (PSI). According to the out-of-plane displacement equation, the theoretical error depends on the grating pitch and the angle between incident light and CCD. The angle error could be reduced to 0.03% by the angle shift of 10° as a result of the double beam interferometer was a symmetrical system. But the experimental error of the double beam moiré interferometer still reached to 2.2% by the noise of the vibration and interferograms. In order to improve the measurement precision, PSI was introduced to the double shadow moiré interferometer. Wavefront phase was reconstructed by the five interferograms with the Hariharan algorithm. The measurement results of standard cylinder indicating the error could be reduced from 2.2% to less than 1% with PSI. The deformation of flexible electronic could be reconstructed fast and calculated the residual stress with the Stoney correction formula. This shadow moiré interferometer with PSI could improve the precision of residual stress for flexible electronics.

  5. Interferometers adaptations to lidars

    NASA Technical Reports Server (NTRS)

    Porteneuve, J.

    1992-01-01

    To perform daytime measurements of the density and temperature by Rayleigh lidar, it is necessary to select the wavelength with a very narrow spectral system. This filter is composed by an interference filter and a Fabry Perot etalon. The Fabry Perot etalon is the more performent compound, and it is necessary to build a specific optic around it. The image of the entrance pupil or the field diaphragm is at the infinite and the other diaphragm is on the etalon. The optical quality of the optical system is linked to the spectral resolution of the system to optimize the reduction of the field of view. The resolution is given by the formula: R = 8(xD/Fd)exp 2 where R = lambda/delta(lambda), x = diameter of the field diaphragm, D = diameter of the reception mirror, F = focal length of the telescope, and d = useful diameter of the etalon. In the Doppler Rayleigh lidars, the PF interferometer is the main part of the experiment and the exact spectral adaptation is the most critical problem. In the spectral adaptation of interferometers, the transmittance of the system will be acceptable if the etalon is exactly adjusted to the wavelength of the laser. It is necessary to work with a monomode laser, and adjust the shift to the bandpass of the interferometer. We are working with an interferometer built with molecular optical contact. This interferometer is put in a special pressure closed chamber.

  6. Modeling of a tilted pressure-tuned field-widened Michelson interferometer for application in high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Hostetler, Chris; Miller, Ian; Cook, Anthony; Hair, Jonathan

    2011-10-01

    High spectral resolution lidars (HSRLs) designed for aerosol and cloud remote sensing are increasingly being deployed on aircraft and called for on future space-based missions. The HSRL technique relies on spectral discrimination of the atmospheric backscatter signals to enable independent, unambiguous retrieval of aerosol extinction and backscatter. A compact, monolithic field-widened Michelson interferometer is being developed as the spectral discrimination filter for an HSRL system at NASA Langley Research Center. The Michelson interferometer consists of a cubic beam splitter, a solid glass arm, and an air arm. The spacer that connects the air arm mirror to the main part of the interferometer is designed to optimize thermal compensation such that the frequency of maximum interference can be tuned with great precision to the transmitted laser wavelength. In this paper, a comprehensive radiometric model for the field-widened Michelson interferometeric spectral filter is presented. The model incorporates the angular distribution and finite cross sectional area of the light source, reflectance of all surfaces, loss of absorption, and lack of parallelism between the airarm and solid arm, etc. The model can be used to assess the performance of the interferometer and thus it is a useful tool to evaluate performance budgets and to set optical specifications for new designs of the same basic interferometer type.

  7. Multifunction interferometry using the electron mobility visibility and mean free path relationship.

    PubMed

    Pornsuwancharoen, N; Youplao, P; Amiri, I S; Aziz, M S; Tran, Q L; Ali, J; Yupapin, P; Grattan, K T V

    2018-05-08

    A conventional Michelson interferometer is modified and used to form the various types of interferometers. The basic system consists of a conventional Michelson interferometer with silicon-graphene-gold embedded between layers on the ports. When light from the monochromatic source is input into the system via the input port (silicon waveguide), the change in optical path difference (OPD) of light traveling in the stacked layers introduces the change in the optical phase, which affects to the electron mean free path within the gold layer, induces the change in the overall electron mobility can be seen by the interferometer output visibility. Further plasmonic waves are introduced on the graphene thin film and the electron mobility occurred within the gold layer, in which the light-electron energy conversion in terms of the electron mobility can be observed, the gold layer length is 100 nm. The measurement resolution in terms of the OPD of ∼50 nm is achieved. In applications, the outputs of the drop port device of the modified Michelson interferometer can be arranged by the different detectors, where the polarized light outputs, the photon outputs, the electron spin outputs can be obtained by the interference fringe visibility, mobility visibility and the spin up-down splitting output energies. The modified Michelson interferometer theory and the detection schemes are given in details. © 2018 Wiley Periodicals, Inc.

  8. Modified Fabry-Perot interferometer for displacement measurement in ultra large measuring range

    NASA Astrophysics Data System (ADS)

    Chang, Chung-Ping; Tung, Pi-Cheng; Shyu, Lih-Horng; Wang, Yung-Cheng; Manske, Eberhard

    2013-05-01

    Laser interferometers have demonstrated outstanding measuring performances for high precision positioning or dimensional measurements in the precision industry, especially in the length measurement. Due to the non-common-optical-path structure, appreciable measurement errors can be easily induced under ordinary measurement conditions. That will lead to the limitation and inconvenience for in situ industrial applications. To minimize the environmental and mechanical effects, a new interferometric displacement measuring system with the common-optical-path structure and the resistance to tilt-angle is proposed. With the integration of optomechatronic modules in the novel interferometric system, the resolution up to picometer order, high precision, and ultra large measuring range have been realized. For the signal stabilization of displacement measurement, an automatic gain control module has been proposed. A self-developed interpolation model has been employed for enhancing the resolution. The novel interferometer can hold the advantage of high resolution and large measuring range simultaneously. By the experimental verifications, it has been proven that the actual resolution of 2.5 nm can be achieved in the measuring range of 500 mm. According to the comparison experiments, the maximal standard deviation of the difference between the self-developed Fabry-Perot interferometer and the reference commercial Michelson interferometer is 0.146 μm in the traveling range of 500 mm. With the prominent measuring characteristics, this should be the largest dynamic measurement range of a Fabry-Perot interferometer up till now.

  9. Study on the effect of carbon nanotube coating on the refractive index sensing sensitivity of fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Xie, Wen-ge; Wang, Jianzhang; Wang, Pengzhao

    2018-01-01

    Refractive index sensing of liquid is important in the domain of chemistry and biology. Fiber optical sensors provide an excellent way to measure the refractive index due to their feasible integration to other fiber optics components, high sensitivity, small size, and distributed sensing. However, conventional optical sensors have different shortages. To find a practical way to measure the refractive index of liquid, this paper intended to combine Carbon Nanotube (CNT) with non-core fiber (NCF) to prepare a kind of modal interferometer sensor and to explore the effect of CNT coating on refractive index sensing properties of the modal interferometer. Firstly, a structure of single mode non-core single mode (SNS) fiber with a CNT film coating was proposed and simulated. The simulation results showed that the CNT coating could improve the refractive index sensitivity of the interferometer sensor. Then in the experiment part, the CNT solution was fabricated and deposited onto the NCF, and a refractive index sensing system was built to examine the property of the CNT-coated SNS interferometer sensor. During the experiment, the influence factors of sensitivity were summarized by testing the sensing performance under different conditions, and it was demonstrated that the CNT coating could improve the contrast of the interference spectrum, and also had the possibility to increase the refractive index sensitivity of the interferometer sensor.

  10. Dual interferometer for dynamic measurement of corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason D.; Greivenkamp, John E.

    2016-08-01

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface, where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. A dual interferometer system for measuring the dynamic corneal topography is designed, built, verified, and qualified by testing on human subjects. The system consists of two coaligned simultaneous phase-shifting polarization-splitting Twyman-Green interferometers. The primary interferometer measures the surface of the tear film while the secondary interferometer tracks the absolute position of the cornea, which provides enough information to reconstruct the absolute shape of the cornea. The results are high-resolution and high-accuracy surface topography measurements of the in vivo tear film and cornea that are captured at standard camera frame rates.

  11. Analysis of the detection materials as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Zboril, Ondrej; Bednarek, Lukas; Novak, Martin; Witas, Karel; Vasinek, Vladimir

    2017-05-01

    Fiber-optic sensors (FOS), today among the most widespread measuring sensors and during various types of measuring, are irreplaceable. Among the distinctive features include immunity to electromagnetic interference, passivity regarding power supply and high sensitivity. One of the representatives FOS is the interferometric sensors working on the principle of interference of light. Authors of this article focused on the analysis of the detection material as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations (low frequencies). A typical example is the use of interferometer sensors in automobile traffic while sensing a vibration response from the roadway while passing the cars. For analysis was used sensor with Mach-Zehnder interferometer. Defined were different detection materials about different size and thickness. We analyzed the influence on the sensitivity (amplitude response) of the interferometer. Based on the results we have defined the best material for sensing mechanical vibrations. The signal was processed by applications created in LabView development environment. The results were verified by repeated testing in laboratory conditions.

  12. A fiber-optic interferometer with subpicometer resolution for dc and low-frequency displacement measurement.

    PubMed

    Smith, D T; Pratt, J R; Howard, L P

    2009-03-01

    We have developed a fiber-optic interferometer optimized for best performance in the frequency range from dc to 1 kHz, with displacement linearity of 1% over a range of +/- 25 nm, and noise-limited resolution of 2 pm. The interferometer uses a tunable infrared laser source (nominal 1550 nm wavelength) with high amplitude and wavelength stability, low spontaneous self-emission noise, high sideband suppression, and a coherence control feature that broadens the laser linewidth and dramatically lowers the low-frequency noise in the system. The amplitude stability of the source, combined with the use of specially manufactured "bend-insensitive" fiber and all-spliced fiber construction, results in a robust homodyne interferometer system, which achieves resolution of 40 fm Hz(-1/2) above 20 Hz and approaches the shot-noise-limit of 20 fm Hz(-1/2) at 1 kHz for an optical power of 10 microW, without the need for differential detection. Here we describe the design and construction of the interferometer, as well as modes of operation, and demonstrate its performance.

  13. Transport phenomena in helical edge state interferometers: A Green's function approach

    NASA Astrophysics Data System (ADS)

    Rizzo, Bruno; Arrachea, Liliana; Moskalets, Michael

    2013-10-01

    We analyze the current and the shot noise of an electron interferometer made of the helical edge states of a two-dimensional topological insulator within the framework of nonequilibrium Green's functions formalism. We study, in detail, setups with a single and with two quantum point contacts inducing scattering between the different edge states. We consider processes preserving the spin as well as the effect of spin-flip scattering. In the case of a single quantum point contact, a simple test based on the shot-noise measurement is proposed to quantify the strength of the spin-flip scattering. In the case of two single point contacts with the additional ingredient of gate voltages applied within a finite-size region at the top and bottom edges of the sample, we identify two types of interference processes in the behavior of the currents and the noise. One such process is analogous to that taking place in a Fabry-Pérot interferometer, while the second one corresponds to a configuration similar to a Mach-Zehnder interferometer. In the helical interferometer, these two processes compete.

  14. Development of phase detection schemes based on surface plasmon resonance using interferometry.

    PubMed

    Kashif, Muhammad; Bakar, Ahmad Ashrif A; Arsad, Norhana; Shaari, Sahbudin

    2014-08-28

    Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.

  15. Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry

    PubMed Central

    Kashif, Muhammad; Bakar, Ahmad Ashrif A.; Arsad, Norhana; Shaari, Sahbudin

    2014-01-01

    Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors. PMID:25171117

  16. Mapping the absolute magnetic field and evaluating the quadratic Zeeman-effect-induced systematic error in an atom interferometer gravimeter

    NASA Astrophysics Data System (ADS)

    Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim

    2017-09-01

    Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.

  17. Reconfiguration of the multiwavelength operation of optical fiber ring lasers by the modifiable intra-cavity induced losses of an in-fiber tip probe modal Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.

    2018-03-01

    A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.

  18. Optical Interferometry Motivation and History

    NASA Technical Reports Server (NTRS)

    Lawson, Peter

    2006-01-01

    A history and motivation of stellar interferometry is presented. The topics include: 1) On Tides, Organ Pipes, and Soap Bubbles; 2) Armand Hippolyte Fizeau (1819-1896); 3) Fizeau Suggests Stellar Interferometry 1867; 4) Edouard Stephan (1837-1923); 5) Foucault Refractor; 6) Albert A. Michelson (1852-1931); 7) On the Application of Interference Methods to Astronomy (1890); 8) Moons of Jupiter (1891); 9) Other Applications in 19th Century; 10) Timeline of Interferometry to 1938; 11) 30 years goes by; 12) Mount Wilson Observatory; 13) Michelson's 20 ft Interferometer; 14) Was Michelson Influenced by Fizeau? 15) Work Continues in the 1920s and 30s; 16) 50 ft Interferometer (1931-1938); 17) Light Paths in the 50 ft Interferometer; 18) Ground-level at the 50 ft; 19) F.G. Pease (1881-1938); 20) Timeline of Optical Interferometry to 1970; 21) A New Type of Stellar Interferometer (1956); 22) Intensity Interferometer (1963- 1976; 23) Robert Hanbury Brown; 24) Interest in Optical Interferometry in the 1960s; 25) Interferometry in the Early 1970s; and 26) A New Frontier is Opened up in 1974.

  19. Sensitivity distribution of a vibration sensor based on Mach-Zehnder interferometer designed inside the window system

    NASA Astrophysics Data System (ADS)

    Zboril, Ondrej; Nedoma, Jan; Cubik, Jakub; Novak, Martin; Bednarek, Lukas; Fajkus, Marcel; Vasinek, Vladimir

    2016-04-01

    Interferometric sensors are very accurate and sensitive sensors that due to the extreme sensitivity allow sensing vibration and acoustic signals. This paper describes a new method of implementation of Mach-Zehnder interferometer for sensing of vibrations caused by touching on the window panes. Window panes are part of plastic windows, in which the reference arm of the interferometer is mounted and isolated inside the frame, a measuring arm of the interferometer is fixed to the window pane and it is mounted under the cover of the window frame. It prevents visibility of the optical fiber and this arrangement is the basis for the safety system. For the construction of the vibration sensor standard elements of communication networks are used - optical fiber according to G.652D and 1x2 splitters with dividing ratio 1:1. Interferometer operated at a wavelength of 1550 nm. The paper analyses the sensitivity of the window in a 12x12 measuring points matrix, there is specified sensitivity distribution of the window pane.

  20. Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning.

    PubMed

    Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Liu, Chong; Bai, Jian; Wang, Kaiwei; Su, Lin; Yang, Liming

    2016-09-01

    A general resonant frequency locking scheme for a field-widened Michelson interferometer (FWMI), which is intended as a spectral discriminator in a high-spectral-resolution lidar, is proposed based on optimal multi-harmonics heterodyning. By transferring the energy of a reference laser to multi-harmonics of different orders generated by optimal electro-optic phase modulation, the heterodyne signal of these multi-harmonics through the FWMI can reveal the resonant frequency drift of the interferometer very sensitively within a large frequency range. This approach can overcome the locking difficulty induced by the low finesse of the FWMI, thus contributing to excellent locking accuracy and lock acquisition range without any constraint on the interferometer itself. The theoretical and experimental results are presented to verify the performance of this scheme.

  1. An atom interferometer inside a hollow-core photonic crystal fiber

    PubMed Central

    Xin, Mingjie; Leong, Wui Seng; Chen, Zilong; Lan, Shau-Yu

    2018-01-01

    Coherent interactions between electromagnetic and matter waves lie at the heart of quantum science and technology. However, the diffraction nature of light has limited the scalability of many atom-light–based quantum systems. We use the optical fields in a hollow-core photonic crystal fiber to spatially split, reflect, and recombine a coherent superposition state of free-falling 85Rb atoms to realize an inertia-sensitive atom interferometer. The interferometer operates over a diffraction-free distance, and the contrasts and phase shifts at different distances agree within one standard error. The integration of phase coherent photonic and quantum systems here shows great promise to advance the capability of atom interferometers in the field of precision measurement and quantum sensing with miniature design of apparatus and high efficiency of laser power consumption. PMID:29372180

  2. Using an atom interferometer to take the Gedanken out of Feynman's Gedankenexperiment

    NASA Astrophysics Data System (ADS)

    Pritchard, David E.; Hammond, Troy D.; Lenef, Alan; Rubenstein, Richard A.; Smith, Edward T.; Chapman, Michael S.; Schmiedmayer, Jörg

    1997-01-01

    We give a description of two experiments performed in an atom interferometer at MIT. By scattering a single photon off of the atom as it passes through the interferometer, we perform a version of a classic gedankenexperiment, a demonstration of a Feynman light microscope. As path information about the atom is gained, contrast in the atom fringes (coherence) is lost. The lost coherence is then recovered by observing only atoms which scatter photons into a particular final direction. This paper reflects the main emphasis of D. E. Pritchard's talk at the RIS meeting. Information about other topics covered in that talk, as well as a review of all of the published work performed with the MIT atom/molecule interferometer, is available on the world wide web at http://coffee.mit.edu/.

  3. Size constraints on a Majorana beam-splitter interferometer: Majorana coupling and surface-bulk scattering

    NASA Astrophysics Data System (ADS)

    Røising, Henrik Schou; Simon, Steven H.

    2018-03-01

    Topological insulator surfaces in proximity to superconductors have been proposed as a way to produce Majorana fermions in condensed matter physics. One of the simplest proposed experiments with such a system is Majorana interferometry. Here we consider two possibly conflicting constraints on the size of such an interferometer. Coupling of a Majorana mode from the edge (the arms) of the interferometer to vortices in the center of the device sets a lower bound on the size of the device. On the other hand, scattering to the usually imperfectly insulating bulk sets an upper bound. From estimates of experimental parameters, we find that typical samples may have no size window in which the Majorana interferometer can operate, implying that a new generation of more highly insulating samples must be explored.

  4. Interferometer. [high resolution

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Norton, R. H.; Schindler, R. A. (Inventor)

    1981-01-01

    A high resolution interferometer is described. The interferometer is insensitive to slight misalignment of its elements, avoids channeling in the spectrum, generates a maximum equal path fringe contrast, produces an even two sided interferogram without critical matching of the wedge angles of the beamsplitter and compensator wedges, and is optically phase tunable. The interferometer includes a mirror along the path of each beam component produced by the beamsplitter, for reflecting the beam component from the beamsplitter, for reflecting the beam component from the beamsplitter to a corresponding retroreflector and for reflecting the beam returned by the retroreflector back to the beamsplitter. A wedge located along each beam component path, is large enough to cover the retroreflector, so that each beam component passes through the wedge during movement towards the retroreflector and away therefrom.

  5. Spatially modulated interferometer and beam shearing device therefor

    NASA Technical Reports Server (NTRS)

    Reininger, Francis M. (Inventor)

    2004-01-01

    A spatially modulated interferometer incorporates a beam shearing system having a plurality of reflective surfaces defining separate light paths of equal optical path length for two separate output beams. The reflective surfaces are arranged such that when the two beams emerge from the beam shearing system they contain more than 50 percent of the photon flux within the selected spectral pass band. In one embodiment, the reflective surfaces are located on a number of prism elements combined to form a beam shearing prism structure. The interferometer utilizing the beam sharing system of the invention includes fore-optics for collecting light and focusing it into a beam to be sheared, and a detector located at an exit pupil of the device. In a preferred embodiment, the interferometer has no moving parts.

  6. Laser-Interferometric Broadband Seismometer for Epicenter Location Estimation

    PubMed Central

    Lee, Kyunghyun; Kwon, Hyungkwan; You, Kwanho

    2017-01-01

    In this paper, we suggest a seismic signal measurement system that uses a laser interferometer. The heterodyne laser interferometer is used as a seismometer due to its high accuracy and robustness. Seismic data measured by the laser interferometer is used to analyze crucial earthquake characteristics. To measure P-S time more precisely, the short time Fourier transform and instantaneous frequency estimation methods are applied to the intensity signal (Iy) of the laser interferometer. To estimate the epicenter location, the range difference of arrival algorithm is applied with the P-S time result. The linear matrix equation of the epicenter localization can be derived using P-S time data obtained from more than three observatories. We prove the performance of the proposed algorithm through simulation and experimental results. PMID:29065515

  7. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    DOE PAGES

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at μg/ √Hz and μrad/s/ √Hz levels, making thismore » a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.« less

  8. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Fabry—Perot interferometer with resonant mirrors

    NASA Astrophysics Data System (ADS)

    Troitskii, Yu V.

    1995-06-01

    An analysis is made of the task of construction of an interferometer with an output signal weakly dependent on the frequency of the incident light and yet highly sensitive to a change in the distance between the mirrors. This can be achieved by the use of resonant dielectric mirrors with the reflection phase and amplitude strongly dependent on the frequency within the width of the response function of the interferometer. The interferometer can be reduced to a four-mirror configuration in the case of the proposed types of mirrors. The relevant expressions are derived for this configuration. It is shown that the distance between the mirrors can be considerably greater than has been assumed earlier. A system of parameters is introduced and specific examples are considered.

  9. On the Convergence of an Implicitly Restarted Arnoldi Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehoucq, Richard B.

    We show that Sorensen's [35] implicitly restarted Arnoldi method (including its block extension) is simultaneous iteration with an implicit projection step to accelerate convergence to the invariant subspace of interest. By using the geometric convergence theory for simultaneous iteration due to Watkins and Elsner [43], we prove that an implicitly restarted Arnoldi method can achieve a super-linear rate of convergence to the dominant invariant subspace of a matrix. Moreover, we show how an IRAM computes a nested sequence of approximations for the partial Schur decomposition associated with the dominant invariant subspace of a matrix.

  10. MIZEX: A Program for Mesoscale Air-Ice-Ocean Interaction Experiments in Arctic Marginal Ice Zones. VIII. A Science Plan for a Winter Marginal Ice Zone Experiment in the Fram Strait/Greenland Sea: 1987/89,

    DTIC Science & Technology

    1986-04-01

    forward modeling, with the pa- be telemetered via the ARGOS system for real - rameter changes needed to bring the predictions time evaluation, and the...integrated en ’i- rtinnental measurement svs fern. quisition system to the Winter MIZEX in I-ram To control and direct the experiment, real - time Strait...to measure, under- Electromagnetic sensing via aircraft and satellites stand, and model: will be employed in real time to identify eddy " Changes in

  11. Deuteration of ammonia in the starless core Ophiuchus/H-MM1

    NASA Astrophysics Data System (ADS)

    Harju, J.; Daniel, F.; Sipilä, O.; Caselli, P.; Pineda, J. E.; Friesen, R. K.; Punanova, A.; Güsten, R.; Wiesenfeld, L.; Myers, P. C.; Faure, A.; Hily-Blant, P.; Rist, C.; Rosolowsky, E.; Schlemmer, S.; Shirley, Y. L.

    2017-04-01

    Context. Ammonia and its deuterated isotopologues probe physical conditions in dense molecular cloud cores. The time-dependence of deuterium fractionation and the relative abundances of different nuclear spin modifications are supposed to provide a means of determining the evolutionary stages of these objects. Aims: We aim to test the current understanding of spin-state chemistry of deuterated species by determining the abundances and spin ratios of NH2D, NHD2 and ND3 in a quiescent, dense cloud. Methods: Spectral lines of NH3, NH2D, NHD2, ND3 and N2D+ were observed towards a dense, starless core in Ophiuchus with the APEX, GBT and IRAM 30-m telescopes. The observations were interpreted using a gas-grain chemistry model combined with radiative transfer calculations. The chemistry model distinguishes between the different nuclear spin states of light hydrogen molecules, ammonia and their deuterated forms. Different desorption schemes can be considered. Results: High deuterium fractionation ratios with NH2D/NH3 0.4, NHD2/ NH2D 0.2 and ND3/ NHD2 0.06 are found in the core. The observed ortho/para ratios of NH2D and NHD2 are close to the corresponding nuclear spin statistical weights. The chemistry model can approximately reproduce the observed abundances, but consistently predicts too low ortho/para-NH2D, and too large ortho/para-NHD2 ratios. The longevity of N2H+ and NH3 in dense gas, which is prerequisite to their strong deuteration, can be attributed to the chemical inertia of N2 on grain surfaces. Conclusions: The discrepancies between the chemistry model and the observations are likely to be caused by the fact that the model assumes complete scrambling in principal gas-phase deuteration reactions of ammonia, which means that all the nuclei are mixed in reactive collisions. If, instead, these reactions occur through proton hop/hydrogen abstraction processes, statistical spin ratios are to be expected. The present results suggest that while the deuteration of ammonia changes with physical conditions and time, the nuclear spin ratios of ammonia isotopologues do not probe the evolutionary stage of a cloud. Based on observations carried out with The Atacama Pathfinder Experiment (APEX), the Robert C. Byrd Green Bank Telescope (GBT), and the IRAM 30 m Telescope. APEX is a collaboration between Max-Planck Institut für Radioastronomie (MPIfR), Onsala Space Observatory (OSO), and the European Southern Observatory (ESO). GBT is managed by the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  12. Molecular shells in IRC+10216: tracing the mass loss history

    NASA Astrophysics Data System (ADS)

    Cernicharo, J.; Marcelino, N.; Agúndez, M.; Guélin, M.

    2015-03-01

    Thermally-pulsating AGB stars provide three-fourths of the matter returned to the interstellar medium. The mass and chemical composition of their ejecta largely control the chemical evolution of galaxies. Yet, both the mass loss process and the gas chemical composition remain poorly understood. We present maps of the extended 12CO and 13CO emissions in IRC+10216, the envelope of CW Leo, the high mass loss star the closest to the Sun. IRC+10216 is nearly spherical and expands radially with a velocity of 14.5 km s-1. The observations were made On-the-Fly with the IRAM 30 m telescope; their sensibility, calibration, and angular resolution are far higher than all previous studies. The telescope resolution at λ = 1.3 mm (11'' HPBW) corresponds to an expansion time of 500 yr. The CO emission consists of a centrally peaked pedestal and a series of bright, nearly spherical shells. It peaks on CW Leo and remains relatively strong up to rphot = 180''. Further out the emission becomes very weak and vanishes as CO gets photodissociated. As CO is the best tracer of the gas up to rphot, the maps show the mass loss history in the last 8000 yr. The bright CO shells denote over-dense regions. They show that the mass loss process is highly variable on timescales of hundreds of years. The new data, however, do not support previous claims of a strong decrease of the average mass loss in the last few thousand years. The over-dense shells are not perfectly concentric and extend farther to the N-NW. The typical shell separation is 800-1000 yr in the middle of the envelope, but seems to increase outwards. The shell-intershell brightness contrast is ≥3. All those key features can be accounted for if CW Leo has a companion star with a period ≃800 yr that increases the mass loss rate when it comes close to periastron. Higher angular resolution observations are needed to fully resolve the dense shells and measure the density contrast. The latter plays an essential role in our understanding of the envelope chemistry. This work was based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Movies associated to Figs. 3, 5, 7, 8, and 10 are available in electronic form at http://www.aanda.orgData cubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A91

  13. Jet-induced star formation in 3C 285 and Minkowski's Object

    NASA Astrophysics Data System (ADS)

    Salomé, Q.; Salomé, P.; Combes, F.

    2015-02-01

    How efficiently star formation proceeds in galaxies is still an open question. Recent studies suggest that active galactic nucleus (AGN) can regulate the gas accretion and thus slow down star formation (negative feedback). However, evidence of AGN positive feedback has also been observed in a few radio galaxies (e.g. Centaurus A, Minkowski's Object, 3C 285, and the higher redshift 4C 41.17). Here we present CO observations of 3C 285 and Minkowski's Object, which are examples of jet-induced star formation. A spot (named 3C 285/09.6 in the present paper) aligned with the 3C 285 radio jet at a projected distance of ~70 kpc from the galaxy centre shows star formation that is detected in optical emission. Minkowski's Object is located along the jet of NGC 541 and also shows star formation. Knowing the distribution of molecular gas along the jets is a way to study the physical processes at play in the AGN interaction with the intergalactic medium. We observed CO lines in 3C 285, NGC 541, 3C 285/09.6, and Minkowski's Object with the IRAM 30 m telescope. In the central galaxies, the spectra present a double-horn profile, typical of a rotation pattern, from which we are able to estimate the molecular gas density profile of the galaxy. The molecular gas appears to be in a compact reservoir, which could be evidence of an early phase of the gas accretion after a recent merger event in 3C 285. No kinematic signature of a molecular outflow is detected by the 30 m telescope. Interestingly, 3C 285/09.6 and Minkowski's Object are not detected in CO. The cold gas mass upper limits are consistent with a star formation induced by the compression of dense ambient material by the jet. The depletion time scales in 3C 285/09.6 and Minkowski's Object are of the order of and even shorter than what is found in 3C 285, NGC 541, and local spiral galaxies (109 yr). The upper limit of the molecular gas surface density in 3C 285/09.6 at least follows a Schmidt-Kennicutt law if the emitting region is very compact, as suggested by the Hα emission, while Minkowski's Object is found to have a much higher star formation efficiency lower limit (very short depletion time). Higher sensitivity is necessary to detect CO in the star-forming spots, and higher spatial resolution is required to map the emission in these jet-induced star-forming regions. Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  14. Experimental study of the role of trap symmetry in an atom-chip interferometer above the Bose–Einstein condensation threshold

    NASA Astrophysics Data System (ADS)

    Dupont-Nivet, M.; Demur, R.; Westbrook, C. I.; Schwartz, S.

    2018-04-01

    We report the experimental study of an atom-chip interferometer using ultracold rubidium 87 atoms above the Bose–Einstein condensation threshold. The observed dependence of the contrast decay time with temperature and with the degree of symmetry of the traps during the interferometer sequence is in good agreement with theoretical predictions published in Dupont-Nivet et al (2016 New J. Phys. 18 113012). These results pave the way for precision measurements with trapped thermal atoms.

  15. An interferometer for high-resolution optical surveillance from GEO - internal metrology breadboard

    NASA Astrophysics Data System (ADS)

    Bonino, L.; Bresciani, F.; Piasini, G.; Pisani, M.; Cabral, A.; Rebordão, J.; Musso, F.

    2017-11-01

    This paper describes the internal metrology breadboard development activities performed in the frame of the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell by AAS-I and INETI. The Michelson Interferometer Testbed demonstrates the possibility of achieving a cophasing condition between two arms of the optical interferometer starting from a large initial white light Optical Path Difference (OPD) unbalance and of maintaining the fringe pattern stabilized in presence of disturbances.

  16. Double Bragg Interferometry

    NASA Astrophysics Data System (ADS)

    Ahlers, H.; Müntinga, H.; Wenzlawski, A.; Krutzik, M.; Tackmann, G.; Abend, S.; Gaaloul, N.; Giese, E.; Roura, A.; Kuhl, R.; Lämmerzahl, C.; Peters, A.; Windpassinger, P.; Sengstock, K.; Schleich, W. P.; Ertmer, W.; Rasel, E. M.

    2016-04-01

    We employ light-induced double Bragg diffraction of delta-kick collimated Bose-Einstein condensates to create three symmetric Mach-Zehnder interferometers. They rely on (i) first-order, (ii) two successive first-order, and (iii) second-order processes which demonstrate the scalability of the corresponding momentum transfer. With respect to devices based on conventional Bragg scattering, these symmetric interferometers double the scale factor and feature a better suppression of noise and systematic uncertainties intrinsic to the diffraction process. Moreover, we utilize these interferometers as tiltmeters for monitoring their inclination with respect to gravity.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.

    Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.

  18. Polarization Considerations for the Laser Interferometer Space Antenna

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, Paul

    2005-01-01

    A polarization ray trace model of the Laser Interferometer Space Antenna s (LISA) optical path is being created. The model will be able to assess the effects of various polarizing elements and the optical coatings on the required, very long path length, picometer level dynamic interferometry. The computational steps are described. This should eliminate any ambiguities associated with polarization ray tracing of interferometers and provide a basis for determining the computer model s limitations and serve as a clearly defined starting point for future work.

  19. Modeling of low-finesse, extrinsic fiber optic Fabry-Perot white light interferometers

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Tian, Zhipeng; Wang, Anbo

    2012-06-01

    This article introduces an approach for modeling the fiber optic low-finesse extrinsic Fabry-Pérot Interferometers (EFPI), aiming to address signal processing problems in EFPI demodulation algorithms based on white light interferometry. The main goal is to seek physical interpretations to correlate the sensor spectrum with the interferometer geometry (most importantly, the optical path difference). Because the signal demodulation quality and reliability hinge heavily on the understanding of such relationships, the model sheds light on optimizing the sensor performance.

  20. Microwave Interferometry (90 GHz) for Hall Thruster Plume Density Characterization

    DTIC Science & Technology

    2005-06-01

    Hall thruster . The interferometer has been modified to overcome initial difficulties encountered during the preliminary testing. The modifications include the ability to perform remote and automated calibrations as well as an aluminum enclosure to shield the interferometer from the Hall thruster plume. With these modifications, it will be possible to make unambiguous electron density measurements of the thruster plume as well as to rapidly and automatically calibrate the interferometer to eliminate the effects of signal drift. Due to the versatility

  1. A laser interferometer for measuring skin friction in three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    A new, nonintrusive method is described for measuring skin friction in three-dimensional flows with unknown direction. The method uses a laser interferometer to measure the changing slope of a thin oil film applied to a surface experiencing shear stress. The details of the method are described, and skin friction measurements taken in a swirling three-dimensional boundary-layer flow are presented. Comparisons between analytical results and experimental values from the laser interferometer method and from a bidirectional surface-fence gauge are made.

  2. Dual differential interferometer for measurements of broadband surface acoustic waves

    NASA Technical Reports Server (NTRS)

    Turner, T. M.; Claus, R. O.

    1981-01-01

    A simple duel interferometer which uses two pairs of orthogonally polarized optical beams to measure both the amplitude and direction of propagation of broadband ultrasonic surface waves is described. Each pair of focused laser probe beams is used in a separate wideband differential interferometer to independently detect the component of surface wave motion along one direction on the surface. By combining the two output signals corresponding to both components, the two dimensional surface profile and its variation as a function of time is determined.

  3. DESIGN NOTE: From nanometre to millimetre: a feasibility study of the combination of scanning probe microscopy and combined optical and x-ray interferometry

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Koenders, Ludger

    2003-09-01

    This feasibility study investigates the potential combination of an x-ray interferometer and optical interferometer as a one-dimensional long range high resolution scanning stage for an atomic force microscope (AFM) in order to overcome the problems of non-linearity associated with conventional AFMs and interferometers. Preliminary results of measurements of the uniformity of the period of a grating used as a transfer standards show variations in period at the nanometre level.

  4. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.

    PubMed

    Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2013-02-11

    In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.

  5. Thermal Noise in the Initial LIGO Interferometers

    NASA Astrophysics Data System (ADS)

    Gillespie, Aaron D.

    1995-01-01

    Gravitational wave detectors capable of detecting broadband gravitational wave bursts with a strain amplitude sensitivity near 10^{-21} at frequencies around 100 Hz are currently under construction by the LIGO (Laser Interferometer Gravitational-wave Observatory) and VIRGO groups. One challenge facing these groups is how to detect the motion of the center of an inertial mass to a precision of 10^{-18} m when the mass consists of atoms each of which individually moves much more than that due to thermal energy. The uncertainty in the interferometer's measurement due to these thermal motions is called thermal noise. This thesis describes the thermal noise of the initial LIGO detectors. The thermal noise was analyzed by modelling the normal modes of the test mass suspension system as harmonic oscillators with dissipation and applying the fluctuation dissipation theorem. The dissipation of all modes which contribute significant thermal noise to the interferometer was measured and from these measurements the total thermal noise was estimated. The frequency dependence of the dissipation of the pendulum mode was characterized from measurements of the violin modes. A steel music wire suspension system was found to meet the goals of the initial LIGO detectors. A mathematical technique was developed which relates the energy in each vibrational mode to the motion of the mirror surface measured by the interferometer. Modes with acoustic wavelengths greater than the laser beam spot size can contribute significant thermal noise to the interferometer measurements. The dissipation of the test masses of LIGO's 40 -m interferometer at Caltech was investigated, and a technique for suspending and controlling the test masses which lowered the dissipation and met the thermal noise goals of the initial LIGO detector was developed. New test masses were installed in the 40-m interferometer resulting in improved noise performance. The implications of thermal noise to detecting gravitational waves from inspiralling compact binaries was investigated. An optimal pendulum length for detecting these signals was found. It was shown that the narrow band thermally excited violin resonances could be efficiently filtered from the broadband gravitational wave signal.

  6. Multi-link laser interferometer architecture for a next generation GRACE

    NASA Astrophysics Data System (ADS)

    Francis, Samuel Peter

    When GRACE Follow-On (GRACE-FO) launches, it will be the first time a laser interferometer has been used to measure displacement between spacecraft. In the future, interspacecraft laser interferometry will be used in LISA, a space-based gravitational wave detector, that requires the change in separation between three spacecraft to be measured with a resolution of 1 pm/rtHz. The sensitivity of an interspacecraft interferometer is potentially limited by spacecraft degrees-of-freedom, such as rotation, coupling into the interspacecraft displacement measurement. GRACE-FO and LISA therefore have strict requirements placed on the positioning and alignment of the interferometers during spacecraft integration. Decades of work has gone into adapting traditionally lab-based techniques for these space applications. As an example, GRACE-FO stops rotation of the two spacecraft from coupling into displacement using the triple mirror assembly. The triple mirror assembly is a precision optic, comprised of three mirrors, that function as a retroreflector. Provided the triple mirror assembly vertex coincides with the spacecraft centre of mass, any spacecraft rotation will asymmetrically lengthen and shorten the optical pathlengths of the incoming and outgoing beams, ensuring that the round trip pathlength between the spacecraft is unaffected. To achieve the required displacement sensitivity, the triple mirror assembly vertex must be positioned within 0.5 mm of the spacecraft centre of mass, making spacecraft integration challenging. In this thesis a new, all-fibre interferometer architecture is presented that aims to simplify the positioning and alignment of space-based interferometers. Using multiple interspacecraft link measurements and high-speed signal processing the interspacecraft displacement is synthesised in post-processing. The multi-link interferometry concept is similar to the triple mirror assembly's symmetric suppression of rotation, however, since the rotation-to-pathlength cancellation is performed in post-processing, the weighting of each interspacecraft link measurement can be optimised to completely cancel any rotation coupled error. Consequently, any uncertainty in the positioning of the multi-link interferometer during spacecraft integration can be corrected for in post-processing. The strict hardware integration requirements of current interferometers can therefore be relaxed, enabling a new class of simpler, cheaper missions. (Abstract shortened by ProQuest.).

  7. Unique construction makes interferometer insensitive to mechanical stresses

    NASA Technical Reports Server (NTRS)

    Beer, R.

    1965-01-01

    Michelson-type interferometer with a cat-eye reflector operates effectively even in the presence of random mechanical stresses. A cubical beamsplitter with dichroic surfaces permits operation in infrared or visible light.

  8. Improved double-pass michelson interferometer

    NASA Technical Reports Server (NTRS)

    Schindler, R. A.

    1978-01-01

    Interferometer design separates beams by offsetting centerlines of cat's-eye retroreflectors vertically rather than horizontally. Since beam splitter is insensitive to minimum-thickness condition in this geometry, relatively-low-cost, optically flat plate can be used.

  9. A reflective hydrogen sensor based on fiber ring laser with PCF modal interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Nan; Zhang, Aozhuo; Han, Bo; E, Siyu

    2018-06-01

    A new hydrogen sensor based on a fiber ring laser with a photonic crystal fiber (PCF) modal interferometer is proposed. The reflective PCF modal interferometer, which is fabricated by forming two collapse regions on the two ends of PCF with a fusion discharge technique, is utilized as the sensing head and filter. Particularly, the Pd/WO3 hydrogen-sensitive thin film is coated on the PCF for hydrogen sensing. The combination of the fiber ring laser and PCF modal interferometer gives the sensor a high signal-to-noise ratio and an improved detection limit. Experimental results show that the sensing system can achieve a hydrogen sensitivity of 1.28 nm/%, a high signal-to-noise ratio (∼30 dB), a narrow full width at half maximum (∼0.05 nm), and low detection limit of 0.0133%.

  10. Circular common-path point diffraction interferometer.

    PubMed

    Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan

    2012-10-01

    A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes.

  11. Spectroscopic Binary Star Studies with the Palomar Testbed Interferometer II

    NASA Astrophysics Data System (ADS)

    Boden, A. F.; Lane, B. F.; Creech-Eakman, M.; Queloz, D.; PTI Collaboration

    1999-12-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interferometer located at Palomar Observatory. Following our previous work on resolving spectroscopic binary stars with the Palomar Testbed Interferometer (PTI), we will present a number of new visual and physical orbit determinations derived from integrated reductions of PTI visibility and archival radial velocity data. The six systems for which we will present new orbit models are: 12 Boo (HD 123999), 75 Cnc (HD 78418), 47 And (HD 8374), HD 205539, BY Draconis (HDE 234677), and 3 Boo (HD 120064). Most of these systems are double-lined binary systems (SB2), and integrated astrometric/radial velocity orbit modeling provides precise fundamental parameters (mass, luminosity) and system distance determinations comparable with Hipparcos precisions. The work described in this paper was performed under contract with the National Aeronautics and Space Administration.

  12. Dynamic displacement monitoring of long-span bridges with a microwave radar interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Bochen; Ding, Xiaoli; Werner, Charles; Tan, Kai; Zhang, Bin; Jiang, Mi; Zhao, Jingwen; Xu, Youlin

    2018-04-01

    Structural health monitoring of long-span bridges is a critical process in ensuring the operational safety of the structures. In this paper, we present experimental results of monitoring the displacements of two long-span bridges in Hong Kong Ting Kau Bridge (TKB) and Tsing Ma Bridge (TMB) with a terrestrial microwave radar interferometer named the GAMMA Portable Radar Interferometer (GPRI). A technique for fusing the measurements from two receiving antennas of the radar instrument is proposed. In addition, a two-step phase unwrapping approach is also tested. The results reveal the bridge dynamic responses under different loading conditions, including winds, vehicle traffic, and passing trains. The results also show that the terrestrial microwave radar interferometer can be used to monitor the dynamics of long-span bridges with unprecedented spatial and temporal resolutions.

  13. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements.

    PubMed

    Yan, Hao; Duan, Hui-Zong; Li, Lin-Tao; Liang, Yu-Rong; Luo, Jun; Yeh, Hsien-Chi

    2015-12-01

    Picometer laser interferometry is an essential tool for ultra-precision measurements in frontier scientific research and advanced manufacturing. In this paper, we present a dual-heterodyne laser interferometer for simultaneously measuring linear and angular displacements with resolutions of picometer and nanoradian, respectively. The phase measurement method is based on cross-correlation analysis and realized by a PXI-bus data acquisition system. By implementing a dual-heterodyne interferometer with a highly symmetric optical configuration, low frequency noises caused by the environmental fluctuations can be suppressed to very low levels via common-mode noise rejection. Experimental results for the dual-heterodyne interferometer configuration presented demonstrate that the noise levels of the linear and angular displacement measurements are approximately 1 pm/Hz(1/2) and 0.5 nrad/Hz(1/2) at 1 Hz.

  14. Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Niu, Donghai; Wang, Xibin; Sun, Shiqi; Jiang, Minghui; Xu, Qiang; Wang, Fei; Wu, Yuanda; Zhang, Daming

    2018-04-01

    A highly sensitive waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer was designed and experimentally demonstrated. The interferometer is based on the polymer/silica hybrid waveguide structure, and Norland Optical Adhesive 73 (NOA 73) was employed as the waveguide core to enhance the temperature sensitivity. The influence of the different length differences between the two interferometer arms on the sensitivity of the sensor was systemically studied. It is shown that the maximum temperature sensitivity of -431 pm °C-1 can be obtained in the range of 25 °C-75 °C, while the length difference is 92 μm. Moreover, the temperature sensitivity contributions from different core materials were also investigated experimentally. It is shown that the waveguide material and microstructure of the device have significant influences on the sensitivity of the waveguide temperature sensor.

  15. Velocity measurement using frequency domain interferometer and chirped pulse laser

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2017-02-01

    An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.

  16. Highly versatile in-reflection photonic crystal fibre interferometer

    NASA Astrophysics Data System (ADS)

    Jha, Rajan; Villatoro, Joel; Kreuzer, Mark; Finazzi, Vittoria; Pruneri, Valerio

    2009-10-01

    We report a simple and highly versatile photonic crystal fiber (PCF) interferometer that operates in reflection mode. The device consists of a short section of PCF fusion spliced at the distal end of a standard single mode fiber. The air-holes of the PCF are intentionally collapsed over a microscopic region around the splice. The collapsed region broadens the propagating mode because of diffraction. This allows the coupling and recombination of two PCF modes. Depending on the PCF structure two core modes or a core and a cladding mode can be excited. In either case the devices exhibit sinusoidal interference patterns with fringe spacing depending on the PCF length. The interferometers are highly stable over time and can operate at high temperatures with minimal degradation. The interferometers are suitable for highresolution sensing of strain, refractive index (biosensing), gases, volatile organic compounds, etc.

  17. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review

    PubMed Central

    Islam, Md. Rajibul; Ali, Muhammad Mahmood; Lai, Man-Hong; Lim, Kok-Sing; Ahmad, Harith

    2014-01-01

    Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed. PMID:24763250

  18. Study of Einstein-Podolsky-Rosen state for space-time variables in a two photon interference experiment

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Sergienko, A. V.; Rubin, M. H.

    1993-01-01

    A pair of correlated photons generated from parametric down conversion was sent to two independent Michelson interferometers. Second order interference was studied by means of a coincidence measurement between the outputs of two interferometers. The reported experiment and analysis studied this second order interference phenomena from the point of view of Einstein-Podolsky-Rosen paradox. The experiment was done in two steps. The first step of the experiment used 50 psec and 3 nsec coincidence time windows simultaneously. The 50 psec window was able to distinguish a 1.5 cm optical path difference in the interferometers. The interference visibility was measured to be 38 percent and 21 percent for the 50 psec time window and 22 percent and 7 percent for the 3 nsec time window, when the optical path difference of the interferometers were 2 cm and 4 cm, respectively. By comparing the visibilities between these two windows, the experiment showed the non-classical effect which resulted from an E.P.R. state. The second step of the experiment used a 20 psec coincidence time window, which was able to distinguish a 6 mm optical path difference in the interferometers. The interference visibilities were measured to be 59 percent for an optical path difference of 7 mm. This is the first observation of visibility greater than 50 percent for a two interferometer E.P.R. experiment which demonstrates nonclassical correlation of space-time variables.

  19. Compensation of non-ideal beam splitter polarization distortion effect in Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Yeng-Cheng; Lo, Yu-Lung; Liao, Chia-Chi

    2016-02-01

    A composite optical structure consisting of two quarter-wave plates and a single half-wave plate is proposed for compensating for the polarization distortion induced by a non-ideal beam splitter in a Michelson interferometer. In the proposed approach, the optimal orientations of the optical components within the polarization compensator are determined using a genetic algorithm (GA) such that the beam splitter can be treated as a free-space medium and modeled using a unit Mueller matrix accordingly. Two implementations of the proposed polarization controller are presented. In the first case, the compensator is placed in the output arm of Michelson interferometer such that the state of polarization of the interfered output light is equal to that of the input light. However, in this configuration, the polarization effects induced by the beam splitter in the two arms of the interferometer structure cannot be separately addressed. Consequently, in the second case, compensator structures are placed in the Michelson interferometer for compensation on both the scanning and reference beams. The practical feasibility of the proposed approach is introduced by considering a Mueller polarization-sensitive (PS) optical coherence tomography (OCT) structure with three polarization controllers in the input, reference and sample arms, respectively. In general, the results presented in this study show that the proposed polarization controller provides an effective and experimentally-straightforward means of compensating for the polarization distortion effects induced by the non-ideal beam splitters in Michelson interferometers and Mueller PS-OCT structures.

  20. Electromagnetic modelling of a space-borne far-infrared interferometer

    NASA Astrophysics Data System (ADS)

    Donohoe, Anthony; O'Sullivan, Créidhe; Murphy, J. Anthony; Bracken, Colm; Savini, Giorgio; Pascale, Enzo; Ade, Peter; Sudiwala, Rashmi; Hornsby, Amber

    2016-02-01

    In this paper I will describe work done as part of an EU-funded project `Far-infrared space interferometer critical assessment' (FISICA). The aim of the project is to investigate science objectives and technology development required for the next generation THz space interferometer. The THz/FIR is precisely the spectral region where most of the energy from stars, exo-planetary systems and galaxy clusters deep in space is emitted. The atmosphere is almost completely opaque in the wave-band of interest so any observation that requires high quality data must be performed with a space-born instrument. A space-borne far infrared interferometer will be able to answer a variety of crucial astrophysical questions such as how do planets and stars form, what is the energy engine of most galaxies and how common are the molecule building blocks of life. The FISICA team have proposed a novel instrument based on a double Fourier interferometer that is designed to resolve the light from an extended scene, spectrally and spatially. A laboratory prototype spectral-spatial interferometer has been constructed to demonstrate the feasibility of the double-Fourier technique at far infrared wavelengths (0.15 - 1 THz). This demonstrator is being used to investigate and validate important design features and data-processing methods for future instruments. Using electromagnetic modelling techniques several issues related to its operation at long baselines and wavelengths, such as diffraction, have been investigated. These are critical to the design of the concept instrument and the laboratory testbed.

  1. Near-Infrared Keck Interferometer and IOTA Closure Phase Observations of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Rajagopal, J.; Wallace, D.; Barry, R.; Richardson, L. J.; Traub, W.; Danchi, W. C.

    We present first results from observations of a small sample of IR-bright Wolf-Rayet stars with the Keck Interferometer in the near-infrared, and with the IONIC beam three-telescope beam combiner at the Infrared and Optical Telescope Array (IOTA) observatory. The former results were obtained as part of shared-risk observations in commissioning the Keck Interferometer and form a subset of a high-resolution study of dust around Wolf-Rayet stars using multiple interferometers in progress in our group. The latter results are the first closure phase observations of these stars in the near-infrared in a separated telescope interferometer. Earlier aperture-masking observations with the Keck-I telescope provide strong evidence that dust-formation in late-type WC stars are a result of wind-wind collision in short-period binaries.Our program with the Keck interferometer seeks to further examine this paradigm at much higher resolution. We have spatially resolved the binary in the prototypical dusty WC type star WR 140. WR 137, another episodic dust-producing star, has been partially resolved for the first time, providing the first direct clue to its possible binary nature.We also include WN stars in our sample to investigate circumstellar dust in this other main sub-type of WRs. We have been unable to resolve any of these, indicating a lack of extended dust.Complementary observations using the MIDI instrument on the VLTI in the mid-infrared are presented in another contribution to this workshop.

  2. A heterodyne interferometer for high-performance industrial metrology

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2008-11-01

    We developed a compact, fiber-coupled heterodyne interferometer for translation and tilt metrology. Noise levels below 5 pm/√Hz in translation and below 10 nrad/√Hz in tilt measurement, both for frequencies above 10-2 Hz, were demonstrated in lab experiments. While this setup was developed with respect to the LISA (Laser Interferometer Space Antenna) space mission current activities focus on its adaptation for dimensional characterization of ultra-stable materials and industrial metrology. The interferometer is used in high-accuracy dilatometry measuring the coefficient of thermal expansion (CTE) of dimensionally highly stable materials such as carbon-fiber reinforced plastic (CFRP) and Zerodur. The facility offers the possibility to measure the CTE with an accuracy better 10-8/K. We also develop a very compact and quasi-monolithic sensor head utilizing ultra-low expansion glass material which is the basis for a future space-qualifiable interferometer setup and serves as a prototype for a sensor head used in industrial environment. For high resolution 3D profilometry and surface property measurements (i. e. roughness, evenness and roundness), a low-noise (<=1nm/√ Hz) actuator will be implemented which enables a scan of the measurement beam over the surface under investigation.

  3. Displacement measurement with over-determined interferometer

    NASA Astrophysics Data System (ADS)

    Lazar, Josef; Holá, Miroslava; Hrabina, Jan; Buchta, Zdeněk.; Číp, Ondřej; Oulehla, Jindřich

    2012-01-01

    We present a concept combining traditional displacement incremental interferometry with a tracking refractometer following the fluctuations of the refractive index of air. This concept is represented by an interferometric system of three Michelson-type interferometers where two are arranged in a counter-measuring configuration and the third one is set to measure the changes of the fixed length, here the measuring range of the overall displacement. In this configuration the two counter-measuring interferometers have identical beam paths with proportional parts of the overall one. The fixed interferometer with its geometrical length of the measuring beam linked to a mechanical reference made of a high thermal-stability material (Zerodur) operates as a tracking refractometer monitoring the atmospheric refractive index directly in the beam path of the displacement measuring interferometers. This principle has been demonstrated experimentally through a set of measurements in a temperature controlled environment under slowly changing refractive index of air in comparison with its indirect measurement through Edlen formula. With locking of the laser optical frequency to fixed value of the overall optical length the concept can operate as an interferometric system with compensation of the fluctuations of the refractive index of air.

  4. High accuracy step gauge interferometer

    NASA Astrophysics Data System (ADS)

    Byman, V.; Jaakkola, T.; Palosuo, I.; Lassila, A.

    2018-05-01

    Step gauges are convenient transfer standards for the calibration of coordinate measuring machines. A novel interferometer for step gauge calibrations implemented at VTT MIKES is described. The four-pass interferometer follows Abbe’s principle and measures the position of the inductive probe attached to a measuring head. The measuring head of the instrument is connected to a balanced boom above the carriage by a piezo translation stage. A key part of the measuring head is an invar structure on which the inductive probe and the corner cubes of the measuring arm of the interferometer are attached. The invar structure can be elevated so that the probe is raised without breaking the laser beam. During probing, the bending of the probe and the interferometer readings are recorded and the measurement face position is extrapolated to zero force. The measurement process is fully automated and the face positions of the steps can be measured up to a length of 2 m. Ambient conditions are measured continuously and the refractive index of air is compensated for. Before measurements the step gauge is aligned with an integrated 2D coordinate measuring system. The expanded uncertainty of step gauge calibration is U=\\sqrt{{{(64 nm)}2}+{{(88× {{10}-9}L)}2}} .

  5. Development and implementation of a portable grating interferometer system as a standard tool for testing optics at the Advanced Photon Source beamline 1-BM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assoufid, Lahsen; Shi, Xianbo; Marathe, Shashidhara

    We developed a portable X-ray grating interferometer setup as a standard tool for testing optics at the Advanced Photon Source (APS) beamline 1-BM. The interferometer can be operated in phase-stepping, Moiré, or single-grating harmonic imaging mode with 1-D or 2-D gratings. All of the interferometer motions are motorized; hence, it is much easier and quicker to switch between the different modes of operation. A novel aspect of this new instrument is its designed portability. While the setup is designed to be primarily used as a standard tool for testing optics at 1-BM, it could be potentially deployed at other APSmore » beamlines for beam coherence and wavefront characterization or imaging. The design of the interferometer system is described in detail and coherence measurements obtained at the APS 34-ID-E beamline are presented. The coherence was probed in two directions using a 2-D checkerboard, a linear, and a circular grating at X-ray energies of 8 keV, 11 keV, and 18 keV.« less

  6. Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing

    2018-06-01

    A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.

  7. Frequency-tuned microwave photon counter based on a superconductive quantum interferometer

    NASA Astrophysics Data System (ADS)

    Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.

    2018-03-01

    Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.

  8. Simulation of the fixed optical path difference of near infrared wind imaging interferometer

    NASA Astrophysics Data System (ADS)

    Rong, Piao; Zhang, Chunmin; Yan, Tingyu; Liu, Dongdong; Li, Yanfen

    2017-02-01

    As an important part of the earth, atmosphere plays a vital role in filtering the solar radiation, adjusting the temperature and organizing the water circulation and keeping human survival. The passive atmospheric wind measurement is based on the imaging interferometer technology and Doppler effect of electromagnetic wave. By using the wind imaging interferometer to get four interferograms of airglow emission lines, the atmospheric wind velocity, temperature, pressure and emission rate can be derived. Exploring the multi-functional and integrated innovation of detecting wind temperature, wind velocity and trace gas has become a research focus in the field. In the present paper, the impact factors of the fixed optical path difference(OPD) of near infrared wind imaging interferometer(NIWII) are analyzed and the optimum value of the fixed optical path difference is simulated, yielding the optimal results of the fixed optical path difference is 20 cm in near infrared wave band (the O2(a1Δg) airglow emission at 1.27 microns). This study aims at providing theoretical basis and technical support for the detection of stratosphere near infrared wind field and giving guidance for the design and development of near infrared wind imaging interferometer.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.H.; Li, L.; Zheng, L.

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding amore » variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.« less

  10. Current progress on TPFI nulling architectures at Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Gappinger, Robert O.; Wallace, J. Kent; Bartos, Randall D.; Macdonald, Daniel R.; Brown, Kenneth A.

    2005-01-01

    Infrared interferometric nulling is a promising technology for exoplanet detection. Nulling research for the Terrestrial Planet Finder Interferometer has been exploring a variety of interferometer architectures at the Jet Propulsion Laboratory (JPL).

  11. First Measurements of 15N Fractionation in N2H+ toward High-mass Star-forming Cores

    NASA Astrophysics Data System (ADS)

    Fontani, F.; Caselli, P.; Palau, A.; Bizzocchi, L.; Ceccarelli, C.

    2015-08-01

    We report on the first measurements of the isotopic ratio 14N/15N in N2H+ toward a statistically significant sample of high-mass star-forming cores. The sources belong to the three main evolutionary categories of the high-mass star formation process: high-mass starless cores, high-mass protostellar objects, and ultracompact H ii regions. Simultaneous measurements of the 14N/15N ratio in CN have been made. The 14N/15N ratios derived from N2H+ show a large spread (from ∼180 up to ∼1300), while those derived from CN are in between the value measured in the terrestrial atmosphere (∼270) and that of the proto-solar nebula (∼440) for the large majority of the sources within the errors. However, this different spread might be due to the fact that the sources detected in the N2H+ isotopologues are more than those detected in the CN ones. The 14N/15N ratio does not change significantly with the source evolutionary stage, which indicates that time seems to be irrelevant for the fractionation of nitrogen. We also find a possible anticorrelation between the 14N/15N (as derived from N2H+) and the H/D isotopic ratios. This suggests that 15N enrichment could not be linked to the parameters that cause D enrichment, in agreement with the prediction by recent chemical models. These models, however, are not able to reproduce the observed large spread in 14N/15N, pointing out that some important routes of nitrogen fractionation could be still missing in the models. Based on observations carried out with the IRAM-30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  12. Shedding light on the formation of the pre-biotic molecule formamide with ASAI

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Jaber, Ali A.; Mendoza, E.; Lefloch, B.; Ceccarelli, C.; Vastel, C.; Bachiller, R.; Cernicharo, J.; Codella, C.; Kahane, C.; Kama, M.; Tafalla, M.

    2015-05-01

    Formamide (NH2CHO) has been proposed as a pre-biotic precursor with a key role in the emergence of life on Earth. While this molecule has been observed in space, most of its detections correspond to high-mass star-forming regions. Motivated by this lack of investigation in the low-mass regime, we searched for formamide, as well as isocyanic acid (HNCO), in 10 low- and intermediate-mass pre-stellar and protostellar objects. The present work is part of the IRAM Large Programme ASAI (Astrochemical Surveys At IRAM), which makes use of unbiased broad-band spectral surveys at millimetre wavelengths. We detected HNCO in all the sources and NH2CHO in five of them. We derived their abundances and analysed them together with those reported in the literature for high-mass sources. For those sources with formamide detection, we found a tight and almost linear correlation between HNCO and NH2CHO abundances, with their ratio being roughly constant - between 3 and 10 - across 6 orders of magnitude in luminosity. This suggests the two species are chemically related. The sources without formamide detection, which are also the coldest and devoid of hot corinos, fall well off the correlation, displaying a much larger amount of HNCO relative to NH2CHO. Our results suggest that, while HNCO can be formed in the gas-phase during the cold stages of star formation, NH2CHO forms most efficiently on the mantles of dust grains at these temperatures, where it remains frozen until the temperature rises enough to sublimate the icy grain mantles. We propose hydrogenation of HNCO as a likely formation route leading to NH2CHO.

  13. Discovery of the elusive radical NCO and confirmation of H2NCO+ in space

    NASA Astrophysics Data System (ADS)

    Marcelino, N.; Agúndez, M.; Cernicharo, J.; Roueff, E.; Tafalla, M.

    2018-05-01

    The isocyanate radical (NCO) is the simplest molecule containing the backbone of the peptide bond, C(=O)-N. This bond has a prebiotic interest since it links two amino acids to form large chains of proteins. It is also present in some organic molecules observed in space such as HNCO, NH2CHO, and CH3NCO. In this letter, we report the first detection in space of NCO towards the dense core L483. We also report the identification of the ion H2NCO+, which definitively confirms its presence in space, and observations of HNCO, HOCN, and HCNO in the same source. For NCO, we derive a column density of 2.2 × 1012 cm-2, which means that it is only 5 times less abundant than HNCO. We find that H2NCO+, HOCN, and HCNO have abundances relative to HNCO of 1/400, 1/80, and 1/160, respectively. Both NCO and H2NCO+ are involved in the production of HNCO and several of its isomers. We have updated our previous chemical models involving NCO and the production of the CHNO isomers. Taking into account the uncertainties in the model, the observed abundances are reproduced relatively well. Indeed, the detection of NCO and H2NCO+ in L483 supports the chemical pathways to the formation of the detected CHNO isomers. Sensitive observations of NCO in sources in which other molecules containing the C(=O)-N subunit have been detected could help elucidate its role in prebiotic chemistry in space. Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  14. Fibers in the NGC 1333 proto-cluster

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Tafalla, M.; Alves, J.

    2017-10-01

    Are the initial conditions for clustered star formation the same as for non-clustered star formation? To investigate the initial gas properties in young proto-clusters we carried out a comprehensive and high-sensitivity study of the internal structure, density, temperature, and kinematics of the dense gas content of the NGC 1333 region in Perseus, one of the nearest and best studied embedded clusters. The analysis of the gas velocities in the position-position-velocity space reveals an intricate underlying gas organization both in space and velocity. We identified a total of 14 velocity-coherent, (tran-)sonic structures within NGC 1333, with similar physical and kinematic properties than those quiescent, star-forming (aka fertile) fibers previously identified in low-mass star-forming clouds. These fibers are arranged in a complex spatial network, build-up the observed total column density, and contain the dense cores and protostars in this cloud. Our results demonstrate that the presence of fibers is not restricted to low-mass clouds but can be extended to regions of increasing mass and complexity. We propose that the observational dichotomy between clustered and non-clustered star-forming regions might be naturally explained by the distinct spatial density of fertile fibers in these environments. Based on observations carried out under project number 169-11 with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.Molecular line observations (spectral cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A123

  15. A search for cyanopolyynes in L1157-B1

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Lefloch, B.; Ceccarelli, C.; Kahane, C.; Jaber, A. A.; Podio, L.; Benedettini, M.; Codella, C.; Viti, S.; Jimenez-Serra, I.; Lepine, J. R. D.; Boechat-Roberty, H. M.; Bachiller, R.

    2018-04-01

    We present here a systematic search for cyanopolyynes in the shock region L1157-B1 and its associated protostar L1157-mm in the framework of the Large Program`Astrochemical Surveys At IRAM' (ASAI), dedicated to chemical surveys of solar-type star-forming regions with the IRAM 30-m telescope. Observations of the millimeter windows between 72 and 272 GHz permitted the detection of HC3N and its 13C isotopologues, and HC5N (for the first time in a protostellar shock region). In the shock, the analysis of the line profiles shows that the emission arises from the outflow cavities associated with L1157-B1 and L1157-B2. Molecular abundances and excitation conditions were obtained from the analysis of the Spectral Line Energy Distributions under the assumption of Local Thermodynamical Equilibrium or using a radiative transfer code in the Large Velocity Gradient approximation. Towards L1157 mm, the HC3N emission arises from the cold envelope (T_rot=10K) and a higher-excitation region (Trot = 31K) of smaller extent around the protostar. We did not find any evidence of 13C or D fractionation enrichment towards L1157-B1. We obtain a relative abundance ratio HC3N/HC5N of 3.3 in the shocked gas. We find an increase by a factor of 30 of the HC3N abundance between the envelope of L1157-mm and the shock region itself. Altogether, these results are consistent with a scenario in which the bulk of HC3N was produced by means of gas phase reactions in the passage of the shock. This scenario is supported by the predictions of a parametric shock code coupled with the chemical model UCL_CHEM.

  16. Expression of adrenomedullin 2/intermedin in human adrenal tumors and attached non-neoplastic adrenal tissues.

    PubMed

    Morimoto, Ryo; Satoh, Fumitoshi; Murakami, Osamu; Hirose, Takuo; Totsune, Kazuhito; Imai, Yutaka; Arai, Yoichi; Suzuki, Takashi; Sasano, Hironobu; Ito, Sadayoshi; Takahashi, Kazuhiro

    2008-07-01

    Adrenomedullin 2/intermedin (AM2/IMD) is a new member of calcitonin/calcitonin gene-related peptide family. AM is expressed in various tumors including adrenocortical tumors and modulates tumor growth. The AM2/IMD expression has not been studied, however, in adrenal tumors. The expression of AM2/IMD and AM was therefore studied in human adrenal tumors and attached non-neoplastic adrenal tissues by immunocytochemistry (ICC). Immunoreactive (IR)-AM2/IMD was measured by RIA. Furthermore, the expression of AM2/IMD and its receptor components, calcitonin receptor-like receptor (CRLR), and receptor activity-modifying proteins (RAMPs) 1, 2, and 3 mRNA in these tissues was studied by reverse transcription PCR (RT-PCR). ICC showed that AM2/IMD and AM immunoreactivities were localized in adrenocortical tumors and pheochromocytomas. AM2/IMD and AM immunoreactivities were detected in medulla of attached non-neoplastic tissues, while the degree of immunoreactivity for AM2/IMD and AM in cortices of attached adrenals was relatively weak or undetectable. RIA detected IR-AM2/IMD in adrenal tumors (0.414+/-0.12 to 0.786+/-0.27 pmol/g wet weight, mean+/-S.E.M.) and attached adrenal tissues (0.397+/-0.052 pmol/g wet weight). Reverse-phase high-performance liquid chromatography showed one broad peak eluted in the similar position to synthetic AM2/IMD with several minor peaks. RT-PCR showed expression of AM2/IMD, CRLR, and RAMP1, RAMP2, and RAMP3 mRNA in tissues of adrenal tumors and attached adrenal glands. In conclusion, AM2/IMD is expressed in human adrenal tumors and attached non-neoplastic adrenal tissues and may play (patho-)physiological roles in normal and neoplastic adrenals as an autocrine/paracrine regulator.

  17. Similar complex kinematics within two massive, filamentary infrared dark clouds

    NASA Astrophysics Data System (ADS)

    Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Jiménez-Serra, I.; Tan, J. C.; Fontani, F.; Pon, A.; Ragan, S.

    2018-04-01

    Infrared dark clouds (IRDCs) are thought to be potential hosts of the elusive early phases of high-mass star formation. Here, we conduct an in-depth kinematic analysis of one such IRDC, G034.43+00.24 (Cloud F), using high sensitivity and high spectral resolution IRAM-30m N2H+ (1-0) and C18O (1-0) observations. To disentangle the complex velocity structure within this cloud, we use Gaussian decomposition and hierarchical clustering algorithms. We find that four distinct coherent velocity components are present within Cloud F. The properties of these components are compared to those found in a similar IRDC, G035.39-00.33 (Cloud H). We find that the components in both clouds have high densities (inferred by their identification in N2H+), trans-to-supersonic non-thermal velocity dispersions with Mach numbers of ˜1.5-4, a separation in velocity of ˜3 km s-1, and a mean red-shift of ˜0.3 km s-1 between the N2H+ (dense gas) and C18O emission (envelope gas). The latter of these could suggest that these clouds share a common formation scenario. We investigate the kinematics of the larger-scale Cloud F structures, using lower-density-tracing 13CO(1-0) observations. A good correspondence is found between the components identified in the IRAM-30m observations and the most prominent component in the 13CO data. We find that the IRDC Cloud F is only a small part of a much larger structure, which appears to be an inter-arm filament of the Milky Way.

  18. VizieR Online Data Catalog: ALLSMOG final data release. A new APEX CO survey (Cicone+, 2017)

    NASA Astrophysics Data System (ADS)

    Cicone, C.; Bothwell, M.; Wagg, J.; Moller, P.; De Breuck, C.; Zhang, Z.; Martin, S.; Maiolino, R.; Severgnini, P.; Aravena, M.; Belfiore, F.; Espada, D.; Flutsch, A.; Impellizzeri, V.; Peng, Y.; Raj, M. A.; Ramirez-Olivencia, N.; Riechers, D.; Schawinski, K.

    2017-10-01

    ALLSMOG is an ESO Large Programme for the Atacama Pathfinder EXperiment (APEX, project no.: E-192.A-0359, principal investigator (PI): J. Wagg) targeting the CO(2-1) emission line (rest frequency, νCO(2-1)=230.538GHz) in 88 local, low-M* star-forming galaxies. The project was initially allocated 300h of ESO observing time over the course of four semesters, corresponding to 75h per semester throughout periods P92-P95 (October 2013 - September 2015). However, during P94 and P95 there was a slowdown in ALLSMOG observations, mainly due the installation of the visiting instrument Supercam in combination with better-than-average weather conditions - causing other programmes requiring more stringent precipitable water vapour (PWV) constraints to be prioritised. Because of the resulting ~50% time loss for ALLSMOG during two semesters, the ESO observing programmes committee (OPC) granted a one-semester extension of the project, hence allowing us to complete the survey in P96 (March 2016). The final total APEX observing time dedicated to ALLSMOG amounts to 327h, including the overheads due to setup and calibration but not accounting for possible additional time lost because of technical issues. In 2014 a northern component of the ALLSMOG survey was approved at the IRAM 30m telescope (project code: 188-14, PI: S. Martin), aimed at observing the CO(1-0) (rest frequency, νCO(1-0)=115.271GHz) and CO(2-1) emission lines in a sample of nine additional galaxies characterised by stellar masses, M*<109Mȯ. A total of 22h of observations were obtained with the IRAM 30m during two observing runs in November 2014 and May 2015. (5 data files).

  19. Submillimeter Observations of CLASH 2882 and the Evolution of Dust in this Galaxy

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G; Kovacs, Attila; Decarli, Roberto; Egami, Eiichi; Michalowski, Michal J.; Rawle, Timothy D.; Toft, Sune; Walter, Fabian

    2015-01-01

    Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882,12 source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6 +2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is 54/mu/Solar Mass/yr, and its dust mass is about 5 × 10(exp 7)/mu Solar Mass, where mu is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium.

  20. A study of the C3H2 isomers and isotopologues: first interstellar detection of HDCCC

    NASA Astrophysics Data System (ADS)

    Spezzano, S.; Gupta, H.; Brünken, S.; Gottlieb, C. A.; Caselli, P.; Menten, K. M.; Müller, H. S. P.; Bizzocchi, L.; Schilke, P.; McCarthy, M. C.; Schlemmer, S.

    2016-02-01

    The partially deuterated linear isomer HDCCC of the ubiquitous cyclic carbene (c-C3H2) was observed in the starless cores TMC-1C and L1544 at 96.9 GHz, and a confirming line was observed in TMC-1 at 19.38 GHz. To aid the identification in these narrow line sources, four centimetre-wave rotational transitions (two in the previously reported Ka = 0 ladder and two new ones in the Ka = 1 ladder) and 23 transitions in the millimetre band between 96 and 272 GHz were measured in high-resolution laboratory spectra. Ten spectroscopic constants in a standard asymmetric top Hamiltonian allow the main transitions of astronomical interest in the Ka ≤ 3 rotational ladders to be calculated to within 0.1 km s-1 in radial velocity up to 400 GHz. Conclusive identification of the two astronomical lines of HDCCC was provided by the VLSR, which is the same as for the normal isotopic species (H2CCC) in the three narrow line sources. In these sources, deuterium fractionation in singly substituted H2CCC (HDCCC/H2CCC ~4-19%) is comparable to that in c-C3H2 (c-C3H2/c-C3HD ~5-17%) and similarly in doubly deuterated c-C3H2 (c-C3D2/c-C3HD ~3-17%), implying that the efficiency of the deuteration processes in the H2CCC and c-C3H2 isomers are comparable in dark clouds. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  1. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  2. Sensitivity of an imaging space infrared interferometer.

    PubMed

    Nakajima, T; Matsuhara, H

    2001-02-01

    We study the sensitivities of space infrared interferometers. We formulate the signal-to-noise ratios of infrared images obtained by aperture synthesis in the presence of source shot noise, background shot noise, and detector read noise. We consider the case in which n beams are combined pairwise at n(n-1)/2 detectors and the case in which all the n beams are combined at a single detector. We apply the results to future missions, Terrestrial Planet Finder and Darwin. We also discuss the potential of a far-infrared interferometer for a deep galaxy survey.

  3. Forward scattering in two-beam laser interferometry

    NASA Astrophysics Data System (ADS)

    Mana, G.; Massa, E.; Sasso, C. P.

    2018-04-01

    A fractional error as large as 25 pm mm-1 at the zero optical-path difference has been observed in an optical interferometer measuring the displacement of an x-ray interferometer used to determine the lattice parameter of silicon. Detailed investigations have brought to light that the error was caused by light forward-scattered from the beam feeding the interferometer. This paper reports on the impact of forward-scattered light on the accuracy of two-beam optical interferometry applied to length metrology, and supplies a model capable of explaining the observed error.

  4. The ATS-F interferometer - A precision wide field-of-view attitude sensor. [solid state system design

    NASA Technical Reports Server (NTRS)

    Teichman, M. A.; Marek, F. L.; Browning, J. J.; Parr, A. K.

    1974-01-01

    An RF phase interferometer has been integrated into the ATS-F spacecraft attitude control system. Laboratory measurements indicate that the interferometer is capable of determining spacecraft attitude in pitch and roll to an accuracy of 0.18 deg over a field-of-view of plus or minus 12.5 deg about the spacecraft normal axis with an angular resolution of 0.004 deg. The system is completely solid state, weighs 17 pounds, and consumes 12.5 W of DC power.

  5. Atom Interferometry in a Warm Vapor

    DOE PAGES

    Biedermann, G. W.; McGuinness, H. J.; Rakholia, A. V.; ...

    2017-04-17

    Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.

  6. Wavelength-division and spatial multiplexing using tandem interferometers for Bragg grating sensor networks

    NASA Astrophysics Data System (ADS)

    Kalli, K.; Brady, G. P.; Webb, D. J.; Jackson, D. A.; Zhang, L.; Bennion, I.

    1995-12-01

    We present a new method for the interrogation of large arrays of Bragg grating sensors. Eight gratings operating between the wavelengths of 1533 and 1555 nm have been demultiplexed. An unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source provides a high-phase-resolution output for each sensor, the outputs of which are sequentially selected in wavelength by a tunable Fabry-Perot interferometer. The minimum detectable strain measured was 90 n 3 / \\radical Hz \\end-radical at 7 Hz for a wavelength of 1535 nm.

  7. Noncontact photoacoustic imaging by using a modified optical-fiber Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Lu, Jiao; Gao, Yingzhe; Ma, Zhenhe; Wang, Bo; Wang, Yi

    2016-03-01

    We demonstrate a noncontact photoacoustic imaging (PAI) system in which an optical interferometer is used for ultrasound detection. The system is based on a modified optical-fiber Michelson interferometer that measures the surface displacement caused by photoacoustic pressure. A synchronization method is utilized to keep its high sensitivity to reduce the influence of ambient vibrations. The system is experimentally verified by imaging of a phantom. The experimental results indicate that the proposed system can be used for noncontact PAI with high resolution and high bandwidth.

  8. Self-referenced interferometer for cylindrical surfaces.

    PubMed

    Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef

    2015-11-20

    We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm.

  9. Fast and low power Michelson interferometer thermo-optical switch on SOI.

    PubMed

    Song, Junfeng; Fang, Q; Tao, S H; Liow, T Y; Yu, M B; Lo, G Q; Kwong, D L

    2008-09-29

    We designed and fabricated silicon-on-insulator based Michelson interferometer (MI) thermo-optical switches with deep etched trenches for heat-isolation. Switch power was reduced approximately 20% for the switch with deep etched trenches, and the MI saved approximately 50% power than that of the Mach-Zehnder interferometer. 10.6 mW switch power, approximately 42 micros switch time for the MI with deep trenches, 13.14 mW switch power and approximately 34 micros switch time for the MI without deep trenches were achieved.

  10. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Sun, Haohua; Kou, Bingquan; Xi, Yan; Qi, Juncheng; Sun, Jianqi; Mohr, Jürgen; Börner, Martin; Zhao, Jun; Xu, Lisa X.; Xiao, Tiqiao; Wang, Yujie

    2012-07-01

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  11. Collinear interferometer with variable delay for carrier-envelope offset frequency measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlowska, Monika; Ozimek, Filip; Fita, Piotr

    2009-08-15

    We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.

  12. Observations of Young Stellar Objects with Infrared Interferometry: Recent Results from PTI, KI and IOTA

    NASA Astrophysics Data System (ADS)

    Akeson, Rachel

    Young stellar objects have been one of the favorite targets of infrared interferometers for many years. In this contribution I will briefly review some of the first results and their contributions to the field and then describe some of the recent results from the Keck Interferometer (KI), the Palomar Testbed Interferometer (PTI) and the Infrared-Optical Telescope Array (IOTA). This conference also saw many exciting new results from the VLTI at both near and mid-infrared wavelengths that are covered by other contributions.

  13. Collinear interferometer with variable delay for carrier-envelope offset frequency measurement

    NASA Astrophysics Data System (ADS)

    Pawłowska, Monika; Ozimek, Filip; Fita, Piotr; Radzewicz, Czesław

    2009-08-01

    We demonstrate a novel scheme for measuring the carrier-envelope offset frequency in a femtosecond optical frequency comb. Our method is based on a common-path interferometer with a calcite Babinet-Soleil compensator employed to control the delay between the two interfering beams of pulses. The large delay range (up to 8 ps) of our device is sufficient for systems that rely on spectral broadening in microstructured fibers. We show an experimental proof that the stability of a common-path arrangement is superior to that of the standard interferometers.

  14. Reflection-induced linear polarization rotation and phase modulation between orthogonal waves for refractive index variation measurement.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2016-04-01

    An optical phase interrogation is proposed to study reflection-induced linear polarization rotation in a common-path homodyne interferometer. This optical methodology can also be applied to the measurement of the refractive index variation of a liquid solution. The performance of the refractive index sensing structure is discussed theoretically, and the experimental results demonstrated a very good ability based on the proposed schemes. Compared with a conventional common-path heterodyne interferometer, the proposed homodyne interferometer with only a single channel reduced the usage of optic elements.

  15. Computerized lateral-shear interferometer

    NASA Astrophysics Data System (ADS)

    Hasegan, Sorin A.; Jianu, Angela; Vlad, Valentin I.

    1998-07-01

    A lateral-shear interferometer, coupled with a computer for laser wavefront analysis, is described. A CCD camera is used to transfer the fringe images through a frame-grabber into a PC. 3D phase maps are obtained by fringe pattern processing using a new algorithm for direct spatial reconstruction of the optical phase. The program describes phase maps by Zernike polynomials yielding an analytical description of the wavefront aberration. A compact lateral-shear interferometer has been built using a laser diode as light source, a CCD camera and a rechargeable battery supply, which allows measurements in-situ, if necessary.

  16. Hong-Ou-Mandel interferometer with cavities: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olindo, C.; Sagioro, M. A.; Monken, C. H.

    2006-04-15

    We study the number of coincidences in a Hong-Ou-Mandel interferometer exit whose arms have been supplemented with the addition of one or two optical cavities. The fourth-order correlation function at the beam splitter exit is calculated. In the regime where the cavities lengths are larger than the one-photon coherence length, photon coalescence and anticoalescence interference is observed. Feynman's path diagrams for the indistinguishable processes that lead to quantum interference are presented. The construction of an optical XOR gate is discussed as an application for the Hong-Ou-Mandel interferometer with two cavities.

  17. Effects of static and dynamic higher-order optical modes in balanced homodyne readout for future gravitational waves detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Teng; Danilishin, Stefan L.; Steinlechner, Sebastian; Barr, Bryan W.; Bell, Angus S.; Dupej, Peter; Gräf, Christian; Hennig, Jan-Simon; Houston, E. Alasdair; Huttner, Sabina H.; Leavey, Sean S.; Pascucci, Daniela; Sorazu, Borja; Spencer, Andrew; Wright, Jennifer; Strain, Kenneth A.; Hild, Stefan

    2017-03-01

    With the recent detection of gravitational waves (GWs), marking the start of the new field of GW astronomy, the push for building more sensitive laser-interferometric gravitational wave detectors (GWDs) has never been stronger. Balanced homodyne detection (BHD) allows for a quantum-noise (QN) limited readout of arbitrary light field quadratures, and has therefore been suggested as a vital building block for upgrades to Advanced LIGO and third-generation observatories. In terms of the practical implementation of BHD, we develop a full framework for analyzing the static optical high-order modes (HOMs) occurring in the BHD paths related to the misalignment or mode matching at the input and output ports of the laser interferometer. We find the effects of HOMs on the quantum-noise limited sensitivity is independent of the actual interferometer configuration; e.g. Michelson and Sagnac interferometers are affected in the same way. We show that misalignment of the output ports of the interferometer (output misalignment) only affects the high-frequency part of the quantum-noise limited sensitivity (detection noise). However, at low frequencies, HOMs reduce the interferometer response and the radiation pressure noise (back-action noise) by the same amount and hence the quantum-noise limited sensitivity is not negatively affected in that frequency range. We show that the misalignment of the laser into the interferometer (input misalignment) produces the same effect as output misalignment and additionally decreases the power inside the interferometer. We also analyze dynamic HOM effects, such as beam jitter created by the suspended mirrors of the BHD. Our analyses can be directly applied to any BHD implementation in a future GWD. Moreover, we apply our analytical techniques to the example of the speed meter proof-of-concept experiment under construction in Glasgow. We find that for our experimental parameters, the performance of our seismic isolation system in the BHD paths is compatible with the design sensitivity of the experiment.

  18. An Externally Dispersed Interferometer for Sensitive Doppler Extrasolar Planet Searches

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Erskine, David J.; Rushford, Mike

    2002-09-01

    A new kind of instrument for sensitive Doppler extrasolar planet searches, called an externally dispersed interferometer, is described in this paper. It is a combination of an optical Michelson-type interferometer and an intermediate-resolution grating spectrometer. The interferometer measures Doppler radial velocity (RV) variations of starlight through the phase shifts of moiré fringes, created by multiplication of the interferometer fringes with stellar absorption lines. The intermediate-resolution spectrograph disperses the moiré fringes into thousands of parallel-wavelength channels. This increases the instrument bandwidth and fringe visibility by preventing fringe cross-talk between neighboring spectral lines. This results in a net increase in the signal-to-noise ratio over an interferometer used alone with broadband light. Compared to current echelle spectrometers for extrasolar planet searches, this instrument offers two unique instrument properties: a simple, stable, well-defined sinusoidal instrument response function (point-spread function) and magnification of Doppler motion through moiré fringe techniques. Since instrument noise is chiefly limited by the ability to characterize the instrument response, this new technique provides unprecedented low instrumental noise in an economical compact apparatus, enabling higher precision for Doppler RV measurements. In practice, the moiré magnification can be 5-10 times depending on the interferometer comb angle. This instrument has better sensitivity for smaller Doppler shifts than echelle spectrometers. The instrument can be designed with much lower spectral resolving power without losing Doppler sensitivity and optimized for higher throughput than echelle spectrometers to allow a potential survey for planets around fainter stars than current magnitude limits. Lab-based experiments with a prototype instrument with a spectral resolution of R~20,000 demonstrated ~0.7 m s-1 precision for short-term RV measurements. A fiber-fed version of the prototype with R~5600 was tested with starlight at the Lick 1 m telescope and demonstrated ~7 m s-1 RV precision at 340 Å bandwidth. The increased velocity noise is attributed to the lower spectral resolution, lower fringe visibility, and uncontrolled instrument environment.

  19. New optical microbarometer

    NASA Astrophysics Data System (ADS)

    Olivier, Serge; Hue, Anthony; Olivier, Nathalie; Le Mallet, Serge

    2015-04-01

    Usually, transducers implemented in infrasound sensor (microbarometer) are mainly composed of two associated elements. The first one converts the external pressure variation into a physical linear displacement. The second one converts this motion into an electrical signal. According to this configuration, MB3, MB2000 and MB2005 microbarometers are using an aneroid capsule for the first one, and an electromagnetic transducer (Magnet-coil or LVDT) for the second one. CEA DAM (designer of MB series) and PROLANN / SEISMO WAVE (manufacturer and seller of MB3) have associated their expertise to design an optical microbarometer: However, we think that changing the electromagnetic transducer by an interferometer is an interesting solution in order to increase the dynamic and the resolution of the sensor. Currently, we are exploring this way in order to propose a future optical microbarometer which will enlarge the panel of infrasound sensors. Firstly, we will present the new transducer principles, taking into account the aneroid capsule and the interferometer using integrated optics technology. More specifically, we will explain the operation of this optical technology, and discuss on its advantages and defaults. Secondly, we will present the first part of this project in which the interferometer is positioned outside the aneroid capsule. In this configuration, interferometer mechanical adjustments are easier, but measurement is directly disturbed by environmental effects like the thermal variations. Six prototypes were manufactured with two sets of different aneroid capsules, in order to compare their performances, and also an optical digitizer specifically designed to record the four channels interferometer. Then, we will present the first sensitivity and self-noise measurement results compared to those of a MB2005 microbarometer. Finally, we will propose a new design of the optical microbarometer as a second part of our study. It will implement a new location of interferometer into the aneroid capsule under vacuum in order to protect the optical measurement from environmental effects. Manufacturing such a prototype is a huge challenge from the miniaturization point of view and the interferometer mechanical stability.

  20. Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun

    2014-12-01

    Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

Top