Science.gov

Sample records for buried soil horizons

  1. The Impact of Buried Horizons and Deep Soil Pedogenesis on Soil Carbon Content and Vertical Distribution

    NASA Astrophysics Data System (ADS)

    James, J. N.; Dietzen, C.; Harrison, R. B.; Gross, C.; Kirpach, A.

    2015-12-01

    The lower boundary of soil has been a point of contention among soil scientists for decades. Recent evidence suggests that soil is much deeper than is measured by many ecological studies and that arbitrary definitions of maximum soil depth unnecessarily exclude important regions of the soil profile. This paper provides illustrated examples of soil profiles that have important deep soil characteristics or buried horizons. Soil pits were excavated with a backhoe to at least 2.5 m depth at 35 sites throughout the Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) ecoregion of the Pacific Northwest. These soils cover four orders - Andisol, Inceptisol, Alfisol, and Ultisol - and highlight the hidden diversity of subsoil characteristics throughout the region. The roots of trees and understory species often extended deep into the C horizons of soil. Despite experiencing less pedogenic development than surface horizons, C horizons are important as the frontier of soil formation, as an important resource for plant growth, and as a repository of diffuse but significant carbon storage. On average, there was 188.1 Mg C ha-1 total across all 35 sites, of which 76.3 Mg ha-1 (40.5%) was found below 0.5 m and 44.4 Mg ha-1 (23.6%) was found below 1 m. There was substantial variability in the vertical distribution of C with as little as 8.0% and as much as 58.0% of total C below 1 m. In some cases, B horizons are far deeper than the 1 or 2 m depth arbitrarily assumed to represent the whole soil. In other cases, subsoil hides buried profiles that can significantly impact total soil carbon stocks as well as aboveground plant growth. These buried horizons are important repositories of nutrients and carbon that are poorly understood and rarely sampled. Ignoring subsoil precludes incorporating soil burial or deep soil processes into biogeochemical and global carbon cycle models, and limits mechanistic understanding of carbon sequestration and mobilization in soil.

  2. Buried soils of Late Quaternary moraines of the Wind River Mountains, Wyoming

    SciTech Connect

    Dahms, D.E. . Geography Dept.)

    1992-01-01

    Buried soils occur on kettle floors of four Pinedale moraine catenas of the western Wind River Mountains of Wyoming. Radiocarbon ages from bulk samples of Ab horizons indicate the soils were buried during the mid-Holocene. Soils on kettle floors have silty A and Bw horizons that overlie buried A and B horizons that also formed in silt-rich sediments. Crests and backslope soils also have A and Bw horizons of sandy loam formed over 2BCb and 2Cb horizons of stony coarse loamy sand. Recent data show the silty textures of the A and B horizons are due to eolian silt and clay from the Green River Basin just west of the mountains. The buried soils appear to represent alternate periods of erosion and deposition on the moraines during the Holocene. The original soils developed on higher slopes of the moraines were eroded during the mid-Holocene and the 2BC and 2C horizons exposed at the surface. Eroded soil sediments were transported downslope onto the kettle floors. Following erosion, silt-rich eolian sediments accumulated on all surfaces and mixed with the BC and C horizons (the mixed loess of Shroba and Birkeland). The present surface soils developed within this silt-rich material. Stone lines often occur at the Bw-2BCb/2Cb boundary, and mark the depth to which the earlier soils were eroded. Thus, soil profiles at the four localities result from two periods of soil formation, interrupted by an interval of erosion during the mid-Holocene. Moraines of this study are adjacent to the Fremont Lake type area for the Pinedale glaciation of the Rocky Mountains. Buried soils in kettles of the moraines indicates the soil characteristics of the Pinedale type region are not necessarily due to continuous post-Pinedale development, but may result from more than one episode of soil formation.

  3. Distinct microbial communities associated with buried soils in the Siberian tundra

    NASA Astrophysics Data System (ADS)

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Mikutta, Robert; Owens, Sarah; Gilbert, Jack; Schnecker, Jörg; Wild, Birgit; Hannisdal, Bjarte; Maerz, Joeran; Lashchinskiy, Nikolay; Čapek, Petr; Šantrůčková, Hana; Gentsch, Norman; Shibistova, Olga; Guggenberger, Georg; Richter, Andreas; Torsvik, Vigdis; Schleper, Christa; Urich, Tim

    2014-05-01

    Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze-thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes.

  4. Distinct microbial communities associated with buried soils in the Siberian tundra.

    PubMed

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Mikutta, Robert; Owens, Sarah; Gilbert, Jack; Schnecker, Jörg; Wild, Birgit; Hannisdal, Bjarte; Maerz, Joeran; Lashchinskiy, Nikolay; Capek, Petr; Santrůčková, Hana; Gentsch, Norman; Shibistova, Olga; Guggenberger, Georg; Richter, Andreas; Torsvik, Vigdis L; Schleper, Christa; Urich, Tim

    2014-04-01

    Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze-thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes.

  5. Phosphatase activity in the surface and buried chestnut soils of the Volga-Don interfluve

    NASA Astrophysics Data System (ADS)

    Khomutova, T. E.; Demkina, T. S.; Kashirskaya, N. N.; Demkin, V. A.

    2012-04-01

    The phosphatase activity (PA) was studied in the chestnut paleosols buried in 1718-1720 under the Anna Ivanovna rampart in the southern part of the Privolzhskaya Upland and in the middle of the third millennium BC under the burial mound of the Bronze Age on the Northern Yergeni Upland; the background analogues of these soils were also examined. The PA values in the fresh soil samples varied from 2.5 to 37 mg of P2O5/10 g of soil per h with maximums in the A1 horizon of the surface soils and in the B1 horizon of the paleosols. The PA values depended on the time of storage of the samples: with time, they increased by 2.6-2.9 times in the A1 horizon of the background surface soil and decreased by 20-60% in the other soil samples. The specific distribution patterns of the PA values in the soil profiles remained the same independently of the time of storage of the samples. Relatively small amounts of the soil samples were sufficient for the reliable determination of the PA: 1-2 g for the A1 horizon and 3-5 g for the B1 and B2 horizons. The time of incubation with the substrate had to be increased up to 4 h for the long-stored samples.

  6. Distinct microbial communities associated with buried soils in the Siberian tundra

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Mikutta, Robert; Owens, Sarah; Gilbert, Jack; Schnecker, Jörg; Wild, Birgit; Hannisdal, Bjarte; Maerz, Joeran; Lashchinskiy, Nikolay; Čapek, Petr; Šantrůčková, Hana; Gentsch, Norman; Shibistova, Olga; Guggenberger, Georg; Richter, Andreas; Torsvik, Vigdis L; Schleper, Christa; Urich, Tim

    2014-01-01

    Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze–thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes. PMID:24335828

  7. Detecting buried archaeological soils with TGA in an agricultural terrace setting in Northern Calabria, Italy

    NASA Astrophysics Data System (ADS)

    Koster, K.; Guttmann-Bond, E.; Kluiving, S.; van Leusen, M.

    2012-04-01

    Agricultural terraces are geomorphologic features created by humans. These structures protect farming land by reducing soil erosion, they collect water in their hydrological infrastructure, and preserve crops and vegetation. Their construction could however negatively affect underlying soils and archaeology present in those soils. However, if a terrace is constructed on a hill slope without destroying the underlying soil, the agricultural terrace could create a stable environment in regard to erosion, and preserve the underlying soil and potential archaeological remains in it. In order to detect soils within agricultural terraces in Northern-Calabria, Italy, Thermogravimetric Analysis (TGA) was performed on exposures of four agricultural terraces, two agricultural fields in a non-terraced setting and five natural geomorphological features. Results are the detection of a buried soil horizon which contains archaeological remains dating from the Hellenistic period 60 cm below the surface of an agricultural terrace, and a buried soil horizon which contains archaeological remains dating from the Hellenistic period at the interface of an agricultural field and a river valley. Both soil horizons were indentified by an increase in organic components, and a decrease in calcium carbonates relative to their surrounding context. Conclusions are that the construction of agricultural terraces and fields does not necessarily lead to the destruction of underlying soils. This could open new doors for archaeological field investigations in agricultural areas in southern Italy. This study was conducted as part of the Raganello Archaeological Project of the Groningen Institute of Archaeology, Rijks Universiteit Groningen, in collaboration with the Institute for Geo- and Bioarchaeology at the VU University Amsterdam.

  8. Microbial communities of buried soils of the Tsaritsyn Defense Line (1718-1720)

    NASA Astrophysics Data System (ADS)

    Demkina, T. S.; Khomutova, T. E.; Kuznetsova, T. V.; Kontoboitseva, A. A.; Borisov, A. V.

    2016-01-01

    Microbial communities of recent surface soils and the soils buried beneath the rampart of the Tsaritsyn Defense Line (1718-1720) in the Little Ice Age were studied. The contribution of the time factor to the variability in the number of microorganisms from different trophic groups was shown to be minor (0.2-0.3%), although significant. In the upper horizon of the paleosols reflecting the environmental conditions intrinsic to the period of the rampart construction, the lower (by two times) content of live microbial biomass, the lower metabolic activity of the microbial community, and the more contrasting changes in the microbiological parameters as compared to these characteristics in the recent soils were found for all the elements of the local topography. The stabilities of the microbial communities in the buried and recent soils were almost the same. The ecological-trophic structure of the microbial communities in the buried soils evidences that, the climate of the 18th century in the southern Privolzhskaya Upland was more humid than now. At the same time, temperature conditions of the Little Ice Age did not prevent the development of steppe vegetation and corresponding soil microbial communities in this area. Our data on the morphology and physicochemical properties of the soils confirm the assumption about more humid climatic conditions at the beginning of the 18th century in the studied area.

  9. 50 Years of Soil Survey Horizons

    NASA Astrophysics Data System (ADS)

    Brevik, E. C.

    2012-04-01

    Soil Survey Horizons (SSH) started in 1960 as the newsletter of the North Central Soil Survey, United States, with an editorial board consisting of Francis D. Hole, O.C. Rogers, and Donald F. Post. SSH was started to provide an outlet for field observations of soils because the founders of SSH felt that other outlets for such communications were disappearing. Francis Hole's office at the University of Wisconsin served as the point of publication for SSH through its first 15 years, but in 1975 the Soil Science Society of America (SSSA) began handling its publication. Initially SSSA published SSH but did not assume ownership or editorial control of the publication until 2005. Over the years there has been a steady increase in the amount of material published in each volume of SSH. Significant improvements to Soil Survey Horizons over the years have included a move to full 8.5" x 11" pages and publication in color. Future improvements will include online publication and expansion to an international audience, including recruitement of international members for the editorial board.

  10. Aeolian cliff-top deposits and buried soils in the White River Badlands, South Dakota, USA

    USGS Publications Warehouse

    Rawling, J. E.; Fredlund, G.G.; Mahan, S.

    2003-01-01

    Aeolian deposits in the North American Great Plains are important sources of Holocene palaeo-environmental records. Although there are extensive studies on loess and dune records in the region, little is known about records in aeolian cliff-top deposits. These are common on table (mesa) edges in the White River Badlands. These sediments typically have loam and sandy-loam textures with dominantly very fine sand, 0.5-1% organic carbon and 0.5-5% CaCO3. Some of these aeolian deposits are atypically coarse and contain granules and fine pebbles. Buried soils within these deposits are weakly developed with A-C and A-AC-C profiles. Beneath these are buried soils with varying degrees of pedogenic development formed in fluvial, aeolian or colluvial deposits. Thickness and number of buried soils vary. However, late-Holocene soils from several localities have ages of approximately 1300, 2500 and 3700 14C yrs BP. The 1300 14C yr BP soil is cumulic, with a thicker and lighter A horizon. Soils beneath the cliff-top deposits are early-Holocene (typically 7900 but as old as 10000 14C yrs BP) at higher elevation (???950 m) tables, and late-Holocene (2900 14C yrs BP) at lower (???830 m) tables. These age estimates are based on total organic matter 14C ages from the top 5 cm of buried soils, and agreement is good between an infrared stimulated luminescence age and bracketing 14C ages. Our studies show that cliff-top aeolian deposits have a history similar to that of other aeolian deposits on the Great Plains, and they are another source of palaeoenvironmental data.

  11. An evaluation of methods for identifying and interpreting buried soils in late Quaternary loess in Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Muhs, Daniel R.; Ager, Thomas A.; Been, Josh M.; Rosenbaum, Joseph G.; Reynolds, Richard J.

    2000-01-01

    The presence of buried soils in Alaskan loess is controversial, and therefore criteria for identifying buried soils in these deposits need to be evaluated. In this paper, morphologic and chemical criteria for identifying buried soils are evaluated by studying modern soils developed mostly in Holocene loess under tundra, boreal forest, and transitional coastal-boreal forest vegetation in different parts of Alaska. Data from modern Alaskan soils that developed under vegetation similar to that of the present indicate that soil morphology, organic-matter concentrations, and P concentrations can be useful diagnostic tools for identifying buried soils. Soil morphologic criteria, particularly horizon colors and horizon sequences, are essential for identifying buried soils, but some minimally developed soils may resemble organic-rich alluvial, colluvial, or lacustrine deposits. Organic matter and total P contents and distributions can aid in such studies because in well-drained soils these constituents show rapid declines with depth. However, neither of these techniques may work if the upper genetic horizons of buried soils are eroded.If buried soils are present in Alaskan loess, it would also be desirable to have techniques for determining the dominant vegetation under which the soils formed. Such techniques could then be used to reconstruct former vegetation types and paleoclimates in Alaska. A previous study suggested that tundra and boreal forest vegetation have distinctive carbon isotopic compositions, although both are dominated by C3 plants. If this is the case, then the carbon isotopic composition of organic matter in buried soils could be used to reconstruct former vegetation types. A larger suite of modern soils from Alaskan tundra and forest were analyzed to test this hypothesis. Results indicate that modern soil O horizons in these two biomes have the same range of δ13C values, and therefore carbon isotope compositions cannot be used to reconstruct former

  12. Characterization of the microbial communities in the modern and buried under kurgans soils of solonetzic complexes in the dry steppes of the Lower Volga region

    NASA Astrophysics Data System (ADS)

    Demkina, T. S.; Popova, I. V.; Demkin, V. A.

    2013-07-01

    The microbial communities were studied in the modern and buried under kurgans (1st century AD) soils of solonetzic complexes on the dry steppes of the northern part of the Yergeni Upland. It was found that the changes in the numbers of microorganisms from different trophic groups and in the biomass of the fungal mycelium along the profiles of the modern and buried solonetzic chestnut soils and solonetzes do not differ significantly. The quantitative estimate of the impact of the solonetzic process on the spatial variability of the microbiological parameters of the soils was given on the basis of the ANOVA. As a rule, the values of the microbiological parameters in all the horizons of the modern and buried chestnut soils were 1.2-2.8 times higher than those in the modern and buried solonetzes. The influence of the degree of solonetzicity of the buried paleosols on the microbiological parameters manifested itself in the entire profile, though in each particular horizon it was only seen in the numbers of some particular trophic groups of microorganisms. The comparison between the mean weighted values of the microbiological parameters in the entire soil profiles (the A1 + B1 + B2 horizons) demonstrated an inverse relationship between the population density of the microorganisms utilizing easily available organic matter and the degree of solonetzicity of the buried paleosols. The maximum biomass of the fungal mycelium was found in the solonetzic chestnut paleosol; it exceeded the biomass of the fungal mycelium in the other paleosols (which did not differ significantly in that parameter from one another) by 1.5-1.6 times.

  13. Genesis of petroduric and petrocalcic horizons in Latinamerica volcanic soils

    NASA Astrophysics Data System (ADS)

    Quantin, Paul

    2010-05-01

    Introduction. In Latinamerica, from Mexico to Chile, there are indurated volcanic soils horizons, named 'tepetate' in Mexico or cangahua in the Andes Mountains. Apart from original volcanic tuffs, these horizons were produced by pedogenesis: either through a former weathering of volcanic ash layers into fragic and later to petrocalcic horizons; or after a former soil formation through a second process of transformation from clayey volcanic soils to silicified petroduric horizons. This oral presentation will briefly deal with the formation of petroduric horizons in Mexico and petrocalcic horizon in Ecuador. Petroduric horizon genesis in Mexico. A soil climato-toposequence, near to Veracruz (Rossignol & Quantin, 1997), shows downwards an evolution from a ferralic Nitisol to a petroduric Durisol. A Durisol profile comports these successive horizons: at the top A and Eg, then columnar Btg-sim, laminar Bt-sim , prismatic Bsim, plinthite Cg, over andesite lava flow. Among its main features are especially recorded: clay mineralogy, microscopy and HRTEM. These data show: an increase in cristobalite at the expenses of 0.7 nm halloysite in Egsiltans, laminar Bt-sim, around or inside the columns or prisms of Btg-sim and Bsimhorizons. HRTEM (Elsass & al 2000) on ultra thin sections reveals an 'epigenesis' of clay sheets by amorphous silica, to form successively A-opal, Ct-opal and microcrystalline cristobalite. From these data and some groundwater chemical analyses, a scenario of duripan formation from a past clayey Nitisol is inferred: clay eluviation-illuviation process? alternate redoximorphy? clay degradation, Al leaching and Si accumulation, to form successively A-opal, Ct-opal and cristobalite. Petrocalcic horizon genesis in Ecuador. A soil climato-toposequence on pyroclastic flows, near to Bolivar in Ecuador (Quantin & Zebrowski, 1997), shows downwards the evolution from fragic-eutric-vitric Cambisols to petrocalcic-vitric Phaeozems, at the piedmont under semi

  14. Characterization of magnetically enhanced buried soil layer in arid environment

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Grison, H.; Kapicka, A.; Silva, P. F.; Font, E.

    2011-12-01

    Magnetic susceptibility (MS) of soils, reflecting the presence of magnetite/maghemite, can be used in several environmental applications. Magnetic topsoil mapping is often used to outline areas polluted by atmospherically deposited dust. However, in these studies, the magnetically enhanced layer is usually shallow, some 5-6 cm under the surface. In our contribution, we present the case when the magnetic susceptibility is enhanced in deeper soil layers. Investigated soils are mostly sandy soils, from several localities in Portugal, in a zone with arid climate. Sample profiles were collected always in forests or forest stands with pines, cork oaks or eucalyptus trees in two areas: around the city of Sines (on the coast south of Lisbon) and around the city of Abrantes (inland, north-east of Lisbon). Both areas are presumably affected by one major source of pollution - power plant. Surface magnetic susceptibility measurements were performed by Bartington MS2D loop; values vary from 10 to 300 x 10-5 SI units. Vertical distribution of magnetic susceptibility was measured already in situ using the SM400 (ZHInstruments) on profiles about 40cm in length. Mass-specific MS was determined using Bartington MS2B dual frequency meter and Agico MFK1. Nine vertical profiles were selected for detailed analyses including the ARM, IRM and hysteresis measurements. Distinctly enhanced magnetic layers were detected in deeper horizons. This enhancement can be ascribed to several mechanisms. Migration of magnetic particles seems to be probable, as observed in our model experiments with sand columns. In coastal areas, the enhanced layer could be due to tsunami deposits, as described in other areas. Finally, in particular at sites close to power plants, the construction works followed by surface remediation have to be also considered as one of the possible mechanisms.

  15. Soil organic matter transformation in cryoturbated horizons of permafrost affected soils

    NASA Astrophysics Data System (ADS)

    Capek, Petr; Diakova, Katerina; Dickopp, Jan-Erik; Barta, Jiri; Santruckova, Hana; Wild, Birgit; Schnecker, Joerg; Guggenberg, Georg; Gentsch, Norman; Hugelius, Gustaf; Kuhry, Peter; Lashchinsky, Nikolaj; Gittel, Antje; Schleper, Christa; Mikutta, Robert; Palmtag, Juri; Shibistova, Olga; Urich, Tim; Zimov, Sergey; Richter, Andreas

    2014-05-01

    Cryoturbated soil horizons are special feature of permafrost affected soils. These soils are known to store great amount of organic carbon and cryoturbation undoubtedly contribute to it to large extent. Despite this fact there is almost no information about soil organic matter (SOM) transformation in cryoturbated horizons. Therefore we carried out long term incubation experiment in which we inspect SOM transformation in cryoturbated as well as in organic and mineral soil horizons under different temperature and redox regimes as potential drivers. We found out that lower SOM transformation in cryoturbated horizons compared to organic horizons was mainly limited by the amount of microbial biomass, which is extremely low in absolute numbers or expressed to SOM concentration. The biochemical transformation ensured by extracellular enzymes is relatively high leading to high concentrations of dissolved organic carbon in cryoturbated horizons. Nevertheless the final step of SOM transformation leading to C mineralization to CO2 or CH4 seems to be restricted by low microbial biomass. Critical step of biochemical transformation of complex SOM is dominated by phenoloxidases, which break down complex organic compounds to simple ones. Their oxygen consumption greatly overwhelms oxygen consumption of the whole microbial community. However the phenoloxidase activity shows strong temperature response with optimum at 13.7° C. Therefore we suggest that apparent SOM stability in cryoturbated horizons, which is expressed in old C14 dated age, is caused by low amount of microbial biomass and restricted diffusion of oxygen to extracellular enzymes in field.

  16. Geochemical soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona

    USGS Publications Warehouse

    Wenrich, K.J.; Aumente-Modreski, R. M.

    1994-01-01

    degree of anomalousness, named the "correlation value", was used to rank collapse features by their potential to overlie a deeply-buried mineralized breccia pipe. Soil geochemical results from the three mineralized breccia pipes (the only three of the 50 that had previously been drilled) show that: (1) Soils above the SBF pipe contain significant enrichment of Ag, Al, As, Ba, Ga, K, La, Mo, Nd, Ni, Pb, Sc, Th, U and Zn, and depletion in Ca, Mg and Sr, in contrast to soils outside the topographic and structural rim; (2) Soils over the inner treeless zone of the Canyon pipe show Mo and Pb enrichment anf As and Ga depletion, in contrast to soils from the surrounding forest; and (3) The soil survey of the Mohawk Canyon pipe was a failure because of the rocky terrane and lack of a B soil horizon, or because the pipe plunges. At least 11 of the 47 other collapse structures studied contain anomalous soil enrichments similar to the SBF uranium ore-bearing pipe, and thus have good potential as exploration targets for uranium. One of these 11, #1102, does contain surface mineralized rock. These surveys suggest that soil geochemical sampling is a useful tool for the recognition of many collapse structures with underlying ore-bearing breccia pipes. ?? 1994.

  17. Physico-chemical change in vertical soil horizon characteristics of distillery affected soil.

    PubMed

    Ansari, Farid; Awasthi, A K; Kumar, P

    2013-10-01

    Effect of treated distillery effluent on the physico-chemical characteristics of vertical soil horizon was studied to observe the impact of effluent on soil of nearby area where distillery canal flows. The studies were also carried out with respect to the unaffected region to compare the soil characteristics. The results showed that in distillery affected soil pH, bulk density and alkalinity increased with depth whereas water holding capacity, chloride, organic carbon, available nitrogen, phosphorus and potassium decreased with depth compared to unaffected soil horizon. Preliminary study revealed that although most of the parameters were high in distillery affected soil horizon which might promote growth of plants but increase in pH and other toxic substances with depth could cause ground water pollution through constant and continuous leaching.

  18. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types.

    PubMed

    Kodesová, Radka; Vignozzi, Nadia; Rohosková, Marcela; Hájková, Tereza; Kocárek, Martin; Pagliai, Marcello; Kozák, Josef; Simůnek, Jirka

    2009-02-16

    When soil structure varies in different soil types and the horizons of these soil types, it has a significant impact on water flow and contaminant transport in soils. This paper focuses on the effect of soil structure variations on the transport of pesticides in the soil above the water table. Transport of a pesticide (chlorotoluron) initially applied on soil columns taken from various horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol) was studied using two scenarios of ponding infiltration. The highest infiltration rate and pesticide mobility were observed for the Bt(1) horizon of Haplic Luvisol that exhibited a well-developed prismatic structure. The lowest infiltration rate was measured for the Bw horizon of Haplic Cambisol, which had a poorly developed soil structure and a low fraction of large capillary pores and gravitational pores. Water infiltration rates were reduced during the experiments by a soil structure breakdown, swelling of clay and/or air entrapped in soil samples. The largest soil structure breakdown and infiltration decrease was observed for the Ap horizon of Haplic Luvisol due to the low aggregate stability of the initially well-aggregated soil. Single-porosity and dual-permeability (with matrix and macropore domains) flow models in HYDRUS-1D were used to estimate soil hydraulic parameters via numerical inversion using data from the first infiltration experiment. A fraction of the macropore domain in the dual-permeability model was estimated using the micro-morphological images. Final soil hydraulic parameters determined using the single-porosity and dual-permeability models were subsequently used to optimize solute transport parameters. To improve numerical inversion results, the two-site sorption model was also applied. Although structural changes observed during the experiment affected water flow and solute transport, the dual-permeability model together with the two-site sorption model proved to be

  19. [Effects of Slope Position and Soil Horizon on Soil Microbial Biomass and Abundance in Karst Primary Forest of Southwest China].

    PubMed

    Feng, Shu-zhen; Su, Yi-rong; Zhang, Wei; Chen, Xiang-bi; He, Xun-yang

    2015-10-01

    To explore the effects of slope position and soil horizon on soil microbial biomass and abundance, chloroform fumigation extraction methods and real-time fluorescence-based quantitative PCR (Real-time PCR) were adopted to quantify the changes of soil microbial biomass C, N and abundance of bacteria and fungi, respectively. Soil samples were harvested from three horizons along profile, i. e., leaching horizon (A, 0-10 cm), transitional horizon (AB, 30-50 cm) and alluvial horizon (B, 70-100 cm), which were collected from the upper, middle and lower slope positions of a karst primary forest ecosystem. The results showed that slope position, soil horizon and their interaction significantly influenced the soil microbial biomass and abundance (P < 0.05). Different from A horizon, where SMBC was greater in lower than in upper slope position (P < 0.05), SMBC in AB and B horizons were highest in middle slope position. Similarly, SMBN was greater in lower than in upper slope position for A, AB and B horizons. Besides soil bacterial abundance in B horizon and fungal abundance in AB layer, the middle slope position had the highest value for all the three soil horizons (P < 0.05). Stepwise regression analysis showed that soil organic carbon, available nitrogen and pH were the key factors responsible for SMBC and SMBN variation, respectively, while the important factors responsible for the variation of bacteria abundance were available nitrogen and available phosphorus, and that for fungi abundance variation were available potassium.

  20. The effect of soil horizon and mineral type on the distribution of siderophores in soil

    NASA Astrophysics Data System (ADS)

    Ahmed, Engy; Holmström, Sara J. M.

    2014-04-01

    Iron is a key component of the chemical architecture of the biosphere. Due to the low bioavailability of iron in the environment, microorganisms have developed specific uptake strategies like production of siderophores. Siderophores are operationally defined as low-molecular-mass biogenic Fe(III)-binding compounds, that can increase the bioavailability of iron by promoting the dissolution of iron-bearing minerals. In the present study, we investigated the composition of dissolved and adsorbed siderophores of the hydroxamate family in the soil horizons of podzol and the effect of specific mineral types on siderophores. Three polished mineral specimens of 3 cm × 4 cm × 3 mm (apatite, biotite and oligioclase) were inserted in the soil horizons (O (organic), E (eluvial) and B (upper illuvial)). After two years, soil samples were collected from both the bulk soil of the whole profile and from the soil attached to the mineral surfaces. The concentration of ten different fungal tri-hydroxamates within ferrichromes, fusigen and coprogens families, and five bacterial hydroxamates within the ferrioxamine family were detected. All hydroxamate types were determined in both soil water (dissolved) and soil methanol (adsorbed) extracts along the whole soil profile by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS); hence, the study is the most extensive of its kind. We found that coprogens and fusigen were present in much higher concentrations in bulk soil than were ferrioxamines and ferrichromes. On the other hand, the presence of the polished mineral completely altered the distribution of siderophores. In addition, each mineral had a unique interaction with the dissolved and adsorbed hydroxamates in the different soil horizons. Thus siderophore composition in the soil environment is controlled by the chemical, physical and biological characteristics of each soil horizon and also by the available mineral types.

  1. Role and development of soil parameters for seismic responses of buried lifelines

    SciTech Connect

    Wang, L.R.L.

    1983-01-01

    Buried lifelines, e.g. oil, gas, water and sewer pipelines have been damaged heavily in recent earthquakes such as 1971 San Fernando Earthquake, in U.S.A., 1976 Tangshan Earthquake, in China, and 1978 MiyagiKen-Oki Earthquake, in Japan, among others. Researchers on the seismic performance of these buried lifelines have been initiated in the United States and many other countries. Various analytical models have been proposed. However, only limited experimental investigations are available. The sources of earthquake damage to buried lifelines include landslide, tectonic uplift-subsidence, soil liquefaction, fault displacement and ground shaking (effects of wave propagation). This paper is concerned with the behavior of buried lifeline systems subjected to surface faulting and ground shaking. The role and development of soil parameters that significantly influence the seismic responses are discussed. The scope of this paper is to examine analytically the influence of various soil and soilstructure interaction parameters to the seismic responses of buried pipelines, to report the currently available physical data of these and related parameters for immediate applications, and to describe the experiments to obtain additional information on soil resistant characteristics to longitudinal pipe motions.

  2. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    SciTech Connect

    Garten Jr, Charles T

    2009-01-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO{sub 2} concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  3. Rapid mineral differentiation among horizons of a meadow soil

    NASA Astrophysics Data System (ADS)

    Szalai, Zoltán; Ringer, Marianna; Kiss, Klaudia; Horváth Szabó, Kata; Németh, Tibor; Sipos, Péter; Madarász, Balázs; Jakab, Gergely

    2015-04-01

    Soil development under hydromorphic conditions may results intense mineral transformation and rapid vertical differentiation in the profile. Original papers refer more than hundreds of years for this kinds of mineral transformations. We suppose that this process could be more rapid. Present paper focuses on the profile development of a sandy meadow soil (calcic, gleyic Phaeozem ferric, arenic) from the soil mineralogical viewpoint. The main aim was to explore the degree of mineral phase alteration via soil formation during a half-century under hydromorphic conditions. The studied soil is located in a swampy area (near to Ceglédbercel, Hungary). The parent material deposited during an extremely heavy flood event in 1963. The reference (parent) material can be found near to the study site. We combined routine field tests (carbonate content, dipididil test) with laboratory measurements (selective extractions for the determination of amorphous and crystalline Fe, and Mn content; X-ray phase analysis; X-ray fluorescence spectroscopy; particle sizing by laser diffraction; NDIR and FT-IR and DRS spectrometry), whereas Eh and pH measured by field monitoring station. The most intense mineralogical transformations developed in the zone of the heaviest redox oscillation. Results show that well developed horizons have emerged during fifty years in the studied soil. This time was enough for bivalent and trivalent iron mineral crystallisation and smectite formation in this zone. The high proportion of amorphous and colloidal phases refers to very intensive recent processes. Soil formation under hydromorphic conditions proceeds at higher speeds contrariwise to the century time scale reported in sources (discussing non-waterlogged cases). Support of the Hungarian Research Fund OTKA under contracts K100180 (for Z. Szalai) and K100181 (for T Németh) are gratefully acknowledged.

  4. The effects of soil horizons and faunal excrement on bacterial distribution in an upland grassland soil.

    PubMed

    Bruneau, Patricia M C; Davidson, Donald A; Grieve, Ian C; Young, Iain M; Nunan, Naoise

    2005-03-01

    The density and spatial location of bacteria were investigated within different horizons of an upland grassland soil before and after a liming treatment to increase the numbers of large soil fauna. Bacterial cells were located by image analysis of stained thin sections and densities calculated from these data. Excrement from macro- and meso-fauna was identified using micromorphology and the densities of bacteria on specific areas of excrement measured by image analysis. There were significant differences among horizons in the density of bacterial cells, with the minimum density found in the horizon with least evidence of earthworm activity, but no difference in density between the organic H and organo-mineral Ah horizons. Soil improvement by liming significantly increased bacterial densities in all three horizons, with the greatest increase found in the horizon with the smallest density before liming. There were no differences in bacterial density between areas dominated by excrement from earthworms and excrement from enchytraeids, although densities in both areas were significantly increased by liming. Variability in bacterial density at spatial scales of less than 1 mm was linked to the occurrence of excrement. Bacterial densities within areas of both types of excrement were significantly greater than those in the surrounding soil. However, the frequency distribution of the ratios of density in excrement to that in the soil was bimodal, with a majority of occurrences having a ratio near 1 and only some 20-30% having a much larger ratio. These variations can probably be explained by variations in the age of the excrement and its suitability as a substrate.

  5. Measuring Soil Moisture using the Signal Strength of Buried Bluetooth Devices.

    NASA Astrophysics Data System (ADS)

    Hut, R.; Campbell, C. S.

    2015-12-01

    A low power bluetooth Low Energy (BLE) device is burried 20cm into the soil and a smartphone is placed on top of the soil to test if bluetooth signal strength can be related to soil moisture. The smartphone continuesly records and stores bluetooth signal strength of the device. The soil is artifcially wetted and drained. Results show a relation between BLE signal strength and soil moisture that could be used to measure soil moisture using these off-the-shelf consumer electronics. This opens the possibily to develop sensors that can be buried into the soil, possibly below the plow-line. These sensors can measure local parameters such as electric conductivity, ph, pressure, etc. Readings would be uploaded to a device on the surface using BLE. The signal strength of this BLE would be an (additional) measurement of soil moisture.

  6. Acidity field of soils as ion-exchange systems and the diagnostics of genetic soil horizons

    NASA Astrophysics Data System (ADS)

    Kokotov, Yu. A.; Sukhacheva, E. Yu.; Aparin, B. F.

    2014-12-01

    For the comprehensive description of the acidity of a two-phase ion-exchange system, we should analyze two curves of the ionite titration by a strong base in water and salt solutions and find the quantitative relationships between the corresponding pH characteristics. An idea of the three-dimensional field of acidity of ion-exchange systems (the phase space of the soil acidity characteristics) and its three two-dimensional projections is suggested. For soils, three interrelated characteristics—the pH values of the salt and water extracts and the degree of base saturation—can serve as spatial coordinates for the acidity field. Representation of factual data in this field makes it possible to compare and analyze the acidity characteristics of different soils and soil horizons and to determine their specific features. Differentiation of the field into separate volumes allows one to present the data in a discrete form. We have studied the distribution patterns of the groups of soil horizons from Leningrad oblast and other regions of northwestern Russia in the acidity field. The studied samples are grouped in different partially overlapping areas of the projections of the acidity field. The results of this grouping attest to the correctness of the modern classification of Russian soils. A notion of the characteristic soil area in the acidity field is suggested; it can be applied to all the soils with a leaching soil water regime.

  7. Interaction of Buried Pipeline with Soil Under Different Loading Cases

    NASA Astrophysics Data System (ADS)

    Magura, Martin

    2016-09-01

    Gas pipelines pass through different topographies. Their stress level is influenced not only by gas pressure, but also by the adjacent soil, the thickness of any covering layers, and soil movements (sinking, landslides). The stress level may be unevenly spread over a pipe due to these causes. When evaluating experimental measurements, errors may occur. The value of the resistance reserve of steel can be adjusted by a detailed analysis of any loading. This reserve can be used in the assessment of a pipeline's actual state or in reconstructions. A detailed analysis of such loading and its comparison with the simple theory of elasticity is shown in this article.

  8. Chemical Soil Physics Phenomena for Chemical Sensing of Buried UXO

    SciTech Connect

    Phelan, James, M.; Webb, Stephen W.

    1999-06-14

    Technology development efforts are under way to apply chemical sensors to discriminate inert ordnance and clutter from live munitions that remain a threat to reutilization of military ranges. However, the chemical signature is affected by multiple environmental phenomena that can enhance or reduce its presence and transport behavior, and can affect the distribution of the chemical signature in the environment. For example, the chemical can be present in the vapor, aqueous, and solid phases. The distribution of the chemical among these phases, including the spatial distribution, is key in designing appropriate detectors, e.g., gas, aqueous or solid phase sampling instruments. A fundamental understanding of the environmental conditions that affect the chemical signature is needed to describe the favorable and unfavorable conditions of a chemical detector based survey to minimize the consequences of a false negative. UXO source emission measurements are being made to estimate the chemical flux from a limited set of ordnance items. Phase partitioning analysis has been completed to show what the expected concentrations of chemical analytes would be fi-om total concentrations measured in the soil. The soil moisture content in the dry region has been shown to be critical in the attenuation of soil gas concentrations by increased sorption to soil particles. Numerical simulation tools have been adapted to include surface boundary conditions such as solar radiation, surface boundary layer (which is a function of wind speed), precipitation and evaporation, and plant cover/root density to allow transport modeling and evaluate long term processes. Results of this work will provide performance targets for sensor developers and support operational decisions regarding field deployments.

  9. The pedogeochemical segregation a few horizons in soils from glass houses

    NASA Astrophysics Data System (ADS)

    Bulgariu, Dumitru; Rusu, Constantin; Filipov, Feodor; Buzgar, Nicolae; Bulgariu, Laura

    2010-05-01

    Our studies have focused the apparition and manifestation conditions of pedogeochemical segregation phenomena in case of soils from Copou - Iaşi, Bacău and Bârlad (Romania) glass house, and the effects of this on the pedogeochemical and agrochemical characteristics of soils from glass houses cultivated with vegetables. The utilization of intensive cultivation technologies of vegetables in glass houses determined the degradation of morphological, physical and chemical characteristics of soils, by rapid evolution of salted processes (salinization and / or sodization), compaction, carbonatation, eluviation-illuviation, frangipane formation, stagnogleization, gleization etc. Under these conditions, at depth of 30-40 cm is formed a compact and impenetrable horizon - Ahok(x) horizon. In function of exploitation conditions and by the chemical-mineralogical characteristics of soils from glasshouses, the Ahok horizons can have frangipane properties, expressed more or less. These horizons determined a geochemical segregation of soils from glass houses: (i) superior horizons, above Ahok(x) horizon evolve in weak oxidative conditions, weak alkaline pH, higher salinity, humidity and temperature; (ii) inferior horizons, below Ahok(x) horizon evolve in weak reducing conditions weak acid pH, lower salinity, humidity and temperature. Concomitant with the development of Ahok(x) horizons, the rapid degradation of the properties of soils from glasshouses is observed. The aspects about the formation of frangipane horizon in soils from glasshouses are not yet sufficiently know. Whatever of the formation processes, the frangipane horizons determined a sever segregation in pedogeochemical evolution of soils from glass houses, with very important consequences on the agrochemical quality of these soils. The segregation effects are manifested in the differential dynamics of pedogeochemical processes from superior horizons (situated above the segregation horizon), in comparison with the

  10. Critical length for upheaval buckling of straight pipelines buried in ice rich soils

    SciTech Connect

    Quimby, T.B.

    1996-12-01

    Upheaval buckling, a phenomena receiving attention in offshore pipelines, has also been found to be a problem for onshore arctic pipelines buried in ice rich soils. While anticipated in overbend situations, it is also being found in pipelines designed to be straight. Understanding the mechanics and parameters affecting this behavior are essential to properly designing a buried arctic pipeline. This paper introduces the parameters that have led to upheaval buckling in at least one pipeline and describes the operation of a program that computes the critical buckling loads at various pipe lengths for the inception of upheaval buckling in a buried pipeline. The method uses finite elements to solve the eigenvalue problem for the axial stability of a column with flexible lateral restraints. This program can be used to predict critical lengths for straight pipelines that lose some or all of the lateral restraint of soil through erosion or thermal degradation. The results are used to make decisions concerning backfill and restrain design. The effects of soils stiffness are considered. Additional research needs are also discussed.

  11. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  12. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland.

    PubMed

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Capek, Petr; Kaiser, Christina; Torsvik, Vigdis L; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation.

  13. Transport of four pharmaceuticals in different horizons of three soil types

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Svatkova, Paula; Klement, Ales; Jaksik, Ondrej; Golovko, Oksana; Fer, Miroslav; Kocarek, Martin; Nikodem, Antonin; Grabic, Roman

    2015-04-01

    Soil structure, which varies in different soil types and the horizons of these soil types, has a significant impact on water flow and contaminant transport in soils. Transport of many contaminants is in addition strongly influenced by their sorption on soil particles. Transport of four pharmaceuticals (sulfamethoxazole, trimethoprim, atenolol and carbamazepine) was studied in soil columns (a diameter of 10.5 cm and a height of 13 cm) taken from all diagnostic horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol). The irrigation by water contaminated by a mixture of all four compounds followed by ponding infiltration of distilled water was simulated and water outflow and solute concentrations from the bottom of the soil sample was monitored in time. The highest infiltration rates were observed for soil samples from the Bt horizons of the Greyic Phaeozem that exhibited prismatic structure, followed by rates observed in the Ap horizons of the Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol (due to their granular soil structure and presence of root channels). The lowest infiltration rate was measured for the Bw horizon of the Haplic Cambisol, which had a poorly developed soil structure and a low fraction of macropores. Compound discharge was however also highly affected by their sorption on solids. The highest mobility was observed for sulfamethoxazole followed by carbamazepine atenolol and trimethoprim, which corresponds to measured sorption isotherms. Mobility of ionizable compounds in different soil samples was influenced by pH (i.e. degree and form of their ionization) and sites available for absorption. Mobility of sulfamethoxazole decreased with decreasing pH (i.e. the largest sorption measured in horizons of the Haplic Cambisol). While mobility of atenolol and trimethoprim decreased with increasing base cation saturation, and with increasing organic matter content for carbamazepine. As result of both affects (i.e. soil

  14. Failure mechanisms of buried pipelines under fault movement and soil liquefaction

    SciTech Connect

    Yeh, Y.H.

    1983-01-01

    Lifelines, such as oil and gas transmission lines and water and sewer pipelines, have been damaged heavily in recent earthquakes. The damages of these lifelines have caused major, catastrophic disruption of essential service to human needs. Two seismic hazards are a) fault movement and b) soil liquefaction. In the investigation of fault movement, a non-linear analysis for a buried pipeline subjected to tensile strike-slip fault is proposed with following conditions: 1) the conditions of using elastic foundation for the far end of the pipe and the ultimate passive soil pressure near the fault are used to derive the basic equations of a pipeline crossing an active fault; and 2) an iterative method is used to solve the non-linear equations induced from the non-linearity of material and soil characteristics and large displacement. This study also discusses the design criteria for buried pipelines subjected to various fault movement and other design parameters. An initial research effort to investigate the performance of a pipeline in a soil liquefaction environment during earthquakes is described. The pipeline is subjected to longitudinal wave propagation at the time of liquefaction of soil deposits. A simplified pipe model on a time dependent elastic foundation is proposed to stimulate a liquefaction situation of a liquefiable zone during earthquakes and the finite difference technique coupled with a time-increment computer solution is employed to determine the dynamic responses of the proposed model numerically.

  15. Discordant 14C ages from buried tidal-marsh soils in the Cascadia subduction zone, southern Oregon coast

    USGS Publications Warehouse

    Nelson, A.R.

    1992-01-01

    Peaty, tidal-marsh soils interbedded with estuarine mud in late Holocene stratigraphic sequences near Coos Bay, Oregon, may have been submerged and buried during great (M > 8) subduction earthquakes, smaller localized earthquakes, or by nontectonic processes. Radiocarbon dating might help distinguish among these alternatives by showing that soils at different sites were submerged at different times along this part of the Cascadia subduction zone. But comparison of conventional 14C ages for different materials from the same buried soils shows that they contain materials that differ in age by many hundreds of years. Errors in calibrated soil ages represent about the same length of time as recurrence times for submergence events (150-500 yr)-this similarity precludes using conventional 14C ages to distinguish buried soils along the southern Oregon coast. Accelerator mass spectrometer 14C ages of carefully selected macrofossils from the tops of peaty soils should provide more precise estimates of the times of submergence events. ?? 1992.

  16. Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA.

    PubMed

    Juillerat, Juliette I; Ross, Donald S; Bank, Michael S

    2012-08-01

    Mercury (Hg) is an atmospheric pollutant that, in forest ecosystems, accumulates in foliage and upper soil horizons. The authors measured soil and litterfall Hg at 15 forest sites (northern hardwood to mixed hardwood/conifer) throughout Vermont, USA, to examine variation among tree species, forest type, and soils. Differences were found among the 12 tree species sampled from at least two sites, with Acer pensylvanicum having significantly greater litterfall total Hg concentration. Senescent leaves had greater Hg concentrations if they originated lower in the canopy or had higher surface:weight ratios. Annual litterfall Hg flux had a wide range, 12.6 to 28.5 µg/m(2) (mean, 17.9 µg/m(2) ), not related to forest type. Soil and Hg pools in the Oi horizon (litter layer) were not related to the measured Hg deposition flux in litterfall or to total modeled Hg deposition. Despite having lower Hg concentrations, upper mineral soil (A horizons) had greater Hg pools than organic soil horizons (forest floor) due to greater bulk density. Significant differences were found in Hg concentration and Hg/C ratio among soil horizons but not among forest types. Overall, our findings highlight the importance of site history and the benefits of collecting litterfall and soils simultaneously. Observed differences in forest floor Hg pools were strongly correlated with carbon pools, which appeared to be a function of historic land-use patterns.

  17. The effect of soil texture on the degradation of textiles associated with buried bodies.

    PubMed

    Lowe, A C; Beresford, D V; Carter, D O; Gaspari, F; O'Brien, R C; Stuart, B H; Forbes, S L

    2013-09-10

    There are many factors which affect the rate of decomposition in a grave site including; the depth of burial, climatic conditions, physical conditions of the soil (e.g. texture, pH, moisture), and method of burial (e.g. clothing, wrappings). Clothing is often studied as a factor that can slow the rate of soft tissue decomposition. In contrast, the effect of soft tissue decomposition on the rate of textile degradation is usually reported as anecdotal evidence rather than being studied under controlled conditions. The majority of studies in this area have focused on the degradation of textiles buried directly in soil. The purpose of this study was to investigate the effect of soil texture on the degradation and/or preservation of textile materials associated with buried bodies. The study involved the burial of clothed domestic pig carcasses and control clothing in contrasting soil textures (silty clay loam, fine sand and fine sandy loam) at three field sites in southern Ontario, Canada. Graves were exhumed after 2, 12 and 14 months burial to observe the degree of degradation for both natural and synthetic textiles. Recovered textile samples were chemically analyzed using infrared (IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) to investigate the lipid decomposition by-products retained in the textiles. The findings of this study demonstrate that natural textile in contact with a buried decomposing body will be preserved for longer periods of time when compared to the same textile buried directly in soil and not in contact with a body. The soil texture did not visually impact the degree of degradation or preservation. Furthermore, the natural-synthetic textile blend was resistant to degradation, regardless of soil texture, contact with the body or time since deposition. Chemical analysis of the textiles using GC-MS correctly identified a lipid degradation profile consistent with the degree of soft tissue decomposition. Such information may be

  18. Pedotransfer functions for Irish soils - estimation of bulk density (ρb) per horizon type

    NASA Astrophysics Data System (ADS)

    Reidy, B.; Simo, I.; Sills, P.; Creamer, R. E.

    2016-01-01

    Soil bulk density is a key property in defining soil characteristics. It describes the packing structure of the soil and is also essential for the measurement of soil carbon stock and nutrient assessment. In many older surveys this property was neglected and in many modern surveys this property is omitted due to cost both in laboratory and labour and in cases where the core method cannot be applied. To overcome these oversights pedotransfer functions are applied using other known soil properties to estimate bulk density. Pedotransfer functions have been derived from large international data sets across many studies, with their own inherent biases, many ignoring horizonation and depth variances. Initially pedotransfer functions from the literature were used to predict different horizon type bulk densities using local known bulk density data sets. Then the best performing of the pedotransfer functions were selected to recalibrate and then were validated again using the known data. The predicted co-efficient of determination was 0.5 or greater in 12 of the 17 horizon types studied. These new equations allowed gap filling where bulk density data were missing in part or whole soil profiles. This then allowed the development of an indicative soil bulk density map for Ireland at 0-30 and 30-50 cm horizon depths. In general the horizons with the largest known data sets had the best predictions, using the recalibrated and validated pedotransfer functions.

  19. Pedotransfer functions for Irish soils - estimation of bulk density (ρb) per horizon type

    NASA Astrophysics Data System (ADS)

    Reidy, B.; Simo, I.; Sills, P.; Creamer, R. E.

    2015-10-01

    Soil bulk density is a key property in defining soil characteristics. It describes the packing structure of the soil and is also essential for the measurement of soil carbon stock and nutrient assessment. In many older surveys this property was neglected and in many modern surveys this property is omitted due to cost both in laboratory and labour and in cases where the core method cannot be applied. To overcome these oversights pedotransfer functions are applied using other known soil properties to estimate bulk density. Pedotransfer functions have been derived from large international datasets across many studies, with their own inherent biases, many ignoring horizonation and depth variances. Initially pedotransfer functions from the literature were used to predict different horizon types using local known bulk density datasets. Then the best performing of the pedotransfer functions, were selected to recalibrate and then were validated again using the known data. The predicted co-efficient of determination was 0.5 or greater in 12 of the 17 horizon types studied. These new equations allowed gap filling where bulk density data was missing in part or whole soil profiles. This then allowed the development of an indicative soil bulk density map for Ireland at 0-30 and 30-50 cm horizon depths. In general the horizons with the largest known datasets had the best predictions, using the recalibrated and validated pedotransfer functions.

  20. Sorption of acetochlor, S-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina.

    PubMed

    Bedmar, Francisco; Daniel, Peter E; Costa, José L; Giménez, Daniel

    2011-09-01

    Understanding herbicide sorption within soil profiles is the first step to predicting their behavior and leaching potential. Laboratory studies were conducted to determine the influence of surface and subsurface soil properties on acetochlor, atrazine, and S-metolachlor sorption. Soil samples were taken from horizons A, B, and C of two loamy soils of the humid pampas of Argentina under no-till management; horizon A was divided into two layers, A(0) (0-5 cm) and A(1) (5 cm to the full thickness of an A horizon). Sorption isotherms were determined from each sampled horizon using the batch equilibrium method and seven concentrations (0, 0.1, 0.5, 2.0, 5.0, 10.0, and 20.0 mg L(-1)). Sorption affinity of herbicides was approximated by the Freundlich equation. The sorption strength K(f) (mg(1 - 1/n) kg(-1) L(1/n) ) over the soils and horizons studied followed the order S-metolachlor (16.51-29.19) > atrazine (4.85-12.34) ≥ acetochlor (5.17-11.97), which was closely related to the hydrophobicity of herbicides expressed as octanol-water partition coefficient (K(OW) ). The K(f) values of the three herbicides were positively correlated with soil organic carbon, with a significance of p < 0.01. Values of K(f) for the three herbicides decreased with depth in the two soils, indicating greater sorption onto surficial soil horizons and possibly a delayed transport toward subsurface soils and subsequent pollution of groundwater.

  1. Hydraulic and thermal properties of soil samples from the buried waste test facility

    SciTech Connect

    Cass, A.; Campbell, G.S.; Jones, T.L.

    1981-10-01

    In shallow land burial, the most common disposal method for low-level waste, waste containers are placed in shallow trenches and covered with natural sediment material. To design such a facility requires an in-depth understanding of the infiltration and evaporation processes taking place at the soil surface and the effect these processes have on the amount of water cycling through a burial zone. At the DOE Hanford Site in Richland, Washington, a field installation called the Buried Waste Test Facility (BWTF) has been constructed to study unsaturated soil water and contaminant transport. PNL is collecting data at the BWTF to help explain soil water movement at shallow depths, and specifically evaporation from bare sols. The data presented here represent the initial phase of a cooperative effort between PNL and Washington State University to use data collected at the BWFT.

  2. Disturbances in the soil: finding buried bodies and other evidence using ground penetrating radar.

    PubMed

    Miller, P S

    1996-07-01

    Ground penetrating radar (GPR) is an efficient and effective means to search for buried evidence, whether it be a clandestine grave, formal burial, or certain missing articles from a crime scene. The procedures for GPR used by the U.S. Army Central Identification Laboratory, Hawaii (CILHI), are the result of several years of experimentation on a variety of ground surfaces in Hawaii, Southeast Asia and the mainland U.S. This remote sensing method does not usually provide direct information that there is a body or other specific object beneath the ground. Most of the time the GPR has been used to determine where a target object is not located. The key feature of GPR is that it can detect recent changes in shallow soil conditions caused by the disturbance of soil and the intrusion of different material. Using the methods described here, the investigator should be able to determine the precise metric grid coordinates for a subsurface disturbance, as well as the approximate size, the general shape, and the depth of the buried material. Success will vary with soil conditions. The conditions suitable or not practical for using GPR are summarized. This remote sensing technology can have wider use in crime scene investigations due to the recent introduction of more user-friendly software and more portable hardware.

  3. Deep horizons: Soil Carbon sequestration and storage potential in grassland soils

    NASA Astrophysics Data System (ADS)

    Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel

    2016-04-01

    Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (<53 μm) is considered C sequestration as these fractions offer the greatest protection against mineralization. This study assessed the role of aggregation in C sequestration throughout the profile, down to 1 m depth, of 30 grassland sites divided in 6 soil types. One kg sample was collected for each horizon, sieved at 8 mm and dried at 40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However

  4. Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons.

    PubMed

    Barry, Karen M; Janos, David P; Nichols, Scott; Bowman, David M J S

    2015-01-01

    Eucalyptus obliqua, the most widespread timber tree in Tasmania, is a pioneer after fire which can eliminate the organic layer of forest soil, exposing the underlying mineral soil. We compared seedling growth, mycorrhiza formation, and mineral nutrient limitation in organic layer vs. mineral soil. We grew E. obliqua seedlings separately in pots of organic layer and mineral soil in a glasshouse. Additional treatments of organic soil only, involved fully crossed methyl-bromide fumigation and fertilization. Fertilization comprised chelated iron for 121 days after transplant (DAT) followed by soluble phosphorus. At 357 DAT, whole plant dry weight was three times greater in ambient organic than in mineral soil. In organic soil, fumigation halved ectomycorrhiza abundance and reduced seedling growth at 149 DAT, but by 357 DAT when negative effects of fumigation on seedling growth had disappeared, neither fumigation nor fertilization affected mycorrhiza abundance. Iron fertilization diminished seedling growth, but subsequent phosphorus fertilization improved it. E. obliqua seedlings grow much better in organic layer soil than in mineral soil, although phosphorus remains limiting. The prevalent forestry practice of burning to mineral soil after timber harvest exposes a poor growth medium likely only partially compensated by fire-induced mineral soil alterations.

  5. A geophysical and biochemical investigation of buried remains in contrasting soil textures in southern Ontario

    NASA Astrophysics Data System (ADS)

    Lowe, Amanda C.

    Ground penetrating radar (GPR) is a non-invasive, geophysical tool used for the detection of clandestine graves. GPR operates by detecting density differences in soil by the transmission of high frequency electromagnetic (EM) waves from an antenna. A 500 Megahertz (MHz) frequency antenna is typically used for forensic investigations, as it provides a suitable compromise between depth of penetration and sub-surface resolution. Domestic pig (Sus scrofa) carcasses were clothed in 100% cotton t-shirts and 50% cotton/50% polyester briefs, and buried at a consistent depth at three field sites of contrasting soil texture (silty clay loam, fine sand and fine sandy loam) in southern Ontario. GPR was used to detect and monitor the graves for a period of 14 months post burial. Analysis of collected data revealed that GPR had applicability in the detection of clandestine graves containing remains in silty clay loam and fine sandy loam soils, but was not suitable for detection in fine sandy soil. Specifically, within a fine sandy loam soil, there is the potential to estimate the post burial interval (PBI), as hyperbolic grave response was well defined at the beginning of the 14 month burial duration, but became less distinctive near the completion of the study. Following the detection of a clandestine grave containing a carcass, collection of gravesoil, tissue and textile samples is important for the estimation of the stage of decomposition and the post burial interval (PBI) of the remains. Throughout the decomposition process of a carcass, adipose tissue is subjected to hydrolytic enzymes that convert triglycerides to their corresponding unsaturated, saturated and salts of fatty acids. The composition of fatty acids in the decomposed tissue will vary with the post mortem period, but it is unknown what affect the soil texture has on lipid degradation. As decomposition proceeds, fatty acids can leach from the tissues into the surrounding burial environment. Fatty acid analysis

  6. Uplifting behavior of shallow buried pipe in liquefiable soil by dynamic centrifuge test.

    PubMed

    Huang, Bo; Liu, Jingwen; Lin, Peng; Ling, Daosheng

    2014-01-01

    Underground pipelines are widely applied in the so-called lifeline engineerings. It shows according to seismic surveys that the damage from soil liquefaction to underground pipelines was the most serious, whose failures were mainly in the form of pipeline uplifting. In the present study, dynamic centrifuge model tests were conducted to study the uplifting behaviors of shallow-buried pipeline subjected to seismic vibration in liquefied sites. The uplifting mechanism was discussed through the responses of the pore water pressure and earth pressure around the pipeline. Additionally, the analysis of force, which the pipeline was subjected to before and during vibration, was introduced and proved to be reasonable by the comparison of the measured and the calculated results. The uplifting behavior of pipe is the combination effects of multiple forces, and is highly dependent on the excess pore pressure.

  7. Uplifting Behavior of Shallow Buried Pipe in Liquefiable Soil by Dynamic Centrifuge Test

    PubMed Central

    Liu, Jingwen; Ling, Daosheng

    2014-01-01

    Underground pipelines are widely applied in the so-called lifeline engineerings. It shows according to seismic surveys that the damage from soil liquefaction to underground pipelines was the most serious, whose failures were mainly in the form of pipeline uplifting. In the present study, dynamic centrifuge model tests were conducted to study the uplifting behaviors of shallow-buried pipeline subjected to seismic vibration in liquefied sites. The uplifting mechanism was discussed through the responses of the pore water pressure and earth pressure around the pipeline. Additionally, the analysis of force, which the pipeline was subjected to before and during vibration, was introduced and proved to be reasonable by the comparison of the measured and the calculated results. The uplifting behavior of pipe is the combination effects of multiple forces, and is highly dependent on the excess pore pressure. PMID:25121140

  8. Late quaternary temperature record from buried soils of the North American Great Plains

    USGS Publications Warehouse

    Nordt, L.; Von Fischer, J.; Tieszen, L.

    2007-01-01

    We present the first comprehensive late Quaternary record of North American Great Plains temperature by assessing the behavior of the stable isotopic composition (??13C) of buried soils. After examining the relationship between the ??13C of topsoil organic matter and July temperature from 61 native prairies within a latitudinal range of 46??-38??N, we applied the resulting regression equation to 64 published ??13C values from buried soils of the same region to construct a temperature curve for the past 12 k.y. Estimated temperatures from 12 to 10 ka (1 k.y. = 1000 14C yr B.P.) fluctuated with a periodicity of ???1 k.y. with two cool excursions between -4.5 and -3.5 ??C and two warmer excursions between -1 and 0 ??C, relative to modern. Early Holocene temperatures from ca. 10-7.5 ka were -1.0 to -2.0 ??C before rising to +1.0 ??C in the middle Holocene between 6.0 and 4.5 ka. After a cool interlude from 4.2 to 2.6 ka, when temperatures dropped to slightly below modern, another warm interval ensued from 2.6 to 1 ka as temperatures increased to ???+0.5 ??C. A final decline in temperature to below modern occurred beginning ca. 0.5 ka. Cooler than present temperatures in the Great Plains indicate telecommunications with cool-water episodes in the Gulf of Mexico and North Atlantic potentially governed by a combination of glacial meltwater pulses and low solar irradiance. ?? 2007 Geological Society of America.

  9. Influences upon the lead isotopic composition of organic and mineral horizons in soil profiles from the National Soil Inventory of Scotland (2007-09).

    PubMed

    Farmer, John G; Graham, Margaret C; Eades, Lorna J; Lilly, Allan; Bacon, Jeffrey R

    2016-02-15

    Some 644 individual soil horizons from 169 sites in Scotland were analyzed for Pb concentration and isotopic composition. There were three scenarios: (i) 36 sites where both top and bottom (i.e. lowest sampled) soil horizons were classified as organic in nature, (ii) 67 with an organic top but mineral bottom soil horizon, and (iii) 66 where both top and bottom soil horizons were mineral. Lead concentrations were greater in the top horizon relative to the bottom horizon in all but a few cases. The top horizon (206)Pb/(207)Pb ratio was lesser (outside analytical error) than the corresponding bottom horizon (206)Pb/(207)Pb ratio at (i) 64%, (ii) 94% and (iii) 73% of sites, and greater at only (i) 8%, (ii) 3% and (iii) 8% of sites. A plot of (208)Pb/(207)Pb vs. (208)Pb/(206)Pb ratios showed that the Pb in organic top (i, ii) and bottom (i) horizons was consistent with atmospherically deposited Pb of anthropogenic origin. The (206)Pb/(207)Pb ratio of the organic top horizon in (ii) was unrelated to the (206)Pb/(207)Pb ratio of the mineral bottom horizon as demonstrated by the geographical variation in the negative shift in the ratio, a result of differences in the mineral horizon values arising from the greater influence of radiogenic Pb in the north. In (iii), the lesser values of the (206)Pb/(207)Pb ratio for the mineral top horizon relative to the mineral bottom horizon were consistent with the presence of anthropogenic Pb, in addition to indigenous Pb, in the former. Mean anthropogenic Pb inventories of 1.5 and 4.5 g m(-2) were obtained for the northern and southern halves of Scotland, respectively, consistent with long-range atmospheric transport of anthropogenic Pb (mean (206)Pb/(207)Pb ratio~1.16). For cultivated agricultural soils (Ap), this corresponded to about half of the total Pb inventory in the top 30 cm of the soil column.

  10. Expanding the horizons of soil science to the public

    NASA Astrophysics Data System (ADS)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan

    2015-04-01

    Soils are critical to all life on the planet yet most individuals treat soil like dirt. As soil scientist we have long recognized this and have struggled to find ways to communicate the importance of soils to the public. The goal is not purely altruistic as we recognize that society funds or research and provides the workforce in soils that we need to continue to gain knowledge and expertise in soil science. In 2006 the Soil Science Society of America took a bold move and created its K12 Committee in part to compliment the Dig It! The Secrets of Soil exhibit that opened in July 2008 at the Smithsonian's Institution's Nation Museum of Natural History (of which SSS was a founding sponsor). The committee's work began quickly with a website designed to provide resources for K12 teachers (primary and school teachers). The first accomplishments included reviewing and posting links to web based information already available to teachers. These links were sorted by subject and grade level to make it easier for teachers to navigate the web and find what they needed quickly. Several presentations and lessons designed for K12 teachers were also posted at this time. Concurrent with this effort a subcommittee review and organized the national teaching standards to show where soils could fit into the overall K12 curriculum. As the website was being developed another subcommittee developed a soils book (Soil! Get the Inside Scoop, 2008) to further compliment the Dig It! exhibit. This was a new endeavor for SSSA having never worked with the non-academic audience in developing a book. Peer-reviews of this book included not only scientist but also students in order to make sure the book was attractive to them. Once the book was published and the website developed it became clear more outreach was needed. SSSA K12 Committee has attended both the National Science Teachers Association (since 2008) the USA Science and Engineering Festival (since 2010) with exhibits and workshops. It has

  11. Geochemical gradients in soil O-horizon samples from southern Norway: Natural or anthropogenic?

    USGS Publications Warehouse

    Reimann, C.; Englmaier, P.; Flem, B.; Gough, L.; Lamothe, P.; Nordgulen, O.; Smith, D.

    2009-01-01

    Forty soil O- and C-horizon samples were collected along a south-to-north transect extending inland for approximately 200 km from the southern tip of Norway. The elements As, Au, Bi, Cd, Cu, Ga, Ge, Hf, Hg, In, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, V, W, Zn and Zr all show a distinct decrease in concentration in soil O-horizons with increasing distance from the coast. The elements showing the strongest coastal enrichment, some by more than an order of magnitude compared to inland samples, are Au, Bi, As, Pb, Sb and Sn. Furthermore, the elements Cd (median O-/median C-horizon = 31), C, Sb, Ag, K, S, Ge (10), Hg, Pb, As, Bi, Sr (5), Se, Au, Ba, Na, Zn, P, Cu and Sn (2) are all strongly enriched in the O-horizon when compared to the underlying C-horizon. Lead isotope ratios, however, do not show any gradient with distance from the coast (declining Pb concentration). Along a 50 km topographically steep east-west transect in the centre of the survey area, far from the coast but crossing several vegetation zones, similar element enrichment patterns and concentration gradients can be observed in the O-horizon. Lead isotope ratios in the O-horizon correlate along both transects with pH and the C/N-ratio, both proxies for the quality of the organic material. Natural conditions in southern Norway, related to climate and vegetation, rather than long range atmospheric transport of air pollutants (LRT), cause the observed features. ?? 2008 Elsevier Ltd.

  12. Time-domain response of a metal detector to a target buried in soil with frequency-dependent magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Das, Y.

    2006-05-01

    The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the performance of induction metal detectors widely used in humanitarian demining. This paper studies the specific case of the time-domain response of a small metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are known to adversely affect the performance of metal detectors. The included analysis and computations extend previous work which has been done mostly in the frequency domain. Approximate theoretical expressions for weakly magnetic soils are found to fit the experimental data very well, which allowed the estimation of soil model parameters, albeit in an ad hoc manner. Soil signal is found to exceed target signal (due to an aluminum sphere of radius 0.0127 m) in many cases, even for the weakly magnetic Cambodian laterite used in the experiments. How deep a buried target is detected depends on many other factors in addition to the relative strength of soil and target signals. A general statement cannot thus be made regarding detectability of a target in soil based on the presented results. However, computational results complemented with experimental data extend the understanding of the effect that soil has on metal detectors.

  13. Psychrotolerant actinomycetes of plants and organic horizons in tundra and taiga soils

    NASA Astrophysics Data System (ADS)

    Dubrova, M. S.; Zenova, G. M.; Yakushev, A. V.; Manucharova, N. A.; Makarova, E. P.; Zvyagintsev, D. G.; Chernov, I. Yu.

    2013-08-01

    It has been revealed that in organic horizons and plants of the tundra and taiga ecosystems under low temperatures, actinomycetal complexes form. The population density of psychrotolerant actinomycetes in organic horizons and plants reaches tens and hundreds of thousands CFU/g of substrate or soil, and decreases in the sequence litters > plants > soils > undecomposed plant remains > moss growths. The mycelium length of psychrotolerant actinomycetes reaches 220 m/g of substrate. Application of the FISH method has demonstrated that metabolically active psychrotolerant bacteria of the phylum Actinobacteria constitute 30% of all metabolically active psychrotolerant representatives of the Bacterià domain of the prokaryotic microbial community of soils and plants. Psychrotolerant actinomycetes in tundra and taiga ecosystems possess antimicrobial properties.

  14. Post fire organic matter biodegradation in permafrost soils: Case study after experimental heating of mineral horizons.

    PubMed

    Masyagina, O V; Tokareva, I V; Prokushkin, A S

    2016-12-15

    Periodical ground fires of high frequency in permafrost forest ecosystems of Siberia (Russian Federation) are essential factors determining quantitative and qualitative parameters of permafrost soil organic matter. Specific changes in physical and chemical parameters and microbial activity of permafrost soil mineral horizons of northern taiga larch stands were revealed after heating at high temperatures (150-500°C) used for imitation of different burn intensities. Burning at 150-200°C resulted in decreasing of soil pH, whilst heating at 300-500°C caused increase of pH compare to unheated soils. Water-soluble organic carbon concentration in permafrost soils heated at 150-200°C was much higher than that of unheated soils. All these changes determined soil microbial activity in heated soils. In particular, in soils heated at 300-500°C there was momentary stimulating effect on substrate-induced respiration registered and on basal respiration values in soils burned at 150°C and 300-400°C. Four-month laboratory incubation of permafrost soils heated at different temperatures showed stimulation of microbial activity in first several days after inoculation due to high substrate availability after heating. Then soon after that soil microbial community started to be depleted on substrate because of decreasing water-soluble organic carbon, C and N content and it continued to the end of incubation.

  15. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation.

    PubMed

    Uroz, Stéphane; Ioannidis, Panos; Lengelle, Juliette; Cébron, Aurélie; Morin, Emmanuelle; Buée, Marc; Martin, Francis

    2013-01-01

    In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France). The objectives were to assess whether the decreasing nutrient bioavailability and pH variations that naturally occurs between the organic and mineral horizons affects the soil microbial functional biodiversity. The 14 Gbp of pyrosequencing and Illumina sequences generated in this study revealed complex microbial communities dominated by bacteria. Detailed analyses showed that the organic soil horizon was significantly enriched in sequences related to Bacteria, Chordata, Arthropoda and Ascomycota. On the contrary the mineral horizon was significantly enriched in sequences related to Archaea. Our analyses also highlighted that the microbial communities inhabiting the two soil horizons differed significantly in their functional potentials according to functional assays and MG-RAST analyses, suggesting a functional specialisation of these microbial communities. Consistent with this specialisation, our shotgun metagenomic approach revealed a significant increase in the relative abundance of sequences related glycoside hydrolases in the organic horizon compared to the mineral horizon that was significantly enriched in glycoside transferases. This functional stratification according to the soil horizon was also confirmed by a significant correlation between the functional assays performed in this study and the functional metagenomic analyses. Together, our results suggest that the soil stratification and particularly the soil resource availability impact the

  16. Stabilization of ancient organic matter in deep buried paleosols

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Chaopricha, N. T.; Mueller, C.; Diefendorf, A. F.; Plante, A. F.; Grandy, S.; Mason, J. A.

    2012-12-01

    Buried soils representing ancient surface horizons can contain large organic carbon reservoirs that may interact with the atmosphere if exposed by erosion, road construction, or strip mining. Paleosols in long-term depositional sites provide a unique opportunity for studying the importance of different mechanisms on the persistence of organic matter (OM) over millennial time-scales. We report on the chemistry and bioavailability of OM stored in the Brady soil, a deeply buried (7 m) paleosol in loess deposits of southwestern Nebraska, USA. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying. The Brady soil represents a dark brown horizon enriched in C relative to loess immediately above and below. Spanning much of the central Great Plains, this buried soil contains large C stocks due to the thickness of its A horizon (0.5 to 1 m) and wide geographic extent. Our research provides a unique perspective on long-term OM stabilization in deep soils using multiple analytical approaches. Soils were collected from the Brady soil A horizon (at 7 m depth) and modern surface A horizons (0-15 cm) at two sites for comparison. Soils were separated by density fractionation using 1.85 g ml-1 sodium polytungstate into: free particulate organic matter (fPOM) and aggregate-occluded (oPOM) of two size classes (large: >20 μm, and small: < 20 μm). The remaining dense fraction was separated into sand, silt, and clay size fractions. The distribution and age of C among density and particle-size fractions differed between surface and Brady soils. We isolated the source of the characteristic dark coloring of the Brady soil to the oPOM-small fraction, which also contained 20% of the total organic C pool in the Brady soil. The oPOM-small fraction and the bulk soil in the middle of the Brady A horizon had 14C ages of 10,500-12,400 cal yr BP, within the time that the soil was actively forming at the land surface. Surface soils showed modern ages. Lipid analyses of

  17. Evaluating the importance of characterizing soil structure and horizons in parameterizing a hydrologic process model

    USGS Publications Warehouse

    Mirus, Benjamin B.

    2015-01-01

    Incorporating the influence of soil structure and horizons into parameterizations of distributed surface water/groundwater models remains a challenge. Often, only a single soil unit is employed, and soil-hydraulic properties are assigned based on textural classification, without evaluating the potential impact of these simplifications. This study uses a distributed physics-based model to assess the influence of soil horizons and structure on effective parameterization. This paper tests the viability of two established and widely used hydrogeologic methods for simulating runoff and variably saturated flow through layered soils: (1) accounting for vertical heterogeneity by combining hydrostratigraphic units with contrasting hydraulic properties into homogeneous, anisotropic units and (2) use of established pedotransfer functions based on soil texture alone to estimate water retention and conductivity, without accounting for the influence of pedon structures and hysteresis. The viability of this latter method for capturing the seasonal transition from runoff-dominated to evapotranspiration-dominated regimes is also tested here. For cases tested here, event-based simulations using simplified vertical heterogeneity did not capture the state-dependent anisotropy and complex combinations of runoff generation mechanisms resulting from permeability contrasts in layered hillslopes with complex topography. Continuous simulations using pedotransfer functions that do not account for the influence of soil structure and hysteresis generally over-predicted runoff, leading to propagation of substantial water balance errors. Analysis suggests that identifying a dominant hydropedological unit provides the most acceptable simplification of subsurface layering and that modified pedotransfer functions with steeper soil-water retention curves might adequately capture the influence of soil structure and hysteresis on hydrologic response in headwater catchments.

  18. The origin of lead in the organic horizon of tundra soils: atmospheric deposition, plant translocation from the mineral soil or soil mineral mixing?

    PubMed

    Klaminder, Jonatan; Farmer, John G; MacKenzie, Angus B

    2011-09-15

    Knowledge of the anthropogenic contribution to lead (Pb) concentrations in surface soils in high latitude ecosystems is central to our understanding of the extent of atmospheric Pb contamination. In this study, we reconstructed fallout of Pb at a remote sub-arctic region by using two ombrotrophic peat cores and assessed the extent to which this airborne Pb is able to explain the isotopic composition ((206)Pb/(207)Pb ratio) in the O-horizon of tundra soils. In the peat cores, long-range atmospheric fallout appeared to be the main source of Pb as indicated by temporal trends that followed the known European pollution history, i.e. accelerated fallout at the onset of industrialization and peak fallout around the 1960s-70s. The Pb isotopic composition of the O-horizon of podzolic tundra soil ((206)Pb/(207)Pb=1.170 ± 0.002; mean ± SD) overlapped with that of the peat ((206)Pb/(207)Pb=1.16 ± 0.01) representing a proxy for atmospheric aerosols, but was clearly different from that of the parent soil material ((206)Pb/(207)Pb=1.22-1.30). This finding indicated that long-range fallout of atmospheric Pb is the main driver of Pb accumulation in podzolic tundra soil. In O-horizons of tundra soil weakly affected by cryoturbation (cryosols) however, the input of Pb from the underlying mineral soil increased as indicated by (206)Pb/(207)Pb ratios of up to 1.20, a value closer to that of local soil minerals. Nevertheless, atmospheric Pb appeared to be the dominant source in this soil compartment. We conclude that Pb concentrations in the O-horizon of studied tundra soils - despite being much lower than in boreal soils and representative for one of the least exposed sites to atmospheric Pb contaminants in Europe - are mainly controlled by atmospheric inputs from distant anthropogenic sources.

  19. Micromorphological and ultramicroscopic aspects of buried remains: Time-dependent markers of decomposition and permanence in soil in experimental burial.

    PubMed

    Zangarini, Sara; Trombino, Luca; Cattaneo, Cristina

    2016-06-01

    A buried body not only determines an environmental response at the deposition site but it is also affected by the soil. The experiment was performed using eleven swine carcasses buried in an open site (Northern Italy). Changes occurring in bone tissue at different post-burial intervals were evaluated observing thin sections of bones through micromorphological and ultramicroscopic (SEM-EDS) techniques. These methods allowed the identification of: (a) magnesium phosphate (Mg3(PO4)2) crystallizations, probably linked to decomposition of bones and soft tissues; (b) significant sulphur levels which seem to be related to hydrogen sulphide (H2S) fixation in bone tissue; (c) metal oxide concentrations in the form of unusual violet-blue colorations, which probably are evidence of the soil's action and penetration in bones, also testified by (d) the presence of mineral grains enclosed in the osseous tissue. The results underline the possibility of identifying both time-dependent markers of decomposition and indicators of permanence in soil in buried bones.

  20. Do Forest Age and Soil Depth Affect Carbon and Nitrogen Adsorption in Mineral Horizons?

    NASA Astrophysics Data System (ADS)

    Spina, P. G.; Lovett, G. M.; Fuss, C. B.; Goodale, C. L.; Lang, A.; Fahey, T.

    2015-12-01

    Mineral soils retain large amounts of organic matter through sorption on the surfaces of mineral soils, the largest pools of carbon (C) and nitrogen (N) in the forests of the northeastern U.S. In addition to determining organic matter storage, adsorption and desorption processes are important controllers of runoff chemistry. We are studying adsorption dynamics of mineral soils collected from a chronosequence of hardwood forest sites in the White Mountains, NH to determine how soils vary in their DOM adsorption capacities as a function of effective C and N saturation. We hypothesize that forest age determines proximity to saturation because young forests may need to mine soil organic matter (SOM) in mineral soils to obtain nitrogen to meet growth demands, while the soils of older forests have had time to reaccumulate SOM, eventually reaching C and N saturation. Consequently, we expect adsorption capacities to first increase with forest age in young forests, as the trees mine C and N from mineral surfaces. They will then decrease with forest age in older forests as mining slows and C and N begin to re-accumulate. Batch experiments were conducted with mineral soil samples and dilutions of forest floor leachate. However, preliminary results from a mature forest site (about 100 years old), which we predicted to be a low point of C and N saturation from decades of mining, contradict expectations. Dissolved organic carbon (DOC) adsorption in its shallow mineral soil layers (0-3 cm below E or A horizons) are lower than younger sites ranging from 20 to about 40 years old. In addition to forest age, soil depths also affect N retention dynamics in forest soils. We hypothesized that deeper mineral soils might have greater adsorption capacities due to the fact that they are exposed to less DOC and DON leaching from organic layers and therefore less saturated. Results from the same mature forest site confirm this. Soils from 3-10 cm depth have more potential to adsorb DOC and

  1. Macro- and micromorphological features of genetic horizons in a solonetzic soil complex at the Dzhanybek Research Station

    NASA Astrophysics Data System (ADS)

    Lebedeva-Verba, M. P.; Gerasimova, M. I.

    2009-03-01

    The comparative analysis of macro- and microfabrics of soil horizons in a trench crossing a solonetzic soil complex on a virgin plot has shown incomplete correspondence between the macro- and micromorphological features. Solonetzic and solodic horizons and features are differently manifested in different types of soils. The soils of the complex are subjected to continuous transformation dictated by the general trend of the landscape evolution in the Caspian Lowland and by the local changes related to the activity of burrowing animals and fluctuations in the groundwater level. The current trends of evolutionary changes are reflected in the soil microfabrics and salt pedofeatures, whereas more ancient processes are recorded in the properties of the clayey plasma. In the soil of the microlow, the most complete correspondence between the macro- and micromorphological features is observed. At the microlevel, the horizons of this soil resemble the humus-accumulative and metamorphic horizons of dark-colored chernozem-like soils of vast mesodepressions. A variant of the soil evolution within the solonetzic complex is discussed.

  2. Assessing the Utility of Soil DNA Extraction Kits for Increasing DNA Yields and Eliminating PCR Inhibitors from Buried Skeletal Remains.

    PubMed

    Hebda, Lisa M; Foran, David R

    2015-09-01

    DNA identification of human remains is often necessary when decedents are skeletonized; however, poor DNA recovery and polymerase chain reaction (PCR) inhibition are frequently encountered, a situation exacerbated by burial. In this research, the utility of integrating soil DNA isolation kits into buried skeletal DNA analysis was evaluated and compared to a standard human DNA extraction kit and organic extraction. The soil kits successfully extracted skeletal DNA at quantities similar to standard methods, although the two kits tested, which differ mechanistically, were not equivalent. Further, the PCR inhibitors calcium and humic acid were effectively removed using the soil kits, whereas collagen was less so. Finally, concordant control region sequences were obtained from human skeletal remains using all four methods. Based on these comparisons, soil DNA isolation kits, which quickened the extraction process, proved to be a viable extraction technique for skeletal remains that resulted in positive identification of a decedent.

  3. Simultaneous sorption of four ionizable pharmaceuticals in different horizons of three soil types.

    PubMed

    Kočárek, Martin; Kodešová, Radka; Vondráčková, Lenka; Golovko, Oksana; Fér, Miroslav; Klement, Aleš; Nikodem, Antonín; Jakšík, Ondřej; Grabic, Roman

    2016-11-01

    Soils may be contaminated by human or veterinary pharmaceuticals. Their behaviour in soil environment is largely controlled by sorption of different compounds in a soil solution onto soil constituents. Here we studied the sorption affinities of 4 pharmaceuticals (atenolol, trimethoprim, carbamazepine and sulfamethoxazole) applied in solute mixtures to soils taken from different horizons of 3 soil types (Greyic Phaeozem on loess, Haplic Luvisol on loess and Haplic Cambisol on gneiss). In the case of the carbamazepine (neutral form) and sulfamethoxazole (partly negatively charged and neutral), sorption affinity of compounds decreased with soil depth, i.e. decreased with soil organic matter content. On the other hand, in the case of atenolol (positively charged) and trimethoprim (partly positively charged and neutral) compound sorption affinity was not depth dependent. Compound sorption affinities in the four-solute systems were compared with those experimentally assessed in topsoils, and were estimated using the pedotransfer rules proposed in our previous study for single-solute systems. While sorption affinities of trimethoprim and carbamazepine in topsoils decreased slightly, sorption affinity of sulfamethoxazole increased. Decreases in sorption of the two compounds could be attributed to their competition between each other and competition with atenolol. Differences between carbamazepine and atenolol behaviour in the one- and four-solute systems could also be explained by the slightly different soil properties in this and our previous study. A great increase of sulfamethoxazole sorption in the Greyic Phaeozem and Haplic Luvisol was observed, which was attributed to elimination of repulsion between negatively charged molecules and particle surfaces due to cation sorption (atenolol and trimethoprim) on soil particles. Thus, our results proved not only an antagonistic but also a synergic affect of differently charged organic molecules on their sorption to soil

  4. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons

    PubMed Central

    Toju, Hirokazu; Kishida, Osamu; Katayama, Noboru; Takagi, Kentaro

    2016-01-01

    Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil. PMID:27861486

  5. Porewater geochemistry of inland Acid sulfate soils with sulfuric horizons following postdrought reflooding with freshwater.

    PubMed

    Creeper, Nathan L; Shand, Paul; Hicks, Warren; Fitzpatrick, Rob W

    2015-05-01

    Following the break of a severe drought in the Murray-Darling Basin, rising water levels restored subaqueous conditions to dried inland acid sulfate soils with sulfuric horizons (pH <3.5). Equilibrium dialysis membrane samplers were used to investigate in situ changes to soil acidity and abundance of metals and metalloids following the first 24 mo of restored subaqueous conditions. The rewetted sulfuric horizons remained severely acidified (pH ∼4) or had retained acidity with jarosite visibly present after 5 mo of continuous subaqueous conditions. A further 19 mo of subaqueous conditions resulted in only small additional increases in pH (∼0.5-1 pH units), with the largest increases occurring within the uppermost 10 cm of the soil profile. Substantial decreases in concentrations of some metal(loid)s were observed with time most likely owing to lower solubility and sorption as a consequence of the increase in pH. In deeper parts of the profiles, porewater remained strongly buffered at low pH values (pH <4.5) and experienced little progression toward anoxic circumneutral pH conditions over the 24 mo of subaqueous conditions. It is proposed that low pH conditions inhibited the activity of SO-reducing bacteria and, in turn, the in situ generation of alkalinity through pyrite production. The limited supply of alkalinity in freshwater systems and the initial highly buffered low pH conditions were also thought to be slowing recovery. The timescales involved for a sulfuric horizon rewetted by a freshwater body to recover from acidic conditions could therefore be in the order of several years.

  6. Persistence of 137Cs in the litter layers of forest soil horizons of Mount IDA/Kazdagi, Turkey.

    PubMed

    Karadeniz, Özlem; Karakurt, Hidayet; Çakır, Rukiye; Çoban, Fatih; Büyükok, Emir; Akal, Cüneyt

    2015-01-01

    In 2010-2012, an extensive study was performed in forest sites of Mount IDA (Kazdagi)/Edremit 26 years after the Chernobyl accident. The (137)Cs activity concentrations were determined by gamma-ray spectrometry in the forest soil layers (OL, OF + OH and A horizons) separately. Based on 341 surface soil samples and 118 soil profiles, activity concentrations of (137)Cs in OL horizons varied between 0.25 ± 0.14 and 70 ± 1 Bq kg(-1), while the ranges of (137)Cs activity concentrations in OF + OH and A horizons were 13 ± 1-555 ± 3 Bq kg(-1) and 2 ± 1-253 ± 2 Bq kg(-1), respectively. Cesium-137 deposition in the study area was estimated to be in the range of 1-39 kBq m(-2) and a linear relationship between the deposition of (137)Cs and the altitude was observed. The distributions of (137)Cs activities in OL, OF + OH and A horizons throughout the region were mapped in detail. The highest (137)Cs activities were found in OF + OH horizons, with markedly lower (137)Cs activity in mineral horizons of soil profiles. It is observed that (137)Cs content of humus layer increases with the thickness of the humus layer for coniferous forest sites. The (137)Cs activity concentrations were higher than the recommended screening limits (150 Bq kg(-1)) at some of the investigated areas. The current activity concentration of top soil layers indicates that over many years since the initial deposition, (137)Cs activity is keeping still high in the organic horizons.

  7. The formation of frangipane horizons and their influence on physical-chemical properties of soils from glass houses

    NASA Astrophysics Data System (ADS)

    Filipov, F.; Bulgariu, D.; Avarvarei, I.

    2009-04-01

    The pedological, mineralogical and geochemical studies performed by as on soils (s.s hortic antrosols) from Iasi (Copou glass house), Barlad and Bacau glass houses have show that, in most of cases, the profile of hortic antrosols have the following compositions: Aho-AC-C or Ck, and Aho-B/C or Ck, respectively. In function of parental material nature and specific exploitation technologies, can appear the diagnostic horizons of association (hiposalic-sc, hiponatric-ac etc.) and / or of transition (A/B, A/C, C/A, A+C, ABk etc.). Specific for soils from glass houses are intense modifications of soil profile, large variability of mineralogy and chemistry, salinization processes (by progressive accumulation of soluble salts) at superior horizons level and formation, at 50 cm depth, of a compact and impermeable horizon (frangipane horizon). From chemical point of view, the hortic antrosols are generally characterized by high values of saturation in bases, of accessible phosphorus and of ratio between humic and fulvic acids (organic matter is dominant in intense humified fraction). Regarding the formation conditions, the mineralogy and geochemistry of frangipane horizons, in this moment, in literature are not too many data. In case of studied soils, the frangipane horizons appear in specific forms, where their structure, morphology and chemistry varied in large limits. In hortic antrosols where are formed, the frangipane horizons determined a sever pedogeochemical segregation. Thus, the horizons situated above to the frangipane horizon evolutes in weak oxidant conditions, weak acid-neutral pH (5.87 - 6.95), high salinity and humidity, intense biological activity; while the horizons situated below to the frangipane horizon evolutes in weak reduction conditions, neutral - weak alkaline pH (7.61 - 8.04), reduced salinity and humidity, weak biological activity. This determined an important differentiation of micro-elements and organic compounds dynamic, evidenced by the

  8. The structural state of buried and surface soils of solonetzic complexes in the dry steppe zone of the Lower Volga basin

    NASA Astrophysics Data System (ADS)

    Zolotareva, B. N.; Bukhonov, A. V.; Demkin, V. A.

    2012-07-01

    The structural state of modern (surface) soils and the soils buried under Anna Ioannovna's rampart (1718-1720) was studied. These soils are the components of solonetzic soil complexes in the southern Privolzhskaya Upland. The dehumification and the high content of calcium in the exchange complex determine the state of the macrostructure of the chestnut soil buried about 300 years ago. The dehumification drastically lowers the water stability of the soil aggregates, and the predominance of calcium ions in the soil exchange complex prevents the destruction of the chestnut paleosol aggregates and preserves their aggregate state upon moistening. For the last 300 years, no significant changes in the macrostructure of the solonetzes have been observed.

  9. Structural properties of dissolved organic carbon in deep soil horizons of an arable and temporarily grassland.

    NASA Astrophysics Data System (ADS)

    Lavaud, A.; Chabbi, A.; Croue, J. P.

    2009-04-01

    It is commonly accepted that dissolved organic carbon (DOC) is the bio-available fraction of the largest amount of soil organic matter (SOM), even if it does represent only a very small proportion. Because most of the studies on DOC dynamics were mainly restricted to forest soils, studies on the factors governing the dynamics of DOC in deep soil horizons (>1 m) in arable system are still very little limited. The objective of this work is to better define the proportion of DOC in deep soil horizons and indicate their main characteristics and structural properties. The study was conducted on the long term observatory for environmental research- biogeochemical cycles and biodiversity Lusignan site). DOC collected using lysimeters plates inserted to a depth of 105 cm was fractionated into 3 fractions using the two column array of XAD-8 and XAD-4 resins. The HPO (hydrophobic) fraction (i.e. humic substances) isolated from the XAD-8 resin, the TPH (Transphilic) fraction from the XAD-4 resin and the HPI (hydrophilic) fraction which corresponds to the DOC that does not adsorbed onto the two resins under the acid condition used (pH 2). DOM adsorbed onto the resins is recovered with a 75%/25% acetonitrile/water mixture and lyophilized. Depend on the amount of material; the chemical composition of DOC was performed using UV254 nm, fluorescence EEM, NMR and HPSEC/UV/COD. The results show that the concentration and structural properties of DOC in deep soil horizon were similar to those of groundwater (low SUVA (1.2 m-1.L.mg C-1), structures composed mainly of low molecular weight). Because of the relatively recent establishment of the treatment, the monitoring of the dynamics of the DOC concentrations did not show significant differences between arable and grassland. However, the temporal dynamic shows a slight increase in the DOC content regardless of the of land use. DOC concentrations between winter and the middle of spring tend to double going from 1 to 2.5 mg / L and then

  10. The influences of soil and nearby structures on dispersion characteristics of wave propagating along buried plastic pipes

    NASA Astrophysics Data System (ADS)

    Liu, Shuyong; Jiang, J.; Parr, Nicola

    2016-09-01

    Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.

  11. Buried soils in a perched dunefield as indicators of late holecene lake-level change in the Lake Superior basin

    USGS Publications Warehouse

    Anderton, John B.; Loope, Walter L.

    1995-01-01

    A stratigraphic analysis of buried soils within the Grand Sable Dunes, a dune field perched 90 m above the southern shore of Lake Superior, reveals a history of eolian activity apparently linked with lake-level fluctuations over the last 5500 yr. A relative rise in the water plane of the Nipissing Great Lakes initially destabilized the lakeward bluff face of the Grand Sable plateau between 5400 and 4600 14C yr B.P. This led to the burial of the Sable Creek soil by eolian sediments derived from the bluff face. Subsequent episodes of eolian activity appear to be tied to similar destabilizing events; high lake levels may have initiated at least four and perhaps eleven episodes of dune building as expressed by soil burials within the dunes. Intervening low lake levels probably correlate with soil profile development, which varies from the well-developed Sable Creek Spodosol catena to thin organic layers containing in-place stumps and tree trunks. Paleoecological reconstructions available for the area do not imply enough climatic change to account for the episodic dune activity. Burial of soils by fine-fraction sediments links dune-building episodes with destabilization of the lower lake-facing bluff, which is rich in fines.

  12. DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state

    USGS Publications Warehouse

    O’Donnell, Jonathan A.; Aiken, George R.; Butler, Kenna D.; Guillemette, Francois; Podgorski, David C.; Spencer, Robert G. M.

    2016-01-01

    The boreal region stores large amounts of organic carbon (C) in organic-soil horizons, which are vulnerable to destabilization via warming and disturbance. Decomposition of soil organic matter (SOM) contributes to the production and turnover of dissolved organic matter (DOM). While temperature is a primary control on rates of SOM and DOM cycling, little is known about temperature effects on DOM composition in soil leachate. Here we conducted a 30 day incubation to examine the effects of temperature (20 versus 5°C) and SOM decomposition state (moss versus fibric versus amorphous horizons) on DOM composition in organic soils of interior Alaska. We characterized DOM using bulk dissolved organic C (DOC) concentration, chemical fractionation, optical properties, and ultrahigh-resolution mass spectrometry. We observed an increase in DOC concentration and DOM aromaticity in the 20°C treatment compared to the 5°C treatment. Leachate from fibric horizons had higher DOC concentration than shallow moss or deep amorphous horizons. We also observed chemical shifts in DOM leachate over time, including increases in hydrophobic organic acids, polyphenols, and condensed aromatics and decreases in low-molecular weight hydrophilic compounds and aliphatics. We compared ultrahigh-resolution mass spectrometry and optical data and observed strong correlations between polyphenols, condensed aromatics, SUVA254, and humic-like fluorescence intensities. These findings suggest that biolabile DOM was preferentially mineralized, and the magnitude of this transformation was determined by kinetics (i.e., temperature) and substrate quality (i.e., soil horizon). With future warming, our findings indicate that organic soils may release higher concentrations of aromatic DOM to aquatic ecosystems.

  13. DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state

    NASA Astrophysics Data System (ADS)

    O'Donnell, Jonathan A.; Aiken, George R.; Butler, Kenna D.; Guillemette, Francois; Podgorski, David C.; Spencer, Robert G. M.

    2016-10-01

    The boreal region stores large amounts of organic carbon (C) in organic-soil horizons, which are vulnerable to destabilization via warming and disturbance. Decomposition of soil organic matter (SOM) contributes to the production and turnover of dissolved organic matter (DOM). While temperature is a primary control on rates of SOM and DOM cycling, little is known about temperature effects on DOM composition in soil leachate. Here we conducted a 30 day incubation to examine the effects of temperature (20 versus 5°C) and SOM decomposition state (moss versus fibric versus amorphous horizons) on DOM composition in organic soils of interior Alaska. We characterized DOM using bulk dissolved organic C (DOC) concentration, chemical fractionation, optical properties, and ultrahigh-resolution mass spectrometry. We observed an increase in DOC concentration and DOM aromaticity in the 20°C treatment compared to the 5°C treatment. Leachate from fibric horizons had higher DOC concentration than shallow moss or deep amorphous horizons. We also observed chemical shifts in DOM leachate over time, including increases in hydrophobic organic acids, polyphenols, and condensed aromatics and decreases in low-molecular weight hydrophilic compounds and aliphatics. We compared ultrahigh-resolution mass spectrometry and optical data and observed strong correlations between polyphenols, condensed aromatics, SUVA254, and humic-like fluorescence intensities. These findings suggest that biolabile DOM was preferentially mineralized, and the magnitude of this transformation was determined by kinetics (i.e., temperature) and substrate quality (i.e., soil horizon). With future warming, our findings indicate that organic soils may release higher concentrations of aromatic DOM to aquatic ecosystems.

  14. Spatial and temporal soil water variability in the plowing horizon of agriculturally used soils in two regions of Southwest Germany

    NASA Astrophysics Data System (ADS)

    Poltoradnev, Maxim; Ingwersen, Joachim; Streck, Thilo

    2015-04-01

    Soil water dynamics plays an important role in soil-plant-atmosphere interactions. There is a lack of long-term continuous measurements of topsoil water content at the regional scale. The objective of the present study was to quantify and elucidate the seasonal dynamics of spatial soil water content variability in the plowing horizon (Ap) of agricultural soils at the regional scale. The study was conducted in the central part of the Kraichgau and the Mid Swabian Alb in Southwest Germany. In each region a soil water network embracing 21 stations was set up. All stations were installed on cropped agricultural sites and distributed across three spatial domains: an inner domain 3 km × 3 km (5 stations), a middle 9 km × 9 km (8 stations), and an outer domain 27 km × 27 km (8 stations). Each station consists of a TDT sensor (SI.99 Aquaflex Soil Moisture Sensor, Streat Instruments Ltd, New Zealand), which senses both soil water content and soil temperature, a rain gauge, and a remote transfer unit (RTU, datalogger + GSM modem), which stores and transfers data via GPRS modem to the central data server (Adcon Telemetry GmbH, Austria) located at the University of Hohenheim. The TDT sensors were installed at 0.15 m depth. A sensor consists of a three meter long and three centimeter wide flat transmission line. The relationship between the standard deviation (σθ) of the soil water content (SWC) and mean spatial soil water content (<θ>) formed combinations of concave and convex hyperbolas. However, it strongly depended on SWC state and season. Generally, σθ was found to be changing along a convex trend during dry out and rewetting phases with a maximum in the intermediate SWC range. At the rain event scale, σθ(<θ>) was either ascending or converging with decreasing <θ>. A concave shape was observed when <θ> approached to dry state. The majority of σθ(<θ>) hysteresis loops were observed in intermediate and intermediate/wet state of SWC. All hysteretic loops were

  15. Ectomycorrhizal-Dominated Boreal and Tropical Forests Have Distinct Fungal Communities, but Analogous Spatial Patterns across Soil Horizons

    PubMed Central

    McGuire, Krista L.; Allison, Steven D.; Fierer, Noah; Treseder, Kathleen K.

    2013-01-01

    Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0–20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling. PMID:23874569

  16. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  17. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior alaska

    USGS Publications Warehouse

    O'Donnell, J. A.; Romanovsky, V.E.; Harden, J.W.; McGuire, A.D.

    2009-01-01

    Organic soil horizons function as important controls on the thermal state of near-surface soil and permafrost in high-latitude ecosystems. The thermal conductivity of organic horizons is typically lower than mineral soils and is closely linked to moisture content, bulk density, and water phase. In this study, we examined the relationship between thermal conductivity and soil moisture for different moss and organic horizon types in black spruce ecosystems of interior Alaska. We sampled organic horizons from feather moss-dominated and Sphagnum-dominated stands and divided horizons into live moss and fibrous and amorphous organic matter. Thermal conductivity measurements were made across a range of moisture contents using the transient line heat source method. Our findings indicate a strong positive and linear relationship between thawed thermal conductivity (Kt) and volumetric water content. We observed similar regression parameters (?? or slope) across moss types and organic horizons types and small differences in ??0 (y intercept) across organic horizon types. Live Sphagnum spp. had a higher range of Kt than did live feather moss because of the field capacity (laboratory based) of live Sphagnum spp. In northern regions, the thermal properties of organic soil horizons play a critical role in mediating the effects of climate warming on permafrost conditions. Findings from this study could improve model parameterization of thermal properties in organic horizons and enhance our understanding of future permafrost and ecosystem dynamics. ?? 2009 by Lippincott Williams & Wilkins, Inc.

  18. A Test Study to Display Buried Anti-Tank Landmines with GPR and Research Soil Characteristics with CRS

    NASA Astrophysics Data System (ADS)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf

    2014-05-01

    An anti-tank mine (AT mine) is a type of land mine designed to damage or destroy vehicles including tanks and armored fighting vehicles. Anti-tank mines typically have a much larger explosive charge, and a fuze designed only to be triggered by vehicles or, in some cases, tampering with the mine. There are a lot of AT mine types. In our test study, MK4 and MK5 AT mine types has been used. The Mk 5 was a cylindrical metal cased U.K. anti-tank blast mine that entered service in 1943, during the Second World War. General Specifications of them are 203 mm diameter, 127 mm height, 4.4-5.7 kg weight, 2.05-3.75 kg of TNT explosive content and 350 lbs operating pressure respectively. The aims of the test study were to image anti-tank landmine with GPR method and to analyse the soil characteristics before the mines made explode and after made be exploded and determine changing of the soil characteristics. We realized data measurement on the real 6 unexploded anti-tank landmine buried approximately 15 cm in depth. The mines spaced 3 m were buried in two lines. Space between lines was 1.5 m. We gathered data on the profiles, approximately 7 m, with a Ramac CUII system and 800 MHz shielded antenna. We collected soil samples on the mines, near and around the mines, on the area in village. We collected soil samples before exploding and after exploding mines. We imaged anti-tank landmines on the depth slices of the GPR data and in their interactive transparent 3D subsets successfully. We used polarized microscope and confocal Raman spectroscopy (CRS) to identify soil characteristic before and after exploitation. The results presented that GPR method and its 3D imaging were successful to determine AT mines, and there was no important changing on mineralogical and petrographical characterization of the soil before and after exploding processing. This project has been supported by Ankara University under grant no 11B6055002. The study is a contribution to the EU funded COST action TU

  19. Investigating priming of soil organic matter decomposition with litter extract in genetic horizons of two harvested red spruce podzols

    NASA Astrophysics Data System (ADS)

    Gabriel, C.; Kellman, L. M.

    2012-12-01

    Soil organic matter (SOM) represents a significant store of carbon (C), and factors that influence its stability are essential to understand, particularly since rising greenhouse gases such as CO2 play an important role in exacerbating climate change. Several studies have documented losses of SOM as a result of forest harvesting, particularly in mineral soils below 20 cm, but the specific mechanism for this loss has not been identified. Priming of SOM decomposition has been observed in some soils with the addition of labile C sources, so it is important to consider whether leaching of organic matter from litter through soil profiles is a mechanism that might explain these observed harvesting-related losses. Here we present preliminary results of a study whose objective is to quantify changes in respiration rates from paired soils differing only in their harvest history, through depth and under C amendment conditions that closely mimic those found in the field setting. Composite field moist soil samples from Ae, Bf and BC (transitional) horizons were incubated to assess respiration rates (2.5 g dry weight, in triplicate) at 15 C for paired sites representing 110 yr and 35 yr post-harvest temperate forest soils. The approach combined descriptive measurements (elemental composition and C and N stable isotope ratios), with soil headspace CO2 and δ13C-CO2 measurements for soils experiencing additions of litter extract or deionized water over a 28 day period. Results indicate an order of magnitude difference in CO2 evolution rates between the shallow horizons (Ae and Bf) and the deeper soil (BC). The respired 13C-CO2 ratio was higher in the 110 yr old site soils, with a more depleted signature released from the 35 yr old site soils. The stable isotope signature of respired CO2 matched that of the bulk soil in the Ae horizon, but signatures that emerged from the Bf horizon did not necessarily follow that trend. Litter extracts produced variable results between sites

  20. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia

    PubMed Central

    Wild, Birgit; Schnecker, Jörg; Knoltsch, Anna; Takriti, Mounir; Mooshammer, Maria; Gentsch, Norman; Mikutta, Robert; Alves, Ricardo J Eloy; Gittel, Antje; Lashchinskiy, Nikolay; Richter, Andreas

    2015-01-01

    Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using 15N pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67°N) to steppe (54°N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest. Key Points We compared soil N dynamics of seven ecosystems along a latitudinal transectShifts in N dynamics suggest a decrease in microbial N limitation with depthWe found no decrease in microbial N limitation from arctic to temperate zones PMID:26693204

  1. The Influence of Organic-Soil Horizons on Thermal Dynamics in High-Latitude Soils: Identifying Thresholds for Permafrost State Change

    NASA Astrophysics Data System (ADS)

    ODonnell, J. A.; Harden, J. W.; Romanovsky, V. E.

    2014-12-01

    Organic-soil horizons exert significant control on soil temperature and permafrost dynamics in high-latitude regions. Ecosystem protection of permafrost is governed by the low thermal conductivity of organic soils, which is sensitive to changes in horizon thickness (OHT), moisture content, and decomposition extent (and thus, porosity, and density) of organic matter. At broad spatial scales, the occurrence of permafrost is positively correlated with OHT when organic horizons are relatively thin (< 30 cm). Across sites where OHT is deeper, this correlation reverses and becomes negative. We hypothesize that this bi-modal relationship between OHT and permafrost occurrence is primarily governed by the contrasting thermal properties of upper organic-soil horizons and the underlying deep organic-soil and mineral-soil horizons. As documented with prior investigations on snow thermal properties, we find that that the underlying layers can have a profound impact on the insulating effect of the overlying layer. To evaluate this hypothesis, we examine the sensitivity of permafrost to soil properties (OHT, moisture content, and texture) and their variations across landscape positions and drainage class using field-based observations and generalized simulations using the Geophysical Institute Permafrost Laboratory model (GIPL). We observed significant negative correlations between minimum daily ground-surface temperature during summer and OHT across upland forest sites in interior Alaska. In peatlands, ground-surface temperature and OHT appear to be decoupled, which is likely due to variation in deposit thickness as determined by the timing of peatland formation across the region. Model results highlight the role of moisture content and water table position, both as controls on organic matter accumulation and on permafrost extent and thermal state.

  2. Spatial distribution of mineral components in microcombinations of agrogrey soils with the second humus horizon in the Vladimir opolie area

    NASA Astrophysics Data System (ADS)

    Chizhikova, N. P.; Karpova, D. V.

    2016-09-01

    Mineralogical composition of silt and clay fractions (<1.1-5 and 5-10 µm) in heavy loamy agrogrey soils (Luvic Retic Phaeozems) considerably changes both in the vertical (along the soil profile) and horizontal (along soil microcatenas) directions. The eluvial-illuvial distribution pattern of the clay fraction in the podzolized agrogrey soils with the second humus horizon is replaced by the homogeneous distribution in the agrogrey soils with residual carbonates. The distribution of silt fractions in the soil profiles is relatively homogeneous. The clay (<1 µm) fraction of the parent material is represented by the poorly ordered micasmectite interstratifications minerals, the proportion between which changes in the soil profiles in dependence on the particular pedogenetic processes. Hydromicas represent the second important component of the clay fraction. They consist of di- and trioctahedral varieties, the proportion between which changes in the soil profiles. Kaolinite and iron-magnesium chlorite are present in smaller amounts. The second humus horizon is characterized by the lowest content of mica-smectite interstratifications minerals with the high content of smectitic layers and by the lowest content of the clay fraction. Silt fractions are composed of quartz, micas, potassium feldspars, and plagioclases.

  3. Warmer Boreal Forest Organic Soil Horizons are Associated with Larger Fluxes of Dissolved Organic Carbon than their Cooler Climate Counterparts.

    NASA Astrophysics Data System (ADS)

    Bowering, K.; Edwards, K. A.; Ziegler, S. E.

    2015-12-01

    Boreal forest soils are characterized by large stocks of carbon associated with relatively slow decomposition and deep organic horizons. Dissolved organic carbon (DOC) loss from organic soil horizons occurs through hydrologically-mediated leaching processes, and contributes to downstream carbon both in deeper mineral soils and also in connected aquatic systems. However, the amount of DOC that leaves organic horizons and the environmental controls on this flux are poorly understood and are likely to be affected by climate changes. We sampled zero-tension lysimeters along 3 forested sites of a boreal climate transect to estimate DOC export from organic soil horizons of mesic boreal podzols (spodosols), and to investigate the climatic drivers of this flux. The sites are part of the Newfoundland and Labrador Boreal Ecosystems Latitudinal Transect (NL-BELT) and span approximately 5°C in mean annual temperature. Lysimeters were sampled over 4 years and DOC flux was calculated for each seasonal period (summer, fall, and winter) of each year. DOC flux was greatest in the warmest site (114 mg C day-1 m-2), with the two cooler sites having lower flux rates (40 and 36 mg C day-1 m-2 in the intermediate and coolest sites respectively). Seasonal variation was most pronounced in the warmest site where more DOC exited the organic soil horizons during fall than during summer or winter. DOC flux was correlated with the volume of soil solution collected in the lysimeters (R2 = .46), however the larger sample volumes collected in the warmest climate do not reflect greater overall precipitation. During the 4-year period of this study, similar amounts of precipitation were recorded in all regions, and the number of days with >10mm precipitation did not differ. The greater DOC flux in the warmer climate site may be due to higher rates of both litterfall and decomposition, contributing to increased labile DOC sources in the warmer climate. Analyses of the carbon quality of these samples

  4. Chemical speciation and enzymatic impact of silver in antimicrobial fabric buried in soil.

    PubMed

    Takeuchi, Satoshi; Hashimoto, Yohey; Yamaguchi, Noriko; Toyota, Koki

    2016-11-05

    This study investigated the impact of Ag in antibacterial fabric on soil enzymes in relation to solubility and speciation of Ag. Sections of Ag-containing sock fabric (1.0-1.5cm(2)) were incubated in soils with aerobic and anaerobic conditions and periodically determined activity of arylsulfatase, dehydrogenase and urease. Microscale distribution and speciation of Ag at the interface between socks and soil particles were investigated using micro-focused X-ray fluorescence (μ-XRF), and Ag speciation was determined using micro-focused X-ray absorption near edge structure (μ-XANES) spectroscopy. Results showed that the sock fabric consisted of elemental Ag and Ag2S. After 60-day exposure to soil, majority (50-90%) of Ag in sock did not undergo phase transformation and present as elemental Ag and Ag2S in aerobic and anaerobic conditions. A part of Ag in sock fabric was bound with soil colloids (<15%), depending on the distance from the edge of sock fabric. Soil enzyme activities were overall unaffected by Ag in sock textile after 60days of incubation, although a significant decrease in arylsulfatase activity was found only in the initial stage of soil incubation. Silver in the sock fabric is relatively stable and has little detrimental impacts on enzyme activity in ordinary soil conditions.

  5. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Schnecker, Jörg; Knoltsch, Anna; Takriti, Mounir; Mooshammer, Maria; Gentsch, Norman; Mikutta, Robert; Alves, Ricardo J. Eloy; Gittel, Antje; Lashchinskiy, Nikolay; Richter, Andreas

    2015-05-01

    Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using 15N pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67°N) to steppe (54°N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest.

  6. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia.

    PubMed

    Wild, Birgit; Schnecker, Jörg; Knoltsch, Anna; Takriti, Mounir; Mooshammer, Maria; Gentsch, Norman; Mikutta, Robert; Alves, Ricardo J Eloy; Gittel, Antje; Lashchinskiy, Nikolay; Richter, Andreas

    2015-05-01

    Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using (15)N pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67°N) to steppe (54°N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest.

  7. Anion retention in soil: Possible application to reduce migration of buried technetium and iodine

    SciTech Connect

    Gu, B.; Schulz, R.K. . Dept. of Soil Science)

    1991-10-01

    This report summarizes a literature review of our present knowledge of the anion exchange properties of a number of soils and minerals, which may potentially be used as anion exchangers to retard migration of such anions as iodide (I{sup {minus}}), iodate (IO{sub 3}{sup {minus}}) and pertechnetate (TcO{sub 4}{sup {minus}}) away from disposal site. The amorphous clays allophane and imogolite, are found to be among the most important soil components capable of developing appreciable amounts of positive charge for anion exchange even at about neutral pH. Decreases in the SiO{sub 2}/Al{sub 2}O{sub 3} ratio and soil pH result in an increase in soil AEC. Allophane and imogolite rich soils have an AEC ranging from 1 to 18 meq/100g at pH about 6. Highly weathered soils dominated by Fe and Al oxides and kaolinite may develop a significant amount of AEC as soil pH falls. The retention of iodine (I) and technetium ({Tc}), by soils is associated with both soil organic matter, and Fe and Al oxides, whereas sorption on layer silicate minerals in negligible. Fe and Al oxides become more important in the retention of anionic I{sup {minus}}, IO{sub 3}{sup {minus}}, and TcO{sub 4}{sup {minus}} as pH falls, since more positive charge is developed on the oxide surfaces. Although few studies, if any, have been conducted on I and {Tc} sorption by soil allophane and imogolite, it is estimated that a surface plough soil (2 million pounds soil per acre) with 5 meq/100g AEC, as is commonly found in andisols, shall retain approximately 5900 kg I and 4500 kg {Tc}. It is conceivable that an anion exchanger such as an andisol could be used to modify the near field environment of a radioactive waste disposal facility. This whole disposal system would then offer similar migration resistance to anions as is normally afforded to cations by usual and normal soils. 93 refs., 10 figs., 7 tabs.

  8. Acceleration of organic matter decomposition after the input of available substrate in subsoil horizons

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Zhuravleva, Anna; Blagodatsky, Sergey; Yakimov, Artem; Demkin, Vitaly; Kuzyakov, Yakov

    2010-05-01

    Input of available substrates to soil can alter microbial activity resulting in accelerated turnover of native soil organic matter (SOM), i.e. cause priming effects (PE). Following to Fountaine et al. (2007) we hypothesized that the stability of SOM in deep soil horizons is due to the lack of input of fresh organic substrates. We also hypothesized greater PE in mineral versus organic soil horizons. These hypotheses were checked by the comparison of priming effects induced by 14C-glucose in organic and mineral horizons of modern as well as of paleo-soils (podzol sandy soil Yamalo-Nenezky region, Tumen). The following variables were determined in 50-days incubation experiment: 1) dynamics of CO2 evolution; 2) 14CO2 originated from the added glucose; 3) microbial biomass C by substrate-induced respiration; 4) activities of extracellular enzymes (β-glucosidase, chitinase, cellobiogidrolase and xylanase) with fluorogenically labeled substrates. Maximal intensity of SOM mineralization as well as of enzyme activities was observed at 2 -7 days after glucose application. The absolute values of PE were 10 times greater in modern as compared with buried horizons of paleo-soils. However, the relative increase in carbon mineralization (as compared with control soil without glucose amendment) was greater in buried than in modern soils, especially in mineral soil horizons. In organic horizons the PE amounted for 20 and 50 % of untreated control in modern and in paleo-soils, respectively. In mineral horizons the PE amount (in % of control) reached 60 % for modern and 250 % for paleo-soils. We conclude that the input of fresh organic matter in paleo-soils as well as in deep soil horizons can induce greater PE as compared with topsoil layers. This conclusion was further confirmed by the increased activity of hydrolytic enzymes during PE in modern and in buried soils. Reference: Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil

  9. Microbial weathering of apatite and wollastonite in a forest soil: Evidence from minerals buried in a root-free zone

    NASA Astrophysics Data System (ADS)

    Nezat, C. A.

    2011-12-01

    Mineral weathering is an important process in biogeochemical cycling because it releases nutrients from less labile pools (e.g., rocks) to the food chain. A field experiment was undertaken to determine the degree to which microbes - both fungi and bacteria - are responsible for weathering of Ca-bearing minerals. The experiment was performed at the Hubbard Brook Experimental Forest (HBEF) in the northeastern USA, where acid deposition has leached plant-available calcium from soils for decades. Trees obtain soil nutrients through root uptake as well as through mycorrhizal fungi with which they are symbiotically associated. These fungi extend their hyphae from the tree roots into the soil and exude organic acids that may enhance mineral dissolution. The two most common types of symbiotic fungal-tree associations are ectomycorrhizae, which are associated with spruce (Picea), fir (Abies), and beech (Fagus); and arbuscular mycorrhizae which are commonly associated with angiosperms, such as maples (Acer). To examine the role of fungi and bacteria in weathering of Ca- and/or P-bearing minerals, mesh bags containing sand-sized grains of quartz (as a control), quartz plus 1% wollastonite (CaSiO3), or quartz plus 1% apatite (Ca5(PO4)3F) were buried ~15 cm deep in mineral soil beneath American beech, sugar maple, and mixed spruce and balsam fir stands at the HBEF. Half of the bags were constructed of 50-μm mesh to exclude roots but allow fungal hyphae and bacteria to enter the bags; the remaining bags had 1-μm mesh to exclude fungi and roots but allow bacteria to enter. The bags were retrieved ~ 1, 2 or 4 years after burial. Microbial community composition and biomass in the mesh bags and surrounding soil were characterized and quantified using phospholipid fatty acid (PLFA) analysis. Fungal biomass in the soil and control bags did not differ significantly among stand types. In contrast, the degree of fungal colonization in apatite- and wollastonite-amended bags varied

  10. Chemical Composition of Soil Horizons and Aggregate Size Fractions Under the Hawaiian Fern Dicranopteris and Angiosperm Cheirodendrom

    NASA Astrophysics Data System (ADS)

    Stewart, C. E.; Amatangelo, K.; Neff, J.

    2007-12-01

    Soil organic matter (SOM) inherits much of its chemical nature from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. However, relatively stable recalcitrant compounds may also be formed as a result of condensation and complexation reactions through decomposition and protected with association with mineral particles. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendrom due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical composition of the SOM under the O- (litter-dominated) and the A- (mineral) horizons formed under fern and angiosperm vegetation. To determine the effect of mineral-association, we fractioned the soil into four size classes; 850-590 μm, 590-180 μm, 180-53 μm and <53 μm and characterized the SOM via pyrolysis-gas chromatography-mass spectrometry (py-GC/MS). As the soils developed from the O- to the A-horizon, there was a decrease of lignin-derived phenolic compounds and an increase in more recalcitrant, aromatic and aliphatic C. Soils under ferns had greater relative concentrations of phenolic compounds, while the angiosperms had greater concentrations of fatty-acid methyl esters and furans (some polysaccharide-derived). Differences between size fractions were most evident in the O-horizon of both species. Recalcitrant fern-derived cutin and leaf waxes (alkene and alkanes structures) occurred in the 180-53 μm fraction, which has been shown to be the most stable of the aggregate-size fractions. Soils developed under fern versus angiosperm vegetation have distinct chemical signatures, which likely determine the recalcitrance of the SOM.

  11. Structural properties of dissolved organic carbon in deep horizons of an arable soil.

    NASA Astrophysics Data System (ADS)

    Lavaud, A.; Croué, Jp; Berwick, L.; Steffens, M.; Chabbi, A.

    2010-05-01

    The objective of this work is to quantity the DOC that percolates in deep horizons of an arable soil, and to characterize the structural properties of the main fractions. The study was conducted on the long term observatory for environmental research- biogeochemical cycles and biodiversity Lusignan site-France. DOC collected using lysimeter plates inserted to a depth of 105 cm was fractionated into 3 fractions using the two column array of XAD-8 and XAD-4 resins. The HPO (hydrophobic) fraction (i.e. humic substances) isolated from the XAD-8 resin, the TPH (Transphilic) fraction from the XAD-4 resin and the HPI (hydrophilic) fraction which corresponds to the DOC that does not adsorbed onto the two resins under the acid condition used (pH 2). DOM adsorbed onto the resins is recovered with a 75%/25% acetonitrile/water mixture and lyophilized. The hydrophilic fraction is purified according the protocol proposed by Aiken and Leenheer (1993). The isolated fractions were subjected to several characterization tools: UV/Vis, fluorescence EEM, HPSEC/UV/DOC, 13C NMR, 14C dating, FT-IR, pyrolysis, thermochemolysis and MSSV GC/MS. The DOC content ranged from 1 to 2.5 mg / L between winter and the middle of spring and then to 4-5 mg / L in summer time. For all isolated fractions HPSEC analyses indicated the predominance of low molecular structures with a low aromatic character. Fluorescence EEM confirmed the non-humic character of the DOM. 13C-NMR spectra showed that the aromatic character decreased from HPO to TPH, and HPI character. Molecular size follows the same trend. HPI DOM was found to be strongly enriched in carboxyl groups. The 14C concentration of the HPO fraction corresponds to an apparent calibrated age around AD 1500. For the same fraction isolated from the 0 - 30 cm horizon, the measured 14C concentration 131.9 pMC corresponds to that in the atmosphere around AD 1978. Significant input of terpenoid derived organic matter was confirmed in the HPO fraction of DOC

  12. Modeling of the development of humus horizons in soils of Crimea

    NASA Astrophysics Data System (ADS)

    Ergina, E. I.

    2017-01-01

    Current approaches to the simulation of pedogenesis processes in time are considered. Models for the formation of humus horizon on parent rocks of different genesis in Crimea are presented. Formation rates of humus horizons have been determined, which allows developing the remediation strategies for mining dumps of mineral deposits in Crimea.

  13. Physical properties of soils in Rostov agglomeration

    NASA Astrophysics Data System (ADS)

    Gorbov, S. N.; Bezuglova, O. S.; Abrosimov, K. N.; Skvortsova, E. B.; Tagiverdiev, S. S.; Morozov, I. V.

    2016-08-01

    Physical properties of natural and anthropogenically transformed soils of Rostov agglomeration were examined. The data obtained by conventional methods and new approaches to the study of soil physical properties (in particular, tomographic study of soil monoliths) were used for comparing the soils of different functional zones of the urban area. For urban territories in the steppe zone, a comparison of humus-accumulative horizons (A, Asod, Ap, and buried [A] horizons) made it possible to trace tendencies of changes in surface soils under different anthropogenic impacts and in the buried and sealed soils. The microtomographic study demonstrated differences in the bulk density and aggregation of urban soils from different functional zones. The A horizon in the forest-park zone is characterized by good aggregation and high porosity, whereas buried humus-accumulative horizons of anthropogenically transformed soils are characterized by poor aggregation and low porosity. The traditional parameters of soil structure and texture also proved to be informative for the identification of urban pedogenesis.

  14. Geochemistry of a buried paleosol of Eemian age at Asklev, Denmark

    NASA Astrophysics Data System (ADS)

    Kristiansen, S. M.; Dalsgaard, K.; Kronborg, C.

    2009-04-01

    Buried soil surfaces are rich sources of information about past fauna, vegetation development, glacier dynamics, and climate variations However, in Denmark such former surfaces are very rare, as they rarely have escaped the intensive erosion below and in front of the Scandinavian ice sheets during the previous cold stages. Here we present a well-drained paleosol found extensively in a large gravel pit in the central part of Jutland, Denmark. The paleosol is suggested denoted the "Asklev paleosol". The Asklev paleosol is a well developed Podzol in sandy till of late Saalian age - the Asklev Till. The Asklev podsol is covered by fluvial sand in which another weaker podsol is present. Thermo-luminescense dating of the sand layer revealed an age of c. 100 ka BP, i.e. that the soil surface was buried in the early Weichelian. The surface was thus stable during the entire Eemain interglacial and subject to pedogenesis for >15.000 years. Discordantly resting on the fluvial sand is about 1.5 m of sandy till with an undisturbed grey lower part and a brown cryoturbated upper part. Fabric analyses from the lower grey part of the till reveal an ice movement from the SSE. This till is deposited during MIS 4 in middle Weichselian Thin sections from the Podzol' show that the buried A-horizons micromorphology is not fully comparable to present-day Podzols in the region as it has a well developed argillic horizon below despite the parent material low in clay (< 3%). In contrast to modern Danish Podzols it also retain ample evidence of burning (charcoal) and frost features (capping). The Asklev paleosol classify as a Placic Podzol, but is a typical bi-sequum with a Bt-horizon at depth. Its content of organic C is up to 38 mg C/g soil in the A-horizon, 8.4 mg C/g soil in the Bhs-horizon, which decreases to <1 mg C/g soil in the C-horizon. Carbon-to-nitrogen ratios range from 80 in the E-horizon to 25 in the C-horizon. Concentrations of heavy metals is low with maximums of 3.7 mg Ni

  15. Detecting buried remains in Florida using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Schultz, John Joseph

    This research tested the applicability of using ground-penetrating radar (GPR) in Florida to detect buried bodies; and assessed the effect of body size, depth, antenna type, time, and soil type on grave detection. Furthermore, because of the emphasis on decomposition, it was possible to address the role of depth, body size, time, and soil type on decomposition. The site was located in an open pasture, where 20 pig (Sus scrofa) cadavers of two average weights (29.7 and 63.8 kg) were buried at two depths (50 to 60 or 100 to 110 cm). The cadavers were monitored monthly for durations up to 21 months with GPR using 900- and 500-MHz antennae. Two different soil types were used: one composed solely of sand horizons and one composed of sand with clay horizons at approximately 1.00 m. The graves were excavated at the termination of each monitoring period to collect soil samples and score decomposition. Overall, depth was the most significant factor controlling decomposition, followed by time. Body size and soil type were not major factors. Ground-penetrating radar can be a very effective tool for grave detection in Florida. Salient anomalies were produced for the duration of this study due to a strong enough contrast between the skeleton, or decomposing body, and the surrounding soil with that of the undisturbed soil. While cadaver size and time were not major factors in grave detection, soil type and antenna choice were. Although it was possible to detect a decomposing body and a skeleton in both shallow and deep sand graves, it was difficult to image large pig cadavers retaining extensive soft tissue buried in proximity to the clay horizon in as little as six months. The clay masked the contrast of the cadavers by reducing their relative dielectric permittivity. Pig cadaver size was not a major factor in grave detection. The imagery of the 500-MHz antenna was preferred over the higher resolution of the 900-MHz, because the increased detail may result in difficulty

  16. Alluvial sediment or playas: What is the dominant source of sand and silt in desert soil vesicular A horizons, southwest USA

    NASA Astrophysics Data System (ADS)

    Sweeney, Mark R.; McDonald, Eric V.; Markley, Christopher E.

    2013-03-01

    Vesicular A (Av) soil horizons form beneath desert pavements from the accretion of aeolian sediment (dust) commonly thought to be derived primarily from desiccating pluvial lakes and playas, with contributions from ephemeral washes and alluvial fans. Particle size distributions of Av horizons are typically bimodal with primary modes of very fine silt and fine sand, suggesting that the horizon matrix is derived from multiple sources. Here we conduct detailed chemical and physical analysis of both Av horizon soil samples and potential sources of aeolian sediment to better constrain the relative contributions of dust associated with the development of Av horizons. Geochemical data from both sand (125-250 µm) and silt (2-32 µm) fractions in Av horizons and potential dust sources in the eastern Mojave Desert and western Sonora Desert, USA, point to large contributions from nearby sources including distal alluvial fans and washes, and comparably lower contributions from regional sources such as playas. The silt mode is derived from suspension transport of dust, and the fine sand mode is derived from saltating sand. The desiccation of pluvial lakes in the Mojave Desert is commonly believed to have driven episodes of aeolian activity, contributing to sand dunes and Av horizon formation. We propose that alluvial fans and washes are underappreciated as desert dust sources and that pulses of dust from late Pleistocene and Holocene alluvial fans dwarfed pulses of dust from desiccating pluvial lakes in the eastern Mojave Desert.

  17. Seasonal fluxes of some ions through the overstory, underbrush, and organic soil horizons of an aspen-birch forest

    NASA Astrophysics Data System (ADS)

    Price, Anthony G.; Watters, Robert J.

    1988-03-01

    A study was made of the water and chemical fluxes in a predominantly deciduous forest at Chalk River, Ontario. The chemistry of water moving to the soil through trembling aspen, large-tooth aspen and paper birch is strongly modified by interaction with all major components in the system: the overstory leaves and trunks, the underbrush stems and leaves, and the organic plus upper mineral soil horizon. The dominant controls on the chemistry of water reaching the forest floor are those exerted by the overstory. Hydrochemical changes through the underbrush are, generally, of the same type as those through the overstory, but of a smaller size. A significant, positive relationship was found between the hydrogen ion flux imposed on the overstory, and the net loss of calcium, magnesium, and potassium from the canopy, showing that acid deposition is having an effect on the export of these nutrients from the canopy.

  18. Laser ablation ICP-MS and traditional micromorphological techniques applied to the study of different genetic horizons in thin sections: soil genesis and trace element distribution

    NASA Astrophysics Data System (ADS)

    Scarciglia, Fabio; Barca, Donatella; de Rosa, Rosanna; Pulice, Iolanda; Vacca, Andrea

    2010-05-01

    This work focuses on an innovative methodological approach to investigate in situ chemical composition of trace and rare earth (REE) elements in discrete soil features from different soil horizons: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied to clay coatings, pedogenic matrix and skeletal parent rock fragments in thin sections, coupled with traditional pedological investigations, specially clay mineralogy and micromorphology. Analyses were performed on 80 μm-thick sections obtained from undisturbed soil samples, which represent three reddish argillic (Bt) horizons from an Alfisol developed on late Pleistocene slope deposits and three brown organic-mineral (A) horizons from an Entisol formed on Holocene aggrading fluvial sediments in the Muravera area (southeast Sardinia, Italy). Validation of the LA-ICP-MS technique provides in situ accurate and reproducible (RSD 13-18%) analysis of low concentration trace elements in the studied soil samples (0.001-0.1 ppm). Our results showed a high reliability of this method on soil thin sections and revealed that concentrations of trace and rare earth elements in the different portions of a soil profile can be used to investigate their distribution, as a response to soil-forming processes. A general trend of increase of most trace elements from rock fragments to (both clayey and organic-rich) soil matrix, to clay coatings in argillic horizons is clearly highlighted. On this basis a prominent role of pedogenetic processes in element fractionation and distribution during weathering can be supposed. In particular, element adsorption onto reactive sites of organic matter and clay particles (and possibly Fe-oxyhydroxides) and clay illuviation appear the main pedogenetic processes able to promote element enrichment after their release from the weathering of primary minerals. As clay coatings exhibit the highest concentration of trace elements, and specifically of REEs, and represent the most

  19. Soil burial contribution to deep soil organic carbon storage

    NASA Astrophysics Data System (ADS)

    Chaopricha, N. T.; Marin-Spiotta, E.

    2013-12-01

    Previous reviews of deep soil C have focused on root inputs and the vertical transport of particulate and dissolved organic matter through mixing, gravity, and preferential flowpaths as the main modes of delivery of C to the deep subsoil. Depositional processes have received considerable attention in the context of long-range soil erosion and sedimentation on land, but the role of soil burial in the sequestration of C photosynthesized in situ at depositional sites has been largely absent from discussions of deep soil organic C (SOC) dynamics. Burial can disconnect a soil from atmospheric conditions and slow or inhibit microbial decomposition. Buried soil horizons, which are former surface soils that have been buried through various depositional processes, can store more SOC than would exist at such depths from in situ root inputs and leaching from upper horizons. Here, we discuss factors contributing to SOC storage in soils below 1 m with a focus on soil burial. We review the contributions of geomorphic and anthropogenic depositional processes to deep SOC storage and describe how environmental conditions or state factors during and since burial influence SOC persistence in buried soils. We draw from examples in the paleosol and geomorphology literature to identify the effects of soil burial by volcanic, aeolian, alluvial, colluvial, glacial, and anthropogenic processes on soil C storage. Buried soils have been traditionally studied for information about past environments and can also serve as useful case studies for understanding both the sensitivity of landscape processes to future environmental change and the mechanisms contributing to soil organic matter stabilization. Soil burial can store SOC at any depth. Here, we focus particularly on buried soil horizons at ≥ 1 m depth to highlight how much SOC exists at depths below those typically considered in SOC inventories, studies of soil organic matter dynamics, and most biogeochemical models. Understanding the

  20. Mineralization of organic-matter labile fragments in the humus-accumulative horizon of soddy-podzolic soil

    NASA Astrophysics Data System (ADS)

    Trofimov, S. Ya.; Lazarev, A. S.; Fokin, A. D.

    2012-12-01

    The mineralization rate of the 14C-labeled organic matter (OM) in the humus-accumulative AE horizon of a soddy-podzolic soil was determined in a laboratory experiment. The labeling was performed in a field experiment when microamounts of 14C-labeled glucose, glycine, and uracil were added to tree waste in sacks embedded in the upper layer of the forest litter. Samples containing 14C were taken from the AE horizon (above which the sacks with the labeled material were placed) 7 and 20 months after the beginning of the experiment. The soil samples were wetted to a water content corresponding to ˜80% of the total water capacity and placed in hermetic vessels containing vials with a periodically renewed alkali solution. The incubation was performed at room temperature for 3.5 months; the alkali solutions in the vials were replaced and titrated 12 times during this period. Mineralization curves were plotted from the amounts of carbon dioxide absorbed by a 0.3 N NaOH solution, which were calculated for each time interval; its 14C content was determined by the scintillation method. The experimental treatments also included the determination of the OM mineralization rate in material from the AE horizon pretreated with a heavy liquid or a heavy liquid and a 0.1 N NaOH solution. The differences between the mineralization rates of the labeled organic matter applied to the soil in the form of glucose, glycine, and uracil under the field conditions after the interaction for 7 and 20 months were revealed. The changes in the mineralization rate after the successive extraction of the labile organic matter with a heavy liquid and a 0.1 N NaOH solution were studied. It was shown that the transformation of the labeled low-molecular-weight organic compounds in the soil over 20 months included their strong inclusion into the humus composition, which was confirmed by the similar values of the mineralization constants of the native and 14C-labeled OM. In addition, the treatments with the

  1. Soil morphology of a debris flow chronosequence in a coniferous forest, southern California, USA

    USGS Publications Warehouse

    Turk, J.K.; Goforth, B.R.; Graham, R.C.; Kendrick, K.J.

    2008-01-01

    Soils on a series of debris flow deposits, ranging from < 1 to 244??years old, were described and sampled in order to investigate the early stages of soil development. The parent material at the site is debris flow regolith, composed mainly of gneiss, the soil moisture regime is xeric, and the vegetation is mixed coniferous forest. Ages of the deposits were assessed using dendrochronology. Morphologic trends in the organic horizons included a thickening of the humus form over time, along with the development of Fm and Hr horizons. The humus forms underwent a progression from Mormodors (20??years old), to Hemimors (26-101??years old), and finally Lignomors (163??years old) and Resimors (184-244??years old). Changes in physical properties of the uppermost mineral horizons as a function of increasing age included a decrease in the volume of coarse fragments, a linear decrease in bulk density, and a darkening and reddening of the soil color. No significant soil development took place in the subsoil during the time span of this chronosequence. The soils described were classified as Typic Xerofluvents and Typic Xerorthents (Regosols and Leptosols). Buried A horizons were observed in many of the soils. Where the A horizons could be linked to dendrochronology to assess the age of the buried surface, we found that the properties of the buried A horizons do not serve as a good indicator of the age of the surface. This study suggests rapid development of the humus form profile (organic horizons and A horizon) following debris flow deposition and rapid degradation of these horizons when the debris flow surface is buried. ?? 2008 Elsevier B.V.

  2. Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-11-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  3. Use of the color indices of humus soil horizons as indicators of soil evolution in the steppe zone of the Transvolga region under irrigation conditions

    NASA Astrophysics Data System (ADS)

    Stoma, G. V.; Rozov, S. Yu.; Sukhanova, N. I.

    2015-05-01

    Changes that occurred in the humus parameters and humus horizon color of soils of an experimental production farm in the Saratov oblast during 50 years of irrigation indicate the development of a northern humid version of soil-forming process. Its rate is determined by the confinement of soils to mesoand microrelief elements. The qualitative differences in the character of humification in soils on watersheds and middle and lower slopes are confirmed by statistically reliable differences in the color parameters of soils in the CIE-L*a*b* color system. The lightness (L*) and the yellowness (b*) are the most informative parameters. The lightness is related to the content of humus and probably to its qualitative composition, and the changes in yellowness result from the masking of yellow-colored mineral iron compounds by the newly formed humus. These color indices are reliable criteria for color assessment and can be used for the detection and estimation of changes in the irrigated soils of the steppe regions.

  4. Buried Craters

    NASA Technical Reports Server (NTRS)

    2005-01-01

    26 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows two circular features on the plains of northern Utopia. A common sight on the martian northern plains, these rings indicate the locations of buried impact craters.

    Location near: 65.1oN, 261.2oW Image width: 2 km (1.2 mi) Illumination from: lower left Season: Northern Summer

  5. A Mesophilic, Autotrophic, Ammonia-Oxidizing Archaeon of Thaumarchaeal Group I.1a Cultivated from a Deep Oligotrophic Soil Horizon

    PubMed Central

    Jung, Man-Young; Park, Soo-Je; Kim, So-Jeong; Kim, Jong-Geol; Sinninghe Damsté, Jaap S.

    2014-01-01

    Soil nitrification plays an important role in the reduction of soil fertility and in nitrate enrichment of groundwater. Various ammonia-oxidizing archaea (AOA) are considered to be members of the pool of ammonia-oxidizing microorganisms in soil. This study reports the discovery of a chemolithoautotrophic ammonia oxidizer that belongs to a distinct clade of nonmarine thaumarchaeal group I.1a, which is widespread in terrestrial environments. The archaeal strain MY2 was cultivated from a deep oligotrophic soil horizon. The similarity of the 16S rRNA gene sequence of strain MY2 to those of other cultivated group I.1a thaumarchaeota members, i.e., Nitrosopumilus maritimus and “Candidatus Nitrosoarchaeum koreensis,” is 92.9% for both species. Extensive growth assays showed that strain MY2 is chemolithoautotrophic, mesophilic (optimum temperature, 30°C), and neutrophilic (optimum pH, 7 to 7.5). The accumulation of nitrite above 1 mM inhibited ammonia oxidation, while ammonia oxidation itself was not inhibited in the presence of up to 5 mM ammonia. The genome size of strain MY2 was 1.76 Mb, similar to those of N. maritimus and “Ca. Nitrosoarchaeum koreensis,” and the repertoire of genes required for ammonia oxidation and carbon fixation in thaumarchaeal group I.1a was conserved. A high level of representation of conserved orthologous genes for signal transduction and motility in the noncore genome might be implicated in niche adaptation by strain MY2. On the basis of phenotypic, phylogenetic, and genomic characteristics, we propose the name “Candidatus Nitrosotenuis chungbukensis” for the ammonia-oxidizing archaeal strain MY2. PMID:24705324

  6. Buried paleosols of the Upper Paleolithic multilayered site Kostenki-1

    NASA Astrophysics Data System (ADS)

    Aparin, B. F.; Platonova, N. I.; Sukhacheva, E. Yu.; Dudin, A. E.

    2016-12-01

    The morphology and chemical and physicochemical properties of paleosols buried at the Upper Paleolithic multilayered site Kostenki-1 in Kostenki-Borshchevo district of Voronezh oblast were studied. Four in situ paleosols formed 20-40(45) ka ago were separated in the archaeological excavation. Together with the surface soils, they characterized two different epochs of pedogenesis—the interstadial and interglacial (Holocene) epochs—and three shorter cycles of pedogenesis. The traces of human occupation in the studied hollow in the Late Paleolithic were found in the layers corresponding to the interstadial epoch. The buried paleosols had a simple horizonation: A(W)-C. A shallow thickness of the soil profiles could be due to relatively short periods of pedogenesis and to the shallow embedding by the carbonate geochemical barrier. The degree of the organic matter humification in the paleosols varied from 0.6 to 1.5, which corresponded to the mean duration of the period of biological activity of 60 to 150 days per year characterizing the climatic conditions of the tundra, taiga, forest-steppe, and steppe natural zones. In the excavation Kostenki-1 (2004-2005), soil-sediment sequences composed of five series of lithological layers with soil layers on top of them were found. Their deposition proceeded in two phases—the water phase and the aerial phase—that predetermined the morphology and composition of the soil-sediment sequences. The history of sediment accumulation in the studied hollow consisted of five stages. Similar morphologies and compositions of the soil-sediment sequences corresponding to these stages attest to the cyclic pattern of their development. The stages of sedimentation and soil formation corresponded to cyclic climate fluctuations with changes in the temperature and moisture conditions. A comparative analysis of the morphology and properties of the paleosols and soil-sediment sequences made it possible to characterize the environmental

  7. Effect of O horizon and Forest Harvest Residue Manipulations on Soil Organic Matter Content and Composition of a Loblolly Pine Plantation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Hatten, J.; Mack, J.; Dewey, J.; Sucre, E.; Leggett, Z.

    2012-04-01

    Forest harvest residues and forest floor materials are significant sources of mineral soil organic matter and nutrients for regenerating and establishing forests. Harvest residues in particular are occasionally removed, piled, or burned following harvesting. While the forest floor is never purposely removed during operational harvesting and site preparation, they could become in high demand as bioenergy markets develop. Weyerhaeuser Company established an experimental study to evaluate the effect of forest-floor manipulation on site productivity and soil carbon. This study was installed in a loblolly pine plantation near Millport, Alabama, USA on the Upper Gulf Coastal Plain to test both extremes from complete removal of harvest residues and forest floor to doubling of these materials. This study has been continuously monitored since its establishment in 1994. We have examined the effects of varying forest floor levels on the biomass, soil carbon content, and soil carbon composition in the context of these management activities. Above- and below-ground productivity, soil moisture, soil temperature, and nutrient dynamics have been related to soil organic carbon in mineral soil size/density fractionation and lignin and cutin biomarkers from the cupric oxide (CuO) oxidation technique. We have found that while removing litter and harvest residues has little effect on biomass production and soil carbon, importing litter and harvest residues increases forest productivity and soil carbon content. Interestingly, increased carbon was observed in all depths assessed (O horizon, 0-20, 20-40, and 40-60cm) suggesting that this practice may sequester organic carbon in deep soil horizons. Our biomarker analysis indicated that importing litter and harvest residues increased relative contributions from above ground sources at the 20-40cm depth and increased relative contributions from belowground sources at the 40-60cm depth. These results suggest that organic matter manipulations

  8. Electromagnetic scattering from buried objects

    SciTech Connect

    Brock, B.C.; Sorensen, K.W.

    1994-10-01

    Radar imaging and detection of objects buried in soil has potentially important applications in the areas of nonproliferation of weapons, environmental monitoring, hazardous-waste site location and assessment, and even archeology. In order to understand and exploit this potential, it is first necessary to understand how the soil responds to an electromagnetic wave, and how targets buried within the soil scatter the electromagnetic wave. We examine the response of the soil to a short pulse, and illustrate the roll of the complex dielectric permittivity of the soil in determining radar range resolution. This leads to a concept of an optimum frequency and bandwidth for imaging in a particular soil. We then propose a new definition for radar cross section which is consistent with the modified radar equation for use with buried targets. This radar cross section plays the same roll in the modified radar equation as the traditional radar cross section does in the free-space radar equation, and is directly comparable to it. The radar cross section of several canonical objects in lossy media is derived, and examples are given for several object/soil combinations.

  9. Buried Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    With a location roughly equidistant between two of the largest volcanic constructs on the planet, the fate of the 50 km impact crater in this image was sealed. It has been buried to the rim by lava flows. The MOLA context image shows pronounced flow lobes surrounding the crater, a clear indication of the most recent episode of volcanism that could have contributed to its infilling. Breaches in the rim are clearly evident in the image and suggest locations through which lavas could have flowed. These openings appear to be limited to the west side of the crater. Other craters in the area are nearly obliterated by the voluminous lava flows, further demonstrating one of the means by which Mars renews its surface.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Time-domain Response of a Metal Detector to a Target Buried in Soil with Frequency-dependent Magnetic Susceptibility

    DTIC Science & Technology

    2016-07-06

    The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the...performance of induction metal detectors widely used in humanitarian demining. This paper studies the specific case of the time-domain response of a small

  11. Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques for the remediation of hazardous and transuranic waste stored at Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume contains introduction section containing a brief SDS background and lists the general assumptions and considerations used during the development of the system concepts. The introduction section is followed by sections describing two system concepts that produce a waste form in compliance with the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) and transportation package (TRAMPAC) requirements. This system concept category is referred to as Waste Form 4, WIPP and TRAMPAC Acceptable.'' The following two system concepts are under this category: Sort, Treat, and Repackage System (4-BE-2); Volume Reduction and Packaging System (4-BE-4).

  12. Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume of the Systems Design Study contain four Appendixes that were part of the study. Appendix A is an EG G Idaho, Inc., report that represents a review and compilation of previous reports describing the wastes and quantities disposed in the Subsurface Disposal Area of the Idaho National Engineering Laboratory. Appendix B contains the process flowsheets considered in this study, but not selected for detailed analysis. Appendix C is a historical tabulation of radioactive waste incinerators. Appendix D lists Department of Energy facilities where cementation stabilization systems have been used.

  13. Soil-landscape development and late Quaternary environmental change in coastal Estremadura, Portugal

    NASA Astrophysics Data System (ADS)

    Daniels, Michael; Haws, Jonathan; Benedetti, Michael; Bicho, Nuno

    2015-04-01

    This poster integrates soil-landscape analysis with archaeological survey and paleoenvironmental reconstruction. Soils in surface and buried contexts in Estremadura, Portugal, provide evidence of landscape stability and instability, relative age relationships between landforms, and general paleoenvironmental conditions during the late Quaternary. These factors provide insight into the distribution and condition of Paleolithic archaeological sites and help understand the record of human settlement in the region. Late Pleistocene and Holocene dunes extend inland approximately 10 km from coastal source regions. Surface soils in Holocene dunes under maritime pine (Pinus pinaster) forest exhibit A, E, C/Bh and A, C horizon sequences and classify as Quartzipsamments. Surface soils in late Pleistocene dunes exhibit A, E, Bh, Bhs, Bs horizon sequences and classify as Haplorthods. Both Pleistocene and Holocene dunes commonly bury a heavily weathered soil formed in calcareous sandstone. The boundary between underlying buried soils and overlying surface soils is characterized by a lag deposit of medium to coarse, moderately-rounded gravels, underlain immediately by subsurface Bt and Bss horizons. The lag deposit and absence of buried A horizons both indicate intense and/or prolonged surface erosion prior to burial by late Quaternary dunes. Soil-geomorphic relationships therefore suggest at least two distinct episodes of dune emplacement and subsequent landscape stability following an extensive episode late Pleistocene landscape instability and soil erosion. A conceptual model of soil-landscape evolution through the late Quaternary and Holocene results from the integration of soil profile data, proxy paleoenvironmental data, and the partial record of human settled as revealed in the archaeological record.

  14. Agronomic measures of P, Q/I parameters and lysimeter-collectable P in subsurface soil horizons of a long-term slurry experiment.

    PubMed

    Anderson, R; Xia, L

    2001-01-01

    Soils from a long-term slurry experiment established in 1970 at Hillsborough, Northern Ireland, were used in the experiment. The site has a clay loam soil overlying Silurian shale. Seven treatments were used with three replicate plots per treatment under the following manurial regimes: (1) mineral fertiliser supplying 200 kg N, 32 kg P and 160 kg K ha(-1) yr(-1); (2)-(4) pig slurry applied at 50, 100 or 200 m3 ha(-1) yr(-1); (5)-(7) cow slurry applied at 50, 100 or 200 m3 ha(-1) yr(-1). Agronomic measures of P determined on subsurface layers down to 90 cm were compared with sorption isotherm data and rates of desorption. Adsorption isotherms were fitted using a standard Langmuir model. Data were compared with soluble (molybdate-reactive) P levels in soil water collected at 35 and 90 cm using PTFE suction cup lysimeters. Agronomically available P was concentrated in the top 30 cm of soil in all treatments. The accumulation of P in surface layers of the plots was significantly greater in the pig slurry treatments compared to the cow slurry, reflecting the history of P amendments. Nevertheless, over a period of a year, molybdate-reactive phosphorus (MRP) concentrations in lysimeter collections was consistently higher at 35 cm depth in the highest cow slurry treatment (7) compared to the equivalent pig slurry treatment (4). Either the movement of soluble P down the profile is facilitated by the higher organic content of cow slurry or P movement is not directly related to P accumulation in the soils. In addition, it is hypothesised that P movement down the soil profile depends upon two separate mechanisms. First, a 'break' point above which the accumulated P in the surface horizons is less strongly held and therefore amenable to dissolution and movement down the profile. Second, a mechanism by which some solute P from the surface horizons can travel rapidly through horizons of low P status to greater depth in the soil, i.e., by preferential flow.

  15. Buried late holocene paleosols of the nienshants cultural-historical monument in St. Petersburg

    NASA Astrophysics Data System (ADS)

    Rusakov, A. V.; Nikonov, A. A.; Savelieva, L. A.; Pinakhina, D. V.

    2013-01-01

    Buried Late Holocene paleosols of the Nienshants historical monument at the junction of the Neva and Okhta rivers (St. Petersburg) have been studied. These soils developed from estuary deposits of the Littorina basin with abundant artifacts of the Neolithic and Early Iron ages (7-2 ka BP). The soil cover of the area consists of the mature dark-humus profile-gleyed soils on elevated elements of the mesotopography (3.0-3.5 a.s.l.) and dark-humus gley soils in the local depressions (2.0-2.6 m a.s.l.). The soils are characterized by the low to moderate content of humus of the fulvate-humate type. The beginning of humus formation in the dark-humus gley soil on the slope facing the Neva River is estimated at about 2600 yrs ago; for the darkhumus profile-gleyed soils of the studied paleocatena, at about 2000 and 1780 yrs ago; and for the darkhumus gley soil, at about 1440 years ago. Judging from the spore-pollen spectra, the development of these soils took place in the Subatlantic period under birch and pine-birch forests with the admixture of spruce and alder trees. The gleyed horizons of the buried soil at the depth of 1.6-1.2 m on the Neva-facing slope date back to the Late Subboreal period (2500-2600 yrs ago), when pine-birch-spruce forests were widespread in the area. The new data contribute to our knowledge of the environmental conditions during the Neolithic and Iron ages.

  16. The contribution of micrometeorites to the iron stocks of buried podzols, developed in Late-glacial aeolian sand deposits (Brabant, The Netherlands)

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; de Vet, Sebastiaan

    2015-04-01

    The surface geology of an extensive part of NW-Europe is dominated by coversands (Late-glacial chemical poor aeolian sand deposits). The geomorphology of coversand landscapes is dominated by ridges and planes. Podzolation is the dominant soil forming process in coversands under moderate humid climatic conditions. Umbric Podzols developed on the ridges under Quercetum-mixtum, Gleyic and Histic Podzols developed in the planes under Alnetum. Even in chemical poor coversands, iron will be released by hydrolysis from iron containing silicate minerals (such as feldspars). It is well known that the vertical iron distribution in Podzols is effected by translocation of active iron from eluvial to illuvial horizons and that iron is leaching to the aquifer. Iron stocks of Podzols, in contrasts, have not been widely studied for comparison purposes of individual soil horizons or between soils. We determined the stocks of active and immobile iron in the horizons of buried xeromorphic Podzols (soils that developed without any contact with groundwater). The results show that the total amount of iron exceeds the potential amount which can be released by hydrolysis from the parent material. Furthermore, to amount of iron that leached to the groundwater is unknown. It is evident that we must find an additional source to explain the total iron stocks in buried Podzols. It is known from analysis of ice cores that the earth atmosphere is subjected to a continuous influx of (iron rich) micrometeorites. The precipitation of micrometeorites (and other aerosols) on the earth surface is concentrated in humid climatic zones with (intensive) rain fall. We analyzed minerals, extracted from the ectorganic horizon of the Initial Podzols, developed in driftsand that stabilized around 1900 AD, overlying Palaeopodzols, buried around 1200 AD. Among blown in quartz grains, we could determine also micrometeorites, embedded in the organic skeleton of the fermentation horizon of the Initial Podzol

  17. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such

  18. Substrate discrimination in burying beetles, Nicrophorus orbicollis (Coleoptera: Silphidae)

    USGS Publications Warehouse

    Muths, Erin Louise

    1991-01-01

    Burying beetles Nicrophorus orbicollis (Coleoptera: Silphidae) secure and bury small vertebrate carcasses as a food resource for their offspring and themselves. Burial may take place at the point of carcass discovery or at some distance from that site. Burying beetles were tested to determine if they discriminate between different substrates when burying a carcass. Three substrates were presented simultaneously. Substrate one contained soil from typical beetle habitat; substrates two and three contained 2:1 and 5:1 ratios, respectively, of soil and a senescent prairie grass (Panicum virgatum), which added a bulk structural component to the soil. Beetles generally moved and buried the carcass within 24 hours. Results for both paired and individual trials suggest that burying beetles discriminate between substrates, preferring substrates with added bulk over those without.

  19. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Graham, Sean A; Hou, Aixin; Fleeger, John W; Deis, Donald R

    2016-07-01

    We investigated the initial impacts and post spill recovery of salt marshes over a 3.5-year period along northern Barataria Bay, LA, USA exposed to varying degrees of Deepwater Horizon oiling to determine the effects on shoreline-stabilizing vegetation and soil processes. In moderately oiled marshes, surface soil total petroleum hydrocarbon concentrations were ~70mgg(-1) nine months after the spill. Though initial impacts of moderate oiling were evident, Spartina alterniflora and Juncus roemerianus aboveground biomass and total live belowground biomass were equivalent to reference marshes within 24-30months post spill. In contrast, heavily oiled marsh plants did not fully recover from oiling with surface soil total petroleum hydrocarbon concentrations that exceeded 500mgg(-1) nine months after oiling. Initially, heavy oiling resulted in near complete plant mortality, and subsequent recovery of live aboveground biomass was only 50% of reference marshes 42months after the spill. Heavy oiling also changed the vegetation structure of shoreline marshes from a mixed Spartina-Juncus community to predominantly Spartina; live Spartina aboveground biomass recovered within 2-3years, however, Juncus showed no recovery. In addition, live belowground biomass (0-12cm) in heavily oiled marshes was reduced by 76% three and a half years after the spill. Detrimental effects of heavy oiling on marsh plants also corresponded with significantly lower soil shear strength, lower sedimentation rates, and higher vertical soil-surface erosion rates, thus potentially affecting shoreline salt marsh stability.

  20. Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India.

    PubMed

    Pandey, J; Pandey, Usha

    2009-01-01

    Increasing consciousness about future sustainable agriculture and hazard free food production has lead organic farming to be a globally emerging alternative farm practice. We investigated the accumulation of air-borne heavy metals in edible parts of vegetables and in cultivated soil horizon in organic farming system in a low rain fall tropical region of India. The factorial design of whole experiment consisted of six vegetable crops (tomato, egg plant, spinach, amaranthus, carrot and radish) x two treatments (organic farming in open field and organic farming in glasshouse (OFG)) x seven independent harvest of each crop. The results indicated that except for Pb, atmospheric deposition of heavy metals increased consistently on time scale. Concentrations of heavy metals in cultivated soil horizon and in edible parts of open field grown vegetables increased over time and were significantly higher than those recorded in OFG plots. Increased contents of heavy metals in open field altered soil porosity, bulk density, water holding capacity, microbial biomass carbon, substrate-induced respiration, alkaline phosphatase and fluorescein diacetate hydrolytic activities. Vegetable concentrations of heavy metal appeared in the order Zn > Pb > Cu > Ni > Cd and were maximum in leaves (spinach and amaranths) followed by fruits (tomato and egg plant) and minimum in roots (carrot and radish). Multiple regression analysis indicated that the major contribution of most heavy metals to vegetable leaves was from atmosphere. For roots however, soil appeared to be equally important. The study suggests that if the present trend of atmospheric deposition is continued, it will lead to a destabilizing effect on this sustainable agricultural practice and will increase the dietary intake of toxic metals.

  1. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  2. HORIZON SENSING

    SciTech Connect

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine appropriately. The Horizon Sensor

  3. Killing Horizons Kill Horizon Degrees

    NASA Astrophysics Data System (ADS)

    Bergamin, L.; Grumiller, D.

    Frequently, it is argued that the microstates responsible for the Bekenstein-Hawking entropy should arise from some physical degrees of freedom located near or on the black hole horizon. In this essay, we elucidate that instead entropy may emerge from the conversion of physical degrees of freedom, attached to a generic boundary, into unobservable gauge degrees of freedom attached to the horizon. By constructing the reduced phase space, it can be demonstrated that such a transmutation indeed takes place for a large class of black holes, including Schwarzschild.

  4. Remote technologies for buried waste retrieval

    SciTech Connect

    Smith, A.M.; Rice, P.

    1995-10-01

    The DOE is evaluating what should be done with this buried waste. Although the radioactive waste is not particularly mobile unless airborne, some of it was buried with volatile organics and/or other substances that tend to spread easily to surrounding soil or water tables. Volatile organics are hazardous materials (such as trichloroethylene) and require clean-up at certain levels in drinking water. There is concern that the buried volatile organics will spread into the water table and contaminate drinking water. Because of this, the DOE is considering options for handling this buried waste and reducing the risks of spreading or exposure. There are two primary options: containment and stabilization, or retrieval. Containment and stabilization systems would include systems that would leave the waste where it is, but contain and stabilize it so that the radioactive and hazardous materials would not spread to the surrounding soil, water, or air. For example, an in situ vitrification system could be used to melt the waste into a composite glass-like material that would not leach into the surrounding soil, water, or air. Retrieval systems are those that would remove the waste from its burial location for treatment and/or repackaging for long term storage. The objective of this project was to develop and demonstrate remote technologies that would minimize dust generation and the spread of airborne contaminants during buried waste retrieval. Remote technologies are essential for the retrieval of buried waste because they remove workers from the hazardous environment and provide greater automation, reducing the chances of human error. Minimizing dust generation is also essential to increased safety for the workers and the environment during buried waste retrieval. The main contaminants within the waste are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides, which are easily suspended in air and spread if disturbed.

  5. Are We Under-Estimating Mercury in Soils? Experimental Acidification and Sample Collection Timing Demonstrate Variability in Estimates of Mercury in O-Horizon Soils at a Maine Site

    NASA Astrophysics Data System (ADS)

    Nelson, S. J.; Johnson, K. B.

    2009-12-01

    Sampling protocols, including sample timing, collection methods, preservation, and preparation, can strongly influence the results of any analysis. Organic soil horizons are a large pool of mercury (Hg) in most temperate, forested sites; minimizing the potential for under- or over- estimates in this medium is critical for discerning the fate and transport of Hg. Detailed guidance is available for ultra-clean and semi-clean handling for Hg sampling in surface waters. However, neither guidance regarding the proper time of year to sample soils nor methodological studies regarding post-sampling preservation and handling were available in the scientific literature for soil Hg sampling. Here we report on pilot work that (1) provides data for Hg in soils (O-horizon) through an entire year, to determine whether seasonality affects Hg estimates; and (2) documents the effect of treating a soil with acidic water prior to preparation and analysis. We collected O-horizon soil samples monthly from a single plot during 2008, and analyzed them for total Hg. Each month, samples were split; half were ‘control’ samples (dried then analyzed) and half were ‘acidified’ (treated with acidic (pH 2.0) ultrapure water prior to drying and analysis). We observed: (1) a three-fold range of Hg values (148-446 ppb) for the control samples (all collected within the same 2-m2 plot), varying across the twelve months in 2008 during which samples were collected; (2) differences of ~15-20% between acidified and control samples; and, (3) an apparent loss of ~100 ppb of Hg (~22%) if acidification of the dry sample was delayed a day or more. Soils collected when the antecedent period had been wet lost Hg when soils were treated with pH 2.0 solution, potentially because soluble Hg in solution could have been leached during acid treatment. This finding may help to explain why researchers have seen large pulses of Hg in streamwater flux during snowmelt. Further, our results may help to inform

  6. Buried paleoindian-age landscapes in stream valleys of the central plains, USA

    USGS Publications Warehouse

    Mandel, R.D.

    2008-01-01

    Pleistocene and early Holocene. The thick, dark, cumulic A horizons of soils, representing buried Paleoindian-age landscapes, are targets for future archaeological surveys. ?? 2008 Elsevier B.V. All rights reserved.

  7. Dual-band infrared capabilities for imaging buried object sites

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.; Gorvad, M.R.; Perkins, D.E.; Clark, G.A.; Hernandez, J.E.; Sherwood, R.J.

    1993-04-02

    We discuss dual-band infrared (DBIR) capabilities for imaging buried object sizes. We identify physical features affecting thermal contrast needed to distinguish buried object sites from undisturbed sites or surface clutter. Apart from atmospheric transmission and system performance, these features include: object size, shape, and burial depth; ambient soil, disturbed soil and object site thermal diffusivity differences; surface temperature, emissivity, plant-cover, slope, albedo and roughness variations; weather conditions and measurement times. We use good instrumentation to measure the time-varying temperature differences between buried object sites and undisturbed soil sites. We compare near surface soil temperature differences with radiometric infrared (IR) surface temperature differences recorded at 4.7 {plus_minus} 0.4 {mu}m and at 10.6 {plus_minus} 1.0 {mu}m. By producing selective DBIR image ratio maps, we distinguish temperature-difference patterns from surface emissivity effects. We discuss temperature differences between buried object sites, filled hole site (without buried objects), cleared (undisturbed) soil sites, and grass-covered sites (with and without different types of surface clutter). We compare temperature, emissivity-ratio, visible and near-IR reflectance signatures of surface objects, leafy plants and sod. We discuss the physical aspects of environmental, surface and buried target features affecting interpretation of buried targets, surface objects and natural backgrounds.

  8. Molecular Investigation of the Short-term Sequestration of Natural Abundance 13C -labelled Cow Dung in the Surface Horizons of a Temperate Grassland Soil

    NASA Astrophysics Data System (ADS)

    Dungait, J.; Bol, R.; Evershed, R. P.

    2004-12-01

    An adequate understanding of the carbon (C) sequestration potential of grasslands requires that the quantity and residence times of C inputs be measured. Herbivore dung is largely comprised of plant cell wall material, a significant source of stable C in intensively grazed temperate grassland ecosystems that contributes to the soil carbon budget. Our work uses compound-specific isotope analysis to identify the pattern of input of dung-derived compounds from natural abundance 13C/-labelled cow dung into the surface horizons of a temperate grassland soil over one year. C4 dung (δ 13C \\-12.6 ‰ ) from maize fed cows was applied to a temperate grassland surface (δ 13C \\-29.95 ‰ ) at IGER-North Wyke (Devon, UK), and dung remains and soil cores beneath the treatments collected at ŧ = 7, 14, 28, 56, 112, 224 and 372 days. Bulk dung carbon present in the 0\\-1 cm and 1\\-5 cm surface horizons of a grassland soil over one year was estimated using Δ 13C between C4 dung and C3 dung, after Bol {\\et al.} (2000). The major biochemical components of dung were quantified using proximate forage fibre analyses, after Goering and Van Soest (1970) and identified using `wet' chemical and GC-MS methods. Plant cell wall polysaccharides and lignin were found to account for up to 67 {%} of dung dry matter. Hydrolysed polysaccharides were prepared as alditol acetates for analyses (after Docherty {\\et al.}, 2001), and a novel application of an off-line pyrolysis method applied to measure lignin-derived phenolic compounds (after Poole & van Bergen, 2002). This paper focuses on major events in the incorporation of dung carbon, estimated using natural abundance 13C&-slash;labelling technique. This revealed a major bulk input of dung carbon after a period of significant rainfall with a consequent decline in bulk soil δ 13C values until the end of the experiment (Dungait {\\et al.}, submitted). Findings will be presented revealing contribution of plant cell wall polysaccharides and

  9. Seismic damage estimation for buried pipeline systems

    SciTech Connect

    Heubach, W.F.

    1995-12-31

    A methodology for estimating seismic damage rates for buried pipeline systems is presented. The methodology is intended for damage estimation of buried pipeline systems in areas where use of more rigorous structural analysis techniques is not practical. Damage is estimated for areas subjected to ground shaking and permanent ground deformation. Although the methodology employs previously developed ground shaking damage algorithms, new damage algorithms are developed for permanent ground deformation. These new algorithms reflect the high levels of damage observed in areas of soil liquefaction.

  10. Prestressing buried pipelines by heating with air

    SciTech Connect

    King, G. )

    1993-11-01

    Buried pipelines operating at elevated temperatures experience high longitudinal compressive stresses because the surrounding soil prevents thermal expansion. At high operating temperatures, buried pipelines can push through the soil at bends and buckle catastrophically. In soft soils they can lose lateral stability, and they can develop plastic failures. Thermally induced problems can be prevented with varying degrees of success by using thicker wall pipe, higher strength prevented with varying degrees of success by using thicker wall pipe, higher strength steel, longer radius bends, deeper burial, better backfill compaction, and/or prestressing during construction. Prestressing is most appropriate for pipelines operating at temperatures more than 80 C above ambient. One technique for prestressing a buried pipeline, that has been found to be both easy and economical for a liquid sulfur pipeline in Alberta, is to heat it with hot air and bury it while it is still hot. Pipe diameter and prestressing temperature both have a significant impact on the kind of heating equipment that is required.

  11. Variation of MCPA, metribuzine, methyltriazine-amine and glyphosate degradation, sorption, mineralization and leaching in different soil horizons.

    PubMed

    Jacobsen, Carsten S; van der Keur, Peter; Iversen, Bo V; Rosenberg, Per; Barlebo, Heidi C; Torp, Søren; Vosgerau, Henrik; Juhler, René K; Ernstsen, Vibeke; Rasmussen, Jim; Brinch, Ulla Catrine; Jacobsen, Ole Hørbye

    2008-12-01

    Pesticide mineralization and sorption were determined in 75 soil samples from 15 individually drilled holes through the vadose zone along a 28km long transect of the Danish outwash plain. Mineralization of the phenoxyacetic acid herbicide MCPA was high both in topsoils and in most subsoils, while metribuzine and methyltriazine-amine was always low. Organic matter and soil pH was shown to be responsible for sorption of MCPA and metribuzine in the topsoils. The sorption of methyltriazine-amine in topsoil was positively correlated with clay and negatively correlated with the pH of the soil. Sorption of glyphosate was tested also high in the subsoils. One-dimensional MACRO modeling of the concentration of MCPA, metribuzine and methyltriazine-amine at 2m depth calculated that the average concentration of MCPA and methyltriazine-amine in the groundwater was below the administrative limit of 0.1mug/l in all tested profiles while metribuzine always exceeded the 0.1mug/l threshold value.

  12. Soils and cultural layers in Velikii Novgorod

    NASA Astrophysics Data System (ADS)

    Dolgikh, A. V.; Aleksandrovskii, A. L.

    2010-05-01

    Urban pedosediments (cultural layers) dating back to the 10th-11th centuries AD and soddypodzolic soils buried under them were studied in two archaeological excavations in Velikii Novgorod. Stages of their development were described. It was found that the buried soddy-podzolic soils at the latest stages of their development were cultivated or were formed under meadow vegetation. Weakly developed garden soils were described in the thickness of urban pedosediments. The lowermost organic cultural layers in Velikii Novgorod were waterlogged and represented peatlike mass with well-preserved wood remains. The oxidation of organic matter, gleyzation, and vivianite formation were described in them. The upper mineral layers were enriched in brick debris and building lime. The processes of organic matter mineralization, alkalization, calcification, zoogenic turbation, and biogenic structuring were clearly manifested in this part. Soil solutions infiltrated from the cultural layers caused some alkalization of the buried soddy-podzolic soil. Diagenetic carbonates and vivianite appeared in some loci within the eluvial and the upper part of the illuvial horizon of this soil. The entire cultural layer was subjected to contamination with heavy metals.

  13. Buried Craters of Utopia

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-365, 19 May 2003

    Beneath the northern plains of Mars are numerous buried meteor impact craters. One of the most heavily-cratered areas, although buried, occurs in Utopia Planitia, as shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The history of Mars is complex; impact craters provide a tool by which to understand some of that history. In this case, a very ancient, cratered surface was thinly-buried by younger material that is not cratered at all. This area is near 48.1oN, 228.2oW; less than 180 km (112 mi) west of the Viking 2 lander site. Sunlight illuminates the scene from the lower left.

  14. Age and origin of Terra Rossa soils in the Coonawarra area of South Australia

    NASA Astrophysics Data System (ADS)

    Mee, Aija C.; Bestland, Erick A.; Spooner, Nigel A.

    2004-03-01

    The famous Terra Rossa soil in the Coonawarra area, South Australia, is dominated by locally derived aeolian detritus, which probably accumulated over the last 120-130 ka. Four soil profiles and associated limestone and lunette deposits were investigated using the following methods: mass balance geochemistry of bulk soil samples (major and trace elements), quantitative X-ray diffraction (XRD) mineralogy, strontium isotopes (87/86), as well as grain-size analysis and cation exchange capacity. These data show that the Terra Rossa soil from the Coonawarra has a thick, clayey B-horizon which is geochemically homogeneous and dominated by smectite and kaolinite. Mass-balance calculations show unrealistic weathering scenarios when plotted using silicate residuum from the underlying limestone as parent. Realistic weathering scenarios are produced with fine-grained silicate material from local lunette deposits as parent. Strontium isotopes of silicate residuum from Gambier Limestone (0.78) contrast strongly with the clayey B-horizon (0.726). Strontium isotope ratios of silicate material from a local lunette (0.725) are similar to the B-horizon soil values. Strontium isotope ratios from regional geological units indicate that the strontium signature in the lunette and soil B-horizon is dominated by weathering products from the Palaeozoic Kanmantoo shales, extensively exposed upwind to the west on Kangaroo Island and the Fleurieu Peninsula. Optical (optically stimulated luminescence, OSL) dating of 61 individual quartz grains (single aliquot) from three samples in the Coonawarra soil profile (one from the A-horizon and two from the B-horizon) shows that most of the quartz sand grains have been buried for only a few thousand years. Many of the grains, however, have been buried for tens of thousands of years with three grains having exposure ages of between 105 and 109 ka. The large population of young exposure dates represents quartz sands recently exposed in the A-horizon and

  15. Plasmonics in buried structures.

    PubMed

    Romero, I; García de Abajo, F J

    2009-10-12

    We describe plasmon propagation in silica-filled coupled nanovoids fully buried in gold. Propagation bands and band gaps are shown to be tunable through the degree of overlap and plasmon hybridization between contiguous voids. The effect of disorder and fabrication imperfections is thoroughly investigated. Our work explores a novel paradigm for plasmon photonics relying on plasmon modes in metal-buried structures, which can benefit from long propagation distances, cancelation of radiative losses, minimum crosstalk between neighboring waveguides, and maximum optical integration in three-dimensional arrangements.

  16. The history of soil erosion: Interpreting historical sources, buried soils and colluvial sediments as archives of past soil erosion and human-environment interactions in the Longue Durée

    NASA Astrophysics Data System (ADS)

    Dotterweich, Markus

    2015-04-01

    Soil erosion threatens the environment and the sustainability of agricultural practices since the earliest societies started modifying their natural environment in the Neolithic. Almost all farming-based cultures in the world, from large civilizations to peasant groups on little islands, have suffered from soil erosion by water. The amounts of soil erosion varied largely through time and space, and extreme events have left a wide variety of imprints on the landscape over millennia. Eroded hillslopes and gullies, deposited sediments in sinks like lakes, footslopes, valleys, floodplains, and river deltas are geomorphic legacies that have been linked to changes in land use and climate by many studies during the last decades. However, a standardized analysis and interpretation of these geomorphic legacies is problematic because of the variety of methodological approaches and the nonlinearity between soil erosion, climate, and land use. Cascading effects, land use structures, soil management, soil conservation strategies, and long-term system changes have produced different signals over time. Historical records are crucial and an invaluable source to provide alternative proxies about soil erosion in the past. Direct observations of individual soil erosion events may restrict the deposition of a distinct sediment package to a certain time span. They also expand the range of alternative interpretations, particularly with respect to the long-term effects of soil erosion to ecosystem services and socioeconomic processes. However, historical records also need critical analyses regarding their origin, intention, and quality. They were often created in the context of personal interests or political issues rather than being based on scientific facts; and it is often unclear if they represent certain events, narratives, or vague assumptions. This presentation will present and discuss examples of geomorphic evidences and historical records of past soil erosion for the deciphering

  17. Buried pipelines in large fault movements

    SciTech Connect

    Wang, L.J.; Wang, L.R.L.

    1995-12-31

    Responses of buried pipelines in large fault movements are examined based upon a non-linear cantilever beam analogy. This analogy assumes that the pipeline in a large deflection zone behaves like a cantilever beam under a transverse-concentrated shear at the inflection point with a uniformly distributed soil pressure along the entire span. The tangent modulus approach is adopted to analyze the coupled axial force-bending moment interaction on pipeline deformations in the inelastic range. The buckling load of compressive pipeline is computed by the modified Newmark`s numerical integration scheme. Parametric studies of both tensile and compressive pipeline responses to various fault movements, pipeline/fault crossing angles, soil/pipe friction angles, buried depths, pipe diameters and thickness are investigated. It is shown by the comparisons that previous findings were unconservative.

  18. Cracked Plain, Buried Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a cracked plain in western Utopia Planitia. The three circular crack patterns indicate the location of three buried meteor impact craters. These landforms are located near 41.9oN, 275.9oW. The image covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this scene from the lower left.

  19. Transverse seismic analysis of buried pipelines

    SciTech Connect

    Mavridis, G.A.; Pitilakis, K.D.

    1995-12-31

    The objective of this study is to develop an analytical procedure for calculating upper bounds for stresses and strains for the case of the transverse seismic shaking of continuous buried pipelines taking into account the soil-pipeline interaction effects. A sensibility analysis of some critical parameters is performed. The influence of various parameters such as the apparent propagation velocity, the frequency content of the seismic ground excitation, the dynamic soil properties, the pipe`s material and size, on the ratio of the pipe to ground displacements amplitudes and consequently to the induced pipe strains, are studied parametrically.

  20. Chemodestructive fractionation of soil organic matter

    NASA Astrophysics Data System (ADS)

    Popov, A. I.; Rusakov, A. V.

    2016-06-01

    The method of chemodestructive fractionation is suggested to assess the composition of soil organic matter. This method is based on determination of the resilience of soil organic matter components and/or different parts of organic compounds to the impact of oxidizing agents. For this purpose, a series of solutions with similar concentration of the oxidant (K2Cr2O7), but with linearly increasing oxidative capacity was prepared. Chemodestructive fractionation showed that the portion of easily oxidizable (labile) organic matter in humus horizons of different soil types depends on the conditions of soil formation. It was maximal in hydromorphic soils of the taiga zone and minimal in automorphic soils of the dry steppe zone. The portion of easily oxidizable organic matter in arable soils increased with an increase in the rate of organic fertilizers application. The long-lasting agricultural use of soils and burying of the humus horizons within the upper one-meter layer resulted in the decreasing content of easily oxidizable organic matter. It was found that the portion of easily oxidizable organic matter decreases by the mid-summer or fall in comparison with the spring or early summer period.

  1. Theoretical and Experimental Characterizations of the IR Technology for the Detection of Low-Metal and Nonmetallic Buried Landmines

    DTIC Science & Technology

    1997-03-01

    two models are P502142.PDF [Page: 12 of 120] UNCLASSIFIED 2 proposed: a general model defining the main components of the buried mine thermodynamic ...temperature at sufficient depth. The first principle addresses the surfaces of soil showing equivalent optical properties (as road sections) and...thermal properties of the soil covering the buried mine compared with the surrounding soils. This second cause for the heat impedance of a buried

  2. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... soil-horizon depths, soil densities, soil pH, and other specifications such that reconstructed soils... reconstructed shall be 48 inches, or a lesser depth equal to the depth to a subsurface horizon in the natural... the original soil productive capacity. Soil horizons shall be considered as inhibiting or...

  3. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... soil-horizon depths, soil densities, soil pH, and other specifications such that reconstructed soils... reconstructed shall be 48 inches, or a lesser depth equal to the depth to a subsurface horizon in the natural... the original soil productive capacity. Soil horizons shall be considered as inhibiting or...

  4. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... soil-horizon depths, soil densities, soil pH, and other specifications such that reconstructed soils... reconstructed shall be 48 inches, or a lesser depth equal to the depth to a subsurface horizon in the natural... the original soil productive capacity. Soil horizons shall be considered as inhibiting or...

  5. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... soil-horizon depths, soil densities, soil pH, and other specifications such that reconstructed soils... reconstructed shall be 48 inches, or a lesser depth equal to the depth to a subsurface horizon in the natural... the original soil productive capacity. Soil horizons shall be considered as inhibiting or...

  6. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... soil-horizon depths, soil densities, soil pH, and other specifications such that reconstructed soils... reconstructed shall be 48 inches, or a lesser depth equal to the depth to a subsurface horizon in the natural... the original soil productive capacity. Soil horizons shall be considered as inhibiting or...

  7. DOE complex buried waste characterization assessment

    SciTech Connect

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m[sup 3] of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  8. Sensor feature fusion for detecting buried objects

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.; Hernandez, J.E.; Buhl, M.R.; Schaich, P.C.; Kane, R.J.; Barth, M.J.; DelGrande, N.K.

    1993-04-01

    Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.

  9. Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata

    PubMed Central

    Han, C. J.

    2015-01-01

    This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines. PMID:26103460

  10. Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata.

    PubMed

    Zhang, J; Liang, Z; Han, C J

    2015-01-01

    This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines.

  11. Beam and shell modes of buckling of buried pipes induced by compressive ground failure

    SciTech Connect

    Chiou, Y.J.; Chi, S.Y.

    1995-12-31

    The buckling of buried pipeline induced by compressive ground failure was investigated. Both the beam mode of buckling and local shell mode of buckling, and their interactions were studied. The pipeline response was analyzed numerically. The results agree qualitatively with past researches and possess satisfactory comparisons with actual case histories. The relations of critical buried depth versus ratio of pipe diameter to thickness for buried pipe with different imperfections and various soil foundations were established.

  12. Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response

    NASA Astrophysics Data System (ADS)

    Küster, Mathias; Fülling, Alexander; Kaiser, Knut; Ulrich, Jens

    2014-04-01

    The present study is a pedo-geomorphic approach to reconstructing Holocene aeolian sand dynamics in the Mecklenburg Lake District (NE Germany). Stratigraphical, sedimentological and soil research supplemented by morphogenetic interpretations of the genesis of dunes and aeolian sands are discussed. A complex Late Holocene aeolian stratigraphy within a drift sand area was developed at the shore of Lake Müritz. The results were confirmed using palynological records, archaeological data and regional history. Accelerated aeolian activity was triggered by the intensification of settlement and land-use activities during the 13th and in the 15th to 16th century AD. After a period of stability beginning with population decline during the ‘Thirty Years War' and continuing through the 18th century, a final aeolian phase due to the establishment of glassworks was identified during the 19th century AD. We assume a direct link between Holocene aeolian dynamics and human activities. Prehistoric Holocene drift sands on terrestrial sites have not been documented in the Mecklenburg Lake District so far. This might be explained either by erosion and incorporation of older aeolian sediments during younger aeolian phases and/or a lower regional land-use intensity in older periods of the Holocene. The investigated drift sands are stratigraphically and sedimentologically characterised by a high degree of heterogeneity, reflecting the spatial and temporal variability of Holocene human impact.

  13. Soil stratigraphy and plant soil interactions on a Late Glacial Holocene fluvial terrace sequence, Sierra Nevada National Park, northern Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Mahaney, William C.; Dirszowsky, Randy W.; Milner, Michael W.; Harmsen, Rudolf; Finkelstein, Sarah A.; Kalm, Volli; Bezada, Maximilano; Hancock, R. G. V.

    2007-01-01

    Analysis of a flight of alluvial terraces in the Sierra Nevada National Park near Pico Mucuñuque in the Eastern Mérida Andes has yielded information on geomorphic, pedogenic, and vegetational changes from Late Glacial time to the present. The terraces formed in large part due to stream incision/migration triggered by neotectonic uplift (>7000 yr BP) of a Late Glacial/Early Holocene glaciolacustrine lithosequence and, with the exception of the oldest/highest terrace, exhibit near-uniform lithology/parent materials. Soils developed in the terrace materials range from thin, weakly developed profiles (O/C/Cu horizons) to Entisols with O/Ah/Cox/Cu horizons and similar buried counterparts representing former short periods of floodplain stability or slow aggradation. The buried soils provide organic-rich material that yields radiocarbon ages, which provide time constraints on individual pedons and the geomorphic development of the site. Iron and aluminum extracts of soil matrix material provide information on the formation and accumulation of goethite and hematite, the relative accumulation of ferrihydrite (gain/loss), and the downward translocation of organically complexed Al as a function of soil development and age. SEM analysis of heavy mineral grains indicates varying material sources and degrees of weathering in the soil chronosequence. A qualitative study of plant functional types across the terrace sequence shows that older surfaces support greater plant diversity. The study also suggests ways in which the plant communities influence soil development at the site through varying organic matter inputs and varying soil moisture use by specific species (e.g., ferns on the oldest terrace), which may explain the absence of B horizons in the Late Pleistocene/Early Holocene soils.

  14. DOE complex buried waste characterization assessment. Buried Waste Integrated Demonstration Program

    SciTech Connect

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m{sup 3} of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  15. Validation of TOF-SIMS and FE-SEM/EDS Techniques Combined with Sorption and Desorption Experiments to Check Competitive and Individual Pb2+ and Cd2+ Association with Components of B Soil Horizons.

    PubMed

    Cerqueira, Beatriz; Arenas-Lago, Daniel; Andrade, María Luisa; Vega, Flora A

    2015-01-01

    Sorption and desorption experiments were performed by the batch method on the B horizons of five natural soils: Umbric Cambisol, Endoleptic Luvisol, Mollic Umbrisol, Dystric Umbrisol, and Dystric Fluvisol. Individual and competitive sorption and desorption capacity and hysteresis were determined. The results showed that Pb2+ was sorbed and retained in a greater quantity than Cd2+ and that the hysteresis of the first was greater than that of the second. The most influential characteristics of the sorption and retention of Pb2+ were pH, ECEC, Fe and Mn oxides and clay contents. For Cd2+ they were mainly pH and, to a lesser extent, Mn oxides and clay content. The combined use of TOF-SIMS, FE-SEM/EDS and sorption and desorption analyses was suitable for achieving a better understanding of the interaction between soil components and the two heavy metals. They show the preferential association of Pb2+ with vermiculite, chlorite, Fe and Mn oxides, and of Cd2+ with the same components, although to a much lesser extent and intensity. This was due to the latter's higher mobility as it competed unfavourably with the Pb2+ sorption sites. TOF-SIMS and FE-SEM/EDS techniques confirmed the results of the sorption experiments, and also provided valuable information on whether the soil components (individually or in association) retain Cd2+ and/or Pb2+; this could help to propose effective measures for the remediation of contaminated soils.

  16. Biological mineralization of organic matter in the modern virgin and plowed chernozems, buried chernozems, and fossil chernozems

    NASA Astrophysics Data System (ADS)

    Ivanov, I. V.; Pesochina, L. S.; Semenov, V. M.

    2009-10-01

    The phenomenon of mineralization (biological mineralization) of organic matter in chernozems has been studied. A decrease in the content of Corg with time can be considered an index of the organic matter mineralization. It is suggested that the humus horizons of modern chernozems contain the pools of organic matter of different ages: easily decomposable organic matter, labile biologically active humus, stable biologically active humus, and relatively inert humus. The composition and mean residence times of these pools and their contribution to the total organic matter content have been estimated. The particular types of the biological mineralization have been determined on the basis of the comparison between the velocities of mineralization (M) and humification (H) processes: total unidirectional mineralization (M ≫ H), equilibrium mineralization (M ˜ H), nonequilibrium mineralization (M> buried under kurgans and in loess sediments (with the age of up to 800 ka), the quantitative relationship of the humus content in the buried soils on their age has been found; it has an exponential shape. During the first 100 ka after the soil burial, the soil humus content gradually (with a slowing intensity) decreases from 100-75 to 6.5% of its content in the virgin chernozems. Then, 100-1000 ka after the soil burial, the soil humus content remains approximately constant (6.5% of the initial level, or 0.3% of the soil mass). The rates of mineralization have been estimated. It is shown that the elemental composition (C, H, N, O) of humic acids remains relatively stable for a long time due to the regeneration of the chemical structure of humus (matric restoration of humus). It is suggested that several different forms of humus related to pedogenesis should be distinguished in the

  17. Two Horizons of Fusion

    ERIC Educational Resources Information Center

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  18. The 2010 Horizon Report

    ERIC Educational Resources Information Center

    Johnson, L.; Levine, A.; Smith, R.; Stone, S.

    2010-01-01

    The annual "Horizon Report" describes the continuing work of the New Media Consortium's Horizon Project, a qualitative research project established in 2002 that identifies and describes emerging technologies likely to have a large impact on teaching, learning, or creative inquiry on college and university campuses within the next five years. The…

  19. Anomaly corrected heterotic horizons

    NASA Astrophysics Data System (ADS)

    Fontanella, A.; Gutowski, J. B.; Papadopoulos, G.

    2016-10-01

    We consider supersymmetric near-horizon geometries in heterotic supergravity up to two loop order in sigma model perturbation theory. We identify the conditions for the horizons to admit enhancement of supersymmetry. We show that solutions which undergo supersymmetry enhancement exhibit an {s}{l}(2,{R}) symmetry, and we describe the geometry of their horizon sections. We also prove a modified Lichnerowicz type theorem, incorporating α' corrections, which relates Killing spinors to zero modes of near-horizon Dirac operators. Furthermore, we demonstrate that there are no AdS2 solutions in heterotic supergravity up to second order in α' for which the fields are smooth and the internal space is smooth and compact without boundary. We investigate a class of nearly supersymmetric horizons, for which the gravitino Killing spinor equation is satisfied on the spatial cross sections but not the dilatino one, and present a description of their geometry.

  20. System design for buried high-pressure/high-temperature pipelines

    SciTech Connect

    1998-06-01

    A pipeline expands or contracts when temperatures or pressures vary from the conditions at the time the pipeline was installed. Buried pipelines operating at high temperatures and pressures experience extreme compressive loads. Because radial expansion is limited by soil restraint, buried pipelines expand axially. High axial forces combined with imperfections in the seabed may overstress the pipeline or result in upheaval buckling. Methods to control expansion and upheaval buckling were investigated for the design of a buried high-pressure/high temperature (HP/HT) sour-gas flowline in Mobile Bay, Alabama. After investigating conventional and unconventional methods, the decision was made to use expansion loops over the length of the pipeline to protect the risers and reduce axial force in the middle of the pipeline. Expansion loops and doglegs act as springs to absorb pipeline expansion. Methods were investigated to prevent soil from accumulating around the buried expansion loops. Commercially available concrete dog houses used to protect pipelines and expansion loops from dropped objects were not suitable for burial, and fabrication of custom concrete housing was expensive. Fabrication of a steel enclosure was the solution chosen. A mathematical model based on internal-design guidelines and ultimate soil friction was used to determine placement and size of the expansion loops.

  1. Numerical Modeling for Impact-resistant Pipes Buried at Shallow Depth

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Jong; Hsu, Jung-Fu

    2010-05-01

    The plastic pipes buried at shallow depth are popular for underground telecommunication lines. To assess their impact-worthiness under loads from heavy traffics, the study establishes a numerical model to correlate with field data. Field impact tests were carried out where a 50-kg mass free-falling at 2.2 m height was dropped onto the soil backfill directly above a buried pipe. A contact-impact model incorporating finite elements of disjoined material regions is developed to simulate the phenomena of mass-soil-pipe interaction and soil dent. Plastic soil deformations are accounted for. Also implemented is a new erosion scheme for dealing with numerical instability caused by crumpled elements during heavy impact. Reasonable agreements can be observed between the analyzed and measured soil dent. This model is versatile in making design evaluations for buried pipes to withstand impact loads. It has potential applications to cemented soil fills and blast loads.

  2. Prediction of the TNT signature from buried UXO/landmines

    SciTech Connect

    Webb, S.W.; Phelan, J.M.; Finsterle, S.A.; Pruess, K.

    1998-06-01

    The detection and removal of buried unexploded ordnance (UXO) and landmines is one of the most important problems facing the world today. Numerous detection strategies are being developed, including infrared, electrical conductivity, ground-penetrating radar, and chemical sensors. Chemical sensors rely on the detection of TNT molecules, which are transported from buried UXO/landmines by advection and diffusion in the soil. As part of this effort, numerical models are being developed to predict TNT transport in soils including the effect of precipitation and evaporation. Modifications will be made to TOUGH2 for application to the TNT chemical sensing problem. Understanding the fate and transport of TNT in the soil will affect the design, performance and operation of chemical sensors by indicating preferred sensing strategies.

  3. Cryostratigraphy and Main Physical Properties of Active Layer Soils and Upper Horizon of Permafrost at the Barrow Environmental Observatory Research Site.

    NASA Astrophysics Data System (ADS)

    Kholodov, A. L.; Liljedahl, A.; Romanovsky, V. E.; Cable, W.

    2014-12-01

    Complete understanding of the results of geophysical survey, microbiological and biogeochemical analyzes of soil cores in the Arctic environment impossible without detail description of the frozen soil and its physical properties determination. Cryostratigraphyc features i.e. total ice content and forms of ice patterns reflects the important processes such as water migration due to freezing in frozen active layer soils and history of sedimentation and freezing in underlying perennially frozen deposits. That plays significant role in biogeochemical processes that take place in the Arctic ecosystem. Current research was based on description and analyzing of 8 cores taken during 2012 and 2013 coring campaigne had been done at the Barrow Environmental Observatory research site. Cores were taken from different types of polygons and analyzed on lithological composition, soil density, ice content and thermal conductivity. Volumetric ice content within the active layer composed by organic soil consists of 70 to 80% and within silt one - less than 60%. Ice content of underlying syncryogenic perennial frozen deposits is about 70%. No clear evidences of soil moisture redistribution due to freezing of active layer were noticed in the cores composed by the organic soil. Organic soil does not have any clear cryogenic structures. Ice usually fills the pores and follows the plants fibers. Mineral soil has recticulated cryogenic structure (ice forms grid like patterns with vertically oriented cells) with some thin (up to 2 cm thick) layers of soil particles and aggregates suspended in ice. Thermal conductivity of frozen samples varies in the range from 1.5 to 2.8 W/(m*°K). It has a positive correlation with soil density and negative with gravimetric ice content (see figure below). Mineral soils have a higher bulk density and average thermal conductivity in the range 2.15 W/(m*°K), organic soils have a lower density and average thermal conductivity about 2 W/(m*°K). Samples

  4. Mineralogical analysis of clays in hardsetting soil horizons, by X-ray fluorescence and X-ray diffraction using Rietveld method

    NASA Astrophysics Data System (ADS)

    Prandel, L. V.; Saab, S. C.; Brinatti, A. M.; Giarola, N. F. B.; Leite, W. C.; Cassaro, F. A. M.

    2014-02-01

    Diffraction and spectroscopic techniques have been shown to be suitable for obtaining physical and mineralogical properties in polycrystalline soil samples, and also in their precursor compounds. For instance, the X-ray fluorescence (XRF) spectroscopy allows obtaining the elemental composition of an investigated sample, while the X-ray diffraction (XRD) technique permits obtaining qualitative and quantitative composition of the soil minerals through the Rietveld method (RM). In this study Yellow Latosol (Oxisol), Yellow Argisol (Ultisol) and Gray Argisol (Ultisol) soil samples, classified as "hardsetting soils", extracted from areas located at Northeast and Southeast of Brazilian coast were investigated. The soils and their fractions were analyzed in an EDX-700 and an XRD-6000 (Cu Kα radiation). XRF results indicate high percentages of Si and Al, and small percentage of Fe and Ti in the investigated samples. The DRX data and RM indicate that there was a predominance of kaolinite and halloysite minerals (kaolin group minerals) in the clay fractions, which are presumably responsible for the formation of kaolinitic plasma in these soils. Also, the obtained results showed that the XRF, XRD techniques and RM were very helpful for investigating the mineralogical composition of a hardsetting soil.

  5. Mt. Blanco revisited: soil-geomorphic implications for the ages of the upper Cenozoic Blanco and Blackwater Draw Formations

    SciTech Connect

    Holliday, V.T.

    1988-06-01

    Mt. Blanco, on the eastern edge of the Southern High Plains of Texas, contains stratigraphic features significant in interpreting the late Cenozoic history of the region and the vertebrate paleontology of the Great Plains; however, the stratigraphic relations are confused in the literature or are unreported. Mt. Blanco is the type locality for the Blanco Formation and the Blanco Local Fauna, which occurs throughout North America and is the type fauna for the Blancan Land Mammal Age in North America. Here also occur exposures of the Blackwater Draw Formation, an extensive (120,000 km/sup 2/) eolian sheet that is the surficial cover of the region and contains the 1.4 Ma Guaje Ash and several buried soils. A reexamination of the section shows that (1) the Blackwater Draw Formation, an eolian deposit, contains three well-expressed buried soils (5 YR hues, argillic horizons greater than or equal to 1 m thick, Stages III and IV calcic horizons) and the similar regional surface soil (Paleustalf); (2) the Guaje Ash is within the lower Blackwater Draw Formation but is separated from the Blanco Formation, a lacustrine unit, by about 1 m of sediment, including the lowest buried soil; and (3) the lowest buried soil shows a Stage IV calcrete formed at the top of the Blanco Formation and the base of the Blackwater Draw Formation and probably took about 200 ka to form. These new data suggested that deposition of the type Blanco sediments may have ended by about 1.6 Ma or earlier. Since that time, the Blackwater Draw Formation has accumulated episodically; periods of nondeposition are characterized by landscape stability and pedogenesis.

  6. Assessment of the living and total biomass of microbial communities in the background chestnut soil and in the paleosols under burial mounds

    NASA Astrophysics Data System (ADS)

    Khomutova, T. E.; Kashirskaya, N. N.; Demkin, V. A.

    2011-12-01

    The contents of phospholipids and carbon of the total microbial biomass were determined in the modern chestnut soil and in the paleosols buried under mounds of the Bronze and Early Iron Ages (5000-1800 years ago) in the dry steppe of the Lower Volga River basin. Judging from data on the ratio between the contents of phospholipids and organic carbon in the microbial cells, the carbon content of the living microbial biomass was calculated and compared with the total microbial biomass and total organic carbon in the studied soils. In the background chestnut soil, the content of phospholipids in the A1, B1, and B2 horizons amounted to 452, 205, and 189 nmol/g, respectively; in the paleosols, it was 28-130% of the present-day level. The maximum content was measured in the paleosols buried 5000 and 2000 years ago, in the periods with an increased humidity of the climate. In the background chestnut soil, the total microbial biomass was estimated at 5680 (the A1 horizon), 3380 (B1), and 4250 (B2) μg C/g; in the paleosols, it was by 2.5-7.0 times lower. In the upper horizons of the background soil, the portion of the living microbial biomass in the total biomass was much less than that in the paleosols under the burial mounds; it varied within 8.5-15.3% and 15-81%, respectively. The portion of living microbial biomass in the total organic carbon content of the background chestnut soil was about 4-8%. In the paleosols buried in the Early Iron Age (2000 and 1800 years ago), this value did not exceed 3-8%; in the paleosols of the Bronze Age (5000-4000 years ago), it reached 40% of the total organic carbon.

  7. Parity horizons in shape dynamics

    NASA Astrophysics Data System (ADS)

    Herczeg, Gabriel

    2016-11-01

    I introduce the notion of a parity horizon, and show that many simple solutions of shape dynamics possess them. I show that the event horizons of the known asymptotically flat black hole solutions of shape dynamics are parity horizons and that this notion of parity implies that these horizons possess a notion of CPT invariance that can in some cases be extended to the solution as a whole. I present three new solutions of shape dynamics with parity horizons and find that not only do event horizons become parity horizons in shape dynamics, but observer-dependent horizons and Cauchy horizons do as well. The fact that Cauchy horizons become (singular) parity horizons suggests a general chronology protection mechanism in shape dynamics that prevents the formation of closed timelike curves.

  8. Sensor system for buried waste containment sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, May Catherine

    2000-01-01

    A sensor system is disclosed for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  9. New Horizons at Pluto

    NASA Astrophysics Data System (ADS)

    Schenk, Paul; Nimmo, Francis

    2016-06-01

    The New Horizons mission has revealed Pluto and its moon Charon to be geologically active worlds. The familiar, yet exotic, landforms suggest that geologic processes operate similarly across the Solar System, even in its cold outer reaches.

  10. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  11. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  12. Changes in soil properties and soil cover structure due to intensive erosion and accumulation processes in loess soils

    NASA Astrophysics Data System (ADS)

    Zadorova, Tereza; Penizek, Vit; Jaksik, Ondrej; Kodesova, Radka; Jirku, Veronika; Fer, Miroslav

    2010-05-01

    concave parts of the slope and at the toeslope, the Corg content in the plough layer is lower due to an admixture of non-humus material transported from the steep parts of the plot. Nevertheless, the deeper (0.7 - 2 m), buried parts of the colluvial profiles are very rich in organic carbon (up to 4 %). These horizons may represent fossil chernic horizons of former Chernozems, buried by intensive sedimentation of humic material. Similar variability was found in carbonate content values, always due to amount of loess admixture in the plough horizon. While the soil structure stability, depending strongly on humus content, was the highest in the Chernozem unit, in the eroded parts it was highly unstable. Changes in the cation exchange capacity and pH are less distinctive. CEC slightly increases in humus-rich soils and pH is higher in the eroded parts of the plot due to the loess exposition. Acknowledgement: Authors acknowledge the financial support of the Grant Agency of the Czech Republic (grant No. GA CR 526/08/0434) and the Ministry of Education, Youth and Sports of the Czech Republic (grant No. MSM 6046070901).

  13. Melter development needs assessment for RWMC buried wastes

    SciTech Connect

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form (Iron-Enriched Basalt (IEB) glass/ceramic). The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended.

  14. Melter development needs assessment for RWMC buried wastes

    SciTech Connect

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended.

  15. Modeling the electromagnetic detection of buried cylindrical conductors

    SciTech Connect

    Moses, R.W.; Kelly, R.E.; Mack, J.M.

    1996-05-01

    The remote detection of buried structures and tunnels is important to the mining, construction, and defense industries. It is often desirable to identify underground power lines, pipe lines, and utility tunnels which have unique electromagnetic cross sections. A computational model for the electromagnetic detection of buried conducting cylinders is described in this paper. The source of electromagnetic radiation is either current injection into the soil or a surface based magnetic dipole with possible extensions to airborne platforms. Frequency ranges from a few kHz to 100 kHz are considered. The target conductor is a cylinder buried directly in the soil or placed inside an insulating pipe. The receiver is a magnetic gradiometer held 1m above the ground, separate from the transmitter. Data are taken widely over the terrain under investigation. Cases where the target conductor is grounded at both ends, one end, or not at all are modeled. The scattered field and field gradient are computed at or above ground level and compared in magnitude and phase with the transmitted signal. Calculated results are compared with experimental tests done to detect a buried wire at Sandia National Laboratory and a tunnel at Yucca Mountain. Essential factors affecting detection performance are frequency optimization, dynamic range of reception and proper data processing.

  16. Degradation of carbohydrates and lignins in buried woods

    NASA Astrophysics Data System (ADS)

    Hedges, John I.; Cowie, Gregory L.; Ertel, John R.; James Barbour, R.; Hatcher, Patrick G.

    1985-03-01

    Spruce, alder, and oak woods deposited in coastal sediments were characterized versus their modern counterparts by quantification of individual neutral sugars and lignin-derived phenols as well as by scanning electron microscopy, 13C NMR, and elemental analysis. The buried spruce wood from a 2500 yr old deposit was unaltered whereas an alder wood from the same horizon and an oak wood from an open ocean sediment were profoundly degraded. Individual sugar and lignin phenol analyses indicate that at least 90 and 98 wt% of the initial total polysaccharides in the buried alder and oak woods, respectively, have been degraded along with 15-25 wt% of the lignin. At least 75% of the degraded biopolymer has been physically lost from these samples. This evidence is supported by the SEM, 13C NMR and elemental analyses, all of which indicate selective loss of the carbohydrate moiety. The following order of stability was observed for the major biochemical constituents of both buried hardwoods: vanillyl and p- hydroxyl lignin structural units > syringyl lignin structural units > pectin > α-cellulose > hemicellulose. This sequence can be explained by selective preservation of the compound middle lamella regions of the wood cell walls. The magnitude and selectivity of the indicated diagenetic reactions are sufficient to cause major changes in the chemical compositions of wood-rich sedimentary organic mixtures and to provide a potentially large in situ nutrient source.

  17. Degradation of carbohydrates and lignins in buried woods

    USGS Publications Warehouse

    Hedges, J.I.; Cowie, G.L.; Ertel, J.R.; James, Barbour R.; Hatcher, P.G.

    1985-01-01

    Spruce, alder, and oak woods deposited in coastal sediments were characterized versus their modern counterparts by quantification of individual neutral sugars and lignin-derived phenols as well as by scanning electron microscopy, 13C NMR, and elemental analysis. The buried spruce wood from a 2500 yr old deposit was unaltered whereas an alder wood from the same horizon and an oak wood from an open ocean sediment were profoundly degraded. Individual sugar and lignin phenol analyses indicate that at least 90 and 98 wt% of the initial total polysaccharides in the buried alder and oak woods, respectively, have been degraded along with 15-25 wt% of the lignin. At least 75% of the degraded biopolymer has been physically lost from these samples. This evidence is supported by the SEM, 13C NMR and elemental analyses, all of which indicate selective loss of the carbohydrate moiety. The following order of stability was observed for the major biochemical constituents of both buried hardwoods: vanillyl and p-hydroxyl lignin structural units > syringyl lignin structural units > pectin > ??-cellulose > hemicellulose. This sequence can be explained by selective preservation of the compound middle lamella regions of the wood cell walls. The magnitude and selectivity of the indicated diagenetic reactions are sufficient to cause major changes in the chemical compositions of wood-rich sedimentary organic mixtures and to provide a potentially large in situ nutrient source. ?? 1985.

  18. The Buried Town of Beaver.

    ERIC Educational Resources Information Center

    Jostad, Karen

    Local history as source material for environmental education is uniquely portrayed in this resource kit. Utilizing a Winona County Historical Society publication, "The Beaver Story" and accompanied by a teacher's guide, "The Buried Town of Beaver," and other teaching aids, a case study of the area can be developed. Based on the reminiscences of…

  19. Common causes of material degradation in buried piping

    SciTech Connect

    Jenkins, C.F.

    1997-01-20

    Buried pipe may fail for innumerable reasons. Causes can be mechanical damage/breakage, chemically initiated corrosion, or a combination. Failures may originate either internally or externally on the pipe. They may be related to flaws in the design, to excessive or unanticipated internal pressure or ground level loading, and/or to poor or uncertain installation practice. Or the pipe may simply ``wear out`` in service. Steel is strong and very forgiving in underground applications, especially with regard to backfill. However, soil support developed through densification or compaction is critical for brittle concrete and vitrified clay tile pipe, and is very important for cast iron and plastic pipe. Chemistry of the soil determines whether or not it will enhance corrosion or other types of degradation. Various causes and mechanisms for deterioration of buried pipe are indicated. Some peculiarities of the different materials of construction are characterized. Repair methods and means to circumvent special problems are described.

  20. Horizonal and Vertical Spatial Patterns of Radon and Other Soil-gases Across the El Pilar Fault Trace at Guaraphiche, Edo. Surce (Venezuela)

    NASA Astrophysics Data System (ADS)

    LaBrecque, J. J.

    2002-05-01

    Soil-gases (radon, thoron, carbon dioxide and hydrogen) were measured at 63-cm depths along a transect perpendicular to the rupture (fault trace) from the 1997 Caricao earthquake (Mw=6.9) at Guarapiche, state of Sucre (Venezuela). The transect was about 40 meters long with ten sampling points with the spacings was smaller near the rupture. The shapes of the horizontal spatial patterns for radon (Rn-222), thoron (Rn-220) and total radon (Rn-222+Rn-220) were similar; the gas concentrations increased from both ends of the transect toward the rupture where a dip (valley) occurred. Both carbon dioxide and hydrogen gases showed anomalous values at the same sampling points. Twin peaks (anomalies) had been previously reported and suggested that they were due to blockage in the rupture. We have also determined soil-gases from 25-cm to 155-cm depths near the rupture and at the ends of the transect. The results showed that the soil-gas concentrations were not only higher in the upper levels (less than 65-cm) near the fault trace but were similar or greater than the lower levels. Thus, producing the twin peaks when soil-gas sampling was performed at the 65-cm depth. When the sampling was performed at only 45-cm depth the dip over the rupture was much less and the patterns looked more like a broad doublet peak. In conclusion, one can clearly see that not only positive soil-gas anomalies can occur over a fault trace but also negative ones too. 1) This work was partially funded by a research contract from the Venezuelan National Science Foundation (CONICIT Proyecto S1-95000448). 2) Mailing Address: Centro de Quimica, 8424 NW 56th Street, Suite 00204,Miami, Fl 33166 (USA). E-mail jjlabrec@ivic.ve FAX: +58-212-504-1214

  1. Buried metalic object identification by EMI sensor

    NASA Astrophysics Data System (ADS)

    Sezgin, Mehmet; Kaplan, Gülay; Birim, Melih; Bahadırlar, Yıldırım

    2007-04-01

    Electromagnetic Induction sensor (Metal Detector) has wide application areas for buried metallic object searching, such as detection of buried pipes, mine and mine like-targets, etc. In this paper, identification of buried metallic objects was studied. The distinctive features of the signal were obtained, than classification process was performed. Identification process was realized by utilizing k-Nearest neighbor and Neural Network Classifiers.

  2. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... minimum, soil resistivity measurements and tests for corrosion accelerating bacteria, that a...

  3. Soil Properties of USSR Strategic Areas. Volume I. Soil Property Comparisons for Selected USSR and U.S. Soils.

    DTIC Science & Technology

    1980-12-01

    argillic horizons H Phaeozems Dark surface color , more bleached than kastanozems or chernozems W Planosols Abrupt A-B horizon contact P Podzols Light... colored alluvial horizon and subsoil accumulation of iron, aluminum, and humus D Podzoluvisols Bleached horizons tonguing into argillic B horizons U...OF THE WORLD (SHEETS V-2, VIII-1, VIII-2, VIII-3) A Acrisols Highly weathered soils with argillic horizons T Andosols Volcanic ash with dark surfaces

  4. Investigation of horizon Beta.

    PubMed

    Windisch, C C; Leyden, R J; Worzel, J L; Saito, T; Ewing, J

    1968-12-27

    Horizon beta is a subbottom reflector in the North Atlantic deep ocean sediments that extends over a large portion of the North America basin. Cores from an outcrop of beta contained shallow-water Aptian-Albian sediments and deep-water Cenomanian sediments. A core near an outcrop of a deeper horizon, horizon B, contained shallow-water Lower Cretaceous (Barremian-Hauterivian) sediments. These cores can be interpreted to support extensive subsidence of the eastern portion of the basin in early Cretaceous time. It is equally likely that the shallow-water deposits are a result of sediments slumping into an already deep basin. A reconciliation of these interpretations depends upon the JOIDES project.

  5. Firewall or smooth horizon?

    NASA Astrophysics Data System (ADS)

    Ori, Amos

    2016-01-01

    Almheiri, Marolf, Polchinski, and Sully pointed out that for a sufficiently old black hole (BH), the set of assumptions known as the complementarity postulates appears to be inconsistent with the assumption of local regularity at the horizon. They concluded that the horizon of an old BH is likely to be the locus of local irregularity, a "firewall". Here I point out that if one adopts a different assumption, namely that semiclassical physics holds throughout its anticipated domain of validity, then the inconsistency is avoided, and the horizon retains its regularity. In this alternative view-point, the vast portion of the original BH information remains trapped inside the BH throughout the semiclassical domain of evaporation, and possibly leaks out later on. This appears to be an inevitable outcome of semiclassical gravity (if assumed to apply throughout its anticipated domain of validity).

  6. Test plan for buried waste containment system materials

    SciTech Connect

    Weidner, J.; Shaw, P.

    1997-03-01

    The objectives of the FY 1997 barrier material work at the Idaho National Engineering and Environmental Laboratory are to (1) select a waste barrier material and verify that it is compatible with the Buried Waste Containment System Process, and (2) determine if, and how, the Buried Waste Containment System emplacement process affects the material properties and performance (on proof of principle scale). This test plan describes a set of measurements and procedures used to validate a waste barrier material for the Buried Waste Containment System. A latex modified proprietary cement manufactured by CTS Cement Manufacturing Company will be tested. Emplacement properties required for the Buried Waste Containment System process are: slump between 8 and 10 in., set time between 15 and 30 minutes, compressive strength at set of 20 psi minimum, and set temperature less than 100{degrees}C. Durability properties include resistance to degradation from carbonate, sulfate, and waste-site soil leachates. A set of baseline barrier material properties will be determined to provide a data base for comparison with the barrier materials when tested in the field. The measurements include permeability, petrographic analysis to determine separation and/or segregation of mix components, and a set of mechanical properties. The measurements will be repeated on specimens from the field test material. The data will be used to determine if the Buried Waste Containment System equipment changes the material. The emplacement properties will be determined using standard laboratory procedures and instruments. Durability of the barrier material will be evaluated by determining the effect of carbonate, sulfate, and waste-site soil leachates on the compressive strength of the barrier material. The baseline properties will be determined using standard ASTM procedures. 9 refs., 1 fig., 2 tabs.

  7. Specific features of organic matter in urban soils of Rostov-on-Don

    NASA Astrophysics Data System (ADS)

    Gorbov, S. N.; Bezuglova, O. S.

    2014-08-01

    Data on the fractional and group composition of humus in urban soils of Rostov-on-Don are discussed. We have compared the humus profiles of chernozems under tree plantations and those buried under anthropogenic deposits (including sealed chernozems under asphalt). It is shown that the type of humus in these soils remains stable despite a decrease in its total content after the long-term burial under asphalt. Under the impact of the trees, the organic matter of the chernozems acquired some features typical of gray forest soils, i.e., the humate-fulvate type of humus in the humus horizon and the sharp drop in the humus content down the soil profile.

  8. State of microbial communities in paleosols buried under kurgans of the desert-steppe zone in the Middle Bronze Age (27th–26th centuries BC) in relation to the dynamics of climate humidity

    NASA Astrophysics Data System (ADS)

    Khomutova, T. E.; Demkina, T. S.; Borisov, A. V.; Shishlina, I. I.

    2017-02-01

    The size and structure of microbial pool in light chestnut paleosols and paleosolonetz buried under kurgans of the Middle Bronze Age 4600-4500 years ago (the burial mound heights are 45-173 cm), as well as in recent analogues in the desert-steppe zone (Western Ergeni, Salo-Manych Ridge), have been studied. In paleosol profiles, the living microbial biomass estimated from the content of phospholipids varies from 35 to 258% of the present-day value; the active biomass (responsive to glucose addition) in paleosols is 1‒3 orders of magnitude lower than in recent analogues. The content of soil phospholipids is recalculated to that of microbial carbon, and its share in the total soil organic carbon is determined: it is 4.5-7.0% in recent soils and up to three times higher in the remained organic carbon of paleosols. The stability of microbial communities in the B1 horizon of paleosols is 1.3-2.2 times higher than in the upper horizon; in recent soils, it has a tendency to a decrease. The share of microorganisms feeding on plant residues in the ecological-trophic structure of paleosol microbial communities is higher by 23-35% and their index of oligotrophy is 3-5 times lower than in recent analogues. The size of microbial pool and its structure indicate a significantly higher input of plant residues into soils 4600-4500 years ago than in the recent time, which is related to the increase in atmospheric humidity in the studied zone. However, the occurrence depths of salt accumulations in profiles of the studied soils contradict this supposition. A short-term trend of increase in climate humidity is supposed, as indicated by microbial parameters (the most sensitive soil characteristics) or changes in the annual variation of precipitation (its increase in the warm season) during the construction of the mounds under study.

  9. Novel Cauchy-horizon instability

    SciTech Connect

    Maeda, Hideki; Torii, Takashi; Harada, Tomohiro

    2005-03-15

    The evolution of weak discontinuity is investigated on horizons in the n-dimensional static solutions in the Einstein-Maxwell-scalar-{lambda} system, including the Reissner-Nordstroem-(anti) de Sitter black hole. The analysis is essentially local and nonlinear. We find that the Cauchy horizon is unstable, whereas both the black hole event horizon and the cosmological event horizon are stable. This new instability, the so-called kink instability, of the Cauchy horizon is completely different from the well-known 'infinite-blueshift' instability. The kink instability makes the analytic continuation beyond the Cauchy horizon unstable.

  10. Guided wave attenuation in coated pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.

    2016-02-01

    Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.

  11. Technology status report: In situ vitrification applied to buried wastes

    SciTech Connect

    Thompson, L.E. ); Bates, S.O. ); Hansen, J.E. )

    1992-09-01

    This document is a technical status report on In Situ Vitrification (ISV) as applied to buried waste; the report takes both technical and institutional concerns into perspective. The ISV process involves electrically melting such contaminated solid media as soil, sediment, sludge, and mill tailings. The resultant product is a high-quality glass-and-crystalline waste form that possesses high resistance to corrosion and leaching and is capable of long-term environmental exposure without significant degradation. The process also significantly reduces the volume of the treated solid media due to the removal of pore spaces in the soil.

  12. Odor analysis of decomposing buried human remains

    SciTech Connect

    Vass, Arpad Alexander; Smith, Rob R; Thompson, Cyril V; Burnett, Michael N; Dulgerian, Nishan; Eckenrode, Brian A

    2008-01-01

    This study, conducted at the University of Tennessee's Anthropological Research Facility (ARF), lists and ranks the primary chemical constituents which define the odor of decomposition of human remains as detected at the soil surface of shallow burial sites. Triple sorbent traps were used to collect air samples in the field and revealed eight major classes of chemicals which now contain 478 specific volatile compounds associated with burial decomposition. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and were collected below and above the body, and at the soil surface of 1.5-3.5 ft. (0.46-1.07 m) deep burial sites of four individuals over a 4-year time span. New data were incorporated into the previously established Decompositional Odor Analysis (DOA) Database providing identification, chemical trends, and semi-quantitation of chemicals for evaluation. This research identifies the 'odor signatures' unique to the decomposition of buried human remains with projected ramifications on human remains detection canine training procedures and in the development of field portable analytical instruments which can be used to locate human remains in shallow burial sites.

  13. Odor analysis of decomposing buried human remains.

    PubMed

    Vass, Arpad A; Smith, Rob R; Thompson, Cyril V; Burnett, Michael N; Dulgerian, Nishan; Eckenrode, Brian A

    2008-03-01

    This study, conducted at the University of Tennessee's Anthropological Research Facility (ARF), lists and ranks the primary chemical constituents which define the odor of decomposition of human remains as detected at the soil surface of shallow burial sites. Triple sorbent traps were used to collect air samples in the field and revealed eight major classes of chemicals which now contain 478 specific volatile compounds associated with burial decomposition. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and were collected below and above the body, and at the soil surface of 1.5-3.5 ft. (0.46-1.07 m) deep burial sites of four individuals over a 4-year time span. New data were incorporated into the previously established Decompositional Odor Analysis (DOA) Database providing identification, chemical trends, and semi-quantitation of chemicals for evaluation. This research identifies the "odor signatures" unique to the decomposition of buried human remains with projected ramifications on human remains detection canine training procedures and in the development of field portable analytical instruments which can be used to locate human remains in shallow burial sites.

  14. Investigation of guided waves propagation in pipe buried in sand

    SciTech Connect

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    2014-02-18

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

  15. Instability of enclosed horizons

    NASA Astrophysics Data System (ADS)

    Kay, Bernard S.

    2015-03-01

    We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.

  16. Horizon as critical phenomenon

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Sik

    2016-09-01

    We show that renormalization group flow can be viewed as a gradual wave function collapse, where a quantum state associated with the action of field theory evolves toward a final state that describes an IR fixed point. The process of collapse is described by the radial evolution in the dual holographic theory. If the theory is in the same phase as the assumed IR fixed point, the initial state is smoothly projected to the final state. If in a different phase, the initial state undergoes a phase transition which in turn gives rise to a horizon in the bulk geometry. We demonstrate the connection between critical behavior and horizon in an example, by deriving the bulk metrics that emerge in various phases of the U( N ) vector model in the large N limit based on the holographic dual constructed from quantum renormalization group. The gapped phase exhibits a geometry that smoothly ends at a finite proper distance in the radial direction. The geometric distance in the radial direction measures a complexity: the depth of renormalization group transformation that is needed to project the generally entangled UV state to a direct product state in the IR. For gapless states, entanglement persistently spreads out to larger length scales, and the initial state can not be projected to the direct product state. The obstruction to smooth projection at charge neutral point manifests itself as the long throat in the anti-de Sitter space. The Poincare horizon at infinity marks the critical point which exhibits a divergent length scale in the spread of entanglement. For the gapless states with non-zero chemical potential, the bulk space becomes the Lifshitz geometry with the dynamical critical exponent two. The identification of horizon as critical point may provide an explanation for the universality of horizon. We also discuss the structure of the bulk tensor network that emerges from the quantum renormalization group.

  17. Pleistocene permafrost features in soils in the South-western Italian Alps

    NASA Astrophysics Data System (ADS)

    D'Amico, Michele; Catoni, Marcella; Bonifacio, Eleonora; Zanini, Ermanno

    2015-04-01

    , more superimposed podzol cycles were observed: the deeper podzols, included in the dense layer, were strongly cryoturbated and showed convoluted horizons and buried organic horizons. The presence of the dense Cjj horizons also influenced surface soil hydrology, which in turn influenced the expression of E and Bs horizons, in addition to textural lateral variability. In conclusion, surface morphology and soil properties evidence the presence of permafrost during cold Pleistocene phases, with an active layer 60-120 cm thick, associated with a particularly strong cryoturbation. However, all the permafrost features were not necessarily formed during the same periods, and dating of different materials would be necessary in order to obtain precise paleoenvironmental reconstructions of cold Quaternary phases in the Alps.

  18. BATATA: a buried muon hodoscope

    NASA Astrophysics Data System (ADS)

    Sánchez, F.; Supanitsky, A. D.; Medina-Tanco, G.; Paic, G.; Salazar, M. E. Patiño; D'Olivo, J. C.; Molina, R. Alfaro

    2009-04-01

    Muon hodoscopes have several applications, ranging from astrophysics to fundamental particle physics. In this work, we present a detector dedicated to the study, at ground level, of the main signals of cosmic-ray induced showers above 6 PeV. The whole detector is composed by a set of three parallel dual-layer scintillator planes buried at fix depths ranging from 120 g/cm2 to 600 g/cm2 and by a triangular array of water cerenkov detectors located nearby on ground.

  19. Blast wave from buried charges

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.L.

    1993-08-01

    While much airblast data are available for height-of-burst (HOB) effects, systematic airblast data for depth-of-burst (DOB) effects are more limited. It is logical to ask whether the spherical 0.5-g Nitropenta charges that, proved to be successful for HOB tests at EMI are also suitable for experiments with buried charges in the laboratory scale; preliminary studies indicated in the alternative. Of special interest is the airblast environment generated by detonations just above or below the around surface. This paper presents a brief summary of the test results.

  20. Behind the geon horizon

    NASA Astrophysics Data System (ADS)

    Guica, Monica; Ross, Simon F.

    2015-03-01

    We explore the Papadodimas-Raju prescription for reconstructing the region behind the horizon of one-sided black holes in AdS/CFT in the case of the {R}{{P}2} geon—a simple, analytic example of a single-sided, asymptotically AdS3 black hole, which corresponds to a pure CFT state that thermalizes at late times. We show that in this specific example, the mirror operators involved in the reconstruction of the interior have a particularly simple form: the mirror of a single trace operator at late times is just the corresponding single trace operator at early times. We use some explicit examples to explore how changes in the state modify the geometry inside the horizon.

  1. Sorption of Pahs To Soil Minerals and Subsurface Soil

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Totsche, K. U.; Koegel-Knabner, I.

    In subsurface soil horizons, the sorption of hydrophobic organic contaminants may primarily be controlled by the composition and the properties of the soil minerals. Therefore this study aimed to elucidate the sorption and the sorption kinetics of hydrophobic organic contaminants to different inorganic soil constituents and subsurface soil horizons. Batch sorption experiments are conducted with three poly- cyclic aromatic hydrocarbons (PAHS; phenanthrene, pyrene and benzo(a)pyrene), with the model minerals quartz sand, quartz sand coated with goethite and a quartz sand - mont- morillonite mixture, and with b and c horizons of different soil types developped in the temperate climate. Batch experiments show a considerable sorption of PAHS to all soil minerals and soil horizons except for the sorption of phenanthrene to quartz sand. The sorption process of PAHS to single minerals is rapid and completed after 4 hours of contact time. The sorption to subsurface soil horizons, however, is not in equilibrium after 120h of contact time and shows a considerable sorption kinetic. Sorption capacity is higher for clay minerals and iron oxides than for quartz sand which corresponds with a higher sorption capacity of soil horizons with a high clay content. Sorption isotherms of the soil minerals are best described by a nonlinear isotherm whereas the sorption isotherms of the subsurface soil horizons are more or less linear indicating different sorption mechanisms for mineral sorbents and soil horizons.

  2. Horizons of cybernetical physics

    NASA Astrophysics Data System (ADS)

    Fradkov, Alexander L.

    2017-03-01

    The subject and main areas of a new research field-cybernetical physics-are discussed. A brief history of cybernetical physics is outlined. The main areas of activity in cybernetical physics are briefly surveyed, such as control of oscillatory and chaotic behaviour, control of resonance and synchronization, control in thermodynamics, control of distributed systems and networks, quantum control. This article is part of the themed issue 'Horizons of cybernetical physics'.

  3. Refraction near the horizon

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Liller, William

    1990-01-01

    Variations in astronomical refraction near the horizon are examined. Sunset timings, a sextant mounted on a tripod, and a temperature profile are utilized to derive the variations in refraction data, collected from 7 locations. It is determined that the refraction ranges from 0.234 to 1.678 deg with an rms deviation of 0.16, and it is observed that the variation is larger than previously supposed. Some applications for the variation of refraction value are discussed.

  4. Horizons of cybernetical physics

    PubMed Central

    2017-01-01

    The subject and main areas of a new research field—cybernetical physics—are discussed. A brief history of cybernetical physics is outlined. The main areas of activity in cybernetical physics are briefly surveyed, such as control of oscillatory and chaotic behaviour, control of resonance and synchronization, control in thermodynamics, control of distributed systems and networks, quantum control. This article is part of the themed issue ‘Horizons of cybernetical physics’. PMID:28115620

  5. In situ grouting of buried transuranic waste with polyacrylamide

    SciTech Connect

    Spalding, B.P.; Lee, S.Y.; Farmer, C.D.; Hyder, L.K.; Supaokit, P.

    1987-01-01

    This project is a demonstration and evaluation of the in situ hydrologic stabilization of buried transuranic waste at a humid site via grout injection. Two small trenches, containing buried transuranic waste, were filled with 34.000 L of polyacrylamide grout. Initial field results have indicated that voids within the trenches were totally filled by the grout and that the intratrench hydraulic conductivity was reduced to below field-measurable values. No evidence of grout constituents were observed in twelve perimeter groundwater monitoring wells indicating that grout was contained completely within the two trenches. Polyacrylamide grout was selected for field demonstration over the polyacrylate grout due to its superior performance in laboratory degradation studies. Also supporting the selection of polyacrylamide was the difficulty in controlling the set time of the acrylate polymerization. Based on preliminary degradation monitoring, the polyacrylamide was estimated to have a microbiological half-life of 362 years in the test soil. 15 refs., 9 figs., 12 tabs.

  6. Seismic assessment of buried pipelines

    SciTech Connect

    Al-Chaar, G.; Brady, P.; Fernandez, G.

    1995-12-31

    A structure and its lifelines are closely linked because the disruption of lifeline systems will obstruct emergency service functions that are vitally needed after an earthquake. As an example of the criticality of these systems, the Association of Bay Area Government (ABAG) recorded thousands of leaks in pipelines that resulted in more than twenty million gallons of hazardous materials being released in several recorded earthquakes. The cost of cleaning the spills from these materials was very high. This information supports the development of seismic protection of lifeline systems. The US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL) has, among its missions, the responsibility to develop seismic vulnerability assessment procedures for military installations. Within this mission, a preliminary research program to assess the seismic vulnerability of buried pipeline systems on military installations was initiated. Phase 1 of this research project resulted in two major studies. In the first, evaluating current procedures to seismically design or evaluate existing lifeline systems, the authors found several significant aspects that deserve special consideration and need to be addressed in future research. The second was focused on identifying parameters related to buried pipeline system vulnerability and developing a generalized analytical method to relate these parameters to the seismic vulnerability assessment of existing pipeline systems.

  7. Radiocarbon Ages of Soils and Charcoal in Late Wisconsinan Loess, South-Central Nebraska

    NASA Astrophysics Data System (ADS)

    May, David W.; Holen, Steven R.

    1993-01-01

    The Farmdale Soil occurs below late Wisconsinan loess throughout the U.S. Midwest. At the La Sena site in the central Great Plains, humates in the Farmdale Interstadial Soil have a corrected age of 21,000 yr B.P. Humates in a buried Bt horizon and a bulk sample of overlying loess 2.5 m above the Farmdale Interstadial Soil have ages of 17,000 and 19,000 yr B.P., respectively. In the Republican River Valley Picea (spruce) charcoal is common in the lower meter of Peoria loess. Near Bloomington, Nebraska, humates from burned organic matter only 60 cm above the base of Peoria loess have a corrected age of ca. 19,000 yr B.P.

  8. Behavior of pipelines buried in SCP-improved ground during earthquakes

    SciTech Connect

    Fuchida, Kunihiko; Akiyoshi, Takashi; Hyodo, Takeshi

    1995-12-31

    Behavior of pipelines buried in the improved ground by sand compaction pile (SCP) and subjected to permanent ground displacement induced by liquefaction is investigated. Combining the programs for the simulation of SCP-improvement, the liquefaction analysis and the permanent ground displacement, the soil spring and the input ground displacement for the analysis of pipelines are evaluated. Results of numerical computations for the pipeline responses show that SCP ground improvement is effective to prevent soil liquefaction and reduce responses of pipeline buried in SCP-improved ground.

  9. Near-field synthetic aperture imaging of buried objects and fluids

    NASA Astrophysics Data System (ADS)

    Nilles, James T.; Tricoles, Gus P.; Vance, Gary L.

    1995-06-01

    This paper describes imaging of buried objects and fluids. The motivations are to locate pipe leakage and unexploded ordnance. The method is to radiate and receive continuous, discrete frequency radio waves with antennas near the ground, to synthesize sampled area arrays of reflectance data, and to process the data into images with an algorithm based on angular spectrum diffraction theory. Experimental results are presented for three setups. An initial, laboratory setup had a single, spatially scanned antenna; it was used to image buried mud. The second with an array of five antennas on a vehicle, images a buried creosote pit. The third, with a vehicular array of seven antennas, imaged buried metallic objects and depressions in the soil surface.

  10. New Horizons at Pluto

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Artist's concept of the New Horizons spacecraft as it approaches Pluto and its largest moon, Charon, in July 2015. The craft's miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space plasma experiments will characterize the global geology and geomorphology of Pluto and Charon, map their surface compositions and temperatures, and examine Pluto's atmosphere in detail. The spacecraft's most prominent design feature is a nearly 7-foot (2.1-meter) dish antenna, through which it will communicate with Earth from as far as 4.7 billion miles (7.5 billion kilometers) away.

  11. HORIZON SENSING (PROPOSAL NO.51)

    SciTech Connect

    Larry G. Stolarczyk

    2003-07-30

    Real-time horizon sensing on continuous mining (CM) machines is becoming an industry tool. Installation and testing of production-grade Horizon Sensor (HS) systems has been ongoing this quarter at Monterey Coal Company (ExxonMobil), Mountain Coal Company West Elk Mine (Arch), Deserado Mining Company (Blue Mountain Energy), and The Ohio Valley Coal Company (TOVCC). Monitoring of system function, user experience, and mining benefits is ongoing. All horizon sensor components have finished MSHA (U.S.) and IEC (International) certification.

  12. HORIZON SENSING (PROPOSAL NO.51)

    SciTech Connect

    Larry G. Stolarczyk

    2003-07-01

    Real-time horizon sensing on continuous mining machines is becoming an industry tool. Installation and testing of production-grade Horizon Sensor (HS) systems continued this quarter at Monterey Coal Company (ExxonMobil), Mountain Coal Company West Elk Mine (Arch), and Ohio Valley Coal Company (OVC). Monitoring of system function, user experience, and mining benefits is ongoing. All horizon sensor components have finished MSHA (U.S.) and IEC (International) certification.

  13. What Happens at the Horizon?

    NASA Astrophysics Data System (ADS)

    Mathur, Samir D.

    2013-07-01

    The Schwarzschild metric has an apparent singularity at the horizon r = 2M. What really happens there? If physics at the horizon is "normal" laboratory physics, then we run into Hawking's information paradox. If we want nontrivial structure at the horizon, then we need a mechanism to generate this structure that evades the "no hair" conjectures of the past. Further, if we have such structure, then what would be the role of the traditional black hole metric which continues smoothly past the horizon? Recent work has provided an answer to these questions, and in the process revealed a beautiful tie-up between gravity, string theory and thermodynamics.

  14. Transverse deformations of extreme horizons

    NASA Astrophysics Data System (ADS)

    Li, Carmen; Lucietti, James

    2016-04-01

    We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers-Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.

  15. Stringy horizons II

    NASA Astrophysics Data System (ADS)

    Giveon, Amit; Itzhaki, Nissan; Kutasov, David

    2016-10-01

    We show that the spectrum of normalizable states on a Euclidean SL(2, R)/U(1) black hole exhibits a duality between oscillator states and wound strings. This duality generalizes the identification between a normalizable mode of dilaton gravity on the cigar and a mode of the tachyon with winding number one around the Euclidean time circle, which plays an important role in the FZZ correspondence. It implies that normalizable states on a large Euclidean black hole have support at widely separated scales. In particular, localized states that are extended over the cap of the cigar (the Euclidian analog of the black hole atmosphere) have a component that is localized near the tip of the cigar (the analog of the stretched horizon). As a consequence of this duality, the states exhibit a transition as a function of radial excitation level. From the perspective of a low energy probe, low lying states are naturally thought of as oscillator states in the black hole atmosphere, while at large excitation level they are naturally described as wound strings. As the excitation level increases, the size of the states first decreases and then increases. This behavior is expected to be a general feature of black hole horizons in string theory.

  16. Detection of buried objects using reflected GNSS signals

    NASA Astrophysics Data System (ADS)

    Notarpietro, Riccardo; De Mattia, Salvatore; Campanella, Maurizio; Pei, Yuekun; Savi, Patrizia

    2014-12-01

    The use of reflected Global Navigation Satellite System (GNSS) signals for sensing the Earth has been growing rapidly in recent years. This technique is founded on the basic principle of detecting GNSS signals after they have been reflected off the Earth's surface and using them to determine the properties of the reflecting surface remotely. This is the so-called GNSS reflectometry (GNSS-R) technique. In this paper, a new application regarding the detection of metallic buried objects is analyzed and it is validated through several experimental campaigns. Although the penetration depth of GNSS signals into the ground is not optimal and depends on the soil moisture, GNSS signals can likely interact approximately with the first 10 cm of the ground and therefore can be reflected back by any metallic object buried on the first terrain layer. A very light and low-cost GNSS receiver prototype based on a software-defined radio approach was developed. This receiver can be used as a payload on board small drones or unmanned aerial systems to detect metallic objects (mines or other explosive devices). A signal processing tool based on an open-loop GNSS signal acquisition strategy was developed. The results of two experiments which show the possibility of using GNSS-R signals to detect buried metallic objects and to provide an estimate of their dimensions are discussed.

  17. Remote Excavation System technology evaluation report: Buried Waste Robotics Program

    SciTech Connect

    Not Available

    1993-09-01

    This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the system and discussed the procedures used to conduct the tests.

  18. Technologies on the Horizon: Teachers Respond to the Horizon Report

    ERIC Educational Resources Information Center

    Hodges, Charles B.; Prater, Alyssa H.

    2014-01-01

    The purpose of this study was to investigate teachers' beliefs regarding the integration of technologies from the 2011 K-12 edition of the "Horizon Report" into their local, public school contexts. Teachers read the "Horizon Report" and then participated in an asynchronous, threaded discussion focusing on technologies they…

  19. Time as An Important Soil-Forming Factor Influencing Modern and Ancient Magnetic Susceptibility Enhancement Along the Delaware River Valley, USA

    NASA Astrophysics Data System (ADS)

    Stinchcomb, G. E.; Peppe, D. J.; Driese, S. G.

    2011-12-01

    Magnetic susceptibility is an increasingly popular low-cost method for rapidly assessing paleoclimate and paleoenvironmental impact on buried soils. The goal of this study is to determine the primary influence(s) on soil magnetic susceptibility along floodplain, terrace and upland soils in the middle Delaware River Valley, USA, using environmental magnetic, pedologic, and stratigraphic techniques. Two-hundred thirty samples were collected from age-constrained sandy, quartz-rich, floodplain, terrace, and upland soils (Entisols, Inceptisols). A Kruskal-Wallis (K-W) and post-hoc Tukey-Kramer (T-K) (α=0.05) multiple comparisons analysis on 176 mass-specific low-field susceptibility (Xlf) assays show that A and B horizons are magnetically enhanced compared to C and E horizons (p<0.0001). Results of descriptive soil micromorphology show that A and B horizons contain anywhere from 10-50% more amorphous organic matter and clay films along pores than do C and E horizons. Enhanced Xlf values also correlate positively (R^2=0.63) with the soil molecular weathering ratio of Alumina/Bases, suggesting that increased weathering likely results in the formation of pedogenic magnetic minerals and enhanced magnetic susceptibility signal. Additional K-W and T-K testing show that Xlf results, when grouped by floodplain-terrace designation (i.e., chronofunction) are significantly different (p<0.0001). The older T3 terrace and upland Xlf values (0.34±0.14 10^-6 m^3 kg^-1) are greater than the younger T2 terrace (0.18±0.06 10^-6 m^3 kg^-1) values, which are greater than modern floodplain (0.09±0.01 10^-6 m^3 kg^-1) Xlf values. These data suggest that longer intervals of soil formation enhance the Χlf value. This hypothesis is further supported when 159 Xlf values are plotted vs. age for the entire Holocene. A locally-weighted regression smoothing curve (LOESS) shows two distinct intervals of magnetic enhancement during previously established dry intervals, the early and late

  20. Resolving Lifshitz Horizons

    SciTech Connect

    Harrison, Sarah; Kachru, Shamit; Wang, Huajia; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2012-04-24

    Via the AdS/CFT correspondence, ground states of field theories at finite charge density are mapped to extremal black brane solutions. Studies of simple gravity + matter systems in this context have uncovered wide new classes of extremal geometries. The Lifshitz metrics characterizing field theories with non-trivial dynamical critical exponent z {ne} 1 emerge as one common endpoint in doped holographic toy models. However, the Lifshitz horizon exhibits mildly singular behaviour - while curvature invariants are finite, there are diverging tidal forces. Here we show that in some of the simplest contexts where Lifshitz metrics emerge, Einstein-Maxwell-dilaton theories, generic corrections lead to a replacement of the Lifshitz metric, in the deep infrared, by a re-emergent AdS{sub 2} x R{sup 2} geometry. Thus, at least in these cases, the Lifshitz scaling characterizes the physics over a wide range of energy scales, but the mild singularity is cured by quantum or stringy effects.

  1. Telescopic horizon scanning.

    PubMed

    Koenderink, Jan

    2014-12-20

    The problem of "distortionless" viewing with terrestrial telescopic systems (mainly "binoculars") remains problematic. The so called "globe effect" is only partially counteracted in modern designs. Theories addressing the phenomenon have never reached definitive closure. In this paper, we show that exact distortionless viewing with terrestrial telescopic systems is not possible in general, but that it is in principle possible in-very frequent in battle field and marine applications-the case of horizon scanning. However, this involves cylindrical optical elements. For opto-electronic systems, a full solution is more readily feasible. The solution involves a novel interpretation of the relevant constraints and objectives. For final design decisions, it is not necessary to rely on a corpus of psychophysical (or ergonomic) data, although one has to decide whether the instrument is intended as an extension of the eye or as a "pictorial" device.

  2. The Horizon Report. 2006 Edition

    ERIC Educational Resources Information Center

    New Media Consortium, 2006

    2006-01-01

    This third edition of the New Media Consortium's (NMC) annual "Horizon Report" describes the continuing work of the Horizon Project, a research-oriented effort that seeks to identify and describe emerging technologies likely to have a large impact on teaching, learning, or creative expression within higher education. Drawing on ongoing discussions…

  3. The Horizon Report. 2005 Edition

    ERIC Educational Resources Information Center

    New Media Consortium, 2005

    2005-01-01

    This second edition of the New Media Consortium's (NMC) annual "Horizon Report" describes the continuing work of the Horizon Project, a research-oriented effort that seeks to identify and describe emerging technologies likely to have a large impact on teaching, learning, or creative expression within higher education. Drawing on an ongoing series…

  4. The Horizon Report. 2007 Edition

    ERIC Educational Resources Information Center

    New Media Consortium, 2007

    2007-01-01

    This fourth edition of the New Media Consortium's (NMC) annual "Horizon Report" describes the continuing work of the Horizon Project, a research-oriented effort that seeks to identify and describe emerging technologies likely to have a large impact on teaching, learning, or creative expression within higher education. Drawing on ongoing…

  5. The Horizon Report. 2004 Edition

    ERIC Educational Resources Information Center

    New Media Consortium, 2004

    2004-01-01

    This first edition of the New Media Consortium's (NMC) annual "Horizon Report" details findings of the Horizon Project, a research-oriented effort that seeks to identify and describe emerging technologies likely to have a large impact on teaching, learning, or creative expression within higher education. Drawing on an ongoing series of interviews…

  6. New characterization aspects of carbonate accumulation horizons in Chalky Champagne (NE of the Paris Basin, France)

    NASA Astrophysics Data System (ADS)

    Linoir, Damien; Thomachot-Schneider, Céline; Gommeaux, Maxime; Fronteau, Gilles; Barbin, Vincent

    2016-05-01

    The soil profiles of the Champagne area (NE of Paris Basin, France) occasionally show carbonate accumulation horizons (CAHs). From the top to the bottom, these soil profiles include a rendic leptosol horizon, a Quaternary cryoturbated paleosol (QCP), and a chalky substratum. The CAHs are located in the top part of the QCP. This study is aimed at highlighting the specific characteristics of CAHs compared to other soil profile horizons using geophysics, geochemistry, micromorphology, and mercury injection porosimetry. It is the first essential step for understanding the impact of CAHs on water transfers into the Champagne soil profiles. Our analyses show that Champagne CAHs are not systematically characterized by a typical induration unlike generally put forward in the regional literature. They are more porous and heterogeneous than their parent material (QCP). Carbonate accumulation horizons are also characterized by singular colorimetric parameters that are linked to their geochemical specific content, even if they bear a signature of the initial QCP before the pedogenic modification.

  7. Buried Seed Banks as Indicators of Seed Output along an Altitudinal Gradient.

    ERIC Educational Resources Information Center

    Thompson, K.

    1985-01-01

    Study of buried seed banks (viable seeds deposited in the soil near parent plants) provides a relatively easy way of determining cumulative effects on seed production and species' altitudinal limits. Sites, methods, validity, interpretation, problems of collection on a mountain, and germination techniques are discussed. (Author/DH)

  8. Pore-pressure gradients in the proximity of a submarine buried pipeline

    SciTech Connect

    Magda, W.

    1995-12-31

    This paper is concerned with the two-dimensional finite-element modeling of the wave-induced pore-pressure field in the proximity of a submarine pipeline buried in sandy seabed sediments subject to continuous loading of regular surface waves. Neglecting inertial forces, a linear elastic stress-strain relationship for the soil, and Darcy`s law for the flow of pore-fluid are assumed. The model takes into account the compressibility of both components (i.e., pore-fluid and soil skeleton) of the two-phase medium. The results of numerical computations are discussed with respect to the hydraulic gradient in the upper part of seabed sediments just above the buried submarine pipeline. The pore-pressure gradient is studied as a function of geometry (depth of burial) as well as soil and pore-fluid compressibility parameters where the later of which is defined in terms of soil saturation conditions.

  9. 78 FR 70976 - Horizons ETFs Management (USA) LLC and Horizons ETF Trust; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... COMMISSION Horizons ETFs Management (USA) LLC and Horizons ETF Trust; Notice of Application November 21, 2013... Shares. Applicants: Horizons ETFs Management (USA) LLC (``Horizons'') and Horizons ETF Trust (``Trust... Commission, 100 F Street NE., Washington, DC 20549-1090; Applicants: Horizons ETFs Management (USA) LLC,...

  10. Priming in permafrost soils: High vulnerability of arctic soil organic carbon to increased input of plant-derived compounds

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Gentsch, Norman; Capek, Petr; Diakova, Katerina; Alves, Ricardo; Barta, Jiri; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Knoltsch, Anna; Mikutta, Robert; Santruckova, Hana; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Watzka, Margarete; Richter, Andreas

    2015-04-01

    Arctic ecosystems are warming rapidly, resulting in a stimulation of both plant primary production and soil organic matter (SOM) decomposition. In addition to this direct stimulation, SOM decomposition might also be indirectly affected by rising temperatures mediated by the increase in plant productivity. Higher root litter production for instance might decrease SOM decomposition by providing soil microorganisms with alternative C and N sources ("negative priming"), or might increase SOM decomposition by facilitating microbial growth and enzyme production ("positive priming"). With about 1,700 Pg of organic C stored in arctic soils, and 88% of that in horizons deeper than 30 cm, it is crucial to understand the controls on SOM decomposition in different horizons of arctic permafrost soils, and thus the vulnerability of SOM to changes in C and N availability in a future climate. We here report on the vulnerability of SOM in arctic permafrost soils to an increased input of plant-derived organic compounds, and on its variability across soil horizons and sites. We simulated an increased input of plant-derived compounds by amending soil samples with 13C-labelled cellulose or protein, and compared the mineralization of native, unlabelled soil organic C (SOC) to unamended control samples. Our experiment included 119 individual samples of arctic permafrost soils, covering four sites across the Siberian Arctic, and five soil horizons, i.e., organic topsoil, mineral topsoil, mineral subsoil and cryoturbated material (topsoil material buried in the subsoil by freeze-thaw processes) from the active layer, as well as thawed material from the upper permafrost. Our findings suggest that changes in C and N availability in Arctic soils, such as mediated by plants, have a high potential to alter the decomposition of SOM, but also point at fundamental differences between soil horizons. In the organic topsoil, SOC mineralization increased by 51% after addition of protein, but was not

  11. Modelling the buried human body environment in upland climes using three contrasting field sites.

    PubMed

    Wilson, Andrew S; Janaway, Robert C; Holland, Andrew D; Dodson, Hilary I; Baran, Eve; Pollard, A Mark; Tobin, Desmond J

    2007-06-14

    Despite an increasing literature on the decomposition of human remains, whether buried or exposed, it is important to recognise the role of specific microenvironments which can either trigger or delay the rate of decomposition. Recent casework in Northern England involving buried and partially buried human remains has demonstrated a need for a more detailed understanding of the effect of contrasting site conditions on cadaver decomposition and on the microenvironment created within the grave itself. Pigs (Sus scrofa) were used as body analogues in three inter-related taphonomy experiments to examine differential decomposition of buried human remains. They were buried at three contrasting field sites (pasture, moorland, and deciduous woodland) within a 15 km radius of the University of Bradford, West Yorkshire, UK. Changes to the buried body and the effect of these changes on hair and associated death-scene textile materials were monitored as was the microenvironment of the grave. At recovery, 6, 12 and 24 months post-burial, the extent of soft tissue decomposition was recorded and samples of fat and soil were collected for gas chromatography mass spectrometry (GCMS) analysis. The results of these studies demonstrated that (1) soil conditions at these three burial sites has a marked effect on the condition of the buried body but even within a single site variation can occur; (2) the process of soft tissue decomposition modifies the localised burial microenvironment in terms of microbiological load, pH, moisture and changes in redox status. These observations have widespread application for the investigation of clandestine burial and time since deposition, and in understanding changes within the burial microenvironment that may impact on biomaterials such as hair and other associated death scene materials.

  12. Environmental Impact to the Chemical Signature Emanating from Buried Unexploded Ordnance

    DTIC Science & Technology

    2001-10-01

    from soil moisture content and precipitation/evaporation. The Behavior Assessment Model was modified for the case of buried chemicals (Jury et al...indicates that a Landmuir or Freundlich model probably better represents the sorption isotherm than a linear one. When fitted to a Freundlich , the DNT data...water partition coefficient must be modeled with a Freundlich isotherm rather than a linear one, and the soil- water partition coefficient must be

  13. A Buried Precambrian Impact Crater in Scotland

    NASA Astrophysics Data System (ADS)

    Simms, M. J.

    2016-08-01

    Field evidence indicates that the source of the Stac Fada impact deposit (Mesoproterozoic) in NW Scotland was to the east, and that the now buried crater is represented by the 40+ km diameter Lairg Gravity Low.

  14. Preliminary observations of arthropods associated with buried carrion on Oahu.

    PubMed

    Rysavy, Noel M; Goff, M Lee

    2015-03-01

    Several studies in Hawaii have focused on arthropod succession and decomposition patterns of surface remains, but the current research presents the first study to focus on shallow burials in this context. Three domestic pig carcasses (Sus scrofa L.) were buried at the depths of 20-40 cm in silty clay loam soil on an exposed ridge on the leeward side of the volcanically formed Koolau Mountain Range. One carcass was exhumed after 3 weeks, another after 6 weeks, and the last carcass was exhumed after 9 weeks. An inventory of arthropod taxa present on the carrion and in the surrounding soil and observations pertaining to decomposition were recorded at each exhumation. The longer the carrion was buried, the greater the diversity of arthropod species that were recovered from the remains. Biomass loss was calculated to be 49% at the 3-week interval, 56% at the 6-week interval, and 59% at the 9-week interval.

  15. Asymptotic symmetries on Killing horizons

    NASA Astrophysics Data System (ADS)

    Koga, Jun-Ichirou

    2001-12-01

    We investigate asymptotic symmetries regularly defined on spherically symmetric Killing horizons in Einstein theory with or without the cosmological constant. These asymptotic symmetries are described by asymptotic Killing vectors, along which the Lie derivatives of perturbed metrics vanish on a Killing horizon. We derive the general form of the asymptotic Killing vectors and find that the group of asymptotic symmetries consists of rigid O(3) rotations of a horizon two-sphere and supertranslations along the null direction on the horizon, which depend arbitrarily on the null coordinate as well as the angular coordinates. By introducing the notion of asymptotic Killing horizons, we also show that local properties of Killing horizons are preserved not only under diffeomorphisms but also under nontrivial transformations generated by the asymptotic symmetry group. Although the asymptotic symmetry group contains the Diff(S1) subgroup, which results from supertranslations dependent only on the null coordinate, it is shown that the Poisson brackets algebra of the conserved charges conjugate to asymptotic Killing vectors does not acquire nontrivial central charges. Finally, by considering extended symmetries, we discuss the fact that unnatural reduction of the symmetry group is necessary in order to obtain the Virasoro algebra with nontrivial central charges, which is not justified when we respect the spherical symmetry of Killing horizons.

  16. Buried Waste Integrated Demonstration. Technology summary

    SciTech Connect

    Not Available

    1994-03-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities.

  17. Near-horizon Kerr magnetosphere

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew

    2016-05-01

    We exploit the near-horizon conformal symmetry of rapidly spinning black holes to determine universal properties of their magnetospheres. Analytic expressions are derived for the limiting form of the magnetosphere in the near-horizon region. The symmetry is shown to imply that the black hole Meissner effect holds for free Maxwell fields but is generically violated for force-free fields. We further show that in the extremal limit, near-horizon plasma particles are infinitely boosted relative to accretion flow. Active galactic nuclei powered by rapidly spinning black holes are therefore natural sites for high-energy particle collisions.

  18. Social Pharmacology: Expanding horizons

    PubMed Central

    Maiti, Rituparna; Alloza, José Luis

    2014-01-01

    In the current modern and global society, social changes are in constant evolution due to scientific progress (technology, culture, customs, and hygiene) and produce the freedom in individuals to take decisions by themselves or with their doctors toward drug consumption. In the arena of marketed drug products which includes society, individual, administration, and pharmaceutical industry, the young discipline emerged is social pharmacology or sociopharmacology. This science arises from clinical pharmacology, and deals with different parameters, which are important in creating knowledge on marketed drugs. However, the scope of “social pharmacology” is not covered by the so-called “Phase IV” alone, but it is the science that handles the postmarketing knowledge of drugs. The social pharmacology studies the “life cycle” of any marketed pharmaceutical product in the social terrain, and evaluates the effects of the real environment under circumstances totally different in the drug development process. Therefore, there are far-reaching horizons, plural, and shared predictions among health professionals and other, for beneficial use of a drug, toward maximizing the benefits of therapy, while minimizing negative social consequences. PMID:24987168

  19. Social pharmacology: expanding horizons.

    PubMed

    Maiti, Rituparna; Alloza, José Luis

    2014-01-01

    In the current modern and global society, social changes are in constant evolution due to scientific progress (technology, culture, customs, and hygiene) and produce the freedom in individuals to take decisions by themselves or with their doctors toward drug consumption. In the arena of marketed drug products which includes society, individual, administration, and pharmaceutical industry, the young discipline emerged is social pharmacology or sociopharmacology. This science arises from clinical pharmacology, and deals with different parameters, which are important in creating knowledge on marketed drugs. However, the scope of "social pharmacology" is not covered by the so-called "Phase IV" alone, but it is the science that handles the postmarketing knowledge of drugs. The social pharmacology studies the "life cycle" of any marketed pharmaceutical product in the social terrain, and evaluates the effects of the real environment under circumstances totally different in the drug development process. Therefore, there are far-reaching horizons, plural, and shared predictions among health professionals and other, for beneficial use of a drug, toward maximizing the benefits of therapy, while minimizing negative social consequences.

  20. Latex-modified grouts for in-situ stabilization of buried transuranic/mixed waste

    SciTech Connect

    Allan, M.L.

    1996-06-01

    The Department of Applied Science at Brookhaven national Laboratory was requested to investigate latex-modified grouts for in-situ stabilization of buried TRU/mixed waste for INEL. The waste exists in shallow trenches that were backfilled with soil. The objective was to formulate latex-modified grouts for use with the jet grouting technique to enable in-situ stabilization of buried waste. The stabilized waste was either to be left in place or retrieved for further processing. Grouting prior to retrieval reduces the potential release of contaminants. Rheological properties of latex-modified grouts were investigated and compared with those of conventional neat cement grouts used for jet grouting.

  1. Redistribution of soil nitrogen, carbon and organic matter by mechanical disturbance during whole-tree harvesting in northern hardwoods

    USGS Publications Warehouse

    Ryan, D.F.; Huntington, T.G.; Wayne, Martin C.

    1992-01-01

    To investigate whether mechanical mixing during harvesting could account for losses observed from forest floor, we measured surface disturbance on a 22 ha watershed that was whole-tree harvested. Surface soil on each 10 cm interval along 81, randomly placed transects was classified immediately after harvesting as mineral or organic, and as undisturbed, depressed, rutted, mounded, scarified, or scalped (forest floor scraped away). We quantitatively sampled these surface categories to collect soil in which preharvest forest floor might reside after harvest. Mechanically mixed mineral and organic soil horizons were readily identified. Buried forest floor under mixed mineral soil occurred in 57% of mounds with mineral surface soil. Harvesting disturbed 65% of the watershed surface and removed forest floor from 25% of the area. Mechanically mixed soil under ruts with organic or mineral surface soil, and mounds with mineral surface soil contained organic carbon and nitrogen pools significantly greater than undisturbed forest floor. Mechanical mixing into underlying mineral soil could account for the loss of forest floor observed between the preharvest condition and the second growing season after whole-tree harvesting. ?? 1992.

  2. Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil

    USGS Publications Warehouse

    Carrasco, J.J.; Neff, J.C.; Harden, J.W.

    2006-01-01

    Boreal soils are important to the global C cycle owing to large C stocks, repeated disturbance from fire, and the potential for permafrost thaw to expose previously stable, buried C. To evaluate the primary mechanisms responsible for both short- and long-term C accumulation in boreal soils, we developed a multi-isotope (12,14C) Soil C model with dynamic soil layers that develop through time as soil organic matter burns and reaccumulates. We then evaluated the mechanisms that control organic matter turnover in boreal regions including carbon input rates, substrate recalcitrance, soil moisture and temperature, and the presence of historical permafrost to assess the importance of these factors in boreal C accumulation. Results indicate that total C accumulation is controlled by the rate of carbon input, decomposition rates, and the presence of historical permafrost. However, unlike more temperate ecosystems, one of the key mechanisms involved in C preservation in boreal soils examined here is the cooling of subsurface soil layers as soil depth increases rather than increasing recalcitrance in subsurface soils. The propagation of the 14C bomb spike into soils also illustrates the importance of historical permafrost and twentieth century warming in contemporary boreal soil respiration fluxes. Both 14C and total C simulation data also strongly suggest that boreal SOM need not be recalcitrant to accumulate; the strong role of soil temperature controls on boreal C accumulation at our modeling test site in Manitoba, Canada, indicates that carbon in the deep organic soil horizons is probably relatively labile and thus subject to perturbations that result from changing climatic conditions in the future. Copyright 2006 by the American Geophysical Union.

  3. In-situ vitrification of soil

    DOEpatents

    Brouns, Richard A.; Buelt, James L.; Bonner, William F.

    1983-01-01

    A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried waste, can thereby be effectively immobilized.

  4. Geochronology of initial soils in Late-Holocene polycyclic drift-sand deposits (Weerterbergen, S.E. Netherlands)

    NASA Astrophysics Data System (ADS)

    van mourik, J. M.; Wallinga, J.

    2012-04-01

    Late glacial aeolian coversand dominates the surface geology of the eastern part of the province Noord-Brabant (Netherlands). During prehistoric and early historic time, forest grazing, wood cutting and shifting cultivation gradually transformed natural forest into heath land. During the 11th - 13th century, commercial clear cutting of forests caused sand drifting. Farmers protected the heath against drift sand and continued till 1750 AD with shallow stable management. In the course of the 18th century deep stable management was introduced and farmers started with sod digging on the heath to increase the total amount of manure. Sod digging resulted in a second period of extension of driftsand landscapes with characteristic 'cultural' landforms and soils. Polycyclic driftsand deposits are paleoecological records of alternating instable (sand drifting) and stable (soil formation) phases in landscape development. Interpretation of paleoecological information, derived from these records, requires accurate knowledge of the geochronology. Radiocarbon dating, applied on extracted soil organic matter from humic buried AE horizons is not reliable. Calibrated 14C ages of seven selected buried 'micropodzols' range from 340 - 1950 AD. To understand the geochronology of polycyclic sequences, we applied soil micromorphology to improve our knowledge about the organic matrix of micropodzols and OSL dating. Micromorphological analysis of thin sections of micropodzols provide more information about the composition of SOM of the humic horizons. SOM consists of post sedimentary compounds, related to soil formation. We can identify soil fungi, fragmented litter and fecal pellets as the results of litter decomposition. But SOM contains also sin sedimentary compounds, related to sand drifting. We can identify transported and rounded organic aggregates, mineral grains with organic cutans and charcoal fragments, originating from eroded (older) soil horizons. Consequently, the 14C dates of

  5. Microbial community composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal transect in Western Siberia.

    PubMed

    Schnecker, Jörg; Wild, Birgit; Takriti, Mounir; Eloy Alves, Ricardo J; Gentsch, Norman; Gittel, Antje; Hofer, Angelika; Klaus, Karoline; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Richter, Andreas

    2015-04-01

    Soil horizons below 30 cm depth contain about 60% of the organic carbon stored in soils. Although insight into the physical and chemical stabilization of soil organic matter (SOM) and into microbial community composition in these horizons is being gained, information on microbial functions of subsoil microbial communities and on associated microbially-mediated processes remains sparse. To identify possible controls on enzyme patterns, we correlated enzyme patterns with biotic and abiotic soil parameters, as well as with microbial community composition, estimated using phospholipid fatty acid profiles. Enzyme patterns (i.e. distance-matrixes calculated from these enzyme activities) were calculated from the activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase), which had been measured in soil samples from organic topsoil horizons, mineral topsoil horizons, and mineral subsoil horizons from seven ecosystems along a 1500 km latitudinal transect in Western Siberia. We found that hydrolytic enzyme activities decreased rapidly with depth, whereas oxidative enzyme activities in mineral horizons were as high as, or higher than in organic topsoil horizons. Enzyme patterns varied more strongly between ecosystems in mineral subsoil horizons than in organic topsoils. The enzyme patterns in topsoil horizons were correlated with SOM content (i.e., C and N content) and microbial community composition. In contrast, the enzyme patterns in mineral subsoil horizons were related to water content, soil pH and microbial community composition. The lack of correlation between enzyme patterns and SOM quantity in the mineral subsoils suggests that SOM chemistry, spatial separation or physical stabilization of SOM rather than SOM content might determine substrate availability for enzymatic breakdown. The correlation of microbial community composition and enzyme patterns in all horizons

  6. Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

    SciTech Connect

    Phelan, J.M.; Webb, S.W.

    1997-06-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  7. Assessing bioturbation using micromorphology and biosilicate evidence: A case study of the early-Holocene Brady Soil, central Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Woodburn, T. L.; Hasiotis, S. T.; Johnson, W. C.

    2012-12-01

    The Old Wauneta Roadcut site in southwestern Nebraska exhibits a 1.2 meter-thick exposure of the Brady Soil, a buried paleosol which formed within loess during the Pleistocene-Holocene transition. Excavation of the loess-paleosol sequence has revealed considerable bioturbation by plant roots, invertebrates, and small vertebrates. Bioturbation was not restricted to a single time period, but occurred continually throughout soil development, as evidenced by differing sediment fills and crosscutting relationships. The Brady Soil is an accretionary soil within the uppermost part of the Last Glacial Maximum Peoria Loess. At the base of the solum, the Bkb horizon exhibits an increased illuvial clay and carbonate content, and contains extensive, small (~2cm width), backfilled burrows typically produced by cicada nymphs (Cicadidae) or beetle larvae. The most stable period of the Brady Soil is expressed by the dark (9.8 YR 4/1), thick Ab horizon. This is overlain by an ACb horizon, where soil formation was being extinguished by the onset of Holocene-age Bignell Loess deposition. Within the upper solum and Bignell Loess, a shift in biota activity occurs as indicated by the large burrow (6-12 cm width) and chamber (30-40 cm width) systems observed. Trace sizes suggest that a burrowing rodent, such as the prairie dog (Cynomys sp.) or ground squirrel (Spermophilus sp.), was responsible for their creation. Soil micromorphology was used to distinguish sediment-size classes, mineralogy, and clay morphology of specific loess deposits and soil horizons in order to track displacement of sediment through the profile due to bioturbation. Five block samples were taken in undisturbed sediment and soil horizons for thin-section analysis. Twelve additional samples of burrow cross-sections or bioturbated sediment were analyzed for comparison. Soil features produced by faunal and floral activity were differentiated from features produced by pedologic processes through the identification and

  8. Physical Modelling on Detecting Buried Object Using Electrical Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Nizam, Z. M.; Azhar, A. T. S.; Aziman, M.; Shaylinda, M. Z. N.

    2016-07-01

    This study focused on the evaluation of electrical resistivity method (ERM) for buried object detection and its relationship due to the different stiffness of material. In the past, the conventional method to detect the buried structure was face some limitation due to the time and cost. For example, previous approach related to the trial and error excavation has always expose to some risky outcome due to the uncertainties of the buried object location. Hence, this study introduced an alternative technique with particular reference to resistivity method to detect and evaluate the buried object with different strength of stiffness. The experiment was performed based on field miniature model (small scale study) using soil trial embankment made by lateritic soil and various concrete cube strengths (grade 20, 25 and 30) representing buried object with different conditions. 2D electrical resistivity test (electrical resistivity imaging) was perform using ABEM Terrameter SAS4000 during the data acquisition while the raw data was process using RES2DINV software. It was found that the electrical resistivity method was able to detect the buried concrete structures targeted based on the contrast of the electrical resistivity image produced. Moreover, three different strength of concrete cube were able to be differentiated based on the electrical resistivity values (ERV) obtained. This study found that the ERV of concrete cube for grade 20, 25 and 30 were 170 Ωm, 227 Ωm and 503 Ωm, respectively. Hence, this study shows that the ERV has a strong relationship with different stiffness of material thus applicable to be a useful alternative tool in underground structure detection.

  9. Ballistic electron spectroscopy of individual buried molecules

    NASA Astrophysics Data System (ADS)

    Kirczenow, George

    2007-01-01

    A theoretical study is presented of the ballistic electron emission spectra (BEES) of individual insulating and conducting organic molecules chemisorbed on a silicon substrate and buried under a thin gold film. It is predicted that ballistic electrons injected into the gold film from a scanning tunneling microscope tip should be transmitted so weakly to the silicon substrate by alkane molecules of moderate length (decane, hexane) and their thiolates that individual buried molecules of this type will be difficult to detect in BEES experiments. However, resonant transmission by molecules containing unsaturated C-C bonds or aromatic rings is predicted to be strong enough for BEES spectra of individual buried molecules of these types to be measured. Calculated BEES spectra of molecules of both types are presented and the effects of some simple interstitial and substitutional gold defects that may occur in molecular films are also briefly discussed.

  10. The Panther Mountain circular structure, a possible buried meteorite crater

    NASA Technical Reports Server (NTRS)

    Isachsen, Y. W.; Wright, S. F.; Revetta, F. A.; Duneen, R. J.

    1992-01-01

    Panther Mountain, located near Phoenicia, New York, is part of the Catskill Mountains, which form the eastern end of the Allegheny Plateau in New York. It is a circular mass defined physiographically by an anomalous circular drainage pattern produced by Esopus Creek and its tributary Woodland Creek. The circular valley that rings the mountain is fracture-controlled; where bedrock is exposed, it shows a joint density 5 to 10 times greater than that on either side of the valley. Where obscured by alluvial valley fill, the bedrock's low seismic velocity suggests that this anomalous fracturing is continuous in the bedrock underlying the rim valley. North-south and east-west gravity and magnetic profiles were made across the structure. Terrane-corrected, residual gravity profiles show an 18-mgal negative anomaly, and very steep gradients indicate a near-surface source. Several possible explanations of the gravity data were modeled. We conclude that the Panther Mountain circular structure is probably a buried meteorite crater that formed contemporaneously with marine or fluvial sedimentation during Silurian or Devonian time. An examination of drill core and cuttings in the region is underway to search for ejecta deposits and possible seismic and tsunami effects in the sedimentary section. Success would result in both dating the impact and furnishing a chronostratigraphic marker horizon.

  11. Soil response to a 3-year increase in temperature and nitrogen deposition measured in a mature boreal forest using ion-exchange membranes.

    PubMed

    D'Orangeville, Loïc; Houle, Daniel; Côté, Benoît; Duchesne, Louis

    2014-12-01

    The projected increase in atmospheric N deposition and air/soil temperature will likely affect soil nutrient dynamics in boreal ecosystems. The potential effects of these changes on soil ion fluxes were studied in a mature balsam fir stand (Abies balsamea [L.] Mill) in Quebec, Canada that was subjected to 3 years of experimentally increased soil temperature (+4 °C) and increased inorganic N concentration in artificial precipitation (three times the current N concentrations using NH4NO3). Soil element fluxes (NO3, NH4, PO4, K, Ca, Mg, SO4, Al, and Fe) in the organic and upper mineral horizons were monitored using buried ion-exchange membranes (PRS™ probes). While N additions did not affect soil element fluxes, 3 years of soil warming increased the cumulative fluxes of K, Mg, and SO4 in the forest floor by 43, 44, and 79 %, respectively, and Mg, SO4, and Al in the mineral horizon by 29, 66, and 23 %, respectively. We attribute these changes to increased rates of soil organic matter decomposition. Significant interactions of the heating treatment with time were observed for most elements although no clear seasonal patterns emerged. The increase in soil K and Mg in heated plots resulted in a significant but small K increase in balsam fir foliage while no change was observed for Mg. A 6-15 % decrease in foliar Ca content with soil warming could be related to the increase in soil-available Al in heated plots, as Al can interfere with the root uptake of Ca.

  12. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2005-09-27

    A sensor system for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  13. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2003-11-18

    A sensor system for a buried waste containment site having a bottom wall barrier and sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  14. Prioritization for rehabilitation of buried lifelines

    SciTech Connect

    Wang, L.R.L.; Ishibashi, I.; Li, H.

    1995-12-31

    Seismic rehabilitation or retrofit is a cost-effective way to prevent pipeline damage caused by future earthquakes. In general, it is very difficult, if not impossible, to rehabilitate all buried pipelines at the same time because of limited funds and time available. The purpose of this study is to establish a priority strategy for rehabilitation of buried pipelines considering several important factors such as pipeline damage probability, rehabilitation cost, rehabilitation rate (e.g. km/day), pipeline importance and total funds available.

  15. Buried Waste Integrated Demonstration stakeholder involvement model

    SciTech Connect

    Kaupanger, R.M.; Kostelnik, K.M.; Milam, L.M.

    1994-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy (DOE) Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. Stakeholder participation in the DOE Environmental Management decision-making process is critical to remediation efforts. Appropriate mechanisms for communication with the public, private sector, regulators, elected officials, and others are being aggressively pursued by BWID to permit informed participation. This document summarizes public outreach efforts during FY-93 and presents a strategy for expanded stakeholder involvement during FY-94.

  16. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  17. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  18. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  19. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  20. Limited Panniculectomy for Adult Buried Penis Repair.

    PubMed

    Figler, Bradley D; Chery, Lisly; Friedrich, Jeffrey B; Wessells, Hunter; Voelzke, Bryan B

    2015-11-01

    Patients with buried or hidden penis may be unable to carry out normal hygiene, void with a directable urine stream, or be sexually active as a result of the condition. Although these patients are nearly always obese, weight loss often does not reverse the problem, as the mons pannus may remain after weight loss. Furthermore, associated penile skin changes such as lichen sclerosus or stenosis of the penile shaft skin are often irreversible. Treatment includes removal of the diseased shaft skin surrounding the penis, in combination with a limited panniculectomy. The authors present their technique for this procedure in a typical patient with buried penis that prevented him from voiding effectively.

  1. Describing Soils: Calibration Tool for Teaching Soil Rupture Resistance

    ERIC Educational Resources Information Center

    Seybold, C. A.; Harms, D. S.; Grossman, R. B.

    2009-01-01

    Rupture resistance is a measure of the strength of a soil to withstand an applied stress or resist deformation. In soil survey, during routine soil descriptions, rupture resistance is described for each horizon or layer in the soil profile. The lower portion of the rupture resistance classes are assigned based on rupture between thumb and…

  2. Tests of a system to exclude roots from buried radioactive waste in a warm, humid climate

    SciTech Connect

    Murphy, C.E. Jr.; Corey, J.C.; Adriano, D.C.; Decker, O.D.; Griggs, R.D.

    1989-12-31

    Vegetation is commonly used to stabilize the ground covering buried waste sites. However, constituents of buried waste can be brought to the surface if the waste is penetrated by plant roots. An ideal waste burial system would allow the use of vegetation to stabilize the soil above the buried waste but would exclude roots from the waste. One system that shows considerable promise is a slow release encapsulation of a root growth inhibitor (Trifluralin). Projected lifetimes of the capsule are in the order of 100 years. The capsule is bonded to a geotextile, which provides an easy means of distributing the capsule evenly over the area to be protected. Vegetation grown in the soil above the barrier has provided good ground cover, although some decrease in growth has been found in some species. Of the species tested the sensitivity to the biobarrier, as measured by the distance root growth stops near the barrier, is bamboo> bahia grass> bermuda grass> soybean. Potential uses for the biobarrier at the Savannah River Site (SRS) include the protection of clay caps over buried, low-level saltstone and protection of gravel drains and clay caps over decommissioned seepage basins. Trails of the biobarrier as part of waste site caps are scheduled to begin during the next 12 months.

  3. Tests of a system to exclude roots from buried radioactive waste in a warm, humid climate

    SciTech Connect

    Murphy, C.E. Jr.; Corey, J.C. ); Adriano, D.C. ); Decker, O.D.; Griggs, R.D. )

    1989-01-01

    Vegetation is commonly used to stabilize the ground covering buried waste sites. However, constituents of buried waste can be brought to the surface if the waste is penetrated by plant roots. An ideal waste burial system would allow the use of vegetation to stabilize the soil above the buried waste but would exclude roots from the waste. One system that shows considerable promise is a slow release encapsulation of a root growth inhibitor (Trifluralin). Projected lifetimes of the capsule are in the order of 100 years. The capsule is bonded to a geotextile, which provides an easy means of distributing the capsule evenly over the area to be protected. Vegetation grown in the soil above the barrier has provided good ground cover, although some decrease in growth has been found in some species. Of the species tested the sensitivity to the biobarrier, as measured by the distance root growth stops near the barrier, is bamboo> bahia grass> bermuda grass> soybean. Potential uses for the biobarrier at the Savannah River Site (SRS) include the protection of clay caps over buried, low-level saltstone and protection of gravel drains and clay caps over decommissioned seepage basins. Trails of the biobarrier as part of waste site caps are scheduled to begin during the next 12 months.

  4. Identification of immunity-related genes in the burying beetle Nicrophorus vespilloides by suppression subtractive hybridization.

    PubMed

    Vogel, H; Badapanda, C; Vilcinskas, A

    2011-12-01

    Burying beetles reproduce on small vertebrate cadavers which they bury in the soil after localization through volatiles emitted from the carcass. They then chemically preserve the carcass and prepare it as a diet for the adults and their offspring. It is predicted that exposure to high loads of soil and/or carrion-associated microbes necessitates an effective immune system. In the present paper, we report experimental screening for immunity-related genes in the burying beetle Nicrophorus vespilloides using the suppression subtractive hybridization approach. A total of 1179 putative gene objects were identified in the Nicrophorus cDNA library, which was enriched for transcripts differentially expressed upon challenge with heat-inactivated bacteria. In addition to genes known to be involved in immunity-related recognition and signalling, we found transcripts encoding for antimicrobial peptides and for an array of enzymes that can be linked to immunity or to stress-induced pathways. We also determined proteins that may contribute to detoxification of toxins produced by microbial competitors. In addition, factors involved in mRNA stability determination and central components of the RNA interference machinery were identified, implying transcriptional reprogramming and potential stress-induced retrotransposon elimination. The identified candidate immune effector and stress-related genes may provide important information about the unusual ecology and evolution of the burying beetles.

  5. Effect of Biostimulation and Bioaugmentation on Degradation of Polyurethane Buried in Soil▿

    PubMed Central

    Cosgrove, L.; McGeechan, P. L.; Handley, P. S.; Robson, G. D.

    2010-01-01

    This work investigated biostimulation and bioaugmentation as strategies for removing polyurethane (PU) waste in soil. Soil microcosms were biostimulated with the PU dispersion agent “Impranil” and/or yeast extract or were bioaugmented with PU-degrading fungi, and the degradation of subsequently buried PU was determined. Fungal communities in the soil and colonizing buried PU were enumerated on solid media and were analyzed using denaturing gradient gel electrophoresis (DGGE). Biostimulation with yeast extract alone or in conjunction with Impranil increased PU degradation 62% compared to the degradation in untreated control soil and was associated with a 45% increase in putative PU degraders colonizing PU. Specific fungi were enriched in soil following biostimulation; however, few of these fungi colonized the surface of buried PU. Fungi used for soil bioaugmentation were cultivated on the surface of sterile wheat to form a mycelium-rich inoculum. Wheat, when added alone to soil, increased PU degradation by 28%, suggesting that wheat biomass had a biostimulating effect. Addition of wheat colonized with Nectria haematococca, Penicillium viridicatum, Penicillium ochrochloron, or an unidentified Mucormycotina sp. increased PU degradation a further 30 to 70%, suggesting that biostimulation and bioaugmentation were operating in concert to enhance PU degradation. Interestingly, few of the inoculated fungi could be detected by DGGE in the soil or on the surface of the PU 4 weeks after inoculation. Bioaugmentation did, however, increase the numbers of indigenous PU-degrading fungi and caused an inoculum-dependent change in the composition of the native fungal populations, which may explain the increased degradation observed. These results demonstrate that both biostimulation and bioaugmentation may be viable tools for the remediation of environments contaminated with polyurethane waste. PMID:19948849

  6. Deepwater Horizon Situation Report #5

    SciTech Connect

    2010-06-10

    At approximately 11:00 pm EDT April 20, 2010 an explosion occurred aboard the Deepwater Horizon mobile offshore drilling unit (MODU) located 52 miles Southeast of Venice, LA and 130 miles southeast of New Orleans, LA. The MODU was drilling an exploratory well and was not producing oil at the time of the incident. The Deepwater Horizon MODU sank 1,500 feet northwest of the well site. Detailed information on response and recovery operations can be found at: http://www.deepwaterhorizonresponse.com/go/site/2931/

  7. Preputial flaps to correct buried penis.

    PubMed

    Chu, Chih-Chun; Chen, Yi-Hsin; Diau, Guan-Yeu; Loh, Ih-Wei; Chen, Ke-Chi

    2007-11-01

    The authors developed a preputial skin flap technique to correct the buried penis which was simple and practical. This simple procedure can be applied to most boys with buried penis. In the last 3 years, we have seen 12 boys with buried penis and have been treated by using preputial flaps. The mean age is about 5.1 (from 3 to 12). By making a longitudinal incision on the ventral side of penis, the tightness of the foreskin is released and leave a diamond-shaped skin defect. It allows the penile shaft to extend out. A circumferential incision is made about 5 mm proximal to the coronal sulcus. Pedicled preputial flaps are obtained leaving optimal penile skin on the dorsal side. The preputial skin flaps are rotated onto the ventral side and tailored to cover the defect. All patients are followed for at least 3 months. Edema and swelling on the flaps are common, but improves with time. None of our patients need a second operation. The preputial flaps technique is a simple technique which allows surgeons to deal with most cases of buried penis by tailoring the flaps providing good cosmetic and functional results.

  8. Surface acoustic wave devices as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Rétornaz, T.; Alzuaga, S.; Baron, T.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2011-02-01

    Surface acoustic wave (SAW) devices are currently used as passive remote-controlled sensors for measuring various physical quantities through a wireless link. Among the two main classes of designs—resonator and delay line—the former has the advantage of providing narrow-band spectrum informations and hence appears compatible with an interrogation strategy complying with Industry-Scientific-Medical regulations in radio-frequency (rf) bands centered around 434, 866, or 915 MHz. Delay-line based sensors require larger bandwidths as they consists of a few interdigitated electrodes excited by short rf pulses with large instantaneous energy and short response delays but is compatible with existing equipment such as ground penetrating radar (GPR). We here demonstrate the measurement of temperature using the two configurations, particularly for long term monitoring using sensors buried in soil. Although we have demonstrated long term stability and robustness of packaged resonators and signal to noise ratio compatible with the expected application, the interrogation range (maximum 80 cm) is insufficient for most geology or geophysical purposes. We then focus on the use of delay lines, as the corresponding interrogation method is similar to the one used by GPR which allows for rf penetration distances ranging from a few meters to tens of meters and which operates in the lower rf range, depending on soil water content, permittivity, and conductivity. Assuming propagation losses in a pure dielectric medium with negligible conductivity (snow or ice), an interrogation distance of about 40 m is predicted, which overcomes the observed limits met when using interrogation methods specifically developed for wireless SAW sensors, and could partly comply with the above-mentioned applications. Although quite optimistic, this estimate is consistent with the signal to noise ratio observed during an experimental demonstration of the interrogation of a delay line buried at a depth of 5

  9. Preservation of daily tidal cycles and stacked alluvial swamp deposits: Depositional response to early compaction of buried peat bodies

    SciTech Connect

    Demko, T.M.; Gastaldo, R.A. )

    1990-05-01

    The character of the clastic depositional environments represented in the lower Mary Lee coal zone of the Pennsylvanian Pottsville Formation in the Warrior basin Alabama (tidally influenced mud flats and alluvial swamps) was controlled by the compaction of buried peat bodies. The lowest mineable coal in the Mary Lee coal zone, the Jagger, is overlain by laminated shale and sandstone exhibiting pronounced cycle bedding. This bedding records daily tidal cyclicity in the form of sand-mud couplets. These correspond to flood-current deposition of the coarser fraction followed by fallout of the finer grained fraction during ensuing slack-water periods. These couplets are cyclically bundled-sandier bundles corresponding to spring tides and muddier bundles to neap tides (lamination counts suggest a 24-30-day cycle). The clastic sequence above the overlying Blue Creek coal is characterized by a series of stacked alluvial swamp horizons. These can be identified by autochthonous fossil plants and pedological features indicative of gleyed paleosols. Catastrophic flooding buried and preserved these horizons. The rapid, early compaction of the buried Jagger and Blue Creek peat bodies created accommodation space that allowed both the preservation of tidalites in the Jagger coal to Blue Creek coal interval and the stacking of alluvial swamp paleosols above the Blue Creek seam. Carboniferous peats were comprised of highly compressible plant parts and hence, were sensitive to sediment loading. Once the peat bodies had compressed to a certain extent, stability of the overlying sediment surface created conditions amenable to resumption of peat accumulation.

  10. Modelling and interpreting biologically crusted dryland soil sub-surface structure using automated micropenetrometry

    NASA Astrophysics Data System (ADS)

    Hoon, Stephen R.; Felde, Vincent J. M. N. L.; Drahorad, Sylvie L.; Felix-Henningsen, Peter

    2015-04-01

    laboratory, and in-situ field studies. In particular, we discuss the nature and detection of surface and buried (fossil) subsurface Biological Soil Crusts (BSCs), voids, macroscopic particles and compositional layers. The strength of surface BSCs and the occurrence of buried BSCs and layers has been detected at sub millimetre scales to depths of 40mm. Our measurements and field observations of PR show the importance of morphological layering to overall BSC functions (Felde et al. 2015). We also discuss the effect of penetrometer shaft and probe-tip profiles upon the theoretical and experimental curves, EMP resolution and reproducibility, demonstrating how the model enables voids, buried biological soil crusts, exotic particles, soil horizons and layers to be distinguished one from another. This represents a potentially important contribution to advancing understanding of the relationship between BSCs and dryland soil structure. References: Drahorad SL, Felix-Henningsen P. (2012) An electronic micropenetrometer (EMP) for field measurements of biological soil crust stability, J. Plant Nutr. Soil Sci., 175, 519-520 Felde V.J.M.N.L., Drahorad S.L., Felix-Henningsen P., Hoon S.R. (2015) Ongoing oversanding induces biological soil crust layering - a new approach for BSC structure elucidation determined from high resolution penetration resistance data (submitted) Grunwald, S., Rooney D.J., McSweeney K., Lowery B. (2001) Development of pedotransfer functions for a profile cone penetrometer, Geoderma, 100, 25-47 Van Herwijnen A., Bellaire S., Schweizer J. (2009) Comparison of micro-structural snowpack parameters derived from penetration resistance measurements with fracture character observations from compression tests, Cold Regions Sci. {& Technol.}, 59, 193-201

  11. Soil organic matter in the Moscow State University botanical garden on the Vorob'evy Hills

    NASA Astrophysics Data System (ADS)

    Rozanova, M. S.; Prokof'eva, T. V.; Lysak, L. V.; Rakhleeva, A. A.

    2016-09-01

    Humification conditions and humus status parameters in arboretum soils of the Moscow State University botanical garden on the Vorob'evy Hills have been studied. Although microbiological activity is reduced, the warm and mild climate in the city, the eutrophication of soils (due to atmospheric fallouts and dissolution of construction waste inclusions), the retention of plant waste on the soil surface, and the presence of abundant primary destructors (mesofauna) have resulted in the formation of organic matter with specific characteristics. During the 60 years that have elapsed since the arboretum establishment, soils with a high content (up to 10-14%) of humate humus (CHA/CFA > 1) characterized by a higher degree of humification than in the control soils under herbaceous vegetation have been developed in the area. Large reserves of organic carbon have been noted not only in the upper 30-cm-thick soil layer, but also in the 1-m-thick layer due to organic matter of buried and technogenic horizons.

  12. Carbon and nitrogen compounds and emission of greenhouse gases in ancient and modern soils of the Arkaim Reserve in the Steppe Trans-Ural Region

    NASA Astrophysics Data System (ADS)

    Inubushi, K.; Prikhodko, V. E.; Nagano, Kh.; Manakhov, D. V.

    2015-12-01

    Carbon and nitrogen compounds and the emission of CO2, CH4, and N2O were studied in the ancient buried and modern background soils developed from different parent materials in the Arkaim Reserve of Chelyabinsk oblast. The studies were performed after an 18-year-long period of absence of anthropogenic loads on the local ecosystems. Element contents in the humus horizons of the chernozems of the former plowland and pastures and of the forest soil reach 28-45.6 g/kg for Corg, 2.5-4.5 g/kg for Ntot, 140-423 mg/kg for labile carbon (Cl), 32-73 mg/kg for labile nitrogen (Nl), 350-952 mg/kg for carbon of microbial biomass (Cmic), and 38-85 mg/kg for nitrogen of microbial biomass (Nmic). The contents of different forms of C and N depend on the soil type and texture and on the type of land use, including that before reservation of the territory. The emission of greenhouse gases was examined in this area for the first time. The production of CO2 by the soil buried about 4000 years ago is an order of magnitude lower than that by the modern soil. The emission and sink of N2O are small in both modern and ancient soils. The behavior of methane is clearly different in the automorphic and hydromorphic soils: the former serve as methane sinks, whereas the latter act as methane sources. The rate of the CO2 emission from the soils is controlled by many factors, including the soil type, texture, degree of hydromorphism, composition of parent materials, and type of land use.

  13. NIF featured on BBC "Horizon"

    ScienceCinema

    Brian Cox

    2016-07-12

    The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.

  14. New Horizons Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Delgado, Luis G.

    2011-01-01

    This slide presentation reviews the trajectory that will take the New Horizons Mission to Pluto. Included are photographs of the spacecraft, the launch vehicle, the assembled vehicle as it is being moved to the launch pad and the launch. Also shown are diagrams of the assembled parts with identifying part names.

  15. New Horizons in Education, 2000.

    ERIC Educational Resources Information Center

    Ho, Kwok Keung, Ed.

    2000-01-01

    This document contains the May and November 2000 issues of "New Horizons in Education," with articles in English and Chinese. The May issue includes the following articles: "A Key to Successful Environmental Education: Teacher Trainees' Attitude, Behaviour, and Knowledge" (Kevin Chung Wai Lui, Eric Po Keung Tsang, Sing Lai…

  16. A one dimensional numerical approach for computing the eigenmodes of elastic waves in buried pipelines

    NASA Astrophysics Data System (ADS)

    Duan, Wenbo; Kirby, Ray; Mudge, Peter; Gan, Tat-Hean

    2016-12-01

    Ultrasonic guided waves are often used in the detection of defects in oil and gas pipelines. It is common for these pipelines to be buried underground and this may restrict the length of the pipe that can be successfully tested. This is because acoustic energy travelling along the pipe walls may radiate out into the surrounding medium. Accordingly, it is important to develop a better understanding of the way in which elastic waves propagate along the walls of buried pipes, and so in this article a numerical model is developed that is suitable for computing the eigenmodes for uncoated and coated buried pipes. This is achieved by combining a one dimensional eigensolution based on the semi-analytic finite element (SAFE) method, with a perfectly matched layer (PML) for the infinite medium surrounding the pipe. This article also explores an alternative exponential complex coordinate stretching function for the PML in order to improve solution convergence. It is shown for buried pipelines that accurate solutions may be obtained over the entire frequency range typically used in long range ultrasonic testing (LRUT) using a PML layer with a thickness equal to the pipe wall thickness. This delivers a fast and computationally efficient method and it is shown for pipes buried in sand or soil that relevant eigenmodes can be computed and sorted in less than one second using relatively modest computer hardware. The method is also used to find eigenmodes for a buried pipe coated with the viscoelastic material bitumen. It was recently observed in the literature that a viscoelastic coating may effectively isolate particular eigenmodes so that energy does not radiate from these modes into the surrounding [elastic] medium. A similar effect is also observed in this article and it is shown that this occurs even for a relatively thin layer of bitumen, and when the shear impedance of the coating material is larger than that of the surrounding medium.

  17. The ability of the blowflies Calliphora vomitoria (Linnaeus), Calliphora vicina (Rob-Desvoidy) and Lucilia sericata (Meigen) (Diptera: Calliphoridae) and the muscid flies Muscina stabulans (Fallén) and Muscina prolapsa (Harris) (Diptera: Muscidae) to colonise buried remains.

    PubMed

    Gunn, Alan; Bird, Jerry

    2011-04-15

    The blowflies Calliphora vomitoria (Linnaeus), Calliphora vicina (Rob-Desvoidy) and Lucilia sericata (Meigen) exhibited a limited ability to colonise pig liver baits buried in loose soil. Calliphora vomitoria colonised baits buried at 5 cm but no deeper whilst C. vicina and L. sericata colonised remains at 10 cm but not at 20 cm. The baits were colonised by larvae hatching from eggs laid on the surface of the soil. Both C. vomitoria and L. sericata were able to develop from eggs through to adulthood on baits that were infested before being buried and the larvae developed at similar rates and pupariated at similar depths to larvae developing on baits on the soil surface. The muscid flies Muscina stabulans (Fallén) and Muscina prolapsa (Harris) colonised remains buried in loose soil at a depth of 40 cm and even when presented with baits on the soil surface their larvae tended to remain in the soil beneath the baits. In compacted soil, M. stabulans colonised baits buried at 10 cm but M. prolapsa only colonised those buried at 5 cm. In both muscid species, the adult flies were instantly attracted to feed on fresh blood and laid eggs in the soil above buried baits within 30min of them being introduced into the cages. The adult muscid flies did not attempt to burrow into the soil and their larvae colonised the baits from eggs laid on the soil surface. This information could be useful in determining whether a body was stored above ground before being buried and/or the time since burial occurred.

  18. Carbon stored in peatlands formed by terrestrialization: the importance of buried lake sediments

    NASA Astrophysics Data System (ADS)

    Talbot, J.

    2015-12-01

    A lot of efforts have been made over the last few decades to quantify the amount of carbon stored in soils, including in peat-producing systems. Estimates of soil carbon storage at the landscape scale has to take into account all buried carbon pools, including deep-buried lake sediments found under many peatlands that formed by terrestrialization. To illustrate the importance of buried lake sediments in the overall carbon storage of a peatland site, we studied a small peat swamp located in Gatineau Park (Quebec, Canada), the Folly peatland (45°27'18.12"N 75°46'57.38''W). This 7 ha peatland developed from a small lake that appeared after the postglacial Champlain Sea receded from the region, about 12 200 years ago. Its development followed a classical terrestrialization sequence and its hydrology has been stable since peat inception. A profile of over 8.5 m of organic matter was collected at the site, of which 2.5 m is peat and the rest is composed of lake sediments (gyttja). With the exception of a few tephra layers, the organic matter content exceeds 75 % of dry weight for the entire profile. Although it constitutes only 30 % of the profile depth, peat contains 48 % of the buried carbon because of its higher bulk density, and peat carbon accumulated at a rate of 88 g C m-2 yr-1. Overall, the site carbon density (including buried lake sediments) is 172 kg C m-2, a value comparable to the carbon density of many peatlands with much deeper peat profiles. The implications of these findings are discussed in the context of global peatland carbon inventories and peatland biogeochemistry.

  19. Use of microcomputer in mapping depth of stratigraphic horizons in National Petroleum Reserve in Alaska

    USGS Publications Warehouse

    Payne, Thomas G.

    1982-01-01

    REGIONAL MAPPER is a menu-driven system in the BASIC language for computing and plotting (1) time, depth, and average velocity to geologic horizons, (2) interval time, thickness, and interval velocity of stratigraphic intervals, and (3) subcropping and onlapping intervals at unconformities. The system consists of three programs: FILER, TRAVERSER, and PLOTTER. A control point is a shot point with velocity analysis or a shot point at or near a well with velocity check-shot survey. Reflection time to and code number of seismic horizons are filed by digitizing tablet from record sections. TRAVERSER starts at a point of geologic control and, in traversing to another, parallels seismic events, records loss of horizons by onlap and truncation, and stores reflection time for geologic horizons at traversed shot points. TRAVERSER is basically a phantoming procedure. Permafrost thickness and velocity variations, buried canyons with low-velocity fill, and error in seismically derived velocity cause velocity anomalies that complicate depth mapping. Two depths to the top of the pebble is based shale are computed for each control point. One depth, designated Zs on seismically derived velocity. The other (Zw) is based on interval velocity interpolated linearly between wells and multiplied by interval time (isochron) to give interval thickness. Z w is computed for all geologic horizons by downward summation of interval thickness. Unknown true depth (Z) to the pebble shale may be expressed as Z = Zs + es and Z = Zw + ew where the e terms represent error. Equating the two expressions gives the depth difference D = Zs + Zw = ew + es A plot of D for the top of the pebble shale is readily contourable but smoothing is required to produce a reasonably simple surface. Seismically derived velocity used in computing Zs includes the effect of velocity anomalies but is subject to some large randomly distributed errors resulting in depth errors (es). Well-derived velocity used in computing Zw

  20. The Malcolm horizon: History and future

    NASA Technical Reports Server (NTRS)

    Malcolm, R.

    1984-01-01

    The development of the Malcolm Horizon, a peripheral vision horizon used in flight simulation, is discussed. A history of the horizon display is presented as well as a brief overview of vision physiology, and the role balance plays is spatial orientation. Avenues of continued research in subconscious cockpit instrumentation are examined.

  1. Shell model response analysis of buried pipelines

    SciTech Connect

    Takada, Shiro; Katagiri, Shin; Shinmi, Tatsuhiko

    1995-12-31

    A shell model analysis can calculate the cross-sectional deformation and hoop stress of buried pipelines. This paper proposes an analytical method to calculate the response of buried straight and bent pipelines modeled as cylindrical shell structures. A modified transfer matrix method is employed instead of a stiffness matrix method to avoid the problem of computational memory caused by huge matrixes. Results calculated by the developed program are compared with experimental ones obtained by a pipe bending test of straight and bent pipe segments. In addition, several differences of the pipe response between the beam model and the shell model are examined through response simulations of straight and bent pipelines subjected to ground subsidence.

  2. Buried Waste Integrated Demonstration Strategy Plan

    SciTech Connect

    Kostelnik, K.M.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology`s threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

  3. Buried Waste Integrated Demonstration Strategy Plan

    SciTech Connect

    Kostelnik, K.M.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology's threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

  4. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (Inventor)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  5. Buried caldera of mauna kea volcano, hawaii.

    PubMed

    Porter, S C

    1972-03-31

    An elliptical caldera (2.1 by 2.8 kilometers) at the summit of Mauna Kea volcano is inferred to lie buried beneath hawaiite lava flows and pyroclastic cones at an altitude of approximately 3850 meters. Stratigraphic relationships indicate that hawaiite eruptions began before a pre-Wisconsin period of ice-cap glaciation and that the crest of the mountain attained its present altitude and gross form during a glaciation of probable Early Wisconsin age.

  6. Soils and the soil cover of the Valley of Geysers

    NASA Astrophysics Data System (ADS)

    Kostyuk, D. N.; Gennadiev, A. N.

    2014-06-01

    The results of field studies of the soil cover within the tourist part of the Valley of Geysers in Kamchatka performed in 2010 and 2011 are discussed. The morphology of soils, their genesis, and their dependence on the degree of hydrothermal impact are characterized; the soil cover patterns developing in the valley are analyzed. On the basis of the materials provided by the Kronotskii Biospheric Reserve and original field data, the soil map of the valley has been developed. The maps of vegetation conditions, soil temperature at the depth of 15 cm, and slopes of the surface have been used for this purpose together with satellite imagery and field descriptions of reference soil profiles. The legend to the soil map includes nine soil units and seven units of parent materials and their textures. Soil names are given according to the classification developed by I.L. Goldfarb (2005) for the soils of hydrothermal fields. The designation of soil horizons follows the new Classification and Diagnostic System of Russian Soils (2004). It is suggested that a new horizon—a thermometamorphic horizon TRM—can be introduced into this system by analogy with other metamorphic (transformed in situ) horizons distinguished in this system. This horizon is typical of the soils partly or completely transformed by hydrothermal impacts.

  7. Breakdown mechanism in buried silicon oxide films

    NASA Astrophysics Data System (ADS)

    Mayo, Santos; Suehle, John S.; Roitman, Peter

    1993-09-01

    Charge injection leading to catastrophic breakdown has been used to study the dielectric properties of the buried oxide layer in silicon implanted with high-energy oxygen ions. Current versus gate bias, current versus time, and capacitance versus gate bias were used to characterize, at various temperatures, MOS metal-oxide-semiconductor capacitors with areas in the 1×10-4-1×10-2 cm2 range fabricated with commercially available single- or triple-implant separation by implanted oxygen silicon wafers. The data show that injected charge accumulates in the buried oxide at donorlike oxide traps ultimately leading to catastrophic breakdown. Both Poole-Frenkel and Fowler-Nordheim conduction, as well as impact-ionization mechanisms, have been identified in the oxide. The charge and field to breakdown in the best buried oxides are, respectively, near 1 C cm-2 and 10 MV cm-1, similar to the thermally grown oxide parameters. Cumulative distributions of these parameters measured over a large number of capacitors show that the frequency of breakdown events caused by extrinsic defects is scaled with the capacitor area. Intrinsic and extrinsic defect distributions are broader than with thermally grown oxides.

  8. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    SciTech Connect

    Loomis, G.G.; Farnsworth, R.K.

    1997-12-31

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m{sup 3} of transuranic (TRU) waste is co-mingled with over 170,000 m{sup 3} of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste.

  9. Soil-Gas and Geophysical Techniques for Detection of Subsurface Organic Contamination

    DTIC Science & Technology

    1989-01-01

    methods were successful for detecting hydrogeological features, buried metal objects, and conductive plumes, but were unsuccessful for detecting organic contaminants. Keywords: Soil Contamination, Groundwater pollution .

  10. Preservation of labile organic matter in soils of drained thaw lakes in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Mueller, Carsten W.; Rethemeyer, Janet; Kao-Kniffin, Jenny; Löppmann, Sebastian; Hinkel, Kenneth; Bockheim, James

    2014-05-01

    clearly shown by increased amounts of aliphatic C in these small POM fractions. As revealed by 13C CPMAS NMR, with advancing soil age increasing aliphaticity was also detected in occluded small POM fractions. By 14C dating we could show the stabilization of younger more labile OM at greater depth in buried O horizons. Additionally the study of the microscale elemental distributions, using nano-scale secondary ion mass spectrometry (NanoSIMS) showed the initial formation of aggregates and organo-mineral interfaces in the studied permafrost soils.

  11. Penrose inequality and apparent horizons

    SciTech Connect

    Ben-Dov, Ishai

    2004-12-15

    A spherically symmetric spacetime is presented with an initial data set that is asymptotically flat, satisfies the dominant energy condition, and such that on this initial data M<{radical}(A/16{pi}), where M is the total mass and A is the area of the apparent horizon. This provides a counterexample to a commonly stated version of the Penrose inequality, though it does not contradict the true Penrose inequality.

  12. How Burying Biomass Can Contribute to CO2 Stabilization

    NASA Astrophysics Data System (ADS)

    Cook, B.; Zeng, N.; Zaitchik, B.; Gregg, J.

    2008-12-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1), followed by temperate (3.7 GtC y-1) and boreal forests (2.1 GtC y-1). Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other environmental concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be 14/tCO2 (50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The low cost for carbon sequestration with wood burial is possible because the technique uses the natural process of photosynthesis to remove carbon from the atmosphere. The technique is low tech, distributed, safe, and can be stopped at any time, thus an attractive option for large-scale implementation in a world-wide carbon market.

  13. Toroidal horizons in binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-09-01

    We find the first binary black hole event horizon with a toroidal topology. It has been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology. However, such a phase has never been seen in numerical simulations. Instead, in all previous simulations, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We find a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon, thus reconciling the numerical work with theoretical expectations. The demonstration requires extremely high numerical precision, which is made possible by a new event horizon code described in a companion paper. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  14. New Horizons Launch Contingency Effort

    NASA Astrophysics Data System (ADS)

    Chang, Yale; Lear, Matthew H.; McGrath, Brian E.; Heyler, Gene A.; Takashima, Naruhisa; Owings, W. Donald

    2007-01-01

    On 19 January 2006 at 2:00 PM EST, the NASA New Horizons spacecraft (SC) was launched from the Cape Canaveral Air Force Station (CCAFS), FL, onboard an Atlas V 551/Centaur/STAR™ 48B launch vehicle (LV) on a mission to explore the Pluto Charon planetary system and possibly other Kuiper Belt Objects. It carried a single Radioisotope Thermoelectric Generator (RTG). As part of the joint NASA/US Department of Energy (DOE) safety effort, contingency plans were prepared to address the unlikely events of launch accidents leading to a near-pad impact, a suborbital reentry, an orbital reentry, or a heliocentric orbit. As the implementing organization. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had expanded roles in the New Horizons launch contingency effort over those for the Cassini mission and Mars Exploration Rovers missions. The expanded tasks included participation in the Radiological Control Center (RADCC) at the Kennedy Space Center (KSC), preparation of contingency plans, coordination of space tracking assets, improved aerodynamics characterization of the RTG's 18 General Purpose Heat Source (GPHS) modules, and development of spacecraft and RTG reentry breakup analysis tools. Other JHU/APL tasks were prediction of the Earth impact footprints (ElFs) for the GPHS modules released during the atmospheric reentry (for purposes of notification and recovery), prediction of the time of SC reentry from a potential orbital decay, pre-launch dissemination of ballistic coefficients of various possible reentry configurations, and launch support of an Emergency Operations Center (EOC) on the JHU/APL campus. For the New Horizons launch, JHU/APL personnel at the RADCC and at the EOC were ready to implement any real-time launch contingency activities. A successful New Horizons launch and interplanetary injection precluded any further contingency actions. The New Horizons launch contingency was an interagency effort by several organizations. This paper

  15. Phosphatase activity in relation to key litter and soil properties in mature subtropical forests in China.

    PubMed

    Hou, Enqing; Chen, Chengrong; Wen, Dazhi; Liu, Xian

    2015-05-15

    Phosphatase-mediated phosphorus (P) mineralization is one of the critical processes in biogeochemical cycling of P and determines soil P availability in forest ecosystems; however, the regulation of soil phosphatase activity remains elusive. This study investigated the potential extracellular activities of acid phosphomonoesterase (AcPME) and phosphodiesterase (PDE) and how they were related to key edaphic properties in the L horizon (undecomposed litter) and F/H horizon (fermented and humified litter) and the underlying mineral soil at the 0-15cm depth in eight mature subtropical forests in China. AcPME activity decreased significantly in the order of F/H horizon>L horizon>mineral soil horizon, while the order for PDE activity was L horizon=F/H horizon>mineral soil horizon. AcPME (X axis) and PDE (Y axis) activities were positively correlated in all horizons with significantly higher slope in the L and F/H horizons than in the mineral soil horizon. Both AcPME and PDE activities were positively related to microbial biomass C, moisture content and water-holding capacity in the L horizon, and were positively related to soil C:P, N:P and C:N ratios and fine root (diameter≤2mm) biomass in the mineral soil horizon. Both enzyme activities were also interactively affected by forest and horizon, partly due to the interactive effect of forest and horizon on microbial biomass. Our results suggest that modulator(s) of the potential extracellular activity of phosphatases vary with horizon, depending on the relative C, P and water availability of the horizon.

  16. Response of CO2 Concentration in Andisol to Rainfall Events by Using Buried Tubing Gas Monitoring System

    NASA Astrophysics Data System (ADS)

    Endo, Toshifumi; Tokida, Takeshi; Imoto, Hiromi; Nishimura, Taku; Miyazaki, Tsuyoshi

    For the purpose of continuous soil CO2 gas monitoring, gas permeable resins were evaluated. Among polytetrafluoroethylen (PTFE), polyfluoroethylene propylene (PFEP) and silicone, the silicone rubber tube had highest permeability for oxygen gas. Buried Tubing Gas Monitoring System (BT-GMS) consisting of silicone rubber tube connected to a Non-diffuse infrared (NDIR) -CO2 gas and galvanic cell O2 gas sensors were constructed, and buried into an Andisol upland field at a depth of 20cm. Thermo-couples and EC-5 soil moisture sensors were inserted into 10 and 20cm deep layers. Soil CO2 gas concentration, temperature and moisture were continuously monitored for 5 months. Soil CO2 concentration was sensitive to rainfall events and soil moisture change. Responses were keen during summer until early autumn when soil temperature was higher than 20°C. Then, when soil temperature got lower the response tended to be dull. This suggested quick CO2 gas concentration change following a rainfall event was mostly due to enhancement in soil respiration with soil moisture rise.

  17. Prehistoric Agriculture and Soil Fertility on Lava Flows in Northern Arizona, USA: Results from the San Francisco Volcanic Field REU

    NASA Astrophysics Data System (ADS)

    Broadman, E.; Anderson, K. C.

    2013-12-01

    The San Francisco Volcanic Field in northern Arizona is home to ~600 cinder cones, the youngest of which is Sunset Crater (erupted ~AD 1100). This study documents trends in available phosphate and nitrate content with time, testing whether lowered soil pH from the addition of Sunset cinders increased soil fertility and became a factor in Anasazi agricultural success. Soil fertility is examined both before and after Sunset's eruption in soils of different ages that have developed from eolian deposition on top of lava flows. An increase in phosphate and nitrate levels following acidification would suggest that the presence of Sunset cinders brought the soils to the optimal pH for mobilization of these nutrients. The combined effects of the cinder layer retaining nutrients and water, wetter climates, and increases in phosphate and nitrate (both limiting nutrients for plant growth), would have contributed to Anasazi agricultural success after Sunset's eruption. Samples for this study were taken from eolian-derived soils of different ages atop lava flows in the San Francisco Volcanic Field. OSL data from these soils on Strawberry and SP Craters' lava flows yielded age estimates of ~12.3 ka (Strawberry) and ~32.7 ka (SP), on which a soil chronosequence was based. Results from the chronosequence supported these OSL ages, indicating that soils on the SP flow are older than those on the Strawberry flow. Field descriptions, Harden Development Indices, particle size analysis, and nutrient content analysis were used for this aspect of the project. An experimental acid wash method will be used to simulate the addition of Sunset's acidic cinders, and will yield data for phosphate and nitrate content after Sunset erupted. Preliminary results indicate that phosphate and nitrate accumulate in upper, eolian-derived horizons (Av, Bw) and in more deeply buried carbonate horizons (Bk). Higher concentrations of phosphate and nitrate were found in older (SP) soils than younger

  18. Development stages of Holocene soils formed in loess and loess bearing sediments at the Roman wall (Limes) in the Wetterau (Hesse, Germany)

    NASA Astrophysics Data System (ADS)

    Kühn, P.; Felix-Henningsen, P.

    2009-04-01

    wall A section through the Roman wall in the northern part of the Wetterau reveals (i) a Luvisol with limpid to dusty yellow brown and brown clay coatings in the Bt horizon developed in the sediments of the wall during the last 1800 to 1900 years. A trampling horizon can be inferred from platy microplates and horizontally oriented organ residues in a depth of around 160 cm representing the old land surface. The former Ah horizon was most possibly removed before building up the wall. Below the wall (ii) a Luvic Phaeozem was found with dark brown and yellow brown clay coatings in the upper AhBt horizon. The lower humic Bt horizon reveals numerous fragments of clay coatings beside undisturbed yellow brown clay coatings. The buried Luvic Phaeozem is an archetype of the soil development stage at Roman times in that area. Since calcareous material was put on the upper decimetres of the wall, the following decalcification led to precipitation of carbonate in the humic Bt horizon of the Luvic Phaeozem and so conserved this stage of soil formation. The investigated (iii) Albic Luvisol situated about 30 m next to the wall section represents the present stage of soil development with (meanwhile) no macroscopic signs of the Chernozem/Phaeozem predecessors. To figure out soil development stages micromorphological data were combined with soil physical and chemical data as well as results from clay mineralogy. Due to secondary calcification the pH of the paleosol is around 7, whereas the occurrence of secondary chlorites in the upper part of the paleosol points at pH values ranging from 4-5 at Roman times.

  19. The daily evaporation characteristics of deeply buried phreatic water in an extremely arid region

    NASA Astrophysics Data System (ADS)

    Li, Hongshou; Wang, Wanfu; Liu, Benli

    2014-06-01

    Measurements of the daily evaporation characteristics of deeply buried phreatic water in an extremely arid area are reported. The results are used to analyze the mechanism responsible for water movement in the groundwater-soil-plant-atmosphere continuum. A closed PVC greenhouse was set up on Gobi land at the top of the Mogao Grottoes where phreatic water is more than 200 m deep. An air-conditioning unit and an automatic weighing scale were placed inside the greenhouse to condense and monitor phreatic evaporation and soil water changes in this extremely arid region. Soil temperature and humidity at various depths (0-40 cm) and other meteorological factors were also recorded on a sub-hourly basis. The relationship between evaporated water and soil water movement was analyzed by observing changes in soil weight, the condensate from the air-conditioning unit, and air moisture. The results show that phreatic water evaporation occurs from this deeply buried source in this extremely arid zone. The daily characteristics are consistent with the variation in the Sun’s radiation intensity (i.e. both show a sinusoidal behavior). In the daytime, most of the soil water does not evaporate but moves to cooler sub-layers. In the afternoon, the shallow soil layer absorbs moisture as the temperature decreases. At night, an abundance of water vapor moves upwards from the sub-layers and supplements the evaporated and downward-moving moisture of the superstratum in the daytime, but there is no evaporation. The stable, upwardly migrating vapor and film water is supported by geothermy and comes from phreatic water, the daily evaporation characteristics of which changes according to soil temperature when it reaches the ground.

  20. Buried waste integrated demonstration configuration management plan

    SciTech Connect

    Cannon, P.G.

    1992-02-01

    This document defines plans for the configuration management requirements for the Buried Waste Integrated Demonstration (BWID) Program. Since BWID is managed programmatically by the Waste Technology Development Department (WTDD), WTDD Program Directive (PD) 1.5 (Document Preparation, Review, Approval, Publication, Management and Change Control) is to be followed for all internal EG G Idaho, Inc., BWID programmatic documentation. BWID documentation generated by organizations external to EG G Idaho is not covered by this revision of the Configuration Management Plan (CMP), but will be addressed in subsequent revisions.

  1. Buried waste integrated demonstration configuration management plan

    SciTech Connect

    Cannon, P.G.

    1992-02-01

    This document defines plans for the configuration management requirements for the Buried Waste Integrated Demonstration (BWID) Program. Since BWID is managed programmatically by the Waste Technology Development Department (WTDD), WTDD Program Directive (PD) 1.5 (Document Preparation, Review, Approval, Publication, Management and Change Control) is to be followed for all internal EG&G Idaho, Inc., BWID programmatic documentation. BWID documentation generated by organizations external to EG&G Idaho is not covered by this revision of the Configuration Management Plan (CMP), but will be addressed in subsequent revisions.

  2. Fabrication of Buried Nanochannels From Nanowire Patterns

    NASA Technical Reports Server (NTRS)

    Choi, Daniel; Yang, Eui-Hyeok

    2007-01-01

    A method of fabricating channels having widths of tens of nanometers in silicon substrates and burying the channels under overlying layers of dielectric materials has been demonstrated. With further refinement, the method might be useful for fabricating nanochannels for manipulation and analysis of large biomolecules at single-molecule resolution. Unlike in prior methods, burying the channels does not involve bonding of flat wafers to the silicon substrates to cover exposed channels in the substrates. Instead, the formation and burying of the channels are accomplished in a more sophisticated process that is less vulnerable to defects in the substrates and less likely to result in clogging of, or leakage from, the channels. In this method, the first step is to establish the channel pattern by forming an array of sacrificial metal nanowires on an SiO2-on-Si substrate. In particular, the wire pattern is made by use of focused-ion-beam (FIB) lithography and a subsequent metallization/lift-off process. The pattern of metal nanowires is then transferred onto the SiO2 layer by reactive-ion etching, which yields sacrificial SiO2 nanowires covered by metal. After removal of the metal covering the SiO2 nanowires, what remains are SiO2 nanowires on an Si substrate. Plasma-enhanced chemical vapor deposition (PECVD) is used to form a layer of a dielectric material over the Si substrate and over the SiO2 wires on the surface of the substrate. FIB milling is then performed to form trenches at both ends of each SiO2 wire. The trenches serve as openings for the entry of chemicals that etch SiO2 much faster than they etch Si. Provided that the nanowires are not so long that the diffusion of the etching chemicals is blocked, the sacrificial SiO2 nanowires become etched out from between the dielectric material and the Si substrate, leaving buried channels. At the time of reporting the information for this article, channels 3 m long, 20 nm deep, and 80 nm wide (see figure) had been

  3. ENDEAVOUR to understand EUV buried defect printability

    NASA Astrophysics Data System (ADS)

    Seki, Kazunori; Isogawa, Takeshi; Kagawa, Masayuki; Akima, Shinji; Kodera, Yutaka; Badger, Karen; Qi, Zhengqing J.; Lawliss, Mark; Rankin, Jed; Bonam, Ravi

    2015-07-01

    NAP-PD (Native Acting Phase - Programmed Defects), otherwise known as buried program defects, with attributes very similar to native defects, are successfully fabricated using a high accuracy overlay technique. The defect detectability and visibility are analyzed with conventional phase contrast blank inspection @193 nm wavelength, pattern inspection @193 nm wavelength and SEM. The mask is also printed on wafer and printability is discussed. Finally, the inspection sensitivity and wafer printability are compared, leading to the observation that the current blank and pattern inspection sensitivity is not enough to detect all of the printable defects.

  4. Field investigation and analysis of buried pipelines under various seismic environments. Technical report

    SciTech Connect

    Wang, L.R.L.

    1982-08-01

    A research project is proposed in which the behavior of oil, water, sewer, and gas pipelines under various seismic environments, including seismic shaking and large ground deformation would be investigated. It is suggested that the investigation be conducted in the Beijing and Tangshan areas. Three major hazards to underground pipelines are identified: the effect of wave propagation; ground rupture and differential movement along fault lines; and soil liquefaction induced by ground shaking. Ruptures or severe distortions of the pipe are most often associated with fault movements, landslides, or ground squeeze associated with fault zones. A model is presented to evaluate the general longitudinal responses of buried pipelines, both segmented and continuous, subjected to ground shakings and vibrations. The results of these tests will be used to develop aseismic codes for buried pipelines.

  5. Enzyme leaching of surficial geochemical samples for detecting hydromorphic trace-element anomalies associated with precious-metal mineralized bedrock buried beneath glacial overburden in northern Minnesota

    USGS Publications Warehouse

    Clark, Robert J.; Meier, A.L.; Riddle, G.; ,

    1990-01-01

    One objective of the International Falls and Roseau, Minnesota, CUSMAP projects was to develop a means of conducting regional-scale geochemical surveys in areas where bedrock is buried beneath complex glacially derived overburden. Partial analysis of B-horizon soils offered hope for detecting subtle hydromorphic trace-element dispersion patterns. An enzyme-based partial leach selectively removes metals from oxide coatings on the surfaces of soil materials without attacking their matrix. Most trace-element concentrations in the resulting solutions are in the part-per-trillion to low part-per-billion range, necessitating determinations by inductively coupled plasma/mass spectrometry. The resulting data show greater contrasts for many trace elements than with other techniques tested. Spatially, many trace metal anomalies are locally discontinuous, but anomalous trends within larger areas are apparent. In many instances, the source for an anomaly seems to be either basal till or bedrock. Ground water flow is probably the most important mechanism for transporting metals toward the surface, although ionic diffusion, electrochemical gradients, and capillary action may play a role in anomaly dispersal. Sample sites near the Rainy Lake-Seine River fault zone, a regional shear zone, often have anomalous concentrations of a variety of metals, commonly including Zn and/or one or more metals which substitute for Zn in sphalerite (Cd, Ge, Ga, and Sn). Shifts in background concentrations of Bi, Sb, and As show a trend across the area indicating a possible regional zoning of lode-Au mineralization. Soil anomalies of Ag, Co, and Tl parallel basement structures, suggesting areas that may have potential for Cobalt/Thunder Baytype silver viens. An area around Baudette, Minnesota, which is underlain by quartz-chlorite-carbonate-altered shear zones, is anomalous in Ag, As, Bi, Co, Mo, Te, Tl, and W. Anomalies of Ag, As, Bi, Te, and W tend to follow the fault zones, suggesting potential

  6. The Archaeology of Coralville Lake, Iowa. Volume 4. Recreation Area Survey. (Interim Report 2).

    DTIC Science & Technology

    1985-09-01

    at least one buried soil evidenced by a buried - argillic (clay enriched) horizon. This landform has been for the most part destroyed by previous...subsurface investigations showed an eluvial horizon with an underlying argillic Bt horizon. At this time, no evidence supports the existence of a buried...subsurface argillic horizon. The potential for recovering buried stable surfaces at this recreation area appears remote. LAKE MacBRIDE STATE PARK

  7. Horizon dynamics of distorted rotating black holes

    SciTech Connect

    Chu, Tony; Cohen, Michael I.; Pfeiffer, Harald P.

    2011-05-15

    We present numerical simulations of a rotating black hole distorted by a pulse of ingoing gravitational radiation. For strong pulses, we find up to five concentric marginally outer trapped surfaces. These trapped surfaces appear and disappear in pairs, so that the total number of such surfaces at any given time is odd. The world tubes traced out by the marginally outer trapped surfaces are found to be spacelike during the highly dynamical regime, approaching a null hypersurface at early and late times. We analyze the structure of these marginally trapped tubes in the context of the dynamical horizon formalism, computing the expansion of outgoing and incoming null geodesics, as well as evaluating the dynamical horizon flux law and the angular momentum flux law. Finally, we compute the event horizon. The event horizon is well-behaved and approaches the apparent horizon before and after the highly dynamical regime. No new generators enter the event horizon during the simulation.

  8. Variable horizon in a peridynamic medium

    DOE PAGES

    Silling, Stewart A.; Littlewood, David J.; Seleson, Pablo

    2015-12-10

    Here, a notion of material homogeneity is proposed for peridynamic bodies with variable horizon but constant bulk properties. A relation is derived that scales the force state according to the position-dependent horizon while keeping the bulk properties unchanged. Using this scaling relation, if the horizon depends on position, artifacts called ghost forces may arise in a body under a homogeneous deformation. These artifacts depend on the second derivative of the horizon and can be reduced by employing a modified equilibrium equation using a new quantity called the partial stress. Bodies with piecewise constant horizon can be modeled without ghost forcesmore » by using a simpler technique called a splice. As a limiting case of zero horizon, both the partial stress and splice techniques can be used to achieve local-nonlocal coupling. Computational examples, including dynamic fracture in a one-dimensional model with local-nonlocal coupling, illustrate the methods.« less

  9. Variable horizon in a peridynamic medium

    SciTech Connect

    Silling, Stewart A.; Littlewood, David J.; Seleson, Pablo

    2015-12-10

    Here, a notion of material homogeneity is proposed for peridynamic bodies with variable horizon but constant bulk properties. A relation is derived that scales the force state according to the position-dependent horizon while keeping the bulk properties unchanged. Using this scaling relation, if the horizon depends on position, artifacts called ghost forces may arise in a body under a homogeneous deformation. These artifacts depend on the second derivative of the horizon and can be reduced by employing a modified equilibrium equation using a new quantity called the partial stress. Bodies with piecewise constant horizon can be modeled without ghost forces by using a simpler technique called a splice. As a limiting case of zero horizon, both the partial stress and splice techniques can be used to achieve local-nonlocal coupling. Computational examples, including dynamic fracture in a one-dimensional model with local-nonlocal coupling, illustrate the methods.

  10. Variable horizon in a peridynamic medium.

    SciTech Connect

    Silling, Stewart Andrew; Littlewood, David John; Seleson, Pablo

    2014-10-01

    A notion of material homogeneity is proposed for peridynamic bodies with vari- able horizon but constant bulk properties. A relation is derived that scales the force state according to the position-dependent horizon while keeping the bulk properties un- changed. Using this scaling relation, if the horizon depends on position, artifacts called ghost forces may arise in a body under homogeneous deformation. These artifacts de- pend on the second derivative of horizon and can be reduced by use of a modified equilibrium equation using a new quantity called the partial stress . Bodies with piece- wise constant horizon can be modeled without ghost forces by using a technique called a splice between the regions. As a limiting case of zero horizon, both partial stress and splice techniques can be used to achieve local-nonlocal coupling. Computational examples, including dynamic fracture in a one-dimensional model with local-nonlocal coupling, illustrate the methods.

  11. Study of the influence of the plastic casing on the electromagnetic induction response of a buried landmine

    NASA Astrophysics Data System (ADS)

    Das, Y.

    2008-04-01

    Most studies of the electromagnetic induction (EMI) response of a low-metal landmine buried in soil ignore any influence that the plastic casing may have on such response. In most cases such treatment is adequate since only the metal components of a landmine are expected to contribute to such a response. However, when the landmine is buried in a soil that has significant conductivity and/or magnetic susceptibility, the electromagnetic void created by the casing may have an influence on the EMI response of the landmine. That possibility is investigated using a simple analytical model and an experiment. A sphere is chosen as a simple prototype for the small metal parts in low-metal landmines, and a concentric spherical shell, made of foamed polystyrene, encasing the sphere is used to represent the plastic landmine body. The time-domain EMI response is measured using a purpose-designed system based on a modified Schiebel AN19/2 metal detector. Responses of the metallic sphere, the polystyrene shell and the metal-polystyrene composite target are measured with the targets buried in magnetic soil half-spaces. The particular soil type for which data are presented in this paper is Cambodian "laterite" with dispersive magnetic susceptibility, which serves as a good model for soils that are known to affect the performance of metal detectors. The metal sphere used has a diameter of 0.0254 m and is made of 6061-T6 aluminum, and the polystyrene shell has an outer diameter of 0.15 m. For the specific soil and targets used, theoretical results show that a small effect on the time-domain response is expected from the presence of the polystyrene casing. Experimental results confirm this for the case of the buried polystyrene shell. However the small difference in the example of the composite target is masked by experimental errors.

  12. Theory underlying the peripheral vision horizon device

    NASA Technical Reports Server (NTRS)

    Money, K. E.

    1984-01-01

    Peripheral Vision Horizon Device (PVHD) theory states that the likelihood of pilot disorientation in flight is reduced by providing an artificial horizon that provides orientation information to peripheral vision. In considering the validity of the theory, three areas are explored: the use of an artificial horizon device over some other flight instrument; the use of peripheral vision over foveal vision; and the evidence that peripheral vision is well suited to the processing of orientation information.

  13. System and method for removal of buried objects

    DOEpatents

    Alexander, Robert G.; Crass, Dennis; Grams, William; Phillips, Steven J.; Riess, Mark

    2008-06-03

    The present invention is a system and method for removal of buried objects. According to one embodiment of the invention, a crane with a vibrator casing driver is used to lift and suspend a large diameter steel casing over the buried object. Then the casing is driven into the ground by the vibratory driver until the casing surrounds the buried object. Then the open bottom of the casing is sealed shut by injecting grout into the ground within the casing near its bottom. When the seal has cured and hardened, the top of the casing is lifted to retrieve the casing, with the buried object inside, from the ground.

  14. Multi channel FM reflection profiler for buried pipeline surveying

    SciTech Connect

    Schock, S.G.; LeBlanc, L.R.

    1996-12-31

    A towed multi-channel FM acoustic reflection profiler has been developed for locating and generating images of buried objects. One significant application of this sonar is buried pipeline surveying. The multi-channel reflection profiler uses 16 line arrays mounted in a towed vehicle to determine the position and burial depth of an 18 inch steel pipe filled with concrete buried under 1.5 meters of sand. This sonar will allow a survey vessel to continuously track a buried pipeline providing a continuous record of pipe burial depth and position.

  15. Noncommutativity in near horizon symmetries in gravity

    NASA Astrophysics Data System (ADS)

    Majhi, Bibhas Ranjan

    2017-02-01

    We have a new observation that near horizon symmetry generators, corresponding to diffeomorphisms which leave the horizon structure invariant, satisfy noncommutative Heisenberg algebra. The results are valid for any null surfaces (which have Rindler structure in the near null surface limit) and in any spacetime dimensions. Using the Sugawara construction technique the central charge is identified. It is shown that the horizon entropy is consistent with the standard form of the Cardy formula. Therefore we feel that the noncommutative algebra might lead to quantum mechanics of horizon and also can probe into the microscopic description of entropy.

  16. Smooth horizons and quantum ripples

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey

    2015-05-01

    Black holes are unique objects which allow for meaningful theoretical studies of strong gravity and even quantum gravity effects. An infalling and a distant observer would have very different views on the structure of the world. However, a careful analysis has shown that it entails no genuine contradictions for physics, and the paradigm of observer complementarity has been coined. Recently this picture was put into doubt. In particular, it was argued that in old black holes a firewall must form in order to protect the basic principles of quantum mechanics. This AMPS paradox has already been discussed in a vast number of papers with different attitudes and conclusions. Here we want to argue that a possible source of confusion is the neglect of quantum gravity effects. Contrary to widespread perception, it does not necessarily mean that effective field theory is inapplicable in rather smooth neighbourhoods of large black hole horizons. The real offender might be an attempt to consistently use it over the huge distances from the near-horizon zone of old black holes to the early radiation. We give simple estimates to support this viewpoint and show how the Page time and (somewhat more speculative) scrambling time do appear.

  17. The fate of organic carbon in colluvial soils in a subtropical agricultural catchment (Arvorezinha, Brazil)

    NASA Astrophysics Data System (ADS)

    Van de Broek, Marijn; Van Oost, Kristof; Minella, Jean; Govers, Gerard

    2016-04-01

    One of the main reasons as to why soil erosion is considered to be a carbon sink for the atmosphere is that eroded carbon is often redeposited and buried in depositional environments. However, the quantification of the magnitude of this effect is still uncertain because the residence time of soil organic carbon in depositional environments is ill defined. The latter is especially true for tropical and subtropical areas as field data for these climatic zones are largely lacking. This is an important hiatus as ca. 40% of the total global arable land is located in the (sub-)tropics [1]. We collected samples from four depositional and one stable agricultural profile in a small agricultural catchment in Arvorezinha (Brazil) where deforestation started ca. 90 yrs ago. δ13C depth profiles allowed to identify the bottom of the original A-horizon: this is because δ13C values of the buried forest soils are significantly heavier than those of the colluvial deposits. The results show that soil organic carbon contents systematically decrease with depth below the actual plough layer. This is due to the fact that a significant fraction of the organic carbon that was originally deposited is removed by mineralization from these soils over decadal time scales. As the time of deforestation is known, age-depth curves could be established. Combining this information with SOC measurements allowed for a first estimate of carbon preservation rates and showed that after 70 years ca. 25% of the deposited organic carbon is released to the atmosphere: results were very consistent across profiles. In temperate environments, the time necessary for this fraction of the deposited carbon to be mineralized is somewhat longer, i.e. 100 years [2]. This suggests that soil organic carbon may be decomposed faster in sub-tropical environments in comparison to temperate environments. This is not unexpected, given the fact that average soil temperatures are higher and soils are, in this climate

  18. Dissolved Organic Carbon and Nitrogen Leaching From Soil Formed in Grass, Oak and Pine Ecosystems of California

    NASA Astrophysics Data System (ADS)

    Pittiglio, S. L.; Zasoski, R. J.

    2005-12-01

    Dissolved organic matter (DOM) leaching from decomposing detritus accumulated above mineral soils is an important carbon (C) and nitrogen (N) flux that influences biogeochemical processes, C sequestration and the health of individual ecosystems. This study compared the retention and transformation of DOM leached through soils formed under three contrasting vegetation types. In a laboratory study, columns of surface soil (10 cm diameter, 10 cm height) from either a grass, oak or pine site were leached with DOM derived from either grass, oak or pine litter. In the field, the laboratory study was replicated by burying columns of soil from the grass, oak and pine sites under the organic horizon at each sites. Leachates from in-situ field columns were collected biweekly beginning in January 2005. Samples were analyzed for volume, pH, total N, NO3-, NH4+, DON and DOC. In the laboratory leaching studies soils retained DOC derived from its native ecosystem to a greater extent. These results suggest that the microbial community from each ecosystem is adapted to consume the native DOC. No clear trends were found with DOC in the field study. Leachates from the field columns did show significantly lower levels of DON from pine soil columns at all sampling dates and sites. Similar results were found in the laboratory study with pine soil decreasing initial total N inputs from 32.9 to 3.6 mg kg-1. While all three sites contain kaolinite, vermiculite and chlorite, soil from the pine site also has high levels of iron oxides and gibbsite. The greater iron content likely contributes to higher DON retention since these minerals are know to have high affinities for the retention of DOM. The results from the field and laboratory experiments show that both soil minerals and the soil microbial communities play an important role in DOM retention in the subsoil.

  19. Thermal processing system concepts and considerations for RWMC buried waste

    SciTech Connect

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  20. Piezoelectric radiofrequency transducers as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Rétornaz, T.; Friedt, J.-M.; Alzuaga, S.; Baron, T.; Lebrasseur, É.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2012-09-01

    We demonstrate that single-piezoelectric substrate-based acoustic transducers act as ideal sensors for probing with various RADAR strategies. Because these sensors are intrinsically passive devices working in the radiofrequency range, they exhibit improved interrogation range and robustness with respect to silicon-based radio frequency identification tags. Both wideband (acoustic delay lines) and narrowband (acoustic resonators) transducers are shown to be compatible with pulse-mode and frequency-modulated continuous-wave RADAR strategies, respectively. We particularly focus on the ground-penetrating RADAR (GPR) application in which the lack of local energy source makes these sensors suitable candidates for buried applications in roads, building or civil engineering monitoring. A novel acoustic sensor concept - high-overtone bulk acoustic resonator - is especially suited as sensor interrogated by a wide range of antenna set, as demonstrated with GPR units working in the 100 and 200 MHz range.

  1. Buried waste integrated demonstration technology integration process

    SciTech Connect

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  2. Buried waste integrated demonstration technology integration process

    SciTech Connect

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  3. Landslide Buries Valley of the Geysers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Geysers are a rare natural phenomena found only in a few places, such as New Zealand, Iceland, the United States (Yellowstone National Park), and on Russia's far eastern Kamchatka Peninsula. On June 3, 2007, one of these rare geyser fields was severely damaged when a landslide rolled through Russia's Valley of the Geysers. The landslide--a mix of mud, melting snow, trees, and boulders--tore a scar on the land and buried a number of geysers, thermal pools, and waterfalls in the valley. It also blocked the Geyser River, causing a new thermal lake to pool upstream. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this infrared-enhanced image on June 11, 2007, a week after the slide. The image shows the valley, the landslide, and the new thermal lake. Even in mid-June, just days from the start of summer, the landscape is generally covered in snow, though the geologically heated valley is relatively snow free. The tree-covered hills are red (the color of vegetation in this false-color treatment), providing a strong contrast to the aquamarine water and the gray-brown slide. According to the Russian News and Information Agency (RIA) [English language], the slide left a path roughly a kilometer and a half (one mile) long and 200 meters (600 feet) wide. Within hours of the landslide, the water in the new lake inundated a number of additional geysers. The geysers directly buried under the landslide now lie under as much as 60 meters (180 feet) of material, according to RIA reports. It is unlikely that the geysers will be able to force a new opening through this thick layer, adds RIA. Among those directly buried is Pervenets (Firstborn), the first geyser found in the valley, in 1941. Other geysers, such as the Bolshoi (Greater) and Maly (Lesser) Geysers, were silenced when buried by water building up behind the new natural dam. According to Vladimir and Andrei Leonov of the Russian Federation Institute of

  4. Soil discontinuities as potential factors of shallow landslides: a case study from Calabria, southern Italy

    NASA Astrophysics Data System (ADS)

    Scarciglia, Fabio; Morrone, Fabio; Pelle, Teresa; Buttafuoco, Gabriele; Conforti, Massimo; Muto, Francesco; Critelli, Salvatore; Fabbricatore, Davide; Filomena, Luciana; Rago, Valeria; Robustelli, Gaetano; Tripodi, Vincenzo; Versace, Pasquale

    2015-04-01

    Effects of chemical and physical weathering processes on different rock types as predisposing factors of a number of landslides are often investigated in detail. Conversely, very few research studies on triggering mechanisms of shallow landslides and related risk assessment are focused on evaluation of morphological and physical discontinuities caused by pedogenetic processes affecting parent materials. Also sampling strategies for geotechnical or hydrological laboratory analyses can be biased by the lack of detailed information about the soil spatial variability and of a consequent horizon-wise selection of samples from soil profiles. In this work we summarize the main results on the assessment of shallow landslide susceptibility along the A3 highway section between Cosenza Sud and Altilia in northern Calabria (southern Italy). This research is part of a wider project (PON01-01503: "Integrated systems for hydrogeological risk monitoring, early warning and mitigation along the main lifelines"), aimed at hydro-geological risk mitigation and early warning along three highway sections of southern Italy. Based on a detailed geological and geomorphological survey, the main lithological, structural and relief features of the landscape were mapped, with a special emphasis on active, dormant and inactive landslides and their geo-lithological control factors. A soil survey was also carried out in the field, showing a dominance of Entisols and Inceptisols on steep slopes, and Mollisols and Alfisols on gentle landforms. Soil observations were focused on the identification of pedological discontinuities as potential factors that might trigger shallow landslides. A number of soil profiles, often close to landslide scarps, evidenced significant morphological changes of the parent materials, such as texture, pedogenic structure, dry consistence and moisture, or hydromorphic features caused by transient water-logging conditions, and clay-illuviated horizons. Buried soils were

  5. Clouds Move Across Mars Horizon

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This sequence combines 32 images of clouds moving eastward across a Martian horizon. The Surface Stereo Imager on NASA's Phoenix Mars Lander took this set of images on Sept. 18, 2008, during early afternoon hours of the 113th Martian day of the mission.

    The view is toward the north. The actual elapsed time between the first image and the last image is nearly half an hour. The numbers inset at lower left are the elapsed time, in seconds, after the first image of the sequence. The particles in the clouds are water-ice, as in cirrus clouds on Earth.

    Phoenix landed in the northern region of Mars on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  6. The NMC Horizon Report: 2014 Library Edition

    ERIC Educational Resources Information Center

    Johnson, L.; Adams Becker, S.; Estrada, V.; Freeman, A.

    2014-01-01

    The internationally recognized "NMC Horizon Report" series and regional "NMC Technology Outlooks" are part of the NMC Horizon Project, a 12-year effort established in 2002 that annually identifies and describes emerging technologies likely to have a large impact over the coming five years in every sector of education around the…

  7. Horizon Report: 2009 Economic Development Edition

    ERIC Educational Resources Information Center

    Johnson, L.; Levine, A.; Scott, C.; Smith, R.; Stone, S.

    2009-01-01

    The New Media Consortium's Horizon Project is an ongoing research project that seeks to identify and describe emerging technologies likely to have a large impact in education and other industries around the world over a five-year time period. The chief products of the project are the "Horizon Reports", an annual series of publications…

  8. The NMC Horizon Report: 2015 Museum Edition

    ERIC Educational Resources Information Center

    Johnson, L.; Adams Becker, S.; Estrada, V.; Freeman, A.

    2015-01-01

    The internationally recognized series of "Horizon Reports" is part of the New Media Consortium's Horizon Project, a comprehensive research venture established in 2002 that identifies and describes emerging technologies likely to have a large impact over the coming years on a variety of sectors around the globe. This "2015 Horizon…

  9. The Horizon Report: 2010 Museum Edition

    ERIC Educational Resources Information Center

    Johnson, L.; Witchey, H.; Smith, R.; Levine, A.; Haywood, K.

    2010-01-01

    The internationally recognized series of "Horizon Reports" is part of the New Media Consortium's Horizon Project, a comprehensive research venture established in 2002 that identifies and describes emerging technologies likely to have a large impact over the coming five years on a variety of sectors around the globe. This volume, the "2010 Horizon…

  10. Expanding your horizons in science and mathematics

    NASA Technical Reports Server (NTRS)

    Palmer, Cynthia E. A.

    1995-01-01

    The purpose of the 'Expanding Your Horizons in Science and Mathematics' program is to interest young women in grades six through twelve in a variety of careers where mathematics and science are important. Progress in encouraging young women to take courses in mathematics, science, and technological subjects is discussed. Also included are adult, student, and organizational information packets used for 'Expanding Your Horizons' conferences.

  11. Acute buried bumper syndrome: an endoscopic peg tube salvage approach.

    PubMed

    Bhat, Ganesh; Suvarna, Deepak; Pai, Cannanore Ganesh

    2010-05-01

    Acute buried bumper syndrome is an uncommon complication of percutaneous endoscopic gastrostomy (PEG) tube placement. If not recognized and treated appropriately, it can lead to serious complications including death. We report a case of an acute buried bumper syndrome, successfully managed with PEG tube repositioning through the original tract, without the need of replacement.

  12. Buried Oxide Densification for Low Power, Low Voltage CMOS Applications

    NASA Technical Reports Server (NTRS)

    Allen, L. P.; Anc, M. J.; Dolan, B.; Jiao, J.; Guss, B.; Seraphin, S.; Liu, S. T.; Jenkins, W.

    1998-01-01

    Special technology and circuit architecture are of growing interest for implementation of circuits which operate at low supply voltages and consume low power levels without sacrificing performance[1]. Use of thin buried oxide SOI substrates is a primary approach to simultaneously achieve these goals. A significant aspect regarding SIMOX SOI for low voltage, low power applications is the reliability and performance of the thin buried oxide. In addition, when subjected to high total dose irradiation, the silicon islands within the BOX layer of SIMOX can store charges and significantly effect the back channel threshold voltages of devices. Thus, elimination of the islands within the buried oxide (BOX) layer is preferred in order to prevent leakage through these conductive islands and charge build-up within the buried oxide layer. A differential (2-step) ramp rate as applied to full and 100 nm BOX SIMOX was previously reported to play a significant role in the stoichiometry and island formation within the buried layer[2]. This paper focus is on the properties of a thin (120nm) buried oxide as a function of the anneal ramp rate and the temperature of anneal. In this research, we have found an improvement in the buried oxide stoichiometry with the use of a slower, singular ramp rate for specified thin buried oxides, with slower ramp rates and higher temperatures of anneal suggested for reducing the presence of Si islands within the BOX layer.

  13. Hydrogen soil dynamics in northern boreal and subarctic Sweden

    NASA Astrophysics Data System (ADS)

    Steele, K. J.; Crill, P. M.; Oquist, M. G.; Varner, R. K.

    2011-12-01

    Wetland ecosystems store a large amount of organic carbon in the form of peat and are the largest natural source of CH4. Thawing of northern wetland permafrost results in an increase in the pool of soil carbon that is made available for decomposition processes and CH4 production. Some subarctic mire sites are also getting wetter as the climate warms. An increase in inundated areas in conjunction with increased amounts of organic matter could give rise to potential feedbacks to warming temperatures via increased emissions of reduced trace gases, such as CH4 and H2, to the atmosphere. H2 soil dynamics in peatlands and forests are complex because of the many microbial-mediated reactions driving H2 production and consumption. H2 couples oxidative and reductive processes in anaerobic environments. The aim of this project was to determine if high-latitude boreal and subarctic soils can change from a sink to a source of H2 to the atmosphere by identifying the microbial processes controlling the production and consumption of H2. Does H2 production and emissions to the atmosphere occur under temporary anoxia in organic -rich soils and soil horizons and do episodic weather events, particularly rain and freeze-thaw cycles, drive H2 production and release from natural soils due to the release of labile organic material and anaerobic conditions. Porewater soil gas profiles from different sub-habitats were determined in Stordalen mire in subarctic Sweden using buried ePTFE tubing and samples manually obtained using a stainless steel sipper. Trends in H2 concentration between the microporous tubing and sipper samples generally agree. The H2 concentration is higher in the tubing possibly due to preferential diffusion into the air-filled tubing by H2, which has a low solubility in water. The wettest site dominated by Eriophorum had the highest concentration of H2 with a maximum of 39.3 ppmv H2 at a depth of 30 cm. A mesic site dominated by Sphagnum had the next highest H2

  14. The first data on the vertical REE distribution in taiga soils of the Russian Far East

    NASA Astrophysics Data System (ADS)

    Bryanin, S. V.; Sorokina, O. A.

    2015-10-01

    Coarse humic brown soils formed on different rocks under natural conditions of southern taiga of the Upper Priamur'e were studied. Concentration and distribution of REE in organic-mineral and metamorphic soil horizons were estimated. Soils inherit REE distribution in underlying rocks sitll at lower concentrations. The maximal REE concentrations are found in metamorphic soil horizon and the lowest ones in humic-accumulative. Soil formation processes have an effect on REE concentration in soils, but do not change their distribution.

  15. Simplified dispersion relationships for fluid-dominated axisymmetric wave motion in buried fluid-filled pipes

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Sui, Fusheng; Muggleton, Jennifer M.; Yang, Jun

    2016-08-01

    The dispersion characteristics of axisymmetric (n=0) waves offer a way to gain physical insight into the low-frequency vibrational behaviour of underground pipe systems. Whilst these can be found in the literature, they are generally calculated numerically. Coupled equations of motion for the n=0 waves that propagate in a buried fluid-filled pipe are presented in this paper and, from this, an analytical solution is developed for the fluid-dominated (s=1) wavenumber. The effect of the frictional stress at the pipe-soil interface on the dispersion behaviour of the s=1 wave is characterised by adopting a soil loading matrix. Overall, the fluid loading has a greater effect on the propagation wavespeed compared with the soil loading: for metal pipes, the effect of soil loading is negligible; for plastic pipes, however, simply neglecting the effect of soil loading can lead to a considerable underestimation in the calculation of the wavespeed. The wave attenuation increases significantly at higher frequencies regardless of pipe material resulting from the added damping due to radiation into the soil. Theoretical predictions of the s=1 wavenumber are compared with experimental data measured on an MDPE water pipe. The degree of agreement between prediction and experiment makes clear that, although the wavespeed is only slightly affected by the presence of the frictional stress, the frictional stress at the pipe-soil interface needs to be appropriately taken into account for attenuation predictions.

  16. Detection of Microbial sulfate-reduction associated with buried stainless steel coupons

    SciTech Connect

    Mark E. Delwiche; M. Kay Adler Flitton; Alicia Olson

    2007-03-01

    The objective of this study was to demonstrate applicability of an innovative radioactive isotope method for imaging microbial activity in geological materials to a comprehensive study of metal corrosion. The method was tested on a sample of stainless steel coupons that had been buried as part of a corrosion study initiated by the National Institute of Standards and Testing or NIST (known as National Bureau of Standards prior to 1988) in 1970. The images showed evidence of microbial activity that could be mapped on a millimeter scale to coupon surfaces. A second more conventional isotope tracer method was also used to provide a quantitative measure of the same type of microbial activity in soil proximal to the buried coupons. Together the techniques offer a method for evaluating low metabolic levels of activity that have the potential for significant cumulative corrosion effects. The methods are powerful tools for evaluation of potential for microbial induced corrosion to buried steel components used on pipelines, in the power and communications infrastructure, and in nuclear waste repository containers.

  17. Littoral Assessment of Mine Burial Signatures (LAMBS) buried land mine/background spectral signature analyses

    USGS Publications Warehouse

    Kenton, A.C.; Geci, D.M.; Ray, K.J.; Thomas, C.M.; Salisbury, J.W.; Mars, J.C.; Crowley, J.K.; Witherspoon, N.H.; Holloway, J.H.; Harmon R.S.Broach J.T.Holloway, Jr. J.H.

    2004-01-01

    The objective of the Office of Naval Research (ONR) Rapid Overt Reconnaissance (ROR) program and the Airborne Littoral Reconnaissance Technologies (ALRT) project's LAMBS effort is to determine if electro-optical spectral discriminants exist that are useful for the detection of land mines in littoral regions. Statistically significant buried mine overburden and background signature data were collected over a wide spectral range (0.35 to 14 ??m) to identify robust spectral features that might serve as discriminants for new airborne sensor concepts. LAMBS has expanded previously collected databases to littoral areas - primarily dry and wet sandy soils - where tidal, surf, and wind conditions can severely modify spectral signatures. At AeroSense 2003, we reported completion of three buried mine collections at an inland bay, Atlantic and Gulf of Mexico beach sites.1 We now report LAMBS spectral database analyses results using metrics which characterize the detection performance of general types of spectral detection algorithms. These metrics include mean contrast, spectral signal-to-clutter, covariance, information content, and spectral matched filter analyses. Detection performance of the buried land mines was analyzed with regard to burial age, background type, and environmental conditions. These analyses considered features observed due to particle size differences, surface roughness, surface moisture, and compositional differences.

  18. Sex, offspring and carcass determine antimicrobial peptide expression in the burying beetle

    PubMed Central

    Jacobs, Chris G. C.; Steiger, Sandra; Heckel, David G.; Wielsch, Natalie; Vilcinskas, Andreas; Vogel, Heiko

    2016-01-01

    The burying beetle Nicrophorus vespilloides has emerged as a model system for the investigation of adaptations that allow the utilization of carrion as a diet and as a resource for reproduction. The survival of beetles and their offspring given their exposure to soil-dwelling and cadaver-borne microbes requires mechanisms that reduce bacterial contamination in the diet and that achieve sanitation of the microhabitat. To explore the role of antimicrobial peptides (AMPs) in this context, we analyzed burying beetle males and females at different stages of their breeding cycle using the RNA-Seq and proteomics approaches. To address variation in immune functions, we investigated the impact of adult sex, the presence or absence of offspring (social context), and the presence of carrion (environmental context) on the expression of the identified immune effector genes. We found that particular AMPs are sex-specific and tightly regulated by the presence of a carcass or offspring and identified the two most context-dependent antimicrobial proteins in anal secretions. The context-specific expression dynamics of particular AMPs and lysozymes reveals a complex regulatory system, reflecting adaptations to specific ecological niches. This study highlights how burying beetles cope with microorganisms found on carrion and identifies candidates for both internal and external immunity. PMID:27139635

  19. Ferromanganese crusts from Necker Ridge, Horizon Guyot and S.P. Lee Guyot: Geological considerations

    USGS Publications Warehouse

    Hein, J.R.; Manheim, F. T.; Schwab, W.C.; Davis, A.S.

    1985-01-01

    Necker Ridge, Horizon Guyot and S.P. Lee Guyot in the Central Pacific were sampled, seismically surveyed, and photographed by bottom cameras in order to better understand the distribution, origin, and evolution of ferromanganese crusts. Necker Ridge is over 600 km long with a rugged crest, pods of sediment to 146 m thick, slopes that average 12?? to 20??, and debris aprons that cover some of the lower flanks. Substrate lithologies are mostly hyaloclastite, volcaniclastic breccia, and minor alkalic basalt. Horizon Guyot, 300 km long and 75 km wide, is capped by at least 160 m of sediment, which buries stepped terraces. Substrate lithologies are similar to those on Necker Ridge, although previous workers sampled much tholeiitic basalt on Horizon. S.P. Lee Guyot, 125 km long and 80 km wide, is capped by at least 300 m of sediment, and contains talus aprons along its lower flanks. Ferromanganese-encrusted rocks were recovered in every dredge and are thickest on Necker Ridge. Crust thicknesses average about 2.5, 1.5, and 0.8 cm for Necker, Horizon, and S.P. Lee, respectively. Crusts range from smooth or porous surfaces to knobby and botryoidal. The entire crust is laminated, however, two distinct layers commonly exist, separated by a paper-thin layer of phosphorite. The dominant mineral of all crusts is vernadite (??-MnO2), while quartz, feldspar, apatite, and, in three rocks todorokite, are minor phases. Quartz and feldspar decrease with decreasing latitude of occurrence, and is suggested to be related to eolian input. On the average, apatite also increases within the crusts with decreasing latitude of occurrence, which may be related to high biological productivity in the zone of equatorial upwelling. Phosphorite substrates are more abundant on Necker Ridge and S.P. Lee Guyot than they are on Horizon Guyot. Seamount ferromanganese nodules are distinct from abyssal nodules in their chemistry and internal structure. ?? 1985.

  20. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization

    NASA Astrophysics Data System (ADS)

    Comas, X.; Terry, N.; Slater, L.; Warren, M.; Kolka, R.; Kristiyono, A.; Sudiana, N.; Nurjaman, D.; Darusman, T.

    2015-05-01

    Current estimates of carbon (C) storage in peatland systems worldwide indicate that tropical peatlands comprise about 15% of the global peat carbon pool. Such estimates are uncertain due to data gaps regarding organic peat soil thickness, volume and C content. We combined a set of indirect geophysical methods (ground-penetrating radar, GPR, and electrical resistivity imaging, ERI) with direct observations using core sampling and C analysis to determine how geophysical imaging may enhance traditional coring methods for estimating peat thickness and C storage in a tropical peatland system in West Kalimantan, Indonesia. Both GPR and ERI methods demonstrated their capability to estimate peat thickness in tropical peat soils at a spatial resolution not feasible with traditional coring methods. GPR is able to capture peat thickness variability at centimeter-scale vertical resolution, although peat thickness determination was difficult for peat columns exceeding 5 m in the areas studied, due to signal attenuation associated with thick clay-rich transitional horizons at the peat-mineral soil interface. ERI methods were more successful for imaging deeper peatlands with thick organomineral layers between peat and underlying mineral soil. Results obtained using GPR methods indicate less than 3% variation in peat thickness (when compared to coring methods) over low peat-mineral soil interface gradients (i.e., below 0.02°) and show substantial impacts in C storage estimates (i.e., up to 37 MgC ha-1 even for transects showing a difference between GPR and coring estimates of 0.07 m in average peat thickness). The geophysical data also provide information on peat matrix attributes such as thickness of organomineral horizons between peat and underlying substrate, the presence of buried wood, buttressed trees or tip-up pools and soil type. The use of GPR and ERI methods to image peat profiles at high resolution can be used to further constrain quantification of peat C pools and

  1. Speciation and distribution of cadmium and lead in salinized horizons of antrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, D.; Bulgariu, L.; Astefanei, D.

    2009-04-01

    The utilization of intensive technologies for the vegetable cultivation in glass houses by the administration of high doses of organic fertilizes, the supra-dimensional irrigation and the maintaining of soil at high humidity state, in special in case of vicious drainage have as result the rapid degradation of morphological, chemical and physical characteristics of soils, concretized by: (i) decrease of structural aggregates stability; (ii) more dense packing of soil; (iii) accumulation of easy soluble salts (in special at superior horizons level); (iv) limitation of organic compounds and micro-elements biodisponibility. All these determined a significant reduction of productivity and of exploitation duration of soils from glass houses. These phenomena modified continuously the dynamic of speciation processes and inter-phases distribution, of heavy metals in soils from glass houses, and can determined a non-controlled accumulation of heavy metals, in special as mobile forms with high biodisponibility. Ours studied have been performed using soil profiles drawing from Copou-glass house, Iasi (Romania). Has been followed the modification of distribution for speciation forms of cadmium and lead (two heavy metals with high toxicity degree), between hortic antrosol horizons, and between chemical-mineralogical components of this, with the progressive salinization of superior horizons, in 2007-2008 period. The separation, differentiation and determination of cadmium and lead speciation forms was done by combined solid-liquid sequential extraction (SPE) and extraction in aqueous polymer-inorganic salt two-phase systems (ABS) procedure, presented in some of ours previous studies. After extraction, the total contents of the two heavy metals and fractions from these differential bonded by mineral and organic components of hortic antrosol have been determined by atomic absorption spectrometry. The specific interaction mechanisms of Cd and Pb with organic-mineral components of

  2. Viscous flow lobes in central Taylor Valley, Antarctica: Origin as remnant buried glacial ice

    NASA Astrophysics Data System (ADS)

    Swanger, Kate M.; Marchant, David R.; Kowalewski, Douglas E.; Head, James W., III

    2010-08-01

    Viscous flow lobes are common throughout the McMurdo Dry Valleys (MDV) of Antarctica. These features have been described as rock glaciers, gelifluction lobes, solifluction lobes, talus mobilized by pore ice and/or segregation ice, and debris-covered glaciers. We investigate the origin, modification, and flow of a 2-km-long lobe (East Stocking Lobe or ESL) along the north wall of central Taylor Valley using field mapping techniques, shallow seismic surveys, time-dependent displacement surveys, and isotopic analyses of buried-ice samples. On the basis of these integrated analyses, we show that the ESL is cored with remnant glacier ice, most probably derived from an advance of nearby Stocking Glacier ˜ 130 kyr BP. Seismic data, coupled with results from ice-flow modeling assuming plastic flow of clean ice, suggest that the buried core of glacier ice is ˜ 14- to 30-m thick. Near its terminus, the ESL flows at a rate of ˜ 2.4 to 6.7 mm a - 1 . The loose drift that caps the buried ice (typically < 1 m thick) is composed of moderately stratified sand- and gravel-sized clasts; it is dry (1-3% soil gravimetric water content; GWC), except near ephemeral stream channels and the margins of melting snow banks (6-25% GWC). Stable isotopic analyses of samples from the upper 30 cm of the ice lie on a slope of ˜ 5.8 (when plotted on a δD vs. δ18O graph), well below the local meteoric water line of 7.75, suggesting modification by freeze/thaw processes and evaporation/sublimation. Measured air and soil temperatures show that intermittent melting is most likely possible during summer months where buried ice is ≤ 35 cm below the ground surface. Morphological comparisons with ice-cored deposits in upland regions of the Dry Valleys, e.g., Mullins and Beacon Valleys (30 km inland and ˜ 500 m higher in elevation), and near the coast (40 km distant and ˜ 500 m lower) reveal marked contrasts in the style of near-surface ice degradation and cryoturbation. From these morphological

  3. Benghal dayflower (Commelina benghalensis) seed viability in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benghal dayflower is a challenging weed to manage in agricultural settings. Research was conducted in North Carolina, Georgia, and Florida to evaluate the longevity of buried Benghal dayflower seeds. Seeds were buried for 2 to 60 months at a depth of 20 cm in mesh bags containing soil native to eac...

  4. Occurrence of perched saturation and interflow over an argillic horizon in a low relief hillslope.

    SciTech Connect

    Greco, James; Jackson, Rhett, C.

    2009-03-01

    Abstract. Many of the soils in the south-eastern US are characterized by an argillic, or clay horizon, that largely parallels the soil surface at depths ranging from a few centimeters to 100 cen-timeters. The degree to which these argillic horizons alter subsurface movement of infiltrated water is not well known. Interflow, or throughflow, is shallow lateral subsurface flow that moves over a horizon that restricts percolation. This research investigates how often and under what conditions a relatively deep (20-150+cm) argillic horizon on low slope (2-6%) hillsides causes interflow to oc-cur. Research is being conducted at the Savannah River Site, Aiken, South Carolina, on a small zero-order watershed. In the first phase of this research, a high resolution topographic map of the clay layer was developed. This map will be used to instrument designated “low” spots with max rise piezo-meters in order to determine if there is channelized subsurface flow. In situ conductivities of the clay layer and the surface horizons were measured using an Amoozegar meter, and bulk density samples were taken and measured. Along with soil topographic measurements, data-logging piezometers have been installed to measure the piezometric head above, in, and below the argillic horizon to further investigate interflow as a potential hydraulic routing mechanism. The stream that drains the catchment was instrumented with a 2’ H flume and data-logging pressure transducer to measure stream flow. Climate data including precipitation, barometric pressure and temperature, are being continuously collected in an open area approximately ¼ mile from the study site. Combining the shallow surface and subsurface piezometric heads with stream flow rates, we should be able to determine if and when the clay layer is contributing to inter-flow.

  5. Model Assessment of Alternatives for Reducing Seepage from Buried Uranium Mill Talings at the Morton Ranch Site in Central Wyoming

    SciTech Connect

    Nelson, R. W.; Reisenauer, A. E.; Gee, G. W.

    1980-06-01

    The purpose of this study is to examine potential ground water contamination by seepage from buried tailings under four alternatives of clay liners and tailings placement, which have been proposed for possible use at the Morton Ranch Site. To accomplish this comparison of alternatives, laboratory work and numerous measurements were made on materials typical of the Morton Ranch Site. These measurements provide the soil characteristics necessary for input to the hydrologic flow and transport models.

  6. Quasilocal approach to general universal horizons

    NASA Astrophysics Data System (ADS)

    Maciel, Alan

    2016-05-01

    Theories of gravity with a preferred foliation usually display arbitrarily fast signal propagation, changing the black hole definition. A new inescapable barrier, the universal horizon, has been defined and many static and spherically symmetric examples have been studied in the literature. Here, we translate the usual definition of the universal horizon in terms of an optical scalar built with the preferred flow defined by the preferred spacetime foliation. The new expression has the advantages of being of quasilocal nature and independent of specific spacetime symmetries in order to be well defined. Therefore, we propose it as a definition for general quasilocal universal horizons. Using the new formalism, we show that there is no universal analog of cosmological horizons for Friedmann-Lemaître-Robertson-Walker models for any scale factor function, and we also state that quasilocal universal horizons are restricted to trapped regions of the spacetime. Using the evolution equation, we analyze the formation of universal horizons under a truncated Hořava-Lifshitz theory, in spherical symmetry, showing the existence of regions in parameter space where the universal horizon formation cannot be smooth from the center, under some physically reasonable assumptions. We conclude with our view on the next steps for the understanding of black holes in nonrelativistic gravity theories.

  7. Inner and outer horizons of time experience.

    PubMed

    Wackermann, Jirí

    2007-05-01

    Human experience of temporal durations exhibits a multi-regional structure, with more or less distinct boundaries, or horizons, on the scale of physical duration. The inner horizons are imposed by perceptual thresholds for simultaneity (approximately equal to 3 ms) and temporal order (approximatly equal to 30 ms), and are determined by the dynamical properties of the neural substrate integrating sensory information. Related to the inner horizon of experienced time are perceptual or cognitive "moments." Comparative data on autokinetic times suggest that these moments may be relatively invariant (approximately equal to 10(2) ms) across a wide range of species. Extension of the "sensible present" (approximately equal to 3 s) defines an intermediate horizon, beyond which the generic experience of duration develops. The domain of immediate duration experience is delimited by the ultimate outer horizon at about = 10(2) s, as evidenced by analysis of duration reproduction experiments (reproducibility horizon), probably determined by relaxation times of "neural accumulators." Beyond these phenomenal horizons, time is merely cognitively (re)constructed, not actually experienced or "perceived," a fact that is frequently ignored by contemporary time perception research. The nyocentric organization of time experience shows an interesting analogy with the egocentric organization of space, suggesting that structures of subjective space and time are derived from active motion as a common experiential basis.

  8. Using soil properties as a tool to differentiate landslide generations and constrain their ages - Rogowiec landslide, Sudetes (SW Poland)

    NASA Astrophysics Data System (ADS)

    Kacprzak, Andrzej; Migoń, Piotr

    2013-04-01

    profiles in the landslide body do not show evidence of protracted soil evolution under contemporary climate and hence, are interpreted as having been formed during a fraction of the Holocene. This implies a Holocene age of the landslide. In addition, an older shallow translational landslide has been recognized on the valley side, with the toe buried by the main Rogowiec landslide. The depletion area was identified through the occurrence of thin, truncated soils (compared to the neighbouring slopes). This and the occurrence of weakly horizonated and poorly structural soils in the landslide body itself suggest that this valley-side landslide is of the Holocene age too. Thus, soils proved a powerful tool to establish the relative chronology of landslides and give strong evidence of their Holocene age. Soil research is recommended as a part of landslide hazard and risk assessment for landslides of unknown age.

  9. Production and decay of evolving horizons

    NASA Astrophysics Data System (ADS)

    Nielsen, Alex B.; Visser, Matt

    2006-07-01

    We consider a simple physical model for an evolving horizon that is strongly interacting with its environment, exchanging arbitrarily large quantities of matter with its environment in the form of both infalling material and outgoing Hawking radiation. We permit fluxes of both lightlike and timelike particles to cross the horizon, and ask how the horizon grows and shrinks in response to such flows. We place a premium on providing a clear and straightforward exposition with simple formulae. To be able to handle such a highly dynamical situation in a simple manner we make one significant physical restriction—that of spherical symmetry—and two technical mathematical restrictions: (1) we choose to slice the spacetime in such a way that the spacetime foliations (and hence the horizons) are always spherically symmetric. (2) Furthermore, we adopt Painlevé Gullstrand coordinates (which are well suited to the problem because they are nonsingular at the horizon) in order to simplify the relevant calculations. Of course physics results are ultimately independent of the choice of coordinates, but this particular coordinate system yields a clean physical interpretation of the relevant physics. We find particularly simple forms for surface gravity, and for the first and second law of black hole thermodynamics, in this general evolving horizon situation. Furthermore, we relate our results to Hawking's apparent horizon, Ashtekar and co-worker's isolated and dynamical horizons, and Hayward's trapping horizon. The evolving black hole model discussed here will be of interest, both from an astrophysical viewpoint in terms of discussing growing black holes and from a purely theoretical viewpoint in discussing black hole evaporation via Hawking radiation.

  10. Controls and occurance of interflow over a restrictive argillic horizon in a low gradient hillslope.

    SciTech Connect

    Greco, James, L. III

    2008-02-01

    Interflow (throughflow or lateral flow), is shallow lateral subsurface flow that moves over a horizon that restricts percolation. Interflow is important for a number of reasons. First, rapid saturated interflow through macropores can travel to streams and alluvial aquifers with high celerity. Also, experimental studies have shown that interflow can be an important source of baseflow and stormflow. Because interflow travels through a biologically active region of soil with roots and relatively high OM content, the final outcome is the potential contamination of surface water bodies from subsurface water. Many of the soils in the southeastern US are characterized by an argillic, or clay horizon, that largely parallels the soil surface at depths ranging from a few centimeters to hundreds of centimeters. The degree to which these argillic horizons alter subsurface movement of infiltrated water is not well known. This research investigates how often and under what conditions a relatively deep (20-150+cm) argillic horizon on low slope (2-12%) hillsides causes interflow to occur.

  11. A study on the use of passive microwave radiometry for the detection of buried objects and their associated hydrological changes

    NASA Astrophysics Data System (ADS)

    van de Ven, Robbert; de Jeu, Richard; Haarbrink, Roland

    2014-10-01

    The detection of buried objects with remote sensing techniques mainly relies on thermal infrared, ground penetrating radar, and metal detectors. However, nowadays people also start to use low frequency passive microwave radiometry for the same purpose. The detection performance of passive microwave radiometry is influenced by the depth and size of the object, environmental factors, and soil properties. Soil moisture is a key variable here, due to its strong influence on the observed dielectric constant. Through digging activities will the hydrological conditions of the soil change significantly that can be detected by remotely sensing systems. A study was designed to examine the influence of the hydrological changes caused by the direct placement of an object in the ground. Simulations in a soil moisture model and field observations revealed the development of a wetter part above and a drier part underneath an object. The observations were converted to brightness temperatures with a coherent model in combination with a dielectric mixing model. Development of a drier area underneath an object generally increases the brightness temperature after a precipitation event. As a results are brightness temperature anomalies of low dielectric constant objects raised during the first 36 hours after a rain event. Ground observations of soil moisture and porosity revealed an increase in porosity and loss in soil moisture for the part that was excavated. Knowledge of past weather conditions could therefore improve buried object detection by passive microwave sensors.

  12. Friedmann equations and thermodynamics of apparent horizons.

    PubMed

    Gong, Yungui; Wang, Anzhong

    2007-11-23

    With the help of a masslike function which has a dimension of energy and is equal to the Misner-Sharp mass at the apparent horizon, we show that the first law of thermodynamics of the apparent horizon dE=T(A)dS(A) can be derived from the Friedmann equation in various theories of gravity, including the Einstein, Lovelock, nonlinear, and scalar-tensor theories. This result strongly suggests that the relationship between the first law of thermodynamics of the apparent horizon and the Friedmann equation is not just a simple coincidence, but rather a more profound physical connection.

  13. Biogeochemical controls on microbial CO2 and CH4 production in interstitial area polygon soils from the Barrow Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Roy Chowdhury, T.; Herndon, E.; Chourey, K.; Ladd, M.; Tas, N.; Jansson, J.; Elias, D. A.; Hettich, R. L.; Phelps, T. J.; Gu, B.; Liang, L.; Wullschleger, S. D.

    2013-12-01

    Organic matter buried in Arctic soils and permafrost will become accessible to increased microbial degradation as the ground warms due to climate change. The rates of organic matter degradation and the proportion of CH4 and CO2 greenhouse gasses released in a potential warming feedback cycle depend on the microbial response to warming, organic carbon structure and availability, the pore-water pH, and available electron acceptors. To adapt and improve the representation of these Arctic subsurface processes in land models for the NGEE Arctic project, we examined soil organic matter transformations from elevated and subsided areas of low- and high-centered polygons from interstitial tundra on the Barrow Environmental Observatory (Barrow, AK). Significant amounts of iron(II) in organic and mineral soils of the active layer and groundwater indicate anoxic conditions in most soil horizons. Unamended, anoxic incubations of soils at -2, +4 or +8 °C produced both CH4 and CO2, with different response curves. CO2 formed rapidly while CH4 production lagged. Rates of formation for both CH4 and CO2 were substantially higher in microcosms containing active layer O horizon (38-43% total carbon) compared to B horizon (17-18% carbon) samples. The ratio of CO2 to CH4 produced decreased with increasing temperature. A constant Q10 relationship is not adequate to explain temperature effects from -2 to +8 °C. Measurements of ionic species dissolved in soil porewater from frozen cores, humic-rich surface water, or groundwater indicated low levels of nitrate and sulfate, constraining the role of these alternative electron acceptors in anaerobic respiration. The surface water pH (4.4) was significantly lower than groundwater (5.8 to 6.3). Organic acid degradation and Fe(III) reduction increased the pH in soil water during some incubations. Substantial differences in other ionic species confirm that surface and groundwater do not mix rapidly in the field. Biomass extracted from frozen

  14. Compact Buried Ducts in a Hot-Humid Climate House

    SciTech Connect

    Mallay, Dave

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  15. NEW HORIZONS IN SENSOR DEVELOPMENT

    PubMed Central

    Intille, Stephen S.; Lester, Jonathan; Sallis, James F.; Duncan, Glen

    2011-01-01

    Background Accelerometery and other sensing technologies are important tools for physical activity measurement. Engineering advances have allowed developers to transform clunky, uncomfortable, and conspicuous monitors into relatively small, ergonomic, and convenient research tools. New devices can be used to collect data on overall physical activity and in some cases posture, physiological state, and location, for many days or weeks from subjects during their everyday lives. In this review article, we identify emerging trends in several types of monitoring technologies and gaps in the current state of knowledge. Best practices The only certainty about the future of activity sensing technologies is that researchers must anticipate and plan for change. We propose a set of best practices that may accelerate adoption of new devices and increase the likelihood that data being collected and used today will be compatible with new datasets and methods likely to appear on the horizon. Future directions We describe several technology-driven trends, ranging from continued miniaturization of devices that provide gross summary information about activity levels and energy expenditure, to new devices that provide highly detailed information about the specific type, amount, and location of physical activity. Some devices will take advantage of consumer technologies, such as mobile phones, to detect and respond to physical activity in real time, creating new opportunities in measurement, remote compliance monitoring, data-driven discovery, and intervention. PMID:22157771

  16. Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection

    SciTech Connect

    PHELAN, JAMES M.

    2002-05-01

    Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include: landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.

  17. Buried nanoantenna arrays: versatile antireflection coating.

    PubMed

    Kabiri, Ali; Girgis, Emad; Capasso, Federico

    2013-01-01

    Reflection is usually a detrimental phenomenon in many applications such as flat-panel-displays, solar cells, photodetectors, infrared sensors, and lenses. Thus far, to control and suppress the reflection from a substrate, numerous techniques including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles have been investigated. A new technique is demonstrated to manage and suppress reflection from lossless and lossy substrates. It provides a wider flexibility in design versus previous methods. Reflection from a surface can be suppressed over a narrowband, wideband, or multiband frequency range. The antireflection can be dependent or independent of the incident wave polarization. Moreover, antireflection at a very wide incidence angle can be attained. The reflection from a substrate is controlled by a buried nanoantenna array, a structure composed of (1) a subwavelength metallic array and (2) a dielectric cover layer referred to as a superstrate. The material properties and thickness of the superstrate and nanoantennas' geometry and periodicity control the phase and intensity of the wave circulating inside the superstrate cavity. A minimum reflectance of 0.02% is achieved in various experiments in the mid-infrared from a silicon substrate. The design can be integrated in straightforward way in optical devices. The proposed structure is a versatile AR coating to optically impedance matches any substrate to free space in selected any narrow and broadband spectral response across the entire visible and infrared spectrum.

  18. Buried waste containment system materials. Final Report

    SciTech Connect

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  19. Buried plastic scintillator muon telescope (BATATA)

    NASA Astrophysics Data System (ADS)

    Alfaro, R.; de Donato, C.; D'Olivo, J. C.; Guzmán, A.; Medina-Tanco, G.; Moreno Barbosa, E.; Paic, G.; Patiño Salazar, E.; Salazar Ibarguen, H.; Sánchez, F. A.; Supanitsky, A. D.; Valdés-Galicia, J. F.; Vargas Treviño, A. D.; Vergara Limón, S.; Villaseñor, L. M.; Auger Collaboration

    2010-05-01

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm2. Each layer is 4m2 and is composed by 49 rectangular strips of 4cm×2m, oriented at a 90∘ angle with respect to its companion layer, which gives an xy-coincidence pixel of 4×4cm2. The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2μs data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  20. The problem of burying radioactive wastes containing transplutonium elements (TPE)

    SciTech Connect

    Bryzgalova, R.V.; Krivokhatskii, A.S.; Rogozin, Y.M.; Sinitsyna, G.S.

    1986-09-01

    This paper discusses the problem of burying radioactive wastes containing TPE. The most acceptable and developed method at present is that of disposal into continental, deep-lying, geological formatins. Based on an analysis of estimates of the thermal conditions on burying highly active wastes, including TPE concentrates, data on the filtration and sorption characteristics of rocks, estimates of the diffusion of radionuclide species capable of migrating, and taking into account the retention powers of rocks it is concluded that it is possible to bury such wastes in weakly permeable geological formations possessing shielding characteristics which ensure reliability and safety in burial.

  1. Computer vision and sensor fusion for detecting buried objects

    SciTech Connect

    Clark, G.A.; Hernandez, J.E.; Sengupta, S.K.; Sherwood, R.J.; Schaich, P.C.; Buhl, M.R.; Kane, R.J.; DelGrande, N.K.

    1992-10-01

    Given multiple images of the surface of the earth from dual-band infrared sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. Supervised learning pattern classifiers (including neural networks,) are used. We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing information from multiple sensor types. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved problem of detecting buried land mines from an airborne standoff platform.

  2. Proton surface charge determination in Spodosol horizons with organically bound aluminum

    NASA Astrophysics Data System (ADS)

    Skyllberg, Ulf; Borggaard, Ole K.

    1998-05-01

    Net proton surface charge densities were determined in O, E, Bh, and Bs horizons of a sandy till, Spodosol from Denmark, by means of acid-base titration combined with ion adsorption in 0.005 M Ca(NO 3) 2 and independent permanent charge determination. The release of organic anions exceeded the adsorption of NO 3-, resulting in a desorption of anions in all horizons. Data were found to obey the law of balance between surface charges and adsorbed ions only when charges pertaining to Al and organic anions released during the titration experiments were accounted for, in addition to charges pertaining the potential determining ions (PDI) H + and OH - and the index ions Ca 2+ and NO 3-. It was furthermore shown that the point of zero net proton charge (PZNPC) in soils highly depends on the concentration of organically bound Al. Approaches previously used in soils, in which adsorbed Al n+ has been ignored (i.e., considered equivalent to nH + as a PDI), resulted in a PZNPC of 4.1 in the Bs horizon. If instead organically bound Al was accounted for as a counter-ion similar to 3/2Ca 2+, a PZNPC of 2.9 was obtained for the same Bs horizon. Based on PZNPC values estimated by the latter approach, combined with a weak-acid analog, it was shown that organic proton surface charges buffered pH with a similar intensity in the O, E, Bh, and Bs horizons of this study. Because the acidity of Al adsorbed to conjugate bases of soil organic acids is substantially weaker than the acidity of the corresponding protonated form of the organic acids, the point of zero net proton charge (PZNPC) will increase if the concentration of organically adsorbed Al increases at the expense of adsorbed H. This means that PZNPC values determined for soils with unknown concentrations of organically adsorbed Al are highly operational and not very meaningful as references.

  3. Nonlinear optics of fibre event horizons.

    PubMed

    Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G

    2014-09-17

    The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.

  4. Horizon Entropy from Quantum Gravity Condensates.

    PubMed

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2016-05-27

    We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.

  5. Surfactant effects on soil aggregate tensile strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils co...

  6. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    SciTech Connect

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.; Bates, S.O. ); Thompson, L.E.; McGrail, B.P. )

    1991-08-01

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.

  7. Carbon limitation patterns in buried and open urban streams

    EPA Science Inventory

    Urban streams alternate between darkened buried segments dominated by heterotrophic processes and lighted open segments dominated by autotrophic processes. We hypothesized that labile carbon leaking from autotrophic cells would reduce heterotrophic carbon limitation in open chan...

  8. Seismic analysis and design of buried pipelines for fault movement

    SciTech Connect

    Wang, L.R.L.; Yeh, Y.H.

    1984-06-01

    Lifelines, such as gas and oil transmission lines and water and sewer pipelines have been damaged heavily in recent earthquakes. The damages of these lifelines have caused major, catastrophic disruption of essential service to human needs. Large abrupt differential ground movements resulted at an active fault present one of the most severe earthquake effects on a buried pipeline system. Although simplified analysis procedures for buried pipelines across strike-slip fault zones causing tensive failure of the pipeline (called tensile strike-slip fault) have been proposed, the results are not accurate enough because of several assumptions involved. Furthermore, several other important failure mechanisms and parameters have not been investigated. This paper is to present the analysis procedures and results for buried pipeline subjected to tensile strike-slip fault after modifying some of the assumptions used previously. Based on the analysis results, this paper also discusses the design criteria for buried pipelines subjected to various fault movements.

  9. Probabilistic Modeling of Landfill Subsidence Introduced by Buried Structure Collapse - 13229

    SciTech Connect

    Foye, Kevin; Soong, Te-Yang

    2013-07-01

    The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass and buried structure placement. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the waste mass and sub-grade properties, especially discontinuous inclusions, which control differential settlement. An alternative is to use a probabilistic model to capture the non-uniform collapse of cover soils and buried structures and the subsequent effect of that collapse on the final cover system. Both techniques are applied to the problem of two side-by-side waste trenches with collapsible voids. The results show how this analytical technique can be used to connect a metric of final cover performance (inundation area) to the susceptibility of the sub-grade to collapse and the effective thickness of the cover soils. This approach allows designers to specify cover thickness, reinforcement, and slope to meet the demands imposed by the settlement of the underlying waste trenches. (authors)

  10. Profile analysis of microbiomes in soils of solonetz complex in the Caspian Lowland

    NASA Astrophysics Data System (ADS)

    Chernov, T. I.; Lebedeva, M. P.; Tkhakakhova, A. K.; Kutovaya, O. V.

    2017-01-01

    The taxonomic structure of the microbiota in two associated soils—solonetz on a microhigh and meadow-chestnut soil in a microlow—was studied in the semidesert of the Caspian Lowland. A highthroughput sequencing of the 16S rRNA gene was used for the soil samples from genetic horizons. A considerable reduction in the bacterial diversity was found in the lower horizons of the solonetz and compact solonetzic horizon with a high content of exchangeable sodium. In the meadow-chestnut soil, the microbial diversity little decreased with the depth. In both soils, a portion of archaea from the Thaumarchaeota group also decreased in the deeper horizons. In the soil horizons with the lower total bacterial diversity, a share of proteobacteria of the Enterobacteriaceae, Pseudomonadaceae, and Sphingomonadaceae families became higher. The difference between the structure of the microbial population in the solonetz and meadow- chestnut soil can be first explained by the different water regimes and soil consistence.

  11. Data fusion for the detection of buried land mines

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Schaich, P.C.; Sherwood, R.J.; Buhl, M.R.; Hernandez, J.E.; Kane, R.J.; Barth, M.J.; Fields, D.J.; Carter, M.R.

    1993-10-01

    The authors conducted experiments to demonstrate the enhanced delectability of buried land mines using sensor fusion techniques. Multiple sensors, including imagery, infrared imagery, and ground penetrating radar, have been used to acquire data on a number of buried mines and mine surrogates. The authors present this data along with a discussion of the application of sensor fusion techniques for this particular detection problem. The authors describe the data fusion architecture and discuss some relevant results of these classification methods.

  12. Compact Buried Ducts in a Hot-Humid Climate House

    SciTech Connect

    Mallay, D.

    2016-01-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval.

  13. Centrifugal and Analytical Modeling of a Buried Flexible Culvert.

    DTIC Science & Technology

    1985-10-31

    INTRODUCTION 1.1 Introduction The complex problem of the reaction of a buried culvert to loads applied at the ground surface is studied using physical ...buckling (Allgood et al., 1968, Luscher 1966, Whitman et al., 1962). Since the failure mode of the culvert is controlled by the geometry and the...occur before the buckling failure in this case. Larsen (1977) analyzed the earth pressure around the buried concrete pipe by testing scale physical

  14. Decomposition of forest products buried in landfills

    SciTech Connect

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  15. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported.

  16. Record Blizzard Buries U.S. Northeast

    NASA Technical Reports Server (NTRS)

    2005-01-01

    After two days of blustery weather, the skies cleared over Massachusetts on January 24, 2005. Along with other northeastern U.S. states, Massachusetts was slammed with a powerful blizzard on January 22 and 23 that shut down travel and businesses and extinguished power. The storm brought record snow to many places, but Massachusetts topped the list. The cities of Salem and Plymouth were buried in 38 inches (96.5 cm) of snow, and strong winds created drifts up to seven feet (2 meters) high, according to the National Weather Service. For Boston, the storm was the fifth worst blizzard to hit the city since 1892, dumping 22.5 inches (57 cm) of snow in two days. Of that, 13.4 inches (34 cm) fell on January 23' the most snow to fall on the city in a single day since records began. These totals gave Boston nearly twice its average snowfall for January (the average is 13.5 inches, 34.3 cm), and over half its annual average snow of 41.8 inches (106 cm). This Moderate Resolution Imaging Spectroradiometer (MODIS) image, taken on January 24 by NASA's Terra satellite, shows the effects of the storm on Massachusetts and its southern neighbors, Connecticut (left) and Rhode Island (right). New York's Long Island is in the lower left corner of the image. The entire region is coated with snow, though clouds obscure the ground on the left side of the image. The snow was accompanied by powerful hurricane-force winds that helped create white-out conditions and large snowdrifts. The wind also churned ocean waters around Cape Cod, leaving them milky with sediment. NASA image courtesy the MODIS Rapid Response Team at NASA GSFC.

  17. Airblast environments from buried HE charges

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.

    1993-01-01

    Laboratory experiments were conducted to measure the airblast environment generated by the detonation of buried HE charges. Spherical 0.5-g charges of Nitropenta were used as the HE source. Three ground materials were used: (1) a porous, crushable grout (YTONG, {rho} = 0.4 g/cm{sup 3}); (2) a water-saturated grout ({rho} {approx_equal} 0.7 g/Cm{sup 3}) to investigate the effects of density increase; and (3) a clay-loam material ({rho} {approx_equal} 1.8 g/cm{sup 3}) to simulate some of the previous field tests conducted in clay. Diagnostics consisted of 13 flush-mounted pressure gauges, and single-frame schlieren photography. A special shock isolation system was used to eliminate the acceleration effects on the gauges that were induced by the cratering process. Analysis of the pressure measurements resulted in an experimental definition of the airblast environment as a function of ground range (GR) and depth-of-burst (DOB). Synthesis of these results allowed one to construct airblast DOB curves, similar to the airblast height-of-burst curves that we published previously for Nitropenta charges. Variables analyzed were: peak pressure, arrival time, positive phase duration and impulse. As in field tests, we found that the airblast waveforms changed character with increasing DOB. The crater characteristics (e.a., depth, radius and volume) were also measured. The cube-root-scaled crater volume was in qualitative agreement with data from field tests (e.g., charge weights up to 10{sup 4} lbs.). Since the present scaled results compare well with data from large-scale HE tests, we conclude that the present experimental technique provides a useful tool for parametric investigations of explosion effects in the laboratory.

  18. Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    Ductwork installed in unconditioned attics can significantly increase the overall heating and cooling costs of residential buildings. In fact, estimated duct thermal losses for single-family residential buildings with ductwork installed in unconditioned attics range from 10% to 45%. In a study of three single-story houses in Florida, the Building America research team Consortium for Advanced Residential Buildings (CARB) investigated the strategy of using buried and/or encapsulated ducts (BED) to reduce duct thermal losses in existing homes. The BED strategy consists of burying ducts in loose-fill insulation and/or encapsulating them in closed cell polyurethane spray foam (ccSPF) insulation. There are three possible combinations of BED strategies: (1) buried ducts; (2) encapsulated ducts (with ccSPF); and (3) buried and encapsulated ducts. The best solution for each situation depends on the climate, age of the house, and the configuration of the HVAC system and attic. For new construction projects, the team recommends that ducts be both encapsulated and buried as the minimal planning and costs required for this will yield optimal energy savings. The encapsulated/buried duct strategy, which utilizes ccSPF to address condensation concerns, is an approach that was developed specifically for humid climates.

  19. Field tests and computational simulations of the explosion of buried charges

    NASA Astrophysics Data System (ADS)

    Roger, Eve; Loret, Benjamin; Calvel, Jean Paul

    2015-09-01

    Modelling buried explosion is a matter of concern for vehicle protection. Indeed, in the battlefield, Improvised Explosive Devices (IEDs) are one of the major threats for land vehicles and, more specifically, for their underbelly. Two series of field tests using several masses of explosives have been performed, varying certain geometrical parameters, the nature and the physical properties of the soil. These controlled tests have shown that the impulse transmitted to the vehicle is a function of the saturation of the soil as well as of depth of burial of the explosive. In an effort to simulate the phenomena that take place during the explosions, these tests have been used to feed the data requested in computational simulations in a finite element context. Soil modelling presents its own difficulties, especially because soil is a porous medium and the three phases (solid grains, water and air) must be considered. A non linear viscoplastic cap model has been developed where the degree of saturation is variable. The yield surface includes a failure part, a cap and a tension cutoff. Soil stiffening associated with the air expulsion has been observed to be an important aspect of the model.

  20. Pb-concentrations and Pb-isotope ratios in soils collected along an east-west transect across the United States

    USGS Publications Warehouse

    Reimann, Clemens; Smith, David B.; Woodruff, Laurel G.; Flem, Belinda

    2011-01-01

    Analytical results for Pb-concentrations and isotopic ratios from ca. 150 samples of soil A horizon and ca. 145 samples of soil C horizon collected along a 4000-km east–west transect across the USA are presented. Lead concentrations along the transect show: (1) generally higher values in the soil A-horizon than the C-horizon (median 21 vs. 16.5 mg/kg), (2) an increase in the median value of the soil A-horizon for central to eastern USA (Missouri to Maryland) when compared to the western USA (California to Kansas) (median 26 vs. 20 mg/kg) and (3) a higher A/C ratio for the central to eastern USA (1.35 vs. 1.14). Lead isotopes show a distinct trend across the USA, with the highest 206Pb/207Pb ratios occurring in the centre (Missouri, median A-horizon: 1.245; C-horizon: 1.251) and the lowest at both coasts (e.g., California, median A-horizon: 1.195; C-horizon: 1.216). The soil C-horizon samples show generally higher 206Pb/207Pb ratios than the A-horizon (median C-horizon: 1.224; A-horizon: 1.219). The 206Pb/207Pb-isotope ratios in the soil A horizon show a correlation with the total feldspar content for the same 2500-km portion of the transect from east-central Colorado to the Atlantic coast that shows steadily increasing precipitation. No such correlation exists in the soil C horizon. The data demonstrate the importance of climate and weathering on both Pb-concentration and 206Pb/207Pb-isotope ratios in soil samples and natural shifts thereof in the soil profile during soil-forming processes.

  1. Buried Alive in the Coronal Graveyard

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.; Brown, A.; Harper, G. M.

    2002-12-01

    We have used the highly sensitive ``solar-blind'' Chandra High Resolution Camera (HRC-I) to search for 0.2--10 keV coronal X-ray emission from the key ``noncoronal'' red giants Arcturus (α Boo: K1 III) and Aldebaran (α Tauri: K5 III). Our program follows up previous detections of subcoronal (T ~ 105 K) emission lines, such as C 4 λ 1548, by HST STIS, and its predecessor GHRS. The two deep (19 ks) HRC-I pointings failed to detect either red giant, however, with 3 σ upper limits of 1x 10-4 cnts s-1 and 2x 10-4 cnts s-1 for Arcturus and Aldebaran, respectively. The corresponding 0.2--2.0 keV L X/L bol levels are a factor of a thousand lower than the Sun (itself already an inconspicuous coronal object), establishing new limits of coronal futility among late-type stars. At the same time, STIS far-ultraviolet spectra suggest the presence of a ``cool absorber'' in the red giant atmosphere capable of selectively extinguishing the subcoronal spectrum shortward of ~ 1500 Å. The cool absorber must lie beneath the extensive chromospheric (T ~ 7000 K) envelope, because the chromospheric lines lack absorption signatures from the cool layer. As a result, the hot-line structures must be doubly buried under a large column of neutral hydrogen, undoubtedly smothering any soft X-ray emission that might be present. If small-scale magnetic active regions indeed exist in the lower atmospheres of red giants like Arcturus and Aldebaran, they might in some way be responsible for initiating and sustaining the cool outflows of such stars. The source of the near surface magnetism could be analogous to that of the small-scale ephemeral bipolar regions seen ubiquitously on the Sun throughout the sunspot cycle, and thought to be of direct convective origin. [-3mm] This work was supported by Chandra grant G02-3014X and HST grant GO-09273.01--A to the University of Colorado.

  2. Buried Alive in the Coronal Graveyard

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.; Brown, Alexander; Harper, Graham M.

    2003-11-01

    We have used the High Resolution Camera (HRC-I) of the Chandra X-Ray Observatory to search for coronal (T~106 K) emission from the archetype ``noncoronal'' red giants Arcturus (α Bootis=HD 124897, K1 III) and Aldebaran (α Tauri=HD 29139, K5 III). Our program follows up previous detections of ultraviolet coronal proxies such as C IV λ1548 (T~1×105 K) and O VI λ1031 (T~3×105 K). The deep (~19 ks) HRC-I pointings obtained a tentative 3 σ detection of Arcturus, with fX(0.2-2keV)=1.0+1.8-0.8×10-15 ergs cm-2 s-1 (95% confidence limits [CLs]), but failed to record Aldebaran, with an upper limit of <~1.5×10-15 ergs cm-2 s-1 (also at 95% CL). The corresponding LX/Lbol ratios are a factor of ten thousand less than the Sun, a low-activity coronal dwarf. At the same time, Hubble Space Telescope Imaging Spectrograph far-ultraviolet spectra suggest the presence of a ``cool absorber,'' probably near the base of the red giant chromosphere, imprinting discrete low-excitation absorptions on top of highly ionized features such as Si IV λ1393. The hot emission zones thus are at least partially buried under a large column of chromospheric material, which would severely attenuate any soft X-rays that might be emitted. The submerged hot structures presumably are magnetic because of their high temperatures and broad C IV profiles (FWHM~130 km s-1). Perhaps these structures are analogous to small-scale ephemeral bipolar regions seen ubiquitously on the Sun throughout the sunspot cycle and thought to be of direct convective origin. If small-scale magnetic fields indeed are present in the lower atmospheres of red giants such as Arcturus and Aldebaran, they might play a role in initiating the cool winds of such stars, perhaps through a mechanism similar to solar spicules.

  3. The applicability of the Lamendin method to skeletal remains buried for a 16-year period: a cautionary note.

    PubMed

    De Angelis, Danilo; Mele, Elia; Gibelli, Daniele; Merelli, Vera; Spagnoli, Laura; Cattaneo, Cristina

    2015-01-01

    The Lamendin method is widely reported as one of the most reliable means of age estimation of skeletal remains, but very little is known concerning the influence of burial in soil. This study aimed at verifying the reliability of the Lamendin method on corpses buried for 16 years in a cemetery. The Lamendin and the Prince and Ubelaker methods were applied. In all age groups except the 40- to 49-year-olds, the error was higher in the buried sample. The age-at-death error ranged between 10.7 and 36.8 years for the Lamendin method (vs. the reported 7.3-18.9 years) and 9.5 and 35.7 for the Prince and Ubelaker one (vs. the original 5.2-32.6 years); in all age groups, the error is closer to that found on archeological populations. These results suggest caution in applying the Lamendin method to forensic cases of human remains buried even for a brief period under soil.

  4. A comparison of soil moisture characteristics predicted by the Arya-Paris model with laboratory-measured data

    NASA Technical Reports Server (NTRS)

    Arya, L. M.; Richter, J. C.; Davidson, S. A. (Principal Investigator)

    1982-01-01

    Soil moisture characteristics predicted by the Arya-Paris model were compared with the laboratory measured data for 181 New Jersey soil horizons. For a number of soil horizons, the predicted and the measured moisture characteristic curves are almost coincident; for a large number of other horizons, despite some disparity, their shapes are strikingly similar. Uncertainties in the model input and laboratory measurement of the moisture characteristic are indicated, and recommendations for additional experimentation and testing are made.

  5. Buried object remote detection technology for law enforcement

    NASA Astrophysics Data System (ADS)

    del Grande, Nancy K.; Clark, Gregory A.; Durbin, Philip F.; Fields, David J.; Hernandez, Jose E.; Sherwood, Robert J.

    1991-08-01

    A precise airborne temperature-sensing technology to detect buried objects for use by law enforcement is developed. Demonstrations have imaged the sites of buried foundations, walls and trenches; mapped underground waterways and aquifers; and been used to locate underground military objects. The methodology is incorporated in a commercially available, high signal-to-noise, dual-band infrared scanner with real-time, 12-bit digital image processing software and display. The method creates color-coded images based on surface temperature variations of 0.2 degree(s)C. Unlike other less-sensitive methods, it maps true (corrected) temperatures by removing the (decoupled) surface emissivity mask equivalent to 1 degree(s)C or 2 degree(s)C; this mask hinders interpretation of apparent (blackbody) temperatures. Once removed, it is possible to identify surface temperature patterns from small diffusivity changes at buried object sites which heat and cool differently from their surroundings. Objects made of different materials and buried at different depths are identified by their unique spectral, spatial, thermal, temporal, emissivity and diffusivity signatures. The authors have successfully located the sites of buried (inert) simulated land mines 0.1 to 0.2 m deep; sod-covered rock pathways alongside dry ditches, deeper than 0.2 m; pavement covered burial trenches and cemetery structures as deep as 0.8 m; and aquifers more than 6 m and less than 60 m deep. The technology could be adapted for drug interdiction and pollution control. For the former, buried tunnels, underground structures built beneath typical surface structures, roof-tops disguised by jungle canopies, and covered containers used for contraband would be located. For the latter, buried waste containers, sludge migration pathways from faulty containers, and the juxtaposition of groundwater channels, if present, nearby, would be depicted. The precise airborne temperature-sensing technology has a promising potential

  6. The need for environmental horizon scanning.

    PubMed

    Sutherland, William J; Woodroof, Harry J

    2009-10-01

    Policymakers and practitioners in most fields, including conservation and the environment, often make decisions based on insufficient evidence. One reason for this is that issues appear unexpectedly, when with hindsight, many of them were foreseeable. A solution to the problem of being insufficiently prepared is routine horizon scanning, which we describe as the systematic search for potential threats and opportunities that are currently poorly recognized. Researchers can then decide which issues might be most worthwhile to study. Practitioners can also use horizon scanning to ensure timely policy development and research procurement. Here, we suggest that horizon scanning is an underused tool that should become a standard element of environmental and conservation practice. We make recommendations for its incorporation into research, policy and practice. We argue that, as an ecological and conservation community, we are failing to provide timely advice owing to a weakness in identifying forthcoming issues. We outline possible horizon-scanning methods, and also make recommendations as to how horizon scanning could have a more central role in environmental and conservation practice.

  7. Star-Paths, Stones and Horizon Astronomy

    NASA Astrophysics Data System (ADS)

    Brady, Bernadette

    2015-05-01

    Archaeoastronomers tend to approach ancient monuments focusing on the landscape and the horizon calendar events of sun and moon and, due to problems with precession, generally ignore the movement of the stars. However, locating the position of solar calendar points on the horizon can have other uses apart from calendar and/or cosmological purposes. This paper firstly suggests that the stars do not need to be ignored. By considering the evidence of the Phaenomena, a sky poem by Aratus of Soli, a third century BC Greek poet, and his use of second millennium BC star lore fragments, this paper argues that the stars were a part of the knowledge of horizon astronomy. Aratus' poem implied that the horizon astronomy of the late Neolithic and Bronze Age periods included knowledge of star-paths or 'linear constellations' that were defined by particular horizon calendar events and other azimuths. Knowledge of such star-paths would have enabled navigation and orientation, and by using permanent markers, constructed or natural, to define these paths, they were immune to precession as the stones could redefine a star-path for a future generation. Finally the paper presents other possible intentions behind the diverse orientation of passage tombs and some megalithic sites.

  8. Taking into account the heterogeneity and the temporal variability of the soil structure to implement relevant soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Cousin, Isabelle; Tetegan, Marion; Chabbi, Abad; Korboulewski, Nathalie

    2013-04-01

    Due to its position at the interface between the atmosphere and the vadose zone, the soil significantly contributes to the partitioning of rainfall into infiltration and overland flow, and, as a consequence, to the water feeding to plants and to the water aquifer level. The characteristics of the soil are usually described at the scale of the horizon, the latter being considered as the elementary component of the pedological maps and soil databases. As far as hydraulic properties are concerned - the water retention curve and the unsaturated hydraulic conductivity, the two essential soil characteristics for the description of soil water transfers -, their estimation at the horizon scale is then of major interest. Nevertheless, even at this scale, the horizon can usually not be considered neither as a homogeneous volume, nor as a time-stable system. As a consequence, methodologies have to be developed to characterize i) the degree of heterogeneity of the soil structure, ii) the evolution of the structure with time, and iii) if possible, the equivalent properties of such heterogeneous horizons. The surface horizons and the stony horizons can be considered as representative models of soil horizons to test these methodologies: the first ones because their fine structure evolves rapidly, under the effect of human agricultural activities - compaction by wheeling, fragmentation by tillage - of climate, or of faunal and vegetal actions; the second ones because the strong difference in material and in bulk density between fine earth and rock fragments lead to complex hydric behaviors. Based on several examples, the objectives of this presentation will then be i) to describe the temporal evolution of soil hydraulic properties in cultivated horizons, ii) to present methodologies for the estimation of equivalent soil hydraulic properties in stony horizons, and iii) to discuss the contribution of this new methodologies compared to old ones to better estimate the soil hydric

  9. Using the accumulation of CBD-extractable iron and clay content to estimate soil age on stable surfaces and nearby slopes, Front Range, Colorado

    NASA Astrophysics Data System (ADS)

    Dethier, David P.; Birkeland, Peter W.; McCarthy, James A.

    2012-11-01

    In many transport-limited environments, morphology, pedogenic iron and clay content provide a basis for estimating the exposure age of soils and associated landforms. We measured citrate-buffered dithionite (CBD)-extractable Fe (Fed) and clay concentration in fresh rock, saprolite, morainal and colluvial materials, and soil horizons from stable surfaces and hillslopes in the Colorado Front Range. Fresh igneous and high-grade metamorphic rocks contain < 1% Fed and 1 to 5% clay. As bedrock and surficial deposits age, Fed and clay accumulate from weathering and dustfall. Late Holocene regolith at warm, dry sites contains small amounts of Fed and clay, but relatively moist soils developed on early Holocene cirque deposits contain as much as 1.5% Fed and 8% clay. Concentrations and total profile accumulation of Fed and clay increase with age in soils developed on stable surfaces of glacial deposits as old as ~ 130 kyr. On stable sites, Fed and clay accumulation from weathering and dust is ~ 0.02 g cm- 2 kyr- 1 and ~ 0.2 g cm- 2 kyr- 1, respectively. We used the Fed and clay inventory in soil profiles at dated, stable Front Range surfaces to calculate accumulation functions, which allowed us to estimate soil age at hillslope sites. Heterogeneous parent material, particularly on hillslopes, and climate-related effects add to variability in measured relations. Mobile regolith in Gordon Gulch, one of the Boulder Creek Critical Zone Observatory (CZO) catchments, yields profile ages from about 0.5 to 5 × 104 yr, comparable to values measured using other techniques. Calculated profile ages are older on a north- vs. south-facing slope and increase from the drainage divide to the footslope. Ages calculated for stabilized colluvium and well-developed buried profiles at nearby hillslope sites (Lefthand, Ward and Rollinsville) suggest that these soils have stabilized over periods > 105 yr. In the absence of radiometric ages, the accumulation of Fed and clay in soils on stable

  10. Electrogeochemical sampling with NEOCHIM - results of tests over buried gold deposits

    USGS Publications Warehouse

    Leinz, R.W.; Hoover, D.B.; Fey, D.L.; Smith, D.B.; Patterson, T.

    1998-01-01

    Electrogeochemical extraction methods are based on the migration of ions in an electric field. Ions present in soil moisture are transported by an applied current into fluids contained in special electrodes placed on the soil. The fluids are then collected and analyzed. Extractions are governed by Faraday's and Ohm's laws and are modeled by the operation of a simple Hittord transference apparatus. Calculations show that the volume of soil sampled in an ideal electrogeochemical extraction can be orders of magnitude greater than the volumes used in more popular geochemical extraction methods, although this has not been verified experimentally. CHIM is a method of in-situ electrogeochemical extraction that was developed in the former Soviet Union and has been tested and applied internationally to exploration for buried mineral deposits. Tests carried out at the US Geological Survey (USGS) indicated that there were problems inherent in the use of CHIM technology. The cause of the problems was determined to be the diffusion of acid from the conventional electrode into the soil. The NEOCHIM electrode incorporates two compartments and a salt bridge in a design that inhibits diffusion of acid and enables the collection of anions or cations. Tests over a gold-enriched vein in Colorado and over buried, Carlin-type, disseminated gold deposits in northern Nevada show that there are similarities and differences between NEOCHIM results and those by partial extractions of soils which include simple extractions with water, dilute acids and solutions of salts used as collector fluids in the electrodes. Results of both differ from the results obtained by total chemical digestion. The results indicate that NEOCHIM responds to mineralized faults associated with disseminated gold deposits whereas partial and total chemical extraction methods do not. This suggests that faults are favored channels for the upward migration of metals and that NEOCHIM may be more effective in exploration

  11. Horizon thermodynamics in fourth-order gravity

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Sen

    2017-03-01

    In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE = TdS - PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called ;Legendre transformation; at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.

  12. Annual dormancy cycles in buried seeds of shrub species: germination ecology of Sideritis serrata (Labiatae).

    PubMed

    Copete, M A; Herranz, J M; Ferrandis, P; Copete, E

    2015-07-01

    The germination ecology of Sideritis serrata was investigated in order to improve ex-situ propagation techniques and management of their habitat. Specifically, we analysed: (i) influence of temperature, light conditions and seed age on germination patterns; (ii) phenology of germination; (iii) germinative response of buried seeds to seasonal temperature changes; (iv) temperature requirements for induction and breaking of secondary dormancy; (v) ability to form persistent soil seed banks; and (vi) seed bank dynamics. Freshly matured seeds showed conditional physiological dormancy, germinating at low and cool temperatures but not at high ones (28/14 and 32/18 °C). Germination ability increased with time of dry storage, suggesting the existence of non-deep physiological dormancy. Under unheated shade-house conditions, germination was concentrated in the first autumn. S. serrata seeds buried and exposed to natural seasonal temperature variations in the shade-house, exhibited an annual conditional dormancy/non-dormancy cycle, coming out of conditional dormancy in summer and re-entering it in winter. Non-dormant seeds were clearly induced into dormancy when stratified at 5 or 15/4 °C for 8 weeks. Dormant seeds, stratified at 28/14 or 32/18 °C for 16 weeks, became non-dormant if they were subsequently incubated over a temperature range from 15/4 to 32/18 °C. S. serrata is able to form small persistent soil seed banks. The maximum seed life span in the soil was 4 years, decreasing with burial depth. This is the second report of an annual conditional dormancy/non-dormancy cycle in seeds of shrub species.

  13. Local flexibility facilitates oxidization of buried methionine residues.

    PubMed

    Xu, Kuiran; Uversky, Vladimir N; Xue, Bin

    2012-06-01

    In proteins, all amino acid residues are susceptible to oxidation by various reactive oxygen species (ROS), with methionine and cysteine residues being particularly sensitive to oxidation. Methionine oxidation is known to lead to destabilization and inactivation of proteins, and oxidatively modified proteins can accumulate during aging, oxidative stress, and in various age-related diseases. Although the efficiency of a given methionine oxidation can depend on its solvent accessibility (evaluated from a protein structure as the accessible surface area of the corresponding methionine residue), many experimental results on oxidation rate and oxidation sites cannot be unequivocally explained by the methionine solvent accessible surface area alone. In order to explore other possible mechanisms, we analyzed a set of seventy-one oxidized methionines contained in thirty-one proteins by various bioinformatics tools. In which, 41% of the methionines are exposed, 15% are buried but with various degree of flexibility, and the rest 44% are buried and structured. Buried but highly flexible methionines can be oxidized. Buried and less flexible methionines can acquire additional local structural flexibility from flanking regions to facilitate the oxidation. Oxidation of buried and structured methionine can also be promoted by the oxidation of neighboring methionine that is more exposed and/or flexible. Our data are consistent with the hypothesis that protein structural flexibility represents another important factor favoring the oxidation process.

  14. Experimental investigation of buried tritium in plant and animal tissues

    SciTech Connect

    Kim, S. B.; Workman, W. J. G.; Davis, P. A.

    2008-07-15

    Buried exchangeable tritium appears as part of organically bound tritium (OBT) in the traditional experimental determination of OBT. Since buried tritium quickly exchanges with hydrogen atoms in the body following ingestion, assuming that it is part of OBT rather than part of tritiated water (HTO) could result in a significant overestimate of the ingestion dose. This paper documents an experimental investigation into the existence, amount and significance of buried tritium in plant and fish samples. OBT concentrations in the samples were determined in the traditional way and also following denaturing with five chemical solutions that break down large molecules and expose buried tritium to exchange with free hydrogen atoms. A comparison of the OBT concentrations before and after denaturing, together with the concentration of HTO in the supernatant obtained after denaturing, suggests that buried OBT may exist but makes up less than 5% of the OBT concentration in plants and at most 20% of the OBT concentration in fish. The effects of rinse time and rinse water volumes were investigated to optimize the removal of exchangeable OBT from the samples. (authors)

  15. Mass Transport within Soils

    SciTech Connect

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone

  16. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  17. Global and local horizon quantum mechanics

    NASA Astrophysics Data System (ADS)

    Casadio, Roberto; Giugno, Andrea; Giusti, Andrea

    2017-02-01

    Horizons are classical causal structures that arise in systems with sharply defined energy and corresponding gravitational radius. A global gravitational radius operator can be introduced for a static and spherically symmetric quantum mechanical matter state by lifting the classical "Hamiltonian" constraint that relates the gravitational radius to the ADM mass, thus giving rise to a "horizon wave-function". This minisuperspace-like formalism is shown here to be able to consistently describe also the local gravitational radius related to the Misner-Sharp mass function of the quantum source, provided its energy spectrum is determined by spatially localised modes.

  18. Horizon detection and higher dimensional black rings

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; McNutt, D. D.

    2017-02-01

    In this paper we study the stationary horizons of the rotating black ring and the supersymmetric black ring spacetimes in five dimensions. In the case of the rotating black ring we use Weyl aligned null directions to algebraically classify the Weyl tensor, and utilize an adapted Cartan algorithm in order to produce Cartan invariants. For the supersymmetric black ring we employ the discriminant approach and repeat the adapted Cartan algorithm. For both of these metrics we are able to construct Cartan invariants that detect the horizon alone, and which are easier to compute and analyse than scalar polynomial curvature invariants.

  19. Expanding your horizons in science and mathematics

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Through the presentation of its Expanding Your Horizons in Science and Mathematics career education conferences for secondary school young women, the Math/Science Network continues its efforts to remove the educational, psychological, and cultural barriers which prevent women from entering math-and science-based careers. The Expanding Your Horizons conferences were presented on 77 college, university and high school campuses across the United States. This year, these unique one day conferences reached 15,500 students, 3,000 parents and educators, and involved 3,000 career women who volunteered their services as conference planners, workshop leaders, speakers, and role models.

  20. Classification of Near-Horizon Geometries of Extremal Black Holes.

    PubMed

    Kunduri, Hari K; Lucietti, James

    2013-01-01

    Any spacetime containing a degenerate Killing horizon, such as an extremal black hole, possesses a well-defined notion of a near-horizon geometry. We review such near-horizon geometry solutions in a variety of dimensions and theories in a unified manner. We discuss various general results including horizon topology and near-horizon symmetry enhancement. We also discuss the status of the classification of near-horizon geometries in theories ranging from vacuum gravity to Einstein-Maxwell theory and supergravity theories. Finally, we discuss applications to the classification of extremal black holes and various related topics. Several new results are presented and open problems are highlighted throughout.

  1. Soil bioturbation. A commentary

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Wilkinson, Marshall

    2010-05-01

    Organisms such as trees, ants, earthworms, termites are important components of the earth systems that have dominantly been thought of as abiotic. Despite an early focus on soil bioturbation by heavy-weights such as Charles Darwin and Nathanial Shaler in the late 19th century, sporadic attention to this theme has subsequently followed. Recent compilations demonstrate that soil bioturbation by fauna and flora is widespread across Earths terrestrial surface, and operates at geologically rapid rates that warrant further attention. Such biotic activity contributes to soil creep, soil carbon dynamics, and is critical in engineering the medium through which ecosystems draw their abiotic requirements. Soil and its biota are fundamental components of the Earth System. However, soil scientist focussed on the dominant paradigm of landscape evolution, and bioturbation was relegated. In fact, bioturbation is still not widely appreciated within the soil and earth system research community. Nevertheless, within the last decade a review of the impact of bioturbation was launched by authors such as Geoff S. Humphreys. Bioturbation is a complex process as new soil is formed, mounds are developed, soil is buried and a downslope transport of material is done. Bioturbation modify the soil texture and porosity, increase the nutrients and encourage the soil creep flux. A review of the State-of-the-Art of Bioturbation will be presented.

  2. Buried waste integrated demonstration FY 94 deployment plan

    SciTech Connect

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

  3. Autonomous robotic platforms for locating radio sources buried under rubble

    NASA Astrophysics Data System (ADS)

    Tasu, A. S.; Anchidin, L.; Tamas, R.; Paun, M.; Danisor, A.; Petrescu, T.

    2016-12-01

    This paper deals with the use of autonomous robotic platforms able to locate radio signal sources such as mobile phones, buried under collapsed buildings as a result of earthquakes, natural disasters, terrorism, war, etc. This technique relies on averaging position data resulting from a propagation model implemented on the platform and the data acquired by robotic platforms at the disaster site. That allows us to calculate the approximate position of radio sources buried under the rubble. Based on measurements, a radio map of the disaster site is made, very useful for locating victims and for guiding specific rubble lifting machinery, by assuming that there is a victim next to a mobile device detected by the robotic platform; by knowing the approximate position, the lifting machinery does not risk to further hurt the victims. Moreover, by knowing the positions of the victims, the reaction time is decreased, and the chances of survival for the victims buried under the rubble, are obviously increased.

  4. End effectors and attachments for buried waste excavation equipment

    SciTech Connect

    King, R.H.

    1993-09-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER&WM) Department`s needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications.

  5. Tabernaemontana divaricata leaves extract exacerbate burying behavior in mice

    PubMed Central

    Chanchal, Raj; Balasubramaniam, Arumugam; Navin, Raj; Nadeem, Sayyed

    2015-01-01

    Objective: Tabernaemontana divaricata (TD) from Apocynaceae family offers the traditional folklore medicinal benefits such as an anti-epileptic, anti-mania, brain tonic, and anti-oxidant. The aim of the present study was to evaluate the effect of ethanolic extract of TD leaves on burying behavior in mice. Materials and Methods: Mice were treated with oral administration (p.o.) of ethanolic extract of TD (100, 200, and 300 mg/kg). Fluoxetine (FLX, a selective serotonin reuptake inhibitor) was used as a reference drug. Obsessive-compulsive behavior was evaluated using marble-burying apparatus. Results: TD at doses of 100, 200, and 300 mg/kg dose-dependently inhibited the obsessive and compulsive behavior. The similar results were obtained from 5, 10, and 20 mg/kg of FLX. TD and FLX did not affect motor activity. Conclusion: The results indicated that TD and FLX produced similar inhibitory effects on marble-burying behavior. PMID:26445709

  6. The gravity field of topography buried by sediments

    NASA Technical Reports Server (NTRS)

    Sandwell, D. T.; Liu, C. S.

    1985-01-01

    The gravity field over topography in the northern Indian Ocean that was completely buried by sediments of the Bengal Fan was investigated to understand the effect of sedimentation on the continental gravity field. An isopach map made from the seismic reflection and refraction in the Bay of Bengal shows two prominent N-S trending features in the basement topography. The northernmost portion of the Ninetyeast Ridge is totally buried by sediments north of 10 deg N. The other buried ridge trends roughly N-S for 1400 km at 85 deg E to the latitude of Sri Lanka and then curves toward the west. It has basement relief up to 6 km. Two free air gravity anomaly profiles across the region show a strong gravity low over the 85 deg E ridge, while the Ninetyeast Ridge shows a gravity high.

  7. Prediction of buried helices in multispan alpha helical membrane proteins.

    PubMed

    Adamian, Larisa; Liang, Jie

    2006-04-01

    Analysis of a database of structures of membrane proteins shows that membrane proteins composed of 10 or more transmembrane (TM) helices often contain buried helices that are inaccessible to phospholipids. We introduce a method for identifying TM helices that are least phospholipid accessible and for prediction of fully buried TM helices in membrane proteins from sequence information alone. Our method is based on the calculation of residue lipophilicity and evolutionary conservation. Given that the number of buried helices in a membrane protein is known, our method achieves an accuracy of 78% and a Matthew's correlation coefficient of 0.68. A server for this tool (RANTS) is available online at http://gila.bioengr.uic.edu/lab/.

  8. Comparison of groundwater colloids in adjoining soils of Florida flatwoods

    SciTech Connect

    Tan, Z.X.; Harris, W.G.; Ma, L.Q.

    2000-02-01

    Colloids in soil water are a constituent of natural geochemical fluxes and have the potential to facilitate contaminant transport, but few data are available on their composition and concentration. This study addresses how the composition and concentration of groundwater solids relate to hydrological and soil morphological variables of the Florida flatwoods landscape. Groundwater from saturated soil horizons was sampled biweekly for 1 year along an Aquod/Udult boundary using piezometers designed specifically to minimize disturbance and to permit the valid assessment of suspended solids. Readily dispersible clay from core samples of soil horizons was collected and quantified. Groundwater and soil colloids were analyzed physically, chemically, and mineralogically. Aquod groundwater had consistently lower pH, higher electrical conductivity, and more total solids (TS) and organic carbon (OC) than did Udult groundwater. Significant decreases in both TS and OC concentrations in groundwater occurred with depth for both soils. In contrast, the mineralogy of groundwater colloids was insensitive to soil and horizon differences. Quartz dominated inorganic colloid fractions in groundwater samples from all horizons, even in argillic horizons where clay fractions contained little or no quartz. No statistical correlations were found between masses of groundwater colloids and soil water-dispersible clay. However, the proportion of organic carbon was higher in groundwater than in soil matrices. Results are consistent with carbon and colloidal quartz movement in shallow groundwater of the soil studied and document that natural colloid and solute fluxes can be highly soil specific.

  9. Closure report for CAU Number 430: Buried Depleted Uranium Artillery Round Number 1, Tonopah Test Range

    SciTech Connect

    1997-02-01

    Corrective Action Unit (CAU) 430 consists of the Buried Depleted Uranium (DU) Artillery Round No. 1. This Closure Report presents the information obtained from investigate actions performed to justify the decision for clean closure of CAU 430 through ``No Further Action``. The site was thought to consist of a potentially unexploded W-79 Joint Test Assembly (JTA) test artillery projectile with high explosives (HE) and DU. The DU was substituted for Special Nuclear Materials to prevent a nuclear explosion and yet retain the physical characteristics of uranium for ballistic and other mechanical tests. The projectile was reportedly buried in one pit, approximately 5 to 10 feet (ft) deep. The objectives of the activities were to prepare the site for closure through locating and identifying the projectile, destroying the projectile and any remaining components, collecting soil samples to detect residual contamination resulting from projectile destruction, and finally, remediating residual contamination. This report contains the following five sections. Section 1.0 introduces the CAU and scope of work. Section 2.0 of this report presents the closure activities performed as part of this investigation. Waste disposition is discussed in Section 3.0. Closure investigation results are presented in Section 4.0, and references are presented in Section 5.0.

  10. An investigation into the persistence of textile fibres on buried carcasses.

    PubMed

    DeBattista, Roslyn; Tidy, Helen; Thompson, Tim J U; Robertson, Peter

    2014-07-01

    A significant amount of research has been carried out on fibres to aid the forensic scientist in determining the significance of these when found on a victim or suspect. This work has focused on open-air environments, and as such no research has been undertaken to examine the persistence of fibres on bodies in the burial environment. Wool and cotton fibres, known to fluoresce under ultraviolet (UV) light, were transferred onto the skin of four porcine (Sus scrofa) carcasses (two carcasses per fibre type). The number of fibres transferred was recorded from images taken under UV light. The remains were subsequently placed in four burial sites and left interred for 14 days. After this period the carcasses were excavated and lightly brushed down to remove the soil layer that had adhered to the skin. Once again photography under UV light was used to record the number of fibres which persisted on the skin. Results showed that after 14 days, wool and cotton fibres remain on the surface of the buried carcasses. In no circumstance was there a total loss of fibres suggesting that in such scenarios, the likelihood of finding fibres is high but the initial number of fibres transferred would be strongly diminished. This has important implications for both the excavation protocol for buried remains and the subsequent analysis for physical evidence.

  11. Imaging of buried and foliage-obscured objects with an ultrawide-bandwidth polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Sheen, Dan R.; Lewis, Terry B.; Wei, Susan C.; Kletzli, D. W., Jr.

    1993-11-01

    The Environmental Research Institute of Michigan (ERIM) has developed a unique ground- based, portable, synthetic aperture radar (SAR). This SAR images targets in their natural backgrounds without the expense of an airborne sensor and with higher performance (bandwidth, resolution) than existing airborne systems. A horizontal 36-foot long aluminum truss supports a rail and an antenna cartridge, which is moved along the rail to allow synthetic aperture focusing. The system is fully-polarimetric and has collected data over the frequency band of 400 - 1300 MHz resulting in a nominal resolution of 0.17 m in range and 0.5 m in cross-range. The low frequency range of the system allows for penetration of soil (to shallow depths) as well as foliage and the system has been used to collect images of buried and foliage- obscured targets. The ground imagery collected to date includes steel oil drums buried at depths of up to one-meter. Both the drums as well as the disturbances due to digging the holes are visible in the imagery. Foliage imagery includes portions of a Lear jet under a mature hardwood forest. Due to the low frequency and wide bandwidth of the sensor (400 - 1300 MHz), obscured objects are clearly visible in the SAR imagery. Other responses in the foliage imagery are due to the dihedral-like ground-trunk reflections.

  12. Buried Waste Integrated Demonstration commercialization actions plans. Volume 1

    SciTech Connect

    Kaupanger, R.M.; Glore, D.

    1994-04-01

    The Buried Waste Integrated Demonstration (BWID) is sponsored by US Department of Energy (DOE) Office of Technology Development. BWID supports the development and demonstration of a suite of technologies that when integrated with commercially available baseline technologies form a comprehensive system for the effective and efficient remediation of buried waste throughout the DOE complex. BWID evaluates, validates, and demonstrates technologies and transfers this information throughout DOE and private industry to support DOE. remediation planning and implementation activities. This report documents commercialization action plans for five technologies with near-term commercialization/ implementation potential as well as provides a status of commercial and academic partners for each technology.

  13. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  14. Buried wire gage for wall shear stress measurements

    NASA Technical Reports Server (NTRS)

    Murthy, V. S.; Rose, W. C.

    1978-01-01

    A buried wire gage for measuring wall shear stress in fluid flow was studied and further developed. Several methods of making this relatively new type of gage were examined to arrive at a successful technique that is well-suited for wind-tunnel testing. A series of measurements was made to demonstrate the adequacy of a two-point calibration procedure for these gages. The buried wire gage is also demonstrated to be ideally suited for quantitative measurement of wall shear stress in wind-tunnel testing.

  15. The Changing Model of Soil

    NASA Astrophysics Data System (ADS)

    Richter, D. D.; Yaalon, D.

    2012-12-01

    The contemporary genetic model of soil is changing rapidly in response to advances in soil science and to human and environmental forcings in the 21st century (Richter and Yaalon, 2012). Three ongoing changes in the model of soil include that: (1) lower soil boundaries are much deeper than the solum, historically the O to B horizons, (2) most soils are polygenetic paleosols, products of soil-forming processes that have ranged widely over soils' lifetimes, and (3) soils are globally human-natural bodies, no longer natural bodies. Together, these changes in the model of soil mean that human forcings are a global wave of soil polygenesis altering fluxes of matter and energy and transforming soil thermodynamics as potentially very deep systems. Because soils are non-linear systems resulting from high-order interactions of physics, chemistry, and biology, trajectories of how human forcings alter soils over decades are not readily predictable and require long-term soil observations. There is much to learn about how soils are changing internally as central components of management systems and externally in relation to wider environments. To be critical, research has been remarkably superficial in studies of soil, reductionist in approach, and lacking in time-series observations of responses to soil management. While this criticism may sound negative, it creates significant opportunities for contemporary soil scientists.

  16. Quantitative Relationships Between Net Volume Change and Fabric Properties During Soil Evolution

    NASA Technical Reports Server (NTRS)

    Chadwick, O. A.; Nettleton, W. D.

    1993-01-01

    The state of soil evolution can be charted by net long-term volume and elemental mass changes for individual horizons compared with parent material. Volume collapse or dilation depends on relative elemental mass fluxes associated with losses form or additions to soil horizons.

  17. Gateway's Horizon: A Center of Excellence

    ERIC Educational Resources Information Center

    Herring, Jayne; Colony, Lee

    2007-01-01

    This article describes Gateway Technical College's Horizon Center for Transportation Technology, located in Kenosha, Wisconsin, which was the product of collaboration with business and industry, community support and a U.S. Department of Labor (DOL) grant. The center, which opened this fall, is a prime example of a sustainable community…

  18. Senior Adult Bands: Music's New Horizon.

    ERIC Educational Resources Information Center

    Coffman, Don D.; Levy, Katherine M.

    1997-01-01

    Discusses the success of Iowa City's (Iowa) New Horizons Band that consists of 55 senior adult beginners and former instrumentalists. Describes the organization of the band program, the senior's performance skills and commitment, and the ongoing challenges. Gives a selected listing of the music the band plays at concerts and other events. (CMK)

  19. Teachers' Beliefs about Mathematical Horizon Content Knowledge

    ERIC Educational Resources Information Center

    Mosvold, Reidar; Fauskanger, Janne

    2014-01-01

    In this article, we present and discuss an example of how teachers' discussions of mathematical knowledge for teaching (MKT) items elicited their beliefs about the knowledge needed to teach mathematics. One category of MKT is "horizon content knowledge," and this can be described as mathematical knowledge not directly deployed in…

  20. HIGHER HORIZONS, A PROGRAM FOR YOUR CHILD.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY.

    PARENTS ARE TOLD THAT HIGHER HORIZONS WILL HELP DEVELOP THE CAPACITIES OF EVERY CHILD, INCREASE HIS SELF CONFIDENCE, AND HELP HIM COMPLETE HIGH SCHOOL. RESULTS OF TESTS AND INTERVIEWS TO DISCOVER A CHILD'S ABILITIES, INTERESTS, AND NEEDS ARE DISCUSSED IN PARENT-TEACHER CONFERENCES. INSTRUCTION IS AIMED AT DEVELOPING ABILITIES. THE CHILD IS…

  1. Space Launch Initiative: New Capabilities - New Horizons

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel; Smith, Dennis E. (Technical Monitor)

    2002-01-01

    This paper presents NASA's Space Launch Initiative (SLI) with new capabilities and new horizons. The topics include: 1) Integrated Space Transportation Plan; 2) SLI: The Work of a Nation; 3) SLI Goals and Status; 4) Composites and Materials; and 5) SLI and DOD/USAF Collaboration. This paper is in viewgraph form.

  2. New Concepts on the Educational Horizon.

    ERIC Educational Resources Information Center

    Gilchrist, Robert S.; Mitchell, Edna

    Four dimensions in education provide a basis for discussing future horizons: (1) curriculum development, (2) teacher education, (3) administration and organization, and (4) research and development. These areas are interdependent, and one cannot be improved or changed without affecting the other areas. Within these areas, some of the broad changes…

  3. Finite Horizon H Infinity with Parameter Variations

    DTIC Science & Technology

    1992-05-01

    International Journal of Robust and Nonlinear Control, to appear. SUBRAHMANYAM, M. B., 1992d, Worst-case optimal control over a finite horizon, Journal of Mathematical Analysis and Applications , to...in linear systems, Journal of Mathematical Analysis and Applications , 164, 130-150. SUBRAHMANYAM, M. B., 1991, H, 0 optimal control theory over a

  4. Sighting Horizons of Teaching in Higher Education

    ERIC Educational Resources Information Center

    Barnett, Ronald; Guzmán-Valenzuela, Carolina

    2017-01-01

    This conceptual paper tackles the matter of teaching in higher education and proposes a concept of "horizons of teaching." It firstly offers an overview of the considerable empirical literature around teaching--especially conceptions of teaching, approaches to teaching and teaching practices--and goes on to pose some philosophical and…

  5. The NMC Horizon Report: 2013 Museum Edition

    ERIC Educational Resources Information Center

    Johnson, L.; Adams Becker, S.; Freeman, A.

    2013-01-01

    The "NMC Horizon Report: 2013 Museum Edition," is a co-production with the Marcus Institute for Digital Education in the Arts (MIDEA), and examines six emerging technologies for their potential impact on and use in education and interpretation within the museum environment: BYOD (Bring Your Own Device), crowdsourcing, electronic…

  6. Falling through the black hole horizon

    NASA Astrophysics Data System (ADS)

    Brustein, Ram; Medved, A. J. M.

    2015-06-01

    We consider the fate of a small classical object, a "stick", as it falls through the horizon of a large black hole (BH). Classically, the equivalence principle dictates that the stick is affected by small tidal forces, and Hawking's quantum-mechanical model of BH evaporation makes essentially the same prediction. If, on the other hand, the BH horizon is surrounded by a "firewall", the stick will be consumed as it falls through. We have recently extended Hawking's model by taking into account the quantum fluctuations of the geometry and the classical back-reaction of the emitted particles. Here, we calculate the train exerted on the falling stick for our model. The strain depends on the near-horizon state of the Hawking pairs. We find that, after the Page time when the state of the pairs deviates significantly from maximal entanglement (as required by unitarity), the induced strain in our semiclassical model is still parametrically small. This is because the number of the disentangled pairs is parametrically smaller than the BH entropy. A firewall does, however, appear if the number of disentangled pairs near the horizon is of order of the BH entropy, as implicitly assumed in previous discussions in the literature.

  7. Biogeochemical Controls on Microbial CO2 and CH4 Production in Polygonal Soils From the Barrow Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Roy Chowdhury, T.; Herndon, E.; Gu, B.; Liang, L.; Wullschleger, S. D.

    2014-12-01

    Organic matter buried in Arctic soils and permafrost will become accessible to increased microbial degradation as the ground warms due to climate change. The rates of organic matter degradation and the proportion of CH4 and CO2 greenhouse gasses released in a potential warming feedback cycle depend on the microbial response to warming, organic carbon structure and availability, the pore-water quantity and geochemistry, and available electron acceptors. Significant amounts of iron(II) ions in organic and mineral soils of the active layer in low-centered ice wedge polygons indicate anoxic conditions in most soil horizons. To adapt and improve the representation of these Arctic subsurface processes in terrestrial ecosystem models for the NGEE Arctic project, we examined soil organic matter transformations from elevated and subsided areas of low- and high-centered polygons from interstitial tundra on the Barrow Environmental Observatory (Barrow, AK). Using microcosm incubations at fixed temperatures and controlled thawing systems for frozen soil cores, we investigated the microbiological processes and rates of soil organic matter degradation and greenhouse gas production under anoxic conditions, at ecologically relevant temperatures of -2, +4 or +8 °C. In contrast to the low-centered polygon incubations representing in situ water-saturated conditions, microcosms with unsaturated high-centered polygon samples displayed lower carbon mineralization as either CH4 or CO2. Substantial differences in CH4 and CO2 response curves from different microtopographic samples separate the thermodynamic controls on biological activity from the kinetic controls of microbial growth and migration that together determine the temperature response for greenhouse gas emissions in a warming Arctic.

  8. Study Of Functioning of Bacterial Complexes in East Antarctic Soils

    NASA Astrophysics Data System (ADS)

    Yakushev, A. V.; Churilin, N. A.

    2014-11-01

    Studies of bacterial communities in the samples of Antarctic soils by different methods showed that, both in liquid soil suspensions and in situ, microbial complexes are functioning presumably by forming biofilms - the phenomenon that is more expressed in such habitat than in soils of temperate zones. Functional (trophic) diversity and physiological state of hydrolytic bacteria was studied in the samples at the upper layer (0-2 cm) of gravel pavement with algae, in the underlying peat horizon (2-4 cm) with inclusions of dead biomass and its underlying mineral horizon (4-10 cm) with signs of fungal mycelium. The investigated samples of Antarctic soils revealed different trophic diversity and the maximum specific growth rate on mineral medium with different biopolymers as the sole carbon source (starch, chitin, pectin, xylan, dextran-500, tween-20, casein); this can testify to differences in the physiological state of hydrolytic bacteria in various soil horizons and their readiness for growth. The most remarkable characteristics of the studied Antarctic soil as compared to the soils of temperate zone, was the unusual ability of hydrolytic community to consume chitin in the mineral horizon; this can be explained by the presence of fungal mycelium. Also, an almost complete lack in consumption of tween-20 (a water-soluble analogue of fat) by bacterial community of Arctic soil horizons are not explained and needs further verification. The higher functional diversity was detected in the upper horizon of the gravel pavement, which "protects" microorganisms from exposure to extreme temperatures, UV radiation, and desiccation, but the maximum specific growth rate was higher in the lower mineral horizon; this can be explained by the specificity of bacterial colonizing processes and unique formation of Antarctic soil microprofiles in the Larsemann oasis. The obtained data indicate a specific environmental strategy in the samples of Antarctic soils: development in lower mineral

  9. Soft hairs on isolated horizon implanted by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mao, Pujian; Wu, Xiaoning; Zhang, Hongbao

    2017-03-01

    Inspired by the recent proposal of soft hair on black holes in Hawking et al (2016 Phys. Rev. Lett. 116 231301), we have shown that an isolated horizon carries soft hairs implanted by electromagnetic fields. The solution space and the asymptotic symmetries of Einstein–Maxwell theory have been worked out explicitly near the isolated horizon. The conserved current has been computed and an infinite number of near horizon charges have been introduced from the electromagnetic fields associated with the asymptotic U(1) symmetry near the horizon, which indicates the fact that the isolated horizon carries a large amount of soft electric hairs. The soft electric hairs, i.e. asymptotic U(1) charges, are shown to be equivalent to the electric multipole moments of isolated horizons. It is further argued that the isolated horizon supertranslation is from the ambiguity of its foliation and an analogue of memory effect on horizon can be expected.

  10. The Pluto System As Seen By New Horizons Spacecraft

    NASA Video Gallery

    The Pluto system as NASA’s New Horizons spacecraft saw it in July 2015. This animation, made with real images taken by New Horizons, begins with Pluto flying in for its close-up on July 14; we then...

  11. SETAC launches global horizon scanning/research prioritization project

    EPA Science Inventory

    The SETAC World Council is pleased to announce the initiation of a Global Horizon Scanning and Prioritization Project aimed at identifying geographically specific research needs to address stressor impacts on environmental quality. In recent years, horizon scanning and research ...

  12. Seasonal changes of principal anions contents and other soil properties in acidified forest soils

    NASA Astrophysics Data System (ADS)

    Drabek, O.; Tejnecky, V.; Bradová, M.; Němeček, K.; Šebek, O.; Zenáhlíková, J.; Boruvka, L.

    2011-12-01

    Acidification of forest soil is a natural degradation process enhanced by anthropogenic activities. The depositions of principal inorganic anions are the main external acidity inputs to forest ecosystems. The aim of the study was to describe seasonal changes of sulphate and nitrate behaviour in soils and influence of their depositions on the selected forest soil properties. The following soil properties were investigated: soil pH, DOC, selected elements contents and Al species content. The Jizera Mountains area (Czech Republic) was chosen as a representative soil mountainous ecosystem affected by acidification. Soil and precipitation samples were collected at monthly intervals from April to October during the years 2008-2010 under beech and spruce stands. Prevailing soil types were classified as Alumic Cambisols under beech and Entic Podzols under spruce stands (according to FAO classification). Soil samples were collected from surface fermentation (F) and humified (H) organic horizons and subsurface B horizons (cambic or spodic). The collected soil samples were analyzed immediately in a "fresh" state. Unsieved fresh samples were extracted by deionised water and content of anions (sulphate, nitrate, chloride and fluoride) in these extracts were determined by ion-exchange chromatography (IC); the Al speciation was performed by means of HPLC/IC. The extracts were also used for determination of main elements content (Al, Ca, Mg, Ca, Na and Fe) by means of ICP-OES. Content of anions and main elements content, pH and conductivity were determined also in the precipitation samples (throughfall, stemflow and bulk). Statistically significant differences in distributions of monitored anions between the tested soil horizons were observed. The highest content of sulphate was determined in F and B horizons. On the contrary, contents of nitrate were highest in F horizons and lowest in B horizons. Higher annual variability in the investigated characteristics was proven for

  13. FOREWORD: Special section on electromagnetic characterization of buried obstacles

    NASA Astrophysics Data System (ADS)

    Lesselier, Dominique; Chew, Weng Cho

    2004-12-01

    laboratory data that emulate buried objects in the ocean and where the data are very limited and the environment is highly attenuative. The forward model is employed with an integral equation approach. The inverse scattering algorithm uses the level set method as well as a binary specialized contrast source method. Though computationally intensive these approaches are expected to be effective whenever linearization of the inversion fails. Two types of antennae were tested out in the experiment, a small one and a larger one. It is found, in particular, that the smaller antenna reproduces the modelled result better than the larger one. • X Feng and M Sato, in `Pre-stack migration applied to GPR for landmine detection', investigate the testing of a ground penetrating radar with synthetic aperture, acquiring mid-point multi-offset data in the demanding situations (strong clutter) of inhomogeneous soil and rough ground and/or of steeply oblique landmines. This is done in practice with experimental data, and is thoroughly illustrated by numerical experiments in the framework of migration techniques. These techniques are tailored to provide an approximate but robust solution to the highly involved three-dimensional vector wave-field inversion problem which is relevant here. • A Kirsch, in `The factorization method for Maxwell's equations', shows how the theory of the recently introduced and much considered factorization method can be developed in a sound theoretical fashion for the time-harmonic three-dimensional Maxwell system when far-field scattering patterns are known—by constructing a binary criterion which tells whether, if a given point lies inside or outside an unknown obstacle, the shape of which is to be retrieved. The vector nature of the electromagnetic field is fully considered in this paper. This is investigated in depth both for a lossy obstacle (with lower-bounded imaginary part of the dielectric permittivity) and for a lossless one (albeit with smoothly

  14. The variations of aluminium species in mountainous forest soils and its implications to soil acidification.

    PubMed

    Bradová, Monika; Tejnecký, Václav; Borůvka, Luboš; Němeček, Karel; Ash, Christopher; Šebek, Ondřej; Svoboda, Miroslav; Zenáhlíková, Jitka; Drábek, Ondřej

    2015-11-01

    Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008-2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al(3+) compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al(3+) and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al(3+) were determined in the summer, and the lowest in spring.

  15. Standard KDF0C4 Fallout Calculations for Buried Nuclear Detonations

    SciTech Connect

    Serduke, F J D

    2001-09-14

    The collateral damage caused by fallout from shallow-buried nuclear devices is of considerable interest. In this paper, we present results for ''standard'' calculations using the KDFOC4 fallout computer code. Results are presented for a parametric range of yields from 0.1 kt to 1 Mt in equally-spaced logarithmic increments and for emplacement depths of 5 meters in hard, dry rock and 20 meters in moist soil. We will see that for low yields, this emplacement depth has a marked influence on the shape of the fallout patterns but for the highest yields, the fallout patterns are insensitive to the emplacement medium and depth. We look at two categories of doses: (1) Those for which health effects begin to be serious and range upward to lethal, and (2) Doses that are politically very sensitive but for which any deleterious health effects are difficult to prove.

  16. Hydric soils in a southeastern Oregon vernal pool

    USGS Publications Warehouse

    Clausnitzer, D.; Huddleston, J.H.; Horn, E.; Keller, Michael; Leet, C.

    2003-01-01

    Vernal pools on the High Lava Plain of the northern Great Basin become ponded in most years, but their soils exhibit weak redoximorphic features indicative of hydric conditions. We studied the hydrology, temperature, redox potentials, soil chemistry, and soil morphology of a vernal pool to determine if the soils are hydric, and to evaluate hydric soil field indicators. We collected data for 3 yr from piezometers, Pt electrodes, and thermocouples. Soil and water samples were analyzed for pH, organic C, and extractable Fe and Mn. Soils were ponded from January through April or May, but subsurface saturation was never detected. Soil temperatures 50 cm below the surface rose above 5??C by March. Clayey Bt horizons perched water and limited saturation to the upper 10 cm. Redox potentials at a 5-cm depth were often between 200 and 300 mV, indicating anaerobic conditions, but producing soluble Fe2+ concentrations <1 mg L-1. Extractable soil Fe contents indicated Fe depletion from pool surface horizons and accumulation at or near the upper Bt1 horizon. Depletions and concentrations did not satisfy the criteria of any current hydric soil indicators. We recommend development of new indicators based on acceptance of fewer, less distinct redox concentrations for recognition of a depleted A horizon, and on presence of a thin zone containing redox concentrations located in the upper part of the near-surface perching horizon.

  17. Hydrological behavior of a Vertisol under different soil management systems in a rain-fed olive orchard

    NASA Astrophysics Data System (ADS)

    Cabezas, Jose Manuel; Gómez, Jose Alfonso; Auxiliadora Soriano, María

    2016-04-01

    Soil water availability is a major subject in Mediterranean agricultural systems, mainly due to the limited and highly variable annual rainfall, high evaporative demand, and soil hydrological characteristics. The recent expansion of olive cultivation in the rolling-plains of the Guadalquivir valley, due to the higher profitability of new intensive olive orchards, expanded the presence of olive orchards on Vertisols, soils traditionally used for annual rain-fed crops. These soils have a high content of smectitic clays, which give them a high water storage capacity, and are characterized by vertical and deep shrinkage cracks in the dry season, associated to low soil moisture. Farmers make several tillage passes in these olive groves during the summer, in order to cover the cracks and thus reduce soil water loss by evaporation, which will impact especially in rain-fed in the next olive yield. This tillage practice involves removal of plant residues from the soil surface, as well as burying seeds produced by the plants, so this will remain bared at the beginning of the rainy season, when in the Mediterranean climate is frequent occurrence of high-intensity rainfall, which are ideal conditions for soil loss by water erosion, one of the most serious problems for the sustainability of olive cultivation in Andalusia. Although there are some studies showing that water loss by evaporation from deep horizons of a vertic soil might be elevated (eg. Ritchie and Adams, 1974), the presence of plant residues on the soil surface drastically reduced soil water loss (eg Adams et al., 1969). Thus the aim of this study was to assess of soil moisture dynamics in a rain-fed olive orchard growing on a Vertisol under different soil management practices, in Andalusia (southern Spain). Four different soil management treatments were applied, which combined a cover crop (Bromus rubens L.) or bare soil throughout the year by applying herbicides, with tillage in summer to cover the cracks or non

  18. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  19. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... exempted in this subpart, all pipe must be buried so that it is below the level of cultivation. Except as... the pipe and the ground level, road bed, river bottom, or underwater natural bottom (as determined by... residential areas 36 (914) 30 (762) Crossing of inland bodies of water with a width of at least 100 feet...

  20. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exempted in this subpart, all pipe must be buried so that it is below the level of cultivation. Except as... the pipe and the ground level, road bed, river bottom, or underwater natural bottom (as determined by... residential areas 36 (914) 30 (762) Crossing of inland bodies of water with a width of at least 100 feet...

  1. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... exempted in this subpart, all pipe must be buried so that it is below the level of cultivation. Except as... the pipe and the ground level, road bed, river bottom, or underwater natural bottom (as determined by... residential areas 36 (914) 30 (762) Crossing of inland bodies of water with a width of at least 100 feet...

  2. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... exempted in this subpart, all pipe must be buried so that it is below the level of cultivation. Except as... the pipe and the ground level, road bed, river bottom, or underwater natural bottom (as determined by... residential areas 36 (914) 30 (762) Crossing of inland bodies of water with a width of at least 100 feet...

  3. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... exempted in this subpart, all pipe must be buried so that it is below the level of cultivation. Except as... the pipe and the ground level, road bed, river bottom, or underwater natural bottom (as determined by... residential areas 36 (914) 30 (762) Crossing of inland bodies of water with a width of at least 100 feet...

  4. Modeling Blast Loading on Buried Reinforced Concrete Structures with Zapotec

    DOE PAGES

    Bessette, Greg C.

    2008-01-01

    A coupled Euler-Lagrange solution approach is used to model the response of a buried reinforced concrete structure subjected to a close-in detonation of a high explosive charge. The coupling algorithm is discussed along with a set of benchmark calculations involving detonations in clay and sand.

  5. Model Development to Support Analysis of Acoustic Buried Target Data

    DTIC Science & Technology

    2007-09-30

    matrix scattering solution for a buried elongated scatterer is in progress. The spheroidal-basis T - matrix code was also exercised to compare its...superspheroid, its shape approaches that of a flat-endcapped cylinder. However, even with the use of spheroidal basis functions, stability of the T - matrix code is

  6. Buried mine detection using ground-penetrating impulse radar

    SciTech Connect

    Sargis, P.D.

    1995-03-01

    LLNL is developing a side-looking, ground-penetrating impulse radar system that can eventually be mounted on a robotic vehicle or an airborne platform to locate buried land mines. The system is described and results from field experiments are presented.

  7. Detection of concealed and buried chemicals by using multifrequency excitations

    SciTech Connect

    Gao Yaohui; Chen, Meng-Ku; Yang, Chia-En; Chang, Yun-Ching; Yao, Jim; Cheng Jiping; Yin, Stuart; Hui Rongqing; Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Luo, Claire

    2010-08-15

    In this paper, we present a new type of concealed and buried chemical detection system by stimulating and enhancing spectroscopic signatures with multifrequency excitations, which includes a low frequency gradient dc electric field, a high frequency microwave field, and higher frequency infrared (IR) radiations. Each excitation frequency plays a unique role. The microwave, which can penetrate into the underground and/or pass through the dielectric covers with low attenuation, could effectively transform its energy into the concealed and buried chemicals and increases its evaporation rate from the sample source. Subsequently, a gradient dc electric field, generated by a Van De Graaff generator, not only serves as a vapor accelerator for efficiently expediting the transportation process of the vapor release from the concealed and buried chemicals but also acts as a vapor concentrator for increasing the chemical concentrations in the detection area, which enables the trace level chemical detection. Finally, the stimulated and enhanced vapors on the surface are detected by the IR spectroscopic fingerprints. Our theoretical and experimental results demonstrate that more than sixfold increase in detection signal can be achieved by using this proposed technology. The proposed technology can also be used for standoff detection of concealed and buried chemicals by adding the remote IR and/or thermal spectroscopic and imaging detection systems.

  8. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    SciTech Connect

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.

  9. Status of the JPL Horizons Ephemeris System

    NASA Astrophysics Data System (ADS)

    Giorgini, Jon D.

    2015-08-01

    Since 1996, the NASA/Jet Propulsion Laboratory on-line Horizons system has provided open access to the latest JPL orbit solutions through customizable ephemeris generation and searches. Currently, high-precision ephemerides for more than 683,000 objects are available: all known solar system bodies, several dozen spacecraft, system barycenters, and some libration points.Since inception, Horizons has produced 150 million ephemeris products in response to 70.4 million connections by 800,000 unique IP addresses. Recent usage is typically 6000 unique users requesting 4,000,000 ephemeris products per month.Horizons is freely accessible without an account and may be used and automated through any of three interfaces: interactive telnet connection, web-browser form, or by sending e-mail command-files.Asteroid and comet ephemerides are numerically integrated on request using JPL's DASTCOM5 database of initial conditions which is kept current by a separate process; as new measurements and discoveries are reported by the Minor Planet Center, they are automatically processed into new JPL orbit solutions. Radar targets and other objects of high interest have their orbit solutions manually examined and updated into the database.For asteroids and comets, SPK files may be dynamically created using Horizons. This is effectively a recording of the integrator output. The binary files may then be efficiently interpolated by user software to exactly reproduce the trajectory without having to duplicate the numerically integrated n-body dynamical model or PPN equations of motion.Other Horizons output is numerical and in the form of plain-text observer, vector, osculating element, and close-approach tables. More than one hundred quantities can be requested in various time-scales and coordinate systems. For asteroids and comets, statistical uncertainties can be mapped to output times to assess position and motion uncertainties.Horizons is consistent with the DE431 solar system solution

  10. GPR Imaging for Deeply Buried Objects: A Comparative Study Based on FDTD Models and Field Experiments

    NASA Technical Reports Server (NTRS)

    Tilley, roger; Dowla, Farid; Nekoogar, Faranak; Sadjadpour, Hamid

    2012-01-01

    Conventional use of Ground Penetrating Radar (GPR) is hampered by variations in background environmental conditions, such as water content in soil, resulting in poor repeatability of results over long periods of time when the radar pulse characteristics are kept the same. Target objects types might include voids, tunnels, unexploded ordinance, etc. The long-term objective of this work is to develop methods that would extend the use of GPR under various environmental and soil conditions provided an optimal set of radar parameters (such as frequency, bandwidth, and sensor configuration) are adaptively employed based on the ground conditions. Towards that objective, developing Finite Difference Time Domain (FDTD) GPR models, verified by experimental results, would allow us to develop analytical and experimental techniques to control radar parameters to obtain consistent GPR images with changing ground conditions. Reported here is an attempt at developing 20 and 3D FDTD models of buried targets verified by two different radar systems capable of operating over different soil conditions. Experimental radar data employed were from a custom designed high-frequency (200 MHz) multi-static sensor platform capable of producing 3-D images, and longer wavelength (25 MHz) COTS radar (Pulse EKKO 100) capable of producing 2-D images. Our results indicate different types of radar can produce consistent images.

  11. Bedding factors and E values for buried pipe installations backfilled with air-modified CLSM

    SciTech Connect

    McGrath, T.J.; Hoopes, R.J.

    1998-10-01

    The use of controlled low strength material (CLSM) as a pipe bedding and backfill material requires characterization in terms of traditional design parameters such as bedding factors for rigid pipe and modulus of soil reaction, or E, values for flexible pipe. Triaxial compression and one-dimensional consolidation tests were conducted on two mixes of air-modified CLSM to establish parameters for use in finite element analyses of buried pipe installations. Both trial mixes contained 25 to 30% entrained air to provide flowability. The tests were conducted at ages of 16 hours, 7 days and 28 days to evaluate the change in strength and stiffness with time. Results of the tests were analyzed to fit parameters to the Duncan hyperbolic soil model with the Selig bulk modulus model. These parameters were then used in analyses of flexible and rigid pipe installations, backfilled with CLSM, to determine traditional installation design parameters. The finite element analyses indicate that bedding factors for rigid pipe installations range from 1.8, for trench installations backfilled at an age of 16 hours, to 2.5 for trench installations backfilled at an age of 28 days. Bedding factors for embankment installations of rigid pipe range from 2.5 to 4.8 for ages from 16 hours to 28 days, respectively. Values for the modulus of soil reaction (E) for installation of flexible pipe range from 7 MPa to 21 MPa (1,000 psi to 3,000 psi) for ages from 16 hours to 28 days respectively.

  12. Development of a teleoperated backhoe for buried waste excavation

    SciTech Connect

    Burks, B.L.; Killough, S.M.; Thompson, D.H.

    1992-01-01

    For nearly five decades the United States (US) Department of Energy (DOE) and its predecessor agencies have engaged in broad-based research and development activities as well as nuclear weapons component production. As a by-product of these activities, large quantities of waste materials have been granted. One of the most common approaches used for solid waste storage was to bury waste containers in pits and trenches. With the current emphasis on environmental restoration, DOE now plans to either retrieve much of the legacy of buried waste or stabilize the waste in place via in situ vitrification or other means. Because of the variety of materials that have been buried over the years, the hazards of retrieval are significant if performed using conventional manned operations. The potential hazards, in addition to radiation exposure, include pyrophorics, toxic chemicals, and explosives. Although manifests exist for much of the buried waste, these records are often incomplete compared to today's requirements. Because of the potential hazards and uncertainty about waste contents and container integrity, it is highly desirable to excavate these wastes using remotely operated equipment. In this paper the authors describe the development of a teleoperated military tractor called the Small Emplacement Excavator (SEE). Development of the SEE is being funded jointly by both DOE and the US Army. The DOE sponsor is the Office of Technology Development (OTD) Robotics Program. The US Army sponsor is the Program Manager for Ammunition Logistics, Picatinny Arsenal. The primary interest for DOE is in the application to remote excavation of buried waste, while the primary emphasis for the US Army is in the remote retrieval of unexploded ordnance. Technical requirements for these two tasks are very similar and, therefore, justify a joint development project. 1 ref.

  13. Development of a teleoperated backhoe for buried waste excavation

    SciTech Connect

    Burks, B.L.; Killough, S.M.; Thompson, D.H.

    1992-05-01

    For nearly five decades the United States (US) Department of Energy (DOE) and its predecessor agencies have engaged in broad-based research and development activities as well as nuclear weapons component production. As a by-product of these activities, large quantities of waste materials have been granted. One of the most common approaches used for solid waste storage was to bury waste containers in pits and trenches. With the current emphasis on environmental restoration, DOE now plans to either retrieve much of the legacy of buried waste or stabilize the waste in place via in situ vitrification or other means. Because of the variety of materials that have been buried over the years, the hazards of retrieval are significant if performed using conventional manned operations. The potential hazards, in addition to radiation exposure, include pyrophorics, toxic chemicals, and explosives. Although manifests exist for much of the buried waste, these records are often incomplete compared to today`s requirements. Because of the potential hazards and uncertainty about waste contents and container integrity, it is highly desirable to excavate these wastes using remotely operated equipment. In this paper the authors describe the development of a teleoperated military tractor called the Small Emplacement Excavator (SEE). Development of the SEE is being funded jointly by both DOE and the US Army. The DOE sponsor is the Office of Technology Development (OTD) Robotics Program. The US Army sponsor is the Program Manager for Ammunition Logistics, Picatinny Arsenal. The primary interest for DOE is in the application to remote excavation of buried waste, while the primary emphasis for the US Army is in the remote retrieval of unexploded ordnance. Technical requirements for these two tasks are very similar and, therefore, justify a joint development project. 1 ref.

  14. 75 FR 38042 - Specifications and Drawings for Construction of Direct Buried Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Construction of Direct Buried Plant AGENCY: Rural Utilities Service, USDA. ACTION: Proposed Rule; correction... and Drawings for Construction of Direct Buried Plant (Form 515a). This document corrects the Docket...

  15. Impact of land management on soil structure and soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Jirku, Veronika; Nikodem, Antonin; Muhlhanselova, Marcela; Zigova, Anna

    2010-05-01

    Study is focused on a comparison of a soil structure and soil hydraulic properties within soil profiles of a same soil type under different land management. Study was performed in Haplic Luvisol in Hnevceves the Czech Republic. Two soil profiles, which were in close distance from each other, were chosen: 1. under the conventional tillage, 2. under the permanent (30 years) grass cover. Soil sampling and field experiments were carried out immediately after the harvest of winter barley in 2008. The micromorphological images were used to evaluate the soil structure of all Ap, Bt1, Bt2 and C diagnostic horizons. The hydraulic properties of the diagnostic horizons were studied in the laboratory using multistep outflow experiments performed on the undisturbed 100-cm3 soil samples. A tension disc infiltrometer (with a disc radius of 10 cm) and minidisc tension infiltrometers (with a disc radius of 2.2 cm) were used to measure cumulative water infiltration under unsaturated conditions created using a pressure head of -2 cm. Measurements were performed at a depths of 5, 45, 75 and 110 cm, which corresponded to the Ap, Bt1, Bt2 and C horizons of studied Haplic Luvisol at both locations. The Guelph permeameter was used to measure cumulative water flux under surface ponding conditions. The depth of the drilled well was 10, 50, 80 and 115 cm, the well radius was 3 cm, and the well ponding depth was 5 cm. Both tests were used to evaluate hydraulic conductivity (K for h=-2cm, and Ks) values. Results showed, that while properties in the Bt2 and C horizons of both soil profiles were relatively similar, properties in the Ap and Bt1 horizons were different. The fraction of gravitational pores (which may cause preferential flow) in the Ap and Bt1 horizons of the soil profile under the convectional tillage was large than those in the Ap and Bt1 horizons of the soil profile under the permanent grass. This influenced for instance the Ks values measured using the Guelph permeametr. The Ks

  16. Fiber-optical analog of the event horizon.

    PubMed

    Philbin, Thomas G; Kuklewicz, Chris; Robertson, Scott; Hill, Stephen; König, Friedrich; Leonhardt, Ulf

    2008-03-07

    The physics at the event horizon resembles the behavior of waves in moving media. Horizons are formed where the local speed of the medium exceeds the wave velocity. We used ultrashort pulses in microstructured optical fibers to demonstrate the formation of an artificial event horizon in optics. We observed a classical optical effect: the blue-shifting of light at a white-hole horizon. We also showed by theoretical calculations that such a system is capable of probing the quantum effects of horizons, in particular Hawking radiation.

  17. Rogue events in the group velocity horizon

    PubMed Central

    Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter

    2012-01-01

    The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems. PMID:23152941

  18. Rogue events in the group velocity horizon.

    PubMed

    Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter

    2012-01-01

    The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems.

  19. Quantum correlations across the black hole horizon

    SciTech Connect

    Schuetzhold, Ralf; Unruh, William G.

    2010-06-15

    Inspired by the condensed-matter analogues of black holes, we study the quantum correlations across the event horizon reflecting the entanglement between the outgoing particles of the Hawking radiation and their in-falling partners. For a perfectly covariant theory, the total correlation is conserved in time and piles up arbitrary close to the horizon in the past, where it merges into the singularity of the vacuum two-point function at the light cone. After modifying the dispersion relation (i.e., breaking Lorentz invariance) for large k, on the other hand, the light cone is smeared out and the entanglement is not conserved but actually created in a given rate per unit time.

  20. Horizon Missions Technology Study. [for space exploration

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1992-01-01

    The purpose of the HMT Study was to develop and demonstrate a systematic methodology for identifying and evaluating innovative technology concepts offering revolutionary, breadkthrough-type capabilities for advanced space missions and for assessing their potential mission impact. The methodology is based on identifying the new functional, operational and technology capabilities needed by hypothetical 'Horizon' space missions that have performance requirements that cannot be met, even by extrapolating known space technologies. Nineteen Horizon Missions were selected to represent a collective vision of advanced space missions of the mid-21st century. The missions typically would occur beyond the lifetime of current or planned space assets. The HM methodology and supporting data base may be used for advanced technology planning, advanced mission planning and multidisciplinary studies and analyses.

  1. Dynamical AdS strings across horizons

    SciTech Connect

    Ishii, Takaaki; Murata, Keiju

    2016-03-01

    We examine the nonlinear classical dynamics of a fundamental string in anti-deSitter spacetime. The string is dual to the flux tube between an external quark-antiquark pair in $N = 4$ super Yang-Mills theory. We perturb the string by shaking the endpoints and compute its time evolution numerically. We find that with sufficiently strong perturbations the string continues extending and plunges into the Poincare´ horizon. In the evolution, effective horizons are also dynamically created on the string worldsheet. The quark and antiquark are thus causally disconnected, and the string transitions to two straight strings. The forces acting on the endpoints vanish with a power law whose slope depends on the perturbations. Lastly, the condition for this transition to occur is that energy injection exceeds the static energy between the quark-antiquark pair.

  2. Dynamical AdS strings across horizons

    DOE PAGES

    Ishii, Takaaki; Murata, Keiju

    2016-03-01

    We examine the nonlinear classical dynamics of a fundamental string in anti-deSitter spacetime. The string is dual to the flux tube between an external quark-antiquark pair in $N = 4$ super Yang-Mills theory. We perturb the string by shaking the endpoints and compute its time evolution numerically. We find that with sufficiently strong perturbations the string continues extending and plunges into the Poincare´ horizon. In the evolution, effective horizons are also dynamically created on the string worldsheet. The quark and antiquark are thus causally disconnected, and the string transitions to two straight strings. The forces acting on the endpoints vanishmore » with a power law whose slope depends on the perturbations. Lastly, the condition for this transition to occur is that energy injection exceeds the static energy between the quark-antiquark pair.« less

  3. Polarimetry with the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Johnson, Michael; Doeleman, Sheperd; Fish, Vincent L.; Plambeck, Richard L.; Marrone, Daniel P.; Kosowsky, Michael; Wardle, John F. C.; Lu, Rusen

    2014-06-01

    The Event Horizon Telescope (EHT) is an effort to develop millimeter and submillimeter VLBI to image nearby black holes at resolutions comparable to their event horizons. Past work with the EHT has measured compact emission on such scales for Sgr A* and M87, and has also measured sub-parsec structure in more distant quasars. Polarimetry with the EHT enables a powerful extension of this work, mapping magnetic field structures via the highly polarized synchrotron emission. Polarization is also an excellent probe of rapid variability, especially for Sgr A*, and can convey rich astrometric information even with incomplete imaging. We report on results from our 2013 campaign, which demonstrate a sharp increase in the linear polarization fraction and variability with increasing baseline, and we demonstrate that current EHT data can potentially achieve microarcsecond relative astrometry of flaring regions on timescales of minutes.

  4. Closure Report for CAU No. 430: Buried Depleted Uraniuim Artillery Round No. 1, Tonopah Test Range, Revision 0

    SciTech Connect

    1997-02-25

    1.1 Purpose This Closure Report presents the information obtained from investigative actions performed to justify the decision for clean closure of CAU 430 through "No Further Action." The investigative actions were performed per the Streamlined Approach for Environmental Restoration Plan, CA UNO. 430: Buried Depleted Uranium Artille~ Round No. 1, Tonopah Test Range (DOE/NV, 1996a) (hereafter referred to as the SAFER Plan). The Buried DU Artillery Round No. 1 is located approximately 1.1 kilometers (km) (0.7 mile [mi]) south of Avenue 13 in the test area south of Area 9 (Figure 1-2). The site was thought to consist of a potentially unexploded W-79 Joint Test Assembly (JTA) test artillery projectile with high explosives (HE) and DU. The DU was substituted for Special Nuclear Material to prevent a nuclear explosion and yet retain the physical characteristics of uranium for ballistic and other mechanical tests. The projectile was reportedly buried in one pit, approximately 5 to 10 feet (ft) deep (Smith, 1993; Smith, 1996; Quas, 1996). The exact location of the burial pit is unknown; however, three disturbed areas (Sites A, B, and C) were identified through geophysical surveys, site visits, and employee interviews as possible locations of the test projectile (Figure 1-3). Results of the investigation are summarized within this Closure Report. Additional information about the site and investigation activities may be found in the SAFER Plan (DOE/NV, 1996a). 1.2 Scope The objectives of the SAFER Plan (DOE/NV, 1996a) activities were to prepare the site for closure through locating and identi~ing the projectile (Buried DU Artillery Round No. 1), destroying the projectile and any remaining components, collecting soil samples to detect residual contamination resulting from projectile destruction, and finally, remediating residual contamination.

  5. Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs.

    PubMed

    Lilleskov, Erik A; Bruns, Thomas D

    2005-01-01

    Patterns of fungal spore dispersal affect gene flow, population structure and fungal community structure. Many Basidiomycota produce resupinate (crust-like) basidiocarps buried in the soil. Although spores are actively discharged, they often do not appear to be well positioned for aerial dispersal. We investigated the potential spore dispersal mechanisms of one exemplar of this growth form, Tomentella sublilacina. It is a widespread ectomycorrhizal fungus that sporulates in the soil organic horizon, can establish from the spore bank shortly after disturbance, but also can be a dominant species in mature forest stands. We investigated whether its spores could be dispersed via spore-based food webs. We examined external surfaces, gut contents and feces from arthropod fungivores (mites, springtails, millipedes, beetles, fly larvae) and arthropod and vertebrate predators (centipedes, salamanders) from on and around T. sublilacina sporocarps. Spore densities were high in the guts of many individuals from all fungivore groups. Centipede gut contents, centipede feces and salamander feces contained undigested invertebrate exoskeletons and many apparently intact spores. DAPI staining of spores from feces of fungivores indicated that 7-73% of spores contained intact nuclei, whereas spores from predators had lower percentages of intact nuclei. The spiny spores often were lodged on invertebrate exoskeletons. To test the viability of spores that had passed through invertebrate guts we used fecal droppings of the millipede Harpaphe haydeniana to successfully inoculate seedlings of Pinus muricata (Bishop pine). These results indicate the potential for T. sublilacina spore dispersal via invertebrates and their predators in soil food webs and might help to explain the widespread distribution of this species. It is likely that this is a general mechanism of dispersal for fungi producing resupinate sporocarps, indicating a need to develop a fuller understanding of the linkages of

  6. Quantum amplification effect in a horizon fluctuation

    SciTech Connect

    Ansari, Mohammad H.

    2010-05-15

    The appearance of a few unevenly spaced bright flashes of light on top of Hawking radiation is the sign of the amplification effect in black hole horizon fluctuations. Previous studies on this problem suffer from the lack of considering all emitted photons in the theoretical spectroscopy of these fluctuations. In this paper, we include all of the physical transition weights and present a consistent intensity formula. This modifies a black hole radiation pattern.

  7. Gribov horizon beyond the Landau gauge

    NASA Astrophysics Data System (ADS)

    Lavrov, Peter M.; Lechtenfeld, Olaf

    2013-10-01

    Gribov and Zwanziger proposed a modification of Yang-Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov-Zwanziger model from the Landau gauge to general Rξ gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.

  8. New Horizons Pluto Flyby Guest Operations

    NASA Astrophysics Data System (ADS)

    Simon, M.; Turney, D.; Fisher, S.; Carr, S. S.

    2015-12-01

    On July 14, 2015, after 9.5 years of cruise, NASA's New Horizons spacecraft flew past the Pluto system to gather first images humankind had ever seen on Pluto and its five moons. While much has been discovered about the Pluto system since New Horizons launch in 2006, the system has never been imaged at high resolution and anticipation of the "First Light" of the Pluto system had been anticipated by planetary enthusiasts for decades. The Johns Hopkins Applied Physics Laboratory (APL), which built and operates New Horizons, was the focal point for gathering three distinct groups: science and engineering team members; media and public affairs representatives; and invited public, including VIP's. Guest operations activities were focused on providing information primarily to the invited public and VIP's. High level objectives for the Guest Operations team was set to entertain and inform the general public, offer media reaction shots, and to deconflict activities for the guests from media activities wherever possible. Over 2000 people arrived at APL in the days surrounding closest approach for guest, science or media operations tracks. Reaction and coverage of the Guest Operations events was universally positive and global in impact: iconic pictures of the auditorium waving flags during the moment of closest approach were published in media outlets on every continent. Media relations activities ensured coverage in all key media publications targeted for release, such as the New York Times, Science, Le Monde, and Nature. Social and traditional media coverage of the events spanned the globe. Guest operations activities are designed to ensure that a guest has a memorable experience and leaves with a lifelong memory of the mission and their partnership in the activity. Results, lessons learned, and other data from the New Horizons guest operations activity will be presented and analyzed.

  9. Variation in seed viability and dormancy of 17 weed species after 24.7 years of burial: the concept of buried seed safe sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 50-year study at Fairbanks, AK was started in 1984 to determine soil seed longevity of 17 weed species. Seeds were buried in mesh bags 2 and 15 cm deep and were recovered 0.7, 1.7, 2.7, 3.7, 4.7, 6.7, 9.7,19.7 and 24.7 yr later. Viability was determined using germination and tetrazolium tests. By ...

  10. Gravitational memory charges of supertranslation and superrotation on Rindler horizons

    NASA Astrophysics Data System (ADS)

    Hotta, Masahiro; Trevison, Jose; Yamaguchi, Koji

    2016-10-01

    In a Rindler-type coordinate system spanned in a region outside of a black hole horizon, we have nonvanishing classical holographic charges as soft hairs on the horizon for stationary black holes. Taking a large black hole mass limit, the spacetimes with the charges are described by asymptotic Rindler metrics. We construct a general theory of gravitational holographic charges for a (1 +3 )-dimensional linearized gravity field in the Minkowski background with Rindler horizons. Although matter crossing a Rindler horizon causes horizon deformation and a time-dependent coordinate shift—that is, gravitational memory—the supertranslation and superrotation charges on the horizon can be defined during and after its passage through the horizon. It is generally proven that holographic states on the horizon cannot store any information about absorbed perturbative gravitational waves. However, matter crossing the horizon really excites holographic states. By using gravitational memory operators, which consist of the holographic charge operators, we suggest a resolution of the no-cloning paradox of quantum information between matter falling into the horizon and holographic charges on the horizon from the viewpoint of the contextuality of quantum measurement.

  11. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  12. Towards Assessing the Human Trajectory Planning Horizon

    PubMed Central

    Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk

    2016-01-01

    Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models. PMID:27936015

  13. New Horizons Imaging of Jupiter's Main Ring

    NASA Astrophysics Data System (ADS)

    Throop, Henry B.; Showalter, Mark Robert; Dones, Henry C. Luke; Hamilton, D. P.; Weaver, Harold A.; Cheng, Andrew F.; Stern, S. Alan; Young, Leslie; Olkin, Catherine B.; New Horizons Science Team

    2016-10-01

    New Horizons took roughly 520 visible-light images of Jupiter's ring system during its 2007 flyby, using the spacecraft's Long-Range Reconnaissance Imager (LORRI). These observations were taken over nine days surrounding Jupiter close-approach. They span a range in distance of 30 - 100 RJ, and a phase angle range of 20 - 174 degrees. The highest resolution images -- more than 200 frames -- were taken at a resolution approaching 20 km/pix.We will present an analysis of this dataset, much of which has not been studied in detail before. Our results include New Horizons' first quantitative measurements of the ring's intrinsic brightness and variability. We will also present results on the ring's azimuthal and radial structure. Our measurements of the ring's phase curve will be used to infer properties of the ring's dust grains.Our results build on the only previous analysis of the New Horizons Jupiter ring data set, presented in Showalter et al (2007, Science 318, 232-234), which detected ring clumps and placed a lower limit on the population of undetected ring-moons.This work was supported by NASA's OPR program.

  14. The Event Horizon of M87

    NASA Astrophysics Data System (ADS)

    Broderick, Avery E.; Narayan, Ramesh; Kormendy, John; Perlman, Eric S.; Rieke, Marcia J.; Doeleman, Sheperd S.

    2015-06-01

    The 6× {{10}9} {{M}⊙ } supermassive black hole at the center of the giant elliptical galaxy M87 powers a relativistic jet. Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet to angular scales comparable to the putative black hole horizon. The jet might be powered directly by an accretion disk or by electromagnetic extraction of the rotational energy of the black hole. However, even the latter mechanism requires a confining thick accretion disk to maintain the required magnetic flux near the black hole. Therefore, regardless of the jet mechanism, the observed jet power in M87 implies a certain minimum mass accretion rate. If the central compact object in M87 were not a black hole but had a surface, this accretion would result in considerable thermal near-infrared and optical emission from the surface. Current flux limits on the nucleus of M87 strongly constrain any such surface emission. This rules out the presence of a surface and thereby provides indirect evidence for an event horizon.

  15. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been...

  16. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been...

  17. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been...

  18. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been...

  19. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been...

  20. Effects of compaction and wetting of laterite cover soil on development and survival of Musca domestica (Diptera: Muscidae) immatures.

    PubMed

    Abu Tahir, Nurita; Ahmad, Abu Hassan

    2013-09-01

    Effects of laterite cover soil with different characteristics on survival of buried eggs, third instar larvae, and pupae of Musca domestica (L.) were studied experimentally. Soil treatments were loose dry soil, loose wet soil, compacted dry soil, and compacted wet soil (CWS). Eggs, third instar larvae, and pupae were buried under 30 cm of the different soil treatments and placed under field conditions until adults emerged. Rearing medium was provided for eggs and larvae, and control treatments of all stages were unburied immatures placed on soil surface. Egg and pupal survival to adult were significantly affected by the cover soil treatments, but third instars were more resilient. Wet soil treatments (loose wet soil and CWS) resulted in significantly reduced pupal survival, but increased survival of eggs. However, CWS significantly reduced adult emergence from buried eggs. Though emergence of house flies buried as eggs was significantly reduced, some were able to hatch and emerging first instar larvae developed to pupation. Although cover soil does not completely prevent fly emergence, it did limit development and emergence of buried house flies.

  1. The number and biomass of microorganisms in ancient buried and recent chernozems under different land uses

    NASA Astrophysics Data System (ADS)

    Polyanskaya, L. M.; Prikhod'ko, V. E.; Lomakin, D. G.; Chernov, I. Yu.

    2016-10-01

    The size, number, and biomass of bacteria and microscopic fungi were studied in chernozems of different land uses (forest, fallow, pasture, and cropland), in paleosols under mounds of different ages in the territories adjacent to the background recent chernozems; and in the cultural layer of an ancient settlement of the Bronze Age, Early Iron Age, and Early Middle Age (4100-1050 years ago). The method of cascade filtration revealed that bacterial cells had a diameter from 0.1 to 1.85 μm; their average volume varied from 0.2 to 1.1 μm3. Large bacterial cells predominated in the soils of natural biocenoses; fine cells were dominants in the arable soils and their ancient analogues. The bacterial biomass counted by the method of cascade filtration was first found to be 10-380 times greater than that determined by luminescence microscopy. The maximal bacterial biomass (350-700 μg/g) was found in the soils of the birch forest edge (~80-year-old) and under the 80-year-old fallow. In the soils of the 15-20 year-old fallows and pastures, the bacterial biomass was 110-180 μg/g; in the arable soils and soils under the mounds, it was 80-130 and 30-130 μg/g, respectively. The same sequence was recorded in soils for the content of fungal mycelium and spores, which predominated over the bacterial mass. With the increasing age of the buried paleosols from 1100 to 3900 years, the share of the biomass of fungal spores increased in the total fungal and total microbial biomasses. In the cultural layer of the Berezovaya Luka (Altai region) settlement that had been functioning about 4000 years ago, the maximal biomass and number of fungal spores and the average biomass of bacteria and fungal mycelium comparable to that in the studied soils were revealed. In this cultural layer, the organic matter content was low (Corg, 0.4%), and the content of available phosphorus was high (P2O5, 17 mg/g). These facts attest to the significant saturation of this layer with microbial cenoses 4000

  2. A global data set of soil particle size properties

    NASA Technical Reports Server (NTRS)

    Webb, Robert S.; Rosenzweig, Cynthia E.; Levine, Elissa R.

    1991-01-01

    A standardized global data set of soil horizon thicknesses and textures (particle size distributions) was compiled. This data set will be used by the improved ground hydrology parameterization designed for the Goddard Institute for Space Studies General Circulation Model (GISS GCM) Model 3. The data set specifies the top and bottom depths and the percent abundance of sand, silt, and clay of individual soil horizons in each of the 106 soil types cataloged for nine continental divisions. When combined with the World Soil Data File, the result is a global data set of variations in physical properties throughout the soil profile. These properties are important in the determination of water storage in individual soil horizons and exchange of water with the lower atmosphere. The incorporation of this data set into the GISS GCM should improve model performance by including more realistic variability in land-surface properties.

  3. Migration of radionuclides and heavy metals during the bioremediation of a polluted cinnamonic soil

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nikolova, Marina

    2013-04-01

    A fresh sample of cinnamonic soil polluted with radionuclides (U, Ra) and toxic heavy metals (Cu, Pb, Zn) was subjected to bioremediation in large-scale lysimeters by means of moulching. The aim of soil treatment was solubilization of pollutants located in horizon A, the migration of their dissolved complexes through the soil profile, and the pollutants` precipitation in the rich-in-clays below-lying horizons. The solubilization was due to the joint action of natural soil microflora and leach waters containing ammonium and phosphate ions, and in some variants-hydrocarbonate ions. The precipitation of pollutants was due to the enhanced activity of the indigenous microflora in which iron- and sulphate-reducing bacteria were the prevalent groups. After 24 months of treatment, each of the soil profiles in different lysimeters was divided into five sections reflecting the relevant soil layers (horizon A and the sub-horizons B1, B2, B3, and B4). The soil in these sections was subjected to a detailed chemical analysis and the obtained data were compared with the relevant data obtained before the start of soil bioremediation. It was found that considerable portions of the pollutants were removed from the horizon A and were migrated to the sub-horizons B3 and B4, mainly. In these sub-horizons the non-ferrous metals were precipitated mainly as the relevant sulphides, uranium was precipitated as uraninite (UO2), and radium-mainly as adsorbed ions and complexes.

  4. Identification of electrofacies on the basis of well logging to determine sedimentation environment of horizon JK2 in Em-Egovskoe field (Western Siberia)

    NASA Astrophysics Data System (ADS)

    Kudryashova, L.; Belozerov, V.; Pushtakov, E.

    2015-11-01

    Well logging results are one of the ways to study the buried terrigenous rocks genesis. To ensure the most objective characterization of the rock and identification of electrofacies it is necessary to use a complex geological and geophysical survey. The comprehensive investigations of environmental conditions based on well logging have been performed for the horizon JK2 of Tumenskoe formation in Em-Egovskoe area, Krasnoleninskoe field (Western Siberia). The defined electrofacies were compared with the results of earlier conducted granulometric and mineralogical analyses. The totality of research provided for a conclusion that the investigated sediments of horizon JK2 had been formed within the destructive tidal delta. Thus, objective facies prediction can only be ensured by analyzing core and well logging data comprehensively.

  5. Soils, time, and primate paleoenvironments

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    Soils are the skin of the earth. From both poles to the equator, wherever rocks or sediment are exposed at the surface, soils are forming through the physical and chemical action of climate and living organisms. The physical attributes (color, texture, thickness) and chemical makeup of soils vary considerably, depending on the composition of the parent material and other variables: temperature, rainfall and soil moisture, vegetation, soil fauna, and the length of time that soil-forming processes have been at work. United States soil scientists1 have classified modern soils into ten major groups and numerous subgroups, each reflecting the composition and architecture of the soils and, to some extent, the processes that led to their formation. The physical and chemical processes of soil formation have been active throughout geologic time; the organic processes have been active at least since the Ordovician.2 Consequently, nearly all sedimentary rocks that were deposited in nonmarine settings and exposed to the elements contain a record of ancient, buried soils or paleosols. A sequence of these rocks, such as most ancient fluvial (stream) deposits, provides a record of soil paleoenvironments through time. Paleosols are also repositories of the fossils of organisms (body fossils) and the traces of those organisms burrowing, food-seeking, and dwelling activities (ichnofossils). Indeed, most fossil primates are found in paleosols. Careful study of ancient soils gives new, valuable insights into the correct temporal reconstruction of the primate fossil record and the nature of primate paleoenvironments. ?? 1993 Wiley-Liss, Inc.

  6. Radar glory from buried craters on icy moons

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1986-01-01

    Three ice-covered moons of Jupiter, in comparison with rocky planets and earth's moon, produce radar echoes of astounding strengths and bizarre polarizations. Scattering from buried craters can explain these and other anomalous properties of the echoes. The role of such craters is analogous to that of the water droplets that create the apparition known as 'the glory', the optically bright region surrounding an observer's shadow on a cloud. Both situations involve the electromagnetic phenomenon of total internal reflection at a dielectric interface, operating in a geometry that strongly favors exact backscattering. Dim surface craters are transformed into bright glory holes by being buried under somewhat denser material, thereby increasing the intensity of their echoes by factors of hundreds. The dielectric interface thus formed at the crater walls nicely accounts for the unusual polarizations of the echoes.

  7. Radar glory from buried craters on icy moons

    NASA Astrophysics Data System (ADS)

    Eshleman, Von R.

    1986-10-01

    Three ice-covered moons of Jupiter, in comparison with rocky planets and earth's moon, produce radar echoes of astounding strengths and bizarre polarizations. Scattering from buried craters can explain these and other anomalous properties of the echoes. The role of such craters is analogous to that of the water droplets that create the apparition known as 'the glory', the optically bright region surrounding an observer's shadow on a cloud. Both situations involve the electromagnetic phenomenon of total internal reflection at a dielectric interface, operating in a geometry that strongly favors exact backscattering. Dim surface craters are transformed into bright glory holes by being buried under somewhat denser material, thereby increasing the intensity of their echoes by factors of hundreds. The dielectric interface thus formed at the crater walls nicely accounts for the unusual polarizations of the echoes.

  8. Vertical Bipolar Charge Plasma Transistor with Buried Metal Layer

    PubMed Central

    Nadda, Kanika; Kumar, M. Jagadesh

    2015-01-01

    A self-aligned vertical Bipolar Charge Plasma Transistor (V-BCPT) with a buried metal layer between undoped silicon and buried oxide of the silicon-on-insulator substrate, is reported in this paper. Using two-dimensional device simulation, the electrical performance of the proposed device is evaluated in detail. Our simulation results demonstrate that the V-BCPT not only has very high current gain but also exhibits high BVCEO · fT product making it highly suitable for mixed signal high speed circuits. The proposed device structure is also suitable for realizing doping-less bipolar charge plasma transistor using compound semiconductors such as GaAs, SiC with low thermal budgets. The device is also immune to non-ideal current crowding effects cropping up at high current densities. PMID:25597295

  9. Imaging and controlling plasmonic interference fields at buried interfaces

    NASA Astrophysics Data System (ADS)

    Lummen, Tom T. A.; Lamb, Raymond J.; Berruto, Gabriele; Lagrange, Thomas; Dal Negro, Luca; García de Abajo, F. Javier; McGrouther, Damien; Barwick, B.; Carbone, F.

    2016-10-01

    Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ~0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advance